WorldWideScience

Sample records for field nmr tomograph

  1. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  2. Transducer project and optimization of the ultra low magnetic field NMR tomograph reception system system

    International Nuclear Information System (INIS)

    Vidoto, Edson Luiz Gea

    1995-01-01

    The aim of the present work was to optimize the signal to noise ratio in our NMR imaging system (TORM 005) by improving transducer's reception quality through better designed coils, balanced tuning circuit for this coils and power decoupling circuits and by reducing interference from the electromagnetic environment. For this purpose, we had to modify the internal electromagnetic shielding and incorporate line filters in the more critical signals paths. Also, new types of coils were developed, improving the signal to noise ratio, and allowing us to make clinical exams with superior quality for several anatomies. Balanced circuits for tuning and matching of the coil were studied and built, allowing a reduction of the coil losses because patient's load. This produced a more reliable coil tuning after positioning each new patient. Circuits to avoid the receiver input overload and decoupling circuits for the isolation of receiver coils from excitation coil were designed and incorporated to the TORM 005. All these alterations of our imaging system (TORM 005) contributed to a significant improvement in the signal to noise ratio, reliability and reproducibility of the system. This permitted to operate the system routinely for clinical applications, research and development in the area of ultra low magnetic field tomography. (author)

  3. Clinical trials in the fields of ophthalmology, ENT and neurosurgery with an NMR tomograph showing high spatial resolution

    International Nuclear Information System (INIS)

    Seiler, T.; Wollensak, J.

    1992-01-01

    The report describes the results of a clinical trial using a Niederfeld NMR tomograph that was carried out during 1985/86 and completed in 1987. The relaxation parameters for ocular and orbital tissues clearly point to the fact that optimum contrast enhancement is most likely to be seen for T2 sequences. A suitable phantom was prepared from paramagnetically doped gels that ensured adequate simulation of all relaxation parameters of tissues found in the eye. Optimum surface coils for the orbital region, which were another subject studied in this context, were especially developed for tomographic uses. The most remarkable finding of the clinical studies was the method's enormous discriminating power in the differential diagnosis of ocular malignant melanoma. It perimits the melanin content of any such tumor to be determined quantitatively. A relaxation time of T2 in the range between 85 and 120 msec was seen to be characteristic of tissue containing melanin. Foreign bodies and implantations of solid consistency and a size of less than 0.5 x 0.5 mm 2 escaped detection by this method. The silicone oil used to simulate the hyaline body ensured sharply outlined displays. In inflammatory changes of the optic nerve it was for the first time possible to detect the precise focus of inflammation and demyelinisation. The subarachnoidal oedema was newly introduced as a diagnostic criterion and the accuracy of visualisation and measurement achieved here deserves to be described as unique. If the relaxation time of the subretinal liquid is measured in retinal detachment, it is possible to estimate the time of its onset and, thus, the probable outcome of surgery. (orig./MG) [de

  4. A NMR Tomographic System for image visualization

    International Nuclear Information System (INIS)

    Paiva, M.S.V. de; Slaets, J.F.W.; Almeida, L.O.B. de

    1989-01-01

    This paper presents some characteristics of a graphics system that is being constructed in the Electronics Instrumentation and Computation Laboratory (LIE) of IFQSC. This system will be used in reconstruction and interpretation of MR tomographic images. A minimum system is at moment being used at our laboratory to visualize MR images. (author) [pt

  5. NMR in pulsed magnetic field

    KAUST Repository

    Abou-Hamad, Edy

    2011-09-01

    Nuclear magnetic resonance (NMR) experiments in pulsed magnetic fields up to 30.4 T focused on 1H and 93Nb nuclei are reported. Here we discuss the advantage and limitation of pulsed field NMR and why this technique is able to become a promising research tool. © 2011 Elsevier Inc. All Rights Reserved.

  6. Transducer project and optimization of the ultra low magnetic field NMR tomograph reception system system; Projeto de transdutores e otimizacao do sistema de recepcao do tomografo de RMN de campo magnetico ultra baixo

    Energy Technology Data Exchange (ETDEWEB)

    Vidoto, Edson Luiz Gea

    1995-12-31

    The aim of the present work was to optimize the signal to noise ratio in our NMR imaging system (TORM 005) by improving transducer`s reception quality through better designed coils, balanced tuning circuit for this coils and power decoupling circuits and by reducing interference from the electromagnetic environment. For this purpose, we had to modify the internal electromagnetic shielding and incorporate line filters in the more critical signals paths. Also, new types of coils were developed, improving the signal to noise ratio, and allowing us to make clinical exams with superior quality for several anatomies. Balanced circuits for tuning and matching of the coil were studied and built, allowing a reduction of the coil losses because patient`s load. This produced a more reliable coil tuning after positioning each new patient. Circuits to avoid the receiver input overload and decoupling circuits for the isolation of receiver coils from excitation coil were designed and incorporated to the TORM 005. All these alterations of our imaging system (TORM 005) contributed to a significant improvement in the signal to noise ratio, reliability and reproducibility of the system. This permitted to operate the system routinely for clinical applications, research and development in the area of ultra low magnetic field tomography. (author) 46 refs., 66 figs., 11 tabs.

  7. Dynamic pulsed-field-gradient NMR

    CERN Document Server

    Sørland, Geir Humborstad

    2014-01-01

    Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.

  8. Development of NMR tomographs for dedicated applications - Dedicated NMR Imaging Systems (DIS)

    International Nuclear Information System (INIS)

    Mueller, W.; Knuettel, B.

    1989-12-01

    For the application of MR in medicine three different magnet systems have been developed. a) A superconducting magnet system with a field strength of 3 Tesla and a room temperature bore diameter of 600 mm. b) A resistive magnet system with a field strength of 0.35 Tesla and a free access of 480 mm. c) A resistive magnet with a field strength of 0.47 Tesla and a free access of 140 mm. The superconducting magnet system is capable of performing spectroscopy as well as imaging. The resistive magnet systems are basically suited for imaging, whereby the system with a free access of 140 mm can be used especially for orthopaedic studies. (orig.) [de

  9. Flow NMR of polymers in external fields

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, Ute; Bagusat, Frank; Scheler, Ulrich [Leibniz Institute of Polymer Research Dresden (Germany)

    2008-07-01

    Pulsed-field gradient NMR is applied to study the motion of polymers in an external electric field and under mechanical shear. The application of an electric field drives motion of charged species. In conjunction with the diffusion coefficient from the electrophoretic mobility the effective charge per molecule is derived. The electric field applicable in the aqueous system is too weak to deform the polymer or even abstract counterions. In a shear flow established in a Couette cell partial orientation of polymer chains is measured via residual dipolar couplings. The entire flow field in a non-symmetric flow cell is monitored by a combination of PFG NMR and NMR imaging exhibiting regions of high shear and locally low shear, where polymers relax.

  10. Development of basic software for processing and visualization of NMR tomographic images

    International Nuclear Information System (INIS)

    Traina, A.J.M.; Slaets, J.F.W.

    1989-01-01

    The present work describes the software under development for Image Processing and Visualization of MR Images. This project is part of Magnetic Ressonance Tomographic System which is being built at the IFQSC - USP [pt

  11. NMR in rotating magnetic fields: Magic angle field spinning

    Energy Technology Data Exchange (ETDEWEB)

    Sakellariou, D.; Meriles, C.; Martin, R.; Pines, A.

    2004-09-10

    Magic angle sample spinning has been one of the cornerstones in high-resolution solid state NMR. Spinning frequencies nowadays have increased by at least one order of magnitude over the ones used in the first experiments and the technique has gained tremendous popularity. It is currently a routine procedure in solid-state NMR, high-resolution liquid-state NMR and solid-state MRI. The technique enhances the spectral resolution by averaging away rank 2 anisotropic spin interactions thereby producing isotropic-like spectra with resolved chemical shifts and scalar couplings. Andrew proposed that it should be possible to induce similar effects in a static sample if the direction of the magnetic field is varied, e.g., magic-angle rotation of the B0 field (B0-MAS) and this has been recently demonstrated using electromagnetic field rotation. Here we discuss on the possibilities to perform field rotation using alternative hardware, together with spectroscopic methods to recover isotropic resolution even in cases where the field is not rotating at the magic angle. Extension to higher magnetic fields would be beneficial in situations where the physical manipulation of the sample is inconvenient or impossible. Such situations occur often in materials or biomedical samples where ''ex-situ'' NMR spectroscopy and imaging analysis is needed.

  12. High-field NMR using resistive and hybrid magnets

    Science.gov (United States)

    Gan, Zhehong; Kwak, Hyung-Tae; Bird, Mark; Cross, Timothy; Gor'kov, Peter; Brey, William; Shetty, Kiran

    2008-03-01

    Resistive and resistive-superconducting hybrid magnets can generate dc magnetic fields much higher than conventional superconducting NMR magnets but the field spatial homogeneity and temporal stability are usually not sufficient for high-resolution NMR experiments. Hardware and technique development addressing these issues are presented for high-resolution NMR at magnetic fields up to 40 T. Passive ferromagnetic shimming and magic-angle spinning are used effectively to reduce the broadening from inhomogeneous magnetic field. A phase correction technique based on simultaneous heteronuclear detection is developed to compensate magnetic field fluctuations to achieve high spectral resolution.

  13. Development and applications of NMR [nuclear magnetic resonance] in low fields and zero field

    International Nuclear Information System (INIS)

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab

  14. Pulsed zero field NMR of solids and liquid crystals

    International Nuclear Information System (INIS)

    Thayer, A.M.

    1987-02-01

    This work describes the development and applications to solids and liquid crystals of zero field nuclear magnetic resonance (NMR) experiments with pulsed dc magnetic fields. Zero field NMR experiments are one approach for obtaining high resolution spectra of amorphous and polycrystalline materials which normally (in high field) display broad featureless spectra. The behavior of the spin system can be coherently manipulated and probed in zero field with dc magnetic field pulses which are employed in a similar manner to radiofrequency pulses in high field NMR experiments. Nematic phases of liquid crystalline systems are studied in order to observe the effects of the removal of an applied magnetic field on sample alignment and molecular order parameters. In nematic phases with positive and negative magnetic susceptibility anisotropies, a comparison between the forms of the spin interactions in high and low fields is made. High resolution zero field NMR spectra of unaligned smectic samples are also obtained and reflect the symmetry of the liquid crystalline environment. These experiments are a sensitive measure of the motionally induced asymmetry in biaxial phases. Homonuclear and heteronuclear solute spin systems are compared in the nematic and smectic phases. Nonaxially symmetric dipolar couplings are reported for several systems. The effects of residual fields in the presence of a non-zero asymmetry parameter are discussed theoretically and presented experimentally. Computer programs for simulations of these and other experimental results are also reported. 179 refs., 75 figs

  15. A detailed comparison of single-camera light-field PIV and tomographic PIV

    Science.gov (United States)

    Shi, Shengxian; Ding, Junfei; Atkinson, Callum; Soria, Julio; New, T. H.

    2018-03-01

    This paper conducts a comprehensive study between the single-camera light-field particle image velocimetry (LF-PIV) and the multi-camera tomographic particle image velocimetry (Tomo-PIV). Simulation studies were first performed using synthetic light-field and tomographic particle images, which extensively examine the difference between these two techniques by varying key parameters such as pixel to microlens ratio (PMR), light-field camera Tomo-camera pixel ratio (LTPR), particle seeding density and tomographic camera number. Simulation results indicate that the single LF-PIV can achieve accuracy consistent with that of multi-camera Tomo-PIV, but requires the use of overall greater number of pixels. Experimental studies were then conducted by simultaneously measuring low-speed jet flow with single-camera LF-PIV and four-camera Tomo-PIV systems. Experiments confirm that given a sufficiently high pixel resolution, a single-camera LF-PIV system can indeed deliver volumetric velocity field measurements for an equivalent field of view with a spatial resolution commensurate with those of multi-camera Tomo-PIV system, enabling accurate 3D measurements in applications where optical access is limited.

  16. Low-field single-sided NMR for one-shot 1D-mapping: Application to membranes

    Science.gov (United States)

    Judeinstein, Patrick; Ferdeghini, Filippo; Oliveira-Silva, Rodrigo; Zanotti, Jean-Marc; Sakellariou, Dimitrios

    2017-04-01

    Many single-sided permanent magnet NMR systems have been proposed over the years allowing for 1D proton-density profiling, diffusion measurements and relaxometry. In this manuscript we make use of a recently published unilateral magnet for low-field NMR exhibiting an extremely uniform magnetic field gradient with moderate strength and cylindrical symmetry, allowing for a well-defined sweet spot. Combined with a goniometer, our system is used to characterize precisely the uniformity of its gradient and to achieve micrometric precision 1D profiling, as well as spatially localized relaxometry and diffusometry on thick (∼150 μm) membrane samples. Profiling with this magnet did not require repositioning of the samples with respect to the 1D tomograph.

  17. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  18. Proton and deuterium NMR experiments in zero field

    International Nuclear Information System (INIS)

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution 2 H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs

  19. Static and predictive tomographic reconstruction for wide-field multi-object adaptive optics systems.

    Science.gov (United States)

    Correia, C; Jackson, K; Véran, J-P; Andersen, D; Lardière, O; Bradley, C

    2014-01-01

    Multi-object adaptive optics (MOAO) systems are still in their infancy: their complex optical designs for tomographic, wide-field wavefront sensing, coupled with open-loop (OL) correction, make their calibration a challenge. The correction of a discrete number of specific directions in the field allows for streamlined application of a general class of spatio-angular algorithms, initially proposed in Whiteley et al. [J. Opt. Soc. Am. A15, 2097 (1998)], which is compatible with partial on-line calibration. The recent Learn & Apply algorithm from Vidal et al. [J. Opt. Soc. Am. A27, A253 (2010)] can then be reinterpreted in a broader framework of tomographic algorithms and is shown to be a special case that exploits the particulars of OL and aperture-plane phase conjugation. An extension to embed a temporal prediction step to tackle sky-coverage limitations is discussed. The trade-off between lengthening the camera integration period, therefore increasing system lag error, and the resulting improvement in SNR can be shifted to higher guide-star magnitudes by introducing temporal prediction. The derivation of the optimal predictor and a comparison to suboptimal autoregressive models is provided using temporal structure functions. It is shown using end-to-end simulations of Raven, the MOAO science, and technology demonstrator for the 8 m Subaru telescope that prediction allows by itself the use of 1-magnitude-fainter guide stars.

  20. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  1. NMR system and method having a permanent magnet providing a rotating magnetic field

    Science.gov (United States)

    Schlueter, Ross D [Berkeley, CA; Budinger, Thomas F [Berkeley, CA

    2009-05-19

    Disclosed herein are systems and methods for generating a rotating magnetic field. The rotating magnetic field can be used to obtain rotating-field NMR spectra, such as magic angle spinning spectra, without having to physically rotate the sample. This result allows magic angle spinning NMR to be conducted on biological samples such as live animals, including humans.

  2. Evaluating amber force fields using computed NMR chemical shifts.

    Science.gov (United States)

    Koes, David R; Vries, John K

    2017-10-01

    NMR chemical shifts can be computed from molecular dynamics (MD) simulations using a template matching approach and a library of conformers containing chemical shifts generated from ab initio quantum calculations. This approach has potential utility for evaluating the force fields that underlie these simulations. Imperfections in force fields generate flawed atomic coordinates. Chemical shifts obtained from flawed coordinates have errors that can be traced back to these imperfections. We use this approach to evaluate a series of AMBER force fields that have been refined over the course of two decades (ff94, ff96, ff99SB, ff14SB, ff14ipq, and ff15ipq). For each force field a series of MD simulations are carried out for eight model proteins. The calculated chemical shifts for the 1 H, 15 N, and 13 C a atoms are compared with experimental values. Initial evaluations are based on root mean squared (RMS) errors at the protein level. These results are further refined based on secondary structure and the types of atoms involved in nonbonded interactions. The best chemical shift for identifying force field differences is the shift associated with peptide protons. Examination of the model proteins on a residue by residue basis reveals that force field performance is highly dependent on residue position. Examination of the time course of nonbonded interactions at these sites provides explanations for chemical shift differences at the atomic coordinate level. Results show that the newer ff14ipq and ff15ipq force fields developed with the implicitly polarized charge method perform better than the older force fields. © 2017 Wiley Periodicals, Inc.

  3. Fractal analysis of en face tomographic images obtained with full field optical coherence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Wanrong; Zhu, Yue [Department of Optical Engineering, Nanjing University of Science and Technology, Jiangsu (China)

    2017-03-15

    The quantitative modeling of the imaging signal of pathological areas and healthy areas is necessary to improve the specificity of diagnosis with tomographic en face images obtained with full field optical coherence tomography (FFOCT). In this work, we propose to use the depth-resolved change in the fractal parameter as a quantitative specific biomarker of the stages of disease. The idea is based on the fact that tissue is a random medium and only statistical parameters that characterize tissue structure are appropriate. We successfully relate the imaging signal in FFOCT to the tissue structure in terms of the scattering function and the coherent transfer function of the system. The formula is then used to analyze the ratio of the Fourier transforms of the cancerous tissue to the normal tissue. We found that when the tissue changes from the normal to cancerous the ratio of the spectrum of the index inhomogeneities takes the form of an inverse power law and the changes in the fractal parameter can be determined by estimating slopes of the spectra of the ratio plotted on a log-log scale. The fresh normal and cancer liver tissues were imaged to demonstrate the potential diagnostic value of the method at early stages when there are no significant changes in tissue microstructures. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. NMR, MRI, and spectroscopic MRI in inhomogeneous fields

    Science.gov (United States)

    Demas, Vasiliki; Pines, Alexander; Martin, Rachel W; Franck, John; Reimer, Jeffrey A

    2013-12-24

    A method for locally creating effectively homogeneous or "clean" magnetic field gradients (of high uniformity) for imaging (with NMR, MRI, or spectroscopic MRI) both in in-situ and ex-situ systems with high degrees of inhomogeneous field strength. THe method of imaging comprises: a) providing a functional approximation of an inhomogeneous static magnetic field strength B.sub.0({right arrow over (r)}) at a spatial position {right arrow over (r)}; b) providing a temporal functional approximation of {right arrow over (G)}.sub.shim(t) with i basis functions and j variables for each basis function, resulting in v.sub.ij variables; c) providing a measured value .OMEGA., which is an temporally accumulated dephasing due to the inhomogeneities of B.sub.0({right arrow over(r)}); and d) minimizing a difference in the local dephasing angle .phi.({right arrow over (r)},t)=.gamma..intg..sub.0.sup.t{square root over (|{right arrow over (B)}.sub.1({right arrow over (r)},t')|.sup.2+({right arrow over (r)}{right arrow over (G)}.sub.shimG.sub.shim(t')+.parallel.{right arrow over (B)}.sub.0({right arrow over (r)}).parallel..DELTA..omega.({right arrow over (r)},t'/.gamma/).sup.2)}dt'-.OMEGA. by varying the v.sub.ij variables to form a set of minimized v.sub.ij variables. The method requires calibration of the static fields prior to minimization, but may thereafter be implemented without such calibration, may be used in open or closed systems, and potentially portable systems.

  5. Novel Techniques for Pulsed Field Gradient NMR Measurements

    Science.gov (United States)

    Brey, William Wallace

    Pulsed field gradient (PFG) techniques now find application in multiple quantum filtering and diffusion experiments as well as in magnetic resonance imaging and spatially selective spectroscopy. Conventionally, the gradient fields are produced by azimuthal and longitudinal currents on the surfaces of one or two cylinders. Using a series of planar units consisting of azimuthal and radial current elements spaced along the longitudinal axis, we have designed gradient coils having linear regions that extend axially nearly to the ends of the coil and to more than 80% of the inner radius. These designs locate the current return paths on a concentric cylinder, so the coils are called Concentric Return Path (CRP) coils. Coils having extended linear regions can be made smaller for a given sample size. Among the advantages that can accrue from using smaller coils are improved gradient strength and switching time, reduced eddy currents in the absence of shielding, and improved use of bore space. We used an approximation technique to predict the remaining eddy currents and a time-domain model of coil performance to simulate the electrical performance of the CRP coil and several reduced volume coils of more conventional design. One of the conventional coils was designed based on the time-domain performance model. A single-point acquisition technique was developed to measure the remaining eddy currents of the reduced volume coils. Adaptive sampling increases the dynamic range of the measurement. Measuring only the center of the stimulated echo removes chemical shift and B_0 inhomogeneity effects. The technique was also used to design an inverse filter to remove the eddy current effects in a larger coil set. We added pulsed field gradient and imaging capability to a 7 T commercial spectrometer to perform neuroscience and embryology research and used it in preliminary studies of binary liquid mixtures separating near a critical point. These techniques and coil designs will find

  6. Optimizing ssNMR experiments for dilute proteins in heterogeneous mixtures at high magnetic fields.

    Science.gov (United States)

    McNeill, Seth A; Gor'kov, Peter L; Struppe, Jochem; Brey, William W; Long, Joanna R

    2007-12-01

    Solid-state NMR spectroscopy at high magnetic fields is proving to be an effective technique in structural biology, particularly for proteins which are not amenable to traditional X-ray and solution NMR approaches. Several parameters can be selected to provide optimal sensitivity, improve sample stability, and ensure biological relevance for ssNMR measurements on protein samples. These include selection of sample conditions, NMR probe design, and design of pulse experiments. Here, we demonstrate and evaluate several engineering and experimental approaches for pursuing measurements on dilute proteins in heterogeneous mixtures. Copyright © 2007 John Wiley & Sons, Ltd.

  7. NMR Field regulation with the PT2026 Teslameter and the RCS Magnet in Building 287

    CERN Document Server

    Patz, Evan; King, Quentin; CERN. Geneva. TE Department

    2016-01-01

    In the summer of 2016, the TE-EPC group collaborated with Metrolab Technology SA on a project to regulate magnetic field using a new PT2026 NMR teslameter. Tests using a PT2026 NMR teslameter and the results are presented in this paper.

  8. NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations

    OpenAIRE

    Ramírez-Ruiz, Jorge; Boutin, Samuel; Garate, Ion

    2017-01-01

    Recent theoretical work has established the presence of hidden spin and orbital textures in non-magnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR res...

  9. Ultrahigh Field NMR and MRI: Science at a Crossroads Workshop Report

    International Nuclear Information System (INIS)

    Polenova, Tatyana; Budinger, Thomas F.

    2016-01-01

    The workshop ''Ultrahigh Field NMR and MRI: Science at Crossroads'', initiated by the scientific community and supported by the National Science Foundation, the Department of Energy, and the National Institutes of Health, took place on November 12-13, 2015, in Bethesda, MD, on the NIH campus. The meeting was held to assess the science drivers, technological challenges, prospects for achieving field strengths for NMR and MRI nearly double their current value, and strategies on how to provide ultrahigh field NMR/MRI capabilities to a national user community.

  10. Ultrahigh Field NMR and MRI: Science at a Crossroads Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Polenova, Tatyana [Univ. of Delaware, Newark, DE (United States); Budinger, Thomas F. [Univ. of California, Berkeley, CA (United States)

    2016-01-04

    The workshop “Ultrahigh Field NMR and MRI: Science at Crossroads”, initiated by the scientific community and supported by the National Science Foundation, the Department of Energy, and the National Institutes of Health, took place on November 12-13, 2015, in Bethesda, MD, on the NIH campus. The meeting was held to assess the science drivers, technological challenges, prospects for achieving field strengths for NMR and MRI nearly double their current value, and strategies on how to provide ultrahigh field NMR/MRI capabilities to a national user community.

  11. HIGH FIELD 13C NMR SPECTROSCOPIC ANALYSIS OF THE ...

    African Journals Online (AJOL)

    a

    2 carbon atoms of Sat in the β and α glyceridic positions. The. 34.114 ppm ... Table 1. 13C NMR chemical shifts of Jatropha curcas oil. Chemical shift (ppm). Assignment. 173.388. C-1, Sat. 173.302. C-1, O, L (α). 172.887. C-1, O, L (β). 34.223.

  12. 27 Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Z.; Wan, Chuan; Vjunov, Aleksei; Wang, Meng; Zhao, Zhenchao; Hu, Mary Y.; Camaioni, Donald M.; Lercher, Johannes A.

    2017-06-01

    27Al single pulse (SP) MAS NMR spectra of HBEA zeolites with high Si/Al ratios of 71 and 75 were obtained at three magnetic field strengths of 7.05, 11.75 and 19.97 T. High field 27Al MAS NMR spectra acquired at 19.97 T show significantly improved spectral resolution, resulting in at least two well-resolved tetrahedral-Al NMR peaks. Based on the results obtained from 27Al MAS and MQMAS NMR acquired at 19.97 T, four different quadrupole peaks are used to deconvolute the 27Al SP MAS spectra acquired at vari-ous fields by using the same set of quadrupole coupling constants, asymmetric parameters and relative integrated peak intensities for the tetrahedral Al peaks. The line shapes of individual peaks change from typical quadrupole line shape at low field to essentially symmetrical line shapes at high field. We demonstrate that for fully hydrated HBEA zeolites the effect of second order quadrupole interaction can be ignored and quantitative spectral analysis can be performed by directly fitting the high field spectra using mixed Gaussian/Lorentzian line shapes. Also, the analytical steps described in our work allow direct assignment of spectral intensity to individual Al tetrahedral sites (T-sites) of zeolite HBEA. Finally, the proposed concept is suggested generally applicable to other zeo-lite framework types, thus, allowing a direct probing of Al distributions by NMR spectroscopic methods in zeolites with high confi-dence.

  13. Thoracolumbar intradural disc herniation in eight dogs: clinical, low-field magnetic resonance imaging, and computed tomographic myelography findings.

    Science.gov (United States)

    Tamura, Shinji; Doi, Shoko; Tamura, Yumiko; Takahashi, Kuniaki; Enomoto, Hirokazu; Ozawa, Tsuyoshi; Uchida, Kazuyuki

    2015-01-01

    Intradural disc herniation is a rarely reported cause of neurologic deficits in dogs and few published studies have described comparative imaging characteristics. The purpose of this retrospective cross sectional study was to describe clinical and imaging findings in a group of dogs with confirmed thoracolumbar intradural disc herniation. Included dogs were referred to one of four clinics, had acute mono/paraparesis or paraplegia, had low field magnetic resonance imaging (MRI) and/or computed tomographic myelography, and were diagnosed with thoracolumbar intradural disc herniation during surgery. Eight dogs met inclusion criteria. The prevalence of thoracolumbar intradural disc herniation amongst the total population of dogs that developed a thoracolumbar intervertebral disc herniation and that were treated with a surgical procedure was 0.5%. Five dogs were examined using low-field MRI. Lesions that were suspected to be intervertebral disc herniations were observed; however, there were no specific findings indicating that the nucleus pulposus had penetrated into the subarachnoid space or into the spinal cord parenchyma. Thus, the dogs were misdiagnosed as having a conventional intervertebral disc herniation. An intradural extramedullary disc herniation (three cases) or intramedullary disc herniation (two cases) was confirmed during surgery. By using computed tomographic myelography (CTM) for the remaining three dogs, an intradural extramedullary mass surrounded by an accumulation of contrast medium was observed and confirmed during surgery. Findings from this small sample of eight dogs indicated that CTM may be more sensitive for diagnosing canine thoracolumbar intradural disc herniation than low-field MRI. © 2014 American College of Veterinary Radiology.

  14. In vivo observation of tree drought response with low-field NMR and neutron imaging

    Directory of Open Access Journals (Sweden)

    Michael W. Malone

    2016-05-01

    Full Text Available Using a simple low-field NMR system, we monitored water content in a livingtree in a greenhouse over two months. By continuously running thesystem, we observed changes in tree water content on a scale of halfan hour. The data showed a diurnal change in water content consistentboth with previous NMR and biological observations. Neutron imaging experiments showthat our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accountingfor the role of temperature in the observed NMR signal, we demonstratea change in the diurnal signal behavior due to simulated drought conditionsfor the tree. These results illustrate the utility of our system toperform noninvasive measurements of tree water content outside of a temperature controlled environment.

  15. Automatic NMR field-frequency lock-pulsed phase locked loop approach.

    Science.gov (United States)

    Kan, S; Gonord, P; Fan, M; Sauzade, M; Courtieu, J

    1978-06-01

    A self-contained deuterium frequency-field lock scheme for a high-resolution NMR spectrometer is described. It is based on phase locked loop techniques in which the free induction decay signal behaves as a voltage-controlled oscillator. By pulsing the spins at an offset frequency of a few hundred hertz and using a digital phase-frequency discriminator this method not only eliminates the usual phase, rf power, offset adjustments needed in conventional lock systems but also possesses the automatic pull-in characteristics that dispense with the use of field sweeps to locate the NMR line prior to closure of the lock loop.

  16. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Michael W.; Lei Ming; Eisenmesser, Elan Z.; Labeikovsky, Wladimir [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States); Redfield, Alfred [MS009 Brandeis University, Department of Biochemistry (United States)], E-mail: redfield@brandeis.edu; Kern, Dorothee [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States)], E-mail: dkern@brandeis.edu

    2009-09-15

    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R{sub 1} at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire {beta}-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.

  17. Application of chemometrics to low-field H-1 NMR relaxation data of intact fish flesh

    DEFF Research Database (Denmark)

    Jepsen, Signe Munk; Pedersen, H.T.; Engelsen, S.B.

    1999-01-01

    The possibilities for application of low-field H-1 nuclear magnetic resonance (NMR) as a rapid method for simultaneous assessment of basic quality parameters in fish were explored. In a first experiment, 200 salmon (Salmo salar) samples mapping the variation over an entire fish were measured by NMR...... and water content in fresh salmon flesh and water-holding capacity in thawed cod flesh respectively. Thus rapid, non-invasive low- field NMR can be used to simultaneously determine both oil and water content of fish flesh. Furthermore, it can predict water- holding capacity of cod flesh, with an R-2 of 0.......9 over the range 30-90%, as determined by a centrifuge test. (C) 1999 Society of Chemical Industry...

  18. Using low field NMR in a practical class: hydrolysis of acetic anhydride with heavy water (D20)

    International Nuclear Information System (INIS)

    Bernard-Moulin, Patrick

    2015-01-01

    The document is an example of practical class to be initiated in NMR learning program. The model example is a hydrolysis reaction monitoring with a low field NMR with permanent magnet 45 MHz or 80 MHz. The study shows how easy it is to obtain NMR spectra and check both bands attribution and quantitative analysis using integration algorithms. After collection NMR spectra can be processed independently by each student using for example Mnova multi users' licence. Capillary sample introduction is extremely easy and safe. The course gives skills of monitoring a Chemical reaction with NMR and open opportunities to be applied to other liquid phase reactions. (author)

  19. Assessment of structural changes of human teeth by low-field nuclear magnetic resonance (NMR)

    International Nuclear Information System (INIS)

    Ni, Qingwen; Chen, Shuo

    2010-01-01

    A technique of low-field pulsed proton nuclear magnetic resonance (NMR) spin relaxation is described for assessment of age-related structural changes (dentin and pulp) of human teeth in vitro. The technique involves spin–spin relaxation measurement and inversion spin–spin spectral analysis methods. The spin–spin relaxation decay curve is converted into a T 2 distribution spectrum by a sum of single exponential decays. The NMR spectra from the extracted dentin-portion-only and dental pulp-cells-only were compared with the whole extracted teeth spectra, for the dentin and pulp peak assignments. While dentin and pulp are highly significant parameters in determining tooth quality, variations in these parameters with age can be used as an effective tool for estimating tooth quality. Here we propose an NMR calibration method—the ratio of the amount of dentin to the amount of pulp obtained from NMR T 2 distribution spectra can be used for measuring the age-related structural changes in teeth while eliminating any variations in size of teeth. Eight teeth (third molars) extracted from humans, aged among 17–67 years old, were tested in this study. It is found that the intensity ratio of dentin to pulp sensitively changes from 0.48 to 3.2 approaching a linear growth with age. This indicates that age-related structural changes in human teeth can be detected using the low-field NMR technique

  20. Microscopic Displacement Imaging with Pulsed Field Gradient Turbo Spin-Echo NMR

    NARCIS (Netherlands)

    Scheenen, T.W.J.; Dusschoten, van D.; Jager, de P.A.; As, van H.

    2000-01-01

    We present a pulse sequence that enables the accurate and spatially resolved measurements of the displacements of spins in a variety of (biological) systems. The pulse sequence combines pulsed field gradient (PFG) NMR with turbo spin–echo (TSE) imaging. It is shown here that by ensuring that the

  1. Seeking higher resolution and sensitivity for NMR of quadrupolar nuclei at ultrahigh magnetic fields.

    Science.gov (United States)

    Gan, Zhehong; Gor'kov, Peter; Cross, Timothy A; Samoson, Ago; Massiot, Dominique

    2002-05-22

    We report the acquisition of solid-state NMR spectra of quadrupolar nuclei obtained at very high magnetic fields (25 and 40 T), thus improving spectral sensitivity and resolution. For an example compound, the MAS spectrum obtained at 40 T is nearly free from the second-order quadrupolar broadening and can be interpreted quantitatively in a very simple manner.

  2. NMR SLIC Sensing of Hydrogenation Reactions Using Parahydrogen in Low Magnetic Fields

    Science.gov (United States)

    2016-01-01

    Parahydrogen-induced polarization (PHIP) is an NMR hyperpolarization technique that increases nuclear spin polarization by orders of magnitude, and it is particularly well-suited to study hydrogenation reactions. However, the use of high-field NMR spectroscopy is not always possible, especially in the context of potential industrial-scale reactor applications. On the other hand, the direct low-field NMR detection of reaction products with enhanced nuclear spin polarization is challenging due to near complete signal cancellation from nascent parahydrogen protons. We show that hydrogenation products prepared by PHIP can be irradiated with weak (on the order of spin–spin couplings of a few hertz) alternating magnetic field (called Spin-Lock Induced Crossing or SLIC) and consequently efficiently detected at low magnetic field (e.g., 0.05 T used here) using examples of several types of organic molecules containing a vinyl moiety. The detected hyperpolarized signals from several reaction products at tens of millimolar concentrations were enhanced by 10000-fold, producing NMR signals an order of magnitude greater than the background signal from protonated solvents. PMID:28066517

  3. NMR measurement of oil shale magnetic relaxation at high magnetic field

    Science.gov (United States)

    Seymour, Joseph D.; Washburn, Kathryn E.; Kirkland, Catherine M.; Vogt, Sarah J.; Birdwell, Justin E.; Codd, Sarah L.

    2013-01-01

    Nuclear magnetic resonance (NMR) at low field is used extensively to provide porosity and pore-size distributions in reservoir rocks. For unconventional resources, due to low porosity and permeability of the samples, much of the signal exists at very short T2 relaxation times. In addition, the organic content of many shales will also produce signal at short relaxation times. Despite recent improvements in low-field technology, limitations still exist that make it difficult to account for all hydrogen-rich constituents in very tight rocks, such as shales. The short pulses and dead times along with stronger gradients available when using high-field NMR equipment provides a more complete measurement of hydrogen-bearing phases due to the ability to probe shorter T2 relaxation times (-5 sec) than can be examined using low-field equipment. Access to these shorter T2 times allows for confirmation of partially resolved peaks observed in low-field NMR data that have been attributed to solid organic phases in oil shales. High-field (300 MHz or 7 T) NMR measurements of spin-spin T2 and spin-lattice T1 magnetic relaxation of raw and artificially matured oil shales have potential to provide data complementary to low field (2 MHz or 0.05T) measurements. Measurements of high-field T2 and T1-T2 correlations are presented. These data can be interpreted in terms of organic matter phases and mineral-bound water known to be present in the shale samples, as confirmed by Fourier transform infrared spectroscopy, and show distributions of hydrogen-bearing phases present in the shales that are similar to those observed in low field measurements.

  4. NMR in an electric field: A bulk probe of the hidden spin and orbital polarizations

    Science.gov (United States)

    Ramírez-Ruiz, Jorge; Boutin, Samuel; Garate, Ion

    2017-12-01

    Recent theoretical work has established the presence of hidden spin and orbital textures in nonmagnetic materials with inversion symmetry. Here, we propose that these textures can be detected by nuclear magnetic resonance (NMR) measurements carried out in the presence of an electric field. In crystals with hidden polarizations, a uniform electric field produces a staggered magnetic field that points to opposite directions at atomic sites related by spatial inversion. As a result, the NMR resonance peak corresponding to inversion partner nuclei is split into two peaks. The magnitude of the splitting is proportional to the electric field and depends on the orientation of the electric field with respect to the crystallographic axes and the external magnetic field. As a case study, we present a theory of electric-field-induced splitting of NMR peaks for 77Se,125Te, and 209Bi in Bi2Se3 and Bi2Te3 . In conducting samples with current densities of ≃106A/cm 2 , the splitting for Bi can reach 100 kHz , which is comparable to or larger than the intrinsic width of the NMR lines. In order to observe the effect experimentally, the peak splitting must also exceed the linewidth produced by the Oersted field. In Bi2Se3 , this requires narrow wires of radius ≲1 μ m . We also discuss other potentially more promising candidate materials, such as SrRuO3 and BaIr2Ge2 , whose crystal symmetry enables strategies to suppress the linewidth produced by the Oersted field.

  5. Development of full-field x-ray phase-tomographic microscope based on laboratory x-ray source

    Science.gov (United States)

    Takano, H.; Wu, Y.; Momose, A.

    2017-09-01

    An X-ray phase tomographic microscope that can quantitatively measure the refractive index of a sample in three dimensions with a high spatial resolution was developed by installing a Lau interferometer consisting of an absorption grating and a π/2 phase grating into the optics of an X-ray microscope. The optics comprises a Cu rotating anode X-ray source, capillary condenser optics, and a Fresnel zone plate for the objective. The microscope has two optical modes: a large-field-of-view mode (field of view: 65 μm x 65 μm) and a high-resolution mode (spatial resolution: 50 nm). Optimizing the parameters of the interferometer yields a self-image of the phase grating with 60% visibility. Through the normal fringe-scanning measurement, a twin phase image, which has an overlap of two phase image of opposite contrast with a shear distance much larger than system resolution, is generated. Although artifacts remain to some extent currently when a phase image is calculated from the twin phase image, this system can obtain high-spatial-resolution images resolving 50-nm structures. Phase tomography with this system has also been demonstrated using a phase object.

  6. Detection of Virgin Olive Oil Adulteration Using Low Field Unilateral NMR

    Directory of Open Access Journals (Sweden)

    Zheng Xu

    2014-01-01

    Full Text Available The detection of adulteration in edible oils is a concern in the food industry, especially for the higher priced virgin olive oils. This article presents a low field unilateral nuclear magnetic resonance (NMR method for the detection of the adulteration of virgin olive oil that can be performed through sealed bottles providing a non-destructive screening technique. Adulterations of an extra virgin olive oil with different percentages of sunflower oil and red palm oil were measured with a commercial unilateral instrument, the profile NMR-Mouse. The NMR signal was processed using a 2-dimensional Inverse Laplace transformation to analyze the transverse relaxation and self-diffusion behaviors of different oils. The obtained results demonstrated the feasibility of detecting adulterations of olive oil with percentages of at least 10% of sunflower and red palm oils.

  7. Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography.

    Science.gov (United States)

    Gren, P; Schedin, S; Li, X

    1998-02-10

    Pulsed TV holography combined with computerized tomography (CT) are used to evaluate the three-dimensional distribution of transient acoustic fields in air. Experiments are performed with an electrical discharge between two electrodes as the sound source. Holograms from several directions of the acoustic field are recorded directly onto a CCD detector by use of a double-pulsed ruby laser as the light source. Phase maps, representing projections of the acoustic field, are evaluated quantitatively from the recorded holograms. The projections are used for the CT reconstruction to evaluate the pressure-field distribution in any cross section of the measured volume of air.

  8. Towards 3C-3D digital holographic fluid velocity vector field measurement—tomographic digital holographic PIV (Tomo-HPIV)

    International Nuclear Information System (INIS)

    Soria, J; Atkinson, C

    2008-01-01

    Most unsteady and/or turbulent flows of geophysical and engineering interest have a highly three-dimensional (3D) complex topology and their experimental investigation is in pressing need of quantitative velocity measurement methods that are robust and can provide instantaneous 3C-3D velocity field data over a significant volumetric domain of the flow. This paper introduces and demonstrates a new method that uses multiple digital CCD array cameras to record in-line digital holograms of the same volume of seed particles from multiple orientations. This technique uses the same basic equipment as Tomo-PIV minus the camera lenses, it overcomes the depth-of-field problem of digital in-line holography and does not require the complex optical calibration of Tomo-PIV. The digital sensors can be oriented in an optimal manner to overcome the depth-of-field limitation of in-line holograms recorded using digital CCD or CMOS array cameras, resulting in a 3D reconstruction of the seed particles within the volume of interest, which can subsequently be analysed using 3D cross-correlation PIV analysis to yield a 3C-3D velocity field. A demonstration experiment of Tomo-HPIV using uniform translation with nominally 11 µm diameter seed particles shows that the 3D displacement derived from 3D cross-correlation Tomo-HPIV analysis can be measured within 5% of the imposed uniform translation, where the imposed uniform translation has an estimated standard uncertainty of 4.3%. So this paper proposes a multi-camera digital holographic imaging 3C-3D PIV method, which is identified as tomographic digital holographic PIV or Tomo-HPIV

  9. Magnetic field dependence of spatial frequency encoding NMR as probed on an oligosaccharide.

    Science.gov (United States)

    Pitoux, D; Hu, Z; Plainchont, B; Merlet, D; Farjon, J; Bonnaffé, D; Giraud, N

    2015-10-01

    The magnetic field dependence of spatial frequency encoding NMR techniques is addressed through a detailed analysis of (1)H NMR spectra acquired under spatial frequency encoding on an oligomeric saccharide sample. In particular, the influence of the strength of the static magnetic field on spectral and spatial resolutions that are key features of this method is investigated. For this purpose, we report the acquisition of correlation experiments implementing broadband homodecoupling or J-edited spin evolutions, and we discuss the resolution enhancements that are provided by these techniques at two different magnetic fields. We show that performing these experiments at higher field improves the performance of high resolution NMR techniques based on a spatial frequency encoding. The significant resolution enhancements observed on the correlation spectra acquired at very high field make them valuable analytical tools that are suitable for the assignment of (1)H chemical shifts and scalar couplings in molecules with highly crowded spectrum such as carbohydrates. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Computed tomographic simulation of craniospinal fields in pediatric patients: improved treatment accuracy and patient comfort.

    Science.gov (United States)

    Mah, K; Danjoux, C E; Manship, S; Makhani, N; Cardoso, M; Sixel, K E

    1998-07-15

    To reduce the time required for planning and simulating craniospinal fields through the use of a computed tomography (CT) simulator and virtual simulation, and to improve the accuracy of field and shielding placement. A CT simulation planning technique was developed. Localization of critical anatomic features such as the eyes, cribriform plate region, and caudal extent of the thecal sac are enhanced by this technique. Over a 2-month period, nine consecutive pediatric patients were simulated and planned for craniospinal irradiation. Four patients underwent both conventional simulation and CT simulation. Five were planned using CT simulation only. The accuracy of CT simulation was assessed by comparing digitally reconstructed radiographs (DRRs) to portal films for all patients and to conventional simulation films as well in the first four patients. Time spent by patients in the CT simulation suite was 20 min on average and 40 min maximally for those who were noncompliant. Image acquisition time was absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with portal and/or simulation films to within 5 mm in five of the eight cases. Discrepancies of > or =5 mm in the positioning of the inferior border of the cranial fields in the first three patients were due to a systematic error in CT scan acquisition and marker contouring which was corrected by modifying the technique after the fourth patient. In one patient, the facial shield had to be moved 0.75 cm inferiorly owing to an error in shield construction. Our analysis showed that CT simulation of craniospinal fields was accurate. It resulted in a significant reduction in the time the patient must be immobilized during the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall, it has improved staff efficiency and resource utilization.

  11. Computed tomographic simulation of craniospinal fields in pediatric patients: improved treatment accuracy and patient comfort

    International Nuclear Information System (INIS)

    Mah, Katherine; Danjoux, Cyril E.; Manship, Sharan; Makhani, Nadiya; Cardoso, Marlene; Sixel, Katharina E.

    1998-01-01

    Purpose: To reduce the time required for planning and simulating craniospinal fields through the use of a computed tomography (CT) simulator and virtual simulation, and to improve the accuracy of field and shielding placement. Methods and Materials: A CT simulation planning technique was developed. Localization of critical anatomic features such as the eyes, cribriform plate region, and caudal extent of the thecal sac are enhanced by this technique. Over a 2-month period, nine consecutive pediatric patients were simulated and planned for craniospinal irradiation. Four patients underwent both conventional simulation and CT simulation. Five were planned using CT simulation only. The accuracy of CT simulation was assessed by comparing digitally reconstructed radiographs (DRRs) to portal films for all patients and to conventional simulation films as well in the first four patients. Results: Time spent by patients in the CT simulation suite was 20 min on average and 40 min maximally for those who were noncompliant. Image acquisition time was <10 min in all cases. In the absence of the patient, virtual simulation of all fields took 20 min. The DRRs were in agreement with portal and/or simulation films to within 5 mm in five of the eight cases. Discrepancies of ≥5 mm in the positioning of the inferior border of the cranial fields in the first three patients were due to a systematic error in CT scan acquisition and marker contouring which was corrected by modifying the technique after the fourth patient. In one patient, the facial shield had to be moved 0.75 cm inferiorly owing to an error in shield construction. Conclusions: Our analysis showed that CT simulation of craniospinal fields was accurate. It resulted in a significant reduction in the time the patient must be immobilized during the planning process. This technique can improve accuracy in field placement and shielding by using three-dimensional CT-aided localization of critical and target structures. Overall

  12. Use of earth field spin echo NMR to search for liquid minerals

    Science.gov (United States)

    Stoeffl, Wolfgang

    2001-01-01

    An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.

  13. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    International Nuclear Information System (INIS)

    Ruhlandt, Aike; Salditt, Tim

    2016-01-01

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality

  14. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim [Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, Göttingen (Germany)

    2016-01-29

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality.

  15. Guar gum/borax hydrogel: Rheological, low field NMR and release characterizations

    Directory of Open Access Journals (Sweden)

    M. Grassi

    2013-09-01

    Full Text Available Guar gum (GG and Guar gum/borax (GGb hydrogels are studied by means of rheology, Low Field Nuclear Magnetic Resonance (LF NMR and model drug release tests. These three approaches are used to estimate the mesh size (ζ of the polymeric network. A comparison with similar Scleroglucan systems is carried out. In the case of GGb, the rheological and Low Field NMR estimations of ζ lead to comparable results, while the drug release approach seems to underestimate ζ. Such discrepancy is attributed to the viscous effect of some polymeric chains that, although bound to the network to one end, can freely fluctuate among meshes. The viscous drag exerted by these chains slows down drug diffusion through the polymeric network. A proof for this hypothesis is given by the case of Scleroglucan gel, where the viscous contribution is not so significant and a good agreement between the rheological and release test approaches was found.

  16. Tomographic imaging

    International Nuclear Information System (INIS)

    Newman, M.A.

    1989-01-01

    Tomographic images of an object or scene are produced by an analysis of two or more stereographic images of the scene including shifting one image laterally with respect to another and logically summing the image data sets. Several image processing, edge enhancement and edge extraction algorithms may be applied to the images in digitised video data form to provide wire-frame or skeleton type representations of each of the original images. Tomographic images of planes not parallel with the image plane (or normal to the camera axes) may be produced by changing the magnification of one image prior to logical summing. The images may be generated by three video cameras arranged on two orthogonal axes for elimination of spurious coincidences. The images are preferably produced using X-rays. (author)

  17. Solid-State 1H CRAMPS NMR Imaging with Pulsed Rotating Magnetic Field Gradients

    Science.gov (United States)

    Sun, Y. H.; Xiong, J. C.; Lock, H.; Buszko, M. L.; Haase, J. A.; Maciel, G. E.

    By synchronizing a pulsed rotating magnetic field gradient with the rotation of a sample undergoing magic-angle spinning, a series of transverse-plane 1H NMR images was obtained. Both spatial-spatial two-dimensional images and spatial-spectral two-dimensional images are presented. The TREV-8 and BR-24 CRAMPS techniques were used for line narrowing in obtaining these images. Results are shown for both "soft" and "hard" solids.

  18. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  19. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  20. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: pros and cons.

    Science.gov (United States)

    Silva Elipe, Maria Victoria; Milburn, Robert R

    2016-06-01

    Monitoring chemical reactions is the key to controlling chemical processes where NMR can provide support. High-field NMR gives detailed structural information on chemical compounds and reactions; however, it is expensive and complex to operate. Conversely, low-field NMR instruments are simple and relatively inexpensive alternatives. While low-field NMR does not provide the detailed information as the high-field instruments as a result of their smaller chemical shift dispersion and the complex secondary coupling, it remains of practical value as a process analytical technology (PAT) tool and is complimentary to other established methods, such as ReactIR and Raman spectroscopy. We have tested a picoSpin-45 (currently under ThermoFisher Scientific) benchtop NMR instrument to monitor three types of reactions by 1D (1) H NMR: a Fischer esterification, a Suzuki cross-coupling, and the formation of an oxime. The Fischer esterification is a relatively simple reaction run at high concentration and served as proof of concept. The Suzuki coupling is an example of a more complex, commonly used reaction involving overlapping signals. Finally, the oxime formation involved a reaction in two phases that cannot be monitored by other PAT tools. Here, we discuss the pros and cons of monitoring these reactions at a low-field of 45 MHz by 1D (1) H NMR. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  1. In situ and ex situ low-field NMR spectroscopy and MRI endowed by SABRE hyperpolarization.

    Science.gov (United States)

    Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Truong, Milton L; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y

    2014-12-15

    By using 5.75 and 47.5 mT nuclear magnetic resonance (NMR) spectroscopy, up to 10(5)-fold sensitivity enhancement through signal amplification by reversible exchange (SABRE) was enabled, and subsecond temporal resolution was used to monitor an exchange reaction that resulted in the buildup and decay of hyperpolarized species after parahydrogen bubbling. We demonstrated the high-resolution low-field proton magnetic resonance imaging (MRI) of pyridine in a 47.5 mT magnetic field endowed by SABRE. Molecular imaging (i.e. imaging of dilute hyperpolarized substances rather than the bulk medium) was conducted in two regimes: in situ real-time MRI of the reaction mixture (in which pyridine was hyperpolarized), and ex situ MRI (in which hyperpolarization decays) of the liquid hyperpolarized product. Low-field (milli-Tesla range, e.g. 5.75 and 47.5 mT used in this study) parahydrogen-enhanced NMR and MRI, which are free from the limitations of high-field magnetic resonance (including susceptibility-induced gradients of the static magnetic field at phase interfaces), potentially enables new imaging applications as well as differentiation of hyperpolarized chemical species on demand by exploiting spin manipulations with static and alternating magnetic fields. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Characterization of Oat (Avena nuda L.) β-Glucan Cryogelation Process by Low-Field NMR.

    Science.gov (United States)

    Wu, Jia; Li, Linlin; Wu, Xiaoyan; Dai, Qiaoling; Zhang, Ru; Zhang, Yi

    2016-01-13

    Low-field nuclear magnetic resonance (LF-NMR) is a useful method in studying the water distribution and mobility in heterogeneous systems. This technique was used to characterize water in an oat β-glucan aqueous system during cryogelation by repeated freeze-thaw treatments. The results indicated that microphase separation occurred during cryogelation, and three water components were determined in the cryostructure. The spin-spin relaxation time was analyzed on the basis of chemical exchange and diffusion exchange theory. The location of each water component was identified in the porous microstructure of the cryogel. The pore size measured from the SEM image is in accordance with that estimated from relaxation time. The formation of cryogel is confirmed by rheological method. The results suggested that the cryogelation process of the polysaccharide could be monitored by LF-NMR through the evolution of spin-spin relaxation characteristics.

  3. Study of relaxation times of nanocomposites of starch/montmorillonite employing low field NMR

    International Nuclear Information System (INIS)

    Brito, Luciana M.; Tavares, Maria Ines B.

    2011-01-01

    Due to its various applications and features, especially in therapies for controlled release of pharmaceuticals, polymers are among the most widely used excipients in pharmaceutical technology. One of the most promising nanocomposites is formed from organic polymer and inorganic clay minerals. Nanocomposites of starch/montmorillonite were prepared employing solution intercalation and characterized by proton spin-lattice relaxation time, through NMR relaxometry. The characterization of nanocomposites was done by X-ray diffraction and by nuclear magnetic resonance. The results showed that nanostructured films were obtained by intercalation from solution. Furthermore, the use of low field NMR, T1H, provided more precise information about the movement of materials, being complementary to the results obtained by X-ray diffraction. (author)

  4. Measurement and Quantification of Heterogeneity, Flow, and Mass Transfer in Porous Media Using NMR Low-Field Techiques

    Science.gov (United States)

    Paciok, E.; Olaru, A. M.; Haber, A.; van Landeghem, M.; Haber-Pohlmeier, S.; Sucre, O. E.; Perlo, J.; Casanova, F.; Blümich, B.; RWTH Aachen Mobile Low-Field NMR

    2011-12-01

    Nuclear magnetic resonance (NMR) is renowned for its unique potential to both reveal and correlate spectroscopic, relaxometric, spatial and dynamic properties in a large variety of organic and inorganic systems. NMR has no restrictions regarding sample opacity and is an entirely non-invasive method, which makes it the ideal tool for the investigation of porous media. However, for years NMR research of soils was limited by the use of high-field NMR devices, which necessitated elaborate NMR experiments and were not applicable to bulky samples or on-site field measurements. The evolution of low-field NMR devices during the past 20 years has brought forth portable, small-scale NMR systems with open and closed magnet arrangements specialized to specific NMR applications. In combination with recent advances in 2D-NMR Laplace methodology [1], low-field NMR has opened up the possibility to study real-life microporous systems ranging from granular media to natural soils and oil well boreholes. Thus, information becomes available, which before has not been accessible with high-field NMR. In this work, we present our recent progress in mobile low-field NMR probe design for field measurements of natural soils: a slim-line logging tool, which can be rammed into the soil of interest on-site. The performance of the device is demonstrated in measurements of moisture profiles of model soils [2] and field measurements of relaxometric properties and moisture profiles of natural soils [3]. Moreover, an improved concept of the slim-line logging tool is shown, with a higher excitation volume and a better signal-to-noise due to an improved coil design. Furthermore, we present our recent results in 2D exchange relaxometry and simulation. These include relaxation-relaxation experiments on natural soils with varying degree of moisture saturation, where we could draw a connection between the relaxometric properties of the soil to its pore size-related diffusivity and to its clay content

  5. Study of impregnating epoxy resins for high field NMR superconducting magnets

    International Nuclear Information System (INIS)

    Liang, G.; Luo, G.; Crowe, L.

    1996-01-01

    NMR magnet coils are usually quite long, thick, and tightly wound with thin superconducting wires. The successful vacuum/pressure impregnation of such kind of coils demands the use of epoxy resins with superior properties such as low viscosity, long pot life, and high cracking resistance etc. In order to find the most appropriate impregnating epoxy resin for the fabrication of high-field NMR magnet coils, the authors have studied several promising epoxy resins by viscosity, thermal shock, bonding/de-bonding measurements. The results of these measurements are presented. Model coils have been vacuum/pressure impregnated with selected epoxy resins and analyzed with scanning electronic microscope (SEM). It was found that among all of the studied epoxy resins the CTD-101K epoxy resin is most suitable for impregnation of coils. The test results of the model NbTi superconducting coil show that coils potted with CTD-101K do not quench until critical current of the superconductor is reached. This epoxy and the impregnation technique have been successfully applied to the first 400 MHz/89 mm actively shielded high resolution NMR magnet developed at Houston Advanced Research Center

  6. Visualization of velocity field and phase distribution in gas-liquid two-phase flow by NMR imaging

    International Nuclear Information System (INIS)

    Matsui, G.; Monji, H.; Obata, J.

    2004-01-01

    NMR imaging has been applied in the field of fluid mechanics, mainly single phase flow, to visualize the instantaneous flow velocity field. In the present study, NMR imaging was used to visualize simultaneously both the instantaneous phase structure and velocity field of gas-liquid two-phase flow. Two methods of NMR imaging were applied. One is useful to visualize both the one component of liquid velocity and the phase distribution. This method was applied to horizontal two-phase flow and a bubble rising in stagnant oil. It was successful in obtaining some pictures of velocity field and phase distribution on the cross section of the pipe. The other is used to visualize a two-dimensional velocity field. This method was applied to a bubble rising in a stagnant water. The velocity field was visualized after and before the passage of a bubble at the measuring cross section. Furthermore, the distribution of liquid velocity was obtained. (author)

  7. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    International Nuclear Information System (INIS)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-01-01

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method

  8. Low field NMR study of the latex derived from Brosimum parinarioides - Moraceae

    International Nuclear Information System (INIS)

    Miguez, Eduardo; Tavares, Maria Ines B.

    2009-01-01

    Brosimum parinarioides is a tree found in the Amazonia forest and its latex (Leite de Amapa) is often used like food and by the popular medicine in the treatment of tuberculosis and asthma. Being swallowed in nature, its necessary determinate the stability degree of this latex in the storage conditions in which is used in Amazonia. The analyses of T 2 data showed that the limit of stability is not longer than six month in the storage conditions used by the population of Amazonia. The Low field NMR proved to be an efficient method for this kind of study. (author)

  9. Palm oil based polymer materials obtained by ROMP: study by low field NMR

    International Nuclear Information System (INIS)

    Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S.

    2015-01-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  10. NMR chemical shifts in amino acids: Effects of environments, electric field, and amine group rotation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Young-Gui; Pfrommer, Bernd G.; Louie, Steven G.; Canning, Andrew

    2002-03-03

    The authors present calculations of NMR chemical shifts in crystalline phases of some representative amino acids such as glycine, alanine, and alanyl-alanine. To get an insight on how different environments affect the chemical shifts, they study the transition from the crystalline phase to completely isolated molecules of glycine. In the crystalline limit, the shifts are dominated by intermolecular hydrogen-bonds. In the molecular limit, however, dipole electric field effects dominate the behavior of the chemical shifts. They show that it is necessary to average the chemical shifts in glycine over geometries. Tensor components are analyzed to get the angle dependent proton chemical shifts, which is a more refined characterization method.

  11. Estimation of pore size distribution using concentric double pulsed-field gradient NMR.

    Science.gov (United States)

    Benjamini, Dan; Nevo, Uri

    2013-05-01

    Estimation of pore size distribution of well calibrated phantoms using NMR is demonstrated here for the first time. Porous materials are a central constituent in fields as diverse as biology, geology, and oil drilling. Noninvasive characterization of monodisperse porous samples using conventional pulsed-field gradient (PFG) NMR is a well-established method. However, estimation of pore size distribution of heterogeneous polydisperse systems, which comprise most of the materials found in nature, remains extremely challenging. Concentric double pulsed-field gradient (CDPFG) is a 2-D technique where both q (the amplitude of the diffusion gradient) and φ (the relative angle between the gradient pairs) are varied. A recent prediction indicates this method should produce a more accurate and robust estimation of pore size distribution than its conventional 1-D versions. Five well defined size distribution phantoms, consisting of 1-5 different pore sizes in the range of 5-25 μm were used. The estimated pore size distributions were all in good agreement with the known theoretical size distributions, and were obtained without any a priori assumption on the size distribution model. These findings support that in addition to its theoretical benefits, the CDPFG method is experimentally reliable. Furthermore, by adding the angle parameter, sensitivity to small compartment sizes is increased without the use of strong gradients, thus making CDPFG safe for biological applications. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Magnet design with high B(0) homogeneity for fast-field-cycling NMR applications.

    Science.gov (United States)

    Lips, O; Privalov, A F; Dvinskikh, S V; Fujara, F

    2001-03-01

    The design, construction, and performance of a low-inductance solenoidal coil with high B(0) homogeneity for fast-field-cycling NMR is presented. It consists of six concentric layers. The conductor width is varied to minimize the B(0) inhomogeneity in the volume of the sample. This is done using an algorithm which takes the real shape of the conductor directly into account. The calculated coil geometry can be manufactured easily using standard computerized numeric control equipment, which keeps the costs low. The coil is liquid cooled and produces a B(0) field of 0.95 T at 800 A. The field inhomogeneity in a cylindrical volume (diameter 5 mm, length 10 mm) is about 10 ppm, and the inductance is 190 microH. Switching times below 200 micros can be achieved. During 6 months of operation the coil has shown good stability and reliability. Copyright 2001 Academic Press.

  13. Earth's field NMR detection of oil under arctic ice-water suppression

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques.

  14. A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments.

    Science.gov (United States)

    Ozarslan, Evren; Shemesh, Noam; Basser, Peter J

    2009-03-14

    Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov's results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.

  15. A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments

    Science.gov (United States)

    Özarslan, Evren; Shemesh, Noam; Basser, Peter J.

    2009-03-01

    Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov's results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.

  16. Nitrogen Use Efficiency and Carbon Isotope Discrimination Study on NMR151 and NMR152 Mutant Lines Rice at Field Under Different Nitrogen Rates and Water Potentials

    International Nuclear Information System (INIS)

    Ahmad Nazrul Abdul Wahid; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Latiffah Nordin; Abdul Razak Ruslan; Hazlina Abdullah; Khairuddin Abdul Rahim

    2016-01-01

    This study was conducted to evaluate the nitrogen use efficiency and 13 C isotope discrimination of rice mutant lines viz. NMR151 and NMR152. Both cultivars are developed under rice radiation mutagenesis programme for adaptability to aerobic conditions. In the present study, NMR151 and NMR152 were grown under conditions of varying water potentials and nitrogen levels in a field. Two water potentials and three nitrogen rates in a completely randomized design with three replications were carried out. The rice mutants were grown for 110 days under two water potentials, (i) Field capacity from 0 to 110 DAS [FC], and (ii) Field capacity from 0 to 40 DAS and 30 % dry of field capacity from 41 to 110 DAS [SS] and three nitrogen rates, (i) 0 kg N/ ha (0N), (ii) 60 kg N/ ha (60N), and (iii) 120 kg N/ ha (120N). 15 N isotopic tracer technique was used in this study, whereby the 15 N labeled urea fertilizer 5.20 % atom excess (a.e) was utilized as a tracer for nitrogen use efficiency (NUE) study. 15 N isotope presence in the samples was determined using emission spectrometry and percentage of total nitrogen was determined by the Kjeldahl method. 15 N a.e values of the samples were used in the determination of the NUE. The value of 13 C isotope discrimination (Δ 13 C) in the sample was determined using isotope ratio mass spectrometry (IRMS). The 13 C isotope discrimination technique was used as a tool to identify drought resistance rice cultivars with improves water use efficiency. The growth and agronomy data, viz. plant height, number of tillers, grain yield, straw yield, and 1000 grain weight also were recorded. Results from this study showed nitrogen rates imparted significant effects on yield (grain and straw) plant height, number of tillers and 1000 grain weight. Water potentials had significant effects only on 1000 grain weight and Δ 13 C. The NUE for both mutant lines rice showed no significant different between treatments. Both Rice mutant lines rice NMR151 and NMR

  17. Tomographic reconstruction of the refractive index with hard X-rays: an efficient method based on the gradient vector-field approach.

    Science.gov (United States)

    Gasilov, Sergei; Mittone, Alberto; Brun, Emmanuel; Bravin, Alberto; Grandl, Susanne; Mirone, Alessandro; Coan, Paola

    2014-03-10

    The refractive-index gradient vector field approach establishes a connection between a tomographic data set of differential phase contrast images and the distribution of the partial spatial derivatives of the refractive index in an object. The reconstruction of the refractive index in a plane requires the integration of its gradient field. This work shows how this integration can be efficiently performed by converting the problem to the Poisson equation, which can be accurately solved even in the case of noisy and large datasets. The performance of the suggested method is discussed and demonstrated experimentally by computing the refractive index distribution in both a simple plastic phantom and a complex biological sample. The quality of the reconstruction is evaluated through the direct comparison with other commonly used methods. To this end, the refractive index is retrieved from the same data set using also (1) the filtered backprojection algorithm for gradient projections, and (2) the regularized phase-retrieval procedure. Results show that the gradient vector field approach combined with the developed integration technique provides a very accurate depiction of the sample internal structure. Contrary to the two other techniques, the considered method does not require a preliminary phase-retrieval and can be implemented with any advanced computer tomography algorithm. In this work, analyzer-based phase contrast images are used for demonstration. Results, however, are generally valid and can be applied for processing differential phase-contrast tomographic data sets obtained with other phase-contrast imaging techniques.

  18. Early non-destructive biofouling detection in spiral wound RO Membranes using a mobile earth's field NMR

    KAUST Repository

    Fridjonsson, E.O.

    2015-04-20

    We demonstrate the use of Earth\\'s field (EF) Nuclear Magnetic Resonance (NMR) to provide early non-destructive detection of active biofouling of a commercial spiral wound reverse osmosis (RO) membrane module. The RO membrane module was actively biofouled to different extents, by the addition of biodegradable nutrients to the feed stream, as revealed by a subtle feed-channel pressure drop increase. Easily accessible EF NMR parameters (signal relaxation parameters T1, T2 and the total NMR signal modified to be sensitive to stagnant fluid only) were measured and analysed in terms of their ability to detect the onset of biofouling. The EF NMR showed that fouling near the membrane module entrance significantly distorted the flow field through the whole membrane module. The total NMR signal is shown to be suitable for non-destructive early biofouling detection of spiral wound membrane modules, it was readily deployed at high (operational) flow rates, was particularly sensitive to flow field changes due to biofouling and could be deployed at any position along the membrane module axis. In addition to providing early fouling detection, the mobile EF NMR apparatus could also be used to (i) evaluate the production process of spiral wound membrane modules, and (ii) provide an in-situ determination of module cleaning process efficiency.

  19. Single-sided NMR

    CERN Document Server

    Casanova, Federico; Blümich, Bernhard

    2011-01-01

    Single-Sided NMR describes the design of the first functioning single-sided tomograph, the related measurement methods, and a number of applications. One of the key advantages to this method is the speed at which the images are obtained.

  20. Effect of magnetic field strength on NMR-based metabonomic human urine data. Comparative study of 250, 400, 500, and 800 MHz

    DEFF Research Database (Denmark)

    Bertram, Hanne Christine; Malmendal, Anders; Petersen, Bent O.

    2007-01-01

    Metabonomic analysis of urine utilizing high-resolution NMR spectroscopy and chemometric techniques has proven valuable in characterizing the biochemical response to an intervention. To assess the effect of magnetic field strength on information contained in NMR-based metabonomic data sets, 1H NMR...

  1. Low-frequency excess contribution in simple liquids revealed by fast field cycling NMR

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Roman; Herrmann, Axel; Kahlau, Robert; Kruk, Danuta; Roessler, Ernst [Experimentalphysik II, Universitaet Bayreuth (Germany)

    2010-07-01

    The main relaxation ({alpha}-relaxation) of simple liquids studied by dielectric spectroscopy is well described by a Cole-Davidson (CD) susceptibility. In particular the low-frequency limit follows a Debye behavior {chi}{sub DS}''{proportional_to}{omega}{sup 1}. Applying fast field cycling (FFC) {sup 1}H NMR and transforming the spin-lattice dispersion data T{sub 1} into the susceptibility representation {chi}{sub NMR}''{proportional_to}{nu}/T{sub 1} we have discovered a low-frequency excess contribution for systems like glycerol and its homologues as well as fluoroaniline. The CD function fails to describe the data due to a retarded transition to the limit {omega}{sup 1}, i.e., a ''shoulder'' is observed on the low frequency side of the a-relaxation peak ({omega}{tau}{sub {alpha}}<1) possibly reflecting a slower relaxation process. Actually only a few liquids like o-terphenyl and tristyrene studied by FFC NMR do not show this phenomenon. Collecting dispersion data over a large temperature range, the relaxation strength of the excess contribution is specified quantitatively. Measurements of dilution series of propylene glycol in deuterated chloroform proved an intermolecular origin of the excess contribution. Dilution experiments of deuterated in protonated glycerol suggest this additional contribution being also fully reflected by sole intramolecular spin-spin vectors. A possible explanation of this effect are transient molecular clusters due to chemical interactions (e.g. H-bonds).

  2. Preparation of cold ions in strong magnetic field and its application to gas-phase NMR spectroscopy

    International Nuclear Information System (INIS)

    Fuke, K.; Ohshima, Y.; Tona, M.

    2015-01-01

    Nuclear Magnetic Resonance (NMR) technique is widely used as a powerful tool to study the physical and chemical properties of materials. However, this technique is limited to the materials in condensed phases. To extend this technique to the gas-phase molecular ions, we are developing a gas-phase NMR apparatus. In this note, we describe the basic principle of the NMR detection for molecular ions in the gas phase based on a Stern-Gerlach type experiment in a Penning trap and outline the apparatus under development. We also present the experimental procedures and the results on the formation and the manipulation of cold ions under a strong magnetic field, which are the key techniques to detect the NMR by the present method

  3. High-pressure low-field 1H NMR relaxometry in nanoporous materials.

    Science.gov (United States)

    Horch, Carsten; Schlayer, Stefan; Stallmach, Frank

    2014-03-01

    A low-field NMR sensor with NdFeB permanent magnets (B0=118 mT) and a pressure cell made of PEEK (4 cm outer diameter) were designed for (1)H relaxation time studies of adsorbed molecules at pressures of up to 300 bar. The system was used to investigate methane uptake of microporous metal-organic frameworks and nanoporous activated carbon. T2 relaxation time distribution of pure methane and of methane under co-adsorption of carbon dioxide show that the host-guest interaction lead to a relaxation time contrasts, which may be used to distinguish between the gas phase and the different adsorbed phases of methane. Adsorption isotherms, exchange of methane between adsorbent particles and the surrounding gas phase, successive displacement of methane from adsorption sites by co-adsorption of carbon dioxide and CO2/CH4 adsorption separation factors were determined from the observed NMR relaxation time distributions. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Estimation of diffusion coefficients in bitumen solvent mixtures as derived from low field NMR spectra

    International Nuclear Information System (INIS)

    Wen, Y.; Bryan, J.; Kantzas, A.

    2005-01-01

    Use of solvents for the extraction of heavy oil and bitumen appears to be an increasingly feasible technology. Both vapour extraction and direct solvent injection are considered for conventional exploration and production schemes, while solvent dilution of bitumen is a standard technique in oil sands mining. Mass transfer between solvent and bitumen is a poorly understood process. In some cases, it is totally ignored compared to viscous force effects. In other cases, phenomenological estimations of diffusion and dispersion coefficients are used. Low field NMR has been used successfully in determining both solvent content and viscosity reduction in heavy oil and bitumen mixtures with various solvents. As a solvent comes into contact with a heavy oil or bitumen sample, the mobility of hydrogen bearing molecules of both solvent and oil changes. These changes are detectable through changes in the NMR relaxation characteristics of both solvent and oil. Relaxation changes can then be correlated to mass flux and concentration changes. Based on Fick's Second Law, a diffusion coefficient, which is independent of concentration, was calculated against three oils and six solvents. (author)

  5. Bose-Einstein condensation in the Han purple compound: a high field NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Steffen; Horvatic, Mladen; Berthier, Claude [Laboratoire National des Champs Magnetiques Intenses, CNRS, Grenoble (France); Stern, Raivo [NICPB, Tallinn (Estonia); Kimura, Tsuyoshi [Osaka University, Osaka (Japan)

    2011-07-01

    The quasi-2D, antiferromagnetic exchange coupled spin-1/2 dimer compound BaCuSi{sub 2}O{sub 6} (Han purple) is considered as a prototype of the magnetic field induced Bose-Einstein Condensation (BEC) of triplet excitations on a lattice. Recently, BaCuSi{sub 2}O{sub 6} has been claimed to exhibit an unusual reduction of dimensionality of the BEC from 3D to 2D when lowering the temperature, induced by frustration between adjacent planes. However, due to a structural transformation at 90 K, different intradimer exchange couplings and different gaps ({delta}{sub B}/{delta}{sub A}=1.16) exist in every second plane along the c axis. First Nuclear Magnetic Resonance (NMR) experiments have shown that this leads to a population of bosons in the B planes, n{sub B}, much smaller than in A planes in the field range {delta}{sub A}/g{mu}{sub B} < H < {delta}{sub B}/g{mu}{sub B} where n{sub B}=0 is expected in a model of uncoupled planes. More recently, a better model has been presented, which takes into account both frustration and quantum fluctuations. This leads to a non-zero population n{sub B} of uncondensed bosons in the B plane, increasing quadratically with (H-H{sub c1}), as compared to the linear dependence of n{sub A}. In our contribution we compare our new NMR results, obtained at high magnetic fields (23-27 T) and low temperatures (50 mK), to these models.

  6. Investigation of material properties by NMR in low and high magnetic fields

    International Nuclear Information System (INIS)

    Rata, D.G.

    2006-01-01

    In this work the experiments have been performed at both low and high field. The experiments cover various domains from simple relaxation experiments in low field to diffusion and spin-diffusion in high field. The applications of low-field investigations are: - quality control of chemical products. - water content determination inside of the walls of buildings. - determination of multilayer polymer coatings on a concrete. In high-field NMR several alkane molecules swollen at equilibrium in cross-linked natural rubber samples have been investigated and analyzed based on the assumptions of the Vrentras theory. A small diffusion anisotropy of the order of 10% has been discovered because of a deformation of free volume under compression. The anisotropy increases with the cross-link density and the compression ratio. The results presented in this study show that the solvent size influences the anisotropy of the diffusion process through the size parameter. The spin-diffusion measurements have been performed on Stanyl samples with different aged samples, at controlled temperature conditions. (orig.)

  7. Adiabatic sweep pulses for earth's field NMR with a surface coil

    Science.gov (United States)

    Conradi, Mark S.; Altobelli, Stephen A.; Sowko, Nicholas J.; Conradi, Susan H.; Fukushima, Eiichi

    2018-03-01

    Adiabatic NMR sweep pulses are described for inversion and excitation in very low magnetic fields B0 and with broad distribution of excitation field amplitude B1. Two aspects distinguish the low field case: (1) when B1 is comparable to or greater than B0, the rotating field approximation fails and (2) inversion sweeps cannot extend to values well below the Larmor frequency because they would approach or pass through zero frequency. Three approaches to inversion are described. The first is a conventional tangent frequency sweep down to the Larmor frequency, a 180° phase shift, and a sweep back up to the starting frequency. The other two are combined frequency and amplitude sweeps covering a narrower frequency range; one is a symmetric sweep from above to below the Larmor frequency and the other uses a smooth decrease of B1 immediately before and after the 180° phase shift. These two AM/FM sweeps show excellent inversion efficiencies over a wide range of B1, a factor of 30 or more. We also demonstrate an excitation sweep that works well in the presence of the same wide range of B1. We show that the primary effect of the counter-rotating field (i.e., at low B0) is that the magnetization suffers large, periodic deviations from where it would be at large B0. Thus, successful sweep pulses must avoid any sharp features in the amplitude, phase, or frequency.

  8. Investigation of material properties by NMR in low and high magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Rata, D.G.

    2006-07-10

    In this work the experiments have been performed at both low and high field. The experiments cover various domains from simple relaxation experiments in low field to diffusion and spin-diffusion in high field. The applications of low-field investigations are: - quality control of chemical products. - water content determination inside of the walls of buildings. - determination of multilayer polymer coatings on a concrete. In high-field NMR several alkane molecules swollen at equilibrium in cross-linked natural rubber samples have been investigated and analyzed based on the assumptions of the Vrentras theory. A small diffusion anisotropy of the order of 10% has been discovered because of a deformation of free volume under compression. The anisotropy increases with the cross-link density and the compression ratio. The results presented in this study show that the solvent size influences the anisotropy of the diffusion process through the size parameter. The spin-diffusion measurements have been performed on Stanyl samples with different aged samples, at controlled temperature conditions. (orig.)

  9. Topology optimization based design of unilateral NMR for generating a remote homogeneous field.

    Science.gov (United States)

    Wang, Qi; Gao, Renjing; Liu, Shutian

    2017-06-01

    This paper presents a topology optimization based design method for the design of unilateral nuclear magnetic resonance (NMR), with which a remote homogeneous field can be obtained. The topology optimization is actualized by seeking out the optimal layout of ferromagnetic materials within a given design domain. The design objective is defined as generating a sensitive magnetic field with optimal homogeneity and maximal field strength within a required region of interest (ROI). The sensitivity of the objective function with respect to the design variables is derived and the method for solving the optimization problem is presented. A design example is provided to illustrate the utility of the design method, specifically the ability to improve the quality of the magnetic field over the required ROI by determining the optimal structural topology for the ferromagnetic poles. Both in simulations and experiments, the sensitive region of the magnetic field achieves about 2 times larger than that of the reference design, validating validates the feasibility of the design method. Copyright © 2017. Published by Elsevier Inc.

  10. Industrial dynamic tomographic reconstruction

    International Nuclear Information System (INIS)

    Oliveira, Eric Ferreira de

    2016-01-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  11. Double tuning a single input probe for heteronuclear NMR spectroscopy at low field

    Science.gov (United States)

    Tadanki, Sasidhar; Colon, Raul D.; Moore, Jay; Waddell, Kevin W.

    2012-10-01

    Applications of PASADENA in biomedicine are continuing to emerge due to recent demonstrations that hyperpolarized metabolic substrates and the corresponding reaction products persist sufficiently long to be detected in vivo. Biomedical applications of PASADENA typically differ from their basic science counterparts in that the polarization endowed by addition of parahydrogen is usually transferred from nascent protons to coupled storage nuclei for subsequent detection on a higher field imaging instrument. These pre-imaging preparations usually take place at low field, but commercial spectrometers capable of heteronuclear pulsed NMR at frequencies in the range of 100 kHz to 1 MHz are scarce though, in comparison to single channel consoles in that field regime. Reported here is a probe circuit that can be used in conjunction with a phase and amplitude modulation scheme we have developed called PANORAMIC (Precession And Nutation for Observing Rotations At Multiple Intervals about the Carrier), that expands a single channel console capability to double or generally multiple resonance with minimal hardware modifications. The demands of this application are geared towards uniform preparation, and since the hyperpolarized molecules are being detected externally at high field, detection sensitivity is secondary to applied field uniformity over a large reaction volume to accommodate heterogeneous chemistry of gas molecules at a liquid interface. The probe circuit was therefore configured with a large (40 mL) Helmholtz sample coil for uniformity, and double-tuned to the Larmor precession frequencies of 13C/1H (128/510 kHz) within a custom solenoidal electromagnet at a static field of 12 mT. Traditional (on-resonant) as well as PANORAMIC NMR signals with signal to noise ratios of approximately 75 have been routinely acquired with this probe and spectrometer setup from 1024 repetitions on the high frequency channel. The proton excitation pulse width was 240 μs at 6.31 W

  12. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI Instruments at Low-Field

    Science.gov (United States)

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-01-01

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed. PMID:24287540

  13. Software Defined Radio (SDR and Direct Digital Synthesizer (DDS for NMR/MRI Instruments at Low-Field

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2013-11-01

    Full Text Available A proof-of-concept of the use of a fully digital radiofrequency (RF electronics for the design of dedicated Nuclear Magnetic Resonance (NMR systems at low-field (0.1 T is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS for pulse generation, a Software Defined Radio (SDR for a digital receiving of NMR signals and a Digital Signal Processor (DSP for system control and for the generation of the gradient signals (pulse programmer. The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…. The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to “enjoy” from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed.

  14. Software Defined Radio (SDR) and Direct Digital Synthesizer (DDS) for NMR/MRI instruments at low-field.

    Science.gov (United States)

    Asfour, Aktham; Raoof, Kosai; Yonnet, Jean-Paul

    2013-11-27

    A proof-of-concept of the use of a fully digital radiofrequency (RF) electronics for the design of dedicated Nuclear Magnetic Resonance (NMR) systems at low-field (0.1 T) is presented. This digital electronics is based on the use of three key elements: a Direct Digital Synthesizer (DDS) for pulse generation, a Software Defined Radio (SDR) for a digital receiving of NMR signals and a Digital Signal Processor (DSP) for system control and for the generation of the gradient signals (pulse programmer). The SDR includes a direct analog-to-digital conversion and a Digital Down Conversion (digital quadrature demodulation, decimation filtering, processing gain…). The various aspects of the concept and of the realization are addressed with some details. These include both hardware design and software considerations. One of the underlying ideas is to enable such NMR systems to "enjoy" from existing advanced technology that have been realized in other research areas, especially in telecommunication domain. Another goal is to make these systems easy to build and replicate so as to help research groups in realizing dedicated NMR desktops for a large palette of new applications. We also would like to give readers an idea of the current trends in this field. The performances of the developed electronics are discussed throughout the paper. First FID (Free Induction Decay) signals are also presented. Some development perspectives of our work in the area of low-field NMR/MRI will be finally addressed.

  15. Development of a micro flow-through cell for high field NMR spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; McIntyre, Sarah K.

    2011-05-01

    A highly transportable micro flow-through detection cell for nuclear magnetic resonance (NMR) spectroscopy has been designed, fabricated and tested. This flow-through cell allows for the direct coupling between liquid chromatography (LC) and gel permeation chromatography (GPC) resulting in the possibility of hyphenated LC-NMR and GPC-NMR. The advantage of the present flow cell design is that it is independent and unconnected to the detection probe electronics, is compatible with existing commercial high resolution NMR probes, and as such can be easily implemented at any NMR facility. Two different volumes were fabricated corresponding to between {approx}3.8 and 10 {micro}L detection volume. Examples of the performance of the cell on different NMR instruments, and using different NMR detection probes were demonstrated.

  16. Beta-detected NMR study of the local magnetic field in epitaxial GaAs:Mn

    Science.gov (United States)

    Song, Q.; Chow, K. H.; Miller, R. I.; Fan, I.; Hossain, M. D.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; Parolin, T. J.; Pearson, M. R.; Salman, Z.; Saadaoui, H.; Smadella, M.; Wang, D.; Yu, K. M.; Liu, X.; Furdyna, J. K.; MacFarlane, W. A.

    2009-04-01

    A low energy beam of spin polarized 8Li + has been employed to study the magnetic field distribution in an epitaxial thin film of 5.4% Mn doped GaAs(180 nm) on a (1 0 0) GaAs substrate via beta-detected NMR. The spectrum is a strong function of the implantation energy in the range 28-3 keV. In the magnetic layer, there is no indication of a missing fraction, and even more remarkable, there is a broad negatively shifted resonance. The spin lattice relaxation rate is, however, much faster in the Mn doped layer than in the substrate. A sharp peak characteristic of nonmagnetic GaAs is observed down to the lowest implantation energy, for which none of the Li should reach the substrate. This unexpected depth dependence is discussed.

  17. Beta-detected NMR study of the local magnetic field in epitaxial GaAs:Mn

    Energy Technology Data Exchange (ETDEWEB)

    Song, Q., E-mail: susan@phas.ubc.c [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Chow, K.H. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Miller, R.I. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Canadian Institute of Advanced Research (Canada); Kreitzman, S.R.; Levy, C.D.P. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Parolin, T.J. [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Pearson, M.R.; Salman, Z. [TRIMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Smadella, M.; Wang, D. [Department of Physics, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Yu, K.M. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Liu, X.; Furdyna, J.K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); MacFarlane, W.A. [Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

    2009-04-15

    A low energy beam of spin polarized {sup 8}Li{sup +} has been employed to study the magnetic field distribution in an epitaxial thin film of 5.4% Mn doped GaAs(180 nm) on a (1 0 0) GaAs substrate via beta-detected NMR. The spectrum is a strong function of the implantation energy in the range 28-3 keV. In the magnetic layer, there is no indication of a missing fraction, and even more remarkable, there is a broad negatively shifted resonance. The spin lattice relaxation rate is, however, much faster in the Mn doped layer than in the substrate. A sharp peak characteristic of nonmagnetic GaAs is observed down to the lowest implantation energy, for which none of the Li should reach the substrate. This unexpected depth dependence is discussed.

  18. Air core notch-coil magnet with variable geometry for fast-field-cycling NMR.

    Science.gov (United States)

    Kruber, S; Farrher, G D; Anoardo, E

    2015-10-01

    In this manuscript we present details on the optimization, construction and performance of a wide-bore (71 mm) α-helical-cut notch-coil magnet with variable geometry for fast-field-cycling NMR. In addition to the usual requirements for this kind of magnets (high field-to-power ratio, good magnetic field homogeneity, low inductance and resistance values) a tunable homogeneity and a more uniform heat dissipation along the magnet body are considered. The presented magnet consists of only one machined metallic cylinder combined with two external movable pieces. The optimal configuration is calculated through an evaluation of the magnetic flux density within the entire volume of interest. The magnet has a field-to-current constant of 0.728 mT/A, allowing to switch from zero to 0.125 T in less than 3 ms without energy storage assistance. For a cylindrical sample volume of 35 cm(3) the effective magnet homogeneity is lower than 130 ppm. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  20. Ultra-wide bore 900 MHz high-resolution NMR at the National High Magnetic Field Laboratory

    Science.gov (United States)

    Fu, R.; Brey, W. W.; Shetty, K.; Gor'kov, P.; Saha, S.; Long, J. R.; Grant, S. C.; Chekmenev, E. Y.; Hu, J.; Gan, Z.; Sharma, M.; Zhang, F.; Logan, T. M.; Brüschweller, R.; Edison, A.; Blue, A.; Dixon, I. R.; Markiewicz, W. D.; Cross, T. A.

    2005-11-01

    Access to an ultra-wide bore (105 mm) 21.1 T magnet makes possible numerous advances in NMR spectroscopy and MR imaging, as well as novel applications. This magnet was developed, designed, manufactured and tested at the National High Magnetic Field Laboratory and on July 21, 2004 it was energized to 21.1 T. Commercial and unique homebuilt probes, along with a standard commercial NMR console have been installed and tested with many science applications to develop this spectrometer as a user facility. Solution NMR of membrane proteins with enhanced resolution, new pulse sequences for solid state NMR taking advantage of narrowed proton linewidths, and enhanced spatial resolution and contrast leading to improved animal imaging have been documented. In addition, it is demonstrated that spectroscopy of single site 17O labeled macromolecules in a hydrated lipid bilayer environment can be recorded in a remarkably short period of time. 17O spectra of aligned samples show the potential for using this data for orientational restraints and for characterizing unique details of cation binding properties to ion channels. The success of this NHMFL magnet illustrates the potential for using a similar magnet design as an outsert for high temperature superconducting insert coils to achieve an NMR magnet with a field >25 T.

  1. Resolution Improvements in in Vivo1H NMR Spectra with Increased Magnetic Field Strength

    Science.gov (United States)

    Gruetter, Rolf; Weisdorf, Sally A.; Rajanayagan, Vasantham; Terpstra, Melissa; Merkle, Hellmut; Truwit, Charles L.; Garwood, Michael; Nyberg, Scott L.; Ugurbil, Kâmil

    1998-11-01

    The measurement of cerebral metabolites using highly homologous localization techniques and similar shimming methods was performed in the human brain at 1.5 and 4 T as well as in the dog and rat brain at 9.4 T. In rat brain, improved resolution was achieved by shimming all first- and second-order shim coils using a fully adiabatic FASTMAP sequence. The spectra showed a clear improvement in spectral resolution for all metabolite resonances with increased field strength. Changes in cerebral glutamine content were clearly observed at 4 T compared to 1.5 T in patients with hepatic encephalopathy. At 9.4 T, glutamine H4 at 2.46 ppm was fully resolved from glutamate H4 at 2.37 ppm, as was the potential resonance from γ-amino-butyric acid at 2.30 ppm and N-acetyl-aspartyl-glutamate at 2.05 ppm. Singlet linewidths were found to be as low as 6 Hz (0.015 ppm) at 9.4 T, indicating a substantial decrease in ppm linewidth with field strength. Furthermore, the methylene peak of creatine was partially resolved from phosphocreatine, indicating a close to 1:1 relationship in gray matter. We conclude that increasing the magnetic field strength increases spectral resolution also for1H NMR, which can lead to more than linear sensitivity gains.

  2. High-field 1H NMR microscopy for fundamental biophysical research

    International Nuclear Information System (INIS)

    Haddad, D.

    2003-01-01

    This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz

  3. Solid state field-cycling NMR relaxometry: instrumental improvements and new applications.

    Science.gov (United States)

    Fujara, Franz; Kruk, Danuta; Privalov, Alexei F

    2014-10-01

    The paper reviews recent progress in field cycling (FC) NMR instrumentation and its application to solid state physics. Special emphasis is put on our own work during the last 15years on instrumentation, theory and applications. As far as instrumentation is concerned we report on our development of two types of electronical FC relaxometers, a mechanical FC relaxometer and a combination of FC and one-dimensional microimaging. Progress has been achieved with respect to several parameters such as the accessible field and temperature range as well as the incorporation of sample spinning. Since an appropriate analysis of FC data requires a careful consideration of relaxation theory, we include a theory section discussing the most relevant aspects of relaxation in solids which are related to residual dipolar and quadrupolar interactions. The most important limitations of relaxation theory are also discussed. With improved instrumentation and with the help of relaxation theory we get access to interesting new applications such as ionic motion in solid electrolytes, structure determination in molecular crystals, ultraslow polymer dynamics and rotational resonance phenomena. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Magnetic-Field-Gradient-Coil System for Solid-State MAS and Cramps NMR Imaging

    Science.gov (United States)

    Buszko, M.; Maciel, G. E.

    The idea of combining cylindrical coils for producing a longitudinal gradient with respect to the MAS axis with quadrupole (straight wire) magnetic-field-gradient coils for producing two transverse gradients for 3D MAS and CRAMPS imaging has been demonstrated. A modified set of a double Maxwell pair and two sets of quadrupole (eight-wire) coils were combined in a compact way and adapted for a 5 mm MAS rotor, achieving gradients of high efficiency (4.3 and 2.9 G/cm A for longitudinal and transverse coils, respectively), low inductance (3.5 and 1.9 μH, respectively), and very good linearity(1%). A 60 μm spatial resolution in a TREV-CRAMPS imaging experiment on solid polyethylene oxide was demonstrated; gradient pulses of 12 μs duration were generated by applying currents of 2.3 and 1.5 A to longitudinal and transverse coils, respectively. This magnetic-field-gradient-coil configuration could also be applied in other areas of NMR where time-dependent gradients are required.

  5. High-field Solution NMR Spectroscopy as a Tool for Assessing Protein Interactions with Small Molecule Ligands

    Science.gov (United States)

    Skinner, Andria L.; Laurence, Jennifer S.

    2013-01-01

    The ability of a small molecule to bind and modify the activity of a protein target at a specific site greatly impacts the success of drugs in the pharmaceutical industry. One of the most important tools for evaluating these interactions has been high-field solution NMR because of its unique ability to examine even weak protein-drug interactions at high resolution. NMR can be used to evaluate the structural, thermodynamic and kinetic aspects of a binding reaction. The basis of NMR screening experiments is that binding causes a perturbation in the physical properties of both molecules. Unique properties of small and macromolecules allow selective detection of either the protein target or ligand, even in a mixture of compounds. This review outlines current methodologies for assessing protein-ligand interactions from the perspectives of the protein target and ligand and delineates the fundamental principles for understanding NMR approaches in drug research. Advances in instrumentation, pulse sequences, isotopic labeling strategies, and the development of competition experiments support the study of higher molecular weight protein targets, facilitate higher-throughput and expand the range of binding affinities that can be evaluated, enhancing the utility of NMR for identifying and characterizing potential therapeutics to druggable protein targets. PMID:18351634

  6. Angular spectra of the intrinsic galaxy ellipticity field, their observability and their impact on lensing in tomographic surveys

    Science.gov (United States)

    Schäfer, Björn Malte; Merkel, Philipp M.

    2017-09-01

    This paper describes intrinsic ellipticity correlations between galaxies, their statistical properties, their observability with future surveys and their interference with weak gravitational lensing measurements. Using an angular-momentum-based, quadratic intrinsic alignment model we derive correlation functions of the ellipticity components and project them to yield the four non-zero angular ellipticity spectra C^ɛ _E(ℓ), C^ɛ _B(ℓ), C^ɛ _C(ℓ) and C^ɛ _S(ℓ) in their generalization to tomographic surveys. For a Euclid-like survey, these spectra would have amplitudes smaller than the weak lensing effect on non-linear structures, but would constitute an important systematics. Computing estimation biases for cosmological parameters derived from an alignment-contaminated survey suggests biases of +5σw for the dark energy equation of state parameter w, -20σ _{Ω _m} for the matter density Ωm and -12σ _{σ _8} for the spectrum normalization σ8. Intrinsic alignments yield a signal that is easily observable with a survey similar to Euclid: while not independent, significances for estimates of each of the four spectra reach values of tens of σ if weak lensing and shape noise are considered as noise sources, which suggests relative uncertainties on alignment parameters at the percent level, implying that galaxy alignment mechanisms can be investigated by future surveys.

  7. High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye [Sanford-Burnham-Prebys Medical Discovery Institute (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham-Prebys Medical Discovery Institute (United States)

    2017-01-15

    Structure determination of proteins by NMR is unique in its ability to measure restraints, very accurately, in environments and under conditions that closely mimic those encountered in vivo. For example, advances in solid-state NMR methods enable structure determination of membrane proteins in detergent-free lipid bilayers, and of large soluble proteins prepared by sedimentation, while parallel advances in solution NMR methods and optimization of detergent-free lipid nanodiscs are rapidly pushing the envelope of the size limit for both soluble and membrane proteins. These experimental advantages, however, are partially squandered during structure calculation, because the commonly used force fields are purely repulsive and neglect solvation, Van der Waals forces and electrostatic energy. Here we describe a new force field, and updated energy functions, for protein structure calculations with EEFx implicit solvation, electrostatics, and Van der Waals Lennard-Jones forces, in the widely used program Xplor-NIH. The new force field is based primarily on CHARMM22, facilitating calculations with a wider range of biomolecules. The new EEFx energy function has been rewritten to enable OpenMP parallelism, and optimized to enhance computation efficiency. It implements solvation, electrostatics, and Van der Waals energy terms together, thus ensuring more consistent and efficient computation of the complete nonbonded energy lists. Updates in the related python module allow detailed analysis of the interaction energies and associated parameters. The new force field and energy function work with both soluble proteins and membrane proteins, including those with cofactors or engineered tags, and are very effective in situations where there are sparse experimental restraints. Results obtained for NMR-restrained calculations with a set of five soluble proteins and five membrane proteins show that structures calculated with EEFx have significant improvements in accuracy, precision

  8. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    Science.gov (United States)

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-05

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min.

  9. From simple liquids to polymers: Dynamics revealed by field cycling {sup 1}H NMR

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Axel; Abou Elfadl, Azza; Meier, Roman; Kruk, Danuta; Novikov, Vladimir N.; Roessler, Ernst A. [Experimentalphysik II, Universitaet Bayreuth (Germany)

    2010-07-01

    We apply field cycling NMR to study the crossover from glassy through Rouse to reptation dynamics in series of different linear polymers (PB, PDMS, PPO, PI) with molecular weight M ranging from the low-M limit (simple liquid) to the high-M limit. Dispersion data of the spin-lattice relaxation time T{sub 1}({omega}) are transformed to the susceptibility representation {chi} {sup parallel} ({omega}{tau}{sub s})={omega}/T{sub 1}, and using frequency-temperature superposition master curves {chi} {sup parallel} ({omega}{tau}{sub s}) ({tau}{sub s}:=segmental correlation time) are constructed which reflect spectral contributions from glassy as well as polymer specific dynamics. We are able to cover six decades at {omega}{tau}{sub s}<1 allowing to monitor in detail the emergence of polymer specific relaxation contributions. Transforming the master curves into the time domain yields the segmental reorientational correlation function which we follow over six decades in amplitude. From this the order parameter as well as bond-vector correlation function are derived. Comparison with theoretical predictions by the tube-reptation model as well as renormalized Rouse theory reveals significant discrepancies whereas good agreement is found with Monte Carlo simulations. We conclude that the crossover to entanglement dynamics appears to be highly protracted. This is confirmed by accompanying measurements of dielectric normal mode spectra.

  10. Strong static magnetic fields of NMR: Do they affect tissue perfusion. Beeinflussen starke statische Magnetfelder in der NMR-Tomographie die Gewebedurchblutung

    Energy Technology Data Exchange (ETDEWEB)

    Stick, C.; Hinkelmann, K. (Kiel Univ. (Germany, F.R.). Inst. fuer Angewandte Physiologie und Medizinische Klimatologie); Eggert, P. (Kiel Univ. (Germany, F.R.). Abt. Allgemeine Paediatrie); Wendhausen, H. (Kiel Univ. (Germany, F.R.). Abt. Radiologie)

    1991-03-01

    Findings obtained in humans and test animals raised the question whether strong static magnetic fields as used in NMR-tomography may affect tissue perfusion. In two test series including 20 subjects, each skin blood flow at the thumb was determined by heat clearance, and forearm blood flow was measured by venous occlusion plethysmography. For comparative purposes, measurements were carried out bilaterally at both extremities. The experiments consisted of three sections that lasted 10 min each. During the second section the thumb or the forearm were unilaterally exposed to magnetic fields of 0,9 to 1 T and 0.4 to 0.5 T, respectively. The results of this section were compared with the values obtained during the experimental sections prior to and after the exposure to the magnetic field. The results were also compared with the blood flow measured at the contralateral extremity. Neither at the skin of the thumb nor at the forearm were there changes in local blood flow attributable to the magnetic fields applied. (orig.).

  11. Preparation of polyurethane/montmorillonite nanocomposites by solution: characterization using low-field NMR and study of thermal stability

    International Nuclear Information System (INIS)

    Silva, Marcos Anacleto da; Tavares, Maria Ines B.

    2009-01-01

    Polyurethanes (PU) are important and versatile class of polymer materials, especially because of their desirable properties, such as high abrasion resistance, tear strength, excellent shock absorption, flexibility and elasticity. However, there also exist some disadvantages, for example, low thermal stability and barrier properties. To overcome the disadvantages, research on novel polyurethane/clay nanocomposites has been carried out. The investigation of the structure of polyurethane/clay nanocomposites has been mostly done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In this work, PU/clay films were prepared by solution, and the obtained nanocomposites were characterized by XRD and low-field nuclear magnetic resonance (NMR). Low field NMR measurements were able to provide important information on molecular dynamics of the polymeric nanocomposites PU/OMMT. In addition, they also confirmed the results obtained by XRD. The thermal stability was determined by thermogravimetric analysis (TGA). (author)

  12. High-field {sup 1}H NMR microscopy for fundamental biophysical research; Hochfeld {sup 1}H-NMR-Mikroskopie zur biophysikalischen Grundlagenforschung

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, D.

    2003-08-08

    This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz.

  13. Advances in tomographic PIV

    NARCIS (Netherlands)

    Novara, M.

    2013-01-01

    This research deals with advanced developments in 3D particle image velocimetry based on the tomographic PIV technique (Tomo-PIV). The latter is a relatively recent measurement technique introduced by Elsinga et al. in 2005, which is based on the tomographic reconstruction of particle tracers in

  14. SVD-Based Technique for Interference Cancellation and Noise Reduction in NMR Measurement of Time-Dependent Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Wenjun Chen

    2016-03-01

    Full Text Available A nuclear magnetic resonance (NMR experiment for measurement of time-dependent magnetic fields was introduced. To improve the signal-to-interference-plus-noise ratio (SINR of NMR data, a new method for interference cancellation and noise reduction (ICNR based on singular value decomposition (SVD was proposed. The singular values corresponding to the radio frequency interference (RFI signal were identified in terms of the correlation between the FID data and the reference data, and then the RFI and noise were suppressed by setting the corresponding singular values to zero. The validity of the algorithm was verified by processing the measured NMR data. The results indicated that, this method has a significantly suppression of RFI and random noise, and can well preserve the FID signal. At present, the major limitation of the proposed SVD-based ICNR technique is that the threshold value for interference cancellation needs to be manually selected. Finally, the inversion waveform of the applied alternating magnetic field was given by fitting the processed experimental data.

  15. SVD-Based Technique for Interference Cancellation and Noise Reduction in NMR Measurement of Time-Dependent Magnetic Fields.

    Science.gov (United States)

    Chen, Wenjun; Ma, Hong; Yu, De; Zhang, Hua

    2016-03-04

    A nuclear magnetic resonance (NMR) experiment for measurement of time-dependent magnetic fields was introduced. To improve the signal-to-interference-plus-noise ratio (SINR) of NMR data, a new method for interference cancellation and noise reduction (ICNR) based on singular value decomposition (SVD) was proposed. The singular values corresponding to the radio frequency interference (RFI) signal were identified in terms of the correlation between the FID data and the reference data, and then the RFI and noise were suppressed by setting the corresponding singular values to zero. The validity of the algorithm was verified by processing the measured NMR data. The results indicated that, this method has a significantly suppression of RFI and random noise, and can well preserve the FID signal. At present, the major limitation of the proposed SVD-based ICNR technique is that the threshold value for interference cancellation needs to be manually selected. Finally, the inversion waveform of the applied alternating magnetic field was given by fitting the processed experimental data.

  16. Ultra-High Field NMR and MRI—The Role of Magnet Technology to Increase Sensitivity and Specificity

    Directory of Open Access Journals (Sweden)

    Ewald Moser

    2017-08-01

    Full Text Available “History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors.” – P. J. Keating (former Australian Prime MinisterStarting with post-war developments in nuclear magnetic resonance (NMR a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (Nb-Ti based superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600–800 MHz (14.1–18.8 T up to 900 MHz (21 T at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development toward higher and higher field strength is a consequence of the inherently low

  17. International school on high field NMR spectroscopy for solids and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Marion, D.; Meier, B.; Keeler, J.; Berthault, P.; Vedrine, P.; Grandinetti, P.; Delsuc, M.A.; Spiess, H

    2006-07-01

    The aim of the school is to offer high-level pedagogical courses on a wide range of liquid- and solid-state NMR concepts and techniques: theory, instrumentation (magnets and probes), data acquisition, processing and analysis, measurement of dipolar and quadrupolar couplings, spin relaxation and hyper-polarization. This document gathers only the slides of most presentations.

  18. Resonances in field-cycling NMR on molecular crystals. (reversible) Spin dynamics or (irreversible) relaxation?; Resonanzen in Field-Cycling-NMR an Molekuelkristallen. (reversible) Spindynamik oder (irreversible) Relaxation?

    Energy Technology Data Exchange (ETDEWEB)

    Tacke, Christian

    2015-07-01

    Multi spin systems with spin 1/2 nuclei and dipolar coupled quadrupolar nuclei can show so called ''quadrupolar dips''. There are two main reasons for this behavior: polarization transfer and relaxation. They look quite alike and without additional research cannot be differentiated easily in most cases. These two phenomena have quite different physical and theoretical backgrounds. For no or very slow dynamics, polarization transfer will take place, which is energy conserving inside the spin system. This effect can entirely be described using quantum mechanics on the spin system. Detailed knowledge about the crystallography is needed, because this affects the relevant hamiltonians directly. For systems with fast enough dynamics, relaxation takes over, and the energy flows from the spin system to the lattice; thus a more complex theoretical description is needed. This description has to include a dynamic model, usually in the form of a spectral density function. Both models should include detailed modelling of the complete spin system. A software library was developed to be able to model complex spin systems. It allows to simulate polarization transfer or relaxation effects. NMR measurements were performed on the protonic conductor K{sub 3}H(SO{sub 4}){sub 2}. A single crystal shows sharp quadrupolar dips at room temperature. Dynamics could be excluded using relaxation measurements and literature values. Thus, a polarization transfer analysis was used to describe those dips with good agreement. As a second system, imidazolium based molecular crystals were analyzed. The quadrupolar dips were expected to be caused by polarization transfer; this was carefully analyzed and found not to be true. A relaxation based analysis shows good agreement with the measured data in the high temperature area. It leverages a two step spectral density function, which indicates two distinct dynamic processes happening in this system.

  19. Ultra-high field NMR and MRI - the role of magnet technology to increase sensitivity and specificity

    Science.gov (United States)

    Moser, Ewald; Laistler, Elmar; Schmitt, Franz; Kontaxis, Georg

    2017-08-01

    "History, of course, is difficult to write, if for no other reason, than that it has so many players and so many authors." - P. J. Keating (former Australian Prime Minister) Starting with post-war developments in nuclear magnetic resonance (NMR) a race for stronger and stronger magnetic fields has begun in the 1950s to overcome the inherently low sensitivity of this promising method. Further challenges were larger magnet bores to accommodate small animals and eventually humans. Initially, resistive electromagnets with small pole distances, or sample volumes, and field strengths up to 2.35 T (or 100 MHz 1H frequency) were used in applications in physics, chemistry, and material science. This was followed by stronger and more stable (NbTi based) superconducting magnet technology typically implemented first for small-bore systems in analytical chemistry, biochemistry and structural biology, and eventually allowing larger horizontal-bore magnets with diameters large enough to fit small laboratory animals. By the end of the 1970s, first low-field resistive magnets big enough to accommodate humans were developed and superconducting whole-body systems followed. Currently, cutting-edge analytical NMR systems are available at proton frequencies up to 1 GHz (23.5 T) based on Nb3Sn at 1.9 K. A new 1.2 GHz system (28 T) at 1.9 K, operating in persistent mode but using a combination of low and high temperature multi-filament superconductors is to be released. Preclinical instruments range from small-bore animal systems with typically 600 - 800 MHz (14.1 - 18.8 T) up to 900 MHz (21 T) at 1.9 K. Human whole-body MRI systems currently operate up to 10.5 T. Hybrid combined superconducting and resistive electromagnets with even higher field strength of 45 T dc and 100 T pulsed, are available for material research, of course with smaller free bore diameters. This rather costly development towards higher and higher field strength is a consequence of the inherently low and, thus

  20. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Yujiao Hua

    2016-11-01

    Full Text Available Pseudostellariae Radix (PR is an important traditional Chinese medicine (TCM, which is consumed commonly for its positive health effects. However, the chemical differences of PR from different cultivated fields and germplasms are still unknown. In order to comprehensively compare the chemical compositions of PR from different cultivated fields, in this study, 1H-NMR-based metabolomics coupled with high performance liquid chromatography (HPLC were used to investigate the different metabolites in PR from five germplasms (jr, zs1, zs2, sb, and xc cultivated in traditional fields (Jurong, Jiangsu, JSJR and cultivated fields (Zherong, Fujian, FJZR. A total of 34 metabolites were identified based on 1H-NMR data, and fourteen of them were found to be different in PR from JSJR and FJZR. The relative contents of alanine, lactate, lysine, taurine, sucrose, tyrosine, linolenic acid, γ-aminobutyrate, and hyperoside in PR from JSJR were higher than that in PR from FJZR, while PR from FJZR contained higher levels of glutamine, raffinose, xylose, unsaturated fatty acid, and formic acid. The contents of Heterophyllin A and Heterophyllin B were higher in PR from FJZR. This study will provide the basic information for exploring the influence law of ecological environment and germplasm genetic variation on metabolite biosynthesis of PR and its quality formation mechanism.

  1. Rapid, accurate, and simultaneous measurement of water and oil contents in the fried starchy system using low-field NMR.

    Science.gov (United States)

    Chen, Long; Tian, Yaoqi; Sun, Binghua; Wang, Jinpeng; Tong, Qunyi; Jin, Zhengyu

    2017-10-15

    Fried starchy food is rich in oil that may pose a risk to health. For controlling of the oil uptake, a rapid and accurate method for the determination of oil content in the fried starchy food is important. In this study, low-field nuclear magnetic resonance (LF-NMR) was applied to simultaneously determine water and oil contents in the model fried starchy system. The proton signals from oil and water were verified and distinguished by desiccation at 105°C. There was no superposition between oil and water signals in the fried starch, making it possible for quantitative analysis of water and oil in a single test. Compared with Soxhlet extraction, the LF-NMR analysis provided a more accurate result of oil content in the fried starchy system, confirming the practicability of the application of LF-NMR technology as a fast and accurate method for the quantification of water and oil in the fried starchy system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Calculation of the NMR chemical shift for a 4d1 system in a strong crystal field environment of trigonal symmetry with a threefold axis of quantization

    International Nuclear Information System (INIS)

    Ahn, Sang Woon; Oh, Se Woung; Ro, Seung Woo

    1986-01-01

    The NMR chemical shift arising from 4d electron angular momentum and 4d electron angular momentum and 4d electron spin dipolar-nuclear spin angular momentum interactions for a 4d 1 system in a strong crystal field environment of trigonal symmetry, where the threefold axis is chosen to be the axis of quantization axis, has been examined. A general expression using the nonmultipole expansion method (exact method) is derived for the NMR chemical shift. From this expression all the multipolar terms are determined. we observe that along the (100), (010), (110), and (111) axes the NMR chemical shifts are positive while along the (001) axis, it is negative. We observe that the dipolar term (1/R 3 ) is the dominant contribution to the NMR chemical shift except for along the (111) axis. A comparison of the multipolar terms with the exact values shows also that the multipolar results are exactly in agreement with the exact values around R≥0.2 nm. The temperature dependence analysis on the NMR chemical shifts may imply that along the (111) axis the contribution to the NMR chemical shift is dominantly pseudo contact interaction. Separation of the contributions of the Fermi and the pseudo contact interactions would correctly imply that the dipolar interaction is the dominant contribution to the NMR chemical shifts along the (100), (010), (001), and (110) axes, but along the (111) axis the Fermi contact interaction is incorrectly the dominant contribution to the NMR chemical shift. (Author)

  3. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are presented of a tomographic scanning apparatus, its rotational assembly, and the control and circuit elements, with particular reference to the amplifier and multiplexing circuits enabling detector signal calibration. (U.K.)

  4. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    Details are given of a tomographic scanning apparatus, with particular reference to a multiplexer slip ring means for receiving output from the detectors and enabling interfeed to the image reconstruction station. (U.K.)

  5. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    1981-01-01

    This patent specification relates to a tomographic scanning apparatus using a fan beam and digital output signal, and particularly to the design of the gas-pressurized ionization detection system. (U.K.)

  6. Decomposition of time-resolved tomographic PIV

    NARCIS (Netherlands)

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  7. Emerging tomographic methods within the petroleum industry

    International Nuclear Information System (INIS)

    Johansen, Geir Anton

    2013-01-01

    Since industrial process tomography was introduced as a concept almost two decades ago, the considerable progress within a large variety of sensing modalities has to a large extent been technology driven. Industrial tomography applications may be divided into three categories: 1) Laboratory systems, 2) Field equipment for diagnostics and mapping purposes, and 3) Permanently installed systems. Examples on emerging methods on all categories will be presented, either from R and D at the University of Bergen and/or our industrial partners. Most developments are within the first category, where tomographs are used to provide better understanding of various processes such as pipe flow, separators, mixers and reactors. Here tomographic data is most often used to provide better process knowledge, for reference measurements and validation and development of process models, and finally for development for instruments and process equipment. The requirement here may be either high spatial resolution or high temporal resolution, or combinations of these. Tomographic field measurements are applied to either to inspect processes or equipment on a regular base or at faulty or irregular operation, or to map multicomponent systems such petroleum reservoirs, their structure and the distribution gas, oil and water within them. The latter will only be briefly touched upon here. Tomographic methods are increasingly being used for process and equipment diagnostics. The requirements vary and solutions based on repetition of single measurements, such as in column scanning, to full tomographic systems where there is sufficiently space or access. The third category is tomographic instruments that are permanently installed in situ in a process. These need not provide full tomographic images and instruments with fewer views are often preferred to reduce complexity and increase the instrument reliability. (author)

  8. Emerging tomographic methods within the petroleum industry

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Geir Anton, E-mail: geir.johansen@ift.uib.no [University of Bergen (UiB), Bergen, (Norway)

    2013-07-01

    Since industrial process tomography was introduced as a concept almost two decades ago, the considerable progress within a large variety of sensing modalities has to a large extent been technology driven. Industrial tomography applications may be divided into three categories: 1) Laboratory systems, 2) Field equipment for diagnostics and mapping purposes, and 3) Permanently installed systems. Examples on emerging methods on all categories will be presented, either from R and D at the University of Bergen and/or our industrial partners. Most developments are within the first category, where tomographs are used to provide better understanding of various processes such as pipe flow, separators, mixers and reactors. Here tomographic data is most often used to provide better process knowledge, for reference measurements and validation and development of process models, and finally for development for instruments and process equipment. The requirement here may be either high spatial resolution or high temporal resolution, or combinations of these. Tomographic field measurements are applied to either to inspect processes or equipment on a regular base or at faulty or irregular operation, or to map multicomponent systems such petroleum reservoirs, their structure and the distribution gas, oil and water within them. The latter will only be briefly touched upon here. Tomographic methods are increasingly being used for process and equipment diagnostics. The requirements vary and solutions based on repetition of single measurements, such as in column scanning, to full tomographic systems where there is sufficiently space or access. The third category is tomographic instruments that are permanently installed in situ in a process. These need not provide full tomographic images and instruments with fewer views are often preferred to reduce complexity and increase the instrument reliability. (author)

  9. Hyperfine fields in thin Pd films by beta-detected NMR

    Science.gov (United States)

    Parolin, T. J.; Salman, Z.; Chakhalian, J.; Song, Q.; Chow, K. H.; Morris, G. D.; Egilmez, M.; Fan, I.; Hossain, M. D.; Keeler, T. A.; Kiefl, R. F.; Kreitzman, S. R.; Levy, C. D. P.; Mansour, A. I.; Miller, R. I.; Pearson, M. R.; Saadaoui, H.; Smadella, M.; Wang, D.; Xu, M.; MacFarlane, W. A.

    2009-04-01

    Using low energy beta-detected nuclear magnetic resonance (βNMR), the Knight shift and spin-lattice relaxation rate of dilute 8Li+ implanted into a 28 nm Pd film on a MgO substrate were studied as a function of temperature. The shift of the resonance is negative, but much smaller in magnitude than observed in two other much thicker samples. The corresponding spin-lattice relaxation rates are found to be linear with temperature T, but are roughly 50% slower than the rates measured in a Pd foil. Potential explanations are discussed.

  10. Hyperfine fields in thin Pd films by beta-detected NMR

    Energy Technology Data Exchange (ETDEWEB)

    Parolin, T.J. [Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Salman, Z. [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX (United Kingdom); Chakhalian, J. [Department of Physics, University of Arkansas, Fayetteville, AR 72701 (United States); Song, Q. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Chow, K.H. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Morris, G.D. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Egilmez, M.; Fan, I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Hossain, M.D.; Keeler, T.A. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Kiefl, R.F. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Canadian Institute for Advanced Research, Toronto, ON, M5G 1Z8 (Canada); Kreitzman, S.R.; Levy, C.D.P. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Mansour, A.I. [Department of Physics, University of Alberta, Edmonton, AB, T6G 2G7 (Canada); Miller, R.I.; Pearson, M.R. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada); Saadaoui, H.; Smadella, M.; Wang, D. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Xu, M. [TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, V6T 2A3 (Canada)

    2009-04-15

    Using low energy beta-detected nuclear magnetic resonance (betaNMR), the Knight shift and spin-lattice relaxation rate of dilute {sup 8}Li{sup +} implanted into a 28 nm Pd film on a MgO substrate were studied as a function of temperature. The shift of the resonance is negative, but much smaller in magnitude than observed in two other much thicker samples. The corresponding spin-lattice relaxation rates are found to be linear with temperature T, but are roughly 50% slower than the rates measured in a Pd foil. Potential explanations are discussed.

  11. Field dependence of the superconducting gap in YPd2Sn: A μSR and NMR study

    Science.gov (United States)

    Morenzoni, E.; Saadaoui, H.; Amato, A.; Baines, C.; Luetkens, H.; Pomjakushina, E.; Pikulski, M.; Shiroka, T.

    2014-12-01

    We have performed muon spin rotation/relaxation and 119Sn nuclear magnetic resonance (NMR) measurements to study the vortex state of polycrystalline samples of YPd2Sn (Tc = 5.4 K), over a wide range of applied magnetic fields up to Bc2(T). Measurements in the vortex state provide the temperature dependence of the effective magnetic penetration depth λ(T) and the field dependence of the superconducting gap Δ(0). The results are consistent with a very dirty s-wave BCS superconductor with λ(0) = 212(1) nm, a gap Δ(0) = 0.85(3) meV, and a Ginzburg-Landau coherence length ξGL(0) ≊ 23 nm. The μSR data in a broad range of applied fields are well reproduced by taking into account a field-related reduction of the effective superconducting gap. Interestingly, the ratio 2Δ(0)/(kBTc) appears to a good approximation to be field-independent, with a value at low field of 3.85(9), implying a field dependence of the gap . We discuss the significance of this result.

  12. Validation of a low field Rheo-NMR instrument and application to shear-induced migration of suspended non-colloidal particles in Couette flow

    Science.gov (United States)

    Colbourne, A. A.; Blythe, T. W.; Barua, R.; Lovett, S.; Mitchell, J.; Sederman, A. J.; Gladden, L. F.

    2018-01-01

    Nuclear magnetic resonance rheology (Rheo-NMR) is a valuable tool for studying the transport of suspended non-colloidal particles, important in many commercial processes. The Rheo-NMR imaging technique directly and quantitatively measures fluid displacement as a function of radial position. However, the high field magnets typically used in these experiments are unsuitable for the industrial environment and significantly hinder the measurement of shear stress. We introduce a low field Rheo-NMR instrument (1 H resonance frequency of 10.7MHz), which is portable and suitable as a process monitoring tool. This system is applied to the measurement of steady-state velocity profiles of a Newtonian carrier fluid suspending neutrally-buoyant non-colloidal particles at a range of concentrations. The large particle size (diameter > 200 μm) in the system studied requires a wide-gap Couette geometry and the local rheology was expected to be controlled by shear-induced particle migration. The low-field results are validated against high field Rheo-NMR measurements of consistent samples at matched shear rates. Additionally, it is demonstrated that existing models for particle migration fail to adequately describe the solid volume fractions measured in these systems, highlighting the need for improvement. The low field implementation of Rheo-NMR is complementary to shear stress rheology, such that the two techniques could be combined in a single instrument.

  13. Temperature and field independence of the fluorine and lithium NMR shift tensors in lithium rare-earth tetrafluorides

    DEFF Research Database (Denmark)

    Nevald, Rolf; Hansen, P. E.

    1978-01-01

    The fluorine and lithium NMR line shifts have been followed in temperature from 300 to 1.3 K and in fields up to 40 kG for LiTbF4 and LiHoF4. The Tb3+ and Ho3+ ionic moments cause these shifts. The Li shifts are dominated by dipole interactions, whereas the F shifts also have transferred hyperfine...... contributions of comparable sizes. The transferred hyperfine interactions turn out to be almost isotropic and exhibiting no temperature or field dependence. In LiHoF4 the line shifts are detectable within the entire temperature range. In LiTbF4 the fluorine and lithium lines broaden to such an extent...

  14. Tomographic reconstruction of binary fields

    International Nuclear Information System (INIS)

    Roux, Stéphane; Leclerc, Hugo; Hild, François

    2012-01-01

    A novel algorithm is proposed for reconstructing binary images from their projection along a set of different orientations. Based on a nonlinear transformation of the projection data, classical back-projection procedures can be used iteratively to converge to the sought image. A multiscale implementation allows for a faster convergence. The algorithm is tested on images up to 1 Mb definition, and an error free reconstruction is achieved with a very limited number of projection data, saving a factor of about 100 on the number of projections required for classical reconstruction algorithms.

  15. A robust approach to correct for pronounced errors in temperature measurements by controlling radiation damping feedback fields in solution NMR

    Science.gov (United States)

    Wolahan, Stephanie M.; Li, Zhao; Hsu, Chao-Hsiung; Huang, Shing-Jong; Clubb, Robert; Hwang, Lian-Pin; Lin, Yung-Ya

    2014-11-01

    Accurate temperature measurement is a requisite for obtaining reliable thermodynamic and kinetic information in all NMR experiments. A widely used method to calibrate sample temperature depends on a secondary standard with temperature-dependent chemical shifts to report the true sample temperature, such as the hydroxyl proton in neat methanol or neat ethylene glycol. The temperature-dependent chemical shift of the hydroxyl protons arises from the sensitivity of the hydrogen-bond network to small changes in temperature. The frequency separation between the alkyl and the hydroxyl protons are then converted to sample temperature. Temperature measurements by this method, however, have been reported to be inconsistent and incorrect in modern NMR, particularly for spectrometers equipped with cryogenically-cooled probes. Such errors make it difficult or even impossible to study chemical exchange and molecular dynamics or to compare data acquired on different instruments, as is frequently done in biomolecular NMR. In this work, we identify the physical origins for such errors to be unequal amount of dynamical frequency shifts on the alkyl and the hydroxyl protons induced by strong radiation damping (RD) feedback fields. Common methods used to circumvent RD may not suppress such errors. A simple, easy-to-implement solution was demonstrated that neutralizes the RD effect on the frequency separation by a "selective crushing recovery" pulse sequence to equalize the transverse magnetization of both spin species. Experiments using cryoprobes at 500 MHz and 800 MHz demonstrated that this approach can effectively reduce the errors in temperature measurements from about ±4.0 K to within ±0.4 K in general.

  16. Tomographic PIV: principles and practice

    International Nuclear Information System (INIS)

    Scarano, F

    2013-01-01

    A survey is given of the major developments in three-dimensional velocity field measurements using the tomographic particle image velocimetry (PIV) technique. The appearance of tomo-PIV dates back seven years from the present review (Elsinga et al 2005a 6th Int. Symp. PIV (Pasadena, CA)) and this approach has rapidly spread as a versatile, robust and accurate technique to investigate three-dimensional flows (Arroyo and Hinsch 2008 Topics in Applied Physics vol 112 ed A Schröder and C E Willert (Berlin: Springer) pp 127–54) and turbulence physics in particular. A considerable number of applications have been achieved over a wide range of flow problems, which requires the current status and capabilities of tomographic PIV to be reviewed. The fundamental aspects of the technique are discussed beginning from hardware considerations for volume illumination, imaging systems, their configurations and system calibration. The data processing aspects are of uppermost importance: image pre-processing, 3D object reconstruction and particle motion analysis are presented with their fundamental aspects along with the most advanced approaches. Reconstruction and cross-correlation algorithms, attaining higher measurement precision, spatial resolution or higher computational efficiency, are also discussed. The exploitation of 3D and time-resolved (4D) tomographic PIV data includes the evaluation of flow field pressure on the basis of the flow governing equation. The discussion also covers a-posteriori error analysis techniques. The most relevant applications of tomo-PIV in fluid mechanics are surveyed, covering experiments in air and water flows. In measurements in flow regimes from low-speed to supersonic, most emphasis is given to the complex 3D organization of turbulent coherent structures. (topical review)

  17. From simple liquid to polymer dynamics: a field cycling NMR study on linear polymer melts of different molecular weights

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Axel; Kariyo, Sobiroh; Gainaru, Catalin; Schick, Harald; Hintermeyer, Julia; Brodin, Alexander; Novikov, Vladimir N.; Roessler, Ernst A. [Universitaet Bayreuth (Germany). Experimentalphysik II

    2008-07-01

    We utilize fast field cycling NMR relaxometry to investigate the crossover from glassy dynamics through Rouse to reptation behavior in a series of polybutadienes (PB) and polydimethylsiloxanes (PDMS) with molecular weights M ranging from the low M (simple liquid dynamics) to the high M limit (reptation dynamics). The dispersion data T{sub 1}({omega}) are transformed into the susceptibility {chi}''({omega}){proportional_to}{omega}/T{sub 1} and master curves are constructed for each M. By extracting the polymer spectra through subtracting the glass spectrum from the total spectra and comparing them to Rouse theory, we are able to determine the Rouse unit M{sub R} and entanglement weight M{sub e}. These characteristic molecular weights also show up in the M dependence of the dynamic order parameter S, a measure of the relative correlation loss due to polymer dynamics, and the glass transition temperature T{sub g}. Thus, the glass process is specifically modified by the polymer dynamics. We find similar results for the samples of PDMS. For partially deuterated PB our approach yields the common polymer dynamics although the values of S are different. Hence in order to provide a coherent interpretation of NMR dispersion data of polymers, the contribution of the glass dynamics has to be taken explicitly into account.

  18. The microscopic NMR probe in chiral magnets. Zero field-, field-modulated- and Skyrmion- states in FeGe and MnSi

    Energy Technology Data Exchange (ETDEWEB)

    Baenitz, Michael; Yasuoka, Hiroshi; Majumder, Mayukh; Khuntia, Panchanan; Schmidt, Marcus [MPI for the Chemical Physics of Solids, Dresden (Germany); Witt, Sebastian; Krellner, Cornelius [Goethe University, Frankfurt am Main (Germany)

    2016-07-01

    Cubic FeGe is a prototype B20 chiral magnet (T{sub c} = 280 K) which allows to study chiral correlations directly ''on-site'' via the{sup 57}Fe nucleus because of its S=1/2 nuclear spin interacting only with the electron spin moment. NMR provides the static and dynamic staggered local magnetization M{sub Q} through the hyperfine field (H{sub hf}) and the spin lattice relaxation rate (SLRR = 1/T{sub 1}). Measurements were performed on randomly oriented {sup 57}Fe enriched FeGe single crystals between 2-300 K. Helical-, conical- and field-polarized-states could be clearly identified and spin dynamics of each phase was investigated. MnSi single crystals and {sup 29}Si enriched MnSi polycrystals were studied by {sup 29}Si-NMR (S=1/2) in the ordered state (T{sub c} = 29 K) and above. The T- and H- dependence of H{sub hf} and SLRR was investigated in great detail for both FeGe and MnSi.The {sup 29}Si-NMR lines in MnSi are narrow and H{sub hf}-values obtained are smaller than in FeGe. Our results are in general accordance with the extended SCR theory for itinerant helical magnets, although the theory does not include the symmetry breaking in the B20 structure and the multi-band nature. For FeGe correlations are complex due to its more localized magnetism.

  19. International symposium on NMR spectroscopy

    International Nuclear Information System (INIS)

    The publication consists of 32 papers and presentations from the field of NMR spectroscopy applications submitted to the International Symposium on NMR Spectroscopy held at Smolenice between 29 Sep and 3 Oct, 1980. (B.S.)

  20. The effect of silica fume on early hydration of white Portland cement via fast field cycling-NMR relaxometry

    Science.gov (United States)

    Badea, Codruţa.; Bede, Andrea; Ardelean, Ioan

    2017-12-01

    Fast Field Cycling (FFC) nuclear magnetic resonance (NMR) relaxometry is used to monitor the influence introduced on the hydration process by the addition of silica fume in a cement paste mixture, prepared with white Portland cement. The FFC relaxometry technique was implemented due to its sensitivity to a wider range of molecular motions, which gives more information than other relaxometry techniques performed at a fixed frequency. This unique feature of FFC relaxometry allows better separation of the surface and bulk contributions from the global measured relaxation rate. The relaxation process is dominated by the interaction of water protons with the paramagnetic centers located on the surface of cement grains. In the frame of a two-phase exchange model, this allows the monitoring of the influence of an addition of silica fume on the evolution of surface-to-volume ratio during the early hydration stages.

  1. Low field NMR surface relaxivity studies of chalk and argillaceous sandstones

    DEFF Research Database (Denmark)

    Katika, Konstantina; Fordsmand, Henrik; Fabricius, Ida Lykke

    2017-01-01

    field chalk and Solsort field greensand have higher ρ at higher Larmor frequency. By contrast, ρ of the purely calcitic Stevns chalk and quartzitic Berea sandstone proved not to be affected by the changes in frequency. T2 distributions at temperatures ranging from 10 °C to 60 °C provided comparison...

  2. Some principles in choosing parameters of magnetic resonance tomographs

    Science.gov (United States)

    Volobuev, A. N.

    2017-01-01

    The problem of amplifying the signal that ensures the visualization of internal organs in the magnetic resonance tomograph due to the optimal selection of some of its parameters has been considered. The operating principle of the tomograph has been analyzed. The relation between the angle of the magnetic moment precession in hydrogen nuclei in an organism, the frequency of the ac magnetic field exciting this precession, and the constant magnetic field used has been determined using quantum-mechanical concepts. This relation makes it possible to determine the optimal parameters for tomograph operation.

  3. NMR-spectroscopy

    International Nuclear Information System (INIS)

    Lundin, A.G.; Fedin, Eh.I.

    1986-01-01

    Physical foundations are given and the most important areas of nuclear magnetic resonance (NMR) application in physics, chemistry, biology are described. A detailed review of the investigations conducted and the NMR applications in different science and technology fields is presented. The method basic experimental variants, including such new ones as high resolution in a solid body; rare isotope resonance; two-dimensional and multi-quantum fourier-spectroscopy; large molecule NMR; NMR tomography and NMR intrascopy etc. are considered. The instruments are briefly described. NMR is characterized as one of the most important investigation methods of the material composition, its molecular and crystal structure, visualization of the living organism and nonmetallic object inner structure

  4. The application of tailor-made force fields and molecular dynamics for NMR crystallography: a case study of free base cocaine

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Neumann, Marcus A.; van de Streek, Jacco

    2017-01-01

    cocaine is used as an example. The results reveal that, even though the TMFF outperforms the COMPASS force field for representing the energies and conformations of predicted structures, it does not give significant improvement in the accuracy of NMR calculations. Further studies should direct more...

  5. Application of high-field n.m.r. spectroscopy to the structural elucidation of natural products. The structure of rubellin, a noval bufadienolide glycoside from Urginea rubella

    International Nuclear Information System (INIS)

    Steyn, P.S.; Van Heerden, F.R.; Vleggaar, R.

    1986-01-01

    The structure and absolute configuration of rubellin, the major toxic principle of Urginea rubella, was determined by application of high-field 1 H n.m.r. spectroscopy. Rubellin proved to be a bufadienolide glycoside with the carbohydrate moiety doubly linked to the aglycone at the 2α- and 3β- positions

  6. Ultra-low field NMR for detection and characterization of 235 UF6

    Energy Technology Data Exchange (ETDEWEB)

    Espy, Michelle A [Los Alamos National Laboratory; Magnelind, Per E [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Urbaitis, Algis V [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory

    2009-01-01

    We have demonstrated the first ultra-low field (ULF) nuclear magnetic resonance measurements of uranium hexafluoride (UF{sub 6}), both depleted and 70% enriched, which is used in the uranium enrichment process. A sensitive non-invasive detection system would have an important role in non-proliferation surveillance. A two-frequency technique was employed to remove the transients induced by rapidly switching off the 50 mT pre-polarization field. A mean transverse relaxation time T{sub 2} of 24 ms was estimated for the un-enriched UF{sub 6} sample measured at a mean temperature of 80 C. Nuclear magnetic resonance at ULF has several advantages including the ability to measure through metal, such as pipes, and simple magnetic field generation hardware. We present here recent data and discuss the potential for non-proliferation monitoring of enrichment and flow velocity.

  7. Cardiac response to pulsed magnetic fields with regard to safety in NMR imaging

    International Nuclear Information System (INIS)

    McRobbie, D.; Foster, M.A.

    1985-01-01

    No change was detected in the RR, PR and QRS intervals in the ECG of anaesthetised rats exposed to large pulsed magnetic fields. No abnormalities were observed on any of the ECG traces and changes in the mean heat rate in response to rapidly repetitive stimuli were slight and transitory. The values of dB/dt experienced by the rats were substantially greater than the thresholds for neuromuscular stimulation pertaining to the particular waveforms and periods of the pulses. The authors conclude that the types of pulsed magnetic fields used in the present study did not affect the cardiac cycle of anaesthetised rats. (author)

  8. Transport properties in ionic liquids and ionic liquid mixtures: the challenges of NMR pulsed field gradient diffusion measurements.

    Science.gov (United States)

    Annat, Gary; Macfarlane, Douglas R; Forsyth, Maria

    2007-08-02

    Pulsed field gradient NMR is a powerful method for the measurement of diffusion coefficients in liquids and solids and has begun to attract much attention in the ionic liquids field. However, aspects of the methodology as traditionally applied to solutions may not be uniformly applicable in these more viscous and chemically complex systems. In this paper we present data which shows that the Pulsed Gradient Spin Echo (PGSE) method in particular suffers from intrinsic internal gradients and can produce apparent diffusion coefficients which vary by as much as 20% for different 1H nuclei within a given molecule--an obvious anomaly. In contrast, we show that the Pulsed Gradient Stimulated Echo method does not suffer from this problem to the same extent and produces self-consistent data to a high degree of accuracy (better than 1%). This level of significance has allowed the detection, in this work, of subtle mixing effects in [C(3)mpyr][NTf(2)] and [C(4)mpyr][NTf(2)] mixtures.

  9. NMR for chemists and biologists

    CERN Document Server

    Carbajo, Rodrigo J

    2013-01-01

    This book offers a concise introduction to the field of nuclear magnetic resonance or NMR. It presents the basic foundations of NMR in a non-mathematical way and provides an overview of both recent and important biological applications of NMR.

  10. An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner.

    Science.gov (United States)

    Kennedy, Michael; Lee, Yoojin; Nagy, Zoltan

    2017-12-28

    Neuroimaging research relies on the skills of increasingly multidisciplinary individuals and often requires the installation and use of additional home-built or third-party equipment. The purpose of the present work was the safe, ergonomic, durable, and aesthetically pleasing installation of magnetic field monitoring equipment into a scanner, while keeping the setup compatible with standard operating procedures. An extensive set of steps was required to design a 3D printed solution to install a magnetic field camera into the eight-channel head coil of a 3T MRI scanner. First, the outer surface of the plastic coil housing was recreated into a 3D model, and the installation of the magnetic field sensors around this 3D model was performed in a virtual environment. The 3D printed solution was then assembled and tested for safety, reproducible performance, and image quality. The 3D printed solution holds the probes in stable positions and guides the necessary cables in an organized fashion and away from the volunteer. Assembly is easy and the solution is ergonomic, durable, and safe. We did not find excessive heating in the 3D printed parts, nor in the electronics, that they help to incorporate. The material used interferes minimally with transmit B1+ field. The design met all of the boundary conditions for a durable, safe, cost-effective, attractive, and functional installation. This work will provide the basis for installing the magnetic field sensors into other available head coils, and for designing the experimental setup for projects with varying experimental requirements. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Tomographic method and apparatus

    International Nuclear Information System (INIS)

    Moore, R.M.

    1981-01-01

    A tomographic x-ray machine has a camera and film-plane section which move about a primary axis for imaging a selected cross-section of an anatomical member onto the film. A ''scout image'' of the member is taken at right angles to the plane of the desired cross-section to indicate the cross-section's angle with respect to the primary axis. The film plane is then located at the same angle with respect to a film cassette axis as the selected cross-section makes with the primary axis. The film plane and the cross-section are then maintained in parallel planes throughout motion of the camera and film plane during tomographic radiography. (author)

  12. Axial tomographic scanner

    International Nuclear Information System (INIS)

    1976-01-01

    An axial tomographic system is described comprising axial tomographic means for collecting sets of data corresponding to the transmission or absorption of a number of beams of penetrating radiation through a planar slice of an object. It includes means to locate an object to be analyzed, a source and detector for directing one or more beams of penetrating radiation through the object from the source to the detector, and means to rotate (and optionally translate) the source as well as means to process the collected sets of data. Data collection, data processing, and data display can each be conducted independently of each other. An additional advantage of the system described is that the raw data (i.e., the originally collected data) are not destroyed by the data processing but instead are retained intact for further reference or use, if needed

  13. Microwave field distribution in a magic angle spinning dynamic nuclear polarization NMR probe.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Matsuki, Yoh; Woskov, Paul P; Corzilius, Björn; Griffin, Robert G; Temkin, Richard J

    2011-05-01

    We present a calculation of the microwave field distribution in a magic angle spinning (MAS) probe utilized in dynamic nuclear polarization (DNP) experiments. The microwave magnetic field (B(1S)) profile was obtained from simulations performed with the High Frequency Structure Simulator (HFSS) software suite, using a model that includes the launching antenna, the outer Kel-F stator housing coated with Ag, the RF coil, and the 4mm diameter sapphire rotor containing the sample. The predicted average B(1S) field is 13μT/W(1/2), where S denotes the electron spin. For a routinely achievable input power of 5W the corresponding value is γ(S)B(1S)=0.84MHz. The calculations provide insights into the coupling of the microwave power to the sample, including reflections from the RF coil and diffraction of the power transmitted through the coil. The variation of enhancement with rotor wall thickness was also successfully simulated. A second, simplified calculation was performed using a single pass model based on Gaussian beam propagation and Fresnel diffraction. This model provided additional physical insight and was in good agreement with the full HFSS simulation. These calculations indicate approaches to increasing the coupling of the microwave power to the sample, including the use of a converging lens and fine adjustment of the spacing of the windings of the RF coil. The present results should prove useful in optimizing the coupling of microwave power to the sample in future DNP experiments. Finally, the results of the simulation were used to predict the cross effect DNP enhancement (ϵ) vs. ω(1S)/(2π) for a sample of (13)C-urea dissolved in a 60:40 glycerol/water mixture containing the polarizing agent TOTAPOL; very good agreement was obtained between theory and experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Magic-Angle-Spinning NMR Magnet Development: Field Analysis and Prototypes

    Science.gov (United States)

    Voccio, John; Hahn, Seungyong; Park, Dong Keun; Ling, Jiayin; Kim, Youngjae; Bascuñán, Juan; Iwasa, Yukikazu

    2013-01-01

    We are currently working on a program to complete a 1.5 T/75 mm RT bore magic-angle-spinning nuclear magnetic resonance magnet. The magic-angle-spinning magnet comprises a z-axis 0.866-T solenoid and an x-axis 1.225-T dipole, each to be wound with NbTi wire and operated at 4.2 K in persistent mode. A combination of the fields creates a 1.5-T field pointed at 54.74 degrees (magic angle) from the rotation (z) axis. In the first year of this 3-year program, we have completed magnetic analysis and design of both coils. Also, using a winding machine of our own design and fabrication, we have wound several prototype dipole coils with NbTi wire. As part of this development, we have repeatedly made successful persistent NbTi-NbTi joints with this multifilamentary NbTi wire. PMID:24058275

  15. Metabolic phenotyping of human plasma by1H-NMR at high and medium magnetic field strengths: a case study for lung cancer.

    Science.gov (United States)

    Louis, Evelyne; Cantrelle, Francois-Xavier; Mesotten, Liesbet; Reekmans, Gunter; Bervoets, Liene; Vanhove, Karolien; Thomeer, Michiel; Lippens, Guy; Adriaensens, Peter

    2017-08-01

    Accurate identification and quantification of human plasma metabolites can be challenging in crowded regions of the NMR spectrum with severe signal overlap. Therefore, this study describes metabolite spiking experiments on the basis of which the NMR spectrum can be rationally segmented into well-defined integration regions, and this for spectrometers having magnetic field strengths corresponding to 1 H resonance frequencies of 400 MHz and 900 MHz. Subsequently, the integration data of a case-control dataset of 69 lung cancer patients and 74 controls were used to train a multivariate statistical classification model for both field strengths. In this way, the advantages/disadvantages of high versus medium magnetic field strength were evaluated. The discriminative power obtained from the data collected at the two magnetic field strengths is rather similar, i.e. a sensitivity and specificity of respectively 90 and 97% for the 400 MHz data versus 88 and 96% for the 900 MHz data. This shows that a medium-field NMR spectrometer (400-600 MHz) is already sufficient to perform clinical metabolomics. However, the improved spectral resolution (reduced signal overlap) and signal-to-noise ratio of 900 MHz spectra yield more integration regions that represent a single metabolite. This will simplify the unraveling and understanding of the related, disease disturbed, biochemical pathways. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Drying process of pullulan edible films forming solutions studied by low-field NMR.

    Science.gov (United States)

    Xiao, Qian; Lim, Loong-Tak; Zhou, Yujia; Zhao, Zhengtao

    2017-09-01

    The dynamics of water in pullulan film-forming solutions during drying were investigated by low-field nuclear magnetic resonance. At the begin of drying, two transverse relaxation times (T 2 ) at around 32.77 and 2149ms were attributed to bound and free waters in pullulan samples, respectively. An additional T 2 value, ascribed to the tightly bound water in entanglement zones of pullulan chains, appeared at around 3.51ms as the drying process continued (beyond 1080min of drying time). The observed three relaxation times revealed the multi-exponential relaxation behavior of water in pullulan. Moreover, the polymer exhibited spatial heterogeneity with increasing drying time from 1200 to 1920min. On the basis of diffusive and chemical exchange model, the dimension range of pullulan network decreased from 7.69-32.66 to 4.73-18.14µm as the pullulan films solidified. Furthermore, the rate of chemical exchange between water and pullulan significantly increased at the later stage of drying process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Methane Storage in Nanoporous Media as Observed via High-Field NMR Relaxometry

    Science.gov (United States)

    Papaioannou, A.; Kausik, R.

    2015-08-01

    The storage properties of methane gas in Vycor porous glass (5.7 nm) are characterized in a wide pressure range from 0.7 to 89.7 MPa using nuclear magnetic resonance. We demonstrate the capability of high-field nuclear-magnetic-resonance relaxometry for the determination of the methane-gas storage capacity and the measurement of the hydrogen index, to a high degree of accuracy. This helps determine the excess gas in the pore space which can be identified to exhibit Langmuir properties in the low pressure regime of 0.7 to 39.6 MPa. The Langmuir model enables us to determine the equilibrium density of the monolayer of adsorbed gas to be 8.5% lower than that of liquid methane. We also identify the signatures of multilayer adsorption at the high pressure regime from 39.6 to 89.7 MPa and use the Brunauer-Emmet-Teller theory to determine the number of adsorbed layers of methane gas. We show how these measurements help us differentiate the gas stored in the Vycor pore space into free and adsorbed fractions for the entire pressure range paving way for similar applications such as studying natural-gas storage in gas shale rock or hydrogen storage in carbon nanotubes.

  18. Correlation Reconstruction Tomographic PIV

    Science.gov (United States)

    La Foy, Roderick; Vlachos, Pavlos

    2017-11-01

    A new volumetric Particle Image Velocimetry technique was developed that outputs accurate velocity measurements up to very high seeding densities while requiring lower computational expenditure. This technique combines the tomographic and cross-correlation steps by directly reconstructing the 3D cross-correlation volumes. Since many particles contribute to a single correlation peak, this decreases the noise contributions from ghost reconstructions, allowing accurate velocity measurements to be made at exceptionally high seeding densities. Additionally the overall computational cost is lowered by combining the reconstruction and cross-correlation steps. Results comparing the errors of the new technique applied to both simulated and experimental data will be presented.

  19. Tomographic scanning apparatus

    International Nuclear Information System (INIS)

    Abele, M.

    1983-01-01

    A computerized tomographic scanning apparatus suitable for diagnosis and for improving target identification in stereotactic neurosurgery is described. It consists of a base, a source of penetrating energy, a detector which produces scanning signals and detector positioning means. A frame with top and bottom arms secures the detector and source to the top and bottom arms respectively. A drive mechanism rotates the frame about an axis along which the frame may also be moved. Finally, the detector may be moved relative to the bottom arm in a direction contrary to the rotation of the frame. (U.K.)

  20. Search for a nematic phase in the quasi-two-dimensional antiferromagnet CuCrO2 by NMR in an electric field

    Science.gov (United States)

    Sakhratov, Yu. A.; Kweon, J. J.; Choi, E. S.; Zhou, H. D.; Svistov, L. E.; Reyes, A. P.

    2018-03-01

    The magnetic phase diagram of CuCrO2 was studied with an alternative method of simultaneous Cu NMR and electric polarization techniques with the primary goal of demonstrating that, regardless of cooling history of the sample, the magnetic phase with specific helmet-shaped NMR spectra associated with interplanar disorder possesses electric polarization. Our result unequivocally confirms the assumption of Sakhratov et al. [Phys. Rev. B 94, 094410 (2016), 10.1103/PhysRevB.94.094410] that the high-field low-temperature phase is in fact a three-dimensional (3D) polar phase characterized by a 3D magnetic order with tensor order parameter. In comparison with the results obtained in pulsed fields, a modified phase diagram is introduced defining the upper boundary of the first-order transition from the 3D spiral to the 3D polar phase.

  1. High-field NMR studies of molecular recognition and structure-function relationships in antimicrobial piscidins at the water-lipid bilayer interface.

    Science.gov (United States)

    Chekmenev, Eduard Y; Jones, Shiela M; Nikolayeva, Yelena N; Vollmar, Breanna S; Wagner, Tim J; Gor'kov, Peter L; Brey, William W; Manion, McKenna N; Daugherty, Ken C; Cotten, Myriam

    2006-04-26

    High magnetic field solid-state NMR was performed on amphipathic cationic antimicrobial peptides from fish to characterize their secondary structure and orientation in hydrated phospholipid bilayers. High-resolution distance and orientational restraints on 13C- and 15N-labeled amidated piscidins 1 and 3 provided site-specific information establishing alpha-helicity and an orientation parallel to the membrane surface. Few membrane-bound natural peptides with this topology have been structurally studied at high resolution in the presence of hydrated lipid bilayers. This orientation was foreseen since the partitioning of amphipathic cationic antimicrobial peptides at the water-bilayer interface allows for favorable peptide-lipid interactions, and it may be related to the mechanism of action. The enhanced resolution obtained at 900 MHz evidences a determinant advantage of ultra-high-field NMR for the structural determination of multiple-labeled peptides and proteins.

  2. Tomographic reconstruction of quantum metrics

    Science.gov (United States)

    Laudato, Marco; Marmo, Giuseppe; Mele, Fabio M.; Ventriglia, Franco; Vitale, Patrizia

    2018-02-01

    In the framework of quantum information geometry we investigate the relationship between monotone metric tensors uniquely defined on the space of quantum tomograms, once the tomographic scheme is chosen, and monotone quantum metrics on the space of quantum states, classified by operator monotone functions, according to the Petz classification theorem. We show that different metrics can be related through a change in the tomographic map and prove that there exists a bijective relation between monotone quantum metrics associated with different operator monotone functions. Such a bijective relation is uniquely defined in terms of solutions of a first order second degree differential equation for the parameters of the involved tomographic maps. We first exhibit an example of a non-linear tomographic map that connects a monotone metric with a new one, which is not monotone. Then we provide a second example where two monotone metrics are uniquely related through their tomographic parameters.

  3. First tomographic image of ionospheric outflows

    Science.gov (United States)

    Yizengaw, E.; Moldwin, M. B.; Dyson, P. L.; Fraser, B. J.; Morley, S.

    2006-10-01

    An image of the dayside low-energy ion outflow event that occurred on 16 December 2003 was constructed with ground- and space-based GPS (Global Positioning System) Total Electron Content (TEC) data and ion drift meter data from the DMSP (Defense Meteorological Satellite Program). A tomographic reconstruction technique has been applied to the GPS TEC data obtained from the GPS receiver on the Low Earth Orbit (LEO) satellite FedSat. The two dimensional tomographic image of the topside ionosphere and plasmasphere reveals a spectacular beam-like dayside ion outflow emanating from the cusp region. The transverse components of the magnetic field in FedSat's NewMag data show the presence of field aligned current (FAC) sheets, indicating the existence of low-energy electron precipitation in the cusp region. The DMSP ion drift data show upward ion drift velocities and upward fluxes of low-energy ions and electrons at the orbiting height of the DMSP spacecraft in the cusp region. This study presents the first tomographic image of the flux tube structure of ionospheric ion outflows from 0.13 Re up to 3.17 Re altitude.

  4. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    International Nuclear Information System (INIS)

    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  5. Characterization of natural porous media by NMR and MRI techniques. High and low magnetic field studies for estimation of hydraulic properties

    Energy Technology Data Exchange (ETDEWEB)

    Stingaciu, Laura-Roxana

    2010-07-01

    The aim of this thesis is to apply different NMR techniques for: i) understanding the relaxometric properties of unsaturated natural porous media and ii) for a reliable quantification of water content and its spatial and temporal change in model porous media and soil cores. For that purpose, porous media with increasing complexity and heterogeneity were used (coarse and fine sand and different mixture of sand/clay) to determine the relaxation parameters in order to adapt optimal sequence and parameters for water imaging. Conventional imaging is mostly performed with superconducting high field scanners but low field scanners promise longer relaxation times and therefore smaller loss of signal from water in small and partially filled pores. By this reason high and low field NMR experiments were conducted on these porous media to characterize the dependence on the magnetic field strength. Correlations of the NMR experiments with classical soil physics method like mercury intrusion porosimetry; water retention curves (pF) and multi-step-outflow (MSO) were performed for the characterization of the hydraulic properties of the materials. Due to the extensive research the experiments have been structured in three major parts as follows. In the first part a comparison study between relaxation experiments in high and low magnetic field was performed in order to observe the influence of the magnetic field on the relaxation properties. Due to these results, in the second part of the study only low field relaxation experiments were used in the attempt of correlations with classical soil physics methods (mercury intrusion porosimetry and water retention curves) for characterizing the hydraulic behavior of the samples. Further, the aim was to combine also MRI experiments (2D and 3D NMR) with classical soil physics methods (multi-step-outflow, MSO) for the same purpose of investigating the hydraulic properties. Because low field MRI systems are still under developing for the

  6. High field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter from the South Atlantic Ocean

    Science.gov (United States)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.

    2012-01-01

    satisfactorily explain the observed disparity in NMR transverse relaxation of the four marine DOM samples. Likewise, the presence of metal ions in isolated marine DOM remained near constant or declined from surface to depth for important paramagnetic ions like Mn, Cr, Fe, Co, Ni and Cu. Iron in particular, a strong complexing paramagnetic ion, was found most abundant by a considerable margin in surface (FISH) marine DOM for which well resolved COSY cross peaks were observed. Hence, facile relationships between metal content of isolated DOM (which does not reflect authentic marine DOM metal content) and transverse NMR relaxation were not observed. High field (12 T) negative electrospray ionization FTICR mass spectra showed at first view rather conforming mass spectra for all four DOM samples with abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks from surface to bottom DOM and similar fractions (~50%) of assigned molecular compositions throughout all DOM samples. The average mass increased from surface to bottom DOM by about 10 Dalton. The limited variance of FTICR mass spectra probably resulted from a rather inherent conformity of marine DOM at the mandatory level of intrinsic averaging provided by FTICR mass spectrometry, when many isomers unavoidably project on single nominal mass peaks. In addition, averaging from ion suppression added to the accordance observed. The proportion of CHO and CHNO molecular series increased from surface to depth whereas CHOS and especially CHNOS molecular series markedly declined. The abundance of certain aromatic CHOS compounds declined with water depth. For future studies, COSY NMR spectra appear best suited to assess organic molecular complexity of marine DOM and to define individual DOM molecules of yet unknown structure and function. Non-target organic structural spectroscopy at the level demonstrated here covered nearly all carbon present in marine DOM. The exhaustive characterization of

  7. Computerized tomographic system

    International Nuclear Information System (INIS)

    Godbarsen, R.; Barrett, D.M.; Garrott, P.M.; Foley, L.E.; Redington, R.W.; Lambert, T.W.; Edelheit, L.S.

    1981-01-01

    A computerized tomographic system for examining human breasts is described in detail. Conventional X-ray scanning apparatus has difficulty in achieving the levels of image definition and examination speeds required for mass screening. A novel method of scanning successive layers of the breast with a rotating X-ray beam is discussed and details of the control circuitry and sequence steps are given. The method involves immersing the breast in an inner fluid (e.g. water) filled container which is stationary during an examination and is surrounded by a large outer container which is also filled with the fluid; the inner and outer containers are always maintained at a constant height and the X-ray absorption across the fan-shaped beam is as close as possible to constant. (U.K.)

  8. Tomographic examination table

    International Nuclear Information System (INIS)

    Redington, R.W.; Henkes, J.L.

    1979-01-01

    Equipment is described for positioning and supporting patients during tomographic mammography using X-rays. The equipment consists of a table and fabric slings which permit the examination of a downward, pendant breast of a prone patient by allowing the breast to pass through a aperture in the table into a fluid filled container. The fluid has an X-ray absorption coefficient similar to that of soft human tissue allowing high density resolution radiography and permitting accurate detection of breast tumours. The shape of the equipment and the positioning of the patient allow the detector and X-ray source to rotate 360 0 about a vertical axis through the breast. This permits the use of relatively simple image reconstruction algorithms and a divergent X-ray geometry. (UK)

  9. Water metabolism in cells of Saccharomyces cerevisiae of races Y-3137 and Y-3327, according to pulsed-field gradient NMR data

    Science.gov (United States)

    Avilova, I. A.; Vasil'ev, S. G.; Rimareva, L. V.; Serba, E. M.; Volkova, L. D.; Volkov, V. I.

    2015-04-01

    The self-diffusion of water in cells of Saccharomyces cerevisiae of races Y-3137 and Y-3327 is studied by means of pulsed-field gradient (PFG) NMR. Three types of water are detected that differ by their self-diffusion coefficients (SDCs): free, intercellular, and intracellular. It is found that the self-diffusion of intercellular and intracellular water is restricted. The size and permeability of the cells of yeasts with different cultivation times (24 and 48 h) is determined by analyzing the dependences of the self-diffusion coefficients of intracellular water on the interval between pulses of the magnetic field gradient.

  10. Proton hopping and long-range transport in the protic ionic liquid [Im][TFSI], probed by pulsed-field gradient NMR and quasi-elastic neutron scattering.

    Science.gov (United States)

    Hoarfrost, Megan L; Tyagi, Madhusudan; Segalman, Rachel A; Reimer, Jeffrey A

    2012-07-19

    The management of proton conductivity in the protic ionic liquid imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) is investigated via the use of quasi-elastic neutron scattering (QENS) and pulsed-field gradient NMR. The introduction of excess neutral imidazole to [Im][TFSI] leads to enhanced conductivity. We find that proton dynamics in [Im][TFSI] with excess imidazole are characterized by proton hopping that is encompassed in the slower of two translational processes, as identified by QENS. This relatively slow process contributes to long-range diffusion more than the faster process. NMR diffusion measurements show that proton hopping decreases with increasing temperature, but significant proton hopping persists even at the maximum experimental temperature of 120 °C. This, in combination with minimal ion aggregation, leads to high proton conductivity and a high proton transference number over a wide temperature range.

  11. NMR Studies of Polymer Nanocomposites

    National Research Council Canada - National Science Library

    Greenbaum, Steve

    2001-01-01

    .... The primary tool is pulsed field gradient NMR. A static field gradient method was developed which makes possible variable pressure diffusion measurement, and the application to the important fuel cell membrane NAFION constitute the first results...

  12. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  13. Characterization of polyurethane/organophilic montmorillonite nanocomposites by low field NMR; Caracterizacao de nanocompositos de poliuretano/montmorilonita organofilica por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Anacleto da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Laboratorio de Nanocompositos Polimericos; Tavares, Maria I.B.; Nascimento, Suelen A.M.; Rodrigues, Elton J. da R [Universidade Federal do Rio de Janeiro (NUCAT/PEQ/COPPE/UFRJ), RJ (Brazil). Laboratorio de Nanocompositos Polimericos

    2012-07-01

    Polyurethanes are important and versatile materials, mainly due to some of their properties, such as high resistance to abrasion and tearing, excellent absorption of mechanical shocks and good flexibility and elasticity. However, they have some drawbacks as well, such as low thermal stability and barrier properties. To overcome these disadvantages, various studies have been conducted involving organophilic polyurethane/montmorillonite nanocomposites. The investigation of the structure of polyurethane/clay nanocomposites has mainly been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). In this work, PU/clay nanocomposite films obtained by solution intercalation were studied. The nanocomposites were characterized by XRD and low-field nuclear magnetic resonance (LF-NMR). The LF-NMR measurements, with determination of the spin-lattice relaxation time of the hydrogen nucleus, supplied important information about the molecular dynamics of these nanocomposites. The X-ray diffraction measurements validated the results found by NMR. The thermal stability of the material was also determined by thermogravimetric analysis (TGA) under an inert atmosphere. A slight improvement in this stability was observed in the nanocomposite in comparison with polyurethane (author)

  14. Polymers under mechanical stress- an NMR investigation

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, Ute; Scheler, Ulrich [Leibniz Institute of Polymer Research Dresden (Germany); Xu, Bo; Leisen, Johannes; Beckham, Haskell W. [Georgia Institute of Technology, Atlanta, Georgia (United States)

    2010-07-01

    Low-field NMR using permanent magnets in Halbach arrangements permit NMR investigation without the limits present in high-field NMR. The lower field in conjunction with confined stray field permit the application of NMR, in particular relaxation NMR in a stretching apparatus and a rheometer. Crystalline and amorphous fraction of semi-crystalline polymers are distinguished by their transverse relaxation times. Upon mechanical load the relaxation times of the amorphous fraction changes as seen in in-situ measurements on polypropylene rods. During the formation of a neck the crystalline fraction becomes more prominent.

  15. Gynecologic electrical impedance tomograph

    Science.gov (United States)

    Korjenevsky, A.; Cherepenin, V.; Trokhanova, O.; Tuykin, T.

    2010-04-01

    Electrical impedance tomography extends to the new and new areas of the medical diagnostics: lungs, breast, prostate, etc. The feedback from the doctors who use our breast EIT diagnostic system has induced us to develop the 3D electrical impedance imaging device for diagnostics of the cervix of the uterus - gynecologic impedance tomograph (GIT). The device uses the same measuring approach as the breast imaging system: 2D flat array of the electrodes arranged on the probe with handle is placed against the body. Each of the 32 electrodes of the array is connected in turn to the current source while the rest electrodes acquire the potentials on the surface. The current flows through the electrode of the array and returns through the remote electrode placed on the patient's limb. The voltages are measured relative to another remote electrode. The 3D backprojection along equipotential surfaces is used to reconstruct conductivity distribution up to approximately 1 cm in depth. Small number of electrodes enables us to implement real time imaging with a few frames per sec. rate. The device is under initial testing and evaluation of the imaging capabilities and suitability of usage.

  16. Functional group analysis by H NMR/chemical derivatization for the characterization of organic aerosol from the SMOCC field campaign

    Directory of Open Access Journals (Sweden)

    E. Tagliavini

    2006-01-01

    Full Text Available Water soluble organic compounds (WSOC in aerosol samples collected in the Amazon Basin in a period encompassing the middle/late dry season and the beginning of the wet season, were investigated by H NMR spectroscopy. HiVol filter samples (PM2.5 and PM>2.5 and size-segregated samples from multistage impactor were subjected to H NMR characterization. The H NMR methodology, recently developed for the analysis of organic aerosol samples, has been improved by exploiting chemical methylation of carboxylic groups with diazomethane, which allows the direct determination of the carboxylic acid content of WSOC. The content of carboxylic carbons for the different periods and sizes ranged from 12% to 20% of total measured carbon depending on the season and aerosol size, with higher contents for the fine particles in the transition and wet periods with respect to the dry period. A comprehensive picture is presented of WSOC functional groups in aerosol samples representative of the biomass burning period, as well as of transition and semi-clean atmospheric conditions. A difference in composition between fine (PM2.5 and coarse (PM>2.5 size fractions emerged from the NMR data, the former showing higher alkylic content, the latter being largely dominated by R-O-H (or R-O-R' functional groups. Very small particles (<0.14 μm, however, present higher alkyl-chain content and less oxygenated carbons than larger fine particles (0.42–1.2 μm. More limited variations were found between the average compositions in the different periods of the campaign.

  17. The effect of divalent ions on the elasticity and pore collapse of chalk evaluated from compressional wave velocity and low-field Nuclear Magnetic Resonance (NMR)

    DEFF Research Database (Denmark)

    Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul

    2015-01-01

    density and ultrasonic velocities measured on core plugs. Low-field NMR spectroscopy was used in addition to the mechanical testing to prove any changes observed after the saturation related to the surface-to-volume ratio of the pore space in each of the samples or to surface relaxivity. Backscatter...... rich in magnesium and calcium ions softens the contact among the mineral grains. Pore collapse strength is deteriorating after the saturation of chalk with water rich in divalent ions. The presence of calcium and sulfate ions in the saturating fluid results in pore collapse at lower stresses than...

  18. Magnetic-Field Effects on the Size of Vortices below the Surface of NbSe2 Detected Using Low Energy β-NMR

    Science.gov (United States)

    Salman, Z.; Wang, D.; Chow, K. H.; Hossain, M. D.; Kreitzman, S. R.; Keeler, T. A.; Levy, C. D. P.; Macfarlane, W. A.; Miller, R. I.; Morris, G. D.; Parolin, T. J.; Saadaoui, H.; Smadella, M.; Kiefl, R. F.

    2007-04-01

    A low energy radioactive beam of polarized Li8 has been used to observe the vortex lattice near the surface of superconducting NbSe2. The inhomogeneous magnetic-field distribution associated with the vortex lattice was measured using depth-resolved β-detected NMR. Below Tc, one observes the characteristic line shape for a triangular vortex lattice which depends on the magnetic penetration depth and vortex core radius. The size of the vortex core varies strongly with the magnetic field. In particular, in a low field of 10.8 mT, the core radius is much larger than the coherence length. The possible origin of these giant vortices is discussed.

  19. Magnetic-field effects on the size of vortices below the surface of NbSe2 detected using low energy beta-NMR.

    Science.gov (United States)

    Salman, Z; Wang, D; Chow, K H; Hossain, M D; Kreitzman, S R; Keeler, T A; Levy, C D P; MacFarlane, W A; Miller, R I; Morris, G D; Parolin, T J; Saadaoui, H; Smadella, M; Kiefl, R F

    2007-04-20

    A low energy radioactive beam of polarized 8Li has been used to observe the vortex lattice near the surface of superconducting NbSe2. The inhomogeneous magnetic-field distribution associated with the vortex lattice was measured using depth-resolved beta-detected NMR. Below Tc, one observes the characteristic line shape for a triangular vortex lattice which depends on the magnetic penetration depth and vortex core radius. The size of the vortex core varies strongly with the magnetic field. In particular, in a low field of 10.8 mT, the core radius is much larger than the coherence length. The possible origin of these giant vortices is discussed.

  20. Low-Field NMR Spectrometry of Chalk and Argillaceous Sandstones: Rock-Fluid Affinity Assessed from T-1/T-2 Ratio

    DEFF Research Database (Denmark)

    Katika, Konstantina; Saidian, Milad; Prasad, Manika

    2017-01-01

    Nuclear magnetic resonance (NMR) procedure typically minimizes the effects of external magnetic field gradients on the transverse relaxation. Thus, longitudinal, and transverse, T-2, relaxation times should in principle be similar. However, internal magnetic field gradients related to minerals can....... In all samples with irreducible water saturation, water shows surface relaxation, whereas oil shows bulk relaxation. In line with this observation D-T-2 maps of these samples show field gradient effects in the oil, but not in the water indicating that the water is trapped between solid and oil due...... shorten T-2, as compared to provided the saturating fluid has high affinity to the solid. Consequently, the T-1/T-2 ratio should quantify the affinity between the mineral and wetting pore fluid, so we estimate wettability from logging data by comparing the T-1/T-2 ratio of oil and water peaks...

  1. Endodontic Working Length Measurement Using Cone-beam Computed Tomographic Images Obtained at Different Voxel Sizes and Field of Views, Periapical Radiography, and Apex Locator: A Comparative Ex Vivo Study.

    Science.gov (United States)

    Yılmaz, Funda; Kamburoğlu, Kıvanç; Şenel, Buğra

    2017-01-01

    The aim of this study was to evaluate the accuracy of working length determination by using an electronic apex locator, periapical radiography, and cone-beam computed tomographic (CBCT) imaging obtained at different voxel sizes and field of views (FOVs) in extracted human teeth. Thirty extracted human mandibular premolar teeth were used. The electronic working length measurements were performed by using an electronic apex locator (Root ZX; J Morita Corp, Kyoto, Japan). Five different image sets were obtained as follows: (1) CBCT imaging: 40 × 40 mm FOV, 0.080 mm 3 (FOV 40 ); (2) CBCT imaging: 60 × 60 mm FOV, 0.125 mm 3 (FOV 60 ); (3) CBCT imaging: 80 × 80 mm FOV, 0.160 mm 3 (FOV 80 ); (4) CBCT imaging: 100 × 100 mm FOV, 0.250 mm 3 (FOV 100 ); and (5) periapical digital radiography. Direct measurements performed with an electronic digital caliper were considered as the gold standard and compared with the electronic apex locator, CBCT, and periapical image measurements. Data were analyzed using a 2-way analysis of variance test. Significance level was set at P  .05 and the Gage R&R value was 30%). There were significant differences in the methods in terms of mean differences from the gold standard (P < .05). This study showed that available CBCT scans with different FOVs can be used for working length measurement. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Tomographic imaging system

    International Nuclear Information System (INIS)

    Hayakawa, T.; Horiba, I.; Kohno, H.; Nakaya, C.; Sekihara, K.; Shiono, H.; Tomura, T.; Yamamoto, S.; Yanaka, S.

    1980-01-01

    A tomographic imaging system comprising: irradiating means for irradating a cross-section of an object under consideration with radiation rays from plural directions; detector means for detecting the radiation rays transmitted through the cross-section of said object to produce an output signal; first memory means for storing the output signal of said detector means; and an image jreconstructing section for performing a convolution integral operation on the contents of said first memory means by means of a first weighting function to reconstruct a three-dimensional image of the cross-section of said object, said image reconstructing section including (I) second memory means for storing a second weighting function, said second weighting function being provided with a predetermined positive and negative (N-1)th order when the output signal of said detector means produced by the irradiation of the cross-section of said object from one of said plural directions is sampled by N points, the value of the (N-1)th order of said second weighting function being an integration of said first weighting function from the (N-1)th order to positive infinity and the value of -(N-1)th order of said second weighting function being an integration of said first weighting function from the -(N-1)th order to negative infinity, (II) control means for successively reading out the contents of said first and second memory means, and (III) operational means for performing multiplying and summing operations on the read-out contents of said first and second memory means, said operational means producing the product of the values fo the (N-1)th and -(N-1)th orders of said second weighting function and a component of the output signal of said detector means relating to the radiation rays free from the absorption thereof by said object

  3. Preirradiation evaluation and technical assessment of involved-field radiotherapy using computed tomographic (CT) simulation and neoadjuvant chemotherapy for intracranial germinoma

    International Nuclear Information System (INIS)

    Kitamura, Kei; Shirato, Hiroki; Sawamura, Yutaka; Suzuki, Keishiro; Ikeda, Jun; Miyasaka, Kazuo

    1999-01-01

    Purpose: To investigate the importance of preirradiation mental and endocrinological evaluation, and the effectiveness of involved-field radiotherapy following neoadjuvant chemotherapy. Methods and Materials: Following etoposide and cisplatin with or without ifosfamide, 13 patients with nondisseminated disease received involved-field irradiation of 24 Gy in 12 fractions within 3 weeks and 2 patients with disseminated germinoma received 24 Gy craniospinal irradiation (CSI). CT simulation was used to cover the tumor bed. Results: Full-scale intelligence quotient (IQ) tests given at the time of the initial radiotherapy showed less than 90 in 7 of 11 patients who had tumors involving the neurohypophyseal region, but the 4 patients who had solitary pineal tumors showed higher scores. Panhypopituitarism was observed in 9 patients with tumors involving the neurohypophyseal region. All patients are alive without disease, with a median follow-up period of 40 months. No in-field relapse was noted after the involved-field radiotherapy. One patient experienced a recurrence outside of the planning target volume. Conclusion: Decline of neurocognitive and endocrine functions were often seen in patients with tumors involving the hypophyseal region, but not in patients with solitary pineal germinoma before radiotherapy. Involved-field radiotherapy using 24 Gy is effective with the help of CT simulation and neoadjuvant chemotherapy

  4. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    Science.gov (United States)

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-12-01

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Computer tomographic diagnosis of echinococcosis

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, M.; Fretz, C.; Fuchs, W.A.

    1980-08-01

    The computer tomographic appearances and differential diagnosis in 22 patients with echinococcosis are described; of these, twelve were of the cystic and ten of the alveolar type. The computer tomographic appearances are characterised by the presence of daughter cysts (66%) within the sharply demarkated parasitic cyst of water density. In the absence of daughter cysts, a definite aetiological diagnosis cannot be made, although there is a tendency to clasification of the occassionally multiple echinococcus cysts. The computer tomographic appearances of advanced alveolar echinococcosis are characterised by partial collequative necrosis, with clacification around the necrotic areas (90%). The absence of CT evidence of partial necrosis and calsification of the pseudotumour makes it difficult to establish a specific diagnosis. The conclusive and non-invasive character of the procedure and its reproducibility makes computer tomography the method of choice for the diagnosis and follow-up of echinococcosis.

  6. X-Ray Tomographic Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  7. Tomographic techniques for safeguards measurements of nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Lundqvist Saleh, Tobias

    2007-10-15

    Nuclear power is currently experiencing increased interest over the world. New nuclear reactors are being built and techniques for taking care of the nuclear waste are being developed. This development puts new demands and standards to safeguards, i.e. the international efforts for ensuring the non-proliferation of nuclear weapons. New measuring techniques and devices are continuously being developed for enhancing the ability to detect diversion of fissile material. In this thesis, tomographic techniques for application in safeguards are presented. Tomographic techniques can non-destructively provide information of the inner parts of an object and may thus be used to control that no material is missing from a nuclear fuel assembly. When using the tomographic technique described in this thesis, the radiation field around a fuel assembly is first recorded. In a second step, the internal source distribution is mathematically reconstructed based on the recorded data. In this work, a procedure for tomographic safeguards measurements is suggested and the design of a tomographic measuring device is presented. Two reconstruction algorithms have been specially developed and evaluated for the application on nuclear fuel; one algorithm for image reconstruction and one for reconstructing conclusive data on the individual fuel rod level. The combined use of the two algorithms is suggested. The applicability for detecting individual removed or replaced rods has been demonstrated, based on experimental data

  8. Tomographic reconstruction of internal wave patterns in a paraboloid

    NARCIS (Netherlands)

    Hazewinkel, J.; Maas, L.R.M.; Dalziel, S.B.

    2011-01-01

    Using tomographic synthetic schlieren, we are able to reconstruct the three-dimensional density field of internal waves. In this study, the waves are radiating from an oscillating sphere positioned eccentrically at the surface of a paraboloidal domain filled with a uniformly stratified fluid. We

  9. Dense velocity reconstruction from tomographic PTV with material derivatives

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Scarano, F.

    2016-01-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The

  10. Unique determination of structure and velocity by 3-D tomographic ...

    African Journals Online (AJOL)

    A subsequent 2-D Prestack depth migration based on the Kirchhoff method utilizing the velocity field obtained from the tomographic inversion extracts more information from the data and gives a clear picture of the subsurface. The superiority of the simultaneous inversion of the reflected and refracted waves to that of ...

  11. NMR-Based Metabolic Profiling of Field-Grown Leaves from Sugar Beet Plants Harbouring Different Levels of Resistance to Cercospora Leaf Spot Disease

    Science.gov (United States)

    Sekiyama, Yasuyo; Okazaki, Kazuyuki; Kikuchi, Jun; Ikeda, Seishi

    2017-01-01

    Cercospora leaf spot (CLS) is one of the most serious leaf diseases for sugar beet (Beta vulgaris L.) worldwide. The breeding of sugar beet cultivars with both high CLS resistance and high yield is a major challenge for breeders. In this study, we report the nuclear magnetic resonance (NMR)-based metabolic profiling of field-grown leaves for a subset of sugar beet genotypes harbouring different levels of CLS resistance. Leaves were collected from 12 sugar beet genotypes at four time points: seedling, early growth, root enlargement, and disease development stages. 1H-NMR spectra of foliar metabolites soluble in a deuterium-oxide (D2O)-based buffer were acquired and subjected to multivariate analyses. A principal component analysis (PCA) of the NMR data from the sugar beet leaves shows clear differences among the growth stages. At the later time points, the sugar and glycine betaine contents were increased, whereas the choline content was decreased. The relationship between the foliar metabolite profiles and resistance level to CLS was examined by combining partial least squares projection to latent structure (PLS) or orthogonal PLS (OPLS) analysis and univariate analyses. It was difficult to build a robust model for predicting precisely the disease severity indices (DSIs) of each genotype; however, GABA and Gln differentiated susceptible genotypes (genotypes with weak resistance) from resistant genotypes (genotypes with resistance greater than a moderate level) before inoculation tests. The results suggested that breeders might exclude susceptible genotypes from breeding programs based on foliar metabolites profiled without inoculation tests, which require an enormous amount of time and effort. PMID:28134762

  12. NMR-Based Metabolic Profiling of Field-Grown Leaves from Sugar Beet Plants Harbouring Different Levels of Resistance to Cercospora Leaf Spot Disease

    Directory of Open Access Journals (Sweden)

    Yasuyo Sekiyama

    2017-01-01

    Full Text Available Cercospora leaf spot (CLS is one of the most serious leaf diseases for sugar beet (Beta vulgaris L. worldwide. The breeding of sugar beet cultivars with both high CLS resistance and high yield is a major challenge for breeders. In this study, we report the nuclear magnetic resonance (NMR-based metabolic profiling of field-grown leaves for a subset of sugar beet genotypes harbouring different levels of CLS resistance. Leaves were collected from 12 sugar beet genotypes at four time points: seedling, early growth, root enlargement, and disease development stages. 1H-NMR spectra of foliar metabolites soluble in a deuterium-oxide (D2O-based buffer were acquired and subjected to multivariate analyses. A principal component analysis (PCA of the NMR data from the sugar beet leaves shows clear differences among the growth stages. At the later time points, the sugar and glycine betaine contents were increased, whereas the choline content was decreased. The relationship between the foliar metabolite profiles and resistance level to CLS was examined by combining partial least squares projection to latent structure (PLS or orthogonal PLS (OPLS analysis and univariate analyses. It was difficult to build a robust model for predicting precisely the disease severity indices (DSIs of each genotype; however, GABA and Gln differentiated susceptible genotypes (genotypes with weak resistance from resistant genotypes (genotypes with resistance greater than a moderate level before inoculation tests. The results suggested that breeders might exclude susceptible genotypes from breeding programs based on foliar metabolites profiled without inoculation tests, which require an enormous amount of time and effort.

  13. Improved magnetic-field homogeneity of NMR HTS bulk magnet using a new stacking structure and insertion of an HTS film cylinder into a bulk bore

    International Nuclear Information System (INIS)

    Itoh, Yoshitaka; Yanagi, Yousuke; Nakamura, Takashi

    2017-01-01

    A new type of superconducting bulk magnet for compact nuclear magnetic resonance (NMR) devices with high magnetic-field homogeneity has been developed by inserting an HTS film cylinder into a bulk superconductor bore. Annular 60 mmϕ Eu-Ba-Cu-O bulk superconductors with a larger inner diameter (ID) of 36 mm were sandwiched between bulk superconductors with a smaller ID of 28 mm, and the total height of the bulk superconductor set was made to be 120 mm. The inner height of central wide bore space was optimized by magnetic-field simulation so that the influence of the bulk superconductor's paramagnetic moment on applied field homogeneity was minimized during the magnetization process. An HTS film cylinder, in which Gd-Ba-Cu-O tapes were wound helically in three layers around a copper cylinder, was inserted into the bulk bore in order to compensate for the inhomogeneous field trapped by the bulk superconductor. The superconducting bulk magnet composed of the above bulk superconductor set and the film cylinder were cooled by a GM pulse tube refrigerator and magnetized at 4.747 T using the field cooling (FC) method and a conventional superconducting coil magnet adjusted to below 0.5 ppm in magnetic-field homogeneity. The NMR measurement was conducted for an H 2 O sample with a diameter of 6.9 mm and a length of 10 mm by setting the sample in the center of the 20 mm ID room-temperature bore of the bulk magnet. The magnetic-field homogeneity derived from the full width at half maximum (FWHM) of the 1 H spectrum of H 2 O was 0.45 ppm. We confirmed that the HTS film inner cylinder was effective in maintaining the homogeneity of the magnetic field applied in the magnetization process, and as a result, a magnetic field with a homogeneity of less than 1 ppm can be generated in the bore of the bulk magnet without using shim coils. (author)

  14. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.

    Science.gov (United States)

    Lu, George J; Son, Woo Sung; Opella, Stanley J

    2011-04-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly ¹⁵N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly ¹⁵N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    Directory of Open Access Journals (Sweden)

    S. Ok

    2017-03-01

    Full Text Available Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF proton (1H nuclear magnetic resonance (NMR relaxometry and ultra-violet (UV visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2 curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively.

  16. Comparative study on occurrence characteristics of matrix water in static and gas double-dynamic solid-state fermentations using low-field NMR and MRI.

    Science.gov (United States)

    He, Qin; Chen, Hong-zhang

    2015-12-01

    The water in a solid substrate is generally divided into three forms: hygroscopic, capillary, and free. However, there are few methods available for detecting the contents of different states of water in substrates. In this paper, low-field NMR and MRI were used to analyze the water occurrence characteristics of steam-exploded corn straw in solid-state fermentation (SSF). A significant linear relationship was found between the total NMR peak areas and the total water contents with a correlation coefficient of 0.993. It was further proved to be successful in comparing the contents and distributions of different states of water in static SSF and gas double-dynamic SSF (GDD-SSF). The results showed that among the three states of water, capillary water was the main form of water present and lost in substrates during fermentation. Total water and capillary water contents did not significantly differ as a result of different sample treatments, but hygroscopic water and free water contents in static SSF were respectively 0.38 and 2.98 times that in GDD-SSF with a packing height of 3 cm after fermentation. A relatively uniform water distribution and deep-depth region for microbial growth were found in GDD-SSF, suggesting that GDD-SSF was more suitable for industrialization. This technology has great potential for achieving efficient on-line water supply through water loss detection in SSF.

  17. Detection of olive oil adulteration by low-field NMR relaxometry and UV-Vis spectroscopy upon mixing olive oil with various edible oils

    International Nuclear Information System (INIS)

    Ok, S.

    2017-01-01

    Adulteration of olive oil using unhealthy substitutes is considered a threat for public health. Low-field (LF) proton (1H) nuclear magnetic resonance (NMR) relaxometry and ultra-violet (UV) visible spectroscopy are used to detect adulteration of olive oil. Three different olive oil with different oleoyl acyl contents were mixed with almond, castor, corn, and sesame oils with three volumetric ratios, respectively. In addition, Arbequina olive oil was mixed with canola, flax, grape seed, peanut, soybean, and sunflower seed oils with three volumetric ratios. Transverse magnetization relaxation time (T2) curves were fitted with bi-exponential decaying functions. T2 times of each mixture of olive oils and castor oils, and olive oils and corn oils changed systematically as a function of volumetric ratio. To detect the adulteration in the mixtures with almond and sesame oils, both LF 1H NMR relaxometry and UV-Vis spectroscopy were needed, where UV-Vis-spectroscopy detected the adulteration qualitatively. In the mixtures of Arbequina olive oil and flax, peanut, soybean, and sunflower seed oils, both T21 and T22 values became longer systematically as the content of the olive oil was decreased. The unique UV-Vis maximum absorbance of flax oil at 320.0 nm shows the adulteration of olive oil qualitatively. [es

  18. Original circuitry for TOHR tomograph

    International Nuclear Information System (INIS)

    Cuzon, J.C.; Pinot, L.

    1999-01-01

    Having industrialization in mind, a specific electronics for a high resolution tomograph is designed out of the usual standards of nuclear physics. All the information are converted in the time domain and a fast processor, in front of the data acquisition, carries out the time and energy coincidences. (authors)

  19. NMR studies of the internal electric field in a single crystal of the quasi-one-dimensional conductor Li0.9Mo6O17

    Science.gov (United States)

    Wu, Guoqing; Wu, Bing

    2015-03-01

    The quasi-one-dimensional (Q1D) conductor Li0.9Mo6O17 is of considerable interest because it has a highly conducting phase with properties likely associated with a Luttinger liquid, a poorly understood ``metal-insulator'' crossover at temperature TMI = 24 K, and a 3D superconducting phase that may involve triplet Cooper pairs at Tc = 2.2 K, while the mechanism for many of its properties has been a long mystery and it presents tremendous experimental challenges. We report the 7Li-NMR measurements of the internal electric field with an externally applied magnetic field B0 = 9 - 12 T, and we also show our theoretically calculated result of the electric field based on the structure of the crystal lattice. We find that the 7Li-NQR frequency (νQ) has a value of ~ 45 kHz and the electric field gradient (EFG) at the Li site due to the charges of the surrounding Mo conduction electrons has an axial symmetry with the principle axis (pz) to be along the lattice a-axis. There is no temperature or field dependence for the value of νQ or EFG, indicating that the ``metal-insulator'' crossover has a magnetic origin, rather than the charge density wave (CDW) as one of the possible mechanisms previously thought in literature.

  20. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  1. THz Dynamic Nuclear Polarization NMR.

    Science.gov (United States)

    Nanni, Emilio A; Barnes, Alexander B; Griffin, Robert G; Temkin, Richard J

    2011-08-29

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140-600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology.

  2. Structural investigations of substituted indolizine derivatives by NMR studies

    International Nuclear Information System (INIS)

    Furdui, Bianca; Dinica, Rodica; Demeunynck, Martine; Druta, Ioan

    2008-01-01

    Owing to the increasing importance of indolizine heterocycles in the field of biology and pharmacology we have synthesized and investigated the obtained heterocycles by NMR techniques. In order to investigate the substituent effects on the spectroscopic properties, a series of indolizine derivatives were studied by 1 H-NMR, 13 C-NMR and 2D NMR (GCOSY, GHMBC and GHMQC spectra). (authors)

  3. Theoretical Investigation of Dynamic Properties of Magnetic Molecule Systems as Probed by NMR and Pulsed Fields Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rousochatzakis, Ioannis [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The field of molecular magnetism[l-6] has become a subject of intense theoretical and experimental interest and has rapidly evolved during the last years. This inter-disciplinary field concerns magnetic systems at the molecular or "nanoscopic" level, whose realization has become feasible due to recent advances in the field of chemical synthesis. The present theoretical work provides a first step towards exploiting the possibilities that are offered by probing magnetic molecules using external magnetic fields with high sweep rates. These probes, apart for providing information specific to magnetic molecules, offer the possibility of conducting a detailed study of the relaxational behavior of interacting spin systems as a result of their coupling with a "heat bath" and in particular the excitations of the host lattice. Development of a broad theoretical framework for dealing with relaxational phenomena induced by dynamical magnetic fields is indeed a worthy goal.

  4. Access to NMR Spectroscopy for Two-Year College Students: The NMR Site at Trinity University

    Science.gov (United States)

    Mills, Nancy S.; Shanklin, Michael

    2011-01-01

    Students at two-year colleges and small four-year colleges have often obtained their exposure to NMR spectroscopy through "canned" spectra because the cost of an NMR spectrometer, particularly a high-field spectrometer, is prohibitive in these environments. This article describes the design of a NMR site at Trinity University in which…

  5. Electron-density distribution in CuFeS2 as determined by 63,65Cu NMR in an internal magnetic field

    Science.gov (United States)

    Pogoreltsev, A. I.; Gavrilenko, A. N.; Matukhin, V. L.; Korzun, B. V.; Schmidt, E. V.

    2013-07-01

    NMR spectra of 63,65Cu in an internal magnetic field were studied experimentally. The electric field gradient (EFG) at Cu nuclei in chalcopyrite CuFeS2 was evaluated ab initio by using a cluster approach. Calculations were carried out in the framework of the self-consistent field restricted open-shell Hartree-Fock method (SCF-LCAO-ROHF). The largest cluster for which calculations were carried out had the formula Cu9Fe10S28 n ( R ~ 6 Å, 47 atoms), where n is the cluster charge. The best agreement of the quadrupole parameters (quadrupole frequency νQ and EFG tensor asymmetry parameter η) that were determined experimentally (νQ = 1.29 MHz, η = 0.34) and were calculated (νQ = 1.40 MHz, η = 0.50) was obtained for the cluster Cu9Fe10S28 -4. Maps of electron-density distribution in the neighborhood of the Cu quadrupolar nucleus were built for the cluster Cu9Fe10S28 -4. It was suggested based on an analysis of the obtained electron-density distribution that the bond in chalcopyrite is not covalent. The energy-level diagram that was calculated in the ROHF high-spin approximation defined rather well chalcopyrite as a semiconductor with a very narrow LUMO-HOMO gap and was consistent with the notion of chalcopyrite as a gapless semiconductor.

  6. Computer tomographic findings in neurosyphilis

    Directory of Open Access Journals (Sweden)

    Pavithran K

    1993-01-01

    Full Text Available Computer tomographic features of the brain in 2 cases of neurosyphilis are described. Less prominence of the cortical sulci suggesting cortical atrophy was the predominant feature in a case of general paralysis of insane. Diffuse, irregular, non-enhancing, low-attenuated area in the cortical and subcortical region of the right temporoparietal lobe of a patient with vascular syphilis, suggested infarction of the brain.

  7. NMR, water and plants

    International Nuclear Information System (INIS)

    As, H. van.

    1982-01-01

    This thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and other body fluids in human and animals. The method is based on a pulse sequence of equidistant π pulses in combination with a linear magnetic field gradient. (Auth.)

  8. Transitions in Al Coordination during Gibbsite Crystallization Using High-Field 27 Al and 23 Na MAS NMR Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian Zhi [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Zhang, Xin [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Jaegers, Nicholas R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Wan, Chuan [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Graham, Trent R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Hu, Mary [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Pearce, Carolyn I. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Felmy, Andrew R. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Clark, Sue B. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Washington State University, Pullman, Washington 99164, United States; Rosso, Kevin M. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-11-30

    Mechanisms of nucleation and growth of Al hydroxides such as gibbsite from aqueous solution, particularly in highly alkaline conditions, remain poorly understood. In this work, quantitative 27Al and 22Na MAS NMR experiments were conducted on solid samples extracted from the crystallization of gibbsite from an amorphous aluminum hydroxide gel precursor. The use of high magnetic field and fast sample spinning allowed transitional tetrahedral (AlT) and pentahedral (AlP) aluminum species to be observed along with the octahedral aluminum (AlO) that dominates the gibbsite product. Low-coordinated Al species could be detected at concentrations as low as 0.1% of the total Al sites. It is established that (a) AlT and AlP coexist on the surface of growing gibbsites even with a combined percentage over the total Al sites of less than 1%; (b) Different synthesis methods generate gibbsite with varying amounts of low-coordinated Al; (c) the amorphous gel precursor contains a significant amount of low-coordinated Al sites with AO: AlP: AlT ratios of approximately 4:2:1; (d) upon hydration, the external, low-coordinated Al sites become six-fold coordinated by interacting with the oxygen in H2O and the 27Al MAS NMR peak position shifts to that for the AlO sites; (e) gibbsite with increased long range order is synthesized over longer times by gradually incorporating residual AlP and AlT sites into octahedrally-coordinated AlO sites; (f) trace Na is predominantly a surface species on gibbsite particles. These findings provide a basis for understanding the gibbsite crystallization mechanism, along with a general means of characterizing gibbsite surface properties that are of equal importance for understanding related processes such as dissolution behavior.

  9. Investigation of Silica-Supported Vanadium Oxide Catalysts by High-Field 51 V Magic-Angle Spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Jaegers, Nicholas R.; Wan, Chuan; Hu, Mary Y.; Vasiliu, Monica; Dixon, David A.; Walter, Eric; Wachs, Israel E.; Wang, Yong; Hu, Jian Zhi

    2017-03-14

    Supported V2O5/SiO2 catalysts were studied using solid state 51V MAS NMR at a sample spinning rate of 36 kHz and at a magnetic field of 19.975 T for a better understanding of the coordination of the vanadium oxide as a function of environmental conditions . Structural transformations of the supported vanadium oxide species between the catalyst in the dehydrated state and hydrated state under an ambient environment were revisited to examine the degree of oligomerization and the effect of water. The experimental results indicate the existence of a single dehydrated surface vanadium oxide species that resonates at -675 ppm and two vanadium oxide species under ambient conditions that resonate at -566 and -610 ppm, respectively. No detectable structural difference was found as a function of vanadium oxide loading on SiO2 (3% V2O5/SiO2 and 8% V2O5/SiO2). Quantum chemistry simulations of the 51V NMR chemical shifts on predicted surface structures were used as an aide in understanding potential surface vanadium oxide species on the silica support. The results suggest the formation of isolated surface VO4 units for the dehydrated catalysts with the possibility of dimer and cyclic trimer presence. The absence of bridging V-O-V vibrations (~200-300 cm-1) in the Raman spectra [Gao et al. J. Phys. Chem. B 1998, 102, 10842-10852], however, indicates that the isolated surface VO4 sites are the dominant dehydrated surface vanadia species on silica. Upon exposure to water, hydrolysis of the bridging V-O-Si bonds is most likely responsible for the decreased electron shielding experienced by vanadium. No indicators for the presence of hydrated decavanadate clusters or hydrated vanadia gels previously proposed in the literature were detected in this study.

  10. Use of an in-field-of-view shield to improve count rate performance of the single crystal layer high-resolution research tomograph PET scanner for small animal brain scans

    International Nuclear Information System (INIS)

    Boellaard, R; Jong, H W A M de; Molthoff, C F M; Buijs, F; Lenox, M; Nutt, R; Lammertsma, A A

    2003-01-01

    The count rate performance of the single LSO crystal layer high-resolution research tomograph (HRRT-S) PET scanner is limited by the processing speed of its electronics. Therefore, the feasibility of using an in-field-of-view (in-FOV) shield to improve the noise equivalent count rates (NECR) for small animal brain studies was investigated. The in-FOV shield consists of a lead tube of 12 cm length, 6 cm inner diameter and 9 mm wall thickness. It is large enough to shield the activity in the body of a rat or mouse. First, the effect of this shield on NECR was studied. Secondly, a number of experiments were performed to assess the effects of the shield on the accuracy of transmission scan data and, next, on reconstructed activity distribution in the brain. For activities below 150 MBq NECR improved only by 5-10%. For higher activities NECR maxima of 1.2E4 cps at 200 MBq and 2.2E4 cps at 370 MBq were found without and with shield, respectively. Listmode data taken without shield, however, were corrupted for activities above 75 MBq due to data overrun problems (time tag losses) of the electronics. When the shield was used data overrun was avoided up to activities of 150 MBq. For the unshielded part of the phantom, transmission scan data were the same with and without shield. The estimated scatter contribution was approximately 8.5% without and 5.5% with shield. Reconstructed emission data showed a difference up to 5% in the unshielded part of the phantom at 5 mm or more from the edge of the shielding. Of this 5% about 3% results from the difference in the uncorrected scatter contribution. In conclusion, an in-FOV shield can be used successfully in an HRRT PET scanner to improve NECR and accuracy of small animal brain studies. The latter is especially important when high activities are required for tracers with low brain uptake or when multiple animals are scanned simultaneously. (note)

  11. Effectively doubling the magnetic field in spin-1/2-spin-1, HSQC, HDQC, coupled HSQC, and coupled HDQC in solution NMR.

    Science.gov (United States)

    Shekar, S Chandra; Backer, Jonathan M; Girvin, Mark E

    2008-05-14

    Pulse sequences for spin-1/2-spin-1 pair heteronuclear single quantum correlation (HSQC), heteronuclear double quantum correlation (HDQC), and coupled-HSQC, and coupled-HDQC NMR spectroscopies are outlined, and experimental realization for a (13)C-(2)H pair is demonstrated in solution state. In both the coupled versions, conditions for generation of in-phase and antiphase multiplets in either dimension are arrived at. The patterns and the intensity ratios are explained. The double quantum (2Q) experiments confirm doubling of both the shift frequency and the splitting due to coupling (to spin 1/2) of the 2Q coherence emanating from spin 1. The frequency doubling is equivalent to the corresponding single quantum (1Q) coherence at double the magnetic field strength. The coupling doubling, however, is independent of the magnetic field strength and a signature feature of the 2Q coherence. The ramification of the relative relaxation rates of 1Q and 2Q coherences is discussed.

  12. Effectively doubling the magnetic field in spin-1∕2–spin-1, HSQC, HDQC, coupled HSQC, and coupled HDQC in solution NMR

    Science.gov (United States)

    Chandra Shekar, S.; Backer, Jonathan M.; Girvin, Mark E.

    2008-01-01

    Pulse sequences for spin-1∕2–spin-1 pair heteronuclear single quantum correlation (HSQC), heteronuclear double quantum correlation (HDQC), and coupled-HSQC, and coupled-HDQC NMR spectroscopies are outlined, and experimental realization for a 13C–2H pair is demonstrated in solution state. In both the coupled versions, conditions for generation of in-phase and antiphase multiplets in either dimension are arrived at. The patterns and the intensity ratios are explained. The double quantum (2Q) experiments confirm doubling of both the shift frequency and the splitting due to coupling (to spin 1∕2) of the 2Q coherence emanating from spin 1. The frequency doubling is equivalent to the corresponding single quantum (1Q) coherence at double the magnetic field strength. The coupling doubling, however, is independent of the magnetic field strength and a signature feature of the 2Q coherence. The ramification of the relative relaxation rates of 1Q and 2Q coherences is discussed. PMID:18532820

  13. High-resolution NMR field-cycling device for full-range relaxation and structural studies of biopolymers on a shared commercial instrument

    International Nuclear Information System (INIS)

    Redfield, Alfred G.

    2012-01-01

    Improvements are described in a shuttling field-cycling device (Redfield in Magn Reson Chem 41:753–768, 2003), designed to allow widespread access to this useful technique by configuring it as a removable module to a commercial 500 MHz NMR instrument. The main improvements described here, leading to greater versatility, high reliability and simple construction, include: shuttling provided by a linear motor driven by an integrated-control servomotor; provision of automated bucking magnets to allow fast two-stage cycling to nearly zero field; and overall control by a microprocessor. A brief review of history and publications that have used the system is followed by a discussion of topics related to such a device including discussion of some future applications. A description of new aspects of the shuttling device follows. The minimum round trip time to 1T and above is less than 0.25 s and to 0.002 T is 0.36 s. Commercial probes are used and sensitivity is that of the host spectrometer reduced only by relaxation during travel. A key element is development of a linkage that prevents vibration of the linear motor from reaching the probe.

  14. Rotating positron tomographs revisited

    International Nuclear Information System (INIS)

    Townsend, D.; Defrise, M.; Geissbuhler, A.

    1994-01-01

    We have compared the performance of a PET scanner comprising two rotating arrays of detectors with that of the more conventional stationary-ring design. The same total number of detectors was used in each, and neither scanner had septa. For brain imaging, we find that the noise-equivalent count rate is greater for the rotating arrays by a factor of two. Rotating arrays have a sensitivity profile that peaks in the centre of the field of view, both axially and transaxially. In the transaxial plane, this effect offsets to a certain extent the decrease in the number of photons detected towards the centre of the brain due to self-absorption. We have also compared the performance of a rotating scanner to that of a full-ring scanner with the same number of rings. We find that a full-ring scanner with an axial extent of 16.2 cm (24 rings) is a factor of 3.5 more sensitive than a rotating scanner with 40% of the detectors and the same axial extent. (Author)

  15. Optical pumping and xenon NMR

    International Nuclear Information System (INIS)

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping 129 Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the 131 Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen

  16. Separation of components of a broad 1H-NMR composite signal by means of nutation experiments under low amplitude radiofrequency fields. Application to the water signal in synthetic clays

    International Nuclear Information System (INIS)

    Trausch, G.

    2006-11-01

    Nowadays, geologic nuclear waste storage is envisioned according to a multi-layer model which implies clays. The latter exhibit retention capacities and low permeability to water; that is why they are considered as a good candidate for engineered barriers to radioactive waste disposal. The present work here aims at studying transport phenomena which involve water molecules in three samples of synthetic clays (two of them exhibiting a Pake doublet) by means of Nuclear Magnetic Resonance (NMR). The first chapter describes structural properties of clays and presents the state-of-art of NMR and other experimental techniques used for such systems. The second chapter deals with the interpretation and the simulation of each conventional proton spectrum. These simulations allow us to evidence and to characterize a chemical exchange phenomenon. The third chapter is dedicated to original nutation experiments performed under low radiofrequency field in the case of broad NMR signal. It is shown that this type of NMR experiment can yield the number and the proportion of each species contributing to the whole signal. These results are exploited in the fourth chapter for processing relaxation and diffusion experiments. Finally, the diffusion coefficients obtained by NMR are divided by a factor 4 with respect to pure water while relaxation rates are two orders of magnitude greater. (author)

  17. Local nematic susceptibility in stressed BaFe2As2 from NMR electric field gradient measurements

    Science.gov (United States)

    Kissikov, T.; Sarkar, R.; Lawson, M.; Bush, B. T.; Timmons, E. I.; Tanatar, M. A.; Prozorov, R.; Bud'ko, S. L.; Canfield, P. C.; Fernandes, R. M.; Goh, W. F.; Pickett, W. E.; Curro, N. J.

    2017-12-01

    The electric field gradient (EFG) tensor at the 75As site couples to the orbital occupations of the As p orbitals and is a sensitive probe of local nematicity in BaFe2As2 . We use nuclear magnetic resonance to measure the nuclear quadrupolar splittings and find that the EFG asymmetry responds linearly to the presence of a strain field in the paramagnetic phase. We extract the nematic susceptibility from the slope of this linear response as a function of temperature and find that it diverges near the structural transition, in agreement with other measures of the bulk nematic susceptibility. Our work establishes an alternative method to extract the nematic susceptibility which, in contrast to transport methods, can be extended inside the superconducting state.

  18. Tomographic diffractive microscopy with agile illuminations for imaging targets in a noisy background.

    Science.gov (United States)

    Zhang, T; Godavarthi, C; Chaumet, P C; Maire, G; Giovannini, H; Talneau, A; Prada, C; Sentenac, A; Belkebir, K

    2015-02-15

    Tomographic diffractive microscopy is a marker-free optical digital imaging technique in which three-dimensional samples are reconstructed from a set of holograms recorded under different angles of incidence. We show experimentally that, by processing the holograms with singular value decomposition, it is possible to image objects in a noisy background that are invisible with classical wide-field microscopy and conventional tomographic reconstruction procedure. The targets can be further characterized with a selective quantitative inversion.

  19. The effects of amylose and starch phosphate on starch gel retrogradation studied by low-field 1H NMR relaxometry

    DEFF Research Database (Denmark)

    Thygesen, Lisbeth Garbrecht; Blennow, A.; Engelsen, S. B.

    2003-01-01

    Low-field Nuclear Magnetic Resonance (23 MHz) was used to study the effects of the degree of phosphorylation, the amylose content and the amylopectin chain length distribution on gel retrogradation for a set of 26 starches, six of which were of crystal polymorph type A, 18 of type B and two of type......) relaxation curves from the two measurements (day 1 and day 7) could be used as a simple, illustrative way of describing the retrogradation. Three different behaviours were identified: One group of samples (mostly potato starches) slowly changed from a soft to a more rigid gel from day 1 to 7. A second group...

  20. Computer tomographic examinations in epilepsy

    International Nuclear Information System (INIS)

    De Villiers, J.F.K.

    1984-01-01

    Epileptic patients that was examined at the Universitas Hospital (Bloemfontein) by means of computerized tomography for the period July 1978 - December 1980, are divided into two groups: a) Patients with general epilepsy of convulsions - 507; b) Patients with vocal or partial epilepsy - 111. The method of examination and the results for both general and vocal epilepsy are discussed. A degenerative state was found in 35% of the positive computer tomographic examinations in general epilepsy and 22% of the positive examinations for vocal epilepsy. The purpose of the article was to explain the circumstances that can be expected when a epileptic patient is examined by means of computerized tomography

  1. Exotic spin phases in the one-dimensional spin-1/2 quantum magnet LiCuSbO{sub 4} as seen by high-field NMR and ESR spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Iakovleva, Margarita [IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany); Zavoisky Physical Technical Institute, Kazan (Russian Federation); Grafe, Hans-Joachim; Kataev, Vladislav; Alfonsov, Alexey; Sturza, Mihai I.; Wurmehl, Sabine [IFW Dresden, Dresden (Germany); Vavilova, Evgeniia [Zavoisky Physical Technical Institute, Kazan (Russian Federation); Nojiri, Hiroyuki [Institute of Materials Research, Sendai (Japan); Buechner, Bernd [IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany)

    2016-07-01

    We will present our recent results of high-field NMR and sub-THz ESR studies of the quantum magnet LiCuSbO{sub 4} (LCSO) that presents an excellent model system of a one-dimensional spin-1/2 quantum magnet with frustrated exchange interactions. Such networks are predicted to exhibit a plethora of novel ground states beyond classical ferro- or antiferromagnetic phases. In LCSO the absence of a long-range magnetic order down to sub-Kelvin temperatures is suggestive of the realization of a quantum spin liquid state. Our NMR and ESR measurements in strong magnetic fields up to 16 Tesla reveal clear indications for the occurrence of an exotic field-induced hidden phase which we will discuss in terms of multipolar physics.

  2. (1)H-NMR and charge transport in metallic polypyrrole at ultra-low temperatures and high magnetic fields.

    Science.gov (United States)

    Jugeshwar Singh, K; Clark, W G; Ramesh, K P; Menon, Reghu

    2008-11-19

    The temperature dependence of conductivity, proton spin relaxation time (T(1)) and magnetoconductance (MC) in metallic polypyrrole (PPy) doped with PF(6)(-) have been carried out at mK temperatures and high magnetic fields. At T50 K-relaxation is due to the dipolar interaction modulated by the reorientation of the symmetric PF(6) groups following the Bloembergen, Purcell and Pound (BPP) model. The data analysis shows that the Korringa ratio is enhanced by an order of magnitude. The positive and negative MC at TmK is due to the contributions from weak localization and Coulomb-correlated hopping transport, respectively. The role of EEI is observed to be consistent in conductivity, T(1) and MC data, especially at T<1 K.

  3. Comparison of earthworm responses to petroleum hydrocarbon exposure in aged field contaminated soil using traditional ecotoxicity endpoints and 1H NMR-based metabolomics

    International Nuclear Information System (INIS)

    Whitfield Åslund, Melissa; Stephenson, Gladys L.; Simpson, André J.; Simpson, Myrna J.

    2013-01-01

    1 H NMR metabolomics and conventional ecotoxicity endpoints were used to examine the response of earthworms exposed to petroleum hydrocarbons (PHCs) in soil samples collected from a site that was contaminated with crude oil from a pipeline failure in the mid-1990s. The conventional ecotoxicity tests showed that the soils were not acutely toxic to earthworms (average survival ≥90%), but some soil samples impaired reproduction endpoints by >50% compared to the field control soil. Additionally, metabolomics revealed significant relationships between earthworm metabolic profiles (collected after 2 or 14 days of exposure) and soil properties including soil PHC concentration. Further comparisons by partial least squares regression revealed a significant relationship between the earthworm metabolomic data (collected after only 2 or 14 days) and the reproduction endpoints (measured after 63 days). Therefore, metabolomic responses measured after short exposure periods may be predictive of chronic, ecologically relevant toxicity endpoints for earthworms exposed to soil contaminants. -- Highlights: •Earthworm response to petroleum hydrocarbon exposure in soil is examined. •Metabolomics shows significant changes to metabolic profile after 2 days. •Significant relationships observed between metabolomic and reproduction endpoints. •Metabolomics may have value as a rapid screening tool for chronic toxicity. -- Earthworm metabolomic responses measured after 2 and 14 days are compared to traditional earthworm ecotoxicity endpoints (survival and reproduction) in petroleum hydrocarbon contaminated soil

  4. Enhanced High-Temperature Cyclic Stability of Al-Doped Manganese Dioxide and Morphology Evolution Study Through in situ NMR under High Magnetic Field.

    Science.gov (United States)

    Huang, Shenggen; Sun, Jian; Yan, Jian; Liu, Jiaqin; Wang, Weijie; Qin, Qingqing; Mao, Wenping; Xu, Wei; Wu, Yucheng; Wang, Junfeng

    2018-03-21

    In this work, Al-doped MnO 2 (Al-MO) nanoparticles have been synthesized by a simple chemical method with the aim to enhance cycling stability. At room temperature and 50 °C, the specific capacitances of Al-MO are well-maintained after 10 000 cycles. Compared with pure MnO 2 nanospheres (180.6 F g -1 at 1 A g -1 ), Al-MO also delivers an enhanced specific capacitance of 264.6 F g -1 at 1 A g -1 . During the cycling test, Al-MO exhibited relatively stable structure initially and transformed to needlelike structures finally both at room temperature and high temperature. In order to reveal the morphology evolution process, in situ NMR under high magnetic field has been carried out to probe the dynamics of structural properties. The 23 Na spectra and the SEM observation suggest that the morphology evolution may follow pulverization/reassembling process. The Na + intercalation/deintercalation induced pulverization, leading to the formation of tiny MnO 2 nanoparticles. After that, the pulverized tiny nanoparticles reassembled into new structures. In Al-MO electrodes, doping of Al 3+ could slow down this structure evolution process, resulting in a better electrochemical stability. This work deepens the understanding on the structural changes in faradic reaction of pseudocapacitive materials. It is also important for the practical applications of MnO 2 -based supercapacitors.

  5. Diffusional behavior of n-paraffins with various chain lengths in urea adduct channels by pulsed field-gradient spin-echo NMR spectroscopy

    International Nuclear Information System (INIS)

    Kim, Sunmi; Kuroki, Shigeki; Ando, Isao

    2006-01-01

    The diffusion coefficients (D) of n-paraffin molecules (n-C n H 2n+2 ) with various chain-lengths (n = 8, 12, 21, 26, 28 and 32) in the long channels of a deuterated urea-d 4 adduct have been measured at 25 deg. C by means of pulsed field-gradient spin-echo 1 H NMR method. The aim is to clarify diffusional behavior of the n-paraffin molecules in the urea adduct channels. From the experimental results, it is found that n-paraffin molecules are diffusing in the long channels and have two kinds of diffusion components, namely a fast (D ∼ 10 -10 m 2 /s) and a slow diffusion component (D ∼ 10 -11 m 2 /s). The diffusing-time (Δ) dependence of the diffusion coefficients of the n-paraffins shows some likely evidence of restricted diffusion since the n-paraffin molecules are confined in the urea channel. The diffusion coefficients (D) decrease as the carbon number increases from 8 to 28, and very slowly decreases as the carbon number increases from 28 to 32

  6. Cellulose Structural Polymorphism in Plant Primary Cell Walls Investigated by High-Field 2D Solid-State NMR Spectroscopy and Density Functional Theory Calculations.

    Science.gov (United States)

    Wang, Tuo; Yang, Hui; Kubicki, James D; Hong, Mei

    2016-06-13

    The native cellulose of bacterial, algal, and animal origins has been well studied structurally using X-ray and neutron diffraction and solid-state NMR spectroscopy, and is known to consist of varying proportions of two allomorphs, Iα and Iβ, which differ in hydrogen bonding, chain packing, and local conformation. In comparison, cellulose structure in plant primary cell walls is much less understood because plant cellulose has lower crystallinity and extensive interactions with matrix polysaccharides. Here we have combined two-dimensional magic-angle-spinning (MAS) solid-state nuclear magnetic resonance (solid-state NMR) spectroscopy at high magnetic fields with density functional theory (DFT) calculations to obtain detailed information about the structural polymorphism and spatial distributions of plant primary-wall cellulose. 2D (13)C-(13)C correlation spectra of uniformly (13)C-labeled cell walls of several model plants resolved seven sets of cellulose chemical shifts. Among these, five sets (denoted a-e) belong to cellulose in the interior of the microfibril while two sets (f and g) can be assigned to surface cellulose. Importantly, most of the interior cellulose (13)C chemical shifts differ significantly from the (13)C chemical shifts of the Iα and Iβ allomorphs, indicating that plant primary-wall cellulose has different conformations, packing, and hydrogen bonding from celluloses of other organisms. 2D (13)C-(13)C correlation experiments with long mixing times and with water polarization transfer revealed the spatial distributions and matrix-polysaccharide interactions of these cellulose structures. Celluloses f and g are well mixed chains on the microfibril surface, celluloses a and b are interior chains that are in molecular contact with the surface chains, while cellulose c resides in the core of the microfibril, outside spin diffusion contact with the surface. Interestingly, cellulose d, whose chemical shifts differ most significantly from those of

  7. High-performance liquid chromatography on-line coupled to high-field NMR and mass spectrometry for structure elucidation of constituents of Hypericum perforatum L

    DEFF Research Database (Denmark)

    Hansen, S. H.; Jensen, A. G.; Cornett, Claus

    1999-01-01

    (MS) is described. A conventional reversed-phase HPLC system using ammonium acetate as the buffer substance in the eluent tvas used, and proton NMR spectra were obtained on a 500 MHz NMR instrument. The MS and MS/MS analyses were performed using negative electrospray ionization, In the present study......The on-line separation and structure elucidation of naphthodianthrones, flavonoids, and other constituents of an extract from Hypericum perforatum L, using high performance liquid chromatography (HPLC) coupled on-line with ultraviolet-visible, nuclear magnetic resonance (NMR), and mass spectrometry...

  8. Visual servoing in medical robotics: a survey. Part II: tomographic imaging modalities--techniques and applications.

    Science.gov (United States)

    Azizian, Mahdi; Najmaei, Nima; Khoshnam, Mahta; Patel, Rajni

    2015-03-01

    Intraoperative application of tomographic imaging techniques provides a means of visual servoing for objects beneath the surface of organs. The focus of this survey is on therapeutic and diagnostic medical applications where tomographic imaging is used in visual servoing. To this end, a comprehensive search of the electronic databases was completed for the period 2000-2013. Existing techniques and products are categorized and studied, based on the imaging modality and their medical applications. This part complements Part I of the survey, which covers visual servoing techniques using endoscopic imaging and direct vision. The main challenges in using visual servoing based on tomographic images have been identified. 'Supervised automation of medical robotics' is found to be a major trend in this field and ultrasound is the most commonly used tomographic modality for visual servoing. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Characteristics ofXanthosoma sagittifoliumroots during cooking, using physicochemical analysis, uniaxial compression, multispectral imaging and low field NMR spectroscopy.

    Science.gov (United States)

    Boakye, Abena Achiaa; Gudjónsdóttir, María; Skytte, Jacob Lercke; Chronakis, Ioannis S; Wireko-Manu, Faustina Dufie; Oduro, Ibok

    2017-08-01

    To effectively promote the industrial utilization of cocoyam ( Xanthosoma sagittifolium ) roots for enhanced food sustainability and security, there is a need to study their molecular, mechanical and physicochemical properties in detail. The physicochemical and textural characteristics of the red and white varieties of cocoyam roots were thus analysed by low field nuclear magnetic resonance relaxometry, multispectral imaging, uniaxial compression testing, and relevant physicochemical analysis in the current study. Both varieties had similar dry matter content, as well as physical and mechanical properties. However, up to four fast-interacting water populations were observed in the roots, dependent on the root variety and their degree of gelatinization during cooking. Changes in the relaxation parameters indicated weak gelatinization of starch at approximately 80 °C in both varieties. However, shorter relaxation times and a higher proportion of restricted water in the white variety indicated that this variety was slightly more sensitive towards gelatinization. A strong negative correlation existed between dry matter and all multispectral wavelengths >800 nm, suggesting the potential use of that spectral region for rapid analysis of dry matter and water content of the roots. The small, but significant differences in the structural and gelatinization characteristics of the two varieties indicated that they may not be equally suited for further processing, e.g. to flours or starches. Processors thus need to choose their raw materials wisely dependent on the aimed product characteristics. However, the spectroscopic methods applied in the study were shown to be effective in assessing important quality attributes during cooking of the roots.

  10. Proton and deuterium NMR experiments in zero field. [Perdeuterated p-demethoxybenzene, perdeuterated malonic acid, diethyl terephthalate-d4, nonadecane-2,2'-D2, sodium propionate-D2

    Energy Technology Data Exchange (ETDEWEB)

    Millar, J.M.

    1986-02-01

    High field solid-state NMR lineshapes suffer from inhomogeneous broadening since resonance frequencies are a function of molecular orientation. Time domain zero field NMR is a two-dimensional field-cycling technique which removes this broadening by probing the evolution of the spin system under zero applied field. The simplest version, the sudden transition experiment, induces zero field evolution by the sudden removal of the applied magnetic field. Theory and experimental results of this experiment and several variations using pulsed dc magnetic fuelds to initiate zero field evolution are presented. In particular, the pulsed indirect detection method allows detection of the zero field spectrum of one nuclear spin species via another (usually protons) by utilizing the level crossings which occur upon adiabatic demagnetization to zero field. Experimental examples of proton/deuteron systems are presented which demonstrate the method results in enhanced sensitivity relative to that obtained in sudden transition experiments performed directly on deuterium. High resolution /sup 2/H NQR spectra of a series of benzoic acid derivatives are obtained using the sudden transition and indirect detection methods. Librational oscillations in the water molecules of barium chlorate monohydrate are studied using proton and deuterium ZF experiments. 177 refs., 88 figs., 2 tabs.

  11. Tomographic Particle Image Velocimetry Using Colored Shadow Imaging

    KAUST Repository

    Alarfaj, Meshal K.

    2016-02-01

    Tomographic Particle Image Velocimetry Using Colored Shadow Imaging by Meshal K Alarfaj, Master of Science King Abdullah University of Science & Technology, 2015 Tomographic Particle image velocimetry (PIV) is a recent PIV method capable of reconstructing the full 3D velocity field of complex flows, within a 3-D volume. For nearly the last decade, it has become the most powerful tool for study of turbulent velocity fields and promises great advancements in the study of fluid mechanics. Among the early published studies, a good number of researches have suggested enhancements and optimizations of different aspects of this technique to improve the effectiveness. One major aspect, which is the core of the present work, is related to reducing the cost of the Tomographic PIV setup. In this thesis, we attempt to reduce this cost by using an experimental setup exploiting 4 commercial digital still cameras in combination with low-cost Light emitting diodes (LEDs). We use two different colors to distinguish the two light pulses. By using colored shadows with red and green LEDs, we can identify the particle locations within the measurement volume, at the two different times, thereby allowing calculation of the velocities. The present work tests this technique on the flows patterns of a jet ejected from a tube in a water tank. Results from the images processing are presented and challenges discussed.

  12. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  13. Simultaneous tomographic reconstruction and segmentation with class priors

    DEFF Research Database (Denmark)

    Romanov, Mikhail; Dahl, Anders Bjorholm; Dong, Yiqiu

    2015-01-01

    We consider tomographic imaging problems where the goal is to obtain both a reconstructed image and a corresponding segmentation. A classical approach is to first reconstruct and then segment the image; more recent approaches use a discrete tomography approach where reconstruction and segmentatio...... approach can produce better results than the classical two-step approach.......We consider tomographic imaging problems where the goal is to obtain both a reconstructed image and a corresponding segmentation. A classical approach is to first reconstruct and then segment the image; more recent approaches use a discrete tomography approach where reconstruction and segmentation...... are combined to produce a reconstruction that is identical to the segmentation. We consider instead a hybrid approach that simultaneously produces both a reconstructed image and segmentation. We incorporate priors about the desired classes of the segmentation through a Hidden Markov Measure Field Model, and we...

  14. Advances in the calibration of atom probe tomographic reconstruction

    International Nuclear Information System (INIS)

    Gault, Baptiste; Moody, Michael P.; La Fontaine, Alexandre; Stephenson, Leigh T.; Haley, Daniel; Ringer, Simon P.; Geuser, Frederic de; Tsafnat, Guy

    2009-01-01

    Modern wide field-of-view atom probes permit observation of a wide range of crystallographic features that can be used to calibrate the tomographic reconstruction of the analyzed volume. In this study, methodologies to determine values of the geometric parameters involved in the tomographic reconstruction of atom probe data sets are presented and discussed. The influence of the tip to electrode distance and specimen temperature on these parameters is explored. Significantly, their influence is demonstrated to be very limited, indicating a relatively wide regime of experimental parameters space for sound atom probe tomography (APT) experiments. These methods have been used on several specimens and material types, and the results indicate that the reconstruction parameters are specific to each specimen. Finally, it is shown how an accurate calibration of the reconstruction enables improvements to the quality and reliability of the microscopy and microanalysis capabilities of the atom probe

  15. Analysis of oil content and oil quality in oilseeds by low-field NMR; Analise do teor e da qualidade dos lipideos presentes em sementes de oleaginosas por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Constantino, Andre F.; Lacerda Junior, Valdemar; Santos, Reginaldo B. dos; Greco, Sandro J.; Silva, Renzo C.; Neto, Alvaro C.; Barbosa, Lucio L.; Castro, Eustaquio V.R. de [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Quimica; Freitas, Jair C.C. [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil). Departamento de Fisica

    2014-07-01

    To choose among the variety of oleaginous plants for biodiesel production, the oil content of several matrices was determined through different low-field {sup 1}H nuclear magnetic resonance (NMR) experiments with varied pulse sequences, namely single-pulse, spin-echo, CPMG, and CWFP. The experiments that involved the first three sequences showed high correlation with each other and with the solvent extraction method. The quality of the vegetable oils was also evaluated on the basis of the existing correlation between the T{sub 2} values of the oils and their properties, such as viscosity, iodine index, and cetane index. These analyses were performed using HCA and PCA chemometric tools. The results were sufficiently significant to allow separation of the oleaginous matrices according to their quality. Thus, the low-field {sup 1}H NMR technique was confirmed as an important tool to aid in the selection of oleaginous matrices for biodiesel production. (author)

  16. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. Tomographic anthropomorphic models. Pt. 1

    International Nuclear Information System (INIS)

    Veit, R.; Zankl, M.; Petoussi, N.; Mannweiler, E.; Drexler, G.; Williams, G.

    1989-01-01

    The first generation of heterogenoeous anthropomorphic mathematical models to be used in dose calculations was the MIRD-5 adult phantom, followed by the pediatric MIRD-type phantoms and by the GSF sex-specific phantoms ADAM and EVA. A new generation of realistic anthropomorphic models is now introduced. The organs and tissues of these models consist of a well defined number of volume elements (voxels), derived from computer tomographic (CT) data; consequently, these models were named voxel or tomographic models. So far two voxel models of real patients are available: one of an 8 week old baby and of a 7 year old child. For simplicity, the model of the baby will be referred to as BABY and that of the child as CHILD. In chapter 1 a brief literature review is given on the existing mathematical models and their applications. The reasons that lead to the construction of the new CT models is discussed. In chapter 2 the technique is described which allows to convert any physical object into computer files to be used for dose calculations. The technique which produces three dimensional reconstructions of high resolution is discussed. In chapter 3 the main characteristics of the models of the baby and child are given. Tables of organ masses and volumes are presented together with three dimensional images of some organs and tissues. A special mention is given to the assessment of bone marrow distribution. Chapter 4 gives a short description of the Monte Carlo code used in conjunction with the models to calculate organ and tissue doses resulting from photon exposures. Some technical details concerning the computer files which describe the models are also given. (orig./HP)

  18. High resolution tomographic instrument development

    International Nuclear Information System (INIS)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational

  19. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  20. High resolution tomographic instrument development

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    Our recent work has concentrated on the development of high-resolution PET instrumentation reflecting in part the growing importance of PET in nuclear medicine imaging. We have developed a number of positron imaging instruments and have the distinction that every instrument has been placed in operation and has had an extensive history of application for basic research and clinical study. The present program is a logical continuation of these earlier successes. PCR-I, a single ring positron tomograph was the first demonstration of analog coding using BGO. It employed 4 mm detectors and is currently being used for a wide range of biological studies. These are of immense importance in guiding the direction for future instruments. In particular, PCR-II, a volume sensitive positron tomograph with 3 mm spatial resolution has benefited greatly from the studies using PCR-I. PCR-II is currently in the final stages of assembly and testing and will shortly be placed in operation for imaging phantoms, animals and ultimately humans. Perhaps the most important finding resulting from our previous study is that resolution and sensitivity must be carefully balanced to achieve a practical high resolution system. PCR-II has been designed to have the detection characteristics required to achieve 3 mm resolution in human brain under practical imaging situations. The development of algorithms by the group headed by Dr. Chesler is based on a long history of prior study including his joint work with Drs. Pelc and Reiderer and Stearns. This body of expertise will be applied to the processing of data from PCR-II when it becomes operational.

  1. NMR imaging of the cardiovascular system

    International Nuclear Information System (INIS)

    Canby, R.C.; Evanochko, W.T.; Pohost, G.M.

    1986-01-01

    Proton nuclear magnetic resonance (NMR) imaging permits high-resolution tomographic and three-dimensional images of the human body to be obtained without exposure to ionizing radiation. Such imaging not only yields anatomic resolution comparable to X-ray examinations but also provides a potential means to discriminate between healthy tissue and diseased tissue. This potential is based on certain NMR properties known as relaxation times, which determine, in part, the signal intensity in an image. These properties are related to such factors as the sizes and concentrations of proteins and mobile lipids and the compartmentalization of the protons of water. Although NMR imaging (also called magnetic resonance imaging, MRI) is becoming widely available for clinical use, application to the cardiovascular system, though promising, remains primarily a research tool. Gated proton NMR imaging can generate cardiac images with excellent morphologic detail and contrast; however, its ultimate importance as a cardiovascular diagnostic modality will depend on the development of several unique applications. These applications are discussed in this paper

  2. Spontaneously reversible portal vein thrombosis complicating acute pancreatits - computed tomographic findings; Computertomographische Verlaufsbeobachtungen der spontanen Rueckbildung von Portalvenenthrombosen bei akuter Pankreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, J.; Lorenz, F.; Vlahovic, J. [Klinikum Niederberg Velbert (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Kirchner, E.M. [Klinikum Duisburg (Germany). Klinik fuer Innere Medizin

    2008-07-01

    Portal vein thrombosis complicating acute pancreatitis is more often diagnosed today due to the improved imaging techniques (computed tomography, ultrasound, nmr). Nevertheless the outcome of recent portal vein thrombosis is ill-known. We report on the computed tomographic findings and clinical course of portal vein thrombosis in two patients suffering from acute pancreatitis. Both patients showed spontaneous recanalization of the thrombosis. (orig.)

  3. Relation of short-range and long-range lithium ion dynamics in glass-ceramics: Insights from 7Li NMR field-cycling and field-gradient studies

    Science.gov (United States)

    Haaks, Michael; Martin, Steve W.; Vogel, Michael

    2017-09-01

    We use various 7Li NMR methods to investigate lithium ion dynamics in 70Li 2S-30 P 2S5 glass and glass-ceramic obtained from this glass after heat treatment. We employ 7Li spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as 7Li field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li 2S-30 P 2S5 glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather, 7Li field-cycling relaxometry shows that dynamic susceptibilities in broad frequency and temperature ranges can be described by thermally activated jumps governed by a Gaussian distribution of activation energies g (Ea) with temperature-independent mean value Em=0.43 eV and standard deviation σ =0.07 eV . Moreover, use of this distribution allows us to rationalize 7Li line-shape results for the local ion jumps. In addition, this information about short-range ion dynamics further explains 7Li field-gradient results for long-range ion diffusion. In particular, we quantitatively show that, consistent with our experimental results, the temperature dependence of the self-diffusion coefficient D is not described by the mean activation energy Em of the local ion jumps, but by a significantly smaller apparent value whenever the distribution of correlation times G (logτ ) of the jump motion derives from an invariant distribution of activation energies and, hence, continuously broadens upon cooling. This effect occurs because the harmonic mean, which determines the results of diffusivity or also conductivity studies, continuously separates from the peak position of G (logτ ) when the width of this distribution increases.

  4. Trailing edge noise estimation by tomographic Particle Image Velocimetry

    Science.gov (United States)

    Pröbsting, Stefan; Tuinstra, Marthijn; Scarano, Fulvio

    2015-06-01

    The feasibility of estimating broadband trailing edge noise with high-speed tomographic Particle Image Velocimetry (PIV) measurements is studied. A thin plate terminating in a sharp trailing edge provides a generic test case for turbulent boundary layer trailing edge interaction noise. Far-field noise is linked to the wavenumber-frequency spectrum of the surface pressure fluctuations in proximity of the trailing edge through diffraction theory. High-speed tomographic PIV measurements return volumetric and time-resolved information about all velocity components for the resolved spatio-temporal scales and can therefore provide the required statistical quantities. For the turbulent boundary layer interacting with the trailing edge, these statistics include the auto-spectral density, spanwise correlation length, and convection velocity of the unsteady surface pressure, which are thus estimated. Acoustic phased array measurements in an anechoic environment provide a reference for comparison. Over the resolved frequency band, PIV based noise estimation results compare favorably with the reference measurements. Especially at lower frequencies, where existing, empirical models for the unsteady surface pressure spectrum are not accurate, tomographic PIV can offer an alternative approach to complex and intrusive model instrumentation for assessing the relevant statistical quantities.

  5. Low-Temperature Studies of CuFe2S3 and CuFeS2 by ^{63,65}Cu NMR in the Internal Magnetic Field

    Science.gov (United States)

    Gavrilenko, Andrey Nikolaevich; Pogoreltsev, Aleksandr Iliich; Matukhin, Vadim Leonidovich; Korzun, Barys Vasilyevich; Schmidt, Ekaterina Vadimovna; Sevastianov, Iliya Germanovich

    2016-12-01

    The resonance ^{63,65}Cu NMR spectra in the internal magnetic field in cubanite CuFe2S3 and chalcopyrite CuFeS2 were studied experimentally at 77 K. Using a cluster approach, ab initio evaluation of the electric field gradient (EFG) at the nuclei of copper in both compounds was performed. The calculations were carried out by the self-consistent restricted method of Hartree-Fock with open shells (SCF-LCAO-ROHF). The largest clusters for which calculations were made had a formula of Cu7Fe_{14}S_{29}^n for cubanite and Cu9Fe_{10}S_{28}^n for chalcopyrite, where n is the cluster charge. The best-fit values of the quadrupole parameters (quadrupole frequency ν _Q and the asymmetry parameter of the EFG tensor η )—determined experimentally (ν _Q ≈ 7.30 MHz and η ≈ 0.82) and by calculation (ν _Q ≈ 7.38 MHz and η ≈ 0.87)—were obtained for a cluster Cu7Fe_{14}S_{29}^{10} for cubanite. Similarly, the best-fit values of the quadrupole parameters—determined experimentally (ν _Q ≈ 1.29 MHz and η ≈ 0.34) and by calculation (ν _Q ≈ 1.40 MHz and η ≈ 0.50)—were obtained for a cluster Cu9Fe_{10}S_{28}^{-4} for chalcopyrite. For these clusters, maps of the electron density distribution in the neighborhood of quadrupole nucleus of copper were built. Based on the analysis of the resulting electron density distribution, it is supposed that the bond in these compounds is not quite covalent. Evaluations of the hyperfine interaction constants were made and maps of the spin density distribution in the neighborhood of quadrupole nucleus of copper were built. The energy level diagram calculated in the high-spin ROHF approximation defined chalcopyrite as a compound with a very narrow LUMO-HOMO gap rather well and is consistent with the notion of this compound as a semiconductor.

  6. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer S

    2005-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  7. Compact Positron Tomograph for Prostate Imaging

    National Research Council Canada - National Science Library

    Huber, Jennifer

    2004-01-01

    The goal of this project is to construct a functioning compact positron tomograph, whose geometry is optimized for detecting prostate tumors with molecular tracers such as 11Ccholine (carbon-11 choline...

  8. Computed Tomographic Evaluation of Mandibular Ameloblastoma

    Directory of Open Access Journals (Sweden)

    N Eswar

    2003-01-01

    Five interesting cases of mandibular ameloblastoma are presented here, each case showing different histological pattern and corresponding computer tomographic appearance. Also an attempt is made to establish CT pattern in these histological varieties of ameloblastoma.

  9. Computed tomographic findings of intracranial gliosis

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, L.

    1981-08-01

    The clinical and computed tomographic (CT) findings in eight patients with pathological evidence of cerebral gliosis are analyzed. CT findings do not permit differentiation of gliosis from other neoplastic and non-neoplastic conditions.

  10. Computer tomographic findings of intracranial gliosis.

    Science.gov (United States)

    Weisberg, L

    1981-01-01

    The clinical and computer tomographic (CT) findings in eight patients with pathological evidence of cerebral gliosis and analyzed. CT findings do not permit differentiation of gliosis from other neoplastic and non-neoplastic conditions.

  11. Determination of pressure and load characteristics of flexible revolving wings by means of tomographic PIV

    NARCIS (Netherlands)

    van de Meerendonk, R.; Perçin, M.; van Oudheusden, B.W.

    2016-01-01

    This study explores the flow field and fluid-dynamic loads generated by revolving low-aspect-ratio wings. The pressure field and load characteristics are successfully reconstructed from the phase-locked tomographic measurements in three independently measured volumes along the span of the wing. The

  12. Flow NMR of complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Scheler, U.; Bagusat, F. [Leibniz-Inst. fuer Polymerforschung Dresden e.V., Dresden (Germany)

    2007-07-01

    A combination of NMR imaging and pulsed field gradient (PFG) NMR is applied to investigate flow. NMR longitudinal relaxation is used to generate contrast in a binary system of oil and water. The spatial distribution of each component and its flow pattern are measured separately. As a model a Couette cell with an additional area of high shear is used as model geometry. While a flat smooth interface is found at rest, the interface become bent under rotation, finally emulgation starts because of the velocity differences between the components. Flow from a submillimeter tube into a wide box and out of the box is investigated as well to understand shear-induced mixing and demixing. (orig.)

  13. Tomographic PIV: particles versus blobs

    International Nuclear Information System (INIS)

    Champagnat, Frédéric; Cornic, Philippe; Besnerais, Guy Le; Plyer, Aurélien; Cheminet, Adam; Leclaire, Benjamin

    2014-01-01

    We present an alternative approach to tomographic particle image velocimetry (tomo-PIV) that seeks to recover nearly single voxel particles rather than blobs of extended size. The baseline of our approach is a particle-based representation of image data. An appropriate discretization of this representation yields an original linear forward model with a weight matrix built with specific samples of the system’s point spread function (PSF). Such an approach requires only a few voxels to explain the image appearance, therefore it favors much more sparsely reconstructed volumes than classic tomo-PIV. The proposed forward model is general and flexible and can be embedded in a classical multiplicative algebraic reconstruction technique (MART) or a simultaneous multiplicative algebraic reconstruction technique (SMART) inversion procedure. We show, using synthetic PIV images and by way of a large exploration of the generating conditions and a variety of performance metrics, that the model leads to better results than the classical tomo-PIV approach, in particular in the case of seeding densities greater than 0.06 particles per pixel and of PSFs characterized by a standard deviation larger than 0.8 pixels. (paper)

  14. Directional fine structure in absorption of white x rays: A tomographic interpretation

    International Nuclear Information System (INIS)

    Korecki, P.; Szymonski, M.; Tolkiehn, M.; Novikov, D. V.; Materlik, G.

    2006-01-01

    We discuss directional fine structure in absorption of white x rays for tomographic imaging of crystal structure at the atomic level. The interference between a direct x-ray beam and the secondary waves coherently scattered inside a specimen modifies the total wave field at the position of the absorbing atoms. For a white x-ray beam, the wave field variations cancel out by energy integration for all directions, except for the near forward scattering components, coinciding with the incident beam. Therefore, two-dimensional patterns of the angular-dependent fine structure in absorption of white x rays can be interpreted as real-space projections of atomic structure. In this work, we present a theory describing the directional fine structure in white x-ray absorption and a tomographic approach for crystal structure retrieval developed on its basis. The tomographic algorithm is applied to the experimental x-ray absorption data recorded for GaP crystals

  15. NMR of lignins

    Science.gov (United States)

    John Ralph; Larry L. Landucci

    2010-01-01

    This chapter will consider the basic aspects and findings of several forms of NMR spectroscopy, including separate discussions of proton, carbon, heteronuclear, and multidimensional NMR. Enhanced focus will be on 13C NMR, because of its qualitative and quantitative importance, followed by NMR’s contributions to our understanding of lignin...

  16. Dense velocity reconstruction from tomographic PTV with material derivatives

    Science.gov (United States)

    Schneiders, Jan F. G.; Scarano, Fulvio

    2016-09-01

    A method is proposed to reconstruct the instantaneous velocity field from time-resolved volumetric particle tracking velocimetry (PTV, e.g., 3D-PTV, tomographic PTV and Shake-the-Box), employing both the instantaneous velocity and the velocity material derivative of the sparse tracer particles. The constraint to the measured temporal derivative of the PTV particle tracks improves the consistency of the reconstructed velocity field. The method is christened as pouring time into space, as it leverages temporal information to increase the spatial resolution of volumetric PTV measurements. This approach becomes relevant in cases where the spatial resolution is limited by the seeding concentration. The method solves an optimization problem to find the vorticity and velocity fields that minimize a cost function, which includes next to instantaneous velocity, also the velocity material derivative. The velocity and its material derivative are related through the vorticity transport equation, and the cost function is minimized using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm. The procedure is assessed numerically with a simulated PTV experiment in a turbulent boundary layer from a direct numerical simulation (DNS). The experimental validation considers a tomographic particle image velocimetry (PIV) experiment in a similar turbulent boundary layer and the additional case of a jet flow. The proposed technique (`vortex-in-cell plus', VIC+) is compared to tomographic PIV analysis (3D iterative cross-correlation), PTV interpolation methods (linear and adaptive Gaussian windowing) and to vortex-in-cell (VIC) interpolation without the material derivative. A visible increase in resolved details in the turbulent structures is obtained with the VIC+ approach, both in numerical simulations and experiments. This results in a more accurate determination of the turbulent stresses distribution in turbulent boundary layer investigations. Data from a jet

  17. Industrial dynamic tomographic reconstruction; Reconstrucao tomografica dinamica industrial

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Eric Ferreira de

    2016-07-01

    The state of the art methods applied to industrial processes is currently based on the principles of classical tomographic reconstructions developed for tomographic patterns of static distributions, or is limited to cases of low variability of the density distribution function of the tomographed object. Noise and motion artifacts are the main problems caused by a mismatch in the data from views acquired in different instants. All of these add to the known fact that using a limited amount of data can result in the presence of noise, artifacts and some inconsistencies with the distribution under study. One of the objectives of the present work is to discuss the difficulties that arise from implementing reconstruction algorithms in dynamic tomography that were originally developed for static distributions. Another objective is to propose solutions that aim at reducing a temporal type of information loss caused by employing regular acquisition systems to dynamic processes. With respect to dynamic image reconstruction it was conducted a comparison between different static reconstruction methods, like MART and FBP, when used for dynamic scenarios. This comparison was based on a MCNPx simulation as well as an analytical setup of an aluminum cylinder that moves along the section of a riser during the process of acquisition, and also based on cross section images from CFD techniques. As for the adaptation of current tomographic acquisition systems for dynamic processes, this work established a sequence of tomographic views in a just-in-time fashion for visualization purposes, a form of visually disposing density information as soon as it becomes amenable to image reconstruction. A third contribution was to take advantage of the triple color channel necessary to display colored images in most displays, so that, by appropriately scaling the acquired values of each view in the linear system of the reconstruction, it was possible to imprint a temporal trace into the regularly

  18. Nature and structure of aluminum surface sites grafted on silica from a combination of high-field aluminum-27 solid-state NMR spectroscopy and first-principles calculations

    KAUST Repository

    Kerber, Rachel Nathaniel

    2012-04-18

    The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While 27Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found. © 2012 American Chemical Society.

  19. A PC-controlled microwave tomographic scanner for breast imaging

    Science.gov (United States)

    Padhi, Shantanu; Howard, John; Fhager, A.; Bengtsson, Sebastian

    2011-01-01

    This article presents the design and development of a personal computer based controller for a microwave tomographic system for breast cancer detection. The system uses motorized, dual-polarized antennas and a custom-made GUI interface to control stepper motors, a wideband vector network analyzer (VNA) and to coordinate data acquisition and archival in a local MDSPlus database. Both copolar and cross-polar scattered field components can be measured directly. Experimental results are presented to validate the various functionalities of the scanner.

  20. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    Science.gov (United States)

    2016-04-28

    Single- shot , volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...37081 Göttingen, Germany 4School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA 5trmeyer@purdue.edu 6james.gord...us.af.mil Abstract: Single- shot , tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow

  1. Active elimination of radio frequency interference for improved signal-to-noise ratio for in-situ NMR experiments in strong magnetic field gradients

    Science.gov (United States)

    Ibrahim, M.; Pardi, C. I.; Brown, T. W. C.; McDonald, P. J.

    2018-02-01

    Improvement in the signal-to-noise ratio of Nuclear Magnetic Resonance (NMR) systems may be achieved either by increasing the signal amplitude or by decreasing the noise. The noise has multiple origins - not all of which are strictly "noise": incoherent thermal noise originating in the probe and pre-amplifiers, probe ring down or acoustic noise and coherent externally broadcast radio frequency transmissions. The last cannot always be shielded in open access experiments. In this paper, we show that pulsed, low radio-frequency data communications are a significant source of broadcast interference. We explore two signal processing methods of de-noising short T2∗ NMR experiments corrupted by these communications: Linear Predictive Coding (LPC) and the Discrete Wavelet Transform (DWT). Results are shown for numerical simulations and experiments conducted under controlled conditions with pseudo radio frequency interference. We show that both the LPC and DWT methods have merit.

  2. Low-Field NMR Spectrometry of Chalk and Argillaceous Sandstones: Rock-Fluid Affinity Assessed from T-1/T-2 Ratio

    DEFF Research Database (Denmark)

    Katika, Konstantina; Saidian, Milad; Prasad, Manika

    2017-01-01

    shorten T-2, as compared to provided the saturating fluid has high affinity to the solid. Consequently, the T-1/T-2 ratio should quantify the affinity between the mineral and wetting pore fluid, so we estimate wettability from logging data by comparing the T-1/T-2 ratio of oil and water peaks...... in the reservoir zone to the T-1/T-2 ratio in the water zone. We tested the hypothesis on core samples and used the predicted wettability to successfully determining the elastic bulk modulus of samples containing oil and water.In order to investigate the T-2-shortening, we performed 1D and 2D NMR experiments...... on samples of chalk, kaolinitic sandstone, and chloritic greensand, saturated either with water, oil or oil/water at irreducible water saturation. The 1D NMR experiment involved determination of T-2 spectrum, whereas the 2D NMR experiments included determination of T-1-T-2 and D-T-2 maps, where D...

  3. Low field NMR study of the latex derived from Brosimum parinarioides - Moraceae;Estudo do latex (leite de Amapa) in natura derivado do Brosimum parinarioides - Moraceae por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Miguez, Eduardo; Tavares, Maria Ines B., E-mail: gisele@ima.ufrj.b [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Prof. Eloisa Mano

    2009-07-01

    Brosimum parinarioides is a tree found in the Amazonia forest and its latex (Leite de Amapa) is often used like food and by the popular medicine in the treatment of tuberculosis and asthma. Being swallowed in nature, its necessary determinate the stability degree of this latex in the storage conditions in which is used in Amazonia. The analyses of T{sub 2} data showed that the limit of stability is not longer than six month in the storage conditions used by the population of Amazonia. The Low field NMR proved to be an efficient method for this kind of study. (author)

  4. Palm oil based polymer materials obtained by romp: study by low field NMR; Materiais polimericos obtidos via ROMP a partir de oleo de palma: estudo por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Henrique; Lima-Neto, Benedito S., E-mail: benedito@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica de; Azevedo, Eduardo R. de [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Fisica

    2013-07-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  5. Palm oil based polymer materials obtained by ROMP: study by low field NMR; Materiais polimericos obtidos via ROMP a partir de oleo de palma: estudo por RMN de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Henrique; Azevedo, Eduardo R. de; Lima-Neto, Benedito S., E-mail: benedito@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil)

    2015-07-01

    Aiming to study and develop new materials synthesized from sustainable sources, several polymers were prepared using in its monomeric composition, different amounts of NPO (Norbornenyl Palm Oil) monomer. This monomer was developed based on a vegetable oil rather produced in northern Brazil, the Palm Oil. Since this oil have a low content of unsaturation, its use in developing new monomer for ROMP (Ring-Opening Metathesis Polymerization) is not exploited. In this regard, polymeric materials were obtained using the NOP and both the reaction process and the resulting products were analyzed by Nuclear Magnetic Resonance in the time domain (TD-NMR) at low magnetic field. (author)

  6. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter

    Science.gov (United States)

    Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Schmitt-Kopplin, P.

    2013-03-01

    High-performance, non-target, high-resolution organic structural spectroscopy was applied to solid phase extracted marine dissolved organic matter (SPE-DOM) isolated from four different depths in the open South Atlantic Ocean off the Angola coast (3° E, 18° S; Angola Basin) and provided molecular level information with extraordinary coverage and resolution. Sampling was performed at depths of 5 m (Angola Current; near-surface photic zone), 48 m (Angola Current; fluorescence maximum), 200 m (still above Antarctic Intermediate Water, AAIW; upper mesopelagic zone) and 5446 m (North Atlantic Deep Water, NADW; abyssopelagic, ~30 m above seafloor) and produced SPE-DOM with near 40% carbon yield and beneficial nuclear magnetic resonance (NMR) relaxation properties, a crucial prerequisite for the acquisition of NMR spectra with excellent resolution. 1H and 13C NMR spectra of all four marine SPE-DOM showed smooth bulk envelopes, reflecting intrinsic averaging from massive signal overlap, with a few percent of visibly resolved signatures and variable abundances for all major chemical environments. The abundance of singly oxygenated aliphatics and acetate derivatives in 1H NMR spectra declined from surface to deep marine SPE-DOM, whereas C-based aliphatics and carboxyl-rich alicyclic molecules (CRAM) increased in abundance. Surface SPE-DOM contained fewer methyl esters than all other samples, likely a consequence of direct exposure to sunlight. Integration of 13C NMR spectra revealed continual increase of carboxylic acids and ketones from surface to depth, reflecting a progressive oxygenation, with concomitant decline of carbohydrate-related substructures. Aliphatic branching increased with depth, whereas the fraction of oxygenated aliphatics declined for methine, methylene and methyl carbon. Lipids in the oldest SPE-DOM at 5446 m showed a larger share of ethyl groups and methylene carbon than observed in the other samples. Two-dimensional NMR spectra showed exceptional

  7. High-field NMR spectroscopy and FTICR mass spectrometry: powerful discovery tools for the molecular level characterization of marine dissolved organic matter

    Directory of Open Access Journals (Sweden)

    N. Hertkorn

    2013-03-01

    Full Text Available High-performance, non-target, high-resolution organic structural spectroscopy was applied to solid phase extracted marine dissolved organic matter (SPE-DOM isolated from four different depths in the open South Atlantic Ocean off the Angola coast (3° E, 18° S; Angola Basin and provided molecular level information with extraordinary coverage and resolution. Sampling was performed at depths of 5 m (Angola Current; near-surface photic zone, 48 m (Angola Current; fluorescence maximum, 200 m (still above Antarctic Intermediate Water, AAIW; upper mesopelagic zone and 5446 m (North Atlantic Deep Water, NADW; abyssopelagic, ~30 m above seafloor and produced SPE-DOM with near 40% carbon yield and beneficial nuclear magnetic resonance (NMR relaxation properties, a crucial prerequisite for the acquisition of NMR spectra with excellent resolution. 1H and 13C NMR spectra of all four marine SPE-DOM showed smooth bulk envelopes, reflecting intrinsic averaging from massive signal overlap, with a few percent of visibly resolved signatures and variable abundances for all major chemical environments. The abundance of singly oxygenated aliphatics and acetate derivatives in 1H NMR spectra declined from surface to deep marine SPE-DOM, whereas C-based aliphatics and carboxyl-rich alicyclic molecules (CRAM increased in abundance. Surface SPE-DOM contained fewer methyl esters than all other samples, likely a consequence of direct exposure to sunlight. Integration of 13C NMR spectra revealed continual increase of carboxylic acids and ketones from surface to depth, reflecting a progressive oxygenation, with concomitant decline of carbohydrate-related substructures. Aliphatic branching increased with depth, whereas the fraction of oxygenated aliphatics declined for methine, methylene and methyl carbon. Lipids in the oldest SPE-DOM at 5446 m showed a larger share of ethyl groups and methylene carbon than observed in the other samples. Two-dimensional NMR spectra showed

  8. Graphical programming for pulse automated NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Belmonte, S.B. [Universidade do Estado, Rio de Janeiro, RJ (Brazil); Oliveira, I.S.; Guimaraes, A.P. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    1999-01-01

    We describe a software program designed to control a broadband pulse Nuclear Magnetic Resonance (NMR) spectrometer used in zero-field NMR studies of magnetic metals. The software is written in the graphical language LabVIEW. This type of programming allows modifications and the inclusion of new routines to be easily made by the non-specialist, without changing the basic structure of the program. The program corrects for differences in the gain of the two acquisition channels [U (phase) and V (quadrature)], and automatic baseline subtraction. We present examples of measurements of NMR spectra, spin-echo decay (T{sub 2}), and quadrupolar oscillations, performed in magnetic intermetallic compounds. (author)

  9. Pressure estimation from single-snapshot tomographic PIV in a turbulent boundary layer

    NARCIS (Netherlands)

    Schneiders, J.F.G.; Pröbsting, S.; Dwight, R.P.; Van Oudheusden, B.W.; Scarano, F.

    2016-01-01

    A method is proposed to determine the instantaneous pressure field from a single tomographic PIV velocity snapshot and is applied to a flat-plate turbulent boundary layer. The main concept behind the single-snapshot pressure evaluation method is to approximate the flow acceleration using the

  10. Cultural Heritage Studies with Mobile NMR.

    Science.gov (United States)

    Rehorn, Christian; Blümich, Bernhard

    2018-03-30

    Nuclear Magnetic Resonance (NMR) provides in-situ information about selected isotope densities in samples and objects, while also providing contrast through rotational and translational molecular dynamics. These parameters are probed not only in magnetic resonance spectroscopy and imaging but also in nondestructive materials testing by mobile stray-field NMR whose unique perks are valuable in cultural heritage studies. We present recent progress in the analysis of cultural heritage with mobile 1H NMR stray-field sensors, for which the detection zone is outside of the NMR magnet. Prominent applications include the analysis of stratigraphies in paintings and frescoes, and the assessment of material states changing under the impact of aging, conservation and restoration. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Imaging MOSS tomographic system for H-1NF

    International Nuclear Information System (INIS)

    Glass, F.; Howard, J.

    1999-01-01

    A tomographic diagnostic utilising the Modulated Optical Solid-State spectrometer (MOSS) is planned for the H-1NF stellarator at the ANU. It is designed to create two-dimensional temperature or velocity maps of a poloidal cross-section of the high temperature plasma of H-1NF. The introduction of the MOSS spectrometers has enabled the development of several diagnostics to be used on the H-1NF stellerator. The MOSS spectrometer allows calculations of the plasma temperature and bulk velocity based on a line-integrated measurement of light emitted from electronic transitions within the plasma. A tomographic system utilising a rotatable multi-view ring apparatus and spatial multiplexing through a MOSS spectrometer is currently being developed. The ring apparatus is placed inside the H-1NF vessel and encircles the plasma. Multiple line-of-sight views collect light through a poloidal cross-section of the plasma and the emitted light is coupled into large core optical fibres. The transmitted light, via the optical fibre bundle, is then imaged through a large aperture MOSS spectrometer and onto another optical fibre array. Each fibre is then fed into a photomultiplier tube for signal detection. Characterisation of the properties of the lithium niobate (LiNbO 3 ) crystal used for modulation in the MOSS spectrometer is being undertaken to account for ray divergence in the imaging system. Tomographic techniques enable the construction of a temperature or velocity map of the poloidal cross-section. Rotating the ring apparatus to a new viewing position for the next pulse of plasma should allow an accurate picture to be built up based on the reproducibility of the plasma pulses. It is expected that initial testing of the system will begin in May when H-1NF begins operations at 0.5 Telsa field strength

  12. Local-field approximation of homonuclear dipolar interactions in ⁷Li-NMR: density-matrix calculations and random-walk simulations tested by echo experiments on borate glasses.

    Science.gov (United States)

    Storek, Michael; Jeffrey, Kenneth R; Böhmer, Roland

    2014-01-01

    NMR echo techniques have proven to be important to study dynamics in ion conductors and other solid materials. Using the spin-3/2 nucleus (7)Li as a probe, both the quadrupolar and the often neglected homonuclear dipolar interactions modulate the NMR frequency as the ion performs jump processes. Retaining only the local-field term of the many-body Hamiltonian, the impact of the dipolar interaction on various echo experiments was studied using spin dynamics calculations yielding products of dipolar and quadrupolar correlation functions. Using a simple stochastic model these functions were simulated with particular emphasis on the impact of ionic motions and on the conditions under which the dipolar and quadrupolar contributions factorize. The results of the computations and of the random-walk simulations are compared with experimental data obtained for various lithium borate and lithium borophosphate glasses. It is concluded that the local-field approximation is a useful means of treating the Li-Li dipole interactions and that the simple model that we introduce is capable of describing many experimentally observed features. Furthermore, because the dipolar and quadrupolar contributions essentially factorize, a selective determination of the corresponding correlation functions becomes possible. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Connections model for tomographic images reconstruction

    International Nuclear Information System (INIS)

    Rodrigues, R.G.S.; Pela, C.A.; Roque, S.F. A.C.

    1998-01-01

    This paper shows an artificial neural network with an adequately topology for tomographic image reconstruction. The associated error function is derived and the learning algorithm is make. The simulated results are presented and demonstrate the existence of a generalized solution for nets with linear activation function. (Author)

  14. Tomographic image reconstruction from continuous projections

    NARCIS (Netherlands)

    J. Cant (Jeroen); W.J. Palenstijn (Willem Jan); G. Behiels; J. Sijbers (Jan)

    2014-01-01

    htmlabstractAn important design aspect in tomographic image reconstruction is the choice between a step-and-shoot protocol versus continuous X-ray tube movement for image acquisition. A step-and-shoot protocol implies a perfectly still tube during X-ray exposure, and hence involves moving the tube

  15. Case Report: Unusual computed tomographic features of ...

    African Journals Online (AJOL)

    A case report of a 57-year old woman who presented with signs and symptoms of intracranial mass. Computed tomographic (CT) and clinical features were unusual and suggestive of a parasaggital Meningioma. However an accurate diagnosis of a tuberculoma was made at surgery and histopathological examination.

  16. Quantum probability measures and tomographic probability densities

    NARCIS (Netherlands)

    Amosov, GG; Man'ko, [No Value

    2004-01-01

    Using a simple relation of the Dirac delta-function to generalized the theta-function, the relationship between the tomographic probability approach and the quantum probability measure approach with the description of quantum states is discussed. The quantum state tomogram expressed in terms of the

  17. A new ionospheric tomographic algorithm – constrained ...

    Indian Academy of Sciences (India)

    the above algorithms. Finally, the new method is applied to reconstruct the IED distributions using the regional GNSS observation (i.e., GPS) over. China. 2. Tomographic formulation. As is well known, one measurable parameter of the ionosphere is the total electron content (TEC), which is the line integral of IED along ray ...

  18. Dante-Z sequence as selective impulsion in high field mono and multidimensional NMR. Application to the study of proteins, peptides and their interactions

    International Nuclear Information System (INIS)

    Roumestand, C.; Toma, F.

    1992-01-01

    DANTE-Z is a simple and efficient way for NMR spectral selection. We present here different applications of DANTE-Z in high-resolution NMR of peptides and proteins. We have been using proton selective excitation by DANTE-Z to perform 1D-correlated (homo- or heteronuclear) experiments corresponding to one line of either 2D or 3D experiments. Following the same scheme, we could also edit planes of 3D experiments by concatenating 1D-correlated experiments with conventional 2D experiments. In the heteronuclear case (i.e. 1 H, 31 P), we could also edit planes of a 4D experiment by the simultaneous selection of 1 H and the X nucleus. Owing to the favourable excitation profile of DANTE-Z, we used it successfully for topological excitations (spectral width from 150 Hz up to 1500 Hz) in 'semi-soft'-2D experiments and 'soft'-2D experiment. These applications are illustrated by the results obtained at 600 MHz on a protein and a phosphonamide peptide

  19. Direct imaging of neural currents using ultra-low field magnetic resonance techniques

    Science.gov (United States)

    Volegov, Petr L [Los Alamos, NM; Matlashov, Andrei N [Los Alamos, NM; Mosher, John C [Los Alamos, NM; Espy, Michelle A [Los Alamos, NM; Kraus, Jr., Robert H.

    2009-08-11

    Using resonant interactions to directly and tomographically image neural activity in the human brain using magnetic resonance imaging (MRI) techniques at ultra-low field (ULF), the present inventors have established an approach that is sensitive to magnetic field distributions local to the spin population in cortex at the Larmor frequency of the measurement field. Because the Larmor frequency can be readily manipulated (through varying B.sub.m), one can also envision using ULF-DNI to image the frequency distribution of the local fields in cortex. Such information, taken together with simultaneous acquisition of MEG and ULF-NMR signals, enables non-invasive exploration of the correlation between local fields induced by neural activity in cortex and more `distant` measures of brain activity such as MEG and EEG.

  20. Solid-state NMR basic principles and practice

    CERN Document Server

    Apperley, David C; Hodgkinson, Paul

    2014-01-01

    Nuclear Magnetic Resonance (NMR) has proved to be a uniquely powerful and versatile tool for analyzing and characterizing chemicals and materials of all kinds. This book focuses on the latest developments and applications for "solid-state" NMR, which has found new uses from archaeology to crystallography to biomaterials and pharmaceutical science research. The book will provide materials engineers, analytical chemists, and physicists, in and out of lab, a survey of the techniques and the essential tools of solid-state NMR, together with a practical guide on applications. In this concise introduction to the growing field of solid-state nuclear magnetic resonance spectroscopy The reader will find: * Basic NMR concepts for solids, including guidance on the spin-1/2 nuclei concept * Coverage of the quantum mechanics aspects of solid state NMR and an introduction to the concept of quadrupolar nuclei * An understanding relaxation, exchange and quantitation in NMR * An analysis and interpretation of NMR data, with e...

  1. Pressure spectra from single-snapshot tomographic PIV

    Science.gov (United States)

    Schneiders, Jan F. G.; Avallone, Francesco; Pröbsting, Stefan; Ragni, Daniele; Scarano, Fulvio

    2018-03-01

    The power spectral density and coherence of temporal pressure fluctuations are obtained from low-repetition-rate tomographic PIV measurements. This is achieved by extension of recent single-snapshot pressure evaluation techniques based upon the Taylor's hypothesis (TH) of frozen turbulence and vortex-in-cell (VIC) simulation. Finite time marching of the measured instantaneous velocity fields is performed using TH and VIC. Pressure is calculated from the resulting velocity time series. Because of the theoretical limitations, the finite time marching can be performed until the measured flow structures are convected out of the measurement volume. This provides a lower limit of resolvable frequency range. An upper limit is given by the spatial resolution of the measurements. Finite time-marching approaches are applied to low-repetition-rate tomographic PIV data of the flow past a straight trailing edge at 10 m/s. Reference results of the power spectral density and coherence are obtained from surface pressure transducers. In addition, the results are compared to state-of-the-art experimental data obtained from time-resolved tomographic PIV performed at 10 kHz. The time-resolved approach suffers from low spatial resolution and limited maximum acquisition frequency because of hardware limitations. Additionally, these approaches strongly depend upon the time kernel length chosen for pressure evaluation. On the other hand, the finite time-marching approaches make use of low-repetition-rate tomographic PIV measurements that offer higher spatial resolution. Consequently, increased accuracy of the power spectral density and coherence of pressure fluctuations are obtained in the high-frequency range, in comparison to the time-resolved measurements. The approaches based on TH and VIC are found to perform similarly in the high-frequency range. At lower frequencies, TH is found to underestimate coherence and intensity of the pressure fluctuations in comparison to time-resolved PIV

  2. An extension of the Czjzek model for the distributions of electric field gradients in disordered solids and an application to NMR spectra of {sup 71}Ga in chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Le Caer, Gerard [Institut de Physique de Rennes, UMR UR1-CNRS 6251, Universite de Rennes I, Campus de Beaulieu, Batiment 11A, 35042 Rennes Cedex (France); Bureau, Bruno [Equipe Verres et Ceramiques, UMR-CNRS 6226 Sciences Chimiques de Rennes, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Massiot, Dominique, E-mail: gerard.le-caer@univ-rennes1.f, E-mail: bruno.bureau@univ-rennes1.f, E-mail: dominique.massiot@cnrs-orleans.f [Centre de Recherches sur les Materiaux a Hautes Temperatures, UPR 4212 CNRS, 1D avenue de la Recherche Scientifique, 45071 Orleans Cedex 2 (France)

    2010-02-17

    First, the basis and the characteristics of the Czjzek model for the distribution of electric field gradient (EFG) tensor in disordered solids, some of which are still unnoticed, are depicted. That model results from the statistical invariance by rotation of the structure of the considered disordered solid and from the applicability of a central limit theorem to the EFG tensor. These two conditions, which are physically realistic for a wealth of disordered solids, simplify tremendously the derivation of the EFG distribution but at the cost of a complete loss of structural information about the investigated solid. Next, we describe a simple extension of it which is intended to mimic a well-defined local environment, with given values of the asymmetry parameter and of the principal component V{sub zz} of the EFG tensor, perturbed by the disorder of more remote atoms. The effect of disorder is rendered by a Gaussian (Czjzek) noise with an adjustable weight relative to V{sub zz}. The number of free parameters is limited to three, as compared to a sole scale factor for the Czjzek model. Its characteristics are described as a function of the given asymmetry parameter and of the strength of the noise. The aim is to lead to a practical tool which may help to retrieve, as far as possible, the information about the local environment perturbed by disorder from hyperfine measurements and notably from NMR spectra of quadrupolar nuclei. As an example, that extension is applied to some static NMR spectra of {sup 71}Ga in covalent glasses. Calculated static {sup 71}Ga NMR lineshapes are shown as a function of the parameters of the extended model.

  3. Crystallographically-based analysis of the NMR spectra of maghemite

    International Nuclear Information System (INIS)

    Spiers, K.M.; Cashion, J.D.

    2012-01-01

    All possible iron environments with respect to nearest neighbour vacancies in vacancy-ordered and vacancy-disordered maghemite have been evaluated and used as the foundation for a crystallographically-based analysis of the published NMR spectra of maghemite. The spectral components have been assigned to particular configurations and excellent agreement obtained in comparing predicted spectra with published spectra taken in applied magnetic fields. The broadness of the published NMR lines has been explained by calculations of the magnetic dipole fields at the various iron sites and consideration of the supertransferred hyperfine fields. - Highlights: ► Analysis of 57 Fe NMR of maghemite based on vacancy ordering and nearest neighbour vacancies. ► Assignment of NMR spectral components based on crystallographic analysis of unique iron sites. ► Strong agreement between predicted spectra and published spectra taken in applied magnetic fields. ► Maghemite NMR spectral broadening due to various iron sites and supertransferred hyperfine field.

  4. Tomographic PIV measurements in a turbulent lifted jet flame

    Science.gov (United States)

    Weinkauff, J.; Michaelis, D.; Dreizler, A.; Böhm, B.

    2013-12-01

    Measurements of instantaneous volumetric flow fields are required for an improved understanding of turbulent flames. In non-reacting flows, tomographic particle image velocimetry (TPIV) is an established method for three-dimensional (3D) flow measurements. In flames, the reconstruction of the particles location becomes challenging due to a locally varying index of refraction causing beam-steering. This work presents TPIV measurements within a turbulent lifted non-premixed methane jet flame. Solid seeding particles were used to provide the 3D flow field in the vicinity of the flame base, including unburned and burned regions. Four cameras were arranged in a horizontal plane around the jet flame. Following an iterative volumetric self-calibration procedure, the remaining disparity caused by the flame was less than 0.2 pixels. Comparisons with conventional two-component PIV in terms of mean and rms values provided additional confidence in the TPIV measurements.

  5. A feasibility study on gamma-ray tomography by Monte Carlo simulation for development of portable tomographic system.

    Science.gov (United States)

    Kim, Jongbum; Jung, Sunghee; Moon, Jinho; Cho, Gyuseong

    2012-02-01

    The electron beam X-ray tomographic scanner has been used in industrial and medical field since it was developed two decades ago. However, X-ray electron beam tomography has remained as indoor equipment because of its bulky hardware of X-ray generation devices. By replacing X-ray devices of electron beam CT with a gamma-ray source, a tomographic system can be a portable device. This paper introduces analysis and simulation results on industrial gamma-ray tomographic system with scanning geometry similar to electron beam CT. The gamma-ray tomographic system is introduced through the geometrical layout and analysis on non-uniformly distributed problem. The proposed system adopts clamp-on type device to actualize portable industrial system. MCNPx is used to generate virtual experimental data. Pulse height spectra from F8 tally of MCNPx are obtained for single channel counting data of photo-peak and gross counting. Photo-peak and gross counting data are reconstructed for the cross-sectional image of simulation phantoms by ART, Total Variation algorithm and ML-EM. Image reconstruction results from Monte Carlo simulation show that the proposed tomographic system can provide the image solution for industrial objects. Those results provide the preliminary data for the tomographic scanner, which will be developed in future work. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A feasibility study on gamma-ray tomography by Monte Carlo simulation for development of portable tomographic system

    International Nuclear Information System (INIS)

    Kim, Jongbum; Jung, Sunghee; Moon, Jinho; Cho, Gyuseong

    2012-01-01

    The electron beam X-ray tomographic scanner has been used in industrial and medical field since it was developed two decades ago. However, X-ray electron beam tomography has remained as indoor equipment because of its bulky hardware of X-ray generation devices. By replacing X-ray devices of electron beam CT with a gamma-ray source, a tomographic system can be a portable device. This paper introduces analysis and simulation results on industrial gamma-ray tomographic system with scanning geometry similar to electron beam CT. The gamma-ray tomographic system is introduced through the geometrical layout and analysis on non-uniformly distributed problem. The proposed system adopts clamp-on type device to actualize portable industrial system. MCNPx is used to generate virtual experimental data. Pulse height spectra from F8 tally of MCNPx are obtained for single channel counting data of photo-peak and gross counting. Photo-peak and gross counting data are reconstructed for the cross-sectional image of simulation phantoms by ART, Total Variation algorithm and ML-EM. Image reconstruction results from Monte Carlo simulation show that the proposed tomographic system can provide the image solution for industrial objects. Those results provide the preliminary data for the tomographic scanner, which will be developed in future work. - Highlights: ► We carried out feasibility study on gamma-ray tomography with electron beam CT scanning geometry. ► Gamma ray tomographic system is introduced through geometrical layout and analysis on non-uniformly distributed problem. ► We carried out MCNPx simulation for proposed geometry. ► Results show that this system can be used for transportable tomographic system.

  7. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  8. Present state and development of positron tomographs

    International Nuclear Information System (INIS)

    Allemand, R.; Gariod, R.; Laval, M.; Tournier, F.

    1979-01-01

    This document presents the main characteristics of positron tomographs and analyses the relative importance of the parameters to be taken into consideration in the design of a tomograph: on the one hand, the physical parameters linked to the measurement of the annihilation photons by time coincidence and, on the other, the geometrical and technological parameters of prime importance in minimizing the many spurious effects. The last part endeavours to show this sort of instrumentation has evolved. Using the results obtained in our laboratory by mathematical simulation, the expected advantages are presented on the picture quality of the time of flight measurement of annihilation photons. Where the physical aspects of this method are concerned, the advantage of using cesium fluoride as scintillator is demonstrated [fr

  9. Tomographic Techniques for Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik

    challenge. This dissertation deals with tomographic techniques based on multiphase-center radars that represent state-of-the-art technology within thefield of ice sounding. The use of advanced tomographic processing forclutter suppression is investigated, which up to this point has beenlargely unexplored...... in the literature. The investigation also includes atheoretical study of beamforming and direction-of-arrival (DOA) estimationtechniques. In addition to the primary treatment of clutter suppression,additional novel applications of tomography are also explored. Based on an experimental multi-phase-center dataset...... discrimination of the desired bed return from strong surface clutter ispresented. The technique is applied to data from the channel of the challengingJakobshavn Glacier acquired with the Multi-channel CoherentiiiRadar Depth Sounder/Imager (MCoRDS/I), where it is shown how thetechnique can be used to close some...

  10. Addition of Tomographic Capabilities to NMIS

    CERN Document Server

    Mullens, J A

    2003-01-01

    This paper describes tomographic capabilities for the Nuclear Materials Identification System (NMIS). The tomographic capabilities add weapons component spatial and material properties information that result in a more detailed item signature (template) and provide more information for physical attributes analyses. The Nuclear Materials Identification System (NMIS) is used routinely to confirm the identity of HEU components in sealed containers. It does this through a radiation signature acquired by shining a sup 2 sup 5 sup 2 Cf source through the container and measuring the radiation at four detectors stacked vertically on the other side. This measurement gives a gamma and neutron radiation transmission profile of the weapons component, mixed with the radiation production due to the induced fissions in the fissile materials. This information is sufficient to match an ''unknown'' weapons component signature to a template signature from a reference item when measuring under controlled conditions. Tomography m...

  11. Addition of Tomographic Capabilities to NMIS

    Energy Technology Data Exchange (ETDEWEB)

    Mullens, J.A.

    2003-03-11

    This paper describes tomographic capabilities for the Nuclear Materials Identification System (NMIS). The tomographic capabilities add weapons component spatial and material properties information that result in a more detailed item signature (template) and provide more information for physical attributes analyses. The Nuclear Materials Identification System (NMIS) is used routinely to confirm the identity of HEU components in sealed containers. It does this through a radiation signature acquired by shining a {sup 252}Cf source through the container and measuring the radiation at four detectors stacked vertically on the other side. This measurement gives a gamma and neutron radiation transmission profile of the weapons component, mixed with the radiation production due to the induced fissions in the fissile materials. This information is sufficient to match an ''unknown'' weapons component signature to a template signature from a reference item when measuring under controlled conditions. Tomography measures the interior of an item by making transmission measurements from all angles around the item, whereas NMIS makes the measurements from a single angle. Figure 1 is a standard example of tomographic reconstruction, the Shepp-Logan human brain phantom. The measured quantity is attenuation so high values (white) are highly attenuating areas.

  12. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  13. O-17 NMR measurement of water

    International Nuclear Information System (INIS)

    Fukazawa, Nobuyuki

    1990-01-01

    Recently, attention has been paid to the various treatment of water and the utilization of water by magnetic treatment, electric field treatment and so on. It has been said that by these treatments, the change in the properties of water arises. The state of this treated water cannot be explained by the properties of water from conventional physical and chemical standpoints. In addition, the method of measurement of whether the change arose or not is not yet determined. It is necessary to establish the method of measurement for the basic state of water. In this study, O-17 NMR which observes the state of water directly at molecular or atomic level was investigated as the method of measuring water. The measurement of O-17 NMR was carried out with a JNR 90Q FT NMR of Fourier transformation type of JEOL Ltd. The experimental method and the results are reported. The result of measurement of the O-17 NMR spectrum for distilled ion exchange water is shown. It is know that it has very wide line width as compared with the NMR spectra of protons and C-13. The relative sensitivity of O-17 observation is about 1/100,000 of that of protons. As to the information on the state of water obtained by O-17 NMR, there are chemical shift and line width. As temperature rose, the line width showed decrease, which seemed to be related to the decrease of hydrogen combination. (K.I.)

  14. Bayesian tomographic reconstruction of microsystems

    International Nuclear Information System (INIS)

    Salem, Sofia Fekih; Vabre, Alexandre; Mohammad-Djafari, Ali

    2007-01-01

    The microtomography by X ray transmission plays an increasingly dominating role in the study and the understanding of microsystems. Within this framework, an experimental setup of high resolution X ray microtomography was developed at CEA-List to quantify the physical parameters related to the fluids flow in microsystems. Several difficulties rise from the nature of experimental data collected on this setup: enhanced error measurements due to various physical phenomena occurring during the image formation (diffusion, beam hardening), and specificities of the setup (limited angle, partial view of the object, weak contrast).To reconstruct the object we must solve an inverse problem. This inverse problem is known to be ill-posed. It therefore needs to be regularized by introducing prior information. The main prior information we account for is that the object is composed of a finite known number of different materials distributed in compact regions. This a priori information is introduced via a Gauss-Markov field for the contrast distributions with a hidden Potts-Markov field for the class materials in the Bayesian estimation framework. The computations are done by using an appropriate Markov Chain Monte Carlo (MCMC) technique.In this paper, we present first the basic steps of the proposed algorithms. Then we focus on one of the main steps in any iterative reconstruction method which is the computation of forward and adjoint operators (projection and backprojection). A fast implementation of these two operators is crucial for the real application of the method. We give some details on the fast computation of these steps and show some preliminary results of simulations

  15. 3D velocity measurements in a premixed flame by tomographic PIV

    International Nuclear Information System (INIS)

    Tokarev, M P; Sharaborin, D K; Lobasov, A S; Chikishev, L M; Dulin, V M; Markovich, D M

    2015-01-01

    Tomographic particle image velocimetry (PIV) has become a standard tool for 3D velocity measurements in non-reacting flows. However, the majority of the measurements in flows with combustion are limited to small resolved depth compared to the size of the field of view (typically 1 : 10). The limitations are associated with inhomogeneity of the volume illumination and the non-uniform flow seeding, the optical distortions and errors in the 3D calibration, and the unwanted flame luminosity. In the present work, the above constraints were overcome for the tomographic PIV experiment in a laminar axisymmetric premixed flame. The measurements were conducted for a 1 : 1 depth-to-size ratio using a system of eight CCD cameras and a 200 mJ pulsed laser. The results show that camera calibration based on the triangulation of the tracer particles in the non-reacting conditions provided reliable accuracy for the 3D image reconstruction in the flame. The modification of the tomographic reconstruction allowed a posteriori removal of unwanted bright objects, which were located outside of the region of interest but affected the reconstruction quality. This study reports on a novel experience for the instantaneous 3D velocimetry in laboratory-scale flames by using tomographic PIV. (paper)

  16. Tomotherapy: IMRT and tomographic verification

    International Nuclear Information System (INIS)

    Mackie, T.R.

    2000-01-01

    Full text: External beam radiation therapy delivery began around the turn of the century with the use of one or a few kilovoltage beams directed to the presumed site of the tumor. Often the treatment lasted until erythema dose was reached. Delivering the beams rotationally allowed the dose to be focused on the tumor and the skin to be spared. With the advent of megavoltage radiation therapy in the 1950's, using Co-60 teletherapy and betatrons, the treatment could once again be delivered from only a few beam directions and the dose to the skin would be kept below tolerance. Fields were shaped by lead blocks and later by custom-made blocks fabricated from low-melting temperature heavy metal. Linear accelerators did not fundamentally change the way in which radiation was delivered. It is likely that this delivery paradigm would not have changed had it not been for the advent of computers. Brahme and Cormack showed in the late 1980's that highly conformal treatments could be delivered with non-uniform intensity beams. At that time the only way in which the intensity modulated beams could be delivered was using custom-milled compensators. Fabricating and using compensators for multiple fields is time-consuming and labor-intensive. Serial tomotherapy was the first successful delivery method for IMRT and went back to the earlier practice of rotation therapy. The NOMOS Peacock system uses a binary (on-off) multileaf collimator (MLC) system to modulate a fan beam of radiation. It uses an optimization system to determine when leaves should be opened and closed. The system delivers two beam slices at once and the couch is indexed to the next slices by precisely translating the couch. This approach was first used in 1994 and to-date has treated several thousand patients. Prior to the advent of IMRT, accelerator vendors introduced the multileaf collimator (MLC) to provide field shaping without the need to fabricate custom blocking. Most new linear accelerator purchases today

  17. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.O.; Sutton; Ell, P.

    1986-01-01

    The object of this book is to discuss and evaluate an area of Nuclear Magnetic Resonance which to date has been less emphasized than it might be, namely the use of NMR for functional studies. The book commences with a discussion of the areas in which the NMR techniques might be needed due to deficiencies in other techniques. The physics of NMR especially relating to functional measurement are then explained. Technical factors in producing functional images are discussed and the use of paramagnetic substances for carrying out flow studies are detailed. Particular attention is paid to specific studies in the various organs. The book ends with a survey of imaging in each organ and the relation of NMR images to other techniques such as ultrasound, nuclear medicine and X-rays

  18. Functional studies using NMR

    International Nuclear Information System (INIS)

    McCready, V.R.; Leach, M.; Ell, P.J.

    1987-01-01

    This volume is based on a series of lectures delivered at a one-day teaching symposium on functional and metabolic aspects of NMR measurements held at the Middlesex Hospital Medical School on 1st September 1985 as a part of the European Nuclear Medicine Society Congress. Currently the major emphasis in medical NMR in vivo is on its potential to image and display abnormalities in conventional radiological images, providing increased contrast between normal and abnormal tissue, improved definition of vasculature, and possibly an increased potential for differential diagnosis. Although these areas are undeniably of major importance, it is probable that NMR will continue to complement conventional measurement methods. The major potential benefits to be derived from in vivo NMR measurements are likely to arise from its use as an instrument for functional and metabolic studies in both clinical research and in the everyday management of patients. It is to this area that this volume is directed

  19. Tomographic visualization of stress corrosion cracks in tubing

    International Nuclear Information System (INIS)

    Morris, R.A.; Kruger, R.P.; Wecksung, G.W.

    1979-06-01

    A feasibility study was conducted to determine the possibility of detecting and sizing cracks in reactor cooling water tubes using tomographic techniques. Due to time and financial constraints, only one tomographic reconstruction using the best technique available was made. The results indicate that tomographic reconstructions can, in fact, detect cracks in the tubing and might possibly be capable of measuring the depth of the cracks. Limits of detectability and sensitivity have not been determined but should be investigated in any future work

  20. A miniature electrical capacitance tomograph

    Science.gov (United States)

    York, T. A.; Phua, T. N.; Reichelt, L.; Pawlowski, A.; Kneer, R.

    2006-08-01

    The paper describes a miniature electrical capacitance tomography system. This is based on a custom CMOS silicon integrated circuit comprising eight channels of signal conditioning electronics to source drive signals and measure voltages. Electrodes are deposited around a hole that is fabricated, using ultrasonic drilling, through a ceramic substrate and has an average diameter of 0.75 mm. The custom chip is interfaced to a host computer via a bespoke data acquisition system based on a microcontroller, field programmable logic device and wide shift register. This provides fast capture of up to 750 frames of data prior to uploading to the host computer. Data capture rates of about 6000 frames per second have been achieved for the eight-electrode sensor. This rate could be increased but at the expense of signal to noise. Captured data are uploaded to a PC, via a RS232 interface, for off-line imaging. Initial tests are reported for the static case involving 200 µm diameter rods that are placed in the sensor and for the dynamic case using the dose from an inhaler.

  1. UC Merced NMR Instrumentation Acquisition

    Science.gov (United States)

    2015-06-18

    UC Merced NMR Instrumentation Acquisition For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500 MHz NMR...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. University of California - Merced 5200 North Lake Road Merced , CA 95343...UC Merced NMR Instrumentation Acquisition Report Title For the UC Merced NMR Instrumentation Acquisition proposal, a new 400 MHz and an upgraded 500

  2. Organ-Specific Differential NMR-Based Metabonomic Analysis of Soybean [Glycine max (L. Merr.] Fruit Reveals the Metabolic Shifts and Potential Protection Mechanisms Involved in Field Mold Infection

    Directory of Open Access Journals (Sweden)

    Wen-yu Yang

    2017-04-01

    Full Text Available Prolonged, continuous rainfall is the main climatic characteristic of autumn in Southwest China, and it has been found to cause mildew outbreaks in pre-harvest soybean fields. Low temperature and humidity (LTH stress during soybean maturation in the field promotes pre-harvest mildew, resulting in damage to different organs of soybean fruits to different extents, but relatively little information on the resistance mechanisms in these fruits is available. Therefore, to understand the metabolic responses of soybean fruits to field mold (FM, the metabonomic variations induced by LTH were characterized using proton nuclear magnetic resonance spectroscopy (1H-NMR, and the primary metabolites from the pod, seed coat and cotyledon of pre-harvest soybean were quantified. Analysis of FM-damaged soybean germplasms with different degrees of resistance to FM showed that extracts were dominated by 66 primary metabolites, including amino acids, organic acids and sugars. Each tissue had a characteristic metabolic profile, indicating that the metabolism of proline in the cotyledon, lysine in the seed coat, and sulfur in the pod play important roles in FM resistance. The primary-secondary metabolism interface and its potential contribution to FM resistance was investigated by targeted analyses of secondary metabolites. Both the seed coat and the pod have distinct but nonexclusive metabolic responses to FM, and these are functionally integrated into FM resistance mechanisms.

  3. Properties of the manganese(II) binding site in ternary complexes of Mnter dot ADP and Mnter dot ATP with chloroplast coupling factor 1: Magnetic field dependence of solvent sup 1 H and sup 2 H NMR relaxation rates

    Energy Technology Data Exchange (ETDEWEB)

    Haddy, A.E.; Frasch, W.D.; Sharp, R.R. (Univ. of Michigan, Ann Arbor (USA))

    1989-05-02

    The influence of the binding of ADP and ATP on the high-affinity Mn(II) binding site of chloroplast coupling factor 1 (CF{sub 1}) was studied by analysis of field-dependent solvent proton and deuteron spin-lattice relaxation data. In order to characterize metal-nucleotide complexes of CF{sub 1} under conditions similar to those of the NMR experiments, the enzyme was analyzed for bound nucleotides and Mn(II) after incubation with AdN and MnCl{sub 2} and removal of labile ligands by extensive gel filtration chromatography. In the field-dependent NMR experiments, the Mn(II) binding site of CF{sub 1} was studied for three mole ratios of added Mn(II) to CF{sub 1}, 0.5, 1.0, and 1.5, in the presence of an excess of either ADP or ATP. The results were extrapolated to zero Mn(II) concentration to characterize the environment of the first Mn(II) binding site of Cf{sub 1}. In the presence of both adenine nucleotides, pronounced changes in the Mn(II) environment relative to that in Mn(II)-CF{sub 1} were evident; the local relaxation rate maxima were more pronounced and shifted to higher field strengths, and the relaxation rate per bound Mn(II) increased at all field strengths. Analysis of the data revealed that the number of exchangeable water molecules liganded to bound Mn(II) increased from one in the binary Mn(II)-CF{sub 1} complex to three and two in the ternary Mn(II)-ADP-CF{sub 1} and Mn(II)-ATP-CF{sub 1} complexes, respectively; these results suggest that a water ligand to bound Mn(II) in the Mn(II)-ADP-CF{sub 1} complex is replaced by the {gamma}-phosphate of ATP in the Mn(II)-ATP-CF{sub 1} complex. A binding model is presented to account for these observations.

  4. NMR and domain wall mobility in intermetallic compounds

    International Nuclear Information System (INIS)

    Guimaraes, A.P.; Sampaio, L.C.; Cunha, S.F.; Alves, K.M.B.

    1991-01-01

    The technique of pulsed NMR can be used to study the distribution of hyperfine fields in a magnetic matrix. The dynamics of the domain walls are relevant to the generation of NMR signals. In the present study on the (R x Y 1-x ) Fe 2 intermetallic compounds, the reduction in the signals is associated to increased propagation fields. This indicates that a smaller domain wall mobility is at the origin of these effects. NMR spectra in this system show the importance of direct and indirect (i.e., mediated by Fe atoms) terms in the transferred hyperfine field. (author)

  5. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr., E-mail: ncn@inano.au.dk [Center for Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, DK-8000 Aarhus C (Denmark); Khaneja, Navin [Division of Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C′) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C′-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  6. Original circuitry for TOHR tomograph; Une electronique originale pour le tomographe TOHR

    Energy Technology Data Exchange (ETDEWEB)

    Cuzon, J.C.; Pinot, L. [Services Techniques, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France)

    1999-11-01

    Having industrialization in mind, a specific electronics for a high resolution tomograph is designed out of the usual standards of nuclear physics. All the information are converted in the time domain and a fast processor, in front of the data acquisition, carries out the time and energy coincidences. (authors) 2 refs., 2 figs.

  7. Computed Tomographic Perfusion Improves Diagnostic Power of Coronary Computed Tomographic Angiography in Women

    DEFF Research Database (Denmark)

    Penagaluri, Ashritha; Higgins, Angela Y.; Vavere, Andrea L

    2016-01-01

    Background-Coronary computed tomographic angiography (CTA) and myocardial perfusion imaging (CTP) is a validated approach for detection and exclusion of flow-limiting coronary artery disease (CAD), but little data are available on gender-specific performance of these modalities. In this study, we...

  8. Intravenous volume tomographic pulmonary angiography imaging

    Science.gov (United States)

    Ning, Ruola; Strang, John G.; Chen, Biao; Conover, David L.; Yu, Rongfeng

    1999-05-01

    This study presents a new intravenous (IV) tomographic angiography imaging technique, called intravenous volume tomographic digital angiography (VTDA) for cross sectional pulmonary angiography. While the advantages of IV-VTDA over spiral CT in terms of volume scanning time and resolution have been validated and reported in our previous papers for head and neck vascular imaging, the superiority of IV-VTDA over spiral CT for cross sectional pulmonary angiography has not been explored yet. The purpose of this study is to demonstrate the advantage of isotropic resolution of IV-VTDA in the x, y and z directions through phantom and animal studies, and to explore its clinical application for detecting clots in pulmonary angiography. A prototype image intensifier-based VTDA imaging system has been designed and constructed by modifying a GE 8800 CT scanner. This system was used for a series of phantom and dog studies. A pulmonary vascular phantom was designed and constructed. The phantom was scanned using the prototype VTDA system for direct 3D reconstruction. Then the same phantom was scanned using a GE CT/i spiral CT scanner using the routine pulmonary CT angiography protocols. IV contrast injection and volume scanning protocols were developed during the dog studies. Both VTDA reconstructed images and spiral CT images of the specially designed phantom were analyzed and compared. The detectability of simulated vessels and clots was assessed as the function of iodine concentration levels, oriented angles, and diameters of the vessels and clots. A set of 3D VTDA reconstruction images of dog pulmonary arteries was obtained with different IV injection rates and isotropic resolution in the x, y and z directions. The results of clot detection studies in dog pulmonary arteries have also been shown. This study presents a new tomographic IV angiography imaging technique for cross sectional pulmonary angiography. The results of phantom and animal studies indicate that IV-VTDA is

  9. Computed tomographic findings of traumatic intracranial lesions

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seong Wook; Kim, Il Young; Lee, Byung Ho; Kim, Ki Jeoung; Yoon, Il Gyu [Soonchunhyang University College of Medicine, Seoul (Korea, Republic of)

    1985-10-15

    Traumatic intracranial lesion has been one of the most frequent and serious problem in neurosurgical pathology. Computed tomography made it possible to get prompt diagnosis and surgical intervention of intracranial lesions by its safety, fastness and accuracy. Computed tomographic scan was carried out on 1309 cases at Soonchunhyang Chunan Hospital for 15 months from October 1983 to December 1984. We have reviewed the computed tomographic scans of 264 patients which showed traumatic intracranial lesion. The result were as follows: 1. Head trauma was the most frequent diagnosed disease using computed tomographic scans (57.8%) and among 264 cases the most frequent mode of injury was traffic accident (73.9%). 2. Skull fracture was accompanied in frequency of 69.7% and it was detected in CT in 38.6%: depression fracture was more easily detected in 81%. 3. Conutercoup lesion (9.5%) was usually accompanied with temporal and occipital fracture, and it appeared in lower incidence among pediatric group. 4. Intracranial lesions of all 264 cases were generalized cerebral swelling (24.6%), subdural hematoma (22.3%), epidural hematoma (20.8%), intracerebral hematoma (6.1%), and subarachnoid hemorrhage (3.0%). 5. The shape of hematoma was usually biconvex (92.7%) in acute epidural hematoma and cresentic (100%) in acute subdural hematoma, but the most chronic the case became, they showed planoconvex and bicconvex shapes. 6. Extra-axial hematoma was getting decreased in density as time gone by. 7. Hematoma density was not in direct proportion to serum hemoglobin level as single factor.

  10. NMR characterization of polymers: Review and update

    Science.gov (United States)

    NMR spectroscopy is a major technique for the characterization and analysis of polymers. A large number of methodologies have been developed in both the liquid and the solid state, and the literature has grown considerably (1-5). The field now covers a broad spectrum of activities, including polym...

  11. Synthesis and NMR Elucidation of Novel Pentacycloundecane ...

    African Journals Online (AJOL)

    NICO

    2012-01-24

    Jan 24, 2012 ... research in this field, the NMR assignments of five PCU deriva- tives (1–5) ... macology.4,11 We have recently reported a family of PCU lactam .... These assignments are presented in Table 2. RESEARCH ARTICLE. R. Karpoormath, O.K. Onajole, T. Naicker, T. Govender, G.E.M. Maguire and H.G. Kruger.

  12. Tomographic image reconstruction using training images

    DEFF Research Database (Denmark)

    Soltani, Sara; Andersen, Martin Skovgaard; Hansen, Per Christian

    2017-01-01

    the framework of sparse learning as a regularized non-negative matrix factorization. Incorporating the dictionary as a prior in a convex reconstruction problem, we then find an approximate solution with a sparse representation in the dictionary. The dictionary is applied to non-overlapping patches of the image......We describe and examine an algorithm for tomographic image reconstruction where prior knowledge about the solution is available in the form of training images. We first construct a non-negative dictionary based on prototype elements from the training images; this problem is formulated within...

  13. Tomographic Heating Holder for In Situ TEM

    DEFF Research Database (Denmark)

    Gontard, Lionel C.; Dunin-Borkowski, Rafal E.; Fernández, Asunción

    2014-01-01

    A tomographic heating holder for transmission electron microscopy that can be used to study supported catalysts at temperatures of up to ~1,500°C is described. The specimen is placed in direct thermal contact with a tungsten filament that is oriented perpendicular to the axis of the holder without...... distributions and changes in active surface area are quantified from tilt series of images acquired after subjecting the specimens to increasing temperatures. The porosity of the alumina support and the sintering mechanisms of the catalysts are shown to depend on distance from the heating filament....

  14. E-learn Computed Tomographic Angiography

    DEFF Research Database (Denmark)

    Havsteen, Inger; Christensen, Anders; Nielsen, Jens K

    2012-01-01

    BACKGROUND: Computed tomographic angiography (CTA) is widely available in emergency rooms to assess acute stroke patients. To standardize readings and educate new readers, we developed a 3-step e-learning tool based on the test-teach-retest methodology in 2 acute stroke scenarios: vascular...... the teaching segment; the test size was 40% of the teaching segment size. We assessed diagnostic accuracy and readers' confidence. Results were compared using the Wilcoxon rank sum test. RESULTS: Four neurologic consultants and four radiologic residents completed the program. The vascular occlusion teaching...

  15. An intragastric trichobezoar: computerised tomographic appearance.

    Directory of Open Access Journals (Sweden)

    Morris B

    2000-04-01

    Full Text Available A 26-year-old lady presented with a history of abdominal pain and distension since two months. The ultrasound examination showed an epigastric mass, which was delineated as a filling defect in the stomach on barium studies. The computerised tomographic scan showed a gastric mass with pockets of air in it, without post-contrast enhancement. This case highlights the characteristic appearance on computerised tomography of a bezoar within the stomach, a feature that is not commonly described in medical literature.

  16. Computed tomographic study in children with microcephaly

    International Nuclear Information System (INIS)

    Ito, Masatoshi; Okuno, Takehiko; Mikawa, Haruki

    1989-01-01

    Computed tomographic (CT) brain scanning was performed on fifty-eight infants and children with microcephaly. CT scans were useful for detecting unsuspected brain lesions and for diagnosing underlying diseases. The head size did not correlate with the CT findings, the degree of mental retardation, or the existence of motor disturbance or epilepsy. On the other hand, the CT findings were correlated with the degree of mental retardation, and the existence of motor disturbance or epilepsy. CT scans were useful for determining the prognosis of the microcephaly. (author)

  17. Optimization and Application of Surface Segmentation Technique for Tomographic PIV

    Science.gov (United States)

    Ding, Liuyang; Adrian, Ronald; Wilson, Brandon; Prestridge, Kathy; Team

    2014-11-01

    Tomographic PIV is a widely used 3D flow measurement technique. It utilizes images recorded by multiple cameras to reconstruct the intensity distribution of a measured volume. The 3D3C velocity field is then computed by 3D cross-correlation. Surface segmentation aims to reduce computational cost. It extracts from a cloud of particles an image of those particles that lie on a mathematically prescribed surface. 2D2C velocity fields are computed on stacks of orthogonal surfaces, then assembled to construct the full 3D3C velocity field. We investigate the reconstruction of adaptive surfaces aligned with the main flow direction minimizing the out-of-plane motion. Numerical assessment is performed on curved-surface reconstruction for Taylor-Couette flow. An optimizing 2D interrogation scheme involving volumetric deformation is proposed to improve the accuracy of the 3D3C velocity field. The numerical test is performed on a synthetic vortex ring showing good measurement accuracy. Experimental results measuring the shock-driven turbulent mixing will also be presented. References

  18. Teaching NMR Using Online Textbooks

    Directory of Open Access Journals (Sweden)

    Joseph P. Hornak

    1999-12-01

    Full Text Available Nuclear magnetic resonance (NMR spectroscopy has almost become an essential analytical tool for the chemist. High-resolution one- and multi-dimensional NMR, timedomain NMR, and NMR microscopy are but a few of the NMR techniques at a chemist's disposal to determine chemical structure and dynamics. Consequently, even small chemistry departments are finding it necessary to provide students with NMR training and experience in at least some of these techniques. The hands-on experience is readily provided with access to state-of-the-art commercial spectrometers. Instruction in the principles of NMR is more difficult to achieve as most instructors try to teach NMR using single organic or analytical chemistry book chapters with static figures. This paper describes an online textbook on NMR spectroscopy called The Basics of NMR (http://www.cis.rit.edu/htbooks/nmr/ suitable for use in teaching the principles of NMR spectroscopy. The book utilizes hypertext and animations to present the principles of NMR spectroscopy. The book can be used as a textbook associated with a lecture or as a stand-alone teaching tool. Conference participants are encouraged to review the textbook and evaluate its suitability for us in teaching NMR spectroscopy to undergraduate chemistry majors.

  19. Portable tomographic PIV measurements of swimming shelled Antarctic pteropods

    Science.gov (United States)

    Adhikari, Deepak; Webster, Donald R.; Yen, Jeannette

    2016-12-01

    A portable tomographic particle image velocimetry (tomographic PIV) system is described. The system was successfully deployed in Antarctica to study shelled Antarctic pteropods ( Limacina helicina antarctica)—a delicate organism with an unusual propulsion mechanism. The experimental setup consists of a free-standing frame assembled with optical rails, thus avoiding the need for heavy and bulky equipment (e.g. an optical table). The cameras, lasers, optics, and tanks are all rigidly supported within the frame assembly. The results indicate that the pteropods flap their parapodia (or "wings") downward during both power and recovery strokes, which is facilitated by the pitching of their shell. Shell pitching significantly alters the flapping trajectory, allowing the pteropod to move vertically and/or horizontally. The pronation and supination of the parapodia, together with the figure-eight motion during flapping, suggest similarities with insect flight. The volumetric velocity field surrounding the freely swimming pteropod reveals the generation of an attached vortex ring connecting the leading-edge vortex to the trailing-edge vortex during power stroke and a presence of a leading-edge vortex during recovery stroke. These vortex structures play a major role in accelerating the organism vertically and indicate that forces generated on the parapodia during flapping constitute both lift and drag. After completing each stroke, two vortex rings are shed into the wake of the pteropod. The complex combination of body kinematics (parapodia flapping, shell pitch, sawtooth trajectory), flow structures, and resulting force balance may be significantly altered by thinning of the pteropod shell, thus making pteropods an indicator of the detrimental effects of ocean acidification.

  20. Optimized fast mixing device for real-time NMR applications

    Science.gov (United States)

    Franco, Rémi; Favier, Adrien; Schanda, Paul; Brutscher, Bernhard

    2017-08-01

    We present an improved fast mixing device based on the rapid mixing of two solutions inside the NMR probe, as originally proposed by Hore and coworkers (J. Am. Chem. Soc. 125 (2003) 12484-12492). Such a device is important for off-equilibrium studies of molecular kinetics by multidimensional real-time NMR spectrsocopy. The novelty of this device is that it allows removing the injector from the NMR detection volume after mixing, and thus provides good magnetic field homogeneity independently of the initial sample volume placed in the NMR probe. The apparatus is simple to build, inexpensive, and can be used without any hardware modification on any type of liquid-state NMR spectrometer. We demonstrate the performance of our fast mixing device in terms of improved magnetic field homogeneity, and show an application to the study of protein folding and the structural characterization of transiently populated folding intermediates.

  1. Tomographs based on non-conventional radiation sources and methods

    International Nuclear Information System (INIS)

    Barbuzza, R.; Fresno, M. del; Venere, Marcelo J.; Clausse, Alejandro; Moreno, C.

    2000-01-01

    Computer techniques for tomographic reconstruction of objects X-rayed with a compact plasma focus (PF) are presented. The implemented reconstruction algorithms are based on stochastic searching of solutions of Radon equation, using Genetic Algorithms and Monte Carlo methods. Numerical experiments using actual projections were performed concluding the feasibility of the application of both methods in tomographic reconstruction problem. (author)

  2. Microprocessorized NMR measurement

    International Nuclear Information System (INIS)

    Rijllart, A.

    1984-01-01

    An MC68000 CAMAC microprocessor system for fast and accurate NMR signal measurement will be presented. A stand-alone CAMAC microprocessor system (MC68000 STAC) with a special purpose interface sweeps a digital frequency synthesizer and digitizes the NMR signal with a 16-bit ADC of 17 μs conversion time. It averages the NMR signal data over many sweeps and then transfers it through CAMAC to a computer for calculation of the signal parameters. The computer has full software control over the timing and sweep settings of this signal averager, and thus allows optimization of noise suppression. Several of these processor systems can be installed in the same crate for parallel processing, and the flexibility of the STAC also allows easy adaptation to other applications such as transient recording or phase-sensitive detection. (orig.)

  3. Structural NMR assignment

    International Nuclear Information System (INIS)

    Procter, J.B.; Torda, A.E.

    1999-01-01

    Full text: General automated NMR assignment approaches are aimed at full heteronuclear assignment, which is needed for structure determination. Usually, full assignment requires at least as much spectral information as is used for structure generation. For large proteins, obtaining sufficient spectral information may require a number of sample preparations and many spectra, resulting in a significant overhead for the use of NMR in biochemical investigation. For a protein of biochemical interest one may already have an x-ray crystal structure, but spectral assignment is still needed to use NMR as a structural probe for ligand binding studies. In this situation it may be possible to use much less spectral information to make an assignment based purely on the correspondence of structural data to the measurements contained in a few simple spectra. We introduce a framework to accomplish this 'structural assignment', and give some observations on the practical requirements for a structural assignment to succeed

  4. Computerized tomographic in non-destructive testing

    International Nuclear Information System (INIS)

    Lopes, R.T.

    1988-01-01

    The process of computerized tomography has been developed for medical imaging purposes using tomographs with X-ray, and little attention has been given to others possibles applications of technique, because of its cost. As an alternative for the problem, we constructed a Tomographic System (STAC-1), using gamma-rays, for nonmedical applications. In this work we summarize the basic theory of reconstructing images using computerized tomography and we describe the considerations leading to the development of the experimental system. The method of reconstruction image implanted in the system is the filtered backprojection or convolution, with a digital filters system to carried on a pre-filtering in the projections. The experimental system is described, with details of control and the data processing. An alternative and a complementary system, using film as a detector is shown in preliminary form . This thesis discuss and shows the theorical and practical aspects, considered in the construction of the STAC-1, and also its limitations and apllications [pt

  5. Mesooptical microscope as a tomographical device

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1989-01-01

    It is shown that there are at least four regions which are common for the mesooptical microscopes, on the one hand, and for the reconstructed tomography, on the other hand. The following characteristics of the mesooptical microscope show the tomographical properties: the structure of the output data concerning the orientation and the position in space of the straight-line objects going at small angles with the perpendicular to the given tomographic plane, the behaviour of the two-dimensional fourier-transform of the straight-line object in the course of the rotation of this object with respect to the specified axis in space, the scanning algorithm of the nuclear emulsion volume by the fence-like illuminated region in the mesooptical microscope for searching for particle tracks going parallel to the optical axis of the microscope, and, finally, the fact that the mesooptical images of the straight-line particle tracks with a common vertex in the nuclear emulsion lie on the sinogram. 12 refs.; 16 figs

  6. Computed tomographic features of canine nonparenchymal hemangiosarcoma.

    Science.gov (United States)

    Fukuda, Shoko; Kobayashi, Tetsuya; Robertson, Ian D; Oshima, Fukiko; Fukazawa, Eri; Nakano, Yuko; Ono, Shin; Thrall, Donald E

    2014-01-01

    The purpose of this retrospective study was to describe pre- and postcontrast computed tomographic (CT) characteristics of confirmed nonparenchymal hemangiosarcoma in a group of dogs. Medical records were searched during the period of July 2003 and October 2011 and dogs with histologically confirmed nonparenchymal hemangiosarcoma and pre- and postcontrast CT images were recruited. Two observers recorded a consensus opinion for the following CT characteristics for each dog: largest transverse tumor diameter, number of masses, general tumor shape, character of the tumor margin, precontrast appearance, presence of dystrophic calcification, presence of postcontrast enhancement, pattern of postcontrast enhancement, presence of regional lymphadenopathy, and presence of associated cavitary fluid. A total of 17 dogs met inclusion criteria. Tumors were located in the nasal cavity, muscle, mandible, mesentery, subcutaneous tissue, and retroperitoneal space. Computed tomographic features of nonparenchymal hemangiosarcoma were similar to those of other soft tissue sarcomas, with most tumors being heterogeneous in precontrast images, invasive into adjacent tissue, and heterogeneously contrast enhancing. One unexpected finding was the presence of intense foci of contrast enhancement in 13 of the 17 tumors (76%). This appearance, which is not typical of other soft tissue sarcomas, was consistent with contrast medium residing in vascular channels. Findings indicated that there were no unique distinguishing CT characteristics for nonparenchymal hemangiosarcoma in dogs; however, the presence of highly attenuating foci of contrast enhancement may warrant further investigation in prospective diagnostic sensitivity and treatment outcome studies. © 2014 American College of Veterinary Radiology.

  7. Unusual tomographic findings of complicated necrotizing pancreatitis

    Directory of Open Access Journals (Sweden)

    Rosa Maria Silveira Sigrist

    2013-12-01

    Full Text Available Acute pancreatitis (AP is a potential life-threatening disease, which originates from inflammatory involvement of the pancreas and surrounding tissues. Serious complications eventuate and treatment is difficult. AP is classified in both interstitial edematous pancreatitis, which occurs in 70-80% of patients, and necrotizing pancreatitis, which occurs in 20-30% of patients. Diagnosis is based on the presence of two of the following criteria: abdominal pain, increased serum determination of amylase and/or lipase more than three times the reference value, and characteristic tomographic findings. Among the latter, there is the pancreatic and surrounding tissue damage as well as that related to distant organ involvement. This case report shows the fatal case of a male patient with a history of heavy alcoholic abuse admitted with the diagnosis of necrotizing pancreatitis. The authors call attention to the unusual tomographic findings; namely, a huge duodenal hematoma and a large hemoperitoneum, ischemic involvement of the spleen and kidneys, as well as pancreatic and peripancreatic necrosis.

  8. Comparative study of the macroscopic finding, conventional tomographic imaging, and computed tomographic imaging in locating the mandibular canal

    International Nuclear Information System (INIS)

    Choi, Hang Moon; You, Dong Soo

    1995-01-01

    The purpose of this study was comparison of conventional tomography with reformatted computed tomography for dental implant in locating the mandibular canal. Five dogs were used and after conventional tomographs and fitted computed tomographs were taken, four dentist traced all films. Mandibles were sectioned with 2 mm slice thickness and the sections were then radiographed (contact radiography). Each radiograpic image was traced and linear measurements were made from mandibular canal to alveolar crest, buccal cortex, lingual cortex, and inferior border. The following results were obtained; 1. Reformatted computed tomographs were exacter than conventional tomography by alveolar crest to canal length of -0.6 mm difference between real values and radiographs 2. The average measurements of buccal cortex to mandibular canal width and lingual cortex to mandibular canal width of conventional tomographs were exacter than reformatted computed tomographs, but standard deviations were higher than reformatted computed tomographs. 3. Standard deviations of reformatted computed tomographs were lower than conventional tomographs at all comparing sites 4. At reformatted computed tomography 62.5% of the measurements performed were within ±1 mm of the true value, and at conventional tomography 24.1% were. 5. Mandibular canal invisibility was 0.8% at reformatted computed tomography and 9.2% at conventional tomography. Reformatted computed tomography has been shown to be more useful radiographic technique for assessment of the mandibular canal than conventional tomography.

  9. Can NMR solve some significant challenges in metabolomics?

    Science.gov (United States)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  10. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  11. Autonomous driving in NMR.

    Science.gov (United States)

    Perez, Manuel

    2017-01-01

    The automatic analysis of NMR data has been a much-desired endeavour for the last six decades, as it is the case with any other analytical technique. This need for automation has only grown as advances in hardware; pulse sequences and automation have opened new research areas to NMR and increased the throughput of data. Full automatic analysis is a worthy, albeit hard, challenge, but in a world of artificial intelligence, instant communication and big data, it seems that this particular fight is happening with only one technique at a time (let this be NMR, MS, IR, UV or any other), when the reality of most laboratories is that there are several types of analytical instrumentation present. Data aggregation, verification and elucidation by using complementary techniques (e.g. MS and NMR) is a desirable outcome to pursue, although a time-consuming one if performed manually; hence, the use of automation to perform the heavy lifting for users is required to make the approach attractive for scientists. Many of the decisions and workflows that could be implemented under automation will depend on the two-way communication with databases that understand analytical data, because it is desirable not only to query these databases but also to grow them in as much of an automatic manner as possible. How these databases are designed, set up and the data inside classified will determine what workflows can be implemented. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. NMR, water and plants

    NARCIS (Netherlands)

    As, van H.

    1982-01-01

    This Thesis describes the application of a non-destructive pulsed proton NMR method mainly to measure water transport in the xylem vessels of plant stems and in some model systems. The results are equally well applicable to liquid flow in other biological objects than plants, e.g. flow of blood and

  13. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... out' response to environmental changes with structural complexity ... of 3D structure at atomic resolution of folded proteins ...... 5.14 HIV-1 protease. NMR identification of local structural preferences in. HIV-1 protease in the 'unfolded state' at 6 M gua- nidine hydrochloride has been reported.49 Analyses.

  14. Motion tracking-enhanced MART for tomographic PIV

    International Nuclear Information System (INIS)

    Novara, Matteo; Scarano, Fulvio; Batenburg, Kees Joost

    2010-01-01

    A novel technique to increase the accuracy of multiplicative algebraic reconstruction technique (MART) reconstruction from tomographic particle image velocimetry (PIV) recordings at higher seeding density than currently possible is presented. The motion tracking enhancement (MTE) method is based on the combined utilization of images from two or more exposures to enhance the reconstruction of individual intensity fields. The working principle is first introduced qualitatively, and the mathematical background is given that explains how the MART reconstruction can be improved on the basis of an improved first guess object obtained from the combination of non-simultaneous views reduced to the same time instant deforming the 3D objects by an estimate of the particle motion field. The performances of MTE are quantitatively evaluated by numerical simulation of the imaging, reconstruction and image correlation processes. The cases of two or more exposures obtained from time-resolved experiments are considered. The iterative application of MTE appears to significantly improve the reconstruction quality, first by decreasing the intensity of the ghost images and second, by increasing the intensity and the reconstruction precision for the actual particles. Based on computer simulations, the maximum imaged seeding density that can be dealt with is tripled with respect to the MART analysis applied to a single exposure. The analysis also illustrates that the maximum effect of the MTE method is comparable to that of doubling the number of cameras in the tomographic system. Experiments performed on a transitional jet at Re = 5000 apply the MTE method to double-frame recordings. The velocity measurement precision is increased for a system with fewer views (two or three cameras compared with four cameras). The ghost particles' intensity is also visibly reduced although to a lesser extent with respect to the computer simulations. The velocity and vorticity field obtained from a three

  15. SPICE benchmark for global tomographic methods

    Science.gov (United States)

    Qin, Yilong; Capdeville, Yann; Maupin, Valerie; Montagner, Jean-Paul; Lebedev, Sergei; Beucler, Eric

    2008-11-01

    The existing global tomographic methods result in different models due to different parametrization, scale resolution and theoretical approach. To test how current imaging techniques are limited by approximations in theory and by the inadequacy of data quality and coverage, it is necessary to perform a global-scale benchmark to understand the resolving properties of each specific imaging algorithm. In the framework of the Seismic wave Propagation and Imaging in Complex media: a European network (SPICE) project, it was decided to perform a benchmark experiment of global inversion algorithms. First, a preliminary benchmark with a simple isotropic model is carried out to check the feasibility in terms of acquisition geometry and numerical accuracy. Then, to fully validate tomographic schemes with a challenging synthetic data set, we constructed one complex anisotropic global model, which is characterized by 21 elastic constants and includes 3-D heterogeneities in velocity, anisotropy (radial and azimuthal anisotropy), attenuation, density, as well as surface topography and bathymetry. The intermediate-period (>32 s), high fidelity anisotropic modelling was performed by using state-of-the-art anisotropic anelastic modelling code, that is, coupled spectral element method (CSEM), on modern massively parallel computing resources. The benchmark data set consists of 29 events and three-component seismograms are recorded by 256 stations. Because of the limitation of the available computing power, synthetic seismograms have a minimum period of 32 s and a length of 10 500 s. The inversion of the benchmark data set demonstrates several well-known problems of classical surface wave tomography, such as the importance of crustal correction to recover the shallow structures, the loss of resolution with depth, the smearing effect, both horizontal and vertical, the inaccuracy of amplitude of isotropic S-wave velocity variation, the difficulty of retrieving the magnitude of azimuthal

  16. Tomographic patient registration and conformal avoidance tomotherapy

    Science.gov (United States)

    Aldridge, Jennifer Stacy

    Development of tomotherapy has led to the emergence of several processes, providing the basis for many unique investigative opportunities. These processes include setup verification, tomographic verification, megavoltage dose reconstruction, and conformal avoidance tomotherapy. Setup verification and conformal avoidance tomotherapy, in particular, are two closely intertwined matters. In order to avoid critical structures located within or adjacent to indistinct tumor regions, accurate patient positioning from fraction to fraction must be ensured. With tomographic patient registration, a higher level of assurance is offered than with traditional positioning methods. Translational and rotational offsets are calculated directly from projection data using cross- correlation or fast Fourier transforms. Experiments assessing the algorithm's ability to calculate individual offsets were conducted using the University of Wisconsin's Tomotherapy Benchtop. These experiments indicate statistical errors within +/-1 mm for offsets up to approximately 20 mm, with maximum offset errors of about +/-2 mm for displacements up to 35 mm. The angular offset component is within +/-2°. To evaluate the registration process as a whole, experimental results from a few multi-parameter examples are also analyzed. With the development of tomographic patient registration in projection space, efforts to promote further sparing of critical structures are justified. Conformal avoidance tomotherapy has as its objective to treat an indistinct tumor region while conformally avoiding any normal critical structures in that region. To demonstrate the advantages of conformal avoidance tomotherapy, conventional and tomotherapy treatments are contrasted for both nasopharyngeal and breast carcinoma cases. For initial research efforts, computed tomography data sets of a human male and female were obtained via the ``Visible Human Project''. Since these data sets are on the order of hundreds of megabytes, both

  17. Experimental demonstration of selective quantum process tomography on an NMR quantum information processor

    Science.gov (United States)

    Gaikwad, Akshay; Rehal, Diksha; Singh, Amandeep; Arvind, Dorai, Kavita

    2018-02-01

    We present the NMR implementation of a scheme for selective and efficient quantum process tomography without ancilla. We generalize this scheme such that it can be implemented efficiently using only a set of measurements involving product operators. The method allows us to estimate any element of the quantum process matrix to a desired precision, provided a set of quantum states can be prepared efficiently. Our modified technique requires fewer experimental resources as compared to the standard implementation of selective and efficient quantum process tomography, as it exploits the special nature of NMR measurements to allow us to compute specific elements of the process matrix by a restrictive set of subsystem measurements. To demonstrate the efficacy of our scheme, we experimentally tomograph the processes corresponding to "no operation," a controlled-NOT (CNOT), and a controlled-Hadamard gate on a two-qubit NMR quantum information processor, with high fidelities.

  18. Dynamic properties of Ca{sub 10}(Pt{sub 3}As{sub 8})(Fe{sub 1-x}Pt{sub x}As){sub 10} in the superconducting state explored by NMR in high fields

    Energy Technology Data Exchange (ETDEWEB)

    Brueckner, Felix; Sarkar, Rajib; Surmach, Maksym; Inosov, Dmytro; Klauss, Hans-Henning [Institut fuer Festkoerperphysik, TU Dresden (Germany); Reyes, Arneil P.; Kuhns, Philip L. [National High Magnetic Field Laboratory, Tallahassee, FL (United States)

    2016-07-01

    The triclinic iron-based superconductor Ca{sub 10}(Pt{sub 3}As{sub 8})(Fe{sub 1-x}Pt{sub x}As){sub 10} with a T{sub c} of 13 K exhibits a unique pseudogap phase below T* = 45 K, recently probed with inelastic neutron scattering. This phase has been attributed to a possible preformation of Cooper pairs. We present detailed NMR results, including {sup 75}As and {sup 195}Pt spectra as well as T{sub 1} measurements. These experiments reveal a drop of spin fluctuations just below T* with a hysteresis in temperature, associated with the emergence of the pseudogap phase. Interestingly, no anomaly at T{sub c} is found. At 3 K, a peak in the T{sub 1} relaxation rate appears, until 1/T{sub 1} eventually vanishes at lower temperatures. This behavior is persistent in large magnetic fields up to 17 T. To interpret these results, scenarios including magnetic order below T* are quite unprobable, since Korringa law is well complied at higher temperatures and no magnetic order is found in μSR. However, the origin of the unique behavior remains unclear for now.

  19. Airborne Tomographic Swath Ice Sounding Processing System

    Science.gov (United States)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  20. Synthetic Dataset To Benchmark Global Tomographic Methods

    Science.gov (United States)

    Qin, Yilong; Capdeville, Yann; Maupin, Valerie; Montagner, Jean-Paul

    2006-11-01

    A new set of global synthetic seismograms calculated in a three-dimensional (3-D), heterogeneous, anisotropic, anelastic model of the Earth using the spectral element method has been released by the European network SPICE (Seismic Wave Propagation and Imaging in Complex Media: a European Network). The set consists of 7424 three-component records with a minimum period of 32 seconds, a sampling rate of one second, and a duration of 10,500 seconds. The aim of this synthetic data set is to conduct a blind test of existing global tomographic methods based on long-period data, in order to test how current imaging techniques are limited by approximations in theory and by the inadequacy of data quality and coverage.

  1. Computed tomographic investigations on intraventricular hematomas

    International Nuclear Information System (INIS)

    Laber-Szillat, S.

    1982-01-01

    This work investigated in 106 patients with intraventricular hematomas all the known factors which can have an influence on prognosis: age, sex, anamnesis of the patients, size, extent and localization of the intracranial bleeding, underlying angiopathy and differences between arterial and venous and spontaneous and traumatic bleedings. It was shown that the state of mind was the deciding prognostic factor, whereby viligance was the cumulative expression of all other investigated influences. A computed tomography (CT) examination is deciding in the question of operative hydrocephalus care. In 13 patients it was further shown, how clearly CT results and brain dissection allowed themselves to be compared. The computed tomographic examination method is best suited to achieve even physiological and more extensive prognostic possibilities. (orig.) [de

  2. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The objects of this invention are first to reduce the time required to obtain statistically significant data in trans-axial tomographic radioisotope scanning using a scintillation camera. Secondly, to provide a scintillation camera system to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a known radiation source without sacrificing spatial resolution. Thirdly to reduce the scanning time without loss of image clarity. The system described comprises a scintillation camera detector, means for moving this in orbit about a cranial-caudal axis relative to a patient and a collimator having septa defining apertures such that gamma rays perpendicular to the axis are admitted with high spatial resolution, parallel to the axis with low resolution. The septa may be made of strips of lead. Detailed descriptions are given. (U.K.)

  3. Collimated trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    1980-01-01

    The principal problem in trans-axial tomographic radioisotope scanning is the length of time required to obtain meaningful data. Patient movement and radioisotope migration during the scanning period can cause distortion of the image. The object of this invention is to reduce the scanning time without degrading the images obtained. A system is described in which a scintillation camera detector is moved to an orbit about the cranial-caudal axis relative to the patient. A collimator is used in which lead septa are arranged so as to admit gamma rays travelling perpendicular to this axis with high spatial resolution and those travelling in the direction of the axis with low spatial resolution, thus increasing the rate of acceptance of radioactive events to contribute to the positional information obtainable without sacrificing spatial resolution. (author)

  4. Computer tomographic and sonographic diagnosis of echinococcus

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, K.; Huebener, K.H.; Klott, K.; Jenss, H.; Baehr, R. (Tuebingen Univ. (Germany, F.R.). Medizinisches Strahleninstitut und Roentgenabteilung; Tuebingen Univ. (Germany, F.R.). Medizinische Klinik; Tuebingen Univ. (Germany, F.R.). Chirurgische Klinik und Poliklinik)

    1980-05-01

    In 33 patients (18 cystic echinococci, 15 alveolar) both methods produced the following findings which could be correlated with the pathological results: single or multi-centric lesions, sharp or indefinite demarkation and abnormalities in the shape and size of the liver. The sonographic findings were analysed with respect to the echo characteristics, whereas the computer tomographically demonstrated lesions were examined densitometrically in order to show calcification. Both methods demonstrate the pathological changes satisfactorily. Computer tomography is more effective in alveolar echinococcus lesions by showing the different types of calcification, whereas sonography provides a more accurate picture of the internal structure of the cysts in cystic echinococcus. Comparison of the methods in 19 patients examined by both showed a high accuracy in each method, but sonography was relatively poor in demonstrating lesions in the spleen.

  5. Computed tomographic findings of intracranial acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dong Woo; Ryu, Weon Don; Kim, Jong Sung; Koh, Byung Hee; Jeon, Seok Chol; Lee, Seung Ro; Hahm, Chang Kok [Hanyang University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    Computed tomographic (CT) abnormalities in the brain were retrospectively analyzed in 16 of 103 patients with acute leukemia confirmed by CSF cytology or combined surgery at Hanyang University Hospital, from August 1980 to August 1989. The results were as follows : 1. With FAB classification, the most frequent pathologic type was L1 : 8 cases (50%) 2. The range of age distribution showed typical pattern that ALL occurred below the 15 years old, and AML, over 15 years old. 3. Abnormal CT findings were ; Meningitis(2 cases), Mass(3), Thrombosis(1), Infarction(2), Edema(1), Hemorrhage(7), Hydrocephalus(2), Atrophy(2). 4. Most of infracranial hemorrhage were seen in M{sub 2} and M{sub 3} type.

  6. Computed tomographic findings of cerebral arterial ectasia

    International Nuclear Information System (INIS)

    Choi, Woo Suk; Ko, Young Ho; Lim, Jae Hoon

    1987-01-01

    The computed tomographic findings of cerebral arterial ectasia in 8 patients, of which 5 cases were angiographically documented, are reported. The ecstatic arteries, located predominantly in the suprasellar and interpeduncular cisterns, appeared as serpignous, tubular structures on the unenhanced scan. The enhanced CT scan demonstrated dense, sharply defined, homogeneous intraluminal enhancement. Until recently, the diagnosis of cerebral arterial ectasia was usually established by angiography. With introduction of CT it has become possible to noninvasively identify and characterize this vascular disorder and its associated intracranial complications. The vertebrobasilar dolichoectasia may be diagnosed by CT as an extra-axial lesion in the cerebellopontine angle. It enhances in a tubular fashion after intravenous injection of contrast.

  7. Advanced Ultrasonic Tomograph of Children's Bones

    Science.gov (United States)

    Lasaygues, Philippe; Lefebvre, Jean-Pierre; Guillermin, Régine; Kaftandjian, Valérie; Berteau, Jean-Philippe; Pithioux, Martine; Petit, Philippe

    This study deals with the development of an experimental device for performing ultrasonic computed tomography (UCT) on bone in pediatric degrees. The children's bone tomographs obtained in this study, were based on the use of a multiplexed 2-D ring antenna (1 MHz and 3 MHz) designed for performing electronic and mechanical scanning. Although this approach is known to be a potentially valuable means of imaging objects with similar acoustical impedances, problems arise when quantitative images of more highly contrasted media such as bones are required. Various strategies and various mathematical procedures for modeling the wave propagation based on Born approximations have been developed at our laboratory, which are suitable for use with pediatric cases. Inversions of the experimental data obtained are presented.

  8. Strategies for source space limitation in tomographic inverse procedures

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Lewis, P.S.; Schlitt, H.A.; Kaplan, L.; Gorodnitsky, I.; Wood, C.C.

    1994-02-01

    The use of magnetic recordings for localization of neural activity requires the solution of an ill-posed inverse problem: i.e. the determination of the spatial configuration, orientation, and timecourse of the currents that give rise to a particular observed field distribution. In its general form, this inverse problem has no unique solution; due to superposition and the existence of silent source configurations, a particular magnetic field distribution at the head surface could be produced by any number of possible source configurations. However, by making assumptions concerning the number and properties of neural sources, it is possible to use numerical minimization techniques to determine the source model parameters that best account for the experimental observations while satisfying numerical or physical criteria. In this paper the authors describe progress on the development and validation of inverse procedures that produce distributed estimates of neuronal currents. The goal is to produce a temporal sequence of 3-D tomographic reconstructions of the spatial patterns of neural activation. Such approaches have a number of advantages, in principle. Because they do not require estimates of model order and parameter values (beyond specification of the source space), they minimize the influence of investigator decisions and are suitable for automated analyses. These techniques also allow localization of sources that are not point-like; experimental studies of cognitive processes and of spontaneous brain activity are likely to require distributed source models.

  9. Strategies for source space limitation in tomographic inverse procedures

    International Nuclear Information System (INIS)

    George, J.S.; Lewis, P.S.; Schlitt, H.A.; Kaplan, L.; Gorodnitsky, I.; Wood, C.C.

    1994-01-01

    The use of magnetic recordings for localization of neural activity requires the solution of an ill-posed inverse problem: i.e. the determination of the spatial configuration, orientation, and timecourse of the currents that give rise to a particular observed field distribution. In its general form, this inverse problem has no unique solution; due to superposition and the existence of silent source configurations, a particular magnetic field distribution at the head surface could be produced by any number of possible source configurations. However, by making assumptions concerning the number and properties of neural sources, it is possible to use numerical minimization techniques to determine the source model parameters that best account for the experimental observations while satisfying numerical or physical criteria. In this paper the authors describe progress on the development and validation of inverse procedures that produce distributed estimates of neuronal currents. The goal is to produce a temporal sequence of 3-D tomographic reconstructions of the spatial patterns of neural activation. Such approaches have a number of advantages, in principle. Because they do not require estimates of model order and parameter values (beyond specification of the source space), they minimize the influence of investigator decisions and are suitable for automated analyses. These techniques also allow localization of sources that are not point-like; experimental studies of cognitive processes and of spontaneous brain activity are likely to require distributed source models

  10. Quantification of tomographic PIV uncertainty using controlled experimental measurements.

    Science.gov (United States)

    Liu, Ning; Wu, Yue; Ma, Lin

    2018-01-20

    The goal of this work was to experimentally quantify the uncertainty of three-dimensional (3D) and three-component (3C) velocity measurements using tomographic particle image velocimetry (tomo-PIV). Controlled measurements were designed using tracer particles embedded in a solid sample, and tomo-PIV measurements were performed on the sample while it was moved both translationally and rotationally to simulate various known displacement fields, so the 3D3C displacements measured by tomo-PIV can be directly compared to the known displacements created by the sample. The results illustrated that (1) the tomo-PIV technique was able to reconstruct the 3D3C velocity with an averaged error of 0.8-1.4 voxels in terms of magnitude and 1.7°-1.9° in terms of orientation for the velocity fields tested; (2) view registration (VR) plays a significant role in tomo-PIV, and by reducing VR error from 0.6° to 0.1°, the 3D3C measurement accuracy can be improved by at least 2.5 times in terms of both magnitude and orientation; and (3) the use of additional cameras in tomo-PIV can extend the 3D3C velocity measurement to a larger volume, while maintaining acceptable accuracy. These results obtained from controlled tests are expected to aid the error analysis and the design of tomo-PIV measurements.

  11. On the feasibility of tomographic-PIV with low pulse energy illumination in a lifted turbulent jet flame

    Science.gov (United States)

    Boxx, I.; Carter, C. D.; Meier, W.

    2014-08-01

    Tomographic particle image velocimetry (tomographic-PIV) is a recently developed measurement technique used to acquire volumetric velocity field data in liquid and gaseous flows. The technique relies on line-of-sight reconstruction of the rays between a 3D particle distribution and a multi-camera imaging system. In a turbulent flame, however, index-of-refraction variations resulting from local heat-release may inhibit reconstruction and thereby render the technique infeasible. The objective of this study was to test the efficacy of tomographic-PIV in a turbulent flame. An additional goal was to determine the feasibility of acquiring usable tomographic-PIV measurements in a turbulent flame at multi-kHz acquisition rates with current-generation laser and camera technology. To this end, a setup consisting of four complementary metal oxide semiconductor cameras and a dual-cavity Nd:YAG laser was implemented to test the technique in a lifted turbulent jet flame. While the cameras were capable of kHz-rate image acquisition, the laser operated at a pulse repetition rate of only 10 Hz. However, use of this laser allowed exploration of the required pulse energy and thus power for a kHz-rate system. The imaged region was 29 × 28 × 2.7 mm in size. The tomographic reconstruction of the 3D particle distributions was accomplished using the multiplicative algebraic reconstruction technique. The results indicate that volumetric velocimetry via tomographic-PIV is feasible with pulse energies of 25 mJ, which is within the capability of current-generation kHz-rate diode-pumped solid-state lasers.

  12. Fluid-Rock Characterization and Interactions in NMR Well Logging

    Energy Technology Data Exchange (ETDEWEB)

    George J. Hirasaki; Kishore K. Mohanty

    2005-09-05

    The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

  13. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    Science.gov (United States)

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  14. Tomographic surveys for mineral exploration using complex resistivity method

    Science.gov (United States)

    Son, J.; Park, S.; Kim, J.

    2011-12-01

    Complex resistive method is a kind of induced polarization (IP) method which all the measurement is made in frequency domain. It transmits the current with the specified frequency through current electrodes, and measure the amplitude and phase to the transmitted current at receiver electrodes. It is also called SIP (Spectral IP) method when multi-frequency measurements are involved. Our research group has been developing the methodology and interpretation technique for SIP survey for several years, and already developed 2/3D inversion algorithms and extended them to the simultaneous inversion of multi-frequency IP data. Recently we are developing mining evaluation technique by relating the inverted property of field IP data to the measured one in the laboratory through geo-statistical relationship. L1-norm inversion using IRLS (iterative reweighted least squares) method is introduced to overcome the problem of noise sensitive characteristics of complex resistivity data, especially in phase data and effectively applied to the field data. The L1-norm inversion improves the noise characteristics of complex resistivity survey. However complex resistivity method is used only for the surface survey because it require special electrode like porous pot and layout of cables to minimize the interference between transmitters and receivers. In this study, we applied complex resistivity method to the tomographic survey using boreholes and interpret data using L1-norm inversion technique to verify applicability without special electrode and layout of cables. Survey was done for the boreholes drilled in the tunnel for prospecting possible mineralized zone. Zeta system based on GDP multi-function receiver manufactured by Zonge was used in this survey and tomographic data measurement was made for two frequencies, 0.25 and 1 Hz. 30 electrodes respectively for two boreholes, a total of 60 electrodes were used in this survey and electrode spacing was 10 meter. Quality of measured data

  15. Crystallographic and dynamic aspects of solid-state NMR calibration compounds: towards ab initio NMR crystallography

    DEFF Research Database (Denmark)

    Li, Xiaozhou; Tapmeyer, Lukas; Bolte, Michael

    2016-01-01

    The excellent results of dispersion-corrected density functional theory (DFT-D) calculations for static systems have been well established over the past decade. The introduction of dynamics into DFT-D calculations is a target, especially for the field of molecular NMR crystallography. Four 13C ss...

  16. Software for tomographic analysis: application in ceramic filters

    International Nuclear Information System (INIS)

    Figuerola, W.B.; Assis, J.T.; Oliveira, L.F.; Lopes, R.T.

    2001-01-01

    New methods for acquiring data have been developed with the technological advances. With this, it has been possible to obtain more precise data and, consequently produce results with greater reliability. Among the variety of acquisition methods available, those that have volume description, as CT (Computerized Tomography) and NMR (Nuclear Magnetic Resonance) stand out. The models of volumetric data (group of data that describe a solid object from a three dimensional space) are being greatly used in diversity of areas as a way of inspection, modeling and simulation of objects in a three - dimensional space. Applications of this model are already found in Mechanic Engineering, Geosciences, Medicine and other areas. In the area of engineering it is sometimes necessary to use industrial CT as the only non-invasive form of inspection the interior of pieces without destroying them. The 3D micro focus X-ray tomography is one technique of non destructive testing used in the most different areas of science and technology, given its capacity to generate clean images (practically free of the unhappiness effect) and high resolution reconstructions. The unsharpness effect minimization and space resolution improvement are consequences of the focal spot size reduction in the X-ray micro focus tube to dimensions smaller than 50 mm. The ceramic filters are used in a wide area in the metallurgic industry, particularly in the cast aluminum where they are used to clean the waste coming through the liquid aluminum. The ceramic filters used in this work are manufactured by FUSICO (German company) and they are constructed from foams. They are manufactured at three models: 10, 20 and 30 ppi (porous per inch). In this paper we present the development of software to analyze and characterize ceramic filters, which can be divided in four stages. This software was developed in C++ language, using objects oriented programming. It is also capable of being executed in multiple platforms (Windows

  17. NMR Studies of Peroxidases.

    Science.gov (United States)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  18. Simultaneous high-speed 3D flame front detection and tomographic PIV

    Science.gov (United States)

    Ebi, Dominik; Clemens, Noel T.

    2016-03-01

    A technique capable of detecting the instantaneous, time-resolved, 3D flame topography is successfully demonstrated in a lean-premixed swirl flame undergoing flashback. A simultaneous measurement of the volumetric velocity field is possible without the need for additional hardware. Droplets which vaporize in the preheat zone of the flame serve as the marker for the flame front. The droplets are illuminated with a laser and imaged from four different views followed by a tomographic reconstruction to obtain the volumetric particle field. Void regions in the reconstructed particle field, which correspond to regions of burnt gas, are detected with a series of image processing steps. The interface separating the void region from regions filled with particles is defined as the flame surface. The velocity field in the unburnt gas is measured using tomographic PIV. The resulting data include the simultaneous 3D flame front and 3D volumetric velocity field at 5 kHz. The technique is applied to a lean-premixed (ϕ  =  0.8), swirling methane-air flame and validated against simultaneously acquired planar measurements. The mean error associated with the reconstructed 3D flame topography is about 0.4 mm, which is smaller than the flame thickness under the studied conditions. The mean error associated with the volumetric velocity field is about 0.2 m s-1.

  19. Simultaneous high-speed 3D flame front detection and tomographic PIV

    International Nuclear Information System (INIS)

    Ebi, Dominik; Clemens, Noel T

    2016-01-01

    A technique capable of detecting the instantaneous, time-resolved, 3D flame topography is successfully demonstrated in a lean-premixed swirl flame undergoing flashback. A simultaneous measurement of the volumetric velocity field is possible without the need for additional hardware. Droplets which vaporize in the preheat zone of the flame serve as the marker for the flame front. The droplets are illuminated with a laser and imaged from four different views followed by a tomographic reconstruction to obtain the volumetric particle field. Void regions in the reconstructed particle field, which correspond to regions of burnt gas, are detected with a series of image processing steps. The interface separating the void region from regions filled with particles is defined as the flame surface. The velocity field in the unburnt gas is measured using tomographic PIV. The resulting data include the simultaneous 3D flame front and 3D volumetric velocity field at 5 kHz. The technique is applied to a lean-premixed (ϕ  =  0.8), swirling methane-air flame and validated against simultaneously acquired planar measurements. The mean error associated with the reconstructed 3D flame topography is about 0.4 mm, which is smaller than the flame thickness under the studied conditions. The mean error associated with the volumetric velocity field is about 0.2 m s −1 . (paper)

  20. On a novel low cost high accuracy experimental setup for tomographic particle image velocimetry

    International Nuclear Information System (INIS)

    Discetti, Stefano; Ianiro, Andrea; Astarita, Tommaso; Cardone, Gennaro

    2013-01-01

    This work deals with the critical aspects related to cost reduction of a Tomo PIV setup and to the bias errors introduced in the velocity measurements by the coherent motion of the ghost particles. The proposed solution consists of using two independent imaging systems composed of three (or more) low speed single frame cameras, which can be up to ten times cheaper than double shutter cameras with the same image quality. Each imaging system is used to reconstruct a particle distribution in the same measurement region, relative to the first and the second exposure, respectively. The reconstructed volumes are then interrogated by cross-correlation in order to obtain the measured velocity field, as in the standard tomographic PIV implementation. Moreover, differently from tomographic PIV, the ghost particle distributions of the two exposures are uncorrelated, since their spatial distribution is camera orientation dependent. For this reason, the proposed solution promises more accurate results, without the bias effect of the coherent ghost particles motion. Guidelines for the implementation and the application of the present method are proposed. The performances are assessed with a parametric study on synthetic experiments. The proposed low cost system produces a much lower modulation with respect to an equivalent three-camera system. Furthermore, the potential accuracy improvement using the Motion Tracking Enhanced MART (Novara et al 2010 Meas. Sci. Technol. 21 035401) is much higher than in the case of the standard implementation of tomographic PIV. (paper)

  1. Radiographic test phantom for computed tomographic lung nodule analysis

    International Nuclear Information System (INIS)

    Zerhouni, E.A.

    1987-01-01

    This patent describes a method for evaluating a computed tomograph scan of a nodule in a lung of a human or non-human animal. The method comprises generating a computer tomograph of a transverse section of the animal containing lung and nodule tissue, and generating a second computer tomograph of a test phantom comprising a device which simulates the transverse section of the animal. The tissue simulating portions of the device are constructed of materials having radiographic densities substantially identical to those of the corresponding tissue in the simulated transverse section of the animal and have voids therein which simulate, in size and shape, the lung cavities in the transverse section and which contain a test reference nodule constructed of a material of predetermined radiographic density which simulates in size, shape and position within a lung cavity void of the test phantom the nodule in the transverse section of the animal and comparing the respective tomographs

  2. Computed tomographic determination of tracheal dimensions in children and adolescents

    International Nuclear Information System (INIS)

    Griscom, N.T.

    1982-01-01

    A computed tomographic system for determining the internal diameters, cross-sectional area, and length of the trachea in children and adolescents was developed. Intraluminal volumes were calculated from these measurements.The results of 18 analyses are reported

  3. Images by NMR: basic principles and obtainment technics

    International Nuclear Information System (INIS)

    Tannus, A.

    1987-01-01

    The nuclear magnetic resonance tomographic technique is studied, analysing the nucleus density ρ n(r) of an atomic specie. In the presence of a magnetic field, the nucleus density is expressed in the form of magnetization density M(r). The objective of this paper is to describe the various forms of measures M(r), using the properties of spins systems. (C.G.C.) [pt

  4. Image interface in Java for tomographic reconstruction in nuclear medicine

    International Nuclear Information System (INIS)

    Andrade, M.A.; Silva, A.M. Marques da

    2004-01-01

    The aim of this study is to implement a software for tomographic reconstruction of SPECT data from Nuclear Medicine with a flexible interface design, cross-platform, written in Java. Validation tests were performed based on SPECT simulated data. The results showed that the implemented algorithms and filters agree with the theoretical context. We intend to extend the system by implementing additional tomographic reconstruction techniques and Java threads, in order to provide simultaneously image processing. (author)

  5. Exploring the limits to spatially resolved NMR

    Energy Technology Data Exchange (ETDEWEB)

    Gaedke, Achim; Nestle, Nikolaus [TU Darmstadt, Institute of Condensed Matter Physics (Germany)

    2010-07-01

    Recent advances in MRI have demonstrated resolutions down to 1 {mu}m. Magnetic resonance force microscopy has the potential to reach sensitivity for single nuclear spins. Given these numbers, in vivo imaging of single cells or even biomacromolecules may seem possible. However, for in vivo applications, there are fundamental differences in the contrast mechanisms compared to MRI at macroscopic scales as the length scale of of molecular self-diffusion exceeds that of the spatial resolution on the NMR time scale. Those effects - which are fundamentally different from the echo attenuation in field gradient NMR - even may lead to general limitations on the spatial resolution achievable in aqueous systems with high water content. In our contribution, we explore those effects on a model system in a high-resolution stray-field imaging setup. In addition to experimental results, simulations based on the Bloch-Torrey equation are presented.

  6. New insight into the microtexture of chalks from NMR analysis

    DEFF Research Database (Denmark)

    Faÿ-Gomord, Ophélie; Soete, Jeroen; Katika, Konstantina

    2016-01-01

    An integrated petrographical and petrophysical study was carried out on a set of 35 outcrop chalk samples, covering a wide range of lithologies and textures. In this study various chalk rock-types have been characterized, in terms of microtextures and porous network, by integrating both geological...... quality chalks independently of their sedimentological and/or diagenetic history. The study aims to develop an NMR-based approach to characterize a broad range of chalk samples. The provided laboratory low-field NMR chalk classification can be used as a guide to interpret NMR logging data...

  7. Hydrate Shell Growth Measured Using NMR.

    Science.gov (United States)

    Haber, Agnes; Akhfash, Masoumeh; Loh, Charles K; Aman, Zachary M; Fridjonsson, Einar O; May, Eric F; Johns, Michael L

    2015-08-18

    Benchtop nuclear magnetic resonance (NMR) pulsed field gradient (PFG) and relaxation measurements were used to monitor the clathrate hydrate shell growth occurring in water droplets dispersed in a continuous cyclopentane phase. These techniques allowed the growth of hydrate inside the opaque exterior shell to be monitored and, hence, information about the evolution of the shell's morphology to be deduced. NMR relaxation measurements were primarily used to monitor the hydrate shell growth kinetics, while PFG NMR diffusion experiments were used to determine the nominal droplet size distribution (DSD) of the unconverted water inside the shell core. A comparison of mean droplet sizes obtained directly via PFG NMR and independently deduced from relaxation measurements showed that the assumption of the shell model-a perfect spherical core of unconverted water-for these hydrate droplet systems is correct, but only after approximately 24 h of shell growth. Initially, hydrate growth is faster and heat-transfer-limited, leading to porous shells with surface areas larger than that of spheres with equivalent volumes. Subsequently, the hydrate growth rate becomes mass-transfer-limited, and the shells become thicker, spherical, and less porous.

  8. NMR spectroscopic study and DFT calculations of GIAO NMR ...

    African Journals Online (AJOL)

    1H, proton coupled and decoupled 13C, DEPT, HETCOR NMR spectra, the magnitude of one bond 1JCH coupling constants and 13C NMR spin-lattice relaxation time (T1) of 1,9-diaminononane (danon, C9H22N2) have been reported for the first time. 1H, 13C NMR chemical shifts and 1JCH coupling constants of danon ...

  9. From tomographic images to fault heterogeneities

    Directory of Open Access Journals (Sweden)

    A. Amato

    1994-06-01

    Full Text Available Local Earthquake Tomography (LET is a useful tool for imaging lateral heterogeneities in the upper crust. The pattern of P- and S-wave velocity anomalies, in relation to the seismicity distribution along active fault zones. can shed light on the existence of discrete seismogenic patches. Recent tomographic studies in well monitored seismic areas have shown that the regions with large seismic moment release generally correspond to high velocity zones (HVZ's. In this paper, we discuss the relationship between the seismogenic behavior of faults and the velocity structure of fault zones as inferred from seismic tomography. First, we review some recent tomographic studies in active strike-slip faults. We show examples from different segments of the San Andreas fault system (Parkfield, Loma Prieta, where detailed studies have been carried out in recent years. We also show two applications of LET to thrust faults (Coalinga, Friuli. Then, we focus on the Irpinia normal fault zone (South-Central Italy, where a Ms = 6.9 earthquake occurred in 1980 and many thousands of attershock travel time data are available. We find that earthquake hypocenters concentrate in HVZ's, whereas low velocity zones (LVZ’ s appear to be relatively aseismic. The main HVZ's along which the mainshock rupture bas propagated may correspond to velocity weakening fault regions, whereas the LVZ's are probably related to weak materials undergoing stable slip (velocity strengthening. A correlation exists between this HVZ and the area with larger coseismic slip along the fault, according to both surface evidence (a fault scarp as high as 1 m and strong ground motion waveform modeling. Smaller wave-length, low-velocity anomalies detected along the fault may be the expression of velocity strengthening sections, where aseismic slip occurs. According to our results, the rupture at the nucleation depth (~ 10-12 km is continuous for the whole fault lenoth (~ 30 km, whereas at shallow depth

  10. Gamma Ray Tomographic Scan Method for Large Scale Industrial Plants

    International Nuclear Information System (INIS)

    Moon, Jin Ho; Jung, Sung Hee; Kim, Jong Bum; Park, Jang Geun

    2011-01-01

    The gamma ray tomography systems have been used to investigate a chemical process for last decade. There have been many cases of gamma ray tomography for laboratory scale work but not many cases for industrial scale work. Non-tomographic equipment with gamma-ray sources is often used in process diagnosis. Gamma radiography, gamma column scanning and the radioisotope tracer technique are examples of gamma ray application in industries. In spite of many outdoor non-gamma ray tomographic equipment, the most of gamma ray tomographic systems still remained as indoor equipment. But, as the gamma tomography has developed, the demand on gamma tomography for real scale plants also increased. To develop the industrial scale system, we introduced the gamma-ray tomographic system with fixed detectors and rotating source. The general system configuration is similar to 4 th generation geometry. But the main effort has been made to actualize the instant installation of the system for real scale industrial plant. This work would be a first attempt to apply the 4th generation industrial gamma tomographic scanning by experimental method. The individual 0.5-inch NaI detector was used for gamma ray detection by configuring circular shape around industrial plant. This tomographic scan method can reduce mechanical complexity and require a much smaller space than a conventional CT. Those properties make it easy to get measurement data for a real scale plant

  11. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows

    KAUST Repository

    Aguirre-Pablo, Andres A.

    2017-06-12

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets of differently-colored pulsed LEDs. Each set of Red, Green & Blue LEDs is shone on a diffuser screen facing each of the cameras. We thereby record the RGB-colored shadows of opaque suspended particles, rather than the conventionally used scattered light. We subsequently separate the RGB color channels, to represent the separate times, with preprocessing to minimize noise and cross-talk. We use commercially available Tomo-PIV software for the calibration, 3-D particle reconstruction and particle-field correlations, to obtain all three velocity components in a volume. Acceleration estimations can be done thanks to the triple pulse illumination. Our test flow is a vortex ring produced by forcing flow through a circular orifice, using a flexible membrane, which is driven by a pressurized air pulse. Our system is compared to a commercial stereoscopic PIV system for error estimations. We believe this proof of concept experiment will make this technique available for education, industry and scientists for a fraction of the hardware cost needed for traditional Tomo-PIV.

  12. Tomographic Particle Image Velocimetry using Smartphones and Colored Shadows.

    Science.gov (United States)

    Aguirre-Pablo, Andres A; Alarfaj, Meshal K; Li, Er Qiang; Hernández-Sánchez, J F; Thoroddsen, Sigurdur T

    2017-06-16

    We demonstrate the viability of using four low-cost smartphone cameras to perform Tomographic PIV. We use colored shadows to imprint two or three different time-steps on the same image. The back-lighting is accomplished with three sets of differently-colored pulsed LEDs. Each set of Red, Green & Blue LEDs is shone on a diffuser screen facing each of the cameras. We thereby record the RGB-colored shadows of opaque suspended particles, rather than the conventionally used scattered light. We subsequently separate the RGB color channels, to represent the separate times, with preprocessing to minimize noise and cross-talk. We use commercially available Tomo-PIV software for the calibration, 3-D particle reconstruction and particle-field correlations, to obtain all three velocity components in a volume. Acceleration estimations can be done thanks to the triple pulse illumination. Our test flow is a vortex ring produced by forcing flow through a circular orifice, using a flexible membrane, which is driven by a pressurized air pulse. Our system is compared to a commercial stereoscopic PIV system for error estimations. We believe this proof of concept experiment will make this technique available for education, industry and scientists for a fraction of the hardware cost needed for traditional Tomo-PIV.

  13. Quantitative calibration of radiofrequency NMR Stark effects.

    Science.gov (United States)

    Tarasek, Matthew R; Kempf, James G

    2011-10-01

    Nuclear magnetic resonance (NMR) Stark responses can occur in quadrupolar nuclei for an electric field oscillating at twice the usual NMR frequency (2ω(0)). Calibration of responses to an applied E field is needed to establish nuclear spins as probes of native E fields within material and molecular systems. We present an improved approach and apparatus for accurate measurement of quadrupolar Stark effects. Updated values of C(14) (the response parameter in cubic crystals) were obtained for both (69)Ga and (75)As in GaAs. Keys to improvement include a modified implementation of voltage dividers to assess the 2ω(0) amplitude, |E|, and the stabilization of divider response by reduction of stray couplings in 2ω(0) circuitry. Finally, accuracy was enhanced by filtering sets of |E| through a linear response function that we established for the radiofrequency amplifier. Our approach is verified by two types of spectral results. Steady-state 2ω(0) excitation to presaturate NMR spectra yielded C(14) = (2.59 ± 0.06) × 10(12) m(-1) for (69)Ga at room-temperature and 14.1 T. For (75)As, we obtained (3.1 ± 0.1) × 10(12) m(-1). Both values reconcile with earlier results from 77 K and below 1 T, whereas current experiments are at room temperature and 14.1 T. Finally, we present results where few-microsecond pulses of the 2ω(0) field induced small (tens of Hz) changes in high-resolution NMR line shapes. There too, spectra collected vs |E| agree with the model for response, further establishing the validity of our protocols to specify |E|.

  14. Nested Surface Coils for Multinuclear NMR

    OpenAIRE

    Magill, Arthur; Gruetter, Rolf

    2011-01-01

    This article introduces the design of surface coils for multinuclear applications. The relative sensitivities of several NMR-visible nuclei of biological interest are considered, and the motivations to operate an RF coil at multiple frequencies, both sequentially and simultaneously, are reviewed. The design of nested surface coils is then developed. Magnetic fields generated by planar loop and butterfly coils are first introduced. The benefits of quadrature design are briefly considered, and ...

  15. NMR imaging of the spine

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.S. (Case Western Reserve Univ. School of Medicine, Cleveland, OH); Kaufman, B.; El Yousef, S.J.; Benson, J.E.; Bonstelle, C.T.; Alfidi, R.J.; Haaga, J.R.; Yeung, H.; Huss, R.G.

    1983-12-01

    The usefulness of nuclear magnetic resonance (NMR) images in the evaluation of spinal disorders below the craniocervical junction was studied. Six normal subjects and 41 patients with various spinal abnormalities were examined. NMR proved capable of demonstrating important normal and pathologic anatomic structures; it was useful in the evaluation of syringohydromyelia and cystic spinal cord tumors, and the bright signal intensity of lipoma was quite impressive. In the evaluation of herniated disk, NMR images offered a new perspective by visualizing abnormal degradation of the signal intensity of the nucleus pulposus itself. NMR images were least valuable in the evaluation of spondylosis and spinal stenosis. Although NMR imaging of the spine is still in a very early developmental stage, the absence of both ionizing radiation and risks associated with contrast material makes it especially attractive as a new diagnostic method. This limited experience with currently available equipment suggests that, with technical refinement, the efficacy of NMR of the spine will increase.

  16. Distance weighting for improved tomographic reconstructions

    International Nuclear Information System (INIS)

    Koeppe, R.A.; Holden, J.E.

    1984-01-01

    An improved method for the reconstruction of emission computed axial tomography images has been developed. The method is a modification of filtered back-projection, where the back projected values are weighted to reflect the loss of formation, with distance from the camera, which is inherent in gamma camera imaging. This information loss is a result of: loss of spatial resolution with distance, attenuation, and scatter. The weighting scheme can best be described by considering the contributions of any two opposing views to the reconstruction image pixels. The weight applied to the projections of one view is set to equal the relative amount of the original activity that was initially received in that projection, assuming a uniform attenuating medium. This yields a weighting value which is a function of distance into the image with a value of one for pixels ''near the camera'', a value of .5 at the image center, and a value of zero on the opposite side. Tomographic reconstructions produced with this method show improved spatial resolution when compared to conventional 360 0 reconstructions. The improvement is in the tangential direction, where simulations have indicated a FWHM improvement of 1 to 1.5 millimeters. The resolution in the radial direction is essentially the same for both methods. Visual inspection of the reconstructed images show improved resolution and contrast

  17. Computed Tomographic Artifacts in Maxillofacial Surgery.

    Science.gov (United States)

    Kim, Jun Ho; Arita, Emiko Saito; Pinheiro, Lucas Rodrigues; Yoshimoto, Marcelo; Watanabe, Plauto Christopher Aranha; Cortes, Arthur Rodriguez Gonzalez

    2018-01-01

    The present study aimed to present 4 cases and to undertake a systematic review on the current knowledge of the impact of cone beam computed tomographic (CBCT) artifacts on oral and maxillofacial surgical planning and follow-up. The MEDLINE (PubMed) database was searched for the period from February 2004 to February 2017, for studies on the impact of CBCT artifacts on surgical planning of oral and maxillofacial surgeries. The PRISMA statement was followed during data assessment and extraction. As a result, data extraction included information regarding: the use of CBCT to plan or follow-up oral and maxillofacial surgeries, presence and type identification of a CBCT artifact, and details on the impact of artifacts on image quality and/or surgical planning. Four cases were selected to illustrate the topic. The search strategy yielded 408 publications in MEDLINE (PubMed). An initial screening of the publications was performed using abstracts and key words. After application of exclusion criteria, a total of 11 studies were finally identified as eligible to be discussed. Studies revealed 3 main types of artifact: beam hardening, streak, and motion artifacts. Most of the studies suggest that artifacts significantly affect oral and maxillofacial surgical planning and follow-up, despite of allowing for identification of metal projectiles in cases of maxillofacial trauma. CBCT artifacts have a significant impact on oral and maxillofacial surgical planning and follow-up.

  18. Formation of tomographic images with neutrons

    International Nuclear Information System (INIS)

    Duarte, A.; Tenreiro, C; Valencia, J; Steinman, G.; Henriquez, C

    2000-01-01

    The possibility of having a non-destructive method of analysis for archaeological and paleontological samples is of interest. A special group of fossil samples has come to our attention, which because of their value should be preserved and, therefore, the availability of an indirect, non-destructive, non contaminating analytical technique is important. The strong absorption of usual kinds of radiation by a fossilized sample restricts the application of conventional methods of analysis. A type of radiation that is not completely attenuated by thick samples, in sizes that are typical in paleontology, is necessary. Neutrons may be considered as an ideal non-invasive probe with the possibility of developing a technique for the formation and analysis of images. A technique has been developed for the spatial reconstruction of the contents of a fossilized sample (tomography) with neutrons, without touching or altering the sample in any way. The neutron beam was extracted from the RECH-1 reactor belonging to the CCHEN, La Reina. The tomographic images of the contents of a fossilized egg are presented for the first time and represent views or cuts of the content as well as a set that permits the three dimensional reconstruction of the inside of the object and its subsequent animation in graphic format. This project developed a technique for taking neutron radiographs of this kind of sample including the numerical algorithms and the treatment and formation of the images (CW)

  19. Computed tomographic findings of cerebral paragonimiasis

    International Nuclear Information System (INIS)

    Sung, Nak Kwan; Nam, Kyung Jin; Park, Churl Min; Eun, Chung Kie; Lee, Sun Wha

    1983-01-01

    Paragonimiasis is widely distributed in Far East and Southeast Asia, particularly in Korea. The central nervous system is the most frequent location for paragonimiasis outside the lungs. We analyzed the computed tomographic findings of 17 cases which were diagnosed pathologically and clinically as cerebral paragonimiasis. The results were as follows: 1. The ratio of male to female was 10 : 7 and about 88% of cases were under the age of 40 years. 2. The common locations of cerebral paragonimiasis were the occipital (12 cases) and temporal (11 cases) lobes. 3. Precontrast CT findings of cerebral paragonimiasis were low density with calcifications in 6 cases, low and isodensities in 4 cases, mixed densities in 3 cases, only low density in 2 cases and only calcification in 2 cases. Hydrocephalus (7 cases), mass effect (6 cases), atrophic change (6 cases) and cyst formation (3 cases) were associated. 4. The shape of calcifications in CT scan were soap-bubble or ring in 6 cases, nodular or oval in 6 cases, stipple in 4 cases and amorphous conglomerated in 2 cases. 5. The contrast -enhanced 8 cases were 5 ring or rim like, 2 nodular and 1 irregular enhancements, while 9 cases were not enhanced

  20. Collimator trans-axial tomographic scintillation camera

    International Nuclear Information System (INIS)

    Jaszczak, Ronald J.

    1979-01-01

    An improved collimator is provided for a scintillation camera system that employs a detector head for transaxial tomographic scanning. One object of this invention is to significantly reduce the time required to obtain statistically significant data in radioisotope scanning using a scintillation camera. Another is to increase the rate of acceptance of radioactive events to contribute to the positional information obtainable from a radiation source of known strength without sacrificing spatial resolution. A further object is to reduce the necessary scanning time without degrading the images obtained. The collimator described has apertures defined by septa of different radiation transparency. The septa are aligned to provide greater radiation shielding from gamma radiation travelling within planes perpendicular to the cranial-caudal axis and less radiation shielding from gamma radiation travelling within other planes. Septa may also define apertures such that the collimator provides high spatial resolution of gamma rays traveling within planes perpendicular to the cranial-caudal axis and directed at the detector and high radiation sensitivity to gamma radiation travelling other planes and indicated at the detector. (LL)

  1. Computed tomographic findings of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Jo, In Su; Jong, Woo Yung; Lee, Jong Yul; Choi, Han Yong; Kim, Bong Ki

    1987-01-01

    With Development of Computed Tomography, detection of the Hepatocellular Carcinoma are easily performed and frequently used in the world. During 15 months, from December 1985 to February 1987, 59 patients with hepatocellular carcinoma were evaluated with computed tomography in department of radiology at Wallace Memorial Baptist Hospital. The results were as follow: 1. The most prevalent age group was 5th to 7th decades, male to female ratio was 4.9:1. 2. Classification with incidence of computed tomographic appearance of the hepatocellular carcinoma were solitary type 28 cases (48%), multinodular type 24 cases (40%), and diffuse type 7 cases (12%), Association with liver cirrhosis was noted in 22 cases (38%). 3. Inhomogenous internal consistency of hepatocellular carcinoma due to central necrosis were 35 cases (60%). Portal vein invasion by hepatocellular carcinoma was noted in 15 cases (25%), and particularly most common in diffuse type 4 cases (55%). 4. On precontrast scan, all hepatocellular carcinoma were seen as area of low density except for 3 cases(0.5%) of near isodensity which turned out to be remarkable low density on postcontrast scan. 5. In solitary type, posterior segment of right lobe was most common site of involvement 12 cases (43%). In diffuse type, bilobar involvement was most common, 6 cases (85%)

  2. Techniques of noninvasive optical tomographic imaging

    Science.gov (United States)

    Rosen, Joseph; Abookasis, David; Gokhler, Mark

    2006-01-01

    Recently invented methods of optical tomographic imaging through scattering and absorbing media are presented. In one method, the three-dimensional structure of an object hidden between two biological tissues is recovered from many noisy speckle pictures obtained on the output of a multi-channeled optical imaging system. Objects are recovered from many speckled images observed by a digital camera through two stereoscopic microlens arrays. Each microlens in each array generates a speckle image of the object buried between the layers. In the computer each image is Fourier transformed jointly with an image of the speckled point-like source captured under the same conditions. A set of the squared magnitudes of the Fourier-transformed pictures is accumulated to form a single average picture. This final picture is again Fourier transformed, resulting in the three-dimensional reconstruction of the hidden object. In the other method, the effect of spatial longitudinal coherence is used for imaging through an absorbing layer with different thickness, or different index of refraction, along the layer. The technique is based on synthesis of multiple peak spatial degree of coherence. This degree of coherence enables us to scan simultaneously different sample points on different altitudes, and thus decreases the acquisition time. The same multi peak degree of coherence is also used for imaging through the absorbing layer. Our entire experiments are performed with a quasi-monochromatic light source. Therefore problems of dispersion and inhomogeneous absorption are avoided.

  3. Computer tomographic imaging of rabbit bulbourethral glands

    International Nuclear Information System (INIS)

    Dimitrov, R.

    2010-01-01

    The aim of the study was to utilize the obtained data for differentiation of normal and pathologically altered bulbourethral glands in rabbits with regard to using this animal species as a model for studying diseases in this organ in humans. MATERIAL AND METHODS: Ten sexually mature healthy male white New Zealand rabbits, 12 months old, weighed 2.8−3.2 kg were investigated. The animals were anesthetized. Scans were done at 2 mm intervals and the image reconstruction was three-dimensional. RESULTS: Rabbit bulbourethral glands were observed as a transversely oval homogeneous, relatively hyperdense structure against the surrounding soft tissues. They are visualized in the transverse cut of the pelvic outlet in the plane through the cranial part of cg2, the body of ischium, cranially to tuber ischiadicum and dorsally to the caudal part of symphysis pubis –sciatic arch. The glandular margins are adequately distinguished from the adjacent soft tissue structures. The density of the rabbit bulbourethral glands was similar to this of the soft tissues. CONCLUSION: The data obtained by the computed tomographic imaging of the rabbit bulbourethral glands could be used as an anatomical reference in the diagnosis and interpretation of imaging findings of various pathological states of the gland in this species, as well as in utilization of the rabbit as an animal model for studying diseases of this organ in humans, particularly diverticula, stenosis, lithiasis and valves

  4. A tomographic approach to intravenous coronary arteriography

    International Nuclear Information System (INIS)

    Ritman, E.L.; Bove, A.A.

    1986-01-01

    Coronary artery anatomy can be visualized using high speed, volume scanning X-ray CT. A single scan during a bolus injection of contrast medium provides image data for display of all angles of view of the opacified coronary arterial tree. Due to the tomographic nature of volume image data the superposition of contrast filled cardiac chambers, such as would occur in the levophase of an intravenous injection of contrast agent, can be eliminated. Data are presented which support these statements. The Dynamic Spatial Reconstructor (DSR) was used to scan a life-like radiologic phantom of an adult human thorax in which the left atrial and ventricular chambers and the major epicardial coronary arteries were opacified so as to simulate the levophase of an intravenous injection of contrast agent. A catheter filled with diluted contrast agent and with regions of luminal narrowing (i.e. 'stenoses') was advanced along a tract equivalent to a right ventricular catheterization. Ease of visualization of the catheter 'stenoses' and the accuracy with which they can be measured are presented. (Auth.)

  5. Comparison among tomographic reconstruction with limited data

    International Nuclear Information System (INIS)

    Oliveira, Eric F.; Dantas, Carlos C.; Vasconcelos, Daniel A.A.; Cadiz, Luis F.; Melo, Silvio B.

    2011-01-01

    Nowadays there is a continuing interest in applying computed tomography (CT) techniques in non-destructive testing and inspection of many industrial products. These applications of CT usually require a differentiated analysis when there are strong limitations in acquiring a sufficiently large amount of projection data. The use of a low number of tomographic data normally degrades the quality of the reconstructed image, highlighting the formation of artifacts and noise. This work investigates the reconstruction methods most commonly used (FBP, ART, SIRT, MART, SMART) and shows the performance of each one in this limited scenario. For this purpose, all methods were implemented and tested with a phantom of uniform density with well-known distribution, with measures of transmission of gamma radiation in a first generation CT scanner. The phantom is a concentric stainless steel tube coupled with a half - cylinder of aluminum. The measurements were made with an highest root mean square error, with the formation of visible artifacts. The artifacts are diminished but still visible in the ART and SIRT techniques, and the best performance was observed with the techniques MART and SMART. The technical superiority of these multiplicative methods is clearly seen in the reconstructed image quality, endorsing their application to situations of limited input data. (author)

  6. Computed tomographic findings of intracerebral cysticercosis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jin Kyo; Lee, Sun Wha; Kim, Ho Kyun; Ahn, Chi Yul [School of Medicine, Kyung-Hee University, Seoul (Korea, Republic of)

    1980-12-15

    Cysticercosis is a parasitic disease in which man serves as the intermediate host of Taenia Solium, the pork tapeworm. The computed tomographic findings of 25 cases of intracerebral cysticercosis proven by pathologic and/or clinical findings during past 2 years were analysed. The results were as follows; 1. The sex was 19 males and 6 females, and 56 percent of the patients were seen in fourth and fifth decades. The most common symptom was epilepsy (72%). 2. The C. T. findings in precontrast study were varied; such as ill defined low density (48%), cystic low density (20%), dilated ventricles (20%), ill defined low density with isodense nodule (18%), cystic low density with isodense mural nodule (12%) and calcification (8%). 3. The areas of involvement were 20 cases (80%) of parenchymal form, 3 cases (12%) of ventricular form and 2 cases (8%) of mixed form. 4. The contrast-enhanced 13 cases were 5 nodular, 5 ring or rim-like and 3 mixed type enhancements, while 12 cases were not enhanced. 5. C.T. scan demonstrated more precise location and extents of cerebral cysticercosis, especially in parenchymal form. It was considered to be important in determination of surgical feasibility and its approach.

  7. Processing DOSY NMR Data by Chemometric Methods

    NARCIS (Netherlands)

    Huo, R.

    2006-01-01

    DOSY NMR can be used as a non-invasive separation method for complex mixtures. It is more and more attractive for industrial laboratories, for the main advantage DOSY NMR over routine separation methods such as LC-NMR is easy and economical implementation. With NMR instruments, DOSY NMR data can be

  8. nmr spectroscopic study and dft calculations of giao nmr shieldings

    African Journals Online (AJOL)

    Preferred Customer

    NMR is a sensitive and versatile probe of molecular-scale structure and dynamics in solids and liquids. It has been widely used in chemistry, materials and geochemistry [21-23] and it enables one to get faster and easier structural information. The standard 1D and 2D hetero and homonuclear NMR experiments are enough ...

  9. Imaging properties of a positron tomograph with 280 BGO crystals

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Budinger, T.F.; Huesman, R.H.; Cahoon, J.L.; Vuletich, T.

    1980-11-01

    The basic imaging properties of the Donner 280-BGO-Crystal positron tomograph were measured and compared with the same system when it was equipped with 280 NaI(T1) crystals. The NaI(T1) crystals were 8 mm x 30 mm x 50 mm deep, sealed in 10 mm wide stainless steel cans. The BGO crystals are 9.5 mm x 32 mm x 32 mm deep and as they are not hygroscopic do not require sealed cans. With a shielding gap of 3 cm (section thickness 1.7 cm FWHM) the sensitivity of the BGO system is 55,000 events per sec for 1 μCi per cm 3 in a 20 cm cylinder of water, which is 2.3 times higher than the NaI(T1) system. For a 200 μCi/cm line source on the ring axis in a 20 cm diameter water cylinder, the BGO system records 86% of the scatter fraction and 66% of the accidental fraction of the NaI(T1) system. The lower light yield and poorer time resolution of BGO requires a wider coincidence timing window than NaI(T1). However, the ability to use full-energy pulse height selection with a 2.3-fold improvement in sensitivity results in an overall reduction in the fraction of accidental events recorded. The in-plane resolution of the BGO system is 9 to 10 mm FWHM within the central 30 cm diameter field, and the radial elongation at the edge of the field in the NaI(T1) system has been nearly eliminated

  10. Determination of instantaneous pressure in a transonic base flow using four-pulse tomographic PIV

    OpenAIRE

    Blinde, P.L.; Lynch, K.P.; Schrijer, F.F.J.; Van Oudheusden, B.W.

    2015-01-01

    A tomographic four-pulse PIV system is used in a transonic axisymmetric base flow experiment at a nominal free stream Mach number of 0.7, with the objective to obtain flow acceleration and pressure data. The PIV system, consisting of two double-pulse lasers and twelve cameras, allows acquiring two velocity fields with time separations as small as 2.5 ?s. A performance assessment is carried out and provides a typical average error estimate below 0.025 U? (0.3 voxel). The ability to use these v...

  11. Molecular-Frame 3D Photoelectron Momentum Distributions by Tomographic Reconstruction

    DEFF Research Database (Denmark)

    Maurer, Jochen; Dimitrovski, Darko; Christensen, Lauge

    2012-01-01

    Naphthalene molecules are fixed in space by a laser field and rotated, in 2° steps, over 180°. For each orientation, they are ionized by an intense, circularly polarized femtosecond laser pulse, and the 2D projection of the photoelectron momentum distribution is recorded. The molecular-frame 3D...... momentum distribution is obtained by tomographic reconstruction from all 90 projections. It reveals an anisotropic electron distribution, angularly shifted in the polarization plane, that is not accessible by the 2D momentum images. Our theoretical analysis shows that the magnitude of the angular shift...

  12. [Optimization of experimental parameters for quantitative NMR (qNMR) and its application in quantitative analysis of traditional Chinese medicines].

    Science.gov (United States)

    Ma, Xiao-Li; Zou, Ping-Ping; Lei, Wei; Tu, Peng-Fei; Jiang, Yong

    2014-09-01

    Quantitative NMR (qNMR) is a technology based on the principle of NMR. This technology does not need the references of the determined components, which supplies a solution for the problem of reference scarcity in the quantitative analysis of traditional Chinese medicines. Moreover, this technology has the advantages of easy operation, non-destructiveness for the determined sample, high accuracy and repeatability, in comparison with HPLC, LC-MS and GC-MS. NMR technology has achieved quantum leap in sensitivity and accuracy with the development of NMR hardware. In addition, the choice of appropriate experimental parameters of the pre-treatment and measurement procedure as well as the post-acquisition processing is also important for obtaining high-quality and reproducible NMR spectra. This review summarizes the principle of qHNMR, the various experimental parameters affecting the accuracy and the precision of qHNMR, such as signal to noise ratio, relaxation delay, pulse width, acquisition time, window function, phase correction and baseline correction, and their corresponding optimized methods. Moreover, the application of qHNMR in the fields of quantitation of single or multi-components of traditional Chinese medicines, the purity detection of references, and the quality analysis of foods has been discussed. In addition, the existing questions and the future application prospects of qNMR in natural product areas are also presented.

  13. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  14. NMR imaging of osteoarticular pathology

    Energy Technology Data Exchange (ETDEWEB)

    Frocrain, L.; Duvauferrier, R.; Gagey, N. and others

    1987-01-01

    NMR imaging is assuming an increasingly important role in the diagnosis of osteo-articular disorders. Semiological descriptions of the mean pathological disorders of the locomotor system are presented. Some investigation strategies are proposed to compare NMR imaging with other imaging techniques in various pathological states.

  15. Quantum Information Processing by NMR

    Indian Academy of Sciences (India)

    Keywords. NMR; quantum information processing; quantum computing; qubits; pseudopure states; quantum; pseudopure states; quantum gates; quantum simulations; decoherence. ... T S Mahesh1. Department of Physics and NMR Research Center, Indian Institute of Science Education and Research, Pune 411 008, India ...

  16. Resistive NMR of intracranial hematomas

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, R.A.; Bilaniuk, L.T.; Grossman, R.I.; Levine, R.S.; Lynch, R.; Goldberg, H.I.; Samuel, L.; Edelstein, W.; Bottomley, P.; Redington, R.W.

    1985-01-01

    Comparison between computed tomography and nuclear magnetic resonance imaging in 17 patients with intracranial hematomas indicate a distinct role for NMR in evaluating the stable patient with hematoma. NMR is useful for delineating the extent of the hematoma, the relationship of the hematoma to brain anatomy, and the presence of hematoma at a time when the hematoma is isodense on CT.

  17. Combining ART and FBP for improved fidelity of tomographic BOS

    Science.gov (United States)

    Hartmann, Ulrich; Seume, Joerg R.

    2016-09-01

    Engine component defects along the hot-gas path (HGP) of jet engines influence the density distribution of the flow, and thus result in characteristic patterns in the exhaust jet. These characteristic patterns can be reconstructed with the optical background-oriented schlieren (BOS) method in a tomographic set-up, which in turn allows the identification of defects inside the engine through an exhaust jet analysis. The quality of the tomographic reconstruction strongly influences how easily defects can be detected inside the jet engine. In particular, the presence of high gradients in the reconstruction area has a strong impact on the reconstruction quality. An algebraic reconstruction algorithm (ART) is implemented and compared to a filtered-back projection (FBP) algorithm in terms of the capability of performing high-gradient tomographic BOS reconstructions. A combination of both algorithms is presented which significantly improves the reconstruction quality of high-gradient tomographic BOS in terms of artifact reduction. The combination of both algorithms is applied to both synthetic and real measurement data in this paper, in order to show possible applications and the achievable improvement of high-gradient tomographic BOS reconstructions.

  18. A high-pressure NMR probe for aqueous geochemistry.

    Science.gov (United States)

    Pautler, Brent G; Colla, Christopher A; Johnson, Rene L; Klavins, Peter; Harley, Stephen J; Ohlin, C André; Sverjensky, Dimitri A; Walton, Jeffrey H; Casey, William H

    2014-09-08

    A non-magnetic piston-cylinder pressure cell is presented for solution-state NMR spectroscopy at geochemical pressures. The probe has been calibrated up to 20 kbar using in situ ruby fluorescence and allows for the measurement of pressure dependencies of a wide variety of NMR-active nuclei with as little as 10 μL of sample in a microcoil. Initial (11)B NMR spectroscopy of the H3BO3-catechol equilibria reveals a large pressure-driven exchange rate and a negative pressure-dependent activation volume, reflecting increased solvation and electrostriction upon boron-catecholate formation. The inexpensive probe design doubles the current pressure range available for solution NMR spectroscopy and is particularly important to advance the field of aqueous geochemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Interfaces in polymer nanocomposites – An NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Böhme, Ute; Scheler, Ulrich, E-mail: scheler@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden (Germany)

    2016-03-09

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. {sup 1}H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T{sub 2} is most suited. In this presentation we report on two applications of T{sub 2} measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  20. Interfaces in polymer nanocomposites – An NMR study

    International Nuclear Information System (INIS)

    Böhme, Ute; Scheler, Ulrich

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1 H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T 2 is most suited. In this presentation we report on two applications of T 2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  1. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  2. Tomographic reconstruction of atmospheric volumes from infrared limb-imager measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ungermann, Joern

    2011-08-12

    State-of-the art nadir and limb-sounders, but also in situ measurements, do not offer the capability to highly resolve the atmosphere in all three dimensions. This leaves an observational gap with respect to small-scale structures that arise frequently in the atmosphere and that still lack a quantitative understanding. For instance, filaments and tropopause folds in the upper troposphere and lower stratosphere (UTLS) are crucial for its composition and variability. One way to achieve a highly resolved three-dimensional (3-D) picture of the atmosphere is the tomographic evaluation of limb-imager measurements. This thesis presents a methodology for the tomographic reconstruction of atmospheric constituents. To be able to deal with the large increase of observations and unknowns compared to conventional retrievals, great care is taken to reduce memory consumption and processing time. This method is used to evaluate the performance of two upcoming infrared limb-imager instruments and to prepare their missions. The first examined instrument is the infrared limb-imager on board of PREMIER (Process Exploration through Measurements of Infrared and millimetrewave Emitted Radiation), one of three remaining candidates for ESA's 7th Earth Explorer mission. Scientific goals of PREMIER are, among others, the examination of gravity waves and the quantification of processes controlling atmospheric composition in the UTLS, a region of particular importance for climate change. Simulations based on the performance requirements of this instrument deliver a vertical resolution that is slightly better than its vertical field-of-view (about 0.75 km) and a horizontal resolution of {approx}25km x 70 km. Non-linear end-to-end simulations for various gravity wave patterns demonstrate that the high 3-D resolution of PREMIER considerably extends the range of detectable gravity waves in terms of horizontal and vertical wavelength compared to previous observations. The second examined

  3. Correction of ring artifacts in X-ray tomographic images

    DEFF Research Database (Denmark)

    Lyckegaard, Allan; Johnson, G.; Tafforeau, P.

    2011-01-01

    Ring artifacts are systematic intensity distortions located on concentric circles in reconstructed tomographic X-ray images. When using X-ray tomography to study for instance low-contrast grain boundaries in metals it is crucial to correct for the ring artifacts in the images as they may have...... are separable. The method is implemented in Matlab, it works with very little user interaction and may run in parallel on a cluster if applied to a whole stack of images. The strength and robustness of the method implemented will be demonstrated on three tomographic X-ray data sets: a mono-phase β...... the same intensity level as the grain boundaries and thus make it impossible to perform grain segmentation. This paper describes an implementation of a method for correcting the ring artifacts in tomographic X-ray images of simple objects such as metal samples where the object and the background...

  4. A SPICE synthetic dataset to benchmark global tomographic methods

    Science.gov (United States)

    Qin, Y.; Capdeville, Y.; Maupin, V.; Montagner, J.

    2005-12-01

    The different existing global tomographic methods result in different models of the Earth. Within SPICE (Seismic wave Propagation and Imaging in Complex media: a European network), we have decided to perform a benchmark experiment of global tomographic techniques. A global model has been constructed. It includes 3D heterogeneities in velocity, anisotropy and attenuation, as well as topography of discontinuities. Simplified versions of the model will also be used. Synthetic seismograms will be generated at low frequency by the Spectral Element Method, for a realistic distribution of sources and stations. The synthetic seismograms will be made available to the scientific community at the SPICE website www.spice-rtn.org. Any group wishing to test his tomographic algorithm is encouraged to download the synthetic data.

  5. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Wilkinson, N.A.; Rogers, J.G.; Atkins, M.S.

    1989-01-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. the data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition system. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events which are 64 bits wide

  6. Radiographic and tomographic study of the elbow joint in dogs

    International Nuclear Information System (INIS)

    Sendyk-Grunkraut, Alessandra; Martin, Claudia M.; Souza, Alexandre N.A.; Patricio, Geni Cristina F.; Lorigados, Carla A.B.; Matera, Julia M.; Fonseca-Pinto, Ana C.B.C.

    2017-01-01

    Elbow dysplasia disease includes an united anconeal process, fragmented medial coronoid process, osteochondrosis of humeral trochlea, articular incongruity and degenerative joint disease. The aim of this study was to present detailed morphologic and morphometric aspects of the elbow joint in dog in clinical and correlate with radiographic and tomographic (CT) exam. Inter-observer variation for articular incongruity measurements by CT, comparative analysis in the radiographic exam, angle in ulnar notch and its comparative analysis between radiographic and tomographic agreement examination in 44 elbow of dogs with different ages were evaluated. The statistics analyses included the kappa coefficient and interclass correlation and Fischer's test and McNemar's test. It was evidenced that individual performance of each radiographic incidence had poor agreement with the tomographic exam, suggesting that the accomplishment of more than two radiograph views are needed. There was no agreement between the three evaluators in the ulnar notch angle at radiographic and tomographic exams. However, there was good/moderate agreement for articular incongruity measurement in the sagittal plane between evaluators. It was possible to conclude that none of the five radiographic incidences was better than the others for radiographic analysis because each incidence had a better identification of a particular elbow compartment; measurements at the tomographic exam to evaluate radioulnar incongruity had no reproductiveness in the frontal plane, but in sagittal plan had a good/moderate agreement between observers and the angle in ulnar notch presented no repeatability at radiographic exam and no reproductiveness at tomographic exam. (author)

  7. Computerized Tomographic Study on the Paranasal Sinusitis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Kyung; Lim, Sug Young; Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology and Institute of Oral Bio Science, College of Dentistry, Chonbuk National University, Chonju (Korea, Republic of)

    1999-08-15

    The purpose of this study was to evaluate the computed tomographic (CT) images of the paranasal sinusitis(PNS). The author examined the extent and the recurring patterns of the paranasal sinusitis and some important anatomic landmarks. The author analyzed PNS images retrospectively in 500 patients who visited Chonbuk National University Hospital between January 1996 and December 1997. The most frequently affected sinus was maxillary sinus (82.9%), followed by anterior ethmoid sinus (67.9%), posterior ethmoid sinus (48.9%), frontal sinus (42.0%) and sphenoid sinus (41.4%). The characteristic features of CT images of the sinusitis were sinus opacification (22.4%), mucoperiosteal thickening (34.3%), and polyposis (2.0%). Sinonasal inflammatory diseases were categorized into 5 patterns according to Babbel's classification. They were 1) infundibular (13.0%), 2) ostiomeatal unit (67.4%), 3)sphenoethmoidal recess (13.0%), 4) sinonasal polyposis (9.6%) and 5) unclassifiable patterns (18.0%). The incidences of contact between sinus and optic nerve were as follows ; the incidences of contact with posterior ethmoid sinus, sphenoid sinus, both posterior sinuses were 11.4%, 66.8%, 6.3%, respectively. The incidences of contact between sphenoid sinus and maxillary nerve, vidian nerve, internal carotid artery were 74.5%, 79.2%, 45.1% respectively. The incidences of pneumatization of the posterior ethmoid sinus were as follows; normal 70.6% and overriding type 29.4%. The incidences of sphenoid sinus pneumatization were as follows; normal 56.9% , rudimentary 12.5%, pterygoid recess 22.7%, anterior clinoid recess 2.7%, and both pterygoid and anterior clinoid recess 5.2%. The inflammatory sinonasal diseases were classified into five patterns using the CT of PNS, which was proven to be an excellent imaging modality providing detailed information about mucosal abnormality, pathologic patterns and the proximity of the important structures to the posterior paranasal sinuses. This

  8. Software development for modeling positrons emission tomograph scanners

    International Nuclear Information System (INIS)

    Vieira, Igor Fagner

    2013-01-01

    The Geant4 Application for Tomographic Emission (GATE) is an international platform recognized and used to develop Computational Model Exposure (CME) in the context of Nuclear Medicine, although currently there are dedicated modules for applications in Radiotherapy and Computed Tomography (CT). GATE uses Monte Carlo (MC) methods, and has a scripting language of its own. The writing of scripts for simulation of a PET scanner in GATE involves a number of interrelated steps, and the accuracy of the simulation is dependent on the correct setup of the geometries involved, since the physical processes depend on them, as well as the modeling of electronic detectors in module Digitizer, for example. The manual implementation of this setup can be a source of errors, especially for users without experience in the field of simulations or without any previous knowledge of a programming language, and also due to the the fact that the modeling process in GATE still remains bounded to LINUX / UNIX based systems, an environment only familiar to a few. This becomes an obstacle for beginners and prevents the use of GATE by a larger number of users interested in optimizing their experiments and/or clinical protocols through a more accessible, fast and friendly application. The objective of this work is therefore to develop a user-friendly software for the modeling of Positron Emission Tomography called GUIGATE (Graphical User Interface for GATE), with specific modules dedicated to quality control in PET scanners. The results exhibit the features available in this first version of GUIGATE, present in a set of windows that allow users to create their input files, perform and display in real time the model and analyze its output file in a single environment, allowing so intuitively access the entire architecture of the GATE simulation and to CERN's data analyzer, the ROOT. (author)

  9. Biomedical Optoacoustic Tomograph Based on a Cylindrical Focusing PVDF Antenna

    Science.gov (United States)

    Subochev, P. V.; Postnikova, A. S.; Koval'chuk, A. V.; Turchin, I. V.

    2017-08-01

    We developed an optoacoustic tomograph with hand-held probe designed for optoacoustic imaging of biological tissues. The hand-held probe consists of a fiber-optic bundle for delivery of pulsed laser radiation to the studied object and a cylindrical focusing 64-element antenna for the detection of optoacoustic pulses. The capabilities of the tomograph to visualize the model blood vessels were studied experimentally using electronic and electronic-mechanical scanning. The achieved axial/lateral spatial resolution is 200/400 μm, the imaging depth is 18 mm, and the maximum B-scan acquisition rate is 10 Hz.

  10. Optical tomograph optimized for tumor detection inside highly absorbent organs

    Science.gov (United States)

    Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Dinten, Jean-Marc; Josserand, Véronique; Coll, Jean-Luc

    2011-05-01

    This paper presents a tomograph for small animal fluorescence imaging. The compact and cost-effective system described in this article was designed to address the problem of tumor detection inside highly absorbent heterogeneous organs, such as lungs. To validate the tomograph's ability to detect cancerous nodules inside lungs, in vivo tumor growth was studied on seven cancerous mice bearing murine mammary tumors marked with Alexa Fluor 700. They were successively imaged 10, 12, and 14 days after the primary tumor implantation. The fluorescence maps were compared over this time period. As expected, the reconstructed fluorescence increases with the tumor growth stage.

  11. NMR methodologies for studying mitochondrial bioenergetics.

    Science.gov (United States)

    Alves, Tiago C; Jarak, Ivana; Carvalho, Rui A

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3-5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton ((1)H) and phosphorous ((31)P), as well as stable isotopes such as deuterium ((2)H) and carbon 13 ((13)C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed.

  12. Principles of high resolution NMR in solids

    CERN Document Server

    Mehring, Michael

    1983-01-01

    The field of Nuclear Magnetic Resonance (NMR) has developed at a fascinating pace during the last decade. It always has been an extremely valuable tool to the organic chemist by supplying molecular "finger print" spectra at the atomic level. Unfortunately the high resolution achievable in liquid solutions could not be obtained in solids and physicists and physical chemists had to live with unresolved lines open to a wealth of curve fitting procedures and a vast amount of speculations. High resolution NMR in solids seemed to be a paradoxon. Broad structure­ less lines are usually encountered when dealing with NMR in solids. Only with the recent advent of mUltiple pulse, magic angle, cross-polarization, two-dimen­ sional and multiple-quantum spectroscopy and other techniques during the last decade it became possible to resolve finer details of nuclear spin interactions in solids. I have felt that graduate students, researchers and others beginning to get involved with these techniques needed a book which trea...

  13. Annual reports on NMR spectroscopy

    CERN Document Server

    Webb, Graham A; McCarthy, M J

    1995-01-01

    Over recent years, no other technique has grown to such importance as that of NMR spectroscopy. It is used in all branches of science where precise structural determination is required and where the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a means for the specialist and non-specialist alike to become familiar with new applications of the technique in all branches of chemistry, including biochemistry, and pharmaceutics. This volume focuses on theoretical aspects of NMR nuclear shielding and on applications of

  14. Separation of components of a broad 1H-NMR composite signal by means of nutation experiments under low amplitude radiofrequency fields. Application to the water signal in synthetic clays; Developpement et mise en oeuvre d'une nouvelle methode fondee sur le phenomene de nutation pour la decomposition d'un signal composite de resonance magnetique nucleaire. Application au signal 1h de l'eau dans des argiles synthetiques

    Energy Technology Data Exchange (ETDEWEB)

    Trausch, G

    2006-11-15

    Nowadays, geologic nuclear waste storage is envisioned according to a multi-layer model which implies clays. The latter exhibit retention capacities and low permeability to water; that is why they are considered as a good candidate for engineered barriers to radioactive waste disposal. The present work here aims at studying transport phenomena which involve water molecules in three samples of synthetic clays (two of them exhibiting a Pake doublet) by means of Nuclear Magnetic Resonance (NMR). The first chapter describes structural properties of clays and presents the state-of-art of NMR and other experimental techniques used for such systems. The second chapter deals with the interpretation and the simulation of each conventional proton spectrum. These simulations allow us to evidence and to characterize a chemical exchange phenomenon. The third chapter is dedicated to original nutation experiments performed under low radiofrequency field in the case of broad NMR signal. It is shown that this type of NMR experiment can yield the number and the proportion of each species contributing to the whole signal. These results are exploited in the fourth chapter for processing relaxation and diffusion experiments. Finally, the diffusion coefficients obtained by NMR are divided by a factor 4 with respect to pure water while relaxation rates are two orders of magnitude greater. (author)

  15. Flow units from integrated WFT and NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Kasap, E.; Altunbay, M.; Georgi, D.

    1997-08-01

    Reliable and continuous permeability profiles are vital as both hard and soft data required for delineating reservoir architecture. They can improve the vertical resolution of seismic data, well-to-well stratigraphic correlations, and kriging between the well locations. In conditional simulations, permeability profiles are imposed as the conditioning data. Variograms, covariance functions and other geostatistical indicators are more reliable when based on good quality permeability data. Nuclear Magnetic Resonance (NMR) logging and Wireline Formation Tests (WFT) separately generate a wealth of information, and their synthesis extends the value of this information further by providing continuous and accurate permeability profiles without increasing the cost. NMR and WFT data present a unique combination because WFTs provide discrete, in situ permeability based on fluid-flow, whilst NMR responds to the fluids in the pore space and yields effective porosity, pore-size distribution, bound and moveable fluid saturations, and permeability. The NMR permeability is derived from the T{sub 2}-distribution data. Several equations have been proposed to transform T{sub 2} data to permeability. Regardless of the transform model used, the NMR-derived permeabilities depend on interpretation parameters that may be rock specific. The objective of this study is to integrate WFT permeabilities with NMR-derived, T{sub 2} distribution-based permeabilities and thereby arrive at core quality, continuously measured permeability profiles. We outlined the procedures to integrate NMR and WFT data and applied the procedure to a field case. Finally, this study advocates the use of hydraulic unit concepts to extend the WFT-NMR derived, core quality permeabilities to uncored intervals or uncored wells.

  16. β-NMR sample optimization

    CERN Document Server

    Zakoucka, Eva

    2013-01-01

    During my summer student programme I was working on sample optimization for a new β-NMR project at the ISOLDE facility. The β-NMR technique is well-established in solid-state physics and just recently it is being introduced for applications in biochemistry and life sciences. The β-NMR collaboration will be applying for beam time to the INTC committee in September for three nuclei: Cu, Zn and Mg. Sample optimization for Mg was already performed last year during the summer student programme. Therefore sample optimization for Cu and Zn had to be completed as well for the project proposal. My part in the project was to perform thorough literature research on techniques studying Cu and Zn complexes in native conditions, search for relevant binding candidates for Cu and Zn applicable for ß-NMR and eventually evaluate selected binding candidates using UV-VIS spectrometry.

  17. Interpretations of NMR images

    International Nuclear Information System (INIS)

    Shi, J.Z.; McFarland, W.D.; Chen, S.S.; Sadhu, V.K.

    1986-01-01

    Two color display schemes are generally considered in medical images: pseudo-color and color composite. Psuedo-color technique maps the intensity means of a single monochrome image into a three dimensional color space, the gray level is thus replaced by the assigned color. Such a psuedo-color assignment is somewhat arbitrary but may be advantageous if the monochrome image is composed of simple intensity patterns. A good example of psuedo-color application is in nuclear medicine: The change of gray levels can be simply determined and the isocounts from two regions with different surroundings can be readily recognized. However, the use of psuedo-color in CT or MR imaging is controversial because it does not give additional information and may exaggerate insignificant gray scale differences. The color composite technique maps three parametric image data into a three dimensional color space, and thus three monochrome images are merged to form a single color image. The color composite technique increases the number of ways information can be displayed and provides both quantitative and qualitative data about the object or event represented. This paper describes the application of color composite in NMR images

  18. 3D flow visualization and tomographic particle image velocimetry for vortex breakdown over a non-slender delta wing

    Science.gov (United States)

    Wang, ChengYue; Gao, Qi; Wei, RunJie; Li, Tian; Wang, JinJun

    2016-06-01

    Volumetric measurement for the leading-edge vortex (LEV) breakdown of a delta wing has been conducted by three-dimensional (3D) flow visualization and tomographic particle image velocimetry (TPIV). The 3D flow visualization is employed to show the vortex structures, which was recorded by four cameras with high resolution. 3D dye streaklines of the visualization are reconstructed using a similar way of particle reconstruction in TPIV. Tomographic PIV is carried out at the same time using same cameras with the dye visualization. Q criterion is employed to identify the LEV. Results of tomographic PIV agree well with the reconstructed 3D dye streaklines, which proves the validity of the measurements. The time-averaged flow field based on TPIV is shown and described by sections of velocity and streamwise vorticity. Combining the two measurement methods sheds light on the complex structures of both bubble type and spiral type of breakdown. The breakdown position is recognized by investigating both the streaklines and TPIV velocity fields. Proper orthogonal decomposition is applied to extract a pair of conjugated helical instability modes from TPIV data. Therefore, the dominant frequency of the instability modes is obtained from the corresponding POD coefficients of the modes based on wavelet transform analysis.

  19. Design of Pre-emphasis Compensation for MR Tomograph

    Czech Academy of Sciences Publication Activity Database

    Gescheidtová, E.; Kubásek, J.; Smékal, Z.; Bartušek, Karel

    2008-01-01

    Roč. 45, č. 1 (2008), s. 161-173 ISSN 1738-6438 R&D Projects: GA ČR(CZ) GA102/07/0389 Institutional research plan: CEZ:AV0Z20650511 Keywords : pre-emphasis compensation * MR tomograph Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  20. Computerized tomographic findings in children with head trauma in ...

    African Journals Online (AJOL)

    Objective: To describe the computerized tomographic findings in children with head trauma who presented at the University of Benin Teaching Hospital, Benin City, Nigeria. Methods: It is a retrospective review of patients aged 0 – 15 years with suspected intracranial injury (ICI) following head trauma, who presented for CT ...

  1. Gunshot injuries to the maxillofacial region: computed tomographic ...

    African Journals Online (AJOL)

    OBJECTIVE: To evaluate Computed Tomographic findings in patients with gunshot injury (GSI) to the maxillofacial region. MATERIALS AND METHODS: A retrospective cohort study of patients who had Computed Tomography (CT) scanning done for GSI to the maxillofacial region at the University of Benin Teaching ...

  2. Application of tomographic particle image velocimetry to complex (dusty) plasmas

    International Nuclear Information System (INIS)

    Williams, Jeremiah

    2011-01-01

    Over the past decade, particle image velocimetry (PIV) techniques have been used to obtain detailed measurements of the thermal and transport properties of weakly-coupled dusty plasmas. This paper reports on the application of an extension of these techniques, tomographic PIV (tom-PIV), which provides an instantaneous volumetric measurement of the particle transport.

  3. A new ionospheric tomographic algorithm–constrained multiplicative ...

    Indian Academy of Sciences (India)

    For the limitation of the conventional multiplicative algebraic reconstruction technique (MART), a constrained MART (CMART) is proposed in this paper. In the new tomographic algorithm, a popular two-dimensional multi-point finite difference approximation of the second order Laplacian operator is used to smooth the ...

  4. Computed tomographic findings in manifesting carriers of Duchenne muscular dystrophy

    NARCIS (Netherlands)

    de Visser, M.; Verbeeten, B.

    1985-01-01

    Clinical and computed tomographic (CT) findings in 3 manifesting carriers of Duchenne muscular dystrophy are reported. CT proved to be an important adjunct to the clinical examination: in all our 3 cases a decrease in density was found in various non-paretic muscles

  5. Temporal evaluation of computed tomographic scans at a Level 1 ...

    African Journals Online (AJOL)

    Temporal evaluation of computed tomographic scans at a Level 1 trauma department in a central South African hospital. ... Method: Relevant categorical data were collected from the trauma patient register and radiological information system (RIS) from 01 February 2013 to 31 January 2014. A population of 1107 trauma ...

  6. [X-ray computed tomographic aspects of benign primary cerebral melanomas. Apropos of 4 cases].

    Science.gov (United States)

    Adam, P; Alberge, Y; Espagno, C; Bouzigues, J Y

    1986-02-01

    Benign primitive melanomas are rare tumours usually involving the leptomeninges. Four cranial localizations are reported: 2 tumours of the foramen magnum, 1 of the cerebellopontine angle and 1 supratentorial. The clinical symptomatology is variable according to the level. Slow medullary compression is frequent. One can emphasize the special and difficult problem of foramen magnum tumours that present with a very variable clinical status frequently simulating a non surgical disease of the central nervous system. The benign and primitive appearance of these tumours is evocated by the slow and favourable evolution and by the absence of extraneurologic melanotic tumour. Our purpose is essentially to emphasize the radiological and particularly the computed tomographic (CT) findings poorly described in the literature. Benign melanomas have resemblance with meningiomas: osseous or meningeal relationship, homogeneity and high density. On the other hand the angiography shows poor vascularization. One can think that a tumor simulating a meningioma by CT but not by angiography is perhaps a benign melanoma. The special problem of the radiological diagnosis of foramen magnum tumours is evocated: Computed myelography, tridimensional imaging by NMR.

  7. The installation of a commercial resistive NMR imager

    International Nuclear Information System (INIS)

    Smith, M.A.; Best, J.J.K.; Douglas, R.H.B.; Kean, D.M.

    1984-01-01

    It has been demonstrated that a relatively low-cost resistive NMR imager can be installed in a normal hospital environment without many major or expensive modifications. The magnet can be adjusted to give adequate uniformity and there is sufficient RF shielding to give good quality clinical images. The fringe field of the magnet of this system, which operates at the lowest field strength of any commercial NMR imager, does not present a problem to imaging unit staff. The long term reliability and detailed specifications with regard to image quality have yet to be determined. These will be determined whilst the imager is being used for clinical studies as part of the national clinical evaluation of NMR imaging supported by the Medical Research Council. (author)

  8. Towards 31Mg-β-NMR resonance linewidths adequate for applications in magnesium chemistry

    DEFF Research Database (Denmark)

    Stachura, M.; McFadden, R. M. L.; Chatzichristos, A.

    2017-01-01

    The span of most chemical shifts recorded in conventional 25Mg-NMR spectroscopy is ~ 100 ppm. Accordingly, linewidths of ~ 10 ppm or better are desirable to achieve adequate resolution for applications in chemistry. Here we present first high-field 31Mg- β-NMR measurements of 31Mg+ ions implanted...

  9. Natural abundant (17) O NMR in a 1.5-T Halbach magnet.

    Science.gov (United States)

    Sørensen, Morten K; Bakharev, Oleg N; Jensen, Ole; Nielsen, Niels Chr

    2016-06-01

    We present mobile, low-field (17) O NMR as a means for monitoring oxygen in liquids. Whereas oxygen is one of the most important elements, oxygen NMR is limited by a poor sensitivity related to low natural abundance and gyro-magnetic ratio of the NMR active (17) O isotope. Here, we demonstrate (17) O NMR detection at a Larmor frequency of 8.74 MHz in a 1.5-T Halbach neodymium magnet with a home-built digital NMR instrument suitable for large-scale production and in-line monitoring applications. The proposed (17) O NMR sensor may be applied for direct, noninvasive measurements of water content in, for example, oil, manure, or food in automated quality or process control. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. NMR imaging in theory and in practice

    International Nuclear Information System (INIS)

    Taylor, D.G.; Inamdar, R.; Bushell, M.-C.

    1988-01-01

    This review, completed in 1988, covers basic theory, NMR imaging (selective excitation, image acquisition and reconstruction, spatial localisation of NMR parameters, factors affecting accuracy of NMR parameters, image quality considerations), and NMR imaging in clinical practice. The authors conclude that current NMR technology enables one to image the human body with a clarity matching x-ray CT, in terms of contrast differentiation in soft tissues being superior. (U.K.)

  11. Selected topics in solution-phase biomolecular NMR spectroscopy

    Science.gov (United States)

    Kay, Lewis E.; Frydman, Lucio

    2017-05-01

    Solution bio-NMR spectroscopy continues to enjoy a preeminent role as an important tool in elucidating the structure and dynamics of a range of important biomolecules and in relating these to function. Equally impressive is how NMR continues to 'reinvent' itself through the efforts of many brilliant practitioners who ask increasingly demanding and increasingly biologically relevant questions. The ability to manipulate spin Hamiltonians - almost at will - to dissect the information of interest contributes to the success of the endeavor and ensures that the NMR technology will be well poised to contribute to as yet unknown frontiers in the future. As a tribute to the versatility of solution NMR in biomolecular studies and to the continued rapid advances in the field we present a Virtual Special Issue (VSI) that includes over 40 articles on various aspects of solution-state biomolecular NMR that have been published in the Journal of Magnetic Resonance in the past 7 years. These, in total, help celebrate the achievements of this vibrant field.

  12. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study.

    Science.gov (United States)

    Ramelot, Theresa A; Raman, Srivatsan; Kuzin, Alexandre P; Xiao, Rong; Ma, Li-Chung; Acton, Thomas B; Hunt, John F; Montelione, Gaetano T; Baker, David; Kennedy, Michael A

    2009-04-01

    The structure of human protein HSPC034 has been determined by both solution nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography. Refinement of the NMR structure ensemble, using a Rosetta protocol in the absence of NMR restraints, resulted in significant improvements not only in structure quality, but also in molecular replacement (MR) performance with the raw X-ray diffraction data using MOLREP and Phaser. This method has recently been shown to be generally applicable with improved MR performance demonstrated for eight NMR structures refined using Rosetta (Qian et al., Nature 2007;450:259-264). Additionally, NMR structures of HSPC034 calculated by standard methods that include NMR restraints have improvements in the RMSD to the crystal structure and MR performance in the order DYANA, CYANA, XPLOR-NIH, and CNS with explicit water refinement (CNSw). Further Rosetta refinement of the CNSw structures, perhaps due to more thorough conformational sampling and/or a superior force field, was capable of finding alternative low energy protein conformations that were equally consistent with the NMR data according to the Recall, Precision, and F-measure (RPF) scores. On further examination, the additional MR-performance shortfall for NMR refined structures as compared with the X-ray structure were attributed, in part, to crystal-packing effects, real structural differences, and inferior hydrogen bonding in the NMR structures. A good correlation between a decrease in the number of buried unsatisfied hydrogen-bond donors and improved MR performance demonstrates the importance of hydrogen-bond terms in the force field for improving NMR structures. The superior hydrogen-bond network in Rosetta-refined structures demonstrates that correct identification of hydrogen bonds should be a critical goal of NMR structure refinement. Inclusion of nonbivalent hydrogen bonds identified from Rosetta structures as additional restraints in the structure calculation results in

  13. Tomographic PIV study of boundary-layer flashback in swirl flames

    Science.gov (United States)

    Ebi, Dominik; Clemens, Noel

    2014-11-01

    Preventing boundary layer flashback in swirl combustors is a key challenge for gas turbines intended to burn high hydrogen content fuels. We are studying this type of flashback by investigating the upstream flame propagation of lean-premixed methane/hydrogen-air flames inside the mixing tube of our model swirl combustor. Experiments are conducted at atmospheric pressure. Flashback is triggered by increasing the equivalence ratio. Previous studies employing planar measurements have shown that the flame strongly alters the upstream flow field and thus its own propagation path. Volumetric measurement techniques are needed to further increase understanding of this highly three-dimensional coupled flow-flame interaction. Flashback is an inherently transient event with duration on the order of a few hundred milliseconds. Time-resolved tomographic PIV together with high-speed chemiluminescence imaging is therefore applied to investigate the velocity field in the vicinity of the flame.

  14. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    International Nuclear Information System (INIS)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs

  15. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  16. Tomographic wavefront correction for the LSST

    Energy Technology Data Exchange (ETDEWEB)

    Phillion, D W; Olivier, S S; Baker, K; Seppala, L; Hvisc, S

    2006-05-03

    The Large Synoptic Survey Telescope (LSST) is a three mirror modified Paul-Baker design with an 8.4m primary, a 3.4m secondary, and a 5.0m tertiary followed by a 3-element refractive corrector producing a 3.5 degree field of view. This design produces image diameters of <0.3 arcsecond 80% encircled energy over its full field of view. The image quality of this design is sufficient to ensure that the final images produced by the telescope will be limited by the atmospheric seeing at an excellent astronomical site. In order to maintain this image quality, the deformations and rigid body motions of the three large mirrors must be actively controlled to minimize optical aberrations. By measuring the optical wavefront produced by the telescope at multiple points in the field, mirror deformations and rigid body motions that produce a good optical wavefront across the entire field may be determined. We will describe the details of the techniques for obtaining these solutions. We will show that, for the expected mirror deformations and rigid body misalignments, the solutions that are found using these techniques produce an image quality over the field that is close to optimal. We will discuss how many wavefront sensors are needed and the tradeoffs between the number of wavefront sensors, their layout and noise sensitivity.

  17. Tomographic Aperture-Encoded Particle Tracking Velocimetry: A New Approach to Volumetric PIV

    Science.gov (United States)

    Troolin, Dan; Boomsma, Aaron; Lai, Wing; Pothos, Stamatios; Fluid Mechanics Research Instruments Team

    2016-11-01

    Volumetric velocity fields are useful in a wide variety of fluid mechanics applications. Several types of three-dimensional imaging methods have been used in the past to varying degrees of success, for example, 3D PTV (Maas et al., 1993), DDPIV (Peireira et al., 2006), Tomographic PIV (Elsinga, 2006), and V3V (Troolin and Longmire, 2009), among others. Each of these techniques has shown advantages and disadvantages in different areas. With the advent of higher resolution and lower noise cameras with higher stability levels, new techniques are emerging that combine the advantages of the existing techniques. This talk describes a new technique called Tomographic Aperture-Encoded Particle Tracking Velocimetry (TAPTV), in which segmented triangulation and diameter tolerance are used to achieve three-dimensional particle tracking with extremely high particle densities (on the order of ppp = 0.2 or higher) without the drawbacks normally associated with ghost particles (for example in TomoPIV). The results are highly spatially-resolved data with very fast processing times. A detailed explanation of the technique as well as plots, movies, and experimental considerations will be discussed.

  18. Initial studies using the RatCAP conscious animal PET tomograph

    Science.gov (United States)

    Woody, C.; Vaska, P.; Schlyer, D.; Pratte, J.-F.; Junnarkar, S.; Park, S.-J.; Stoll, S.; Purschke, M.; Southekal, S.; Kriplani, A.; Krishnamoorthy, S.; Maramraju, S.; Lee, D.; Schiffer, W.; Dewey, S.; Neill, J.; Kandasamy, A.; O'Connor, P.; Radeka, V.; Fontaine, R.; Lecomte, R.

    2007-02-01

    The RatCAP is a small, head-mounted PET tomograph designed to image the brain of a conscious rat without the use of anesthesia. The detector is a complete, high-performance 3D tomograph consisting of a 3.8 cm inside-diameter ring containing 12 block detectors, each of which is comprised of a 4×8 array of 2.2×2.2×5 mm 3 LSO crystals readout with a matching APD array and custom ASIC, and has a 1.8 cm axial field of view. Construction of the first working prototype detector has been completed and its performance characteristics have been measured. The results show an intrinsic spatial resolution of 2.1 mm, a time resolution of ˜14 ns FWHM, and a sensitivity of 0.7% at an energy threshold of 150 keV. First preliminary images have been obtained using 18F-FDG and 11C-methamphetamine, which show comparable image quality to those obtained from a commercial MicroPET R4 scanner. Initial studies have also been carried out to study stress levels in rats wearing the RatCAP.

  19. Initial studies using the RatCAP conscious animal PET tomograph

    Energy Technology Data Exchange (ETDEWEB)

    Woody, C. [Brookhaven National Laboratory, Upton, NY (United States)]. E-mail: woody@bnl.gov; Vaska, P. [Brookhaven National Laboratory, Upton, NY (United States); Schlyer, D. [Brookhaven National Laboratory, Upton, NY (United States); Pratte, J.-F. [Brookhaven National Laboratory, Upton, NY (United States); Junnarkar, S. [Brookhaven National Laboratory, Upton, NY (United States); Park, S.-J. [Brookhaven National Laboratory, Upton, NY (United States); Stoll, S. [Brookhaven National Laboratory, Upton, NY (United States); Purschke, M. [Brookhaven National Laboratory, Upton, NY (United States); Southekal, S. [Stony Brook University, Stony Brook, NY (United States); Kriplani, A. [Stony Brook University, Stony Brook, NY (United States); Krishnamoorthy, S. [Stony Brook University, Stony Brook, NY (United States); Maramraju, S. [Stony Brook University, Stony Brook, NY (United States); Lee, D. [Brookhaven National Laboratory, Upton, NY (United States); Schiffer, W. [Brookhaven National Laboratory, Upton, NY (United States); Dewey, S. [Brookhaven National Laboratory, Upton, NY (United States); Neill, J. [Long Island University, Brookville, NY (United States); Kandasamy, A. [Brookhaven National Laboratory, Upton, NY (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY (United States); Radeka, V. [Brookhaven National Laboratory, Upton, NY (United States); Fontaine, R. [Sherbrooke University, Sherbrooke, Que. (Canada); Lecomte, R. [Sherbrooke University, Sherbrooke, Que. (Canada)

    2007-02-01

    The RatCAP is a small, head-mounted PET tomograph designed to image the brain of a conscious rat without the use of anesthesia. The detector is a complete, high-performance 3D tomograph consisting of a 3.8 cm inside-diameter ring containing 12 block detectors, each of which is comprised of a 4x8 array of 2.2x2.2x5 mm{sup 3} LSO crystals readout with a matching APD array and custom ASIC, and has a 1.8 cm axial field of view. Construction of the first working prototype detector has been completed and its performance characteristics have been measured. The results show an intrinsic spatial resolution of 2.1 mm, a time resolution of {approx}14 ns FWHM, and a sensitivity of 0.7% at an energy threshold of 150 keV. First preliminary images have been obtained using {sup 18}F-FDG and {sup 11}C-methamphetamine, which show comparable image quality to those obtained from a commercial MicroPET R4 scanner. Initial studies have also been carried out to study stress levels in rats wearing the RatCAP.

  20. 3D tomographic imaging with the γ-eye planar scintigraphic gamma camera

    Science.gov (United States)

    Tunnicliffe, H.; Georgiou, M.; Loudos, G. K.; Simcox, A.; Tsoumpas, C.

    2017-11-01

    γ-eye is a desktop planar scintigraphic gamma camera (100 mm × 50 mm field of view) designed by BET Solutions as an affordable tool for dynamic, whole body, small-animal imaging. This investigation tests the viability of using γ-eye for the collection of tomographic data for 3D SPECT reconstruction. Two software packages, QSPECT and STIR (software for tomographic image reconstruction), have been compared. Reconstructions have been performed using QSPECT’s implementation of the OSEM algorithm and STIR’s OSMAPOSL (Ordered Subset Maximum A Posteriori One Step Late) and OSSPS (Ordered Subsets Separable Paraboloidal Surrogate) algorithms. Reconstructed images of phantom and mouse data have been assessed in terms of spatial resolution, sensitivity to varying activity levels and uniformity. The effect of varying the number of iterations, the voxel size (1.25 mm default voxel size reduced to 0.625 mm and 0.3125 mm), the point spread function correction and the weight of prior terms were explored. While QSPECT demonstrated faster reconstructions, STIR outperformed it in terms of resolution (as low as 1 mm versus 3 mm), particularly when smaller voxel sizes were used, and in terms of uniformity, particularly when prior terms were used. Little difference in terms of sensitivity was seen throughout.

  1. NMR spectroscopy up to 35.2 T using a series-connected hybrid magnet

    Science.gov (United States)

    Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M.; Gor'kov, Peter L.; Brey, William W.; Lendi, Pietro; Schiano, Jeffrey L.; Bird, Mark D.; Dixon, Iain R.; Toth, Jack; Boebinger, Gregory S.; Cross, Timothy A.

    2017-11-01

    The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1 T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48 mm magnet bore and 42 mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1 ppm homogeneity over a cylindrical volume of 1 cm diameter and height. The magnetic field is regulated within 0.2 ppm using an external 7Li lock sample doped with paramagnetic MnCl2. The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1H frequencies of 1.0, 1.2 and 1.5 GHz. NMR at 1.5 GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields.

  2. 235U NMR study of the itinerant antiferromagnet USb2

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Ikushima, Kenji; Kambe, Shinsaku; Tokunaga, Yo; Aoki, Dai; Haga, Yoshinori; O-bar nuki, Yoshichika; Yasuoka, Hiroshi; Walstedt, Russell E.

    2005-01-01

    We have succeeded in resolving a 235 U antiferromagnetic nuclear magnetic resonance (AFNMR) signal using 235 U-enriched samples of USb 2 . The uranium hyperfine field and coupling constant estimated for this compound are consistent with those from other experiments. This is the first reported observation of 235 U NMR in conducting host material

  3. (Cicer arietinum L.) seeds during germination by NMR spectroscopy

    African Journals Online (AJOL)

    Experiments were conducted to characterize the changes in water status during imbibition by nuclear magnetic resonance (NMR) spectroscopy in chickpea seeds exposed to static magnetic fields of 100 mT for 1 h. Water uptake during seed germination showed three phases with rapid initial hydration phase I, followed by ...

  4. Ordering in nematic liquid crystals from NMR cross-polarization ...

    Indian Academy of Sciences (India)

    Abstract. The measurement of dipolar couplings between nuclei is a convenient way of obtatining directly liquid crystalline ordering through NMR since the coupling is dependent on the average orientation of the dipolar vector in the magnetic field which also aligns the liquid crystal. However, measurement of the dipolar ...

  5. Tomographic findings of acute pulmonary toxoplasmosis in immunocompetent patients.

    Science.gov (United States)

    de Souza Giassi, Karina; Costa, Andre Nathan; Apanavicius, Andre; Teixeira, Fernando Bin; Fernandes, Caio Julio Cesar; Helito, Alfredo Salim; Kairalla, Ronaldo Adib

    2014-11-25

    Toxoplasmosis is one of the most common human zoonosis, and is generally benign in most of the individuals. Pulmonary involvement is common in immunocompromised subjects, but very rare in immunocompetents and there are scarce reports of tomographic findings in the literature. The aim of the study is to describe three immunocompetent patients diagnosed with acute pulmonary toxoplasmosis and their respective thoracic tomographic findings. Acute toxoplasmosis was diagnosed according to the results of serological tests suggestive of recent primary infection and the absence of an alternative etiology. From 2009 to 2013, three patients were diagnosed with acute respiratory failure secondary to acute toxoplasmosis. The patients were two female and one male, and were 38, 56 and 36 years old. Similarly they presented a two-week febrile illness and progressive dyspnea before admission. Laboratory tests demonstrated lymphocytosis, slight changes in liver enzymes and high inflammatory markers. Tomographic findings were bilateral smooth septal and peribronchovascular thickening (100%), ground-glass opacities (100%), atelectasis (33%), random nodules (33%), lymph node enlargement (33%) and pleural effusion (66%). All the patients improved their symptoms after treatment, and complete resolution of tomographic findings were found in the followup. These cases provide a unique description of the presentation and evolution of pulmonary tomographic manifestations of toxoplasmosis in immunocompetent patients. Toxoplasma pneumonia manifests with fever, dyspnea and a non-productive cough that may result in respiratory failure. In animal models, changes were described as interstitial pneumonitis with focal infiltrates of neutrophils that can finally evolve into a pattern of diffuse alveolar damage with focal necrosis. The tomographic findings are characterized as ground glass opacities, smooth septal and marked peribronchovascular thickening; and may mimic pulmonary congestion

  6. NMR study of strongly correlated electron systems

    Science.gov (United States)

    Kitaoka, Y.; Tou, H.; Zheng, G.-q.; Ishida, K.; Asayama, K.; Kobayashi, T. C.; Kohda, A.; Takeshita, N.; Amaya, K.; Onuki, Y.; Geibel, G.; Schank, C.; Steglich, F.

    1995-02-01

    Various types of ground states in strongly correlated electron systems have been systematically investigated by means of NMR/NQR at low temperatures under high magnetic field and pressure. We focus on two well-known heavy-electron families, CeCu 2X 2 (X = Si and Ge) (Ce(122)) and UM 2Al 3 (M = Ni and Pd) (U(123)). The Cu NQR experiments on CeCu 2X 2 under high pressure indicate that the physical property of CeCu 2Ge 2 at high pressure, i.e. above the transition at 7.6 GPa from antiferromagnetic (AF) to superconductivity, are clearly related to tha CeCu 2Si 2 at ambient pressure. In addition to the H-T phase diagram established below 7 T, NMR and specific heat experiments on polycrystal CeCu 2.05Si 2 have revealed the presence of a new phase above 7 T. In a high-quality polycrystal of UPd 2Al 3 with a record high- Tc of 2 K at ambient pressure and the narrowest Al NQR line width, the nuclear-spin lattice relaxation rate, 27(1/ T1) measured in zero field has been found to obey the T3 law down to 0.13 K, giving strong evidence that the energy gap vanishes along lines on the Fermi surface. Thus it seems that all heavy-electron superconductors exhibit lines of zero gap, regardless of their different magnetic properties.

  7. NMR-based milk metabolomics

    DEFF Research Database (Denmark)

    Sundekilde, Ulrik; Larsen, Lotte Bach; Bertram, Hanne Christine S.

    2013-01-01

    and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking...... the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive...... compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining...

  8. Further development of deuterium NMR

    International Nuclear Information System (INIS)

    Al-azzawi, N.A.Y.

    1983-01-01

    In this work dichlorotris (triphenylphosphine) ruthenium (11) (RuCl 2 (PPh 3 ) 3 ) coupled with the deuterium source D 2 O was used as a catalyst for the study of the isotopic exchange reaction in alcohols and amines deuterium labelling of several primary and secondary alcohols have been made, and the position of labelling in the molecule was established by comparison of the 1 H NMR and 2 H NMR spectra while the relative distribution of deuterium was obtained from 2 H NMR spectrum. An oxidation-reduction mechanism was proposed for the hydrogen-deuterium exchange process, since in case of secondary alcohol the anticipated intermediate product (Ketone) was separated and identified. The relative distribution of deuterium was found to be time-dependent. Moreover the labelling in the B. Position was found to increase up on the addition of sodium hydroxide to the reaction mixture. 80 tabs.; 290 figs.; 124 refs

  9. Tomography of binomial states of the radiation field

    NARCIS (Netherlands)

    Bazrafkan, MR; Man'ko, [No Value

    2004-01-01

    The symplectic, optical, and photon-number tomographic symbols of binomial states of the radiation field are studied. Explicit relations for all tomograms of the binomial states are obtained. Two measures for nonclassical properties of these states are discussed.

  10. Phaseless tomographic inverse scattering in Banach spaces

    Science.gov (United States)

    Estatico, C.; Fedeli, A.; Pastorino, M.; Randazzo, A.; Tavanti, E.

    2016-10-01

    In conventional microwave imaging, a hidden dielectric object under test is illuminated by microwave incident waves and the field it scatters is measured in magnitude and phase in order to retrieve the dielectric properties by solving the related non-homogenous Helmholtz equation or its Lippmann-Schwinger integral formulation. Since the measurement of the phase of electromagnetic waves can be still considered expensive in real applications, in this paper only the magnitude of the scattering wave fields is measured in order to allow a reduction of the cost of the measurement apparatus. In this respect, we firstly analyse the properties of the phaseless scattering nonlinear forward modelling operator in its integral form and we provide an analytical expression for computing its Fréchet derivative. Then, we propose an inexact Newton method to solve the associated nonlinear inverse problems, where any linearized step is solved by a Lp Banach space iterative regularization method which acts on the dual space Lp* . Indeed, it is well known that regularization in special Banach spaces, such us Lp with 1 < p < 2, allows to promote sparsity and to reduce Gibbs phenomena and over-smoothness. Preliminary results concerning numerically computed field data are shown.

  11. Phaseless tomographic inverse scattering in Banach spaces

    International Nuclear Information System (INIS)

    Estatico, C.; Fedeli, A.; Pastorino, M.; Randazzo, A.; Tavanti, E.

    2016-01-01

    In conventional microwave imaging, a hidden dielectric object under test is illuminated by microwave incident waves and the field it scatters is measured in magnitude and phase in order to retrieve the dielectric properties by solving the related non-homogenous Helmholtz equation or its Lippmann-Schwinger integral formulation. Since the measurement of the phase of electromagnetic waves can be still considered expensive in real applications, in this paper only the magnitude of the scattering wave fields is measured in order to allow a reduction of the cost of the measurement apparatus. In this respect, we firstly analyse the properties of the phaseless scattering nonlinear forward modelling operator in its integral form and we provide an analytical expression for computing its Fréchet derivative. Then, we propose an inexact Newton method to solve the associated nonlinear inverse problems, where any linearized step is solved by a L p Banach space iterative regularization method which acts on the dual space L p* . Indeed, it is well known that regularization in special Banach spaces, such us L p with 1 < p < 2, allows to promote sparsity and to reduce Gibbs phenomena and over-smoothness. Preliminary results concerning numerically computed field data are shown. (paper)

  12. A preliminary design study for improving performance in tomographic assays

    International Nuclear Information System (INIS)

    Estep, R.J.

    1994-03-01

    The authors recently introduced the tomographic-gamma-scanner (TGS) method for assaying transuranic (TRU) waste and special nuclear material (SNM) in 55-gal drums. The TGS combines low-resolution emission and transmission tomography to obtain attenuation-corrected images of the radionuclide distribution inside a drum. In a low-resolution tomographic assay device, it is desirable to have as flat an efficiency profile as possible. Using computer simulations, they have demonstrated that a flat response in the vertical direction can be obtained by using a diamond-shaped collimator, and that this flatness of response translates into improved assay accuracy. Similarly, they have shown that the use of a continuous-motion scan protocol reduces horizontal efficiency variations

  13. The CDD system in computed tomographic diagnosis of diverticular disease

    International Nuclear Information System (INIS)

    Pustelnik, Daniel; Elsholtz, Fabian Henry Juergen; Hamm, Bernd; Niehues, Stefan Markus; Bojarski, Christian

    2017-01-01

    Purpose cation in computed tomographic diagnosis and briefly recapitulates its targeted advantages over preliminary systems. Primarily, application of the CDD in computed tomography diagnostics is described. Differences with respect to the categories of the older systems are pointed out on the level of each CDD type using imaging examples. The presented images are derived from our institute according to the S2k criteria. Literature was researched on PubMed. Results The CDD constitutes an improvement compared to older systems for categorizing the stages of diverticular disease. It provides more discriminatory power on the descriptive-morphological level and defines as well as differentiates more courses of the disease. Furthermore, the categories translate more directly into state-of-the-art decision-making concerning hospitalization and therapy. The CDD should be applied routinely in the computed tomographic diagnosis of diverticular disease. Typical imaging patterns are presented.

  14. A feasibility study on a tomograph for radioactive waste examination

    International Nuclear Information System (INIS)

    Montigon, J.F.

    1987-01-01

    A feasibility study on a high-energy tomograph for radioactive waste examination has been carried out by CEA/SEDFMA (Cadarache, France). After describing the scope of the research (radiation source, detector system, data processing, station mechanics), this final report deals with the work programme which has been followed and gives the results of the research. The conclusion is that such a tomograph is feasible, and its preliminary design is shown. The main points are that: - the detector material will be BGO, - the transmission of gamma rays through concrete (up to 1 625 mm thick) has been measured and a calculation code has been validated, - the radiation source will be an accelerator which has to be carefully optimized, - the system configuration has been determined and the data processors have been chosen, - the algorithms for image reconstruction have been validated through taking a tomogram on a concrete sample

  15. NMR and MRI obtained with high transition temperature dc SQUIDs

    Directory of Open Access Journals (Sweden)

    Souza R.E. de

    1999-01-01

    Full Text Available We have measured nuclear magnetic resonance (NMR signals from several samples at room temperature in magnetic fields ranging from about 0.05 mT to 2 mT using a spectrometer based on a high-Tc dc SQUID (high transition temperature dc Superconducting QUantum Interference Device. We are able to observe proton signals from 1 mL of mineral oil in 2 mT in a single transient. The sensitivity of this system has also allowed the detection of proton NMR at magnetic fields as low as 0.059 mT, which is comparable to the Earth?s field. Such results make possible a number of new experiments in magnetic resonance imaging (MRI. We present a two-dimensional image of a phantom filled with mineral oil obtained in a field of 2 mT.

  16. NMR imaging of cell phone radiation absorption in brain tissue

    Science.gov (United States)

    Gultekin, David H.; Moeller, Lothar

    2013-01-01

    A method is described for measuring absorbed electromagnetic energy radiated from cell phone antennae into ex vivo brain tissue. NMR images the 3D thermal dynamics inside ex vivo bovine brain tissue and equivalent gel under exposure to power and irradiation time-varying radio frequency (RF) fields. The absorbed RF energy in brain tissue converts into Joule heat and affects the nuclear magnetic shielding and the Larmor precession. The resultant temperature increase is measured by the resonance frequency shift of hydrogen protons in brain tissue. This proposed application of NMR thermometry offers sufficient spatial and temporal resolution to characterize the hot spots from absorbed cell phone radiation in aqueous media and biological tissues. Specific absorption rate measurements averaged over 1 mg and 10 s in the brain tissue cover the total absorption volume. Reference measurements with fiber optic temperature sensors confirm the accuracy of the NMR thermometry. PMID:23248293

  17. Thermometry of hot spot using NMR for hyperthermia

    International Nuclear Information System (INIS)

    Amemiya, Yoshifumi; Kamimura, Yoshitsugu

    1983-01-01

    Lately noticed hyperthermia in cancer therapy requires non-invasive measurement of the temperature at the warmed site in the deep portion of human body. Nuclear magnetic relaxation time of NMR is also usable for cancer diagnosis. For coordination of these two techniques, it was judged suitable to measure temperature by NMR so that cancer diagnosis and treatment and evaluation of therapeutic effect might be incorporated into one system. This report dealt with concrete procedures of measuring the temperature of deep portions by NMR. Computations revealed that the coefficient of temperature of the thermal equilibrium magnetization was useful, that magnetic field focusing was the most effective imaging technique and that temperature rise in areas about 2 cm in radius could be measured without large errors. (Chiba, N.)

  18. Computed tomographic features of fibrous dysplasia of maxillofacial region

    OpenAIRE

    Sontakke, Subodh Arun; Karjodkar, Freny R; Umarji, Hemant R

    2011-01-01

    Purpose This study was to find the computed tomographic features of fibrous dysplasia of the maxillofacial region. Materials and Methods All eight cases included in the study reported either to Government Dental College and Hospital or Nair Hospital Dental College, Mumbai between 2003 and 2009. The patients were prescribed computed tomogram in addition to conventional radiographs of maxillofacial region which were studied for characteristic features of fibrous dysplasia. The diagnosis of fibr...

  19. Predictors of Incomplete Optical Colonoscopy Using Computed Tomographic Colonography

    OpenAIRE

    Sachdeva, Reetika; Tsai, Salina D.; El Zein, Mohamad H.; Tieu, Alan A.; Abdelgelil, Ahmed; Besharati, Sepideh; Khashab, Mouen A.; Kalloo, Anthony N.; Kumbhari, Vivek

    2016-01-01

    Background/Aims: Optical colonoscopy (OC) is the primary modality for investigation of colonic pathology. Although there is data on demographic factors for incomplete OC, paucity of data exists for anatomic variables that are associated with an incomplete OC. These anatomic variables can be visualized using computed tomographic colonography (CTC). We aim to retrospectively identify variables associated with incomplete OC using CTC and develop a scoring method to predict the outcome of OC. Pat...

  20. Computed tomographic diagnosis of abdominal abscess in childhood

    International Nuclear Information System (INIS)

    Kuhn, J.P.; Berger, P.E.

    1980-01-01

    Twenty-eight children suspected clinically of having an abdominal abscess were examined by CT. Eighteen had gallium 67 citrate scans and 22 had ultrasound studies. Computed tomography was found to be the most accurate test for diagnosis and evaluation of an abscess and the computed tomographic appearance of abscess is illustrated. However, because of cost factors, radiation dose, and clinical considerations, computed tomography is not always the first modality of choice in evaluating a suspected abdominal abscess [fr

  1. A general purpose tomographic program with combined inversions

    International Nuclear Information System (INIS)

    Xu Wenbin; Dong Jiafu; Li Fanzhu

    1996-01-01

    A general tomographic program has been developed by combining the Bessel expansion with the Zernicke expansion. It is useful for studying of the magnetic island structure of the tearing mode and in reconstructing the density profiles of impurities in tokamak plasmas. This combined method have the advantages of both expansions, i.e. there will be no spurious images in the edge and it will be of high inverse precision in the center of plasma

  2. Chirp echo Fourier transform EPR-detected NMR

    Science.gov (United States)

    Wili, Nino; Jeschke, Gunnar

    2018-04-01

    A new ultra-wide band (UWB) pulse EPR method is introduced for observing all nuclear frequencies of a paramagnetic center in a single shot. It is based on burning spectral holes with a high turning angle (HTA) pulse that excites forbidden transitions and subsequent detection of the hole pattern by a chirp echo. We term this method Chirp Echo Epr SpectroscopY (CHEESY)-detected NMR. The approach is a revival of FT EPR-detected NMR. It yields similar spectra and the same type of information as electron-electron double resonance (ELDOR)-detected NMR, but with a multiplex advantage. We apply CHEESY-detected NMR in Q band to nitroxides and correlate the hyperfine spectrum to the EPR spectrum by varying the frequency of the HTA pulse. Furthermore, a selective π pulse before the HTA pulse allows for detecting hyperfine sublevel correlations between transitions of one nucleus and for elucidating the coupling regime, the same information as revealed by the HYSCORE experiment. This is demonstrated on hexaaquamanganese(II). We expect that CHEESY-detected NMR is generally applicable to disordered systems and that our results further motivate the development of EPR spectrometers capable of coherent UWB excitation and detection, especially at higher fields and frequencies.

  3. NMR and NQR study of the thermodynamically stable quasicrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shastri, Ananda [Iowa State Univ., Ames, IA (United States)

    1995-02-10

    27Al and 61,65Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, 27Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of 63Cu NMR with 27Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  4. NMR spectroscopic study and DFT calculations of GIAO NMR ...

    African Journals Online (AJOL)

    1H, 13C NMR chemical shifts and 1JCH coupling constants of danon have been calculated by means of B3LYP density functional method with 6-311++G(d,p) basis set. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is able to provide satisfactory results for ...

  5. Implementation of Japanese male and female tomographic phantoms to multi-particle Monte Carlo code for ionizing radiation dosimetry

    International Nuclear Information System (INIS)

    Lee, Choonsik; Nagaoka, Tomoaki; Lee, Jai-Ki

    2006-01-01

    Japanese male and female tomographic phantoms, which have been developed for radio-frequency electromagnetic-field dosimetry, were implemented into multi-particle Monte Carlo transport code to evaluate realistic dose distribution in human body exposed to radiation field. Japanese tomographic phantoms, which were developed from the whole body magnetic resonance images of Japanese average adult male and female, were processed as follows to be implemented into general purpose multi-particle Monte Carlo code, MCNPX2.5. Original array size of Japanese male and female phantoms, 320 x 160 x 866 voxels and 320 x 160 x 804 voxels, respectively, were reduced into 320 x 160 x 433 voxels and 320 x 160 x 402 voxels due to the limitation of memory use in MCNPX2.5. The 3D voxel array of the phantoms were processed by using the built-in repeated structure algorithm, where the human anatomy was described by the repeated lattice of tiny cube containing the information of material composition and organ index number. Original phantom data were converted into ASCII file, which can be directly ported into the lattice card of MCNPX2.5 input deck by using in-house code. A total of 30 material compositions obtained from International Commission on Radiation Units and Measurement (ICRU) report 46 were assigned to 54 and 55 organs and tissues in the male and female phantoms, respectively, and imported into the material card of MCNPX2.5 along with the corresponding cross section data. Illustrative calculation of absorbed doses for 26 internal organs and effective dose were performed for idealized broad parallel photon and neutron beams in anterior-posterior irradiation geometry, which is typical for workers at nuclear power plant. The results were compared with the data from other Japanese and Caucasian tomographic phantom, and International Commission on Radiological Protection (ICRP) report 74. The further investigation of the difference in organ dose and effective dose among tomographic

  6. NMR data-driven structure determination using NMR-I-TASSER in the CASD-NMR experiment

    OpenAIRE

    Jang, Richard; Wang, Yan; Xue, Zhidong; Zhang, Yang

    2015-01-01

    NMR-I-TASSER, an adaption of the I-TASSER algorithm combining NMR data for protein structure determination, recently joined the second round of the CASD-NMR experiment. Unlike many molecular dynamics-based methods, NMR-I-TASSER takes a molecular replacement-like approach to the problem by first threading the target through the PDB to identify structural templates which are then used for iterative NOE assignments and fragment structure assembly refinements. The employment of multiple templates...

  7. Tomographic findings of lobar consolidation in primary pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Pereira, Bruno Alberto Falcao; Macedo, Solange Goncalves David de; Penna, Claudia Renata Rezende

    2009-01-01

    Objective: To describe tomographic findings of lobar consolidation as early manifestation of primary pulmonary tuberculosis. Materials and methods: The present study was developed at Hospital Municipal Jesus, Rio de Janeiro, RJ, Brazil, in the period between 2002 and 2006, retrospectively evaluating tomographic findings in four children aged from 3 to 14 months with lobar consolidation as an early manifestation of primary pulmonary tuberculosis. Results: The most frequently found radiological pattern was lobar consolidation with calcifications, cavitation and intermingle necrotic areas, associated with bulging fissure. Signs of bronchogenic dissemination and lymph node enlargement were observed in all of the four children. Consolidation with a pseudotumor aspect and masslike effect was observed in one case. Conclusion: The cases included in the present study have demonstrated that primary pulmonary tuberculosis manifested as lobar consolidation presents typical tomographic images such as cavitation, hypodense areas and calcifications intermingled with consolidation. The association with lymph node enlargement with central necrosis and signs of bronchogenic dissemination reinforce the diagnosis of tuberculosis. (author)

  8. Three dimensional reconstruction of tomographic images of the retina

    International Nuclear Information System (INIS)

    Glittenberg, C.; Zeiler, F.; Falkner, C.; Binder, S.; Povazay, B.; Hermann, B.; Drexler, W.

    2007-01-01

    The development of a new display system for the three-dimensional visualization of tomographic images in ophthalmology. Specifically, a system that can use stacks of B-mode scans from an ultrahigh resolution optical tomography examination to vividly display retinal specimens as three-dimensional objects. Several subroutines were programmed in the rendering and raytracing program Cinema 4D XL 9.102 Studio Bundle (Maxon Computer Inc., Friedrichsburg, Germany), which could process stacks of tomographic scans into three-dimensional objects. Ultrahigh resolution optical coherence tomography examinations were performed on patients with various retinal pathologies and post processed with the subroutines that had been designed. All ultrahigh resolution optical coherence tomographies were performed with a titanium: sapphire based ultra broad bandwidth (160 nm) femtosecond laser system (INTEGRAL, Femtolasers Productions GmbH. Vienna Austria) with an axial resolution of 3 μm. A new three dimensional display system for tomographic images in ophthalmology was developed, which allows a highly vivid display of physiological and pathological structures of the retina. The system also distinguishes itself through its high interactivity and adaptability. This new display system allows the visualization of physiological and pathological structures of the retina in a new way, which will give us new insight into their morphology and development. (author) [de

  9. A tomograph VMEbus parallel processing data acquisition system

    International Nuclear Information System (INIS)

    Atkins, M.S.; Wilkinson, N.A.; Rogers, J.G.

    1988-11-01

    This paper describes a VME based data acquisition system suitable for the development of Positron Volume Imaging tomographs which use 3-D data for improved image resolution over slice-oriented tomographs. The data acquisition must be flexible enough to accommodate several 3-D reconstruction algorithms; hence, a software-based system is most suitable. Furthermore, because of the increased dimensions and resolution of volume imaging tomographs, the raw data event rate is greater than that of slice-oriented machines. These dual requirements are met by our data acquisition systems. Flexibility is achieved through an array of processors connected over a VMEbus, operating asynchronously and in parallel. High raw data throughput is achieved using a dedicated high speed data transfer device available for the VMEbus. The device can attain a raw data rate of 2.5 million coincidence events per second for raw events per second for raw events which are 64 bits wide. Real-time data acquisition and pre-processing requirements can be met by about forty 20 MHz Motorola 68020/68881 processors

  10. A suggested theory of the conventional tomographic imaging process

    International Nuclear Information System (INIS)

    Moore, C.J.; Moores, B.M.

    1981-01-01

    An attempt is made to re-examine the well established theoretical basis of conventional tomography in the light of more detailed techniques being applied elsewhere in image analysis. Transfer function theory has been used to quantify the amount of edge detail reproduced by this process and the information in a tomogram is investigated in terms of edge detail associated with well resolved (unblurred) detail and also that associated with unresolved detail. Because resolved and unresolved detail is associated with particular anatomical layers within the tomographed object, the theory has been used to define a cut plane thickness. A variety of different tube movements have been considered and calculated values of cut plane thickness are compared with those predicted by a simple geometric model. Besides the blurring associated with the tube movement the effect of X-ray focal spot, film-screen combination and also visual response of the observer have been included and their importance in the definition of cut plane thickness highlighted. One advantage of this approach appears to be the facility to quantify the performance of different tomographic tube movements and highlight the role of tomographic detail reproduced from body sections well removed from the cut plane. (author)

  11. Exploring catalyst passivation with NMR relaxation.

    Science.gov (United States)

    Robinson, Neil; Gladden, Lynn F; D'Agostino, Carmine

    2017-10-26

    NMR relaxation has recently emerged as a novel and non-invasive tool for probing the surface dynamics of adsorbate molecules within liquid-saturated mesoporous catalysts. The elucidation of such dynamics is of particular relevance to the study and development of solvated green catalytic processes, such as the production of chemicals and fuels from bio-resources. In this paper we develop and implement a protocol using high field 1 H NMR spin-lattice relaxation as a probe of the reorientational dynamics of liquids imbibed within mesoporous oxide materials. The observed relaxation of liquids within mesoporous materials is highly sensitive to the adsorbed surface layer, giving insight into tumbling behaviour of spin-bearing chemical environments at the pore surface. As a prototypical example of relevance to liquid-phase catalytic systems, we examine the mobility of liquid methanol within a range of common catalyst supports. In particular, through the calculation and comparison of a suitable interaction parameter, we assess and quantify changes to these surface dynamics upon replacing surface hydroxyl groups with hydrophobic alkyl chains. Our results indicate that the molecular tumbling of adsorbed methanol is enhanced upon surface passivation due to the suppression of surface-adsorbate hydrogen bonding interactions, and tends towards that of the unrestricted bulk liquid. A complex analysis in which we account for the influence of changing pore structure and surface chemistry upon passivation is discussed. The results presented highlight the use of NMR spin-lattice relaxation measurements as a non-invasive probe of molecular dynamics at surfaces of interest to liquid-phase heterogeneous catalysis.

  12. NMR methods for the investigation of structure and transport

    CERN Document Server

    Hardy, Edme H

    2011-01-01

    Methods of nuclear magnetic resonance (NMR) are increasingly applied in engineering sciences. The book summarizes research in the field of chemical and process engineering performed at the Karlsruhe Institute of Technology (KIT). Fundamentals of the methods are exposed for readers with an engineering background. Applications cover the fields of mechanical process engineering (filtration, solid-liquid separation, powder mixing, rheometry), chemical process engineering (trickle-bed reactor, ceramic sponges), bioprocess engineering (biofilm growth), and food process engineering (microwave heating

  13. MetAssimulo:Simulation of Realistic NMR Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    De Iorio Maria

    2010-10-01

    Full Text Available Abstract Background Probing the complex fusion of genetic and environmental interactions, metabolic profiling (or metabolomics/metabonomics, the study of small molecules involved in metabolic reactions, is a rapidly expanding 'omics' field. A major technique for capturing metabolite data is 1H-NMR spectroscopy and this yields highly complex profiles that require sophisticated statistical analysis methods. However, experimental data is difficult to control and expensive to obtain. Thus data simulation is a productive route to aid algorithm development. Results MetAssimulo is a MATLAB-based package that has been developed to simulate 1H-NMR spectra of complex mixtures such as metabolic profiles. Drawing data from a metabolite standard spectral database in conjunction with concentration information input by the user or constructed automatically from the Human Metabolome Database, MetAssimulo is able to create realistic metabolic profiles containing large numbers of metabolites with a range of user-defined properties. Current features include the simulation of two groups ('case' and 'control' specified by means and standard deviations of concentrations for each metabolite. The software enables addition of spectral noise with a realistic autocorrelation structure at user controllable levels. A crucial feature of the algorithm is its ability to simulate both intra- and inter-metabolite correlations, the analysis of which is fundamental to many techniques in the field. Further, MetAssimulo is able to simulate shifts in NMR peak positions that result from matrix effects such as pH differences which are often observed in metabolic NMR spectra and pose serious challenges for statistical algorithms. Conclusions No other software is currently able to simulate NMR metabolic profiles with such complexity and flexibility. This paper describes the algorithm behind MetAssimulo and demonstrates how it can be used to simulate realistic NMR metabolic profiles with

  14. Development of a computerized tomographic system

    International Nuclear Information System (INIS)

    Borges, J.C.; Santos, C.A.C.

    1986-01-01

    The Nuclear Instrumentation Laboratory at COPPE/UFRJ has been developing techniques for detection and applications of nuclear radiations. A lot of research work has been done and resulted in several M.Sc. and D.Sc. thesis, concerning subjects like neutrongraphy, gammagraphy, image reconstruction, special detectors, etc. Recent progress and multiple applications of the computerized tomography to medical and industrial non-destructive tests, pushed the Laboratory to a vast program in this field of research. In this paper, we report what has been done and the results obtained. (Author) [pt

  15. Quantum tunneling of magnetization in molecular nanomagnet Fe8 studied by NMR

    International Nuclear Information System (INIS)

    Maegawa, Satoru; Ueda, Miki

    2003-01-01

    Magnetization and NMR measurements have been performed for single crystals of molecular magnet Fe8. The field and temperature dependences of magnetization below 25 K are well described in terms of the isolated clusters with the total spin S=10. The stepwise recoveries of 1 H-NMR signals at the level crossing fields caused by the resonant quantum tunneling of magnetization were observed below 400 mK. The recovery of the NMR signals are explained by the fluctuation caused by the transition between the energy states of Fe magnetizations governed by Landau-Zener quantum transitions

  16. Push-through Direction Injectin NMR Automation

    Science.gov (United States)

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  17. Developments in Solid-State NMR

    Indian Academy of Sciences (India)

    reso/020/11/1040-1052. Keywords. NMR; solid state; anisotropy; magic angle spinning dipolar coupling; quadrupolar coupling; chemical shift. Author Affiliations. K V Ramanathan1. NMR Research Center, Indian Institute of Science, Bengaluru ...

  18. Understanding NMR: self-learning manual

    International Nuclear Information System (INIS)

    Kastler, B.

    2000-01-01

    This initiation to the principles of nuclear magnetic resonance (NMR) imaging allows to understand the essential basic physical principles for the realization and the interpretation of an NMR examination. (J.S.)

  19. Fourier transform n.m.r. spectroscopy

    International Nuclear Information System (INIS)

    Shaw, D.

    1976-01-01

    This book is orientated to techniques rather than applications. The basic theory of n.m.r. is dealt with in a unified approach to the Fourier theory. The middle section of the book concentrates on the practical aspects of Fourier n.m.r., both instrumental and experimental. The final chapters briefly cover general application of n.m.r., but concentrate strongly on those areas where Fourier n.m.r. can give information which is not available by conventional techniques

  20. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1969-01-01

    High Resolution NMR: Theory and Chemical Applications focuses on the applications of nuclear magnetic resonance (NMR), as well as chemical shifts, lattices, and couplings. The book first offers information on the theory of NMR, including nuclear spin and magnetic moment, spin lattice relaxation, line widths, saturation, quantum mechanical description of NMR, and ringing. The text then ponders on instrumentation and techniques and chemical shifts. Discussions focus on the origin of chemical shifts, reference compounds, empirical correlations of chemical shifts, modulation and phase detection,

  1. Segmentation Toolbox for Tomographic Image Data

    DEFF Research Database (Denmark)

    Einarsdottir, Hildur

    , techniques to automatically analyze such data becomes ever more important. Most segmentation methods for large datasets, such as CT images, deal with simple thresholding techniques, where intensity values cut offs are predetermined and hard coded. For data where the intensity difference is not sufficient......Motivation: Image acquisition has vastly improved over the past years, introducing techniques such as X-ray computed tomography (CT). CT images provide the means to probe a sample non-invasively to investigate its inner structure. Given the wide usage of this technique and massive data amounts......, and partial volume voxels occur frequently, thresholding methods do not suffice and more advanced methods are required. Contribution: To meet these requirements a toolbox has been developed, combining well known methods within the image analysis field. The toolbox includes cluster-based methods...

  2. Breeding snow: an instrumented sample holder for simultaneous tomographic and thermal studies

    International Nuclear Information System (INIS)

    Pinzer, B; Schneebeli, M

    2009-01-01

    To study the recrystallization processes during temperature gradient metamorphism of snow, we developed a sample holder that allows applying well-defined and stable thermal gradients to a snow sample while it is scanned in an x-ray micro-tomograph. To this end, both the thermal insulation of the sample as well as image contrast and resolution of the tomography had to be optimized. We solved this conflict by using thin aluminum cylinders in combination with highly insulating foam. This design is light, does not corrupt image quality and provides very good thermal decoupling from the environment. The sample holder was instrumented to measure the effective conductivity of the snow sample and calibrated using five materials of known conductivity. Finite element simulations were consistent with the calibration measurements and gave insight into the internal temperature and heat flux fields. With this setup, geometric and thermal evolution of snow under realistic thermal boundary conditions like alternating temperature gradients can be measured

  3. Tomographic apparatus and method for reconstructing planar slices from non-absorbed radiation

    International Nuclear Information System (INIS)

    1976-01-01

    In a tomographic apparatus and method for reconstructing two-dimensional planar slices from linear projections of non-absorbed radiation useful in the fields of medical radiology, microscopy, and non-destructive testing, a beam of radiation in the shape of a fan is passed through an object lying in the same quasi-plane as the object slice and non-absorbtion thereof is recorded on oppositely-situated detectors aligned with the source of radiation. There is relative rotation between the source-detector configuration and the object within the quasi-plane. Periodic values of the detected radiation are taken, convolved with certain functions, and back-projected to produce a two-dimensional output picture on a visual display illustrating a facsimile of the object slice. A series of two-dimensional pictures obtained simultaneously or serially can be combined to produce a three dimensional portrayal of the entire object

  4. The UF series of tomographic computational phantoms of pediatric patients

    International Nuclear Information System (INIS)

    Lee, Choonik; Williams, Jonathan L.; Lee, Choonsik; Bolch, Wesley E.

    2005-01-01

    Two classes of anthropomorphic computational phantoms exist for use in Monte Carlo radiation transport simulations: tomographic voxel phantoms based upon three-dimensional (3D) medical images, and stylized mathematical phantoms based upon 3D surface equations for internal organ definition. Tomographic phantoms have shown distinct advantages over the stylized phantoms regarding their similarity to real human anatomy. However, while a number of adult tomographic phantoms have been developed since the early 1990s, very few pediatric tomographic phantoms are presently available to support dosimetry in pediatric diagnostic and therapy examinations. As part of a larger effort to construct a series of tomographic phantoms of pediatric patients, five phantoms of different ages (9-month male, 4-year female, 8-year female, 11-year male, and 14-year male) have been constructed from computed tomography (CT) image data of live patients using an IDL-based image segmentation tool. Lungs, bones, and adipose tissue were automatically segmented through use of window leveling of the original CT numbers. Additional organs were segmented either semiautomatically or manually with the aid of both anatomical knowledge and available image-processing techniques. Layers of skin were created by adding voxels along the exterior contour of the bodies. The phantoms were created from fused images taken from head and chest-abdomen-pelvis CT exams of the same individuals (9-month and 4-year phantoms) or of two different individuals of the same sex and similar age (8-year, 11-year, and 14-year phantoms). For each model, the resolution and slice positions of the image sets were adjusted based upon their anatomical coverage and then fused to a single head-torso image set. The resolutions of the phantoms for the 9-month, 4-year, 8-year, 11-year, and 14-year are 0.43x0.43x3.0 mm, 0.45x0.45x5.0 mm, 0.58x0.58x6.0 mm, 0.47x0.47x6.00 mm, and 0.625x0.625x6.0 mm, respectively. While organ masses can be

  5. Structures of Biomolecules by NMR Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    solution makes NMR more suitable for studying the dynamic behavior of macromolecules. The first high resolution protein structure by NMR spectroscopy was carried out in mid-1980s [3]. Before the beginning of this millennium, NMR spectroscopy was limited to solving 3D struc- tures of proteins with molecular masses less ...

  6. Development of Two-Dimensional NMR

    Indian Academy of Sciences (India)

    IAS Admin

    The development of Fourier transform NMR in the mid. 1960's, did parallel processing of the collection of NMR data, increased the signal/noise ratio by two orders of magnitude and made it possible to record the proton NMR spectra of small proteins which contain hundreds of resonances. The assignment of these ...

  7. Desktop NMR for structure elucidation and identification of strychnine adulteration.

    Science.gov (United States)

    Singh, Kawarpal; Blümich, Bernhard

    2017-05-02

    Elucidating the structure of complex molecules is difficult at low magnetic fields due to the overlap of different peak multiplets and second-order coupling effects. This is even more challenging for rigid molecules with small chemical shift differences and with prochiral centers. Since low-field NMR spectroscopy is sometimes presumed as restricted to the analysis of only small and simple molecules, this paper aims at countering this misconception: it demonstrates the use of low-field NMR spectroscopy in chemical forensics for identifying strychnine and its counterions by exploring the chemical shift as a signature in different 1D 1 H and 13 C experiments. Hereby the applied methodologies combine various 1D and 2D experiments such as 1D 1 H, 13 C, DEPT, and 2D COSY, HETCOR, HSQC, HMBC and J-resolved spectroscopy to elucidate the molecular structure and skeleton of strychnine at 1 Tesla. Strychnine is exemplified here, because it is a basic precursor in the chemistry of natural products and is employed as a chemical weapon and as a doping agent in sports including the Olympics. In our study, the molecular structure of the compound could be identified either with a 1D experiment at high magnetic field or with HMBC and HSQC experiments at 1 T. In conclusion, low-field NMR spectroscopy enables the chemical elucidation of the strychnine structure through a simple click with a computer mouse. In situations where a high-field NMR spectrometer is unavailable, compact NMR spectrometers can nevertheless generate knowledge of the structure, important for identifying the different chemical reaction mechanisms associated with the molecule. Desktop NMR is a cost-effective viable option in chemical forensics. It can prove adulteration and identify the origin of different strychnine salts, in particular, the strychnine free base, strychnine hemisulphate and strychnine hydrochloride. The chemical shift signatures report the chemical structure of the molecules due to the impact of

  8. Non-Invasive Detection of Adulterated Olive Oil in Full Bottles Using Time-Domain NMR Relaxometry

    OpenAIRE

    Santos, Poliana M.; Kock, Flávio Vinicius C.; Santos, Maiara S.; Lobo, Carlos Manuel S.; Carvalho, André S.; Colnago, Luiz Alberto

    2017-01-01

    A fast procedure using time-domain nuclear magnetic resonance (TD-NMR) to detect olive oil adulteration with polyunsaturated vegetable oils in filled bottles is proposed. The 1H transverse relaxation times (T2) of 37 commercial samples were measured using low-field nuclear magnetic resonance (LF-NMR) spectrometer and a unilateral nuclear magnetic resonance (UNMR) sensor. Results obtained with LF-NMR revealed better feasibility when compared with the UNMR sensor, with higher signal-to-noise (S...

  9. The accuracy of computed tomographic angiography for mapping the perforators of the DIEA: a cadaveric study.

    Science.gov (United States)

    Rozen, Warren M; Ashton, Mark W; Stella, Damien L; Phillips, Timothy J; Taylor, G Ian

    2008-08-01

    The deep inferior epigastric artery (DIEA) perforator flap is increasingly used for breast reconstruction, with preoperative imaging sought as a means of improving operative outcome. Computed tomographic angiography has been recently described as the preferred imaging modality; however, formal evaluation of computed tomographic angiography has not been described. A cadaveric study was undertaken to evaluate the accuracy of computed tomographic angiography for perforator mapping. Ten cadaveric hemiabdominal walls from five fresh cadavers underwent contrast injection of each DIEA and subsequent computed tomographic scanning, with each DIEA and all perforating branches documented. Dissection was then performed, with the recording of the course of the DIEA and the course of all perforators in each specimen. The concordance of computed tomographic angiography with dissection findings was evaluated. Cadaveric computed tomographic angiography identified 154 perforators in 10 hemiabdominal walls. Computed tomographic angiography was highly accurate, with eight false-positives and six false-negatives on cadaveric computed tomographic angiography, establishing an overall sensitivity of 96 percent and a positive predictive value of 95 percent for mapping perforators. For perforators greater than 1 mm in diameter, the sensitivity was 100 percent and the positive predictive value was 100 percent. Computed tomographic angiography is a highly accurate tool for identifying the perforators of the DIEA before DIEA perforator flaps for breast reconstruction. Preoperative identification of these vessels can aid planning for the preferred hemiabdomen for dissection, and may save operative time, angst, and potentially complications.

  10. Numerical simulation of NQR/NMR: Applications in quantum computing.

    Science.gov (United States)

    Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C

    2011-04-01

    A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Dissemination of original NMR data enhances reproducibility and integrity in chemical research.

    Science.gov (United States)

    Bisson, Jonathan; Simmler, Charlotte; Chen, Shao-Nong; Friesen, J Brent; Lankin, David C; McAlpine, James B; Pauli, Guido F

    2016-08-25

    The notion of data transparency is gaining a strong awareness among the scientific community. The availability of raw data is actually regarded as a fundamental way to advance science by promoting both integrity and reproducibility of research outcomes. Particularly, in the field of natural product and chemical research, NMR spectroscopy is a fundamental tool for structural elucidation and quantification (qNMR). As such, the accessibility of original NMR data, i.e., Free Induction Decays (FIDs), fosters transparency in chemical research and optimizes both peer review and reproducibility of reports by offering the fundamental tools to perform efficient structural verification. Although original NMR data are known to contain a wealth of information, they are rarely accessible along with published data. This viewpoint discusses the relevance of the availability of original NMR data as part of good research practices not only to promote structural correctness, but also to enhance traceability and reproducibility of both chemical and biological results.

  12. NMR of geophysical drill cores with a mobile Halbach scanner

    International Nuclear Information System (INIS)

    Talnishnikh, E.

    2007-01-01

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  13. NMR of geophysical drill cores with a mobile Halbach scanner

    Energy Technology Data Exchange (ETDEWEB)

    Talnishnikh, E.

    2007-08-21

    This thesis is devoted to a mobile NMR with an improved Halbach scanner. This is a lightweight tube-shaped magnet with sensitive volume larger and a homogeneity of the magnetic field higher than the previous prototype version. The improved Halbach scanner is used for analysis of water-saturated drill cores and plugs with diameters up to 60 mm. To provide the analysis, the standard 1D technique with the CPMG sequence as well as 2D correlation experiments were successfully applied and adapted to study properties of fluid-saturated sediments. Afterwards the Halbach scanner was calibrated to fast non-destructive measurements of porosity, relaxation time distributions, and estimation of permeability. These properties can be calculated directly from the NMR data using the developed methodology. Any independent measurements of these properties with other methods are not needed. One of the main results of this work is the development of a new NMR on-line core scanner for measurements of porosity in long cylindrical and semi cylindrical drill cores. Also dedicated software was written to operate the NMR on-line core scanner. The physical background of this work is the study of the diffusion influence on transverse relaxation. The diffusion effect in the presence of internal gradients in porous media was probed by 1D and 2D experiments. The transverse relaxation time distributions obtained from 1D and from 2D experiments are comparable but different in fine details. Two new methodologies were developed based on the results of this study. First is the methodology quantifying the influence of diffusion in the internal gradients of water-saturated sediments on transverse relaxation from 2D correlation experiments. The second one is the correction of the permeability estimation from the NMR data taking in account the influence of the diffusion. Furthermore, PFG NMR technique was used to study restricted diffusion in the same kind of samples. Preliminary results are reported

  14. NMR spectroscopy: a tool for conformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tormena, Claudio F.; Cormanich, Rodrigo A.; Rittner, Roberto, E-mail: rittner@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica. Lab. de Fisico-Quimica Organica; Freitas, Matheus P. [Universidade Federal de Lavras (UFLA), MG (Brazil). Dept. de Qumica

    2011-07-01

    The present review deals with the application of NMR data to the conformational analysis of simple organic compounds, together with other experimental methods like infrared spectroscopy and with theoretical calculations. Each sub-section describes the results for a group of compounds which belong to a given organic function like ketones, esters, etc. Studies of a single compound, even of special relevance, were excluded since the main goal of this review is to compare the results for a given function, where different substituents were used or small structural changes were introduced in the substrate, in an attempt to disclose their effects in the conformational equilibrium. Moreover, the huge amount of data available in the literature, on this research field, imposed some limitations which will be detailed in the Introduction, but it can be reminded in advance that these limitations include mostly the period when these results were published. (author)

  15. NMR spectroscopy: a tool for conformational analysis

    International Nuclear Information System (INIS)

    Tormena, Claudio F.; Cormanich, Rodrigo A.; Rittner, Roberto; Freitas, Matheus P.

    2011-01-01

    The present review deals with the application of NMR data to the conformational analysis of simple organic compounds, together with other experimental methods like infrared spectroscopy and with theoretical calculations. Each sub-section describes the results for a group of compounds which belong to a given organic function like ketones, esters, etc. Studies of a single compound, even of special relevance, were excluded since the main goal of this review is to compare the results for a given function, where different substituents were used or small structural changes were introduced in the substrate, in an attempt to disclose their effects in the conformational equilibrium. Moreover, the huge amount of data available in the literature, on this research field, imposed some limitations which will be detailed in the Introduction, but it can be reminded in advance that these limitations include mostly the period when these results were published. (author)

  16. Joint numerical microscale simulations of multi-phase flow and NMR relaxation behaviour in porous media

    Science.gov (United States)

    Mohnke, O.; Ahrenholz, B.

    2011-12-01

    Nuclear Magnetic Resonance (NMR) is a useful tool for analyzing gas (methane) and fluids (water, oil) in rock formations in order to derive transport and storage properties such as pore-size distributions or relative permeability. Even though there is considerable NMR data available about hydraulic properties of rock formations, this information is only empirical. Thus, the aim of this paper is to present joint NMR and multi-phase flow simulations in micro-scale pore systems derived from micro-CT images to quantify relationships between NMR parameters and transport and storage properties of partially saturated rocks. Hereby, the NMR differential equations were implemented using an advection/diffusion lattice-Boltzmann method (LBM) where the flow field is computed by a coupled LBM CFD solver. The results of numerical imbibition and drainage experiments quantitatively agree with laboratory experiments with regard to frequently found peak shifts and bimodal NMR decay time distributions related to residual water in films and corners as well as to fluids/gases trapped in large pores. This numerical framework enables one to quantitatively describe NMR surface and bulk relaxation processes, diffusive coupling along with the multi-phase flow properties of partially saturated porous systems. Furthermore, it is a viable alternative to the more time-consuming and less controllable laboratory experiments. Such virtual experimental setups can considerably help to benchmark and validate statistical network models to better understand hydraulic properties of partially saturated rocks by using experimentally obtained NMR data.

  17. NMR imaging of human atherosclerosis

    International Nuclear Information System (INIS)

    Toussaint, J.F.

    1995-01-01

    Diagnosis and prognosis of atherosclerosis can no longer be evaluated with morphological parameters only. A description of atherosclerotic plaque composition is necessary to study the mechanisms of plaque rupture, which depends on collagenous cap and lipid core thicknesses. NMR, as a biochemical imaging technique, allows visualization of these components using T1 contrast (mobile lipids), T2 contrast (cap vs. core), spin density (calcifications), diffusion imaging, 1H and 13C spectroscopy. Today, these imaging sequences allow to study in vitro the effects of interventional techniques such as angioplasty or atherectomy. Clinical investigations begin, which will attempt to develop in vivo microscopy and test the ability of NMR to predict plaque rupture. (author). 13 refs., 7 figs

  18. PVT Degradation Studies: NMR Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-06-06

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. Nuclear magnetic resonance spectroscopy has been used to elucidate the state of water inside the PVT. The deuterium NMR results show that water absorbed by PVT under warm, humid conditions enters several distinct environments, and when the PVT is transferred from incubation to ambient temperature and humidity the water is lost on a time scale of a few hours from these samples. Most of the deuterium NMR peaks can be assigned to bulk liquid water, but almost 35% of the detected signal intensity is contained in a resonance that resembles spectra of water contained in nanometer-scale pores in mesoporous carbon.

  19. Development of the Shimadzu computed tomographic scanner SCT-200N

    International Nuclear Information System (INIS)

    Ishihara, Hiroshi; Yamaoka, Nobuyuki; Saito, Masahiro

    1982-01-01

    The Shimadzu Computed Tomographic Scanner SCT-200N has been developed as an ideal CT scanner for diagnosing the head and spine. Due to the large aperture, moderate scan time and the Zoom Scan Mode, any part of the body can be scanned. High quality image can be obtained by adopting the precisely stabilized X-ray unit and densely packed array of 64-detectors. As for its operation, capability of computed radiography (CR) prior to patient positioning and real time reconstruction ensure efficient patient through-put. Details of the SCT-200N are described in this paper. (author)

  20. Technical innovation: Multidimensional computerized software enabled subtraction computed tomographic angiography.

    Science.gov (United States)

    Bhatia, Mona; Rosset, Antoine; Platon, Alexandra; Didier, Dominique; Becker, Christoph D; Poletti, Pierre-Alexandre

    2010-01-01

    Computed tomographic angiography (CTA) is a frequent noninvasive alternative to digital subtraction angiography. We previously reported the development of a new subtraction software to overcome limitations of adjacent bone and calcification in CT angiographic subtraction. Our aim was to further develop and improve this fast and automated computerized software, universally available for free use and compatible with most CT scanners, thus enabling better delineation of vascular structures, artifact reduction, and shorter reading times with potential clinical benefits. This computer-based free software will be available as an open source in the next release of OsiriX at the Web site http://www.osirix-viewer.com.