WorldWideScience

Sample records for field measurement system

  1. Lightning magnetic field measuring system in Bogota

    OpenAIRE

    Escobar Alvarado, Oscar Fernardo

    2013-01-01

    This thesis presents the configuration and performance of a lightning radiated electromagnetic field measuring system in Bogotá Colombia. The system is composed by both magnetic and electric field measuring systems working as separated sensors. The aim of the thesis is the design and construction of a Magnetic Field Measuring System and the implementation of a whole lightning measuring system in Bogotá. The theoretical background, design process, construction and implementation of the system ...

  2. Magnetic Field Response Measurement Acquisition System

    Science.gov (United States)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  3. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  4. Magnetic field measuring system for remapping the ORIC magnetic field

    International Nuclear Information System (INIS)

    Mosko, S.W.; Hudson, E.D.; Lord, R.S.; Hensley, D.C.; Biggerstaff, J.A.

    1977-01-01

    The Holifield Heavy Ion Research Facility will integrate a new 25 MV tandem electrostatic acccelerator into the existing cyclotron laboratory which includes the Oak Ridge Isochronous Cyclotron (ORIC). Computations of ion paths for beam injection from the new tandem into ORIC require field mapping in the regions traversed by the beam. Additional field data is also desired for the higher levels (approx.19 kG) now used for most heavy ion beams. The magnetic field measurement system uses 39 flip coil/current integrator sets with computer controlled data scanning. The coils are spaced radially at 1 inch intervals in an arm which can be rotated azimuthally in 2 degree increments. The entire flip coil assembly can be shifted to larger radii to measure fields beyond the pole boundary. Temperature stabilization of electronic circuitry permits a measurement resolution of +-1 gauss over a dynamic range of +-25,000 gauss. The system will process a scan of 8000 points in about one hour

  5. Magnetic field measurement system of the VINCY Cyclotron

    International Nuclear Information System (INIS)

    Dobrosavljevic, A.; Cirkovic, S.; Zdravkovic, A.; Urosevic, Z.; Lucic, M.; Gemaljevic, M.

    1995-01-01

    This paper presents the magnetic field measurement system of the VINCY Cyclotron, main part of the TESLA accelerator installation whose construction has been going on in the Vinca Institute of Nuclear Sciences. Measurement system consists of mechanical structure and control unit for the automatic positioning of the measurement probe in the median plane, between the poles of the magnet, and corresponding measuring instrumentation, based on two digital tesla meters. Concept of the measurement system is defined by the TESLA team, while realisation of the measurement system is performed in co-operation with the LOLA Institute. (author)

  6. [A focused sound field measurement system by LabVIEW].

    Science.gov (United States)

    Jiang, Zhan; Bai, Jingfeng; Yu, Ying

    2014-05-01

    In this paper, according to the requirement of the focused sound field measurement, a focused sound field measurement system was established based on the LabVIEW virtual instrument platform. The system can automatically search the focus position of the sound field, and adjust the scanning path according to the size of the focal region. Three-dimensional sound field scanning time reduced from 888 hours in uniform step to 9.25 hours in variable step. The efficiency of the focused sound field measurement was improved. There is a certain deviation between measurement results and theoretical calculation results. Focal plane--6 dB width difference rate was 3.691%, the beam axis--6 dB length differences rate was 12.937%.

  7. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  8. The transient electric field measurement system for EAST device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wayong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Ji, Z.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhu, C.M. [The Experiment & Verification Center of State Grid Electric Power Research Institute (The Automation Equipment EMC Lab. of State Grid Co.), Nanjing, Jiangsu (China); Zhang, Z.C.; Ma, T.F.; Xu, Z.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    The electromagnetic environment around the Experimental Advanced Superconducting Tokamak (EAST) device is very complex during plasma discharge experiment. In order to fully monitor the changes of electric field around the EAST device during plasma discharge, a transient electric field measurement system based on PCI eXtensions for Instrumentation (PXI) platform has been designed. A digitizer is used for high-speed data acquisition of raw signals from electric field sensors, and a Field Programmable Gate Array (FPGA) module is used for realizing an on-the-fly fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithm including a beforehand identified antenna factor (AF) to achieve finally a calibrated and filtered electric field measurement, then these signals can be displayed and easily analyzed. The raw signals from electric field sensors are transferred through optical fiber by optical isolation to reduce electromagnetic interference (EMI). The high speed data streaming technology is used for data storage. A prototype of this system has been realized to measure the transient electric field strength, with the real-time processing and continuous acquisition ability of one channel of 14-bit resolution and up to 50 MHz sampling rate, and 6 KHz FFT frequency resolution.

  9. Field-Deployable Acoustic Digital Systems for Noise Measurement

    Science.gov (United States)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  10. Ambient temperature field measuring system for LHC superconducting dipoles

    International Nuclear Information System (INIS)

    Billan, J.; De Panfilis, S.; Giloteaux, D.; Pagano, O.

    1996-01-01

    It is foreseen to perform acceptance tests including field measurements of the collared coils assembly of the LHC superconducting dipoles to estimate, at an early production stage, the possible significant deviations from the expected multipole component value of these magnets. A sensitive measuring probe and efficient data acquisition are the consequence of a low magnetizing current necessary to limit the coils heating. This demands a high signals sensitivity and an enhanced signal-to-noise ratio to retrieve the higher multipole component. Moreover, the correlation with the multipoles content of the magnets at cryogenic temperature and nominal excitation current need to be identified before the manufacturing process may continue. The field probe of the mole-type is equipped with three radial rotating search coils, an angular encoder and gravity sensor. It has been designed to slide inside the bore of the dipole coils and to measure the local field at fixed positions. The field analysis resulting in terms of multipole components, field direction and field integrals, measured on four 10 m long, twin-aperture LHC dipole prototypes, will be described together with the performance of the measuring method

  11. Simple System to Measure the Earth's Magnetic Field

    Science.gov (United States)

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-01-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  12. Neighborhood walkability: field validation of geographic information system measures.

    Science.gov (United States)

    Hajna, Samantha; Dasgupta, Kaberi; Halparin, Max; Ross, Nancy A

    2013-06-01

    Given the health benefits of walking, there is interest in understanding how physical environments favor walking. Although GIS-derived measures of land-use mix, street connectivity, and residential density are commonly combined into indices to assess how conducive neighborhoods are to walking, field validation of these measures is limited. To assess the relationship between audit- and GIS-derived measures of overall neighborhood walkability and between objective (audit- and GIS-derived) and participant-reported measures of walkability. Walkability assessments were conducted in 2009. Street-level audits were conducted using a modified version of the Pedestrian Environmental Data Scan. GIS analyses were used to derive land-use mix, street connectivity, and residential density. Participant perceptions were assessed using a self-administered questionnaire. Audit, GIS, and participant-reported indices of walkability were calculated. Spearman correlation coefficients were used to assess the relationships between measures. All analyses were conducted in 2012. The correlation between audit- and GIS-derived measures of overall walkability was high (R=0.7 [95% CI=0.6, 0.8]); the correlations between objective (audit and GIS-derived) and participant-reported measures were low (R=0.2 [95% CI=0.06, 0.3]; R=0.2 [95% CI=0.04, 0.3], respectively). For comparable audit and participant-reported items, correlations were higher for items that appeared more objective (e.g., sidewalk presence, R=0.4 [95% CI=0.3, 0.5], versus safety, R=0.1 [95% CI=0.003, 0.3]). The GIS-derived measure of walkability correlated well with the in-field audit, suggesting that it is reasonable to use GIS-derived measures in place of more labor-intensive audits. Interestingly, neither audit- nor GIS-derived measures correlated well with participants' perceptions of walkability. Copyright © 2013 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Electric field measuring and display system. [for cloud formations

    Science.gov (United States)

    Wojtasinski, R. J.; Lovall, D. D. (Inventor)

    1974-01-01

    An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.

  14. Development of Field Angle Resolved Specific Heat Measurement System for Unconventional Superconductors

    International Nuclear Information System (INIS)

    Kitamura, Yasuhiro; Matsubara, Takeshi; Machida, Yo; Izawa, Koichi; Onuki, Yoshichika; Salce, Bernard; Flouquet, Jacques

    2015-01-01

    We developed a measurement system for field angle resolved specific heat under multiple extreme conditions at low temperature down to 50 mK, in magnetic field up to 7 T, and under high pressure up to 10 GPa. We demonstrated the performance of our developed system by measuring field angle dependence of specific heat of pressure induced unconventional superconductor CeIrSi 3

  15. A Method for Eddy Current Field Measurement in Permanent Magnet Magnetic Resonance Imaging Systems

    Directory of Open Access Journals (Sweden)

    SONG Rui

    2018-03-01

    Full Text Available Magnetic resonance imaging (MRI is a widely used medical imaging technique. In MRI system, gradient magnetic fields are used to code spatial information. However, the fast-switching electric currents in the gradients coils used to generate gradient fields also induce vortex electric field, often referred as eddy current, in the surrounding metal conductors. In this paper, a method for eddy current field measurement was proposed. Based on the Faraday law of electromagnetic induction, an eddy current field measuring device was designed. Combining hardware acquisition and software processing, the eddy current field was obtained by subtracting the ideal gradient field from the magnetic field measured experimentally, whose waveform could be displayed in real time. The proposed method was verified by experimental results.

  16. Measurement and analysis of electromagnetic fields of pulsed magnetic field therapy systems for private use

    International Nuclear Information System (INIS)

    Jaermann, Thomas; Suter, Fabian; Osterwalder, Diego; Luechinger, Roger

    2011-01-01

    Recently, pulsed magnetic field therapy (PMFT) systems have become available for private use. Although they may be applied without medical supervision, only a little is known about their field quantities. In this study, the spatial distribution and the temporal characteristics of the magnetic flux densities of three PMFT systems, available in Europe, were analysed. In close proximity to the surface, the maxima of the peak magnetic flux densities were 461 μT, 170 μT and 133 μT, respectively. At a distance of 30 cm above the whole body mat, the peak magnetic flux density was 77 μT. The excitation patterns consisted of repeating bursts with carrier frequencies between 210 and 1667 Hz. In conclusion, magnetic flux densities were far above International Commission on Non-Ionizing Radiation Protection reference levels. Since these systems are supposed to be medical devices as well as wellness devices, risk analysis of PMFT systems and the effectiveness of these devices need to be investigated in future studies.

  17. Behavioral and Locomotor Measurements Using an Open Field Activity Monitoring System for Skeletal Muscle Diseases

    OpenAIRE

    Tatem, Kathleen S.; Quinn, James L.; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-01-01

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body sy...

  18. A microcomputer controlled, self-contained field measurement and analysis system

    International Nuclear Information System (INIS)

    Haddock, C.; Smith, G.; Mckee, J.S.C.

    1989-10-01

    Current accelerator projects will involve the construction and field measurement of up to ten thousand magnets. A statistical analysis has shown that in order to optimize the performance of an accelerator it will be necessary to measure the parameters of field strength, field uniformity and harmonic content of every magnet. If the measurements are performed at the construction site, the magnets which do not meet the required specifications can be repaired immediately. This paper describes a self-contained field measurement and analysis system, based on an IBM microcomputer, which performs all the remote control, data acquisition and data analysis functions automatically. The system is of low cost such that each manufacturer could provide field parameters on each magnet as it is completed thus avoiding a logistical problem at the accelerator site

  19. A levitation force and magnetic field distribution measurement system in three dimensions

    International Nuclear Information System (INIS)

    Yang, W.M.; Chao, X.X.; Shu, Z.B.; Zhu, S.H.; Wu, X.L.; Bian, X.B.; Liu, P.

    2006-01-01

    A levitation force and magnetic field distribution measurement system in three dimension has been designed and constructed, which can be used for the levitation force measurement between a superconductor and a magnet, or magnet to magnet in three dimensions; and for the measurement of magnetic field distribution in three dimensions according to your need in space. It can also give out the dynamical changing result of magnetic field density with time during levitation force measurement. If we change the sensor of the detector of the measurement system, it also can be used for other kinds of measurement of physical properties. It is a good device for the measurement of magnetic properties of materials. In addition the device can also be used to work at carving in three dimensions

  20. Nomarski imaging interferometry to measure the displacement field of micro-electro-mechanical systems

    International Nuclear Information System (INIS)

    Amiot, Fabien; Roger, Jean Paul

    2006-01-01

    We propose to use a Nomarski imaging interferometer to measure the out-of-plane displacement field of micro-electro-mechanical systems. It is shown that the measured optical phase arises from both height and slope gradients. By using four integrating buckets, a more efficient approach to unwrap the measured phase is presented,thus making the method well suited for highly curved objects. Slope and height effects are then decoupled by expanding the displacement field on a functions basis, and the inverse transformation is applied to get a displacement field from a measured optical phase map change with a mechanical loading. A measurement reproducibility of approximately 10 pm is achieved, and typical results are shown on a microcantilever under thermal actuation, thereby proving the ability of such a setup to provide a reliable full-field kinematic measurement without surface modification

  1. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    Science.gov (United States)

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-09-29

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.

  2. Measuring the vertical electrical field above an oceanic convection system using a meteorological sounding balloon

    Science.gov (United States)

    Chen, A. B.; Chiu, C.; Lai, S.; Chen, C.; Kuo, C.; Su, H.; Hsu, R.

    2012-12-01

    The vertical electric field above thundercloud plays an important role in the generation and modeling of transient luminous events. For example, Pasko [1995] proposed that the high quasi-static E-field following the positive cloud-to-ground lightning could accelerate and input energy to ambient electrons; as they collide and excite nitrogen and oxygen molecules in upper atmosphere, sprites may be induced. A series of balloon experiments led by Holzworth have investigated the temporal and spatial fluctuations of the electric field and conductivity in the upper atmosphere at different sites [Holzworth 2005, and references in]. But the strength and variation of the vertical electric field above thundercloud, especially oceanic ones, are not well documented so far. A lightweight, low-cost measurement system including an electric field meter and the associated aviation electronics are developed to carry out the in-situ measurement of the vertical electric field and the inter-cloud charge distribution. Our measuring system was first deployed using a meteorological sounding balloon from Taitung, Taiwan in May 2012. The measured electric field below 3km height shows an exponential decay and it is consistent with the expected potential gradient variation between ionosphere and the Earth surface. But the background strength of the measured E-field grows up exponentially and a violent fluctuations is also observed when the balloon flew over a developing oceanic convection cell. The preliminary results from this flight will be reported and discussed. This low-cost electric field meter is developed within one year. In the coming months, more flights will be performed with the aim to measure the rapid variation of the electric field above thundercloud as well as the E-field that may induce transient luminous events. Our ground campaigns show that the occurrence rates of blue and gigantic jet are relatively high in the vicinity of Taiwan. Our experiment can be used to diagnose

  3. Instrument response measurements of ion mobility spectrometers in situ: maintaining optimal system performance of fielded systems

    Science.gov (United States)

    Wallis, Eric; Griffin, Todd M.; Popkie, Norm, Jr.; Eagan, Michael A.; McAtee, Robert F.; Vrazel, Danet; McKinly, Jim

    2005-05-01

    Ion Mobility Spectroscopy (IMS) is the most widespread detection technique in use by the military for the detection of chemical warfare agents, explosives, and other threat agents. Moreover, its role in homeland security and force protection has expanded due, in part, to its good sensitivity, low power, lightweight, and reasonable cost. With the increased use of IMS systems as continuous monitors, it becomes necessary to develop tools and methodologies to ensure optimal performance over a wide range of conditions and extended periods of time. Namely, instrument calibration is needed to ensure proper sensitivity and to correct for matrix or environmental effects. We have developed methodologies to deal with the semi-quantitative nature of IMS and allow us to generate response curves that allow a gauge of instrument performance and maintenance requirements. This instrumentation communicates to the IMS systems via a software interface that was developed in-house. The software measures system response, logs information to a database, and generates the response curves. This paper will discuss the instrumentation, software, data collected, and initial results from fielded systems.

  4. Measurement and analysis of the electric field radiation in pulsed power system of linear induction accelerator

    International Nuclear Information System (INIS)

    Cheng Qifeng; Ni Jianping; Meng Cui; Cheng Cheng; Liu Yinong; Li Jin

    2009-01-01

    The close of high voltage switch in pulsed power system of linear induction accelerator often radiates strong transient electric field, which may influence ambient sensitive electric equipment, signals and performance of other instruments, etc. By performing gridded measurement around the Marx generator, the general distribution law and basic characters of electric field radiation are summarized. The current signal of the discharge circuit is also measured, which demonstrates that the current and the radiated electric field both have a resonance frequency about 150 kHz, and contain much higher frequency components. (authors)

  5. Temperature and velocity measurement fields of fluids using a schlieren system.

    Science.gov (United States)

    Martínez-González, Adrian; Guerrero-Viramontes, J A; Moreno-Hernández, David

    2012-06-01

    This paper proposes a combined method for two-dimensional temperature and velocity measurements in liquid and gas flow using a schlieren system. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow. The measurement is made by using particle image velocimetry (PIV). The PIV software used in this work analyzes motion between consecutive schlieren frames to obtain velocity fields. The proposed technique was applied to measure the temperature and velocity fields in the natural convection of water provoked by a heated rectangular plate.

  6. Characterization and demonstration results of a SQUID magnetometer system developed for geomagnetic field measurements

    Science.gov (United States)

    Kawai, J.; Miyamoto, M.; Kawabata, M.; Nosé, M.; Haruta, Y.; Uehara, G.

    2017-08-01

    We characterized a low temperature superconducting quantum interference device (SQUID) magnetometer system developed for high-sensitivity geomagnetic field measurement, and demonstrated the detection of weak geomagnetic signals. The SQUID magnetometer system is comprised of three-axis SQUID magnetometers housed in a glass fiber reinforced plastic cryostat, readout electronics with flux locked loop (FLL), a 24-bit data logger with a global positioning system and batteries. The system noise was approximately 0.2 pT √Hz- 1/2 in the 1-50 Hz frequency range. This performance was determined by including the thermal noise and the shielding effect of the copper shield, which covered the SQUID magnetometers to eliminate high-frequency interference. The temperature drift of the system was ˜0.8 pT °C- 1 in an FLL operation. The system operated for a month using 33 l liquid helium. Using this system, we performed the measurements of geomagnetic field in the open-air, far away from the city. The system could detect weak geomagnetic signals such as the Schumann resonance with sixth harmonics, and the ionospheric Alfvén resonance appearing at night, for the north-south and east-west components of the geomagnetic field. We confirm that the system was capable of high-sensitivity measurement of the weak geomagnetic activities.

  7. Analysis of Fringe Field Formed Inside LDA Measurement Volume Using Compact Two Hololens Imaging Systems

    Science.gov (United States)

    Ghosh, Abhijit; Nirala, A. K.; Yadav, H. L.

    2018-03-01

    We have designed and fabricated four LDA optical setups consisting of aberration compensated four different compact two hololens imaging systems. We have experimentally investigated and realized a hololens recording geometry which is interferogram of converging spherical wavefront with mutually coherent planar wavefront. Proposed real time monitoring and actual fringe field analysis techniques allow complete characterizations of fringes formed at measurement volume and permit to evaluate beam quality, alignment and fringe uniformity with greater precision. After experimentally analyzing the fringes formed at measurement volume by all four imaging systems, it is found that fringes obtained using compact two hololens imaging systems get improved both qualitatively and quantitatively compared to that obtained using conventional imaging system. Results indicate qualitative improvement of non-uniformity in fringe thickness and micro intensity variations perpendicular to the fringes, and quantitative improvement of 39.25% in overall average normalized standard deviations of fringe width formed by compact two hololens imaging systems compare to that of conventional imaging system.

  8. Development of a measuring system for poloidal field profile in JIPP T-IIU plasmas

    International Nuclear Information System (INIS)

    Kuramoto, Hideharu; Hiraki, Naoji; Moriyama, Shin-ichi; Toi, Kazuo; Sato, Kuninori.

    1995-01-01

    A Zeeman polarimeter has been developed to measure the poloidal magnetic field profile in the plasma edge of the JIPP T-IIU tokamak. The poloidal field strength is determined from the analysis of circular polarization of a HeII 4686A spectral lines emitted from a plasma. The polarization modulation rate, which is proportional to the magnetic field strength along a line of sight, is estimated as a ratio of the difference between the left-hand circular polarized line intensity and right-hand one to the sum of them. A newly developed fast scanning Fabry-Perot interferometer allows us to improve a time resolution up to 1.5 ms. The poloidal magnetic field profile in He-doped deuterium plasmas of JIPP T-IIU has been successfully obtained with this polarimeter system. (author)

  9. A fast continuous magnetic field measurement system based on digital signal processors

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; /Fermilab; Maroussov, V.; /Purdue U.; Nehring, R.; Nogiec, J.; Orris, D.; /Fermilab; Poukhov,; Prakoshyn, F.; /Dubna, JINR; Schlabach, P.; Tompkins, J.C.; /Fermilab

    2005-09-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements.

  10. A fast continuous magnetic field measurement system based on digital signal processors

    International Nuclear Information System (INIS)

    Velev, G.V.; Carcagno, R.; DiMarco, J.; Kotelnikov, S.; Lamm, M.; Makulski, A.; Maroussov, V.; Nehring, R.; Nogiec, J.; Orris, D.; Poukhov, O.; Prakoshyn, F.; Schlabach, P.; Tompkins, J.C.

    2005-01-01

    In order to study dynamic effects in accelerator magnets, such as the decay of the magnetic field during the dwell at injection and the rapid so-called ''snapback'' during the first few seconds of the resumption of the energy ramp, a fast continuous harmonics measurement system was required. A new magnetic field measurement system, based on the use of digital signal processors (DSP) and Analog to Digital (A/D) converters, was developed and prototyped at Fermilab. This system uses Pentek 6102 16 bit A/D converters and the Pentek 4288 DSP board with the SHARC ADSP-2106 family digital signal processor. It was designed to acquire multiple channels of data with a wide dynamic range of input signals, which are typically generated by a rotating coil probe. Data acquisition is performed under a RTOS, whereas processing and visualization are performed under a host computer. Firmware code was developed for the DSP to perform fast continuous readout of the A/D FIFO memory and integration over specified intervals, synchronized to the probe's rotation in the magnetic field. C, C++ and Java code was written to control the data acquisition devices and to process a continuous stream of data. The paper summarizes the characteristics of the system and presents the results of initial tests and measurements

  11. Large field distributed aperture laser semiactive angle measurement system design with imaging fiber bundles.

    Science.gov (United States)

    Xu, Chunyun; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2016-09-01

    A type of laser semiactive angle measurement system is designed for target detecting and tracking. Only one detector is used to detect target location from four distributed aperture optical systems through a 4×1 imaging fiber bundle. A telecentric optical system in image space is designed to increase the efficiency of imaging fiber bundles. According to the working principle of a four-quadrant (4Q) detector, fiber diamond alignment is adopted between an optical system and a 4Q detector. The structure of the laser semiactive angle measurement system is, we believe, novel. Tolerance analysis is carried out to determine tolerance limits of manufacture and installation errors of the optical system. The performance of the proposed method is identified by computer simulations and experiments. It is demonstrated that the linear region of the system is ±12°, with measurement error of better than 0.2°. In general, this new system can be used with large field of view and high accuracy, providing an efficient, stable, and fast method for angle measurement in practical situations.

  12. The development of magnetic field measurement system for drift-tube linac quadrupole

    Science.gov (United States)

    Zhou, Jianxin; Kang, Wen; Yin, Baogui; Peng, Quanling; Li, Li; Liu, Huachang; Gong, Keyun; Li, Bo; Chen, Qiang; Li, Shuai; Liu, Yiqin

    2015-06-01

    In the China Spallation Neutron Source (CSNS) linac, a conventional 324 MHz drift-tube linac (DTL) accelerating an H- ion beam from 3 MeV to 80 MeV has been designed and manufactured. The electromagnetic quadrupoles (EMQs) are widely used in a DTL accelerator. The main challenge of DTLQ's structure is to house a strong gradient EMQ in the much reduced space of the drift-tube (DT). To verify the DTLQ's design specifications and fabrication quality, a precision harmonic coil measurement system has been developed, which is based on the high precision movement platform, the harmonic coil with ceramic frame and the special method to make the harmonic coil and the quadrupoles coaxial. After more than one year's continuous running, the magnetic field measurement system still performs accurately and stably. The field measurement of more than one hundred DTLQ has been finished. The components and function of the measurement system, the key point of the technology and the repeatability of the measurement results are described in this paper.

  13. A configurable component-based software system for magnetic field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J.M.; DiMarco, J.; Kotelnikov, S.; Trombly-Freytag, K.; Walbridge, D.; Tartaglia, M.; /Fermilab

    2005-09-01

    A new software system to test accelerator magnets has been developed at Fermilab. The magnetic measurement technique involved employs a single stretched wire to measure alignment parameters and magnetic field strength. The software for the system is built on top of a flexible component-based framework, which allows for easy reconfiguration and runtime modification. Various user interface, data acquisition, analysis, and data persistence components can be configured to form different measurement systems that are tailored to specific requirements (e.g., involving magnet type or test stand). The system can also be configured with various measurement sequences or tests, each of them controlled by a dedicated script. It is capable of working interactively as well as executing a preselected sequence of tests. Each test can be parameterized to fit the specific magnet type or test stand requirements. The system has been designed with portability in mind and is capable of working on various platforms, such as Linux, Solaris, and Windows. It can be configured to use a local data acquisition subsystem or a remote data acquisition computer, such as a VME processor running VxWorks. All hardware-oriented components have been developed with a simulation option that allows for running and testing measurements in the absence of data acquisition hardware.

  14. The system for automatic dose rate measurements by mobile groups in field

    International Nuclear Information System (INIS)

    Drabova, D.; Filgas, R.; Cespirova, I.; Ejemova, M.

    1998-01-01

    The comparison of characteristics between a pressurized ionization chamber, plastic scintillator and proportional counter is given. Based on requirements and comparison of properties of various probes, the system for automatic dose rate measurement and integration of geographic co-ordinates in field was designed and tested.The system consists of proportional counter. This is so-called intelligent probe can be easily connected to a personal computer. The probe measures in the energy range 30 keV - 1.3 MeV with reasonable energy and angular response, it can measure the dose rate in the range 50 nSv/h - 1 Sv/h with the typical efficiency 9.5 imp/s/μSv/h. The probe is fixed in the holder placed on the front mask of a car. For the simultaneous determination of geographical co-ordinates the personal GPS navigator Garmin 95 is used. Both devices are controlled by a notebook via two serial ports. The second serial port that is not quite common in notebook can be easily realised by a PCMCIA card. The notebook is used in the field by a mobile group can be transmitted to the assessment centre by the cellular GSM phone. The system Nokia 2110 connected to notebook by PCMCIA card is used. The whole system is powered up from the car battery. The system is controlled by specially developed software. The software was developed in the FoxPro 2.5 environment and works under MS-DOS 6.22. It has no problems to work in Windows 95 DOS window. The results of dose rate measurements obtained during route monitoring are stored in files. They can be displayed on a graphic screen, presenting the geographical distribution of the dose rate values colour coded on a map and the time sequence of the measured data. (authors)

  15. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    Science.gov (United States)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing

  16. Measured electric field intensities near electric cloud discharges detected by the Kennedy Space Center's Lightning Detection and Ranging System, LDAR

    Science.gov (United States)

    Poehler, H. A.

    1977-01-01

    For a summer thunderstorm, for which simultaneous, airborne electric field measurements and Lightning Detection and Ranging (LDAR) System data was available, measurements were coordinated to present a picture of the electric field intensity near cloud electrical discharges detected by the LDAR System. Radar precipitation echos from NOAA's 10 cm weather radar and measured airborne electric field intensities were superimposed on LDAR PPI plots to present a coordinated data picture of thunderstorm activity.

  17. Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique

    International Nuclear Information System (INIS)

    Heink, W.; Kaerger, J.; Walter, A.

    1978-01-01

    The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)

  18. Nondestructive Evaluation of Railway Bridge by System Identification Using Field Vibration Measurement

    International Nuclear Information System (INIS)

    Ho, Duc Duy; Hong, Dong Soo; Kim, Jeong Tae

    2010-01-01

    This paper presents a nondestructive evaluation approach for system identification (SID) of real railway bridges using field vibration test results. First, a multi-phase SID scheme designed on the basis of eigenvalue sensitivity concept is presented. Next, the proposed multi-phase approach is evaluated from field vibration tests on a real railway bridge (Wondongcheon bridge) located in Yangsan, Korea. On the steel girder bridge, a few natural frequencies and mode shapes are experimentally measured under the ambient vibration condition. The corresponding modal parameters are numerically calculated from a three-dimensional finite element (FE) model established for the target bridge. Eigenvalue sensitivities are analyzed for potential model-updating parameters of the FE model. Then, structural subsystems are identified phase-by-phase using the proposed model-updating procedure. Based on model-updating results, a baseline model and a nondestructive evaluation of test bridge are identified

  19. Environmental Measurement-While-Drilling system for real-time field screening of contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Bishop, L.B.; Floran, R.J.; Williams, C.V.

    1995-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ''steer'' the drill bit in or out hazardous zones. During measurement-while-drilling, down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented

  20. Investigation on field method using strain measurement on pipe surface to measure pressure pulsation in piping systems

    International Nuclear Information System (INIS)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Kato, Minoru

    2013-01-01

    Accurate evaluation of the occurrence location and amplitude of pressure pulsations in piping systems can lead to efficient plant maintenance by preventing fatigue failure of piping and components because the pulsations can be one of the main causes of vibration fatigue and acoustic noise in piping. A non-destructive field method to measure pressure pulsations easily and directly was proposed to replace conventional methods such as prediction using numerical simulations and estimation using locally installed pressure gauges. The proposed method was validated experimentally by measuring pulsating flow in a mock-up piping system. As a result, it was demonstrated that the method to combine strain measurement on the outer surface of pipe with the formula for thick-walled cylinders could measure amplitudes and behavior of the pressure pulsations with a practical accuracy. Factors affecting the measurement accuracy of the proposed method were also discussed. Furthermore, the applicability of the formula for thin-walled cylinders was examined for variously shaped pipes. (author)

  1. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    International Nuclear Information System (INIS)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-01-01

    The 36 Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The 36 Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field

  2. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  3. Field measurements of supermarket refrigeration systems. Part I: Analysis of CO2 trans-critical refrigeration systems

    International Nuclear Information System (INIS)

    Sawalha, Samer; Karampour, Mazyar; Rogstam, Jörgen

    2015-01-01

    This study investigates the refrigeration performance of three CO 2 trans-critical solutions based on field measurements. The measurements are carried out in five supermarkets in Sweden. Using the field measurements, low and medium temperature level cooling capacities and COP's are calculated for ten-minute intervals, filtered and averaged to monthly values. The results indicate that the systems using trans-critical booster system with gas removal from the intermediate vessel have relatively the highest total COP. The reasons are higher evaporation temperatures, lower internal and external superheat and higher total efficiency of booster compressors. Another important factor is gas removal from the intermediate vessel which leads to higher COP of low temperature level. Comparing the older and newer installed systems, a trend in energy efficiency improvement has been seen. The study shows this improvement originates from both changes in the system design (e.g. two stage expansion) and components efficiency improvement (e.g. higher total efficiency of compressors - lower internal superheat and higher evaporation temperatures of cabinets). - Highlights: • Five Swedish supermarkets using three CO 2 refrigeration solutions are analyzed. • A trend of improvement in energy efficiency has been observed. • Parallel CO 2 system with indirect heat rejection offers the lowest energy efficiency. • CO 2 trans-critical booster with gas removal achieves up to 35% COP improvement

  4. Environmental Measurement While Drilling System for Real-Time Field Screening of Contaminants

    International Nuclear Information System (INIS)

    Lockwood, G.J.; Normann, R.A.; Williams, C.V.

    1999-01-01

    Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of subsurface contaminants. However, analysis of the samples is expensive and time-consuming: off-site laboratory analysis can take weeks or months. Real-time information on environmental conditions, drill bit location and temperature during drilling is valuable in many environmental restoration operations. This type of information can be used to provide field screening data and improved efficiency of site characterization activities. The Environmental Measurement-While-Drilling (EMWD) System represents an innovative blending of new and existing technology in order to obtain real-time data during drilling. The system consists of two subsystems. The down-hole subsystem (at the drill bit) consists of sensors, a power supply, a signal conditioning and transmitter board, and a radio-frequency (RF) coaxial cable. The up-hole subsystem consists of a battery pack/coil, pickup coil, receiver, and personal computer. The system is compatible with fluid miser drill pipe, a directional drilling technique that uses minimal drilling fluids and generates little to no secondary waste. In EMWD, downhole sensors are located behind the drill bit and linked by a high-speed data transmission system to a computer at the surface. Sandia-developed Windowstrademark-based software is used for data display and storage. As drilling is conducted, data is collected on the nature and extent of contamination, enabling on-the-spot decisions regarding drilling and sampling strategies. Initially, the downhole sensor consisted of a simple gamma radiation detector, a Geiger-Mueller tube (GMT). The design includes data assurance techniques to increase safety by reducing the probability of giving a safe indication when an unsafe condition exists. The EMWD system has been improved by the integration of a Gamma Ray Spectrometer (GRS) in place of the GMT. The GRS consists of a sodium iodide

  5. Precise NMR measurement and stabilization system of magnetic field of a superconducting 7 T wave length shifter

    CERN Document Server

    Borovikov, V M; Karpov, G V; Korshunov, D A; Kuper, E A; Kuzin, M V; Mamkin, V R; Medvedko, A S; Mezentsev, N A; Repkov, V V; Shkaruba, V A; Shubin, E I; Veremeenko, V F

    2001-01-01

    The system of measurement and stabilization of the magnetic field in the superconducting 7 T wave length shifter (WLS), designed at Budker Institute of Nuclear Physics are described. The measurements are performed by nuclear magnetic resonance (NMR) magnetometer at two points of the WLS magnetic field. Stabilization of the field is provided by the current pumping system. The stabilization system is based on precise NMR measurement of magnetic field as a feedback signal for computer code which control currents inside the superconducting coils. The problem of the magnetic field measurements with NMR method consists in wide spread of field in the measured area (up to 50 Gs/mm), wide temperature range of WLS operating, small space for probe and influence of iron hysteresis. Special solid-state probes were designed to satisfy this requirements. The accuracy of magnetic field measurements at probe locations is not worse than 20 ppm. For the WLS field of 7 T the reproducibility of the magnetic field of 30 ppm has be...

  6. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  7. Software development based on high speed PC oscilloscope for automated pulsed magnetic field measurement system

    International Nuclear Information System (INIS)

    Sun Yuxiang; Shang Lei; Li Ji; Ge Lei

    2011-01-01

    It introduces a method of a software development which is based on high speed PC oscilloscope for pulsed magnetic field measurement system. The previous design has been improved by this design, high-speed virtual oscilloscope has been used in the field for the first time. In the design, the automatic data acquisition, data process, data analysis and storage have been realized. Automated point checking reduces the workload. The use of precise motion bench increases the positioning accuracy. The software gets the data from PC oscilloscope by calling DLLs and includes the function of oscilloscope, such as trigger, ranges, and sample rate setting etc. Spline Interpolation and Bandstop Filter are used to denoise the signals. The core of the software is the state machine which controls the motion of stepper motors and data acquisition and stores the data automatically. NI Vision Acquisition Software and Database Connectivity Toolkit make the video surveillance of laboratory and MySQL database connectivity available. The raw signal and processed signal have been compared in this paper. The waveform has been greatly improved by the signal processing. (authors)

  8. Labview applications based on field programmable gate array (FPGA) on temperature measurement system of heating-02

    International Nuclear Information System (INIS)

    Kussigit Santosa

    2013-01-01

    Temperature measurements system has been created at the heating-02 test using LabVIEW 2011 software. Making this measurement systems on FPGA is the development of previous a measurement system using the measurement with cDAQ9188. The advantage of this system is the independence of the system means that the execution time can run itself without a computer. The scope of the current study was limited on the development, programming and testing of data acquisition focused on programming of the FPGA modules that have been embedded on the cRIO 9074. In the making of temperature measurement systems is required the data acquisition system by National Texas Instruments cRIO 9074 module, power supply, Ni 9023 module, 7011 HIOKI current source, the software Labview 2011 and the computer. The using method is stringing the temperature measurement system, programming of data acquisition the FPGA as well as the acquisition system interface that is easy to do observations. From the experimental results, it can be concluded that the temperature measurement system can run well. So that the measurement system is expected to be used for the actual measurement. (author)

  9. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2016-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  10. Wind field measurement in the nonprecipitous regions surrounding storms by an airborne pulsed Doppler lidar system, appendix A

    Science.gov (United States)

    Bilbro, J. W.; Vaughan, W. W.

    1980-01-01

    Coherent Doppler lidar appears to hold great promise in contributing to the basic store of knowledge concerning flow field characteristics in the nonprecipitous regions surrounding severe storms. The Doppler lidar, through its ability to measure clear air returns, augments the conventional Doppler radar system, which is most useful in the precipitous regions of the storm. A brief description of the Doppler lidar severe storm measurement system is provided along with the technique to be used in performing the flow field measurements. The application of the lidar is addressed, and the planned measurement program is outlined.

  11. Development of wireless communication system in real-time internal radiation dose measurement system using magnetic field

    International Nuclear Information System (INIS)

    Sato, Fumihiro; Shinohe, Kohta; Takura, Tetsuya; Matsuki, Hidetoshi; Yamada, Syogo; Sato, Tadakuni

    2009-01-01

    In radiation therapy, excessive radiation occurs because the actual delivered dose to the tumor is unknown. To overcome this problem, we need a system in which the delivered dose is measured inside the body, and the dose data are transmitted from the inside to the outside of the body. In this study, a wireless communication system, using magnetic fields was studied, and an internal circuit for obtaining radiation dose data from an x-ray detector was examined. As a result, a communication distance of 200 mm was obtained. An internal circuit was developed, and a signal transmission experiment was performed using the wireless communication system. As a result, the radiation dose data from an x-ray detector was transmitted over a communication distance of 200 mm, and the delivered dose was determined from the received signal

  12. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    International Nuclear Information System (INIS)

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  13. Charting a course in the 90`s: From field measurement to management information systems

    Energy Technology Data Exchange (ETDEWEB)

    Chudiak, G.J. [Microsoft, Calgary, Alberta (Canada); Yoon, M. [Valmet Automation, Calgary, Alberta (Canada)

    1996-12-31

    What`s new in the pipeline industry in terms of field automation and information systems technology? What impact are these technologies having on the business environment and how will they affect the way companies do business in the future? How can one leverage these technologies to support the demanding business requirements of today and tomorrow? The paper takes a quick look back at the origin of the first field control systems and office automation. Through a chronological progression it arrives at what`s on the leading edge of information technology today. From small scale compressor control systems to large scale pipeline information systems, the authors look at the informational requirements and how systems currently implement the required functionality.

  14. Comparison of two fiber-optical temperature measurement systems in magnetic fields up to 9.4 Tesla.

    Science.gov (United States)

    Buchenberg, Waltraud B; Dadakova, Tetiana; Groebner, Jens; Bock, Michael; Jung, Bernd

    2015-05-01

    Precise temperature measurements in the magnetic field are indispensable for MR safety studies and for temperature calibration during MR-guided thermotherapy. In this work, the interference of two commonly used fiber-optical temperature measurement systems with the static magnetic field B0 was determined. Two fiber-optical temperature measurement systems, a GaAs-semiconductor and a phosphorescent phosphor ceramic, were compared for temperature measurements in B0 . The probes and a glass thermometer for reference were placed in an MR-compatible tube phantom within a water bath. Temperature measurements were carried out at three different MR systems covering static magnetic fields up to B0  = 9.4T, and water temperatures were changed between 25°C and 65°C. The GaAs-probe significantly underestimated absolute temperatures by an amount related to the square of B0 . A maximum difference of ΔT = -4.6°C was seen at 9.4T. No systematic temperature difference was found with the phosphor ceramic probe. For both systems, the measurements were not dependent on the orientation of the sensor to B0 . Temperature measurements with the phosphor ceramic probe are immune to magnetic fields up to 9.4T, whereas the GaAs-probes either require a recalibration inside the MR system or a correction based on the square of B0. © 2014 Wiley Periodicals, Inc.

  15. Self-propelled in-tube shuttle and control system for automated measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Pidcoe, S.V.

    1990-03-01

    A magnetic field alignment gauge is used to measure the field angle as a function of axial position in each of the magnets for the Superconducting Super Collider (SSC). Present measurements are made by manually pushing the through the magnet bore tube and stopping at intervals to record field measurements. Gauge location is controlled through graduation marks and alignment pins on the push rods. Field measurements are recorded on a logging multimeter with tape output. Described is a computerized control system being developed to replace the manual procedure for field alignment measurements. The automated system employs a pneumatic walking device to move the measurement gauge through the bore tube. Movement of the device, called the Self-Propelled In-Tube Shuttle (SPITS), is accomplished through an integral, gas driven, double-acting cylinder. The motion of the SPITS is transferred to the bore tube by means of a pair of controlled, retractable support feet. Control of the SPITS is accomplished through an RS-422 interface from an IBM-compatible computer to a series of solenoid-actuated air valves. Direction of SPITS travel is determined by the air-valve sequence, and is managed through the control software. Precise axial position of the gauge within the magnet is returned to the control system through an optically-encoded digital position transducer attached to the shuttle. Discussed is the performance of the transport device and control system during preliminary testing of the first prototype shuttle. 1 ref., 7 figs

  16. Measurement system for the determination of the individual exposure of low frequency electric and magnetic fields on humans (personal dosimeter)

    International Nuclear Information System (INIS)

    Huber, E.

    1998-07-01

    The current doctorate introduces a free body electronic personal dosimeter for measuring the vector components of ELF-fields. In contrast to a conventional field strength meter not the undisturbed fields are used as a measure, but the inhomogeneous fields near the human body, measured over a long time (dosimetric concept). Based on an analytical and numerical 'dosimetric' model, the field signal together with the frequency information can be transformed for further evaluation in the average inner body current density. Here the current density is considered as a dose relevant measure. According to demands in industrial safety, requirements for a dosimeter are derived and developmental goals defined. These goals are realized by investigations and proficiency testings of electric and magnetic highly sensitive field sensors, the development of low-power electronics with good performance and the implementation of digital data processing on different platforms. The characterization of the influence of possible environmental variables on the realized prototype, the determination of the technical characteristics under various boundary conditions and an error analysis are further important parts of this work. The calibration of the INPEDO (individual personal dosimeter) measurement system in special calibration facilities (three axis Helmholtz coils for the magnetic and parallel plates according to the IEEE833-standard for the electric field) as well as first measurements taken under real operating conditions conclude this report. (orig.) [de

  17. Effects of light guide and magnetic field on the characteristics of the short time measuring system

    International Nuclear Information System (INIS)

    Yamada, Yoshihiro; Ohira, Kyozo

    1977-01-01

    In order to construct the nuclear life-time measurement apparatus with good energy and time resolution, consisting of DuMond type beta-ray spectrometer and plastic scintillator, experimental studies are carried out for the effects of light guide and magnetic field on the time resolution, and for the effects of μ-metal shielding on the energy resolution. It has been found that all these effects could be practically diminished. (auth.)

  18. Initial Results of the SSPX Transient Internal Probe System for Measuring Toroidal Field Profiles

    Science.gov (United States)

    Holcomb, C. T.; Jarboe, T. R.; Mattick, A. T.; Hill, D. N.; McLean, H. S.; Wood, R. D.; Cellamare, V.

    2000-10-01

    Lawrence Livermore National Laboratory, Livermore, CA 94550, USA. The Sustained Spheromak Physics Experiment (SSPX) is using a field profile diagnostic called the Transient Internal Probe (TIP). TIP consists of a verdet-glass bullet that is used to measure the magnetic field by Faraday rotation. This probe is shot through the spheromak by a light gas gun at speeds near 2 km/s. An argon laser is aligned along the path of the probe. The light passes through the probe and is retro-reflected to an ellipsometer that measures the change in polarization angle. The measurement is spatially resolved down to the probes’ 1 cm length to within 15 Gauss. Initial testing results are given. This and future data will be used to determine the field profile for equilibrium reconstruction. TIP can also be used in conjunction with wall probes to map out toroidal mode amplitudes and phases internally. This work was performed under the auspices of US DOE by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  19. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems (ERASMUS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Lawrence, Dale [Univ. of Colorado, Boulder, CO (United States); Palo, Scott [Univ. of Colorado, Boulder, CO (United States); Argrow, Brian [Univ. of Colorado, Boulder, CO (United States); LoDolce, Gabriel [Univ. of Colorado, Boulder, CO (United States); Curry, Nathan [Univ. of Colorado, Boulder, CO (United States); Weibel, Douglas [Univ. of Colorado, Boulder, CO (United States); Finnamore, W [Univ. of Colorado, Boulder, CO (United States); D' Amore, P [Univ. of Colorado, Boulder, CO (United States); Borenstein, Steven [Univ. of Colorado, Boulder, CO (United States); Nichols, Tevis [Univ. of Colorado, Boulder, CO (United States); Elston, Jack [Blackswift Technologies, Boulder, CO (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Al [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Long, Chuck [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Telg, Hagen [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Gao, Rushan [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Hock, T [National Center for Atmospheric Research, Boulder, CO (United States); Bland, Geoff [National Aeronautics and Space Administration (NASA), Washington, DC (United States)

    2017-03-01

    The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) campaign was proposed with two central goals; to obtain scientifically relevant measurements of quantities related to clouds, aerosols, and radiation, including profiles of temperature, humidity, and aerosol particles, the structure of the arctic atmosphere during transitions between clear and cloudy states, measurements that would allow us to evaluate the performance of retrievals from U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility remote sensors in the Arctic atmosphere, and information on the spatial variability of heat and moisture fluxes from the arctic surface; and to demonstrate unmanned aerial system (UAS) capabilities in obtaining measurements relevant to the ARM and ASR programs, particularly for improving our understanding of Arctic clouds and aerosols.

  20. Measurement of radiofrequency fields

    International Nuclear Information System (INIS)

    Leonowich, J.A.

    1992-05-01

    We are literally surrounded by radiofrequency (RFR) and microwave radiation, from both natural and man-made sources. The identification and control of man-made sources of RFR has become a high priority of radiation safety professionals in recent years. For the purposes of this paper, we will consider RFR to cover the frequencies from 3 kHz to 300 MHz, and microwaves from 300 MHz to 300 GHz, and will use the term RFR interchangeably to describe both. Electromagnetic radiation and field below 3 kHz is considered Extremely Low Frequency (ELF) and will not be discussed in this paper. Unlike x- and gamma radiation, RFR is non-ionizing. The energy of any RFR photon is insufficient to produce ionizations in matter. The measurement and control of RFR hazards is therefore fundamentally different from ionizing radiation. The purpose of this paper is to acquaint the reader with the fundamental issues involved in measuring and safely using RFR fields. 23 refs

  1. SU-F-T-577: Comparison of Small Field Dosimetry Measurements in Fields Shaped with Conical Applicators On Two Different Accelerating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Muir, B; McEwen, M [National Research Council, Ottawa, ON (Canada); Belec, J; Vandervoort, E [Ottawa Hospital General Campus, Ottawa, ON (Canada); Christiansen, E [Carleton University, Ottawa, ON (Canada)

    2016-06-15

    Purpose: To investigate small field dosimetry measurements and associated uncertainties when conical applicators are used to shape treatment fields from two different accelerating systems. Methods: Output factor measurements are made in water in beams from the CyberKnife radiosurgery system, which uses conical applicators to shape fields from a (flattening filter-free) 6 MV beam, and in a 6 MV beam from the Elekta Precise linear accelerator (with flattening filter) with BrainLab external conical applicators fitted to shape the field. The measurements use various detectors: (i) an Exradin A16 ion chamber, (ii) two Exradin W1 plastic scintillation detectors, (iii) a Sun Nuclear Edge diode, and (iv) two PTW microDiamond synthetic diamond detectors. Profiles are used for accurate detector positioning and to specify field size (FWHM). Output factor measurements are corrected with detector specific correction factors taken from the literature where available and/or from Monte Carlo simulations using the EGSnrc code system. Results: Differences in measurements of up to 1.7% are observed with a given detector type in the same beam (i.e., intra-detector variability). Corrected results from different detectors in the same beam (inter-detector differences) show deviations up to 3 %. Combining data for all detectors and comparing results from the two accelerators results in a 5.9% maximum difference for the smallest field sizes (FWHM=5.2–5.6 mm), well outside the combined uncertainties (∼1% for the smallest beams) and/or differences among detectors. This suggests that the FWHM of a measured profile is not a good specifier to compare results from different small fields with the same nominal energy. Conclusion: Large differences in results for both intra-detector variability and inter-detector differences suggest potentially high uncertainties in detector-specific correction factors. Differences between the results measured in circular fields from different accelerating

  2. Light-pollution measurement with the Wide-field all-sky image analyzing monitoring system

    Science.gov (United States)

    Vítek, S.

    2017-07-01

    The purpose of this experiment was to measure light pollution in the capital of Czech Republic, Prague. As a measuring instrument is used calibrated consumer level digital single reflex camera with IR cut filter, therefore, the paper reports results of measuring and monitoring of the light pollution in the wavelength range of 390 - 700 nm, which most affects visual range astronomy. Combining frames of different exposure times made with a digital camera coupled with fish-eye lens allow to create high dynamic range images, contain meaningful values, so such a system can provide absolute values of the sky brightness.

  3. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building.

    Science.gov (United States)

    Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral

    2016-07-01

    Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.

  4. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building

    Directory of Open Access Journals (Sweden)

    Young-Jin Cha

    2016-07-01

    Full Text Available Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA, was characterized and modeled as a simplified lumped-mass beam model (SLMM, using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA. Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement.

  5. Assessment of a dynamic reference material for calibration of full-field measurement systems

    Science.gov (United States)

    Hack, Erwin; Feligiotti, Mara; Davighi, Andrea; Whelan, Maurice; Wang, Weizhuo V.; Patterson, Eann A.

    2012-10-01

    For holography and speckle interferometry the calibration of the sensitivity is a must, because illumination and observation directions vary across the field of view. A numerical estimate or a static calibration using rigid body motions is standard, and reference materials exist for static strain calibration. Recently, reference materials for the dynamic calibration of optical instruments of displacement and strain measurement were designed and prototypes were manufactured in the European FP7 project ADVISE. We review the properties of the reference material and the concept of traceability for the field of displacement values by using a calibrated single point transducer. The mode shape is assessed using out-of-plane DSPI, Finite Element Analysis as well as analytic solutions of the plate vibration. We present measurements using stroboscopic DSPI on the reference material under acoustic excitation and compare the measured mode shapes to the ones predicted by FE analysis. We apply different comparison methodologies based on point-by-point deviations and on decomposition of the mode shapes into a set of orthogonal basis functions. The latter method is well suited to assess stability and reproducibility of a mode shape. Finally, the deviations are used to estimate the reference material uncertainty which is an essential parameter for determining the calibration uncertainty. Uncertainty contributions of the DSPI set-up are taken into account. To conclude, the application area and limitations of the reference material are discussed.

  6. Field Measurement-Based System Identification and Dynamic Response Prediction of a Unique MIT Building

    Science.gov (United States)

    Cha, Young-Jin; Trocha, Peter; Büyüköztürk, Oral

    2016-01-01

    Tall buildings are ubiquitous in major cities and house the homes and workplaces of many individuals. However, relatively few studies have been carried out to study the dynamic characteristics of tall buildings based on field measurements. In this paper, the dynamic behavior of the Green Building, a unique 21-story tall structure located on the campus of the Massachusetts Institute of Technology (MIT, Cambridge, MA, USA), was characterized and modeled as a simplified lumped-mass beam model (SLMM), using data from a network of accelerometers. The accelerometer network was used to record structural responses due to ambient vibrations, blast loading, and the October 16th 2012 earthquake near Hollis Center (ME, USA). Spectral and signal coherence analysis of the collected data was used to identify natural frequencies, modes, foundation rocking behavior, and structural asymmetries. A relation between foundation rocking and structural natural frequencies was also found. Natural frequencies and structural acceleration from the field measurements were compared with those predicted by the SLMM which was updated by inverse solving based on advanced multiobjective optimization methods using the measured structural responses and found to have good agreement. PMID:27376303

  7. Developing performance measurement systems as enabling formalization : A longitudinal field study of a logistics department

    NARCIS (Netherlands)

    Wouters, Marc; Wilderom, Celeste P.M.

    2008-01-01

    This paper reports on a developmental approach to performance-measurement systems (PMS). In particular, we look at characteristics of a development process that result in the PMS being perceived by employees as enabling of their work, rather than as primarily a control device for use by senior

  8. Proposal for a cryogenic magnetic field measurement system for SSC dipole magnets

    International Nuclear Information System (INIS)

    Green, M.I.; Hansen, L.

    1991-03-01

    This proposal describes the research and development required, and the subsequent fabrication of, a system capable of making integrated magnetic multipole measurements of cryogenic 40-mm-bore SSC dipole magnets utilizing a cryogenic probe. Our experience and some preliminary studies indicate that it is highly unlikely that a 16-meter-long probe can be fabricated that will have a twist below several milliradians at cryogenic temperatures. We would anticipate a twist of several milliradians just as a result of cooldown stresses. Consequently, this proposal describes a segmented 16-meter-long probe, for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system will be described. The duration of an integral measurement at one current is expected to be under 10 seconds. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1-meter models of SSC magnets with a cryogenic probe. It should be noted that the expansion of the dipole bore from 40 to 50 mm may make a warm-finger device practical at a cost of approximately one quarter of the cryogenic probe. A warm quadrupole measurement system can be based upon the same principles. 5 refs., 9 figs., 1 tab

  9. Measurements and Simulations of Ionization Chamber Signals in Mixed Radiation Fields for the LHC BLM System

    CERN Document Server

    Dehning, B; Ferioli, G; Holzer, EB; Stockner, M

    2006-01-01

    The LHC beam loss monitoring (BLM) system must prevent the super conducting magnets from quenching and protect the machine components from damage. The main monitor type is an ionization chamber. About 4000 of them will be installed around the ring. The lost beam particles initiate hadronic showers through the magnets, which are measured by the monitors installed outside of the cryostat around each quadrupole magnet. They probe the far transverse tail of the hadronic shower. The specification for the BLM system includes a factor of two absolute precision on the prediction of the quench levels. To reach this accuracy a number of simulations are being combined to calibrate the monitor signals. To validate the monitor calibration the simulations are compared with test measurements. This paper will focus on the simulated prediction of the development of the hadronic shower tails and the signal response of ionization chambers to various particle types and energies. Test measurements have been performed at CERN and ...

  10. Preliminary study of an integral harmonic analysis magnetic field measurement system for long SSC magnets

    International Nuclear Information System (INIS)

    Green, M.I.

    1991-04-01

    We described the research and development required to design and build a prototype system capable of making integrated magnetic multipole measurements of warm and cryogenic 50 mm bore SSC dipole and quadrupole magnets utilizing a warm probe in a warm finger. Our experience and some preliminary studies indicate that it is highly unlikely that a 16 meter long probe can be fabricated that will have a twist below several milliradians at any temperature. Consequently we describe a segmented 16 meter long probe for which we intend to calibrate the phase of each segment to within 0.1 milliradians. The data for all segments will be acquired simultaneously, and integrated data will be generated from the vector sums of the individual segments. The calibration techniques and instrumentation required to implement this system are described. The duration of an integral measurement at one current is less than ten seconds, which is three orders of magnitude shorter than that required by the mole technique presently being used. The system is based on an extrapolation of the techniques used at LBL to measure cryogenic 1 meter models of SSC magnets with a cryogenic probe. 3 refs., 3 figs

  11. Decomposition of Composite Electric Field in a Three-Phase D-Dot Voltage Transducer Measuring System

    Directory of Open Access Journals (Sweden)

    Xueqi Hu

    2016-10-01

    Full Text Available In line with the wider application of non-contact voltage transducers in the engineering field, transducers are required to have better performance for different measuring environments. In the present study, the D-dot voltage transducer is further improved based on previous research in order to meet the requirements for long-distance measurement of electric transmission lines. When measuring three-phase electric transmission lines, problems such as synchronous data collection and composite electric field need to be resolved. A decomposition method is proposed with respect to the superimposed electric field generated between neighboring phases. The charge simulation method is utilized to deduce the decomposition equation of the composite electric field and the validity of the proposed method is verified by simulation calculation software. With the deduced equation as the algorithm foundation, this paper improves hardware circuits, establishes a measuring system and constructs an experimental platform for examination. Under experimental conditions, a 10 kV electric transmission line was tested for steady-state errors, and the measuring results of the transducer and the high-voltage detection head were compared. Ansoft Maxwell Stimulation Software was adopted to obtain the electric field intensity in different positions under transmission lines; its values and the measuring values of the transducer were also compared. Experimental results show that the three-phase transducer is characterized by a relatively good synchronization for data measurement, measuring results with high precision, and an error ratio within a prescribed limit. Therefore, the proposed three-phase transducer can be broadly applied and popularized in the engineering field.

  12. Tomography system for measurement of gas properties in combustion flow field

    Directory of Open Access Journals (Sweden)

    Junling SONG

    2017-10-01

    Full Text Available This paper describes a self-designed fiber-coupled tomography system and its application in combustion diagnostics. The tomographic technique, which combines tunable diode laser spectroscopy and algebraic reconstruction technique, enables the simultaneous reconstruction of temperature and gas concentration with both spatial and temporal resolutions. The system measures a maximum diameter of 35 cm in a circular area with a minimum spatial resolution of 1 mm × 1 mm and temporal response of up to 1 kHz. Simulations validate the effects of the beam arrangement and discrete grid on reconstruction accuracy, and give the optimal beam arrangements. Experiments are made to demonstrate the tomography method, and systems are constructed in laboratory and on engineering test benches.

  13. Development of measurement system for radiation effect on static random access memory based field programmable gate array

    International Nuclear Information System (INIS)

    Yao Zhibin; He Baoping; Zhang Fengqi; Guo Hongxia; Luo Yinhong; Wang Yuanming; Zhang Keying

    2009-01-01

    Based on the detailed investigation in field programmable gate array(FPGA) radiation effects theory, a measurement system for radiation effects on static random access memory(SRAM)-based FPGA was developed. The testing principle of internal memory, function and power current was introduced. The hardware and software implement means of system were presented. Some important parameters for radiation effects on SRAM-based FPGA, such as configuration RAM upset section, block RAM upset section, function fault section and single event latchup section can be gained with this system. The transmission distance of the system can be over 50 m and the maximum number of tested gates can reach one million. (authors)

  14. Assessment of cover systems at the Grand Junction, Colorado, uranium mill tailings pile: 1987 field measurements

    International Nuclear Information System (INIS)

    Gee, G.W.; Campbell, M.D.; Freeman, H.D.; Cline, J.F.

    1989-02-01

    Four Pacific Northwest Laboratory (PNL) scientists and a technician conducted an onsite evaluation of radon gas exhalation, water content profiles, and plant and animal intrusion for a series of cover systems located on the uranium mill tailings pile at Grand Junction, Colorado. These six plots were sampled extensively down to the radon control layer (e.g., asphalt or wet clay) for soil moisture content and permeability. Radon gas emission through the surface was measured. Soil samples were collected and analyzed in the lab for particle-size distribution, particle density, bulk density, and ambient water content. Prairie dog burrows were excavated to discover the extent to which they penetrated the barriers. Plant type, density, and cover characteristics were measured

  15. Scalar field as an intrinsic time measure in coupled dynamical matter-geometry systems. II. Electrically charged gravitational collapse

    Science.gov (United States)

    Nakonieczna, Anna; Yeom, Dong-han

    2016-05-01

    Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which measures the amount of electric charge within a sphere of a given radius can be used to quantify time nearby the singularity in the dynamical spacetime part, in which the apparent horizon surrounding the singularity is spacelike. Using them in this respect in the asymptotic spacetime region is possible only when both fields are present in the system and, moreover, they are coupled to each other. The only nonzero component of the Maxwell field four-potential cannot be used to quantify time during the considered process in the neighborhood of the whole central singularity. None of the investigated dynamical quantities is a good candidate for measuring time nearby the Cauchy horizon, which is also singular due to the mass inflation phenomenon.

  16. Wake field measurements

    International Nuclear Information System (INIS)

    Palumbo, L.

    1989-01-01

    In this paper the concept of Wakefields and Machine Impedance are introduced. Several measurements technique of these quantities either in the laboratory before installation or from beam observation are presented

  17. Field testing of prototype systems for the non-destructive measurement of the neutral temperature of railroad tracks

    Science.gov (United States)

    Phillips, Robert; Lanza di Scalea, Francesco; Nucera, Claudio; Fateh, Mahmood; Choros, John

    2014-03-01

    In both high speed and freight rail systems, the modern construction method is Continuous Welded Rail (CWR). The purpose of the CWR method is to eliminate joints in order to reduce the maintenance costs for both the rails and the rolling stock. However the elimination of the joints increases the risk of rail breakage in cold weather and buckling in hot weather. In order to predict the temperature at which the rail will break or buckle, it is critical to have knowledge of the temperature at which the rail is stress free, namely, the Rail Neutral Temperature (Rail-NT).The University of California at San Diego has developed an innovative technique based on non-linear ultrasonic guided waves, under FRA research and development grants for the non-destructive measurement of the neutral temperature of railroad tracks. Through the licensing of this technology from the UCSD and under the sponsorship of the FRA Office of Research and Development, a field deployable prototype system has been developed and recently field tested at cooperating railroad properties. Three prototype systems have been deployed to the Union Pacific (UP), Burlington Northern Santa Fe (BNSF), and AMTRAK railroads for field testing and related data acquisition for a comprehensive evaluation of the system, with respect to both performance and economy of operation. The results from these tests have been very encouraging. Based on the lessons learned from these field tests and the feedback from the railroads, it is planned develop a compact 2nd generation Rail-NT system to foster deployment and furtherance of FRA R&D grant purpose of potential contribution to the agency mission of US railroad safety. In this paper, the results of the field tests with the railroads in summer of 2013 are reported.

  18. Fast charge digitizer and digital data acquisition system for measuring time varying radiation fields

    International Nuclear Information System (INIS)

    Lee, T.R.; Schneider, R.H.; Wyatt, J.L.

    1976-01-01

    A radiation measuring instrument including a fast charge digitizer and a digital data acquisition system has been developed. The fast charge digitizer includes a charge integrator connected to a conventional ionization chamber which generates an output current in proportion to ionizing radiation exposure rate. The charge integrator has an output connected to a comparator which is switched from a high state to a low state when the output of the integrator goes above the comparator threshold. The comparator output is connected to a bistable multivibrator consisting of two non-retriggerable one shot multivibrators connected in a feedback configuration. As long as the comparator output is in the low state, the bistable multivibrator generates a train of pluses which are fed back through an analog switch and a high megohm resistance to the input of the integrator. This feedback is negative and has the effect of removing the charge from the integrating capacitor, thus causing the integrator output eventually to drop below the comparator threshold. When this occurs the comparator output returns to the high state and the bistable multivibrator ceases to generate output pulses. An output terminal is connected between the bistable multivibrator and the analog switch and feeds a train of pulses proportional to the amount of charge generated by the multivibrator output voltage and the high megohm resistance to a counter connected to a random access memory device. The output pulses are counted for a predetermined time and then stored in one of the data locations of the random access memory device. The counter is then reset and a further predetermined sample period is counted. This continues until all of the locations in the random access memory device are filled and then the data is read from the random access memory device

  19. Real time magnetic field and flux measurements for tokamak control using a multi-core PCI Express system

    International Nuclear Information System (INIS)

    Giannone, L.; Schneider, W.; McCarthy, P.J.; Sips, A.C.C.; Treutterer, W.; Behler, K.; Eich, T.; Fuchs, J.C.; Hicks, N.; Kallenbach, A.; Maraschek, M.; Mlynek, A.; Neu, G.; Pautasso, G.; Raupp, G.; Reich, M.; Schuhbeck, K.H.; Stober, J.; Volpe, F.; Zehetbauer, T.

    2009-01-01

    The existing real time system for the position and shape control in ASDEX Upgrade has been extended to calculate magnetic flux surfaces in real time using a multi-core PCI Express system running LabVIEW RT. The availability of reflective memory for LabVIEW RT will allow this system to be connected to the control system and other diagnostics in a multi-platform real time network. The measured response of each magnetic probe to the individual poloidal field coil currents in the absence of plasma current is compared to the calculated value. Prior to a tokamak discharge this comparison can be used to check for failure of the magnetic probe, flux loop or integrator.

  20. Identification of damage in plates using full-field measurement with a continuously scanning laser Doppler vibrometer system

    Science.gov (United States)

    Chen, Da-Ming; Xu, Y. F.; Zhu, W. D.

    2018-05-01

    An effective and reliable damage identification method for plates with a continuously scanning laser Doppler vibrometer (CSLDV) system is proposed. A new constant-speed scan algorithm is proposed to create a two-dimensional (2D) scan trajectory and automatically scan a whole plate surface. Full-field measurement of the plate can be achieved by applying the algorithm to the CSLDV system. Based on the new scan algorithm, the demodulation method is extended from one dimension for beams to two dimensions for plates to obtain a full-field operating deflection shape (ODS) of the plate from velocity response measured by the CSLDV system. The full-field ODS of an associated undamaged plate is obtained by using polynomials with proper orders to fit the corresponding full-field ODS from the demodulation method. A curvature damage index (CDI) using differences between curvatures of ODSs (CODSs) associated with ODSs that are obtained by the demodulation method and the polynomial fit is proposed to identify damage. An auxiliary CDI obtained by averaging CDIs at different excitation frequencies is defined to further assist damage identification. An experiment of an aluminum plate with damage in the form of 10.5% thickness reduction in a damage area of 0.86% of the whole scan area is conducted to investigate the proposed method. Six frequencies close to natural frequencies of the plate and one randomly selected frequency are used as sinusoidal excitation frequencies. Two 2D scan trajectories, i.e., a horizontally moving 2D scan trajectory and a vertically moving 2D scan trajectory, are used to obtain ODSs, CODSs, and CDIs of the plate. The damage is successfully identified near areas with consistently high values of CDIs at different excitation frequencies along the two 2D scan trajectories; the damage area is also identified by auxiliary CDIs.

  1. FIELD COMPARISONS OF DUAL SMPS-APS SYSTEMS TO MEASURE INDOOR-OUTDOOR PARTICLE SIZE DISTRIBUTIONS

    Science.gov (United States)

    Simultaneous measurements of particle size distributions across multiple locations can provide critical information to accurately assess human exposure to particles. These data are very useful to describe indoor-outdoor particle relationships, outdoor particle penetration thro...

  2. Validation of the Five-Phase Method for Simulating Complex Fenestration Systems with Radiance against Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geisler-Moroder, David [Bartenbach GmbH, Aldrans (Austria); Lee, Eleanor S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ward, Gregory J. [Anyhere Software, Albany, NY (United States)

    2016-08-29

    The Five-Phase Method (5-pm) for simulating complex fenestration systems with Radiance is validated against field measurements. The capability of the method to predict workplane illuminances, vertical sensor illuminances, and glare indices derived from captured and rendered high dynamic range (HDR) images is investigated. To be able to accurately represent the direct sun part of the daylight not only in sensor point simulations, but also in renderings of interior scenes, the 5-pm calculation procedure was extended. The validation shows that the 5-pm is superior to the Three-Phase Method for predicting horizontal and vertical illuminance sensor values as well as glare indices derived from rendered images. Even with input data from global and diffuse horizontal irradiance measurements only, daylight glare probability (DGP) values can be predicted within 10% error of measured values for most situations.

  3. ZEPHYR - poloidal field system

    International Nuclear Information System (INIS)

    Seidel, U.

    1982-04-01

    The basics of the poloidal field system of the ZEPHYR experiment are considered. From the physical data the requirements for the poloidal field are derived. Hence an appropriate coil configuration consisting of coil locations and corresponding currents is obtained. A suitable electrical circuit feeding the coils is described. A preliminary assessment of the dynamic control of the poloidal field system is given. (orig.)

  4. Conversion of the magnetic field measured in three components on the magnetic sensor body's random coordinate system into three components on geographical coordinate system through quaternion rotation.

    Science.gov (United States)

    LIM, M.; PARK, Y.; Jung, H.; SHIN, Y.; Rim, H.; PARK, C.

    2017-12-01

    To measure all components of a physical property, for example the magnetic field, is more useful than to measure its magnitude only in interpretation and application thereafter. To convert the physical property measured in 3 components on a random coordinate system, for example on moving magnetic sensor body's coordinate system, into 3 components on a fixed coordinate system, for example on geographical coordinate system, by the rotations of coordinate system around Euler angles for example, we should have the attitude values of the sensor body in time series, which could be acquired by an INS-GNSS system of which the axes are installed coincident with those of the sensor body. But if we want to install some magnetic sensors in array at sea floor but without attitude acquisition facility of the magnetic sensors and to monitor the variation of magnetic fields in time, we should have also some way to estimate the relation between the geographical coordinate system and each sensor body's coordinate system by comparison of the vectors only measured on both coordinate systems on the assumption that the directions of the measured magnetic field on both coordinate systems are the same. For that estimation, we have at least 3 ways. The first one is to calculate 3 Euler angles phi, theta, psi from the equation Vgeograph = Rx(phi) Ry(theta) Rz(psi) Vrandom, where Vgeograph is the vector on geographical coordinate system etc. and Rx(phi) is the rotation matrix around the x axis by the angle phi etc. The second one is to calculate the difference of inclination and declination between the 2 vectors on spherical coordinate system. The third one, used by us for this study, is to calculate the angle of rotation along a great circle around the rotation axis, and the direction of the rotation axis. We installed no. 1 and no. 2 FVM-400 fluxgate magnetometers in array near Cheongyang Geomagnetic Observatory (IAGA code CYG) and acquired time series of magnetic fields for CYG and for

  5. A New Approach to Isolating External Magnetic Field Components in Spacecraft Measurements of the Earth's Magnetic Field Using Global Positioning System observables

    Science.gov (United States)

    Raymond, C.; Hajj, G.

    1994-01-01

    We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.

  6. A portable system for the measurement of sediment OSL in the field

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Wintle, A.G.

    1994-01-01

    regeneration provided by cold-running gas discharge lamps. The modular form means that the mobile system can be built up into a full luminescence excitation/emission spectrometer useful in the wavelength range 380-1000 nm, thus allowing both quartz and feldspar to be analysed. The characteristics...

  7. Measurements of magnetic field sources in schools

    International Nuclear Information System (INIS)

    Johnson, G.B.

    1992-01-01

    The Electrical Systems Division of the Electric Power Research Institute (EPRI) has initiated several research projects to investigate magnetic field levels, their characteristics, and their sources. This paper describes measurements of magnetic field sources in schools. Magnetic field measurements were made at four schools in the service areas of two utility companies. Magnetic field measurements included profiles of the magnetic field versus distance near power lines, around the perimeter of the school buildings, and at several locations within each school. Twenty-four hour measurements were also made to record the temporal variation of the magnetic field at several locations at each school. The instrumentation, measurement techniques, and magnetic field sources identified are discussed

  8. Programming the control of magnetic field measurements

    International Nuclear Information System (INIS)

    David, L.

    1998-01-01

    This paper gives a short review concerning the new NMR probe measurement control system. Then it presents the new program 'CYCLOCHAMP' attached to the magnetic field measurement which also allows to cycle the magnetic field inside the cyclotrons and to equilibrate it among the SSC sectors. (authors)

  9. Realisation of a ultra-high vacuum system and technique development of microscopical emitters preparation in silicium. First measurements of field emission current and field photoemission

    International Nuclear Information System (INIS)

    El Manouni, A.

    1990-12-01

    The development of research in the domain of photocathode (electron sources) illuminated by laser light to produce intense multiple bunches of electrons in short time is needed by many applications as linear collider e + e - , free electron laser, lasertron, etc... In this way, after a study of field emission, of photoemission and of photofield emission, we prepared microscopical emitters in silicium heavy and weakly doped a boron using a technique of microlithography. Then, we realized a system of ultra-high vacuum of studying property of emission from photocathodes realized. The experiment results obtained in field emission and photofield emission have shown that a behaviour unexpected for P-silicium tips array compared to P + -silicon tips array. With P-type silicon, a quantum yield of 21 percent has been measured for laser power of 140 mW and for applied field of 1.125 x 10 7 V/m and an instantaneous response to laser light beam has been observed. It has been noted that presence of oxyde at the surface of photocathode limits extensively the emission current. The fluctuations of emission current are due to quality of vacuum [fr

  10. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  11. Field comparison of an eddy accumulation and an aerodynamic-gradient system for measuring pesticide volatilization fluxes

    Science.gov (United States)

    Majewski, M.; Desjardina, R.; Rochette, P.; Pattey, E.; Selber, J.; Glotfelty, D.

    1993-01-01

    The field experiment reported here applied the relaxed eddy accumulation (REA) technique to the measurement of triallate (TA) and trifluralin (TF) volatilization from fallow soil. A critical analysis of the REA system used in this experiment is done, and the fluxes are compared to those obtained by the aerodynamic-gradient (AG) technique. The measured cumulative volatilization losses, corrected for the effective upwind source area (footprint), for the AG system were higher than with the REA system. The differences between the methods over the first 5 days of the experiment were 27 and 13% for TA and TF, respectively. A mass balance based on the amount of parent compounds volatilized from soil during the first 5 days of the experiment showed a 110 and 70% and a 79 and 61% accountability for triallate and trifluralin by the AG and REA methods, respectively. These results also show that the non-footprint-corrected AG flux values underestimated the volatilization flux by approximately 16%. The footprint correction model used in this experiment does not presently have the capability of accounting for changes in atmospheric stability. However, these values still provide an indication of the most likely upwind area affecting the evaporative flux estimations. The soil half-lives for triallate and trifluralin were 9.8 and 7.0 days, respectively. ?? 1992 American Chemical Society.

  12. Measurements of magnetic field alignment

    International Nuclear Information System (INIS)

    Kuchnir, M.; Schmidt, E.E.

    1987-01-01

    The procedure for installing Superconducting Super Collider (SSC) dipoles in their respective cryostats involves aligning the average direction of their field with the vertical to an accuracy of 0.5 mrad. The equipment developed for carrying on these measurements is described and the measurements performed on the first few prototypes SSC magnets are presented. The field angle as a function of position in these 16.6 m long magnets is a characteristic of the individual magnet with possible feedback information to its manufacturing procedure. A comparison of this vertical alignment characteristic with a magnetic field intensity (by NMR) characteristic for one of the prototypes is also presented. 5 refs., 7 figs

  13. Dialogue scanning measuring systems

    International Nuclear Information System (INIS)

    Borodyuk, V.P.; Shkundenkov, V.N.

    1985-01-01

    The main developments of scanning measuring systems intended for mass precision processsing of films in nuclear physics problems and in related fields are reviewed. A special attention is paid to the problem of creation of dialogue systems which permit to simlify the development of control computer software

  14. MAGNETIC FIELD MEASUREMENTS FOR FAST-CHANGING MAGNETIC FIELDS

    International Nuclear Information System (INIS)

    2004-01-01

    Several recent applications for fast ramped magnets have been found that require rapid measurement of the field quality during the ramp. (In one instance, accelerator dipoles will be ramped at 1 T/sec, with measurements needed to the accuracy typically required for accelerators.) We have built and tested a new type of magnetic field measuring system to meet this need. The system consists of 16 stationary pickup windings mounted on a cylinder. The signals induced in the windings in a changing magnetic field are sampled and analyzed to obtain the field harmonics. To minimize costs, printed circuit boards were used for the pickup windings and a combination of amplifiers and ADPs used for the voltage readout system. New software was developed for the analysis. Magnetic field measurements of a model dipole developed for the SIS200 accelerator at GSI are presented. The measurements are needed to insure that eddy currents induced by the fast ramps do not impact the field quality needed for successful accelerator operation

  15. Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors: Automated measurement development for full field digital mammography

    International Nuclear Information System (INIS)

    Fowler, E. E.; Sellers, T. A.; Lu, B.; Heine, J. J.

    2013-01-01

    Purpose: The Breast Imaging Reporting and Data System (BI-RADS) breast composition descriptors are used for standardized mammographic reporting and are assessed visually. This reporting is clinically relevant because breast composition can impact mammographic sensitivity and is a breast cancer risk factor. New techniques are presented and evaluated for generating automated BI-RADS breast composition descriptors using both raw and calibrated full field digital mammography (FFDM) image data.Methods: A matched case-control dataset with FFDM images was used to develop three automated measures for the BI-RADS breast composition descriptors. Histograms of each calibrated mammogram in the percent glandular (pg) representation were processed to create the new BR pg measure. Two previously validated measures of breast density derived from calibrated and raw mammograms were converted to the new BR vc and BR vr measures, respectively. These three measures were compared with the radiologist-reported BI-RADS compositions assessments from the patient records. The authors used two optimization strategies with differential evolution to create these measures: method-1 used breast cancer status; and method-2 matched the reported BI-RADS descriptors. Weighted kappa (κ) analysis was used to assess the agreement between the new measures and the reported measures. Each measure's association with breast cancer was evaluated with odds ratios (ORs) adjusted for body mass index, breast area, and menopausal status. ORs were estimated as per unit increase with 95% confidence intervals.Results: The three BI-RADS measures generated by method-1 had κ between 0.25–0.34. These measures were significantly associated with breast cancer status in the adjusted models: (a) OR = 1.87 (1.34, 2.59) for BR pg ; (b) OR = 1.93 (1.36, 2.74) for BR vc ; and (c) OR = 1.37 (1.05, 1.80) for BR vr . The measures generated by method-2 had κ between 0.42–0.45. Two of these measures were significantly

  16. DEVELOPMENT OF CONCEPT OF HARDWARE-SOFTWARE COMPLEX OF MODULAR DESIGN FOR DETERMINATION OF ANTENNA SYSTEMS׳ CHARACTERISTICS BASED ON MEASUREMENTS IN THE NEAR FIELD

    Directory of Open Access Journals (Sweden)

    A. G. Buday

    2017-01-01

    Full Text Available Measuring the amplitude-phase distribution of the radiation field of complex antenna systems on a certain surface close to the radiating aperture allows solving the problem of reconstructing the free-space diagram in the far field and also helps in determining the influence of various structural elements and defects of radiating surfaces on formation of directional diagram. The purpose of this work was to develop a universal hardware-software complex of a modular design aimed for determining the characteristics of wide range of antenna systems in respect of measurements of the amplitude-phase distribution of the radiation field in the near zone.The equations that connect the structure of radiation fields of the antenna system at various distances from it in planar, cylindrical and spherical coordinate systems as well as structural diagrams of the hardware part of measuring complexes have been analyzed.As a result, the concept of constructing a universal hardware-software complex for measuring the radiation field of various types of antenna systems with any type of measurement surface for solving a wide range of applied problems has been developed. A modular structure of hardware and software has been proposed; it allows reconfiguring the complex rapidly in order to measure the characteristics of any particular antenna system at all stages of product development and testing, and also makes the complex economically accessible even for small enterprises and organizations.

  17. Field measurement of dipole magnets for TARN

    International Nuclear Information System (INIS)

    Hori, T.; Noda, A.; Hattori, T.; Fujino, T.; Yoshizawa, M.

    1980-05-01

    Eight dipole magnets of window-frame type with zero field gradient have been fabricated for TARN. Various characteristics of the field were examined by a measuring system with a Hall and an NMR probes. The accuracy of the measurement was better than 1 x 10 -4 at the maximum field strength of --9 kG, and the uniformity of the field in the radial direction was better than +-2 x 10 -4 over the whole useful aperture. The deviations both of the field strengths and of the effective lengths among the eight magnets are smaller than +-2 x 10 -3 . The sextupole component of the field and the variation of the effective length over the beam orbits contribute to chromaticities of the ring as the amount of -1.59 and 0.93 in the horizontal and vertical directions, respectively. (author)

  18. Methodological Comparison between a Novel Automatic Sampling System for Gas Chromatography versus Photoacoustic Spectroscopy for Measuring Greenhouse Gas Emissions under Field Conditions

    Directory of Open Access Journals (Sweden)

    Alexander J. Schmithausen

    2016-10-01

    Full Text Available Trace gases such as nitrous oxide (N2O, methane (CH4, and carbon dioxide (CO2 are climate-related gases, and their emissions from agricultural livestock barns are not negligible. Conventional measurement systems in the field (Fourier transform infrared spectroscopy (FTIR; photoacoustic system (PAS are not sufficiently sensitive to N2O. Laser-based measurement systems are highly accurate, but they are very expensive to purchase and maintain. One cost-effective alternative is gas chromatography (GC with electron capture detection (ECD, but this is not suitable for field applications due to radiation. Measuring samples collected automatically under field conditions in the laboratory at a subsequent time presents many challenges. This study presents a sampling designed to promote laboratory analysis of N2O concentrations sampled under field conditions. Analyses were carried out using PAS in the field (online system and GC in the laboratory (offline system. Both measurement systems showed a good correlation for CH4 and CO2 concentrations. Measured N2O concentrations were near the detection limit for PAS. GC achieved more reliable results for N2O in very low concentration ranges.

  19. Field measuring probe for SSC magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-01-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage

  20. Use of novel fibre-coupled radioluminescence and RADPOS dosimetry systems for total scatter factor measurements in small fields

    DEFF Research Database (Denmark)

    Ploquin, N.; Kertzscher, Gustavo; Vandervoort, E.

    2015-01-01

    A dosimetry system based on Al2O3:C radioluminescence (RL), and RADPOS, a novel 4D dosimetry system using microMOSFETs, were used to measure total scatter factors, (Sc,p)fclindet, for the CyberKnife robotic radiosugery system. New Monte Carlo calculated correction factors are presented and applied...

  1. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  2. Pulsed critical current measurements of NbTi in perpendicular and parallel pulsed magnetic fields using the new Cryo-BI-Pulse System

    International Nuclear Information System (INIS)

    Stehr, V; Tan, K S; Hopkins, S C; Glowacki, B A; Keyser, A De; Bockstal, L Van; Deschagt, J

    2006-01-01

    Rapid transport current versus high magnetic field characterisation of high-irreversibility type II superconductors is important to maximise their critical parameters. HTS conductors are already used to produce insert coils that increase the fields of conventional magnets made from NbTi (Nb, Ta) 3 Sn and Nb 3 Al wires. There is fundamental interest in the study of HTS tapes and wires in magnetic fields higher than 21T, the current limit of superconducting magnets producing a DC field. Such fields can be obtained by using pulse techniques. High critical currents cannot be routinely measured with a continuous current applied at liquid helium, hydrogen or neon temperatures because of thermal and mechanical effects. A newly developed pulsed magnetic field and pulsed current system which allows rapid J c (B, T) measurements of the whole range of superconducting materials was tested with a multifilamentary NbTi wire in perpendicular and parallel orientations

  3. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    Directory of Open Access Journals (Sweden)

    Bo Zhao

    2015-09-01

    Full Text Available This paper presents the design and realization of a three degrees of freedom (DOFs displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.

  4. A poloidal field measurement technique

    International Nuclear Information System (INIS)

    Jobes, F.C.

    1989-07-01

    The poloidal field of a tokamak can be determined by observing the light emitted by He + ions injected into the plasma by a perpendicular He 0 beam. These ions will orbit in small circles located where the neutral atom became ionized, and they will remain there for a few microseconds. During this time, some of these ions will also emit light at various spectral lines. The observed spectrum of any of these lines will have a peculiar and very wide shape, and it will be offset (Doppler shifted) with respect to the natural line location. The location and width of the spectral pattern provide independent information about the components of the poloidal field which are parallel and perpendicular to the beam velocity, and this information is local to the point where the light is emitted. For a horizontal beam, these components are b x and b y , respectively. The difference in Doppler shift between two measurement points above one another (at the top and bottom of the beam) is directly proportional to δb x , which in turn is proportional to the transform on that flux surface. Thus, this technique provides a means to measure directly local values of q(r). Simulation studies indicate that accurate measurements can be made in milliseconds. 6 refs., 8 figs

  5. Two-processor automatized system to control fast measurements of the magnetic field index of the JINR 10 GeV proton synchrotron

    International Nuclear Information System (INIS)

    Chernykh, E.V.

    1981-01-01

    A two-processor system comprizing a hard-wired module and ES-1010 computer to control measurements of the magnetic field index of the JINR 10 GeV proton synchrotron is described. The system comprises the control module, a computer interface and a parallel branch driver residing in CAMAC system crate. The control module controls analogue multiplexer and analogue-to-digital converter through their front panels and writes down the information into a buffer memory module through the CAMAC highway. The computer controls the system, reads the information into core memory, writes down it on a magnetic tape, processes it and outputs n=f(r) plots on TV monitor and printer. The system provides the measurement up to 100 points during a magnetic field rise and minimal time of measurement 50 μs [ru

  6. Evaluation of geomagnetic field models using magnetometer measurements for satellite attitude determination system at low earth orbits: Case studies

    Science.gov (United States)

    Cilden-Guler, Demet; Kaymaz, Zerefsan; Hajiyev, Chingiz

    2018-01-01

    In this study, different geomagnetic field models are compared in order to study the errors resulting from the representation of magnetic fields that affect the satellite attitude system. For this purpose, we used magnetometer data from two Low Earth Orbit (LEO) spacecraft and the geomagnetic models IGRF-12 (Thébault et al., 2015) and T89 (Tsyganenko, 1989) models to study the differences between the magnetic field components, strength and the angle between the predicted and observed vector magnetic fields. The comparisons were made during geomagnetically active and quiet days to see the effects of the geomagnetic storms and sub-storms on the predicted and observed magnetic fields and angles. The angles, in turn, are used to estimate the spacecraft attitude and hence, the differences between model and observations as well as between two models become important to determine and reduce the errors associated with the models under different space environment conditions. We show that the models differ from the observations even during the geomagnetically quiet times but the associated errors during the geomagnetically active times increase. We find that the T89 model gives closer predictions to the observations, especially during active times and the errors are smaller compared to the IGRF-12 model. The magnitude of the error in the angle under both environmental conditions was found to be less than 1°. For the first time, the geomagnetic models were used to address the effects of the near Earth space environment on the satellite attitude.

  7. Development of high-resolution two-dimensional magnetic field measurement system by use of printed-circuit technology

    Science.gov (United States)

    Akimitsu, Moe; Qinghong, Cao; Sawada, Asuka; Hatano, Hironori; Tanabe, Hiroshi; Ono, Yasushi; TS-Group Team

    2017-10-01

    We have developed a new-types of high-resolution magnetic probe array for our new magnetic reconnection experiments: TS-3U (ST, FRC: R =0.2m, 2017-) and TS-4U (ST, FRC: R =0.5m, 2018-), using the advanced printed-circuit technology. They are equipped with all three-components of magnetic pick-up coils whose size is 1-5mm x 3mm. Each coil is composed of two-sided coil pattern with line width of 0.05mm. We can install two or three printed arrays in a single glass (ceramic) tube for two or three component measurements. Based on this new probe technique, we started high-resolution and high-accuracy measurement of the current sheet thickness and studied its plasma parameter dependence. We found that the thickness of current sheet increases inversely with the guide toroidal field. It is probably determined by the ion gyroradius in agreement with the particle simulation by Horiuchi etc. While the reconnection speed is steady under low guide field condition, it is observed to oscillate in the specific range of guide field, suggesting transition from the quasi-steady reconnection to the intermittent reconnection. Cause and mechanism for intermittent reconnection will be discussed using the current sheet dissipation and dynamic balance between plasma inflow and outflow. This work supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.

  8. Calibration and uncertainty in electromagnetic fields measuring methods

    International Nuclear Information System (INIS)

    Anglesio, L.; Crotti, G.; Borsero, M.; Vizio, G.

    1999-01-01

    Calibration and reliability in electromagnetic field measuring methods are assured by calibration of measuring instruments. In this work are illustrated systems for generation of electromagnetic fields at low and high frequency, calibration standard and accuracy [it

  9. Creation of subsonic macro-and microjets facilities and automated measuring system (AMS-2) for the spatial - temporal hot - wire anemometric visualization of jet flow field

    Science.gov (United States)

    Sorokin, A. M.; Grek, G. R.; Gilev, V. M.; Zverkov, I. D.

    2017-10-01

    Macro-and microjets facilities for generation of the round and plane subsonic jets are designed and fabricated. Automated measuring system (AMS - 2) for the spatial - temporal hot - wire anemometric visualization of jet flow field is designed and fabricated. Coordinate device and unit of the measurement, collecting, storage and processing of hot - wire anemometric information were integrated in the AMS. Coordinate device is intended for precision movement of the hot - wire probe in jet flow field according to the computer program. At the same time accuracy of the hot - wire probe movement is 5 microns on all three coordinates (x, y, z). Unit of measurement, collecting, storage and processing of hot - wire anemometric information is intended for the hot - wire anemometric measurement of the jet flow field parameters (registration of the mean - U and fluctuation - u' characteristics of jet flow velocity), their accumulation and preservation in the computer memory, and also carries out their processing according to certain programms.

  10. Visualization of frequency-modulated electric field based on photonic frequency tracking in asynchronous electro-optic measurement system

    Science.gov (United States)

    Hisatake, Shintaro; Yamaguchi, Koki; Uchida, Hirohisa; Tojyo, Makoto; Oikawa, Yoichi; Miyaji, Kunio; Nagatsuma, Tadao

    2018-04-01

    We propose a new asynchronous measurement system to visualize the amplitude and phase distribution of a frequency-modulated electromagnetic wave. The system consists of three parts: a nonpolarimetric electro-optic frequency down-conversion part, a phase-noise-canceling part, and a frequency-tracking part. The photonic local oscillator signal generated by electro-optic phase modulation is controlled to track the frequency of the radio frequency (RF) signal to significantly enhance the measurable RF bandwidth. We demonstrate amplitude and phase measurement of a quasi-millimeter-wave frequency-modulated continuous-wave signal (24 GHz ± 80 MHz with a 2.5 ms period) as a proof-of-concept experiment.

  11. Fringing field measurement of dipole magnet

    International Nuclear Information System (INIS)

    Lu Hongyou; Jiang Weisheng; Mao Naifeng; Mao Xingwang

    1985-01-01

    The fringing field of a dipole magnet with a C-type circuit and homogeneous field in the gap has been measured including the distributions of fringing fields with and without magnetic shield. The measured data was analyzed by using the concept of virtual field boundary

  12. Determination of uncertainty of automated emission measuring systems under field conditions using a second method as a reference

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, H.; Aunela-Tapola, L.; Tolvanen, M.; Vahlman, T. [VTT Chemical Technology, Espoo (Finland). Environmental Technology; Kovanen, K. [VTT Building Technology, Espoo (Finland). Building Physics, Building Services and Fire Technology

    1999-09-01

    This report presents a procedure to determine the uncertainty of an automated emission measuring system (AMS) by comparing the results with a second method (REF). The procedure determines the uncertainty of AMS by comparing the final concentration and emission results of AMS and REF. In this way, the data processing of the plant is included in the result evaluation. This procedure assumes that the uncertainty of REF is known and determined in due form. The uncertainty determination has been divided into two cases; varying and nearly constant concentration. The suggested procedure calculates the uncertainty of AMS at the 95 % confidence level by a tabulated t-value. A minimum of three data pairs is required. However, a higher amount of data pairs is desirable, since a low amount of data pairs results in a higher uncertainty of AMS. The uncertainty of AMS is valid only within the range of concentrations at which the tests were carried out. Statistical data processing shows that the uncertainty of the reference method has a significant effect on the uncertainty of AMS, which always becomes larger than the uncertainty of REF. This should be taken into account when testing whether AMS fulfils the given uncertainty limits. Practical details, concerning parallel measurements at the plant, and the costs of the measurement campaign, have been taken into account when suggesting alternative ways for implementing the comparative measurements. (orig.) 6 refs.

  13. The effect of non-uniform temperature and velocity fields on long range ultrasonic measurement systems in MYRRHA

    Energy Technology Data Exchange (ETDEWEB)

    Van de Wyer, Nicolas; Schram, Christophe [von Karman Institute For Fluids Dynamic (Belgium); Van Dyck, Dries; Dierckx, Marc [Belgian Nuclear Research Center (Belgium)

    2015-07-01

    SCK.CEN, the Belgian Nuclear Research Center, is developing MYRRHA, a generation IV liquid metal cooled nuclear research reactor. As the liquid metal coolant is opaque to light, normal visual feedback during fuel manipulations is not available and must therefore be replaced by a system that is not hindered by the opacity of the coolant. In this respect ultrasonic based instrumentation is under development at SCK.CEN to provide feedback during operations under liquid metal. One of the tasks that will be tackled using ultrasound is the detection and localization of a potentially lost fuel assembly. In this application, the distance between ultrasonic sensor and target may be as large as 2.5 m. At these distances, non uniform velocity and temperature fields in the liquid metal potentially influence the propagation of the ultrasonic signals, affecting the performance of the ultrasonic systems. In this paper, we investigate how relevant temperature and velocity gradients inside the liquid metal influence the propagation of ultrasonic waves. The effect of temperature and velocity gradients are simulated by means of a newly developed numerical ray-tracing model. The performance of the model is validated by dedicated water experiments. The setup is capable of creating velocity and temperature gradients representative for MYRRHA conditions. Once validated in water, the same model is used to make predictions for the effect of gradients in the MYRRHA liquid metal environment. (authors)

  14. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  15. Flight-time spread of uniform field sector magnet system for use in nuclear life-time measurements

    International Nuclear Information System (INIS)

    Sakata, Akihiko; Mamei, Masayuki; Yamada, Yoshihiro; Ohira, Kyozo

    1984-01-01

    A nuclear life-time measurement apparatus incorporating a deflecting β-ray spectrometer with electron pre-accelerator has been constructed. A new arrangement consisting of two double angular focusing sector magnets based on the principle of symmetry has been devised so as to reduce the time spread in the spectrometer, which up till now has been the weak point of such systems. The time spread in the spectrometer was estimated to be asymptotically equals 0.1 ns by a simulation method, and good agreement was obtained between this estimated value and the experimental value. A prompt time resolution of 1.25 ns (FWHM) was obtained. The half-lives of the 199 and 401 keV levels in 75 As were measured with an acceleration voltage up to 30 kV to check the reliability of the apparatus. The values were found to be 0.87+-0.04 ns and 1.74+-0.05 ns, respectively, in good agreement with previous measurements. (author)

  16. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    Directory of Open Access Journals (Sweden)

    Pakbin Payam

    2008-11-01

    Full Text Available Abstract Background A newly designed electrostatic precipitator (ESP in tandem with Versatile Aerosol Concentration Enrichment System (VACES was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs, hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38. While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the

  17. Field Mapping System for Solenoid Magnet

    Science.gov (United States)

    Park, K. H.; Jung, Y. K.; Kim, D. E.; Lee, H. G.; Park, S. J.; Chung, C. W.; Kang, B. K.

    2007-01-01

    A three-dimensional Hall probe mapping system for measuring the solenoid magnet of PLS photo-cathode RF e-gun has been developed. It can map the solenoid field either in Cartesian or in cylindrical coordinate system with a measurement reproducibility better than 5 × 10-5 T. The system has three axis motors: one for the azimuthal direction and the other two for the x and z direction. This architecture makes the measuring system simple in fabrication. The magnetic center was calculated using the measured axial component of magnetic field Bz in Cartesian coordinate system because the accuracy of magnetic axis measurement could be improved significantly by using Bz, instead of the radial component of magnetic field Br. This paper describes the measurement system and summarizes the measurement results for the solenoid magnetic of PLS photo-cathode RF e-gun.

  18. Estimation of Prestress Force Distribution in Multi-Strand System of Prestressed Concrete Structures Using Field Data Measured by Electromagnetic Sensor.

    Science.gov (United States)

    Cho, Keunhee; Cho, Jeong-Rae; Kim, Sung Tae; Park, Sung Yong; Kim, Young-Jin; Park, Young-Hwan

    2016-08-18

    The recently developed smart strand can be used to measure the prestress force in the prestressed concrete (PSC) structure from the construction stage to the in-service stage. The higher cost of the smart strand compared to the conventional strand renders it unaffordable to replace all the strands by smart strands, and results in the application of only a limited number of smart strands in the PSC structure. However, the prestress forces developed in the strands of the multi-strand system frequently adopted in PSC structures differ from each other, which means that the prestress force in the multi-strand system cannot be obtained by simple proportional scaling using the measurement of the smart strand. Therefore, this study examines the prestress force distribution in the multi-strand system to find the correlation between the prestress force measured by the smart strand and the prestress force distribution in the multi-strand system. To that goal, the prestress force distribution was measured using electromagnetic sensors for various factors of the multi-strand system adopted on site in the fabrication of actual PSC girders. The results verified the possibility to assume normal distribution for the prestress force distribution per anchor head, and a method computing the mean and standard deviation defining the normal distribution is proposed. This paper presents a meaningful finding by proposing an estimation method of the prestress force based upon field-measured data of the prestress force distribution in the multi-strand system of actual PSC structures.

  19. Measuring magnetic field vector by stimulated Raman transitions

    International Nuclear Information System (INIS)

    Wang, Wenli; Wei, Rong; Lin, Jinda; Wang, Yuzhu; Dong, Richang; Zou, Fan; Chen, Tingting

    2016-01-01

    We present a method for measuring the magnetic field vector in an atomic fountain by probing the line strength of stimulated Raman transitions. The relative line strength for a Λ-type level system with an existing magnetic field is theoretically analyzed. The magnetic field vector measured by our proposed method is consistent well with that by the traditional bias magnetic field method with an axial resolution of 6.1 mrad and a radial resolution of 0.16 rad. Dependences of the Raman transitions on laser polarization schemes are also analyzed. Our method offers the potential advantages for magnetic field measurement without requiring additional bias fields, beyond the limitation of magnetic field intensity, and extending the spatial measurement range. The proposed method can be widely used for measuring magnetic field vector in other precision measurement fields.

  20. Comparison between predicted duct effectiveness from proposed ASHRAE Standard 152P and measured field data for residential forced air cooling systems; TOPICAL

    International Nuclear Information System (INIS)

    Siegel, Jeffrey A.; McWilliams, Jennifer A.; Walker, Iain S.

    2002-01-01

    The proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 2002) has recently completed its second public review. As part of the standard development process, this study compares the forced air distribution system ratings provided by the public review draft of Standard 152P to measured field results. 58 field tests were performed on cooling systems in 11 homes in the summers of 1998 and 1999. Seven of these houses had standard attics with insulation on the attic floor and a well-vented attic space. The other four houses had unvented attics where the insulation is placed directly under the roof deck and the attic space is not deliberately vented. Each house was tested under a range of summer weather conditions at each particular site, and in some cases the amount of duct leakage was intentionally varied. The comparison between 152P predicted efficiencies and the measured results includes evaluation of the effects of weather, duct location, thermal conditions, duct leakage, and system capacity. The results showed that the difference between measured delivery effectiveness and that calculated using proposed Standard 152P is about 5 percentage points if weather data, duct leakage and air handler flow are well known. However, the accuracy of the standard is strongly dependent on having good measurements of duct leakage and system airflow. Given that the uncertainty in the measured delivery effectiveness is typically also about 5 percentage points, the Standard 152P results are acceptably close to the measured data

  1. Quality assurance in field radiation measurements

    International Nuclear Information System (INIS)

    Howell, W.P.

    1985-01-01

    In most cases, an ion chamber radiation measuring instrument is calibrated in a uniform gamma radiation field. This results in a uniform ionization field throughout the ion chamber. Measurement conditions encountered in the field often produce non-uniform ionization fields within the ion chamber, making determination of true dose rates to personnel difficult and prone to error. Extensive studies performed at Hanford have provided appropriate correction factors for use with one type of ion chamber instrument, the CP. Suitable corrections are available for the following distinct measurement circumstances: (1) contact measurements on large beta and gamma sources, (2) contact measurements on small beta and gamma sources, (3) contact measurements on small-diameter cylinders, (4) measurements in small gamma beams, and (5) measurements at a distance from large beta sources. Recommendations are made for the implementation of these correction factors, in the interest of improved quality assurance in field radiation measurements. 12 references, 10 figures

  2. Field measurement of wind pressure and wind-induced vibration of large-span spatial cable-truss system under strong wind or typhoon

    Directory of Open Access Journals (Sweden)

    ZHANG Zhihong

    2013-10-01

    Full Text Available In order to ensure wind-resistance safety of large-span pre-stressed flexible system in southeast coast area of China,and to prepare something for revising of current codes of practice or technical standards,the present paper conducts field measurement of wind pressure and wind-induced vibration of a practical and typical large-span spatial cable-truss system-lunar stadium in Yueqing city.Wind loading and wind effects on full-scale structure under strong wind or typhoon in real architectural environment can be obtained directly and effectively.Field measurement is the best way to investigate the wind loading property,wind effects,and wind-structure interactions of large-span flexible system.Measured data will be highly valuable for scientific research and practical design.On the other hand,it also provides the basis of wind-resistance safety design of this kind of tension structures.If any creative development,it would dramatically improve the research level of large-span pre-stressed flexible system in our country.

  3. Measurements of Solar Vector Magnetic Fields

    Science.gov (United States)

    Hagyard, M. J. (Editor)

    1985-01-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display.

  4. Measurements of Solar Vector Magnetic Fields

    International Nuclear Information System (INIS)

    Hagyard, M.J.

    1985-05-01

    Various aspects of the measurement of solar magnetic fields are presented. The four major subdivisions of the study are: (1) theoretical understanding of solar vector magnetic fields; (3) techniques for interpretation of observational data; and (4) techniques for data display

  5. Radon integral measurement system

    International Nuclear Information System (INIS)

    Garcia H, J.M.

    1994-01-01

    The Radon Integral Measurement System (SMIR) is a device designed specially to detect, to count and to store the data of the acquisition of alpha particles emitted by Radon-222 coming from the underground. The system includes a detection chamber, a radiation detector, a digital system with bateries backup and an auxiliary photovoltaic cell. A personal computer fixes the mode in which the system works, transmitting the commands to the system by the serial port. The heart of the system is a microprocesor working with interrupts by hardware. Every external device to the microprocessor sends his own interrupt request and the microprocessor handles the interrupts with a defined priority. The system uses a real time clock, compatible with the microprocessor, to take care of the real timing and date of the acquisition. A non volatile RAM is used to store data of two bytes every 15 minutes along 41 days as a maximum. After the setting up to the system by the computer, it can operate in stand alone way for up 41 days in the working place without the lose of any data. If the memory is full the next data will be written in the first locations of the memory. The memory is divided in pages corresponding every one of this to a different day of the acquisition. The counting time for every acquisition can be programmed by the user from 15 minutes to 65535 minutes but it is recommended to use a small time not to reach the limit of 65535 counts in every acquisition period. We can take information of the system without affecting the acquisition process in the field by using a lap top computer, then the information can be stored in a file. There is a program in the computer that can show the information in a table of values or in a bar graph. (Author)

  6. High magnetic field MRI system

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Urata, Masami; Satoh, Kozo

    1990-01-01

    A high field superconducting magnet, 4-5 T in central magnetic field, is required for magnetic resonance spectroscopic imaging (MRSI) on 31 P, essential nuclei for energy metabolism of human body. This paper reviews superconducting magnets for high field MRSI systems. Examples of the cross-sectional image and the spectrum of living animals are shown in the paper. (author)

  7. Two devices for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Colombet, Andre; Hubert, Pierre.

    1977-02-01

    Two instruments installed at St Privat d'Allier for electric field measurement in connection with the rocket triggered lighting experiment program are described. The first one is a radioactive probe electrometer used as a warning device. The second is a field mill used for tape recording of electric field variation during the triggering events. Typical examples of such records are given [fr

  8. Field measurement of the piping system vibration of Ko-Ri unit 4 during the load-following operation

    International Nuclear Information System (INIS)

    Chung, Tae-Young; Hong, Sung-Yull; Kim, Bum-Nyun.

    1989-01-01

    During the load-following operation of nuclear power plants, flow rate, temperature, and pressure in the piping system can be varied by changing the electric power output level, and these variations can cause different vibration phenomena in the piping system. The piping system vibration is important because it is directly related to the dynamic stress of the piping system and can affect the life of the piping system through structural fatigue. An assessment of vibration levels for the classes II and III piping systems of the Ko-Ri Unit 4950-MW nuclear power plant was performed according to the given pattern of the load-following operation to study its feasibility from the viewpoint of piping system vibration. The classes II and III piping system vibration of the Ko-Ri Unit 4 may not cause any potential problem under the given pattern of the load-following operation; however, it is recommended that long-term operation in the 85 to 95% power range be avoided as much as possible

  9. Performance analysis and yield assessment of several uncovered photovoltaic-thermal collectors : results of field measurements and system simulations

    NARCIS (Netherlands)

    de Keizer, C.; de Jong, M.; Katiyar, M.; Folkerts, W.; Rindt, C.C.M.; Zondag, H.A.

    A PVT collector combines a PV module with a solar thermal absorber and produces electricity and heat. Interest in PVT systems is growing, since these potentially generate more energy per m2 than PV-only systems. Furthermore, a large share of the residential energy use consists of heat. Within the

  10. Measurability of non-abelium gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenko, D.D.; Obukhov, Yu.N.

    New estimations of the accuracy of measurement of non-abeliar gauge field components are obtained on the base of qualitative analysis of the test body equations of motion. They generalize the Bohr and Rosenfeld results on the measurability of an electomagnetic field for the case of an arbitrary gauge group.

  11. Magnetic field measurements in xi Bootis A

    International Nuclear Information System (INIS)

    Boesgaard, A.M.; Chesley, D.; Preston, G.W.

    1975-01-01

    Four Zeeman spectrograms from Lick Observatory of xi Boo A and two of iota Peg at 2 A mm -1 have been measured to determine if a weak magnetic field is present in xi Boo A. The results indicate that the field is too weak to be measured by this technique on these spectrograms, although remeasurements of spectrograms from Mauna Kea at 3.4 A mm -1 still give a positive field of 170 gauss. (U.S.)

  12. Measurement of gradient magnetic field temporal characteristics

    International Nuclear Information System (INIS)

    Bartusek, K.; Jflek, B.

    1994-01-01

    We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters

  13. Measurement of effective detective quantum efficiency for a photon counting scanning mammography system and comparison with two flat panel full-field digital mammography systems

    Science.gov (United States)

    Wood, Tim J.; Moore, Craig S.; Saunderson, John R.; Beavis, Andrew W.

    2018-01-01

    Effective detective quantum efficiency (eDQE) describes the resolution and noise properties of an imaging system along with scatter and primary transmission, all measured under clinically appropriate conditions. Effective dose efficiency (eDE) is the eDQE normalised to mean glandular dose and has been proposed as a useful metric for the optimisation of clinical imaging systems. The aim of this study was to develop a methodology for measuring eDQE and eDE on a Philips microdose mammography (MDM) L30 photon counting scanning system, and to compare performance with two conventional flat panel systems. A custom made lead-blocker was manufactured to enable the accurate determination of dose measurements, and modulation transfer functions were determined free-in-air at heights of 2, 4 and 6 cm above the breast support platform. eDQE were calculated for a Philips MDM L30, Hologic Dimensions and Siemens Inspiration digital mammography system for 2, 4 and 6 cm thick poly(methyl methacrylate) (PMMA). The beam qualities (target/filter and kilovoltage) assessed were those selected by the automatic exposure control, and anti-scatter grids were used where available. Measurements of eDQE demonstrate significant differences in performance between the slit- and scan-directions for the photon counting imaging system. MTF has been shown to be the limiting factor in the scan-direction, which results in a rapid fall in eDQE at mid-to-high spatial frequencies. A comparison with two flat panel mammography systems demonstrates that this may limit image quality for small details, such as micro-calcifications, which correlates with a more conventional image quality assessment with the CDMAM phantom. eDE has shown the scanning photon counting system offers superior performance for low spatial frequencies, which will be important for the detection of large low contrast masses. Both eDQE and eDE are proposed as useful metrics that should enable optimisation of the Philips MDM L30.

  14. A Bicycle-Based Field Measurement System for the Study of Thermal Exposure in Cuyahoga County, Ohio, USA

    Science.gov (United States)

    Rajkovich, Nicholas B.; Larsen, Larissa

    2016-01-01

    Collecting a fine scale of microclimate data can help to determine how physical characteristics (e.g., solar radiation, albedo, sky view factor, vegetation) contribute to human exposure to ground and air temperatures. These data also suggest how urban design strategies can reduce the negative impacts of the urban heat island effect. However, urban microclimate measurement poses substantial challenges. For example, data taken at local airports are not representative of the conditions at the neighborhood or district level because of variation in impervious surfaces, vegetation, and waste heat from vehicles and buildings. In addition, fixed weather stations cannot be deployed quickly to capture data from a heat wave. While remote sensing can provide data on land cover and ground surface temperatures, resolution and cost remain significant limitations. This paper describes the design and validation of a mobile measurement bicycle. This bicycle permits movement from space to space within a city to assess the physical and thermal properties of microclimates. The construction of the vehicle builds on investigations of the indoor thermal environment of buildings using thermal comfort carts. PMID:26821037

  15. Field measurements of radium in the human body

    International Nuclear Information System (INIS)

    Toohey, R.E.; May, H.A.

    1978-01-01

    Two whole body counting systems have been developed and employed for field measurements. The radium contents of nine previously unmeasured cases have been determined during three field trips. Future trips are being scheduled to make body radioactivity measurements on a specific subpopulation of CHR radium cases

  16. Local eddy current measurements in pulsed fields

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J.H. [SEPI-Electronica, ESIME-IPN, UPALM Edif. ' Z' . Zacatenco, Mexico DF 07738 (Mexico)], E-mail: jhespina@gmail.com; Groessinger, R. [Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A-1040 Vienna (Austria); Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2008-07-15

    This work presents new eddy current measurements in pulsed fields. A commercial point pick-up coil is used to detect the induction signal along the radius of Cu and Al samples with cylindrical shape and diameters between 5 and 35 mm. Local eddy current measurements were performed on the surface of conducting materials due to the small dimensions of the coil. A simple electrical circuit, used as a model, is proposed to describe the local eddy current effect in pulsed fields. The proposed model allows to calculate the phase shift angle between the signal proportional to eddy currents and the applied external field in a pulsed field magnetometer.

  17. Measurement and analysis of bubble behavior in subcooled nucleate boiling flow field with high fidelity imaging system

    International Nuclear Information System (INIS)

    Wu, W.; Jones, B.G.; Newell, T.A.

    2004-01-01

    Axial offset anomaly (AOA) is an unexpected deviation in the core axial power distribution from the predicted curve. AOA is a current major consideration for reactors operating at increased power levels and is becoming immediate threat to nuclear power's competitiveness in the market. Despite much effort focusing on this topic, a comprehensive understanding is far from being developed. However, previous research indicates first, that a close connection exists between subcooled nucleate boiling occurring in core region and the formation of crud, which directly results in AOA phenomena, secondly, that deposition is greater, and sometimes much greater, on heated than on unheated surfaces. A number of researchers have suggested that boiling promotes deposition, and several observed increased deposition in the subcooled boiling region. Limited detailed information is available on the interaction between heat and mass transfer in subcooled nucleate boiling (SNB) flow. Bubbles formed in SNB region play an important role in helping the formation of crud. This research examines bubble behavior under SNB condition from the dynamic point of view, using a high fidelity digital imaging apparatus. Freon R-134a is chosen as a simulant fluid due to its merit of having smaller surface tension and lower boiling temperature. The apparatus is operated at reduced pressure. Series of images at frame rates up to 4000 frames/s were obtained, showing different characteristics of bubble behavior with varying experimental parameters e.g. flow velocity, fluid subcooled level, etc. Analyses that combine the experimental results with analytical result on flow field in velocity boundary layer are considered. A tentative suggestion is that a rolling movement of a bubble accompanies its sliding along the heating surface in the flow channel. Numerical computations using FLUENT v5.5 have been performed to support this conclusion

  18. Health System Measurement Project

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Health System Measurement Project tracks government data on critical U.S. health system indicators. The website presents national trend data as well as detailed...

  19. The measurement of solar magnetic fields

    International Nuclear Information System (INIS)

    Stenflo, J.O.

    1978-01-01

    Solar activity is basically caused by the interaction between magnetic fields, solar rotation and convective motions. Detailed mapping of the Sun's rapidly varying magnetic field helps in the understanding of the mechanisms of solar activity. Observations in recent years have revealed unexpected and intriguing properties of solar magnetic fields, the explanation of which has become a challenge to plasma physicists. This review deals primarily with how the Sun's magnetic field is measured, but it also includes a brief review of the present observational picture of the magnetic field, which is needed to understand the problems of how to properly interpret the observations. 215 references. (author)

  20. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  1. General temperature field measurement by digital holography

    Czech Academy of Sciences Publication Activity Database

    Doleček, Roman; Psota, Pavel; Lédl, Vít; Vít, Tomáš; Václavík, Jan; Kopecký, V.

    2013-01-01

    Roč. 52, č. 1 (2013), A319-A325 ISSN 1559-128X Institutional support: RVO:61389021 Keywords : digital holography * temperature field measurement * tomography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.649, year: 2013

  2. Critical field measurements in a superconducting networks

    International Nuclear Information System (INIS)

    Pannetier, B.; Chaussy, J.; Rammal, R.

    1984-01-01

    We have measured the critical field of a periodic two-dimensional network of superconducting indium. At low fields, the critical line Hsub(c)(T) reflects the network topology and exhibits well-defined cusps due to flux quantization corresponding to both integer and rational number of flux quanta phi 0 = h/2e per unit loop of the network [fr

  3. Radioisotope measurement system

    International Nuclear Information System (INIS)

    Villanueva Ruibal, Jose

    2007-01-01

    A radioisotope measurement system installed at L.M.R. (Ezeiza Atomic Center of CNEA) allows the measurement of nuclear activity from a wide range of radioisotopes. It permits to characterize a broad range of radioisotopes at several activity levels. The measurement hardware as well as the driving software have been developed and constructed at the Dept. of Instrumentation and Control. The work outlines the system's conformation and its operating concept, describes design characteristics, construction and the error treatment, comments assay results and supplies use advices. Measuring tests carried out employing different radionuclides confirmed the system performing satisfactorily and with friendly operation. (author) [es

  4. Parameterization and measurements of helical magnetic fields

    International Nuclear Information System (INIS)

    Fischer, W.; Okamura, M.

    1997-01-01

    Magnetic fields with helical symmetry can be parameterized using multipole coefficients (a n , b n ). We present a parameterization that gives the familiar multipole coefficients (a n , b n ) for straight magnets when the helical wavelength tends to infinity. To measure helical fields all methods used for straight magnets can be employed. We show how to convert the results of those measurements to obtain the desired helical multipole coefficients (a n , b n )

  5. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    2017-01-01

    We present an economic model of systemic risk in which undercapitalization of the financial sector as a whole is assumed to harm the real economy, leading to a systemic risk externality. Each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall...... of components of SES to predict emerging systemic risk during the financial crisis of 2007–2009....

  6. Measuring methods, registration and signal processing for magnetic field research

    International Nuclear Information System (INIS)

    Nagiello, Z.

    1981-01-01

    Some measuring methods and signal processing systems based on analogue and digital technics, which have been applied in magnetic field research using magnetometers with ferromagnetic transducers, are presented. (author)

  7. The new DMT SAFEGUARD low-cost GNSS measuring system and its application in the field of geotechnical deformation and movement monitoring

    Science.gov (United States)

    Schröder, Daniel

    2017-04-01

    In the recent years an increasing awareness of geodetic measurement systems and their application for monitoring projects is clearly visible. With geodetic sensors it is possible to detect safety-related changes at monitoring objects with high temporal density, high accuracy and in a very reliable manner. Quality acquisitions, processing and storage of monitoring data as well as a professional on-site implementation are the most important requirements and challenges to contemporary systems in civil engineering, mining as well as oil and gas production. Monitoring measures provide important input for early warning, alarm, protection and verification of potential hazardous environments and therefore the risk management applied to projects have a significant influence. The implementation has to follow an optimization process incorporating necessary accuracy, reliability and economic efficiency. From the economical point of view the costs per observation point are crucial for most monitoring projects. Keeping in mind that the costs of classical high-end GNSS stations with a geodetic dual-frequency receiver is within the range of several 10,000 euro. Large monitoring networks with a high number of simultaneously observed points are very expensive and therefore eventually have to be cut back, substituted by compromising methods or totally withdrawn. A further development in the area of GNSS receivers could reduce this disadvantage. Within the last few years single-frequency receivers that record L1-signals of GPS/GLONASS and offer sub-centimeter positioning accuracies are increasingly offered on the market. The accuracy of GNSS measurements depends on many factors as the hardware itself as well as on external influences related to the measurement principals. The external influences can be strongly reduced or eliminated by appropriate measuring and processing methods. For a reliable monitoring system it is necessary that the results are comparable and consistent for each

  8. Magnetic field measurements and mapping techniques

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    These lectures will present an overview of the most common techniques used for the measurement of magnetic field in accelerator magnets. The formalism for a harmonic description of the magnetic field will be presented, including a discussion of harmonics allowed under various types of symmetries in the magnet. The harmonic coil technique for measurement of field harmonics will be covered in depth. Using examples from recent projects, magnetic measurements will be shown to be a powerful tool for monitoring magnet production. Measurements of magnetic axis using extensions of the harmonic coil technique, as well as other techniques, such as the colloidal cell and stretched wire, will be covered. Topics of interest in superconducting magnets, such as time decay and snapback, requiring relatively fast measurements of the harmonics, will also be described.

  9. Finite Element Modelling of a Field-Sensed Magnetic Suspended System for Accurate Proximity Measurement Based on a Sensor Fusion Algorithm with Unscented Kalman Filter.

    Science.gov (United States)

    Chowdhury, Amor; Sarjaš, Andrej

    2016-09-15

    The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.

  10. Spindle vibration and sound field measurement using optical vibrometry

    OpenAIRE

    Tatar, Kourosh

    2008-01-01

    Mechanical systems often produce a considerable amount of vibration and noise. To be able to obtain a complete picture of the dynamic behaviour of these systems, vibration and sound measurements are of significant importance. Optical metrology is well-suited for non-intrusive measurements on complex objects. The development and the use of remote non-contact vibration measurement methods for spindles are described and vibration measurements on thin- walled structures and sound field measuremen...

  11. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance.

    Science.gov (United States)

    Sharma, Shailesh; Gahan, David; Scullin, Paul; Doyle, James; Lennon, Jj; Vijayaraghavan, Rajani K; Daniels, Stephen; Hopkins, M B

    2016-04-01

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  12. A mobile automatic gas chromatograph system to measure CO2, CH4 and N2O fluxes from soil in the field

    International Nuclear Information System (INIS)

    Silvola, J.; Martikainen, P.; Nykaenen, H.

    1992-01-01

    A caravan has been converted into mobile laboratory for measuring fluxes of CO 2 , CH 4 and N 2 O from the soil in the field. The caravan was equipped with a gas chromatograph fitted with TC-, FI- and EC-detectors, and a PC controlled data logger. The gas collecting chambers can be used up to 50 m from the caravan. The closing and opening of the chambers, as well as the flows of sample gases from chambers to the gas chromatograph. is pneumatically regulated. Simultaneous recordings of temperature, light intensity and the depth of water table are made. The system has been used for two months in 1992, and some preliminary results are presented

  13. Measurement of deposition rate and ion energy distribution in a pulsed dc magnetron sputtering system using a retarding field analyzer with embedded quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shailesh, E-mail: shailesh.sharma6@mail.dcu.ie [Dublin City University, Glasnevin, Dublin 9 (Ireland); Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Gahan, David, E-mail: david.gahan@impedans.com; Scullin, Paul; Doyle, James; Lennon, Jj; Hopkins, M. B. [Impedans Limited, Chase House, City Junction Business Park, Northern Cross, D17 AK63, Dublin 17 (Ireland); Vijayaraghavan, Rajani K.; Daniels, Stephen [Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2016-04-15

    A compact retarding field analyzer with embedded quartz crystal microbalance has been developed to measure deposition rate, ionized flux fraction, and ion energy distribution arriving at the substrate location. The sensor can be placed on grounded, electrically floating, or radio frequency (rf) biased electrodes. A calibration method is presented to compensate for temperature effects in the quartz crystal. The metal deposition rate, metal ionization fraction, and energy distribution of the ions arriving at the substrate location are investigated in an asymmetric bipolar pulsed dc magnetron sputtering reactor under grounded, floating, and rf biased conditions. The diagnostic presented in this research work does not suffer from complications caused by water cooling arrangements to maintain constant temperature and is an attractive technique for characterizing a thin film deposition system.

  14. Uranium isotope ratio measurements in field settings

    International Nuclear Information System (INIS)

    Shaw, R.W.; Barshick, C.M.; Young, J.P.; Ramsey, J.M.

    1997-01-01

    The authors have developed a technique for uranium isotope ratio measurements of powder samples in field settings. Such a method will be invaluable for environmental studies, radioactive waste operations, and decommissioning and decontamination operations. Immediate field data can help guide an ongoing sampling campaign. The measurement encompasses glow discharge sputtering from pressed sample hollow cathodes, high resolution laser spectroscopy using conveniently tunable diode lasers, and optogalvanic detection. At 10% 235 U enrichment and above, the measurement precision for 235 U/( 235 U+ 238 U) isotope ratios was ±3%; it declined to ±15% for 0.3% (i.e., depleted) samples. A prototype instrument was constructed and is described

  15. Dynamic-energetic balance of agricultural tractors: active systems for the measurement of the power requirements in static tests and under field conditions

    Directory of Open Access Journals (Sweden)

    Daniele Pochi

    2013-09-01

    Full Text Available Modern tractors are characterized by the introduction of devices designed to increase the operative performances of the machines, such as systems for monitoring and controlling various functions (through a massive use of electronics and hydraulics, or deputed to improve the comfort of the driver (paying more attention to ergonomics, air-conditioning, noise and vibration. Such devices need energy to be operated, affecting the energetic balance of the tractor. In this context, the availability of suitable methodologies and instrumental systems could be useful to provide objective, accurate and reliable measurements of the performances of the tractors under different conditions, also considering the power requirements from ancillary services and/or simulating the coupling with operating machines. The tests on the performances of tractors are now made using different methods, including the trial codes issued by the OECD Codes. Beyond their undoubted validity, they fix standard test conditions that often do not adequately represent the operative reality, so that, much remains to investigate on the actual performances provided by the tractors. From this point of view and with reference to fixed point tests, a test bench was developed for the measurement of the power required by various devices, such as transmission and air conditioning. It was used in experimental tests on a tracked tractor and on a wheeled tractor, aimed at validating the test device, measuring the power absorption related to the rotational speed of the organs of propulsion and to the characteristics curves, in order to quantify the power drawn by the transmission and by the air conditioning and assess the residual power for other tractor functions. As to field conditions, a study is being conducted at CRA-ING, within the project PTO (Mi.P.A.A.F., to develop a mobile test bench aimed at evaluating the power required by different operations, such as self displacement, traction, use of

  16. Pressure Measurement Systems

    Science.gov (United States)

    1990-01-01

    System 8400 is an advanced system for measurement of gas and liquid pressure, along with a variety of other parameters, including voltage, frequency and digital inputs. System 8400 offers exceptionally high speed data acquisition through parallel processing, and its modular design allows expansion from a relatively inexpensive entry level system by the addition of modular Input Units that can be installed or removed in minutes. Douglas Juanarena was on the team of engineers that developed a new technology known as ESP (electronically scanned pressure). The Langley ESP measurement system was based on miniature integrated circuit pressure-sensing transducers that communicated pressure information to a minicomputer. In 1977, Juanarena formed PSI to exploit the NASA technology. In 1978 he left Langley, obtained a NASA license for the technology, introduced the first commercial product, the 780B pressure measurement system. PSI developed a pressure scanner for automation of industrial processes. Now in its second design generation, the DPT-6400 is capable of making 2,000 measurements a second and has 64 channels by addition of slave units. New system 8400 represents PSI's bid to further exploit the 600 million U.S. industrial pressure measurement market. It is geared to provide a turnkey solution to physical measurement.

  17. Field measurement for large bending magnets

    International Nuclear Information System (INIS)

    Lazzaro, A.; Cappuzzello, F.; Cunsolo, A.; Cavallaro, M.; Foti, A.; Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S.

    2008-01-01

    The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms

  18. Eddy currents in pulsed field measurements

    International Nuclear Information System (INIS)

    Kuepferling, M.; Groessinger, R.; Wimmer, A.; Taraba, M.; Scholz, W.

    2002-01-01

    Full text: One problem of pulsed field magnetometry is an error in magnetization, which appears in measurements of conducting samples. This error is due to eddy currents induced by a time varying field. To allow predictions how eddy currents exert influence on the hysteresis loop, systematic experimental and theoretical studies of pulsed field measurements of metallic samples were performed. The theoretical studies include analytical calculations as well as numerical ones using a 2D finite element software. In the measurements three physical parameters have been varied: i) the conductivity of the sample by using two different materials, in this case technical Cu and Al ii) size and shape of the sample by using cylinders, spheres and cuboids iii) the pulse duration of the external field by changing the capacitor battery from 8mF ( =9.1ms) to 24mF ( =15.7ms). The time dependence of the external field corresponds with a pulsed damped harmonic oscillation with a maximum value of 5.2T. The samples were studied in the as cast state (after machining) as well as after heat treatment. Theoretical calculations showed not only good agreement with the absolute values of the measured eddy current m agnetization , they also gave an explanation of the shape of the eddy current hysteresis and the dependence of the eddy current 'magnetization' on parameters as pulse duration of the external field and conductivity of the sample. (author)

  19. Bioelectric Signal Measuring System

    Science.gov (United States)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  20. In-field radon measurement in water: a novel approach

    International Nuclear Information System (INIS)

    Talha, S.A.; Meijer, R.J. de; Lindsay, R.; Newman, R.T.; Maleka, P.P.; Hlatshwayo, I.N.

    2010-01-01

    This paper presents a novel approach of measuring radon in-water in the field by inserting a MEDUSA gamma-ray detector into a 210 L or 1000 L container. The experimental measurements include investigating the effect of ambient background gamma-rays on in-field radon measurement, calibrating the detector efficiency using several amounts of KCl salt dissolved in tap water, and measuring radon in borehole water. The results showed that there is fairly good agreement between the field and laboratory measurements of radon in water, based on measurements with Marinelli beakers on a HPGe detector. The MDA of the method is 0.5 Bq L -1 radon in-water. -- Research highlights: →Radon-in-water, large volume container, in-field measurements, MEDUSA gamma-ray detection system.

  1. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan [Meylan, FR; Yazami, Rachid [Los Angeles, CA; Fultz, Brent T [Pasadena, CA

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  2. Small fields measurements with radiochromic films.

    Science.gov (United States)

    Gonzalez-Lopez, Antonio; Vera-Sanchez, Juan-Antonio; Lago-Martin, Jose-Domingo

    2015-01-01

    The small fields in radiotherapy are widely used due to the development of techniques such as intensity-modulated radiotherapy and stereotactic radio surgery. The measurement of the dose distributions for small fields is a challenge. A perfect dosimeter should be independent of the radiation energy and the dose rate and should have a negligible volume effect. The radiochromic (RC) film characteristics fit well to these requirements. However, the response of RC films and their digitizing processes present a significant spatial inhomogeneity problem. The present work uses a method for two-dimensional (2D) measurement with RC films based on the reduction of the spatial inhomogeneity of both the film and the film digitizing process. By means of registering and averaging several measurements of the same field, the inhomogeneities are mostly canceled. Measurements of output factors (OFs), dose profiles (in-plane and cross-plane), and 2D dose distributions are presented. The field sizes investigated are 0.5 × 0.5 cm(2), 0.7 × 0.7 cm(2), 1 × 1 cm(2), 2 × 2 cm(2), 3 × 3 cm(2), 6 × 6 cm(2), and 10 × 10 cm(2) for 6 and 15 MV photon beams. The OFs measured with the RC film are compared with the measurements carried out with a PinPoint ionization chamber (IC) and a Semiflex IC, while the measured transversal dose profiles were compared with Monte Carlo simulations. The results obtained for the OFs measurements show a good agreement with the values obtained from RC films and the PinPoint and Semiflex chambers when the field size is greater or equal than 2 × 2 cm(2). These agreements give confidence on the accuracy of the method as well as on the results obtained for smaller fields. Also, good agreement was found between the measured profiles and the Monte Carlo calculated profiles for the field size of 1 × 1 cm(2). We expect, therefore, that the presented method can be used to perform accurate measurements of small fields.

  3. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    An alternative, quasi-empirical sampling criterion for EMC near field measurements intended for close coupling investigations is proposed. The criterion is based on maximum error caused by sub-optimal sampling of near fields in the vicinity of an elementary dipole, which is suggested as a worst......-case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...

  4. Development of field navigation system; Field navigation system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibara, S; Minode, M; Nishioka, K [Daihatsu Motor Co. Ltd., Osaka (Japan)

    1995-04-20

    This paper describes the following matters on a field navigation system developed for the purpose of covering a field of several kilometer square. This system consists of a center system and a vehicle system, and the center system comprises a map information computer and a communication data controlling computer; since the accuracy for a vehicle position detected by a GPS is not sufficient, an attempt of increasing the accuracy of vehicle position detection is made by means of a hybrid system; the hybrid system uses a satellite navigation method of differential system in which the error components in the GPS are transmitted from the center, and also uses a self-contained navigation method which performs an auxiliary function when the accuracy in the GPS has dropped; corrected GPS values, emergency messages to all of the vehicles and data of each vehicle position are communicated by wireless transmission in two ways between the center and vehicles; and accommodation of the map data adopted a system that can respond quickly to any change in roads and facilities. 3 refs., 13 figs., 1 tab.

  5. Ground-truth measurement systems

    Science.gov (United States)

    Serafin, R.; Seliga, T. A.; Lhermitte, R. M.; Nystuen, J. A.; Cherry, S.; Bringi, V. N.; Blackmer, R.; Heymsfield, G. M.

    1981-01-01

    Ground-truth measurements of precipitation and related weather events are an essential component of any satellite system designed for monitoring rainfall from space. Such measurements are required for testing, evaluation, and operations; they provide detailed information on the actual weather events, which can then be compared with satellite observations intended to provide both quantitative and qualitative information about them. Also, very comprehensive ground-truth observations should lead to a better understanding of precipitation fields and their relationships to satellite data. This process serves two very important functions: (a) aiding in the development and interpretation of schemes of analyzing satellite data, and (b) providing a continuing method for verifying satellite measurements.

  6. Measurement accuracy in shielded magnetic fields

    International Nuclear Information System (INIS)

    Bottauscio, Oriano; Chiampi, Mario; Crotti, Gabriella; Zucca, Mauro

    2005-01-01

    The measurement error due to both the probe size averaging effect and the coil arrangement is investigated when magnetic field measurements are performed in close proximity to different planar shields. The analysis is carried on through a hybrid FEM/BEM model which employs the 'thin shield' technique. Ferromagnetic, pure conductive and multilayer screens are taken into consideration and an estimation of the errors for concentric and non-concentric coil probes is given. The numerical results are validated by experiments

  7. Mixed field dose equivalent measuring instruments

    International Nuclear Information System (INIS)

    Brackenbush, L.W.; McDonald, J.C.; Endres, G.W.R.; Quam, W.

    1985-01-01

    In the past, separate instruments have been used to monitor dose equivalent from neutrons and gamma rays. It has been demonstrated that it is now possible to measure simultaneously neutron and gamma dose with a single instrument, the tissue equivalent proportional counter (TEPC). With appropriate algorithms dose equivalent can also be determined from the TEPC. A simple ''pocket rem meter'' for measuring neutron dose equivalent has already been developed. Improved algorithms for determining dose equivalent for mixed fields are presented. (author)

  8. Calorimetric measuring systems

    DEFF Research Database (Denmark)

    Ritchie, Andrew Ewen; Pedersen, John Kim; Blaabjerg, Frede

    2004-01-01

    in the system. If the switching speed can be increased, improvements may be possible (e.g., current ripple in an electrical machine or physical size of passive components may be reduced). On the other hand, increased switching speed may cause additional losses in a power electronic system and increase...... the system cooling requirement. A common problem is that high-frequency phenomena like proximity effect, skin effect, hysteresis losses, and eddy current losses appear in the systems. These losses are very difficult to treat both theoretically and in practice. It is often difficult to measure the effect...

  9. The significance of vector magnetic field measurements

    Science.gov (United States)

    Hagyard, M. J.

    1990-01-01

    Observations of four flaring solar active regions, obtained during 1980-1986 with the NASA Marshall vector magnetograph (Hagyard et al., 1982 and 1985), are presented graphically and characterized in detail, with reference to nearly simultaneous Big Bear Solar Observatory and USAF ASW H-alpha images. It is shown that the flares occurred where local photospheric magnetic fields differed most from the potential field, with initial brightening on either side of a magnetic-neutral line near the point of maximum angular shear (rather than that of maximum magnetic-field strength, typically 1 kG or greater). Particular emphasis is placed on the fact that these significant nonpotential features were detected only by measuring all three components of the vector magnetic field.

  10. Surface magnetic field measurement with magnetic shielding

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy

    2010-01-01

    Roč. 61, č. 7 (2010), 66-68 ISSN 1335-3632 Grant - others:AVČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic hysteresis * magnetic field measurement * magnetic shielding * extrapolation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.270, year: 2010

  11. Field measurement program to determine far field plume dilution parameters

    International Nuclear Information System (INIS)

    Orth, R.C.; Carter, H.H.; Miyasaki, M.T.

    1974-01-01

    A description of the techniques used to obtain measurements of temperature, salinity, tidal velocity and tracer concentration required to determine the far field dilution in a shallow estuary is presented. The study was done to characterize the physical hydrography of the Bush River, a tributary estuary of the Chesapeake Bay, which is a possible recipient of the thermal discharge from a proposed power plant consisting of two 850 MWe nuclear generating units. Measurements of temperature and salinity along the axis of the estuary during periods of high and low fresh water inflow were obtained for use in the development of a one-dimensional-segmented transient state model of the estuary. Computer concentrations from the model compared favorably with measured dye concentrations for the same periods of high and low freshwater inflow

  12. Field measuring probe for SSC [Superconducting Super Collider] magnets

    International Nuclear Information System (INIS)

    Ganetis, G.; Herrera, J.; Hogue, R.; Skaritka, J.; Wanderer, P.; Willen, E.

    1987-03-01

    The field probe developed for measuring the field in SSC dipole magnets is an adaptation of the rotating tangential coil system in use at Brookhaven for several years. Also known as the MOLE, it is a self-contained room-temperature mechanism that is pulled through the aperture of the magnet with regular stops to measure the local field. Several minutes are required to measure the field at each point. The probe measures the multipole components of the field as well as the field angle relative to gravity. The sensitivity of the coil and electronics is such that the field up to the full 6.6 T excitation of the magnet as well as the field when warm with only 0.01 T excitation can be measured. Tethers are attached to both ends of the probe to carry electrical connections and to supply dry nitrogen to the air motors that rotate the tangential windings as well as the gravity sensor. A small computer is attached to the probe for control and for data collection, analysis and storage. Digital voltmeters are used to digitize the voltages from the rotating coil and several custom circuits control motor speeds in the probe. The overall diameter of the probe is approximately 2 cm and its length is 2.4 m; the field sensitive windings are 0.6 m in length

  13. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  14. Air-borne shape measurement of parabolic trough collector fields

    Science.gov (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  15. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Acharya, Viral V.; Heje Pedersen, Lasse; Philippon, Thomas

    We present a simple model of systemic risk and we show that each financial institution's contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution's leverage and with its expected loss in the tail of the system's loss distribution. Institutions internalize their externality if they are ‘taxed’ based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular......, (i) the outcome of stress tests performed by regulators; (ii) the decline in equity valuations of large financial firms in the crisis; and, (iii) the widening of their credit default swap spreads....

  16. INTERCOMPARISON ON THE MEASUREMENT OF THE QUANTITY PERSONAL DOSE EQUIVALENT HP(10) IN PHOTON FIELDS. LINEARITY DEPENDENCE, LOWER LIMIT OF DETECTION AND UNCERTAINTY IN MEASUREMENT OF DOSIMETRY SYSTEMS OF INDIVIDUAL MONITORING SERVICES IN GABON AND GHANA.

    Science.gov (United States)

    Ondo Meye, P; Schandorf, C; Amoako, J K; Manteaw, P O; Amoatey, E A; Adjei, D N

    2017-12-01

    An inter-comparison study was conducted to assess the capability of dosimetry systems of individual monitoring services (IMSs) in Gabon and Ghana to measure personal dose equivalent Hp(10) in photon fields. The performance indicators assessed were the lower limit of detection, linearity and uncertainty in measurement. Monthly and quarterly recording levels were proposed with corresponding values of 0.08 and 0.025 mSv, and 0.05 and 0.15 mSv for the TLD and OSL systems, respectively. The linearity dependence of the dosimetry systems was performed following the requirement given in the Standard IEC 62387 of the International Electrotechnical Commission (IEC). The results obtained for the two systems were satisfactory. The procedure followed for the uncertainty assessment is the one given in the IEC technical report TR62461. The maximum relative overall uncertainties, in absolute value, expressed in terms of Hp(10), for the TL dosimetry system Harshaw 6600, are 44. 35% for true doses below 0.40 mSv and 36.33% for true doses ≥0.40 mSv. For the OSL dosimetry system microStar, the maximum relative overall uncertainties, in absolute value, are 52.17% for true doses below 0.40 mSv and 37.43% for true doses ≥0.40 mSv. These results are in good agreement with the requirements for accuracy of the International Commission on Radiological protection. When expressing the uncertainties in terms of response, comparison with the IAEA requirements for overall accuracy showed that the uncertainty results were also acceptable. The values of Hp(10) directly measured by the two dosimetry systems showed a significant underestimation for the Harshaw 6600 system, and a slight overestimation for the microStar system. After correction for linearity of the measured doses, the two dosimetry systems gave better and comparable results. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Triggering for Magnetic Field Measurements of the LCLS Undulators

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, Kirsten

    2010-12-13

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  18. Triggering for Magnetic Field Measurements of the LCLS Undulators

    International Nuclear Information System (INIS)

    Hacker, Kirsten

    2010-01-01

    A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

  19. Magnetic field measurements using the transient internal probe (TIP)

    International Nuclear Information System (INIS)

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1995-01-01

    Knowledge of the internal magnetic field profile in hot plasmas is fundamental to understanding the structure and behavior of the current profile. The transient internal probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the reflected beam. Initial development of the diagnostic is complete. Results of magnetic field measurements conducted at 2 km/s will be presented. Helium muzzle gas introduction to the plasma chamber has been limited to less than 0.4 Torr-ell. Magnetic field resolution of 40 Gauss and spatial resolution of 5 mm have been achieved. System frequency response is 10 MHz

  20. The ITER poloidal field system

    Energy Technology Data Exchange (ETDEWEB)

    Wesley, J [General Atomics, San Diego, CA (USA); Beljakov, V; Kavin, A; Korshakov, V; Kostenko, A; Roshal, A; Zakharov, L [Kurchatov Inst. of Atomic Energy, Moscow (USSR); Bulmer, R; Kaiser, T; Miller, J R; Pearlstein, L D [Lawrence Livermore National Lab., CA (USA); Hogan, J [Oak Ridge National Lab., TN (USA); Kurihara, K; Shimomura, Y; Sugihara, M; Yoshino, R [Japan Atomic Energy Resea

    1990-12-15

    The ITER poloidal field (PF) system uses superconducting coils to provide the plasma equilibrium fields, slow equilibrium control and plasma flux linkage (V-s) needed for the ITER Operations and Research Program. Double-null (DN) divertor plasmas and operation scenarios for 22 MA Physics (high-Q/ignition) and 15 MA Technology (high-fluence testing) phases are provided. For 22 MA plasmas, total PF flux swing is 333 V-s. This provides inductive current drive (CD) for start-up with 66 V-s of resistive loss and 440-s (330-s minimum) sustained burn. The PF system also allows plasma start-up and shutdown scenarios, and can maintain the plasma configuration during burn over a range of current and pressure profiles. Other capabilities include increased plasma current (25 MA with inductive CD; 28 MA with non-inductive CD assist), divertor separatrix sweeping, and semi-DN and single-null plasmas.

  1. Magnetic Field Measurements in Beam Guiding Magnets

    CERN Document Server

    Henrichsen, K N

    1998-01-01

    Electromagnets used as beam guiding elements in particle accelerators and colliders require very tight tole-rances on their magnetic fields and on their alignment along the particle path. This article describes the methods and equipment used for magnetic measurements in beam transport magnets. Descriptions are given of magnetic resonance techniques, various induction coil methods, Hall generator measurements, the fluxgate magnetometer as well as the recently developed method of beam based alignment. References of historical nature as well as citations of recent work are given. The present commercial availability of the different sensors and asso-ciated equipment is indicated. Finally we shall try to analyze possible future needs for developments in those fields.

  2. Mesodynamics in the SARS nucleocapsid measured by NMR field cycling

    Energy Technology Data Exchange (ETDEWEB)

    Clarkson, Michael W.; Lei Ming; Eisenmesser, Elan Z.; Labeikovsky, Wladimir [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States); Redfield, Alfred [MS009 Brandeis University, Department of Biochemistry (United States)], E-mail: redfield@brandeis.edu; Kern, Dorothee [MS009 Brandeis University, Department of Biochemistry and Howard Hughes Medical Institute (United States)], E-mail: dkern@brandeis.edu

    2009-09-15

    Protein motions on all timescales faster than molecular tumbling are encoded in the spectral density. The dissection of complex protein dynamics is typically performed using relaxation rates determined at high and ultra-high field. Here we expand this range of the spectral density to low fields through field cycling using the nucleocapsid protein of the SARS coronavirus as a model system. The field-cycling approach enables site-specific measurements of R{sub 1} at low fields with the sensitivity and resolution of a high-field magnet. These data, together with high-field relaxation and heteronuclear NOE, provide evidence for correlated rigid-body motions of the entire {beta}-hairpin, and corresponding motions of adjacent loops with a time constant of 0.8 ns (mesodynamics). MD simulations substantiate these findings and provide direct verification of the time scale and collective nature of these motions.

  3. Measuring Systemic Risk

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse

    We present a simple model of systemic risk and we show that each financial institution’s contribution to systemic risk can be measured as its systemic expected shortfall (SES), i.e., its propensity to be undercapitalized when the system as a whole is undercapitalized. SES increases...... with the institution’s leverage and with its expected loss in the tail of the system’s loss distribution. Institutions internalize their externality if they are “taxed” based on their SES. We demonstrate empirically the ability of SES to predict emerging risks during the financial crisis of 2007-2009, in particular......, (i) the outcome of stress tests performed by regulators; (ii) the decline in equity valuations of large financial firms in the crisis; and, (iii) the widening of their credit default swap spreads....

  4. Early experience in the use of quantitative image quality measurements for the quality assurance of full field digital mammography x-ray systems

    International Nuclear Information System (INIS)

    Marshall, N W

    2007-01-01

    Quantitative image quality results in the form of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and detective quantum efficiency (DQE) are presented for nine full field digital mammography (FFDM) systems. These parameters are routinely measured as part of the quality assurance (QA) programme for the seven FFDM units covered by our centre. Just one additional image is required compared to the standard FFDM protocol; this is the image of an edge, from which the MTF is calculated. A variance image is formed from one of the flood images used to measure the detector response and this provides useful information on the condition of the detector with respect to artefacts. Finally, the NNPS is calculated from the flood image acquired at a target detector air kerma (DAK) of 100 μGy. DQE is then estimated from these data; however, no correction is currently made for effects of detector cover transmission on DQE. The coefficient of variation (cov) of the 50% point of the MTF for five successive MTF results was 1%, while the cov for the 50% MTF point for an a-Se system over a period of 17 months was approximately 3%. For four a-Se based systems, the cov for the NNPS at 1 mm -1 for a target DAK of 100 μGy was approximately 4%; the same result was found for four CsI based FFDM units. With regard to the stability of NNPS over time, the cov for four NNPS results acquired over a period of 12 months was also approximately 4%. The effect of acquisition geometry on NNPS was also assessed for a CsI based system. NNPS data acquired with the antiscatter grid in place showed increased noise at low spatial frequency; this effect was more severe as DAK increased. DQE results for the three detector types (a-Se, CsI and CR) are presented as a function of DAK. Some reduction in DQE was found for both the a-Se and CsI based systems at a target DAK of 12.5 μGy when compared to DQE data acquired at 100 μGy. For the CsI based systems, DQE at 1 mm -1 fell from 0

  5. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  6. New 30 kA power system at Fermilab and its use for measuring the effects of ripple current on the performance of superconducting high field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Feher, S.; Garvey, J.; Jaskierny, W.; Lamm, M.; Makulski, A.; Orris, D.F.; Pfeffer, H.; Tartaglia, M.; Tompkins, J.; Wolff, D.; /Fermilab

    2004-12-01

    A new 30 kA, 30 V dc Power System was designed, built, and commissioned at Fermilab for testing Superconducting High Field Magnets. This system has been successfully supporting operations at the Fermilab Magnet Test Facility since April 2002. It is based on six commercial 150 kW Power Energy Industries power supply modules and the following in-house modules: six 720 Hz filters, two 15 kA/1kV dc solid-state dump switch, and a 3 MJ/30 kA/1 kV dc dump resistor. Additional inhouse electronic components were designed and built to provide precise current regulation and distribution of current and current rate of change. An industrial-type Programmable Logic Controller system was used to provide equipment interlocks and monitoring. This paper summarizes studies on the influence of characteristics of this new power system--such as ripple current--on the performance of High Field Superconducting magnets.

  7. Enterprise performance measurement systems

    Directory of Open Access Journals (Sweden)

    Milija Bogavac

    2014-10-01

    Full Text Available Performance measurement systems are an extremely important part of the control and management actions, because in this way a company can determine its business potential, its market power, potential and current level of business efficiency. The significance of measurement consists in influencing the relationship between the results of reproduction (total volume of production, value of production, total revenue and profit and investments to achieve these results (factors of production spending and hiring capital in order to achieve the highest possible quality of the economy. (The relationship between the results of reproduction and investment to achieve them quantitatively determines economic success as the quality of the economy. Measuring performance allows the identification of the economic resources the company has, so looking at the key factors that affect its performance can help to determine the appropriate course of action.

  8. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1994-01-01

    Several years of experience have been acquired on the operation of probes (open-quotes molesclose quotes) constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device - the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. The authors describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the beam tube of the magnet is also described

  9. Performance of field measuring probes for SSC magnets

    International Nuclear Information System (INIS)

    Thomas, R.; Ganetis, G.; Herrera, J.; Hogue, R.; Jain, A.; Louie, W.; Marone, A.; Wanderer, P.

    1993-01-01

    Several years of experience have been acquired on the operation of probes (''moles'') constructed for the measurement of the multipole components of the magnetic fields of SSC magnets. The field is measured by rotating coils contained in a 2.4-m long tube that is pulled through the aperture of the magnet by an external device-the transporter. In addition to the measuring coils, the tube contains motors for rotating the coil and a system for sensing local vertical using gravity sensors to provide an absolute reference for the field measurements. We describe the steps that must be taken in order to ensure accurate, repeatable measurements; the design changes that have been motivated by difficulties encountered (noise, vibration, variations in temperature); and other performance issues. The mechanical interface between the probe and the hewn tube of the magnet is also described

  10. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  11. Measuring propagation speed of Coulomb fields

    Energy Technology Data Exchange (ETDEWEB)

    Sangro, R. de; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy)

    2015-03-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planet motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Lienard-Weichert retarded potential leads to the same formula as the one obtained assuming that the electric field propagate with infinite velocity. The Feynman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformly moving electron beam. The results we obtain, on a finite lifetime kinematical state, are compatible with an electric field rigidly carried by the beam itself. (orig.)

  12. The ELETTRA field highway system

    International Nuclear Information System (INIS)

    Bulfone, D.; Michelini, P.; Mignacco, M.

    1992-01-01

    ELETTRA is a third generation Synchrotron Light Source under construction in Trieste (Italy); it consists of a full energy linac injector and a storage ring with beam energies between 1.5 and 2 GeV. The ELETTRA control system has a distributed architecture, hierarchically divided into three layers of computers; two network levels provide communication between the adjacent computer layers. The field highway adopted for the connection of the middle-layer local process computers with the bottom-layer equipment interface units is the MIL-1553B multidrop highway. This paper describes the hardware configuration and the main communication services developed on the MIL-1553B field highway for accelerator control. As an additional feature, typical LAN utilities have been added on top of the basic MIL-1553B communication software allowing remote logic and file transfer; these tools are currently used for software development in our laboratory. (author)

  13. Field-based systems and advanced diagnostics

    International Nuclear Information System (INIS)

    Eryurek, E.

    1998-01-01

    Detection and characterization of anomalies in an industrial plant provide improved plant availability and plant efficiency thus yielding increased economic efficiency. Traditionally, detection of process anomalies is done at a high-level control system through various signal validation methods. These signal validation techniques rely on data from transmitters, which measure related process variables. Correlating these signals and deducing anomalies often is a very time consuming and a difficult task. Delays in detecting these anomalies can be costly during plant operation. Conventional centralized approaches also suffer from their dependence on detailed mathematical models of the processes. Smart field devices have the advantage of providing the necessary information directly to the control system as anomalies develop during operation of the processes enabling operators to take necessary steps to either prevent an unnecessary shut down before the problem becomes serious or schedule maintenance on the problematic loop. Fisher-Rosemount's PlantWeb TM architecture addresses 'Enhanced Measurement, Advanced Diagnostics and Control in the Field'. PlantWeb TM builds open process management systems by networking intelligent field devices, scalable control and systems platforms, and integrated modular software. A description of PlantWeb TM and how it improves various process conditions and reduces operating cost of a plant as well as a high level description of 'Enhanced Measurement, Advanced Diagnostics and Control in the Field', will be provided in this paper. PlantWeb TM is the trademark for Fisher-Rosemount's new field-based architecture that uses emerging technologies to utilize the power of intelligent field devices and deliver critical process and equipment information to improve plant performance. (author)

  14. Quantum measurement and algebraic quantum field theories

    International Nuclear Information System (INIS)

    DeFacio, B.

    1976-01-01

    It is shown that the physics and semantics of quantum measurement provide a natural interpretation of the weak neighborhoods of the states on observable algebras without invoking any ideas of ''a reading error'' or ''a measured range.'' Then the state preparation process in quantum measurement theory is shown to give the normal (or locally normal) states on the observable algebra. Some remarks are made concerning the physical implications of normal state for systems with an infinite number of degrees of freedom, including questions on open and closed algebraic theories

  15. Measurement system for large motions

    International Nuclear Information System (INIS)

    Noyes, R.; Davies, L.; Kalinowski, J.; Stubbs, T.

    1979-05-01

    The system used to measure the response of geologic media to stress waves generated during and after underground tests performed by the Lawrence Livermore Laboratory (LLL) at the Department of Energy's Nevada Test Site (NTS) is described. Included are descriptions of the system transducers and accelerometers, the procedures used in calibrating and packaging the system at the North Las Vegas Facility of EG and G, Inc., the positioning of equipment during fielding activities at NTS, and the procedures used at LLL's facilities in California to reduce and analyze the data recorded on magnetic tape at NTS during an underground nuclear explosion. In summarizing, the authors give the system high marks, attributing its success to good basic design, careful installation, and rigorous calibration and data analysis techniques applied with good judgement on the part of the instrumentation engineers and data analysts. 10 figures

  16. A Power-Frequency Electric Field Sensor for Portable Measurement.

    Science.gov (United States)

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  17. Thyroid Uptake Measurement System

    International Nuclear Information System (INIS)

    Nguyen Duc Tuan; Nguyen Thi Bao My; Nguyen Van Sy

    2007-01-01

    The NED-UP.M7 is a complete thyroid uptake and analysis system specifically designed for nuclear medicine. Capable of performing a full range of studies this system provides fast, accurate results for Uptake Studies. The heart of the NED-UP.M7 is a microprocessor-controlled 2048 channel Compact Multi-Channel Analyzer, coupled to a 2 inch x 2 inch NaI(Tl) detector with a USB personal computer interface. The system offers simple, straight-forward operation using pre-programmed isotopes, and menudriven prompts to guide the user step by step through each procedure. The pre-programmed radionuclides include I-123, I-125, I-131, Tc-99m and Cs-137. The user-defined radionuclides also allow for isotope identification while the printer provides hard copy printouts for patient and department record keeping. The included software program running on PC (Windows XP-based) is a user friendly program with menudriven and graphic interface for easy controlling the system and managing measurement results of patient on Excel standard form. (author)

  18. Propositional systems in local field theories

    International Nuclear Information System (INIS)

    Banai, M.

    1980-07-01

    The authors investigate propositional systems for local field theories, which reflect intrinsically the uncertainties of measurements made on the physical system, and satisfy the isotony and local commutativity postulates of Haag and Kastler. The spacetime covariance can be implemented in natural way in these propositional systems. New techniques are introduced to obtain these propositional systems: the lattice-valued logics. The decomposition of the complete orthomodular lattice-valued logics shows that these logics are more general than the usual two-valued ones and that in these logics there is enough structure to characterize the classical and quantum, non relativistic and relativistic local field theories in a natural way. The Hilbert modules give the natural inner product ''spaces'' (modules) for the realization of the lattice-valued logics. (author)

  19. Sound field separation with cross measurement surfaces.

    Directory of Open Access Journals (Sweden)

    Jin Mao

    Full Text Available With conventional near-field acoustical holography, it is impossible to identify sound pressure when the coherent sound sources are located on the same side of the array. This paper proposes a solution, using cross measurement surfaces to separate the sources based on the equivalent source method. Each equivalent source surface is built in the center of the corresponding original source with a spherical surface. According to the different transfer matrices between equivalent sources and points on holographic surfaces, the weighting of each equivalent source from coherent sources can be obtained. Numerical and experimental studies have been performed to test the method. For the sound pressure including noise after separation in the experiment, the calculation accuracy can be improved by reconstructing the pressure with Tikhonov regularization and the L-curve method. On the whole, a single source can be effectively separated from coherent sources using cross measurement.

  20. Prototype Engineered Barrier System Field Tests

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Beatty, J.; Buscheck, T.A.

    1989-01-01

    This paper presents selected preliminary results obtained during the first 54 days of the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed in G-Tunnel within the Nevada Test Site. The test described is a precursor to the Engineered Barrier Systems Field Tests (EBSFT). The EBSFT will consist of in situ tests of the geohydrologic and geochemical environment in the near field (within a few meters) of heaters emplaced in welded tuff to simulate the thermal effects of waste packages. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures for future investigations that will be conducted in the Exploratory Shaft Facilities of the Yucca Mountain Project (YMP). The paper discusses the evolution of hydrothermal behavior during the prototype test, including rock temperatures, changes in rock moisture content, air permeability of fractures, gas pressures, and rock mass gas-phase humidity. 10 refs., 12 figs

  1. Measurements of vector fields with diode array

    Science.gov (United States)

    Wiehr, E. J.; Scholiers, W.

    1985-01-01

    A polarimeter was designed for high spatial and spectral resolution. It consists of a quarter-wave plate alternately operating in two positions for Stoke-V measurements and an additional quarter-wave plate for Stokes-U and -Q measurements. The spatial range covers 75 arcsec, the spectral window of about 1.8 a allows the simultaneous observations of neighboring lines. The block diagram of the data processing and acquisition system consists of five memories each one having a capacity of 10 to the 4th power 16-bit words. The total time to acquire profiles of Stokes parameters can be chosen by selecting the number of successive measurements added in the memories, each individual measurement corresponding to an integration time of 0.5 sec. Typical values range between 2 and 60 sec depending on the brightness of the structure, the amount of polarization and a compromise between desired signal-to-noise ratio and spatial resolution.

  2. A.c. magnetic-field measurements using the fluxgate

    DEFF Research Database (Denmark)

    Ripka, Pavel; Primdahl, Fritz; Nielsen, Otto V

    1995-01-01

    Fluxgate sensors are mostly used in closed-loop d.c. magnetometer systems; they can also measure alternating fields up to severalkilohertz, either in open-loop mode or from an error signal in the slow-feedback loop as in the Thunderstorm rocket magnetometer, which has 0.1 nT resolution up to 3 k...

  3. Superconducting property measuring system by magnetization method

    International Nuclear Information System (INIS)

    Ikisawa, K.; Mori, T.; Takasu, N.

    1988-01-01

    Superconducting property measuring system (CMS-370B) for high temperature oxide superconductor has been developed. This system adopts magnetization measurement. The superconducting properties are able to be measured automatically and continuously changing the temperature and external magnetic field. The critical current density as a function of temperature and magnetic field of high temperature superconductor YBa 2 Cu 3 O 7-y (YBCO) has been measured. This paper reports how it was confirmed that this system having the high performance and the accuracy gave the significant contribution to the superconducting material development

  4. Lightweight, Miniature Inertial Measurement System

    Science.gov (United States)

    Tang, Liang; Crassidis, Agamemnon

    2012-01-01

    A miniature, lighter-weight, and highly accurate inertial navigation system (INS) is coupled with GPS receivers to provide stable and highly accurate positioning, attitude, and inertial measurements while being subjected to highly dynamic maneuvers. In contrast to conventional methods that use extensive, groundbased, real-time tracking and control units that are expensive, large, and require excessive amounts of power to operate, this method focuses on the development of an estimator that makes use of a low-cost, miniature accelerometer array fused with traditional measurement systems and GPS. Through the use of a position tracking estimation algorithm, onboard accelerometers are numerically integrated and transformed using attitude information to obtain an estimate of position in the inertial frame. Position and velocity estimates are subject to drift due to accelerometer sensor bias and high vibration over time, and so require the integration with GPS information using a Kalman filter to provide highly accurate and reliable inertial tracking estimations. The method implemented here uses the local gravitational field vector. Upon determining the location of the local gravitational field vector relative to two consecutive sensors, the orientation of the device may then be estimated, and the attitude determined. Improved attitude estimates further enhance the inertial position estimates. The device can be powered either by batteries, or by the power source onboard its target platforms. A DB9 port provides the I/O to external systems, and the device is designed to be mounted in a waterproof case for all-weather conditions.

  5. Micro analysis of fringe field formed inside LDA measuring volume

    International Nuclear Information System (INIS)

    Ghosh, Abhijit; Nirala, A K

    2016-01-01

    In the present study we propose a technique for micro analysis of fringe field formed inside laser Doppler anemometry (LDA) measuring volume. Detailed knowledge of the fringe field obtained by this technique allows beam quality, alignment and fringe uniformity to be evaluated with greater precision and may be helpful for selection of an appropriate optical element for LDA system operation. A complete characterization of fringes formed at the measurement volume using conventional, as well as holographic optical elements, is presented. Results indicate the qualitative, as well as quantitative, improvement of fringes formed at the measurement volume by holographic optical elements. Hence, use of holographic optical elements in LDA systems may be advantageous for improving accuracy in the measurement. (paper)

  6. IFSS: The IAEA's inspection field support system

    International Nuclear Information System (INIS)

    Muller, R.; Heinonen, O.J.; Schriefer, D.

    1990-01-01

    Recently, highly automated nuclear facilities with enormous volumes of nuclear material accounting data have come into operation. A few others will become operational shortly. Analysis and verification of the data for safeguards purposes is manageable only with improved computer support in the field. To assist its safeguards inspectors, the IAEA has developed the Inspection Field Support System (IFSS). It allows safeguards inspectors to collect, maintain, analyse, and evaluate inspection data on site at nuclear facilities. Previously, field computer support to safeguards inspectors concentrated on providing measurement instrumentation with data storage, but data analysis capabilities were elementary. Also, generic statistical tools were available to handle data that inspectors could (usually manually) input into a computer. Electronic links between these two directions were rudimentary. IFSS integrates the data required for verification and accounting so that inspectors will be able to devote more time to measurements and to derive conclusions at the site in a more timely manner. The system operates on stationary personal computers as well as on portable ones. Its introduction reflects the IAEA Department of Safeguards determination to further improve operational efficiency. It should be emphasized that IFSS implementation is still under development. Several field installations have been made to obtain practical experience and to determine the system's effectiveness

  7. New 30 kA power system at Fermilab and its use for measuring the effects of ripple current on the performance of superconducting high field magnets

    International Nuclear Information System (INIS)

    Carcagno, R.; Feher, S.; Garvey, J.; Jaskierny, W.; Lamm, M.; Makulski, A.; Orris, D.F.; Pfeffer, H.; Tartaglia, M.; Tompkins, J.; Wolff, D.

    2004-01-01

    A new 30 kA, 30 V dc Power System was designed, built, and commissioned at Fermilab for testing Superconducting High Field Magnets. This system has been successfully supporting operations at the Fermilab Magnet Test Facility since April 2002. It is based on six commercial 150 kW Power Energy Industries power supply modules and the following in-house modules: six 720 Hz filters, two 15 kA/1kV dc solid-state dump switch, and a 3 MJ/30 kA/1 kV dc dump resistor. Additional in-house electronic components were designed and built to provide precise current regulation and distribution of current and current rate of change. An industrial-type Programmable Logic Controller system was used to provide equipment interlocks and monitoring. This paper summarizes studies on the influence of characteristics of this new power system--such as ripple current--on the performance of High Field Superconducting Magnets

  8. Measurement of the magnetic field errors on TCV

    International Nuclear Information System (INIS)

    Piras, F.; Moret, J.-M.; Rossel, J.X.

    2010-01-01

    A set of 24 saddle loops is used on the Tokamak a Configuration Variable (TCV) to measure the radial magnetic flux at different toroidal and vertical positions. The new system is calibrated together with the standard magnetic diagnostics on TCV. Based on the results of this calibration, the effective current in the poloidal field coils and their position is computed. These corrections are then used to compute the distribution of the error field inside the vacuum vessel for a typical TCV discharge. Since the saddle loops measure the magnetic flux at different toroidal positions, the non-axisymmetric error field is also estimated and correlated to a shift or a tilt of the poloidal field coils.

  9. Field cancerization in stomatognathic system

    Directory of Open Access Journals (Sweden)

    Vidya Kadashetti

    2016-01-01

    Full Text Available Worldwide, head and neck squamous cell carcinoma is the sixth most common malignancy in men. The parts of Southeast Asia, head and neck squamous cell carcinoma is the most common malignancy, accounting for up to 50% of malignant tumors. Oral squamous cell carcinoma is believed to arise from a series of genetic changes induced by carcinogens, ultimately leading to clinical and microscopic changes summating to form an invasive neoplasm. The principal etiological factors such as tobacco and alcohol are responsible for DNA mutation activating oncogenes interfering with tumor suppressor genes and interacting with various epithelial growth factors. Slaughter in 1953 proposed the concept of field cancerization. He hypothesized that an area of epithelium is preconditioned by a carcinogenic agent. Such a carcinogenic influence if operative long enough in time and intense enough in exposure produce an irreversible change in cells and cell groups in a given area and so that the process toward cancer becomes inevitable. Thus, oral squamous cell carcinoma is multicentric in origin, through a process of field cancerization would seem to be an important factor in the persistence or recurrence of oral squamous cell carcinoma. As local and systemic therapies for primary tumor do not appear to prevent multifocally, the prognostic implications of field cancerization change may be substantial. The occurrence of second primary tumors may not be the major cause of mortality in the head and neck cancer patients but has a high impact on mortality and the treatment program of these patients. Careful screening procedures, carried out to detect multifocal tumors at an early stage, should improve survival in these patients.

  10. Advanced measurements and techniques in high magnetic fields

    International Nuclear Information System (INIS)

    Campbell, L.J.; Rickel, D.G.; Lacerda, A.H.; Kim, Y.

    1997-01-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film

  11. Using the automized system ''section'' to forecast velocity sections using data on borehole velocity measurement and seismic field prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Dorman, M.I.; Gein, F.F.; Zubairov, F.B.

    1981-01-01

    A system of automated processing of seismic data is examined which makes it possible to set up rate functions at arbitrary points of a seismic prospecting section or at points conciding with boreholes in which rate measurements have not been completed. The basis for the forecasting method is data on seismic well logging investigations, seismic prospecting and some indirect observations on sections. The bases of a procedure realizing a forecasting method are set forth, as are those requirements which satisfy the system as a whole. The results of using the ''section'' system in a terrestrial section of Western Siberia are set forth.

  12. Field reliability of electronic systems

    International Nuclear Information System (INIS)

    Elm, T.

    1984-02-01

    This report investigates, through several examples from the field, the reliability of electronic units in a broader sense. That is, it treats not just random parts failure, but also inadequate reliability design and (externally and internally) induced failures. The report is not meant to be merely an indication of the state of the art for the reliability prediction methods we know, but also as a contribution to the investigation of man-machine interplay in the operation and repair of electronic equipment. The report firmly links electronics reliability to safety and risk analyses approaches with a broader, system oriented view of reliability prediction and with postfailure stress analysis. It is intended to reveal, in a qualitative manner, the existence of symptom and cause patterns. It provides a background for further investigations to identify the detailed mechanisms of the faults and the remedical actions and precautions for achieving cost effective reliability. (author)

  13. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  14. Field instrumentation for hydrofracturing stress measurements

    International Nuclear Information System (INIS)

    Bjarnason, Bjarni; Torikka, Arne.

    1989-08-01

    A recently developed system for rock stress measurements by the hydraulic fracturing method is documented in detail. The new equipment is intended for measurement in vertical or nearvertical boreholes, down to a maximum depth of 1000 m. The minimum borehole, diameter required is 56 mm. Downhole instrumentation comprises a straddle packer assembly for borehole fracturing, equipment for determination of fracture orientations and a pressure transducer. The downhole tools are operated by means of a multihose system, containing high pressure hydraulic tubings, signal cable and carrying wire into one hose unit. The surface components of the equipment include a system for generation and control of water pressures up to approximately 75 MPa, an hydraulically operated drum for the multihose and a data acquisition system. All surface instrumentation is permanently mounted on a truck, which also serves as power source for the instrumentation. In addition to the description of instrumentation, the theoretical fundament and the testing procedures associated with the hydraulic fracturing method are briefly outlined

  15. Prototype Engineered Barrier System Field Test (PEBSFT)

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Buscheck, T.; Carlson, R.; Daily, W.; Lee, K.; Lin, Wunan; Mao, Nai-hsien; Ueng, Tzou-Shin; Wang, H.; Watwood, D.

    1991-08-01

    This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity and attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT

  16. Differential Detector for Measuring Radiation Fields

    International Nuclear Information System (INIS)

    Broide, A.; Marcus, E.; Brandys, I.; Schwartz, A.; Wengrowicz, U.; Levinson, S.; Seif, R.; Sattinger, D.; Kadmon, Y.; Tal, N.

    2004-01-01

    In case of a nuclear accident, it is essential to determine the source of radioactive contamination in order to analyze the risk to the environment and to the population. The radiation source may be a radioactive plume on the air or an area on the ground contaminated with radionuclides. Most commercial radiation detectors measure only the radiation field intensity but are unable to differentiate between the radiation sources. Consequently, this limitation causes a real problem in analyzing the potential risk to the near-by environment, since there is no data concerning the contamination ratios in the air and on the ground and this prevents us from taking the required steps to deal with the radiation event. This work presents a GM-tube-based Differential Detector, which enables to determine the source of contamination

  17. Field bus technology in accelerator control systems

    International Nuclear Information System (INIS)

    Tang Shuming

    1999-01-01

    Since eighties to now, the computer technology, network communication and ULSI technology have been developing rapidly. The level of control for industries and scientific experiments has been upgraded accordingly, so as to meet the increasing requirements for automation. The control systems become more complicated; the devices in control systems become more and more intelligent. However the cost of DCS (Distributed Control System) is quite expensive and the period of system integration is very long. More than ten measurement results for two methods defined in the world, in order to get inter operability of intelligent devices and reduce the costs. The author presents the development trend of fieldbuses briefly and describes the main performances of CAN, LONWORKS, WOLDFIP and PROFIBUS which are mainly used in the world today. The author proposes that the field bus technology will be introduced into the accelerator control systems in the country

  18. Electric Field Measurements At The Magnetopause

    Science.gov (United States)

    Lindqvist, P.-A.; Dunlop, M.

    The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (tron density and temperature for comparison with our models of Mercury/solar wind interaction.

  19. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  20. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  1. Field Measurement of Surface Ship Magnetic Signature Using Multiple AUVs

    Science.gov (United States)

    2009-10-01

    been equipped with a tri-axial fluxgate magnetometer and used to perform preliminary magnetic field measurements. Measurements of this type will be...mounted on the AUVs, shown in Fig. 1, was a three-axis fluxgate type [16] magnetometer with a range of ±100,000 nT and a sensitivity of 100μV/nT. The...surface ship. The system will employ a formation of multiple AUVs, each equipped with a magnetometer . The objective is to measure total magnetic

  2. RF field measurements in the vicinity of an ICRF antenna

    International Nuclear Information System (INIS)

    Majeski, R.; Intrator, T.; Roberts, D.; Hershkowitz, N.; Tataronis, J.; Grossmann, W.

    1988-01-01

    Measurements of the rf fields near an ICRF antenna installed in the central cell of the Phaedrus-B tandem mirror have been made, both in vacuum and in the presence of plasma. The antenna is a Faraday shielded partial turn loop. The front surface of the Faraday shield is composed of cylindrical elements in an arrangement similar to the Faraday shield design employed on TFTR. The antenna is run at relatively low power levels, in the 3.5-10 MHz frequency range. Two other ICRF systems in the phaedrus-B central cell sustain and heat the plasma at the 400 KW level. The vacuum field measurements are compared with the predictions of the ARGUS code, which models details of the Faraday shield structure. Fields in the plasma are modelled by the ANTENA code. Particle currents collected by the Faraday shield during plasma operation are also observed

  3. Magnetic field measurements and data acquisition of a model magnet for the B-factory

    International Nuclear Information System (INIS)

    Zhou Wenming; Endo, Kuninori

    1994-01-01

    In this paper we describe magnetic field measurements and the field data-acquisition system used to measure the model magnet for the B-factory booster. The results of the measurements indicate that the method adopted here is good for acquiring field data. This type of measurement is highly accurate and involves almost no temperature coefficient. The instrument is used not only for ac, but also dc field measurements. It is especially good for field measurements in the case of simultaneous ac and dc field excitation. (author)

  4. GPS synchronized power system phase angle measurements

    Science.gov (United States)

    Wilson, Robert E.; Sterlina, Patrick S.

    1994-09-01

    This paper discusses the use of Global Positioning System (GPS) synchronized equipment for the measurement and analysis of key power system quantities. Two GPS synchronized phasor measurement units (PMU) were installed before testing. It was indicated that PMUs recorded the dynamic response of the power system phase angles when the northern California power grid was excited by the artificial short circuits. Power system planning engineers perform detailed computer generated simulations of the dynamic response of the power system to naturally occurring short circuits. The computer simulations use models of transmission lines, transformers, circuit breakers, and other high voltage components. This work will compare computer simulations of the same event with field measurement.

  5. High frequency electric field levels: An example of determination of measurement uncertainty for broadband measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2016-01-01

    Full Text Available Determining high frequency electromagnetic field levels in urban areas represents a very complex task, having in mind the exponential growth of the number of sources embodied in public cellular telephony systems in the past twenty years. The main goal of this paper is a representation of a practical solution in the evaluation of measurement uncertainty for in-situ measurements in the case of spatial averaging. An example of the estimation of the uncertainty for electric field strength broadband measurements in the frequency range from 3 MHz to 18 GHz is presented.

  6. A System for Electromagnetic Field Conversion

    DEFF Research Database (Denmark)

    2003-01-01

    A system is provided for conversion of a first electromagnetic field into a desired second electromagnetic field, for example for coupling modes between waveguides or into microstructured waveguides. The system comprises a complex spatial electromagnetic field converter that is positioned...... for reception of at least a part of the first electromagnetic field and that is adapted for conversion of the received field into the desired electromagnetic field, and wherein at least one of the first and second fields matches a mode of a microstructured waveguide. It is an important advantage of the present...

  7. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1% the field map of BEBC, which in itself is uniform to within 3% inside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.7% of the maximum recorded field values at the chamber center. (7 refs).

  8. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1the field map of BEBC, which in itself is uniform to within 3 191332nside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.723420f the maximum recorded field values at the chamber center. (7 refs).

  9. Measurement system for SSRF pulsed magnets

    International Nuclear Information System (INIS)

    Peng Chengcheng; Gu Ming; Liu Bo; Ouyang Lianhua

    2007-01-01

    This paper describes the magnetic field measurement system for pulsed magnets in SSRF. The system consists of magnetic probes, analog active integrator, oscilloscope, stepper motor and a controller. An application program based on LabVIEW has been developed as main control unit. After the magnetic field mapping of a septum magnet prototype, it is verified that the test results accord with the results of theoretical calculation and computer simulation. (authors)

  10. Method and apparatus for measuring weak magnetic fields

    DEFF Research Database (Denmark)

    1995-01-01

    When measuring weak magnetic fields, a container containing a medium, such as a solution containing a stable radical, is placed in a polarising magnetic field, which is essentially at right angles to the field to be measured. The polarising field is interrupted rapidly, the interruption being...

  11. Measurement of the magnetic field coefficients of particle accelerator magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Ganetis, G.; Hogue, R.; Rogers, E.; Wanderer, P.; Willen, E.

    1989-01-01

    An important aspect in the development of magnets to be used in particle accelerators is the measurement of the magnetic field in the beam aperture. In general it is necessary to measure the harmonic multipoles in the dipole, quadrupole, and sextupole magnets for a series of stationary currents (plateaus). This is the case for the Superconducting Super Collider (SSC) which will be ramped to high field over a long period (/approximately/1000 sec.) and then remain on the flat top for the duration of the particle collision phase. In contrast to this mode of operation, the Booster ring being constructed for the Brookhaven AGS, will have a fast ramp rate of approximately 10 Hz. The multipole fields for these Booster magnets must therefore be determined ''on the ramp.'' In this way the effect of eddy currents will be taken into account. The measurement system which we will describe in this paper is an outgrowth of that used for the SSC dipoles. It has the capability of measuring the field multipoles on both a plateau or during a fast ramp. In addition, the same basic coil assembly is used to obtain the magnetic multipoles in dipole, quadrupole, and sextupole magnets. 2 refs., 3 figs., 1 tab

  12. Lab-scale development of a high temperature aerosol particle sampling probe system for field measurements in thermochemical conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, M.; Malik, A.; Pagels, J.; Sanati, M. [Lund Univ., Lund (Sweden). Div. of Ergonomics and Aerosol Technology

    2010-07-01

    Thermochemical conversion of biomass requires both combustion in an oxygen rich environment and gasification in an oxygen deficient environment. Therefore, the mass concentration of fly ash from combustion processes is dominated by inorganic compounds, and the particulate matter obtained from gasification is dominated by carbonaceous compounds. The fine fly ash particles can initiate corrosion and fouling and also increases emissions of fine particulates to the atmosphere. This study involved the design of a laboratory scale setup consisting of a high temperature sampling probe and an aerosol generation system to study the formation of fine particle from biomass gasification processes. An aerosol model system using potassium chloride (KCl) as the ash compound and Di Octyl Sebacate oil (DOS) as the volatile organic part was used to test the high temperature sampling probe. Tests conducted at 200 degrees C showed good reproducibility of the aerosol generator. The tests also demonstrated suitable dilution ratios which enabled the denuder to absorb all of the gaseous organic compounds in the set up, thus enabling measurement of only the particle phase. Condensable organic concentrations of 1-68 mg/m{sup 3} were easily handled by the high temperature sampling probe system, indicating that the denuder worked well. Additional tests will be performed using an Aerosol Mass Spectrometer (AMST) to verify that the denuder can capture all of the gaseous organic compounds also when condensed onto agglomerated soot particles. 6 refs., 1 tab., 9 figs.

  13. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  14. Assessment of the potential implementation of the Fricke dosimetric system to measure the gamma dose rate in a mixed field at the Central Irradiation Facility of the Thermal Column at RA-3

    International Nuclear Information System (INIS)

    Curotto, P.; Pozzi, E.C.C.; Thorp, S.I.; Casal, M.

    2013-01-01

    Introduction: The characterization of the mixed field, i.e. neutron and gamma radiation, at the Central Irradiation Facility of the Thermal Column (FCCT) at RA-3 is pivotal to the radiobiology experiments carried out there. One of the greatest difficulties of gamma dosimetry in a mixed field such as the FCCT field is to discriminate the perturbation induced by the high neutron flux. Given that the neutron spectrum of the source is very well characterized, it is of interest to have an alternative way of measuring gamma dose rate to be able to compare the results with those currently derived from an ionization chamber (IC). The Fricke dosimetric system is widely used as an absolute dosimeter in pure, very high dose radiation fields. The experimental set-up of these dosimeters exhibits advantages compared to instrumentation with IC. The aim of the present study was to adapt the system to use it as a measuring method at FCCT and perform a comparative analysis. Materials and Methods: Once the technique to prepare the dosimeters was adapted at our laboratory the following irradiations were carried out: one in a pure, known, gamma field, and four in the mixed FCCT field in the same position, employing 3 different configurations to obtain different relations between the radiation components in the field. The following configurations were employed: a) with closed neutron shielding, b) with open neutron shielding and c) no shielding. The results were compared with those derived from measurements with the IC. Results: In pure gamma field experience the following results were obtained: the dose measured by the IC was (44.6 ± 0.5) Gy (in air) and Fricke dose was (48.2 ± 1.1) Gy. Comparing the configurations with closed and open neutron shielding, the IC signal rose by 4% (considered not significant) whereas the Fricke dose rate increased by 15%. Comparing the configurations with closed shielding and no shielding, the gamma dose rate measured with the Fricke system rose by 153

  15. Systems Measures of Water Distribution System Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Katherine A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Murray, Regan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Walker, La Tonya Nicole [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements to water distribution system modeling tools.

  16. Experiments of Accuracy Air Ion Field Measurement

    Czech Academy of Sciences Publication Activity Database

    Bartušek, Karel; Fiala, P.; Jirků, T.; Kadlecová, E.

    2007-01-01

    Roč. 3, č. 8 (2007), s. 1330-1333 ISSN 1931-7360 Institutional research plan: CEZ:AV0Z20650511 Keywords : air ion field * gerdien condenser * picoampermeter Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Measuring name system health

    NARCIS (Netherlands)

    Casalicchio, Emiliano; Caselli, Marco; Coletta, Alessio; Di Blasi, Salvatore; Fovino, Igor Nai; Butts, Jonathan; Shenoi, Sujeet

    2012-01-01

    Modern critical infrastructure assets are exposed to security threats arising from their use of IP networks and the Domain Name System (DNS). This paper focuses on the health of DNS. Indeed, due to the increased reliance on the Internet, the degradation of DNS could have significant consequences for

  18. Optical absorption measurement system

    International Nuclear Information System (INIS)

    Draggoo, V.G.; Morton, R.G.; Sawicki, R.H.; Bissinger, H.D.

    1989-01-01

    This patent describes a non-intrusive method for measuring the temperature rise of optical elements under high laser power optical loading to determine the absorption coefficient. The method comprises irradiating the optical element with a high average power laser beam, viewing the optical element with an infrared camera to determine the temperature across the optical element and calculating the absorption of the optical element from the temperature

  19. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  20. Measurement of the electrostatic field in aurora by antarctic rocket

    International Nuclear Information System (INIS)

    Takeya, Yoshio; Minami, Shigeyuki

    1974-01-01

    The direct measurement of the electrostatic field produced by the flow of charged particles and geomagnetic field in aurora has been carried out by means of rockets or satellites. The construction of an electric field meter and its characteristics are described, which measures the vectors of electric field with antarctic rockets. New scheme is presented: three components of an electric field are directly obtained through the probes set in three directions. (Mori, K.)

  1. Microbial ecology measurement system

    Science.gov (United States)

    1972-01-01

    The sensitivity and potential rapidity of the PIA test that was demonstrated during the feasibility study warranted continuing the effort to examine the possibility of adapting this test to an automated procedure that could be used during manned missions. The effort during this program has optimized the test conditions for two important respiratory pathogens, influenza virus and Mycoplasma pneumoniae, developed a laboratory model automated detection system, and investigated a group antigen concept for virus detection. Preliminary tests on the handling of oropharygeal clinical samples for PIA testing were performed using the adenovirus system. The results obtained indicated that the PIA signal is reduced in positive samples and is increased in negative samples. Treatment with cysteine appeared to reduce nonspecific agglutination in negative samples but did not maintain the signal in positive samples.

  2. HARLIE 3-D Aerosol Backscatter and Wind Profile Measurements During Recent Field Experiments: Background Noise Reduction with a Fabry-Perot Etalon Filter in the HARLIE System

    Science.gov (United States)

    Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)

    2002-01-01

    Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.

  3. FITTING HELICAL SNAKE AND ROTATOR FIELD STRENGTH MEASUREMENTS IN RHIC

    International Nuclear Information System (INIS)

    RANJBAR, V.; LUCCIO, A.U.; MACKAY, W.W.; TSOUPAS, N.

    2001-01-01

    We examined recent multi-pole measurements for the helical snakes and rotators in RHIC to generate a full field map. Since multi-pole measurements yield real field values for B, field components we developed a unique technique to evaluate the full fields using a traditional finite element analysis software [1]. From these measurements we employed SNIG [2] to generate orbit and Spin plots. From orbit values we generated a transfer matrix for the first snake

  4. Prototype Engineered Barrier System Field Tests (PEBSFT)

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Wilder, D.G.

    1991-02-01

    This progress report presents the interpretation of data obtained (up to November 1, 1988) from the Prototype Engineered Barrier System Field Tests (PEBSFT) that are being performed for the Yucca Mountain Project (YMP) in G-Tunnel within the Nevada Test site. The PEBSFTs are being conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for the field tests for future investigations that will be conducted in the Exploratory Shaft Facilities, at a potential high-level radioactive waste repository site in Yucca Mountain. The primary objective of the tests is to provide the basis for determining whether tests planned for Yucca Mountain have the potential to be successful. Thirteen chapters discuss the following: mapping the electromagnetic permittivity and attenuation rate of the rock mass; changes in moisture content detected by the neutron logging probe; characterization of the in-situ permeability of the fractured tuff around the heater borehole; electrical resistance heater installed in a 30-cm borehole; relative humidity measurements; the operation, design, construction, calibration, and installation of a microwave circuit that might provide partial pressure information at temperatures in excess of 200 degree C (392 degree F); pressure and temperature measurements in the G-Tunnel; the moisture collection system, which attempts to collect steam that migrates into the heater borehole; The borehole television and borescope surveys that were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes; preliminary scoping calculations of the hydrothermal conditions expected for this prototype test; the Data Acquisition System; and the results of the PEBSFT, preliminary interpretations of these results, and plans for the remainder of the test. Chapters have been indexed separately for inclusion on the data base

  5. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  6. Techniques to measure complex-plane fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-09-25

    Full Text Available In this work we construct coherent superpositions of Gaussian and vortex modes which can be described to occupy the complex-plane. We demonstrate how these fields can be experimentally constructed in a digital, controllable manner with a spatial...

  7. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  8. Initial field measurements on the Chalk River superconducting cyclotron

    International Nuclear Information System (INIS)

    Ormrod, J.H.; Chan, K.C.; Hill, J.H.

    1980-12-01

    The midplane magnetic field of the Chalk River superconducting cyclotron has been mapped in detail over the full operating range of 2.5 to 5 tesla. The field measuring apparatus is described and results given include measurements of the field stability, reproducibility and harmonic content. (author)

  9. Accurate method of the magnetic field measurement of quadrupole magnets

    International Nuclear Information System (INIS)

    Kumada, M.; Sakai, I.; Someya, H.; Sasaki, H.

    1983-01-01

    We present an accurate method of the magnetic field measurement of the quadrupole magnet. The method of obtaining the information of the field gradient and the effective focussing length is given. A new scheme to obtain the information of the skew field components is also proposed. The relative accuracy of the measurement was 1 x 10 -4 or less. (author)

  10. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  11. Jacobi fields of completely integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.

    2003-01-01

    We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion

  12. Designing an accurate system for temperature measurements

    Directory of Open Access Journals (Sweden)

    Kochan Orest

    2017-01-01

    Full Text Available The method of compensation of changes in temperature field along the legs of inhomogeneous thermocouple, which measures a temperature of an object, is considered in this paper. This compensation is achieved by stabilization of the temperature field along the thermocouple. Such stabilization does not allow the error due to acquired thermoelectric inhomogeneity to manifest itself. There is also proposed the design of the furnace to stabilize temperature field along the legs of the thermocouple which measures the temperature of an object. This furnace is not integrated with the thermocouple mentioned above, therefore it is possible to replace this thermocouple with a new one when it get its legs considerably inhomogeneous.. There is designed the two loop measuring system with the ability of error correction which can use simultaneously a usual thermocouple as well as a thermocouple with controlled profile of temperature field. The latter can be used as a reference sensor for the former.

  13. Electric field measurements in a xenon discharge using Spark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2005-01-01

    Measurements of electric field distributions in a low-pressure xenon discharge are presented. The measurement technique is based on Stark spectroscopy, using a 2 + 1 excitation scheme with fluorescence dip detection. Electric fields can be measured by detecting Stark shifts of high-lying Rydberg

  14. Electric field measurements with electro-optical sensor

    International Nuclear Information System (INIS)

    Brambilla, R.

    1992-03-01

    When electric field calculations on the surface of electrodes and electrical insulation present difficulties due to complex geometries and diverse dielectric properties, it is sometimes very useful to resort to direct measurements. However, conventional probes, based on the capacitive effect, are not quite suitable for this purpose due to strong perturbations introduced by probes themselves and to difficulties in isolating the sensors from the instrumentation at points of measurement with a high potential. To avoid these difficulties, a measurement system was developed which incorporates a Pockels effect crystal sensor, a moveable HeNe laser beam for signal transmission and beam polarization modulation, and a laser beam analyzer which detects variations in polarization induced by the sensor. This paper describes the key design, operation and performance characteristics of this device

  15. Magnetometer for measuring planetary magnetic fields

    DEFF Research Database (Denmark)

    Merayo, José M.G.; Brauer, Peter

    , CHAMP and SAC-C missions. It can produce vector measurements at a rate of 50 Hz and with a precision of more than 21 bits. The thermal and long term stability of the instrument is less than 0.5 nT. The power consumption of the instrument is less than 0.5W for continuous operation. For an orbiting...

  16. Proton gyromagnetic precision measurement system

    International Nuclear Information System (INIS)

    Zhu Deming; Deming Zhu

    1991-01-01

    A computerized control and measurement system used in the proton gyromagnetic precision meausrement is descirbed. It adopts the CAMAC data acquisition equipment, using on-line control and analysis with the HP85 and PDP-11/60 computer systems. It also adopts the RSX11M computer operation system, and the control software is written in FORTRAN language

  17. Table 1. Summary of Field Testing and Measurement Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Key performance parameters measured during the field demonstration such as lining thickness, compressive strength, Flexural Strength, Modulus of Elasticity, bond...

  18. SQUID-based measuring systems

    Indian Academy of Sciences (India)

    field produced by a given two-dimensional current density distribution is inverted using the Fourier transform technique. Keywords ... Superconducting quantum interference devices (SQUIDs) are the most sensitive detectors for measurement of ... omagnetic prospecting, detection of gravity waves etc. Judging the importance ...

  19. Airborne gravity field Measurements - status and developments

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René

    2016-01-01

    English Abstract:DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM or inertial navigation systems) ...

  20. Field measurements of trace gases emitted by prescribed fires in southeastern US pine forests using an open-path FTIR system

    Science.gov (United States)

    S. K. Akagi; I. R. Burling; A. Mendoza; T. J. Johnson; M. Cameron; D. W. T. Griffith; C. Paton-Walsh; D. R. Weise; J. Reardon; R. J. Yokelson

    2013-01-01

    We report trace-gas emission factors from three pine-understory prescribed fires in South Carolina, US measured during the fall of 2011. The fires were more intense than many prescribed burns because the fuels included mature pine stands not subjected to prescribed fire in decades that were lit following an extended drought. The emission factors were measured...

  1. Side abutment pressure distribution by field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lian-guo Wang; Yang Song; Xing-hua He; Jian Zhang [State Key Laboratory for Geomechanics and Deep Underground Engineering, Xuzhou (China)

    2008-12-15

    Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrangement, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the position of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall. 14 refs., 6 figs.

  2. Recent attoclock measurements of strong field ionization

    International Nuclear Information System (INIS)

    Pfeiffer, Adrian N.; Cirelli, Claudio; Smolarski, Mathias; Keller, Ursula

    2013-01-01

    Highlights: ► The attoclock measures time by electron streaking with elliptically polarized light. ► Precision measurements reveal details about the laser-induced tunneling current flow. ► Multielectron effects play an important role when the polarizability is large. ► Double ionization experiments show evidence of novel electron correlation mechanisms. - Abstract: The attoclock is a powerful, new, and unconventional experimental tool to study fundamental attosecond dynamics on an atomic scale. We have demonstrated the first attoclock with the goal to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. It was found that the time delay in tunneling is zero for helium and argon atoms within the experimental uncertainties of a few 10’s of attoseconds. Furthermore we showed that the single active electron approximation is not sufficient even for atoms such as argon and the parent-ion interaction is much more complex than normally assumed. For double ionization of argon we found again surprising results because the ionization time of the first electron is in good agreement with the predictions, whereas the ionization of the second electron occurs significantly earlier than predicted and the two electrons exhibit some unexpected correlation

  3. Recent attoclock measurements of strong field ionization

    Energy Technology Data Exchange (ETDEWEB)

    Pfeiffer, Adrian N., E-mail: apfeiff@phys.ethz.ch [Physics Department, ETH Zurich, 8093 Zurich (Switzerland); Cirelli, Claudio; Smolarski, Mathias; Keller, Ursula [Physics Department, ETH Zurich, 8093 Zurich (Switzerland)

    2013-03-12

    Highlights: ► The attoclock measures time by electron streaking with elliptically polarized light. ► Precision measurements reveal details about the laser-induced tunneling current flow. ► Multielectron effects play an important role when the polarizability is large. ► Double ionization experiments show evidence of novel electron correlation mechanisms. - Abstract: The attoclock is a powerful, new, and unconventional experimental tool to study fundamental attosecond dynamics on an atomic scale. We have demonstrated the first attoclock with the goal to measure the tunneling delay time in laser-induced ionization of helium and argon atoms, with surprising results. It was found that the time delay in tunneling is zero for helium and argon atoms within the experimental uncertainties of a few 10’s of attoseconds. Furthermore we showed that the single active electron approximation is not sufficient even for atoms such as argon and the parent-ion interaction is much more complex than normally assumed. For double ionization of argon we found again surprising results because the ionization time of the first electron is in good agreement with the predictions, whereas the ionization of the second electron occurs significantly earlier than predicted and the two electrons exhibit some unexpected correlation.

  4. Intelligent nuclear measuring system for multi detectors

    International Nuclear Information System (INIS)

    Gujgiczer, A.; Solymosi, J.; Zsille, O.; Illes, Z.; Barnabas, I.; Ranga, T.; Lakatos, T.

    1998-01-01

    The measuring system can be used for recording gamma spectra and/or experimental beta-dispersion. Several environmental samples can be examined simultaneously, and the instrument can be used in the laboratory or in the field. Low cost multichannel analyzers using NaI(Tl) or plastic scintillators are interfaced to an IBM PC/AT, which controls the measurement, data processing, and data transmission and archiving. (M.D.)

  5. Dose measurements in pulsed radiation fields with commercially available measuring components

    International Nuclear Information System (INIS)

    Friedrich, Sabrina; Hupe, Oliver

    2016-01-01

    Dose measurements in pulsed radiation fields with dosemeters using the counting technique are known to be inappropriate. Therefore, there is a demand for a portable device able to measure the dose in pulsed radiation fields. As a detector, ionisation chambers seem to be a good alternative. In particular, using a secondary standard ionisation chamber in combination with a reliable charge-measuring system would be a good solution. The Physikalisch-Technische Bundesanstalt (PTB) uses secondary standard ionisation chambers in combination with PTB-made measuring electronics for dose measurements at its reference fields. However, for general use, this equipment is too complex. For measurements on-site, a mobile special electronic system [Hupe, O. and Ankerhold, U. Determination of ambient and personal dose equivalent for personnel and cargo security screening. Radiat. Prot. Dosim. 121(4), 429-437 (2006)] has been used successfully. Still, for general use, there is a need for a much simpler but a just as good solution. A measuring instrument with very good energy dependence for H*(10) is the secondary standard ionisation chamber HS01. An easy-to-use and commercially available electrometer for measuring the generated charges is the UNIDOS by PTW Freiburg. Depending on the expected dose values, the ionisation chamber used can be selected. In addition, measurements have been performed by using commercially available area dosemeters, e.g. the Mini SmartION 2120S by Thermo Scientific, using an ionisation chamber and the Szintomat 6134 A/H by Automess, using a scintillation detector. (authors)

  6. Modeling and Measurement of Electromagnetic Fields Near LORAN-C and OMEGA Stations

    Science.gov (United States)

    1987-06-15

    high-speed computers. This approach to field strength determination has several advantages and is often used along with measurements in a...Further from the feed, advantage was taken of the symmetry of the antenna systems. Field strengths near monopole antennas are cylindrically symmetric...was extended a short distnnce beyond the shield to create an electric field probe. Magnetic fields were measured using the Alltech loop, which

  7. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  8. Periodic permanent magnet focusing system with high peak field

    International Nuclear Information System (INIS)

    Zhang Hong; Liu Weiwei; Bai Shuxin; Chen Ke

    2008-01-01

    In this study, hybrid periodic permanent magnet (PPM) system is studied, which has high axial magnetic field and low magnetic leakage. By simulation computation, some laws of magnetic field distribution vs. structure dimensions were obtained. A hybrid PPM is designed and constructed whose peak field reaches 0.6 T. The factors inducing discrepancies between computational results and practical measurements are analyzed. The magnetic field distribution is very sensitive to the variations of constructional parameters. Construction accuracy greatly influences the magnetic field distribution. Research results obtained here are potentially valuable for future work

  9. Magnetic Measurements of the Background Field in the Undulator Hall

    International Nuclear Information System (INIS)

    Fisher, Andrew

    2010-01-01

    The steel present in the construction of the undulator hall facility has the potential for changing the ambient fields present in the undulator hall. This note describes a measurement done to make a comparison between the fields in the hall and in the Magnetic Measurement Facility. In order for the undulators to have the proper tuning, the background magnetic field in the Undulator Hall should agree with the background field in the Magnetic Measurements Facility within .5 gauss. In order to verify that this was the case measurements were taken along the length of the undulator hall, and the point measurements were compared to the mean field which was measured on the MMF test bench.

  10. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  11. Advanced ultrasonic field system: a status report

    International Nuclear Information System (INIS)

    Mikesell, C.R.; Beller, L.S.

    1984-02-01

    An advanced ultrasonic system was developed to obtain highly reproducible inspection data and to overcome certain limitations encountered with the manual scanning method. Experience from field operations from 1976 through 1980 is discussed. The scope includes a description of the computer controlled system, personnel training, inservice inspections, data analysis, and current upgrading of the system

  12. Measurement of the radial electric field in the ASDEX tokamak

    International Nuclear Information System (INIS)

    Field, A.R.; Fussmann, G.; Hofmann, J.V.

    1990-12-01

    The radial electric field (E Τ ) at the plasma periphery is determined by measuring the drift velocities of low-Z impurities ions (BIV, CIII and HeII). The measurements are performed with a scannable mirror system which allows the determination of the poloidal, perpendicular (to B vector) and toroidal components of the drift velocities from the differential Doppler shift of visible line emission observed along opposing viewing directions. The principle of the measurement is investigated in detail. In particular, it is shown that for radially localised emission shells there exits a line of sight oriented perpendicular to B vector along which E Τ may be inferred directly from the observed Doppler shift of the line emission. Along such a line of sight the net contribution to the shift from the diamagnetic drift and the radial gradient of the excitation probability is negligible. During the Ohmic- and L-phases the perpendicular drift velocity of the BIV ions measured approximately 2 cm inside the separatrix is small (≤ 2 kms -1 ) and in the ion diamagnetic drift direction. However, at the L → H-Mode transition it changes sign and begins to increase on the time-scale of the edge pressure gradients reaching the highest values at the end of the H * -phase. From these high perpendicular drift velocities it is infered that, in the H-mode, there exists a strong negative radial electric field (vertical strokeE τ vertical stroke ≤ kVm -1 ) just inside the separatrix. The dependence of the drift velocity of the BIV ions and E Τ on the NBI-heating power and the magnitude and direction of the plasma current and the magnetic field is investigated. (orig.)

  13. Facilities projects performance measurement system

    International Nuclear Information System (INIS)

    Erben, J.F.

    1979-01-01

    The two DOE-owned facilities at Hanford, the Fuels and Materials Examination Facility (FMEF), and the Fusion Materials Irradiation Test Facility (FMIT), are described. The performance measurement systems used at these two facilities are next described

  14. A new device for production measurements of field integral and field direction of SC dipole magnets

    International Nuclear Information System (INIS)

    Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.

    1990-01-01

    The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs

  15. Automated measuring systems. Automatisierte Messsysteme

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Microprocessors have become a regular component of automated measuring systems. Experts offer their experience and basic information in 24 lectures and 10 poster presentations. The focus is on the following: Automated measuring, computer and microprocessor use, sensor technique, actuator technique, communication, interfaces, man-system interaction, distrubance tolerance and availability as well as uses. A discussion meeting is dedicated to the theme complex sensor digital signal, sensor interface and sensor bus.

  16. Distributed magnetic field positioning system using code division multiple access

    Science.gov (United States)

    Prigge, Eric A. (Inventor)

    2003-01-01

    An apparatus and methods for a magnetic field positioning system use a fundamentally different, and advantageous, signal structure and multiple access method, known as Code Division Multiple Access (CDMA). This signal architecture, when combined with processing methods, leads to advantages over the existing technologies, especially when applied to a system with a large number of magnetic field generators (beacons). Beacons at known positions generate coded magnetic fields, and a magnetic sensor measures a sum field and decomposes it into component fields to determine the sensor position and orientation. The apparatus and methods can have a large `building-sized` coverage area. The system allows for numerous beacons to be distributed throughout an area at a number of different locations. A method to estimate position and attitude, with no prior knowledge, uses dipole fields produced by these beacons in different locations.

  17. On the measurement of stationary electric fields in air

    Science.gov (United States)

    Kirkham, H.

    2002-01-01

    Applications and measurement methods for field measurements are reviewed. Recent developments using optical technology are examined. The various methods are compared. It is concluded that the best general purpose instrument is the isolated cylindrical field mill, but MEMS technology could furnish better instruments in the future.

  18. Acoustic building infiltration measurement system

    Science.gov (United States)

    Muehleisen, Ralph T.; Raman, Ganesh

    2018-04-10

    Systems and methods of detecting and identifying a leak from a container or building. Acoustic pressure and velocity are measured. Acoustic properties are acquired from the measured values. The acoustic properties are converted to infiltration/leakage information. Nearfield Acoustic Holography (NAH) may be one method to detect the leakages from a container by locating the noise sources.

  19. Modeling Magnetospheric Fields in the Jupiter System

    OpenAIRE

    Saur, Joachim; Chané, Emmanuel; Hartkorn, Oliver

    2018-01-01

    The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter’s large internal dynamo magnetic field generates a gigantic magnetosphere, which in contrast to Earth’s magnetosphere is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the ...

  20. Comparison of the FFT/matrix inversion and system matrix techniques for higher-order probe correction in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Nielsen, Jeppe Majlund; Breinbjerg, Olav

    2011-01-01

    correction of general high-order probes, including non-symmetric dual-polarized antennas with independent ports. The investigation was carried out by processing with each technique the same measurement data for a challenging case with an antenna under test significantly offset from the center of rotation...

  1. On the accuracy of self-made dose planning system based on the static field measurements of cobalt unit Theratron 780C

    International Nuclear Information System (INIS)

    Treer, T.; Polgar, I.

    1995-01-01

    In connection with the installation of the new Theratron 780C cobalt unit the authors demonstrate that the planning program developed in Pecs 8 years ago can be used even for the new cobalt unit. The computed results are in good agreement with the measurements made by the PTW MP3 water phantom using the Mephysto program. (N.T.) 3 refs., 4 figs

  2. Hotplate precipitation gauge calibrations and field measurements

    Science.gov (United States)

    Zelasko, Nicholas; Wettlaufer, Adam; Borkhuu, Bujidmaa; Burkhart, Matthew; Campbell, Leah S.; Steenburgh, W. James; Snider, Jefferson R.

    2018-01-01

    First introduced in 2003, approximately 70 Yankee Environmental Systems (YES) hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11). Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance) are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall), and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations). In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.

  3. Evaluation of uncertainty in the measurement of environmental electromagnetic fields

    International Nuclear Information System (INIS)

    Vulevic, B.; Osmokrovic, P.

    2010-01-01

    With regard to Non-ionising radiation protection, the relationship between human exposure to electromagnetic fields and health is controversial. Electromagnetic fields have become omnipresent in the daily environment. This paper assesses the problem of how to compare a measurement result with a limit fixed by the standard for human exposure to electric, magnetic and electromagnetic fields (0 Hz-300 GHz). The purpose of the paper is an appropriate representation of the basic information about evaluation of measurement uncertainty. (authors)

  4. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  5. Field testing hot water temperature reduction as an energy-saving measure--does the Legionella presence change in a clinic's plumbing system?

    Science.gov (United States)

    Völker, Sebastian; Kistemann, Thomas

    2015-01-01

    Legionella spp. represent a significant health risk for humans. To ensure hygienically safe drinking water, technical guidelines recommend a central potable water hot (PWH) supply temperature of at least 60°C at the calorifier. In a clinic building we monitored whether slightly lowered temperatures in the PWH system led to a systemic change in the growth of these pathogens. In four separate phases we tested different scenarios concerning PWH supply temperatures and disinfection with chlorine dioxide (ClO2). In each phase, we took 5 sets of samples at 17 representative sampling points in the building's drinking water plumbing system. In total we collected 476 samples from the PWH system. All samples were tested (culture-based) for Legionella spp. and serogroups. Additionally, quantitative parameters at each sampling point were collected, which could possibly be associated with the presence of Legionella spp. (Pseudomonas aeruginsoa, heterotrophic plate count at 20°C and 36°C, temperatures, time until constant temperatures were reached, and chlorine dioxide concentration). The presence of Legionella spp. showed no significant reactions after reducing the PWH supply temperature from 63°C to 60°C and 57°C, as long as disinfection with ClO2 was maintained. After omitting the disinfectant, the PWH system showed statistically significant growth rates at 57°C. PWH temperatures which are permanently lowered to less than recommended values should be carefully accompanied by frequent testing, a thorough evaluation of the building's drinking water plumbing system, and hygiene expertise.

  6. Chemical, Biological, and Explosive Sensors for Field Measurements

    International Nuclear Information System (INIS)

    Kyle, Kevin; Manard, Manuel; Weeks, Stephan

    2009-01-01

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: (1) Direct air/particulate 'smart' sampling; (2) Selective, continuous real-time (∼1 sec) alert monitoring using DMS; and (3) Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security

  7. Establishing System Measures of Effectiveness

    Science.gov (United States)

    2001-03-01

    Halpin, 1991] Andriole, Stephen J. and Stanley M. Halpin, editors. Information Technology for Command and Control: Methods and Tools for Systems...Systems with Models and Objects, New York: Mc Graw -Hill, 1997. [Pawlowski, 1993a] Pawlowski, Thomas J. III, LTC. C3IEW Measures of Effectiveness

  8. Measuring Complexity of SAP Systems

    Directory of Open Access Journals (Sweden)

    Ilja Holub

    2016-10-01

    Full Text Available The paper discusses the reasons of complexity rise in ERP system SAP R/3. It proposes a method for measuring complexity of SAP. Based on this method, the computer program in ABAP for measuring complexity of particular SAP implementation is proposed as a tool for keeping ERP complexity under control. The main principle of the measurement method is counting the number of items or relations in the system. The proposed computer program is based on counting of records in organization tables in SAP.

  9. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  10. Nuclear systems of level measurement

    International Nuclear Information System (INIS)

    Lara, A.J.; Cabrera, M.J.

    1992-01-01

    In the industry there are processes in which is necessary to maintain the products level controlled which are handled for their transformation. The majority of such processes and by the operation conditions, they do not admit measure systems of level of invasive type then the application of nuclear techniques for level measurement results a big aid in these cases, since all the system installation is situated beyond frontiers of vessels that contain the product for measuring. In the Department of Nuclear Technology Applications of Mexican Petroleum Institute was developed a level measurement system by gamma rays transmission which operates in the Low Density Polyethylene plant of Petrochemical Complex Escolin at Poza Rica, Veracruz, Mexico. (Author)

  11. Probe-Hole Field Emission Microscope System Controlled by Computer

    Science.gov (United States)

    Gong, Yunming; Zeng, Haishan

    1991-09-01

    A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.

  12. ATLAS TileCal submodule B-field measurement

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Fedorenko, S.B.; Kalinichenko, V.V.; Lomakin, Yu.F.; Vorozhtsov, S.B.; Nessi, M.

    1997-01-01

    The work was done to cross check of the previous measurement done at CERN and to simulate the magnetic structure in the vicinity of the symmetry plane of the TileCal. To perform magnetic measurements for submodule the magnet E2 was chosen. The magnetometer used in the magnetic test of the submodule consists of Hall current supply and Hall voltage measuring device. The indium antimonide Hall probe used in this measurement is a model PKhE 606. Experimental set-up provides a true measurement accuracy of order ± 1%. External magnetic field measurements were conducted at the outer surface of the submodule. Two levels of the external field were applied: 108 Gs and 400 Gs. The result of this measurement in general confirms the data, obtained at CERN, but the shielding capability of the submodule under consideration was ∼ 20% higher than there. The field at the tile location is < 150 Gs up to the external field level 500 Gs and the tile field grows much less than the external field level in this range. The data obtained in this measurement could be used as a benchmark when producing a computer model of the TileCal magnetic field distribution

  13. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Science.gov (United States)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  14. Electric field measurements in the auroral E region

    International Nuclear Information System (INIS)

    Mahon, H.P.; Smiddy, M.; Sagalyn, R.C.

    1975-01-01

    Dipole electric field, positive ion and electron densities and temperatures, vehicle potential, and plasma sheath measurements have been made in the auroral E region by means of rockets flown from Fort Churchill, Canada. These results are described and compared over the altitude region 100 to 165 km. On a rocket flight launched on 10 December 1969 during very quiet conditions, adjacent to a stable, low intensity auroral arc, the plasma density and temperatures are found to be high and the electric fields large and steady. Electric field components of the order of -17 mv m -1 to +6 mv m -1 were measured along the Earth's magnetic field. The plasma results indicate that these fields may be contributing to enhanced electron temperatures. On a flight of 9 March 1970 during a large magnetic storm with widespread auroral activity, lower plasma densities and temperatures and much smaller and more erratic electric fields were observed with no significant component parallel to the magnetic field. (auth)

  15. Pressure field in measurement section of wind tunnel

    Directory of Open Access Journals (Sweden)

    Hnidka Jakub

    2017-01-01

    Full Text Available The University of Defence in Brno has a new low-speed wind tunnel. In order to confirm the quality of the wind inside of the measurement section, several measurements of the dynamic pressure have been performed with the Pitot-static tube. The pressure fields are then analysed and quality of the field is evaluated. Measurement of a pressure drop on the body of a standing helicopter was conducted.

  16. A relativistic theory for continuous measurement of quantum fields

    International Nuclear Information System (INIS)

    Diosi, L.

    1990-04-01

    A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs

  17. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  18. Influence of mechanical vibrations on the field quality measurements of LHC interaction region quadrupole magnets

    CERN Document Server

    Di Marco, J; Schlabach, P; Sylvester, C D; Tompkins, J C; Krzywinski, J

    2000-01-01

    The high gradient quadrupole magnets being developed by the US-LHC Accelerator Project for the LHC Interaction Regions have stringent field quality requirements. The field quality of these magnets will be measured using a rotating coil system presently under development. Mechanical vibrations of the coil during field quality measurements are of concern because such vibrations can introduce systematic errors in measurement results. This paper presents calculations of the expected influence of vibrations on field quality measurements and a technique to measure vibrations present in data acquired with standard "tangential-style" probes. Measured vibrations are reported and compared to simulations. Limits on systematic errors in multipole measurements are discussed along with implications for probe and measurement system design. (3 refs).

  19. Automatic system for evaluation of ionizing field

    International Nuclear Information System (INIS)

    Pimenta, N.L.; Calil, S.J.

    1992-01-01

    A three-dimensional cartesian manipulator for evaluating the ionizing field and able to position a ionization chamber in any point of the space is developed. The control system is made using a IBM microcomputer. The system aimed the study of isodose curves from ionizing sources, verifying the performance of radiotherapeutic equipment. (C.G.C.)

  20. Subwavelength position measurements with running-wave driving fields

    Energy Technology Data Exchange (ETDEWEB)

    Evers, Joerg [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Qamar, Sajid [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Centre for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)

    2011-08-15

    Subwavelength position measurement of quantum particles is discussed. Our setup is based on a closed-loop driving-field configuration, which enforces a sensitivity of the particle dynamics to the phases of the applied fields. Thus, running wave fields are sufficient, avoiding limitations associated with standing-wave-based localization schemes. Reversing the directions of the driving laser fields switches between different magnification levels for the position determination. This allows us to optimize the localization, and at the same time eliminates the need for additional classical measurements common to all previous localization schemes based on spatial periodicity.

  1. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  2. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  3. Field test measurements and system optimisation at a solar operated DEC ventilation system at industrial use; Feldtest-Messungen und Systemoptimierung an einer solarbetriebenen DEC-Klimatisierungsanlage im industriellen Einsatz

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Tobias; Finkenzeller, Michael; Trinkl, Christoph; Zoerner, Wilfried [Hochschule Ingolstadt (Germany). Kompetenzfeld Erneuerbare Energien

    2010-07-01

    The field of competence for renewable energy at the Ingolstadt University (Federal Republic of Germany) examines and optimizes an innovative, solar powered air conditioning system with DEC technology (DEC = Desiccant and Evaporative Cooling) in a multi-functional industrial buildings. In addition to a geothermal heat pump system for basic energy supply of heating and cooling, the building is fitted with two solar thermal solar collector panels and a sorption supported air conditioning system. This air conditioner consists of two units, each with a nominal air flow of 8,000 m{sup 3} per hour. The two solar collector panels provide the heat necessary for the regeneration of the sorption rotors and support the domestic preparation of hot water.

  4. Variability of Measured Runoff and Soil Loss from Field Plots

    Directory of Open Access Journals (Sweden)

    F. Asadzadeh

    2016-02-01

    Full Text Available Introduction: Field plots are widely used in studies related to the measurements of soil loss and modeling of erosion processes. Research efforts are needed to investigate factors affecting the data quality of plots. Spatial scale or size of plots is one of these factors which directly affects measuring runoff and soil loss by means of field plots. The effect of plot size on measured runoff or soil loss from natural plots is known as plot scale effect. On the other hand, variability of runoff and sediment yield from replicated filed plots is a main source of uncertainty in measurement of erosion from plots which should be considered in plot data interpretation processes. Therefore, there is a demand for knowledge of soil erosion processes occurring in plots of different sizes and of factors that determine natural variability, as a basis for obtaining soil loss data of good quality. This study was carried out to investigate the combined effects of these two factors by measurement of runoff and soil loss from replicated plots with different sizes. Materials and Methods: In order to evaluate the variability of runoff and soil loss data seven plots, differing in width and length, were constructed in a uniform slope of 9% at three replicates at Koohin Research Station in Qazvin province. The plots were ploughed up to down slope in September 2011. Each plot was isolated using soil beds with a height of 30 cm, to direct generated surface runoff to the lower part of the plots. Runoff collecting systems composed of gutters, pipes and tankswere installed at the end of each plot. During the two-year study period of 2011-2012, plots were maintained in bare conditions and runoff and soil loss were measured for each single event. Precipitation amounts and characteristics were directly measured by an automatic recording tipping-bucket rain gauge located about 200 m from the experimental plots. The entire runoff volume including eroded sediment was measured on

  5. Design of an arrangement for the production of a scattered photon field and the flux measurement

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.

    1992-01-01

    The design of an arrangement to create and measure a scattered radiation field is described. The expected flux distribution has been calculated using Monte Carlo techniques (EGS4 system). The proposed measurement system includes a collimator with an opening of 0.2deg and a detector with a ∝2% energy resolution. This system should have a positional uncertainty of millimetre, and a small amount (0.6%) of radiation scattered back from the measurement system to the source. (orig.)

  6. Field Measurement and Evaluation of the Passive and Active Solar Heating Systems for Residential Building Based on the Qinghai-Tibetan Plateau Case

    Directory of Open Access Journals (Sweden)

    Zhijian Liu

    2017-10-01

    Full Text Available Passive and active solar heating systems have drawn much attention and are widely used in residence buildings in the Qinghai-Tibetan plateau due to its high radiation intensity. In fact, there is still lack of quantitative evaluation of the passive and active heating effect, especially for residential building in the Qinghai-Tibetan plateau areas. In this study, three kinds of heating strategies, including reference condition, passive solar heating condition and active solar heating condition, were tested in one demonstration residential building. The hourly air temperatures of each room under different conditions were obtained and analyzed. The results show the indoor air temperature in the living room and bedrooms (core zones was much higher than that of other rooms under both passive and active solar heating conditions. In addition, the heating effect with different strategies for core zones of the building was evaluated by the ratio of indoor and outdoor degree hour, which indicates that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment. The passive solar heating could undertake 49.8% degree hours for heating under an evaluation criterion of 14 °C and the active solar heating could undertake 75% degree hours for heating under evaluation criterion of 18 °C, which indicated that solar heating could effectively reduce the traditional energy consumption and improve the indoor thermal environment in this area. These findings could provide reference for the design and application of solar heating in similar climate areas.

  7. Electromagnetic fields and health impact: measurements, monitoring and environmental indicators

    International Nuclear Information System (INIS)

    Lubritto, C.; Vetromile, C.; Petraglia, A.; Racioppoli, M.; D'Onofrio, A.

    2008-01-01

    Full text: During the last 10 years there has been a remarkable growth of the attention for problems related to the electromagnetic pollution, motivated by the alert connected to potential risk for the health of persons and due to the increasing diffusion of Bats for mobile telecommunication as EMF sources. Many projects are being realized about the environmental and health impact of electromagnetic field and an important social role is played by specific actions to minimize the risk perception of the population. This study aims to find an innovative approach to these problems through the use of a system of continuous time monitoring of the electromagnetic fields and the individuation of appropriate environmental indicators. The proposed system monitors the electromagnetic fields continuously over time, and is already operating in many southern Italian cities. It works in a very efficient way as a mean for: a) Info to the citizens, thanks to diffusion of daily collected data on Internet Web; b) Control for local administrations and Authorities, due to capability of the system itself to alert when measured values exceed the limits reported by the Italian laws; c) Planning, for the implementation of : 1) New procedures agreed among local environmental control agency, local administrations and mobile Companies for network planning and management of alarm situations; 2) New local guidelines documents concerning the installation and operation of telecommunications apparatus. Moreover, starting from the general principles of the Strategic Environmental Evaluation (VAS), the environmental impacts of EMS field is studied. Based on the model DPSIR (Drivers, Pressure, State, Impacts, Responses), 12 environmental indicators have been chosen providing an immediate and understandable tool to obtain very important information on electromagnetic pollution generated by radio-telecommunication systems. The selected environmental indicators have been applied to 11 cities of the

  8. TWRS system drawings and field verification

    International Nuclear Information System (INIS)

    Shepard, D.G.

    1995-01-01

    The Configuration Management Program combines the TWRS Labeling and O and M drawing and drawing verification programs. The combined program will produce system drawings for systems that are normally operated or have maintenance performed on the system, label individual pieces of equipment for proper identification, even if system drawings are not warranted, and perform verification of drawings that are identified as essential in Tank Farm Essential Drawing Plans. During fiscal year 1994, work was begun to label Tank Farm components and provide user friendly system based drawings for Tank Waste Remediation System (TWRS) operations and maintenance. During the first half of fiscal 1995, the field verification program continued to convert TWRS drawings into CAD format and verify the accuracy based on visual inspections. During the remainder of fiscal year 1995 these efforts will be combined into a single program providing system based drawings and field verification of TWRS equipment and facilities. This combined program for TWRS will include all active systems for tank farms. Operations will determine the extent of drawing and labeling requirements for single shell tanks, i.e. the electrical distribution, HVAC, leak detection, and the radiation monitoring system. The tasks required to meet these objectives, include the following: identify system boundaries or scope for drawing being verified; label equipment/components in the process systems with a unique Equipment Identification Number (EIN) per the TWRS Data Standard; develop system drawings that are coordinated by ''smart'' drawing numbers and/or drawing references as identified on H-14-020000; develop a Master Equipment List (MEL) multi-user data base application which will contain key information about equipment identified in the field; and field verify and release TWRS Operation and Maintenance (O and M) drawings

  9. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  10. High speed pulsed magnetic fields measurements, using the Faraday effect

    International Nuclear Information System (INIS)

    Dillet, A.

    1964-12-01

    For these measures, the information used is the light polarization plane rotation induced by the magnetic field in a glass probe. This rotation is detected using a polarizer-analyzer couple. The detector is a photomultiplier used with high-current and pulsed light. In a distributed magnet (gap: 6 x 3 x 3 cm) magnetic fields to measure are 300 gauss, lasting 0.1 μs, with rise times ≤ 35 ns, repetition rate: 1/s. An oscilloscope is used to view the magnetic field from the P.M. plate signal. The value of the field is computed from a previous static calibration. Magnetic fields from 50 to 2000 gauss (with the probe now used) can be measured to about 20 gauss ± 5 per cent, with a frequency range of 30 MHz. (author) [fr

  11. Automated System of Area Radiation Measurement (ASARM)

    International Nuclear Information System (INIS)

    Hernandez G, J.

    2013-10-01

    The realized activities in nuclear facilities involve the determination of the presence of ionizing radiation fields in the workspaces. The instruments designed to detect and to measure these radiation fields provide useful information (specific type of radiation, intensity, etc.) to take the appropriate radiological protection measures, with the purpose of reducing to the minimum the workers exposition and the people in general. The radiological protection program of Reactor TRIGA Mark III contains the instructions and procedures to implement a periodic radiological monitoring, surveillance, rising of contamination levels, type and number of the instruments required for the radiological monitoring of areas and personal. The ana logical monitoring system model Rms II used to detect and measuring exposition speed and neutron radiation fields in several areas of the installation, provides the information in a logarithmic scale measurer of 4 or 5 decades located in a shelf where the previously mentioned measurement channels are centralized. Also inside the reactor monitoring system are two monitors of radioactive material concentration in the air: The particles continuous monitor and the gaseous effluents monitor which present the referred information of the diverse detectors through ana logical readers. These monitors when operating with an ana logical indication does not present the possibility to generate historical files electronically of each monitor previously mentioned neither to generate visual and audible indications of the alarms. This work presents the Automated System of Area Radiation Measurement which potentiated the functionality of the area monitors for gamma and neutron radiation, as well as of the particles continuous monitor and the gaseous effluents of reactor TRIGA Mark III, when being developed a computer system that captures in real time the information of all the monitors, generating this way an electronic binnacle, a visual and audible alarm

  12. Random walks, random fields, and disordered systems

    CERN Document Server

    Černý, Jiří; Kotecký, Roman

    2015-01-01

    Focusing on the mathematics that lies at the intersection of probability theory, statistical physics, combinatorics and computer science, this volume collects together lecture notes on recent developments in the area. The common ground of these subjects is perhaps best described by the three terms in the title: Random Walks, Random Fields and Disordered Systems. The specific topics covered include a study of Branching Brownian Motion from the perspective of disordered (spin-glass) systems, a detailed analysis of weakly self-avoiding random walks in four spatial dimensions via methods of field theory and the renormalization group, a study of phase transitions in disordered discrete structures using a rigorous version of the cavity method, a survey of recent work on interacting polymers in the ballisticity regime and, finally, a treatise on two-dimensional loop-soup models and their connection to conformally invariant systems and the Gaussian Free Field. The notes are aimed at early graduate students with a mod...

  13. NKS MOMS. Final report. [Mobile Measurement Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nilssen, J. [Norwegian Radiation Protection Authority (NRPA) (Norway); Aage, H.K. [Danish Emergency Management Agency (DEMA) (Denmark); Palsson, S.E. [Icelandic Radiation Safety Authority (IRSA) (Iceland)

    2013-02-15

    Mobile car-borne measurement systems are an important asset in early phase emergency response in all Nordic countries. However, through the development of the systems in the different countries, there are considerable differences between the systems developed. This complicates Nordic cooperation and mutual assistance in emergency situations. This project aimed to facilitate harmonization of mobile measurement systems between the Nordic countries. The project focused on harmonizing data formats, information exchange and measurement strategies. Although the work done was funded by each member, the project established a good platform for cooperation which will hopefully continue beyond the scope of the project. A two-day seminar was held in May 2012, where all participants presented the current status (equipment, methods used etc.), in addition to invited speakers presenting development within the field of mobile detection and in situ measurements. Exchange of experiences and information on different measurement systems and practises in use was an important part of the seminar. The seminar was followed up by a small workshop during the REFOX exercise in Lund, Sweden, September 2012. Exchange of measurement data from the exercise was facilitated through a workspace proveded by NRPA as part of the MOMS project. The work done in this project will be presented at the NordEx12 seminar in March 2013. (Author)

  14. Energy field of thermodynamic syste'ms

    International Nuclear Information System (INIS)

    Volchenkova, R.A.

    1984-01-01

    To reveal the qualitative and quantitative rules, regulating the properties of macro- and microsystems consideration is being given to the dependence of system enthalpy on environmental conditions. It was concluded that the dependence of material system enthalpy on temperature represents the energy field, containing the energy boundaries of phase states, described by exponential functions, in which the elements are arranged monotonically in the sequence of change of interatomic bonds, correlated with their physicomechanical properties; energy boundaries of phase states at that emanate from a single point, which is a reference a single point, which a reference one for the whole material system and determining its energy state in initial position. The presented energy field of thermodynamic systems enables to consider the change of their physicomechanical properties and energy state in dynamic process, depending on environmental parameters. Energy characteristics of single-component systems (W, Re, Hf, Nb, Mo etc) are given

  15. Monte Carlo simulated corrections for beam commissioning measurements with circular and MLC shaped fields on the CyberKnife M6 System: a study including diode, microchamber, point scintillator, and synthetic microdiamond detectors

    Science.gov (United States)

    Francescon, P.; Kilby, W.; Noll, J. M.; Masi, L.; Satariano, N.; Russo, S.

    2017-02-01

    Monte Carlo simulation was used to calculate correction factors for output factor (OF), percentage depth-dose (PDD), and off-axis ratio (OAR) measurements with the CyberKnife M6 System. These include the first such data for the InCise MLC. Simulated detectors include diodes, air-filled microchambers, a synthetic microdiamond detector, and point scintillator. Individual perturbation factors were also evaluated. OF corrections show similar trends to previous studies. With a 5 mm fixed collimator the diode correction to convert a measured OF to the corresponding point dose ratio varies between  -6.1% and  -3.5% for the diode models evaluated, while in a 7.6 mm  ×  7.7 mm MLC field these are  -4.5% to  -1.8%. The corresponding microchamber corrections are  +9.9% to  +10.7% and  +3.5% to  +4.0%. The microdiamond corrections have a maximum of  -1.4% for the 7.5 mm and 10 mm collimators. The scintillator corrections are  15%, reducing to    d max were  M6 Systems and retrospectively checking estimated corrections used previously. We recommend the PDD and OAR corrections are used to guide detector selection and inform the evaluation of results rather than to explicitly correct measurements.

  16. Physical Measurement Profile at Gilgel Gibe Field Research Center ...

    African Journals Online (AJOL)

    Physical Measurement Profile at Gilgel Gibe Field Research Center, ... hip circumference in under 35 years and body mass index in under 45 year age groups were ... Comparison with findings in other parts of the world showed that Ethiopians ...

  17. Measuring average angular velocity with a smartphone magnetic field sensor

    Science.gov (United States)

    Pili, Unofre; Violanda, Renante

    2018-02-01

    The angular velocity of a spinning object is, by standard, measured using a device called a tachometer. However, by directly using it in a classroom setting, the activity is likely to appear as less instructive and less engaging. Indeed, some alternative classroom-suitable methods for measuring angular velocity have been presented. In this paper, we present a further alternative that is smartphone-based, making use of the real-time magnetic field (simply called B-field in what follows) data gathering capability of the B-field sensor of the smartphone device as the timer for measuring average rotational period and average angular velocity. The in-built B-field sensor in smartphones has already found a number of uses in undergraduate experimental physics. For instance, in elementary electrodynamics, it has been used to explore the well-known Bio-Savart law and in a measurement of the permeability of air.

  18. The measurement of the modal strain fields using digital shearography

    Directory of Open Access Journals (Sweden)

    Gomes J.M.

    2010-06-01

    Full Text Available This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields on a clamped circular aluminium plate. The speckle pattern is frozen by the synchronization between the LASER illumination and the modal vibration of the object. The quantitative evaluation is performed for each digital shearogram using a time modulation technique. The setup of double illumination LASER with out-of-plane opposite sensitivity allows the two phase maps measurement of the modal spatial gradient. The modal rotation and strain fields are extracted by the combination of this two digital phase maps. Image processing techniques are applied on the phase maps to obtain full-field measurements using a dedicated post-processing algorithm. Finally, is presented a comparison between the experimental measurement and the numerical solution.

  19. Instructions for 104-SX liquid level measurement field tests

    International Nuclear Information System (INIS)

    Webb, R.H.

    1994-01-01

    This document provides detailed instructions for field testing a suggested solution of inserting a liner inside the 104-SX failed Liquid Observation Well to gain access for making temporary Liquid Level Measurement until a permanent solution has been provided

  20. Regarding KUR Reactivity Measurement System

    International Nuclear Information System (INIS)

    Nakamori, Akira; Hasegawa, Kei; Tsuchiyama, Tatsuo; Yamamoto, Toshihiro; Okumura, Ryo; Sano, Tadafumi

    2012-01-01

    This article reported: (1) the outline of the reactivity measurement system of Kyoto University Research Reactor (KUR), (2) the calibration data of control rod, (3) the problems and the countermeasures for range switching of linear output meter. For the laptop PC for the reactivity measurement system, there are four input signals: (1) linear output meter, (2) logarithmic output meter, (3) core temperature gauge, and (4) control rod position. The hardware of reactivity measurement system is controlled with Labview installed on the laptop. Output, reactivity, reactor period, and the change in reactivity due to temperature effect or Xenon effect are internally calculated and displayed in real-time with Labview based on the four signals above. Calculation results are recorded in the form of a spreadsheet. At KUR, the reactor core arrangement was changed, so the control rod was re-calibrated. At this time, calculated and experimental values of reactivity based on the reactivity measurement system were compared, and it was confirmed that the reactivity calculation by Labview was accurate. The range switching of linear output meter in the nuclear instrumentation should automatically change within the laptop, however sometimes this did not function properly in the early stage. It was speculated that undefined percent values during the transition of percent value were included in the calculation and caused calculation errors. The range switching started working properly after fixing this issue. (S.K.)

  1. A Neutron Radiography System for Field Use

    Science.gov (United States)

    1989-06-01

    provoked a major renewal of interest in neutron radiography because it promises to bring neutron radiography to the workplace , a convenience provided...II I~F I C II i IiH i ii MTL TR 89-52 I-AD A NEUTRON RADIOGRAPHY SYSTEM N FOR FIELD USE e~m JOHN J. ANTAL and ALFRED S. MAROTTA, and LOUIS J. FARESE...COVERED A NEUTRON RADIOGRAPHY SYSTEM FOR FIELD USE Final Report 6. PERFORMING OR1. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(s) John J

  2. Advances in the measurement of weak magnetic fields

    International Nuclear Information System (INIS)

    Li Damin; Huang Minzhe.

    1992-01-01

    The state-of-art and general features of instruments for measuring weak magnetic fields (such as the non-directional magnetometer, induced coil magnetometer, proton magnetometer, optical pumping magnetometer, flux-gate magnetometer and superconducting quantum magnetometer) are briefly described. Emphasis is laid on the development of a novel technique used in the flux-gate magnetometer and the liquid nitrogen SQUID. Typical applications of the measuring techniques for weak magnetic fields are given

  3. Phase retrieval in near-field measurements by array synthesis

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm

    1991-01-01

    The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array......The phase retrieval problem in near-field antenna measurements is formulated as an array synthesis problem. As a test case, a particular synthesis algorithm has been used to retrieve the phase of a linear array...

  4. In vivo rapid field map measurement and shimming

    International Nuclear Information System (INIS)

    Kanayama, Shoichi; Kassai, Yoshimori; Kondo, Masafumi; Kuhara, Shigehide; Satoh, Kozo; Seo, Yasutsugu.

    1992-01-01

    MR imaging and MR spectroscopy need a homogeneous static magnetic field. The static field characteristics are determined by the magnet's homogeneity, the set-up conditions, and the magnetic suspectibility of the subject itself. The field inhomogeneity is usually minimized only once when the apparatus is installed. However, field distortions arising from the magnetic susceptibility differ with each subject and region. To overcome this problem, in vivo shimming can be carried out to improve the homogeneity. The procedures are too lengthy when applying the conventional shimming techniques in vivo. We have developed a new field map measurement technique using a double gradient-recalled echo phase mapping. The values of the currents for the 13-channel shim coils are derived by least squares fitting to the field map and automatically applied to the shim coils. The proposed technique can rapidly and accurately measure the field map in vivo and correct the field inhomogeneity. The results show that this technique improves the homogeneity, especially in regions having a simple field distribution. However, local sharp field distortions which can not be practically corrected by shimming occur near the eyes, ears, heart, etc. due to abrupt susceptibility changes. (author)

  5. The Virtual Fields Method Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements

    CERN Document Server

    Pierron, Fabrice

    2012-01-01

    The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first book on the Virtual Fields Method (VFM), a technique to identify materials mechanical properties from full-field measurements. Firmly rooted with extensive theoretical description of the method, the book presents numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials) and situations (static, vibration, high strain rate). The authors give a detailed training section with examples of progressive difficulty to lead the reader to program the VFM and include a set of commented Matlab programs as well as GUI Matlab-based software for more general situations. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is an ideal book for researchers, engineers, and students interested in applying the VFM to new situations motivated by their research.  

  6. Measurement of spectrometric magnet field of EXCHARM setup

    International Nuclear Information System (INIS)

    Aleev, A.N.; Balandin, V.P.; Bordyukov, A.A.

    1998-01-01

    The EXCHARM spectrometer is used for studying charm, strange and exotic hadrons. It is located at the neutron 5N channel of U-70 accelerator (Protvino). The EXCHARM dipole magnet has external size 4.486 x 3.196 x 3.058 m 3 with aperture 2.74 x 0.489 m 2 . The field measurement was made by three-component Hall magnetometer on-line computer in measurement region 2.40 x 0.32 x 3.78 m 3 . The apparatus and methods of the field measuring are described. The results of the measurements of the magnetic field are presented. The estimation of the measurement precision is given. (author)

  7. Field Performance of Photovoltaic Systems in the Tucson Desert

    Science.gov (United States)

    Orsburn, Sean; Brooks, Adria; Cormode, Daniel; Greenberg, James; Hardesty, Garrett; Lonij, Vincent; Salhab, Anas; St. Germaine, Tyler; Torres, Gabe; Cronin, Alexander

    2011-10-01

    At the Tucson Electric Power (TEP) solar test yard, over 20 different grid-connected photovoltaic (PV) systems are being tested. The goal at the TEP solar test yard is to measure and model real-world performance of PV systems and to benchmark new technologies such as holographic concentrators. By studying voltage and current produced by the PV systems as a function of incident irradiance, and module temperature, we can compare our measurements of field-performance (in a harsh desert environment) to manufacturer specifications (determined under laboratory conditions). In order to measure high-voltage and high-current signals, we designed and built reliable, accurate sensors that can handle extreme desert temperatures. We will present several benchmarks of sensors in a controlled environment, including shunt resistors and Hall-effect current sensors, to determine temperature drift and accuracy. Finally we will present preliminary field measurements of PV performance for several different PV technologies.

  8. Toward a direct comparison of field and laboratory goniometer measurements

    NARCIS (Netherlands)

    Dangel, S.; Verstraete, M.; Schopfer, J.; Kneubuehler, M.; Schaepman, M.E.; Itten, K.I.

    2005-01-01

    Field and laboratory goniometers are widely used in the remote sensing community to assess spectrodirectional reflection properties of selected targets. Even when the same target and goniometer system are used, field and laboratory results cannot directly be compared due to inherent differences,

  9. Field hearing measurements of the Atlantic sharpnose shark Rhizoprionodon terraenovae.

    Science.gov (United States)

    Casper, B M; Mann, D A

    2009-12-01

    Field measurements of hearing thresholds were obtained from the Atlantic sharpnose shark Rhizoprionodon terraenovae using the auditory evoked potential method (AEP). The fish had most sensitive hearing at 20 Hz, the lowest frequency tested, with decreasing sensitivity at higher frequencies. Hearing thresholds were lower than AEP thresholds previously measured for the nurse shark Ginglymostoma cirratum and yellow stingray Urobatis jamaicensis at frequencies sharks which have been observed in acoustic field attraction experiments. The sound pressure levels that would be equivalent to the particle acceleration thresholds of R. terraenovae were much higher than the sound levels which attracted closely related sharks suggesting a discrepancy between the hearing threshold experiments and the field attraction experiments.

  10. Upper critical field measurements in high-Tc superconducting oxides

    Science.gov (United States)

    Ousset, J. C.; Bobo, J. F.; Ulmet, J. P.; Rakoto, H.; Cheggour, N.

    We present upper critical field measurements on the superconducting oxides RE Ba2Cu3O7-δ (RE = Y, Gd) performed in a pulsed magnetic field up to 43 T. Values for Hc2 as high as 52 T and 77 T for Y and Gd respectively, are expected at 77 K. However, in order to observe no resistive behaviour up to 43 T the temperature must be decreased down to 50 K. In the case of oxygen deficient systems the magnetoresistance reveals two superconducting phases wich could be related to two different orders of oxygen vacancies. Nous présentons des mesures de champ critique Hc2 sur les supraconducteurs TR Ba 2Cu3O7-δ (TR = Y, Gd) réalisées en champ magnétique pulsé jusqu'à 43 T. Elles permettent de prévoir des valeurs de H c2 de 52 T et 77 T respectivement pour Y et Gd à 77 K. Cependant, pour ne pas observer de comportement résistif jusqu'au champ maximum, il est nécessaire de refroidir l'échantillon jusqu'à 50 K. Dans le cas des systèmes déficients en oxygène (δ important) nous mettons en évidence l'existence de deux phases supraconductrices qui pourraient être dues à deux ordres différents des lacunes d'oxygène.

  11. DOM. A dewar for optical measurements in magnetic field

    International Nuclear Information System (INIS)

    Baldacchini, G.

    1975-01-01

    A cryostat for low helium temperature has been designed and realized with the aim to perform optical investigations at high magnetic fields. The superconductor magnet is also described and the performance of the whole system presented

  12. Field Installation and Real-Time Data Processing of the New Integrated SeismoGeodetic System with Real-Time Acceleration and Displacement Measurements for Earthquake Characterization Based on High-Rate Seismic and GPS Data

    Science.gov (United States)

    Zimakov, Leonid; Jackson, Michael; Passmore, Paul; Raczka, Jared; Alvarez, Marcos; Barrientos, Sergio

    2015-04-01

    We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chilean National Network. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and, using the Trimble Pivot™ SeismoGeodetic App, the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized package. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording element includes an ANSS Class A, force balance triaxial accelerometer with the latest, low power, 24-bit A/D converter, which produces high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol with back fill capability providing data integrity between the field and the processing center. The SG160-09 has been installed in the seismic station close to the area of the Iquique earthquake of April 1, 2014, in northern Chile, a seismically prone area at the current time. The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the National Seismological Center in Santiago for real-time data processing using Earthworm / Early Bird software. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot software suite. Data from the SG160-09 system was

  13. Review - X-ray diffraction measurements in high magnetic fields and at high temperatures

    Directory of Open Access Journals (Sweden)

    Yoshifuru Mitsui, Keiichi Koyama and Kazuo Watanabe

    2009-01-01

    Full Text Available A system was developed measuring x-ray powder diffraction in high magnetic fields up to 5 T and at temperatures from 283 to 473 K. The stability of the temperature is within 1 K over 6 h. In order to examine the ability of the system, the high-field x-ray diffraction measurements were carried out for Si and a Ni-based ferromagnetic shape-memory alloy. The results show that the x-ray powder diffraction measurements in high magnetic fields and at high temperatures are useful for materials research.

  14. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  15. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A large number of portable survey instruments employing G.M., ionization chamber, and scintillation detectors used for gamma measurements are also used for monitoring in beta fields by using removable shields to separate the beta and gamma components of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. Appropriate calibrations and correction factors can be used to reduce the errors in beta measurements to a tolerable level

  16. Quantum field theory and multiparticle systems

    International Nuclear Information System (INIS)

    Trlifaj, M.

    1981-01-01

    The use of quantum field theory methods for the investigation of the physical characteristics of the MANY-BODY SYSTEMS is discussed. Mainly discussed is the method of second quantization and the method of the Green functions. Briefly discussed is the method of calculating the Green functions at finite temperatures. (Z.J.)

  17. Field Systems Research: Sport Pedagogy Perspectives.

    Science.gov (United States)

    Locke, Lawrence F.; And Others

    1992-01-01

    These articles contain responses from several scholars on the issue of field systems analysis (FSA). The scholars offer critiques from their sport pedagogy perspectives, a reaction relating FSA to personal examinations of teaching expertise, and a discussion of how computer simulation informs the study of expert teachers. (SM)

  18. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, USA. Flessa, H., R. Ruser, R. Schilling, N. Loftfield, J.C. Munch, E.A. Kaiser and F. Beese, 2002. N2O and CH4 fluxes in potato fields: automated measurement, management effects and temporal variation. Geoderma 105(3-4): 307-325. Hénault, C., A. Grossel, B. Mary, M. Roussel and J. Léonard, 2012. Nitrous Oxide Emission by Agricultural Soils: A Review of Spatial and Temporal Variability for Mitigation. Pedosphere 22(4): 426-433. Senapati, N., A. Chabbi, A. Faé Giostri, J. B. Yeluripati and P. Smith, 2016. Modelling nitrous oxide emissions frommown-grass and grain-cropping systems: Testing and sensitivity analysis of DailyDayCent using high frequency measurements. Science of the Total Environment 572: 955-977.

  19. The equipment for low radioactivity measurements in industrial and field conditions

    International Nuclear Information System (INIS)

    Malik, R.; Owczarczyk, A.; Szpilowski, S.; Zenczykiewicz, Z.

    1992-01-01

    The equipment for low radioactivity measurements in industrial and field conditions has been worked out. Three scintillation detectors applied work in coincidence system. Their scintillation crystals are divided one to another by lead shieldings. All measuring system is situated in a lead container with lead cover. The measuring vessel fills practically all free volume of the lead container. Their shape ensures the best possible measurement geometry. (author). 3 figs

  20. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH...

  1. Quantum field theory in stationary coordinate systems

    International Nuclear Information System (INIS)

    Pfautsch, J.D.

    1981-01-01

    Quantum field theory is examined in stationary coordinate systems in Minkowski space. Preliminary to quantization of the scalar field, all of the possible stationary coordinate systems in flat spacetime are classified and explicitly constructed. Six distinct classes of such systems are found. Of these six, three have (identical) event horizons associated with them and five have Killing horizons. Two classes have distinct Killing and event horizons, with an intervening region analogous to the ergosphere in rotating black holes. Particular representatives of each class are selected for subsequent use in the quantum field theory. The scalar field is canonically quantized and a vacuum defined in each of the particular coordinate systems chosen. The vacuum states can be regarded as adapted to the six classes of stationary motions. There are only two vacuum states found, the Minkowski vacuum in those coordinate systems without event horizons and the Fulling vacuum in those with event horizons. The responses of monopole detectors traveling along stationary world lines are calculated in both the Minkowski and Fulling vacuums. The responses for each class of motions are distinct from those for every other class. A vacuum defined by the response of a detector must therefore not be equivalent in general to a vacuum defined by canonical quantization. Quantization of the scalar field within a rotating wedge is examined. It has not been possible to construct mode functions satisfying appropriate boundary conditions on the surface of the wedge. The asymptotic form of the renormalized stress tensor near the surfaces had been calculated and is found to include momentum terms which represent a circulation of energy within the wedge

  2. Determining CDOM Absorption Spectra in Diverse Coastal Environments Using a Multiple Pathlength, Liquid Core Waveguide System. Measuring the Absorption of CDOM in the Field Using a Multiple Pathlength Liquid Waveguide System

    Science.gov (United States)

    Miller, Richard L.; Belz, Mathias; DelCastillo, Carlos; Trzaska, Rick

    2000-01-01

    We evaluated the accuracy, sensitivity and precision of a multiple pathlength, liquid core waveguide (MPLCW) system for measuring colored dissolved organic matter (CDOM) absorption in the UV-visible spectral range (370-700 nm). The MPLCW has four optical paths (2.0, 9.8, 49.3, and 204 cm) coupled to a single Teflon AF sample cell. Water samples were obtained from inland, coastal and ocean waters ranging in salinity from 0 to 36 PSU. Reference solutions for the MPLCW were made having a refractive index of the sample. CDOM absorption coefficients, a(sub CDOM), and the slope of the log-linearized absorption spectra, S, were compared with values obtained using a dual-beam spectrophotometer. Absorption of phenol red secondary standards measured by the MPLCW at 558 nm were highly correlated with spectrophotometer values (r > 0.99) and showed a linear response across all four pathlengths. Values of a(sub CDOM) measured using the MPLCW were virtually identical to spectrophotometer values over a wide range of concentrations. The dynamic range of a(sub CDOM) for MPLCW measurements was 0.002 - 231.5/m. At low CDOM concentrations (a(sub 370) CDOM) were slightly greater than MPLCW values and showed larger fluctuations at longer wavelengths due to limitations in instrument precision. In contrast, MPLCW spectra followed an exponential to 600 nm for all samples. The maximum deviation in replicate MPLCW spectra was less than 0.001 absorbance units. The portability, sampling, and optical characteristics of a MPLCW system provide significant enhancements for routine CDOM absorption measurements in a broad range of natural waters.

  3. TRU assay system and measurements

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1984-02-01

    The measurement of the transuranic content of nuclear products or process residues has become increasingly important for the recovery of fissionable material from spent fuel elements, the identification of commercial fuel elements which have not yet reached full burnup, the measurement and recovery of transuranics from discarded or stored waste materials, the determination of the transuranic content in high gamma activity waste material scheduled for disposal, compliance with 10CFR61 by land burial operators/shippers, and the satisfaction of accountability requirements. Active neutron interrogation techniques measure either the prompt neutrons or the beta delayed neutrons from fission products following induced fission. These techniques normally only measure fissile transuranics ( 235 U, 239 Pu, and 241 Pu) and are commonly applied only to contact handleable waste. Passive neutron interrogation techniques, on the other hand, are capable of measuring all transuranics except 235 U with adequate sensitivity and will work on both contact handleable and high gamma activity wastes. Since the passive techniques are senstitive to a wider spectrum of transuranic isotopes than the active techniques, substantially less complex and less expensive than the active systems, and they have proven techniques for measuring small quantities of TRU in high gamma activity packages, the passive neutron TRU assay technology was chosen for development into the instruments discussed in this paper

  4. Patch near field acoustic holography based on particle velocity measurements

    DEFF Research Database (Denmark)

    Zhang, Yong-Bin; Jacobsen, Finn; Bi, Chuan-Xing

    2009-01-01

    Patch near field acoustic holography (PNAH) based on sound pressure measurements makes it possible to reconstruct the source field near a source by measuring the sound pressure at positions on a surface. that is comparable in size to the source region of concern. Particle velocity is an alternative...... examines the use of particle velocity as the input of PNAH. Because the particle velocity decays faster toward the edges of the measurement aperture than the pressure does and because the wave number ratio that enters into the inverse propagator from pressure to velocity amplifies high spatial frequencies...

  5. Science outside the laboratory measurement in field science and economics

    CERN Document Server

    Boumans, Marcel

    2015-01-01

    The conduct of most of social science occurs outside the laboratory. Such studies in field science explore phenomena that cannot for practical, technical, or ethical reasons be explored under controlled conditions. These phenomena cannot be fully isolated from their environment or investigated by manipulation or intervention. Yet measurement, including rigorous or clinical measurement, does provide analysts with a sound basis for discerning what occurs under field conditions, and why. In Science Outside the Laboratory, Marcel Boumans explores the state of measurement theory, its reliability, and the role expert judgment plays in field investigations from the perspective of the philosophy of science. Its discussion of the problems of passive observation, the calculus of observation, the two-model problem, and model-based consensus uses illustrations drawn primarily from economics. Rich in research and discussion, the volume clarifies the extent to which measurement provides valid information about objects an...

  6. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magnetic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  7. Review of MFTF yin-yang magnet displacement and magnetic field measurements and calculations

    International Nuclear Information System (INIS)

    Hanson, C.L.; Myall, J.O.; Wohlwend, J.W.

    1983-01-01

    During the recent testing of the MFTF yin-yang magnet, measurements of coil position, structural case strain, and magnetic field were made to verify calculated values. Measurements to detect magnet movement were taken throughout cooldown and during the operation of the magnet. The magnetic field at the mirror points was measured by Hall-effect probes. The magnet position, structural case strain, and magntic field measurements indicated a reasonably close correlation with calculated values. Information obtained from the yin-yang test has been very useful in setting realistic mechanical alignment values for the new MFTF-B magnet system

  8. Fiber-optic evanescent-field sensor for attitude measurement

    Science.gov (United States)

    Liu, Yun; Chen, Shimeng; Liu, Zigeng; Guang, Jianye; Peng, Wei

    2017-11-01

    We proposed a new approach to attitude measurement by an evanescent field-based optical fiber sensing device and demonstrated a liquid pendulum. The device consisted of three fiber-optic evanescent-filed sensors which were fabricated by tapered single mode fibers and immersed in liquid. Three fiber Bragg gratings were used to measure the changes in evanescent field. And their reflection peaks were monitored in real time as measurement signals. Because every set of reflection responses corresponded to a unique attitude, the attitude of the device could be measured by the three fiber-optic evanescent-filed sensors. After theoretical analysis, computerized simulation and experimental verification, regular responses were obtained using this device for attitude measurement. The measurement ranges of dihedral angle and direction angle were 0°-50° and 0°-360°. The device is based on cost-effective power-referenced scheme. It can be used in electromagnetic or nuclear radiation environment.

  9. Comparison of electric field exposure measurement methods under power lines

    International Nuclear Information System (INIS)

    Korpinen, L.; Kuisti, H.; Tarao, H.; Paeaekkoenen, R.; Elovaara, J.

    2014-01-01

    The object of the study was to investigate extremely low frequency (ELF) electric field exposure measurement methods under power lines. The authors compared two different methods under power lines: in Method A, the sensor was placed on a tripod; and Method B required the measurer to hold the meter horizontally so that the distance from him/her was at least 1.5 m. The study includes 20 measurements in three places under 400 kV power lines. The authors used two commercial three-axis meters, EFA-3 and EFA-300. In statistical analyses, they did not find significant differences between Methods A and B. However, in the future, it is important to take into account that measurement methods can, in some cases, influence ELF electric field measurement results, and it is important to report the methods used so that it is possible to repeat the measurements. (authors)

  10. TPX Poloidal Field (PF) power systems simulation

    International Nuclear Information System (INIS)

    Lu, E.; Bronner, G.

    1993-01-01

    This paper describes the modeling and simulation of the PF power system for the Tokamak Physics Experiment (TPX), which is required to supply pulsed DC current to the Poloidal Field (PF) superconducting coil system. An analytical model was developed to simulate the dynamics of the PF power system for any PF current scenario and thereby provide the basis for selection of PF circuit topology, in support of the major design goal of optimizing the use of the existing Tokamak Fusion Test Reactor (TFTR) facilities at the Princeton Plasma Physics Lab (PPPL)

  11. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  12. Field: A Program for Simulating Ultrasound Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1997-01-01

    A program for the simulation of ultrasound systems is presented.It is based on the Tupholme-Stepanishen method, and is fastbecause of the use of a far-field approximation. Any kind oftransducer geometry and excitation can be simulated, and bothpulse-echo and continuous wave fields can be calculated...... for bothtransmit and pulse-echo. Dynamic apodization and focusing arehandled through time lines, and different focusingschemes can be simulated. The versatility of the program isensured by interfacing it to Matlab. All routines are calleddirectly from Matlab, and all Matlab features can be used. Thismakes...

  13. Proposed tokamak poloidal field system development program

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Vogel, H.F.; Warren, R.W.; Weldon, D.M.

    1977-05-01

    A program is proposed to develop poloidal field components for TNS and EPR size tokamak devices and to test these components in realistic circuits. Emphasis is placed upon the development of the most difficult component, the superconducting ohmic-heating coil. Switches must also be developed for testing the coils, and this switching technology is to be extended to meet the requirements for the large scale tokamaks. Test facilities are discussed; power supplies, including a homopolar to drive the coils, are considered; and poloidal field systems studies are proposed.

  14. Field measurements for low-aperture magnetic elements

    International Nuclear Information System (INIS)

    Mikhajlichenko, A.A.

    1989-01-01

    The method of the field measurements with help of bismuth wire in low aperture magnetic elements is revised. The quadrupole with permanent magnets was tested. It has aperture diameter about 4 mm and length 40 mm. Gradient about 38 kOe/cm was measured. The accuracy of the magnetic axis position definition is better than 1 μm. This method is a good kandidate for linear colider low aperture magnetic elements measurements. 7 refs.; 6 figs

  15. Precise measurements and shimming of magnetic field gradients in the low field regime

    Energy Technology Data Exchange (ETDEWEB)

    Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Repetto, Maricel; Sobolev, Yuri; Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Krause, Hans-Joachim; Offenhaeuser, Andreas [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); Collaboration: MIXed-Collaboration

    2016-07-01

    For many experiments at the precision frontier of fundamental physics, the accurate measurement and knowledge of magnetic field gradients in particular in the low field regime (<μT) is a necessity: On the one hand, in the search for an Electric Dipole Moment (EDM) of free neutrons or atoms, field gradients contribute to geometric-phase-induced false EDM signals for particles in traps. On the other hand, clock comparison experiments like the {sup 3}He/{sup 129}Xe spin clock experiment suffer from gradients, since the coherent T{sub 2}*-time of free spin precession, and thus the measurement sensitivity, scales ∝ ∇ vector B{sup -2}. Here we report on a new and very effective method, to shim and to measure tiny magnetic field gradients in the range of pT/cm by using effective T{sub 2}*-measurement sequences in varying the currents of trim coils of known geometry.

  16. Estimation of magnetic field in a region from measurements of the field at discrete points

    International Nuclear Information System (INIS)

    Alexopoulos, Theodore; Dris, Manolis; Lucas, Demetrios.

    1984-12-01

    A method is given to estimate the magnetic field in a region from measurements of the field in its surface and its interior. The method might be useful in high energy physics and other experiments that use large area magnets. (author)

  17. Measurement of 50 Hz magnetic fields in some Norwegian households

    International Nuclear Information System (INIS)

    Karlsen, J.; Johnsson, A.

    1987-01-01

    An examination of 50 Hz magnetic fields has been made in ten different Norwegian dwellings. The aim was to measure the general background level of the 50 Hz magnetic fields. The investigation followed a protocol also used in Swedish measurements, and direct comparisons are therefore possible. A portable, commercial coil instrument was used. In september 1986 and January 1987 the magnetic fields in living rooms, sleeping rooms, and kitchens were measured according to the standardized procedure. Current consumption and temperature at the time of the measurements were also recorded. A clear correlation was noted between the magnetic field values and the current consumption. The mean values of the magnetic fields in the living rooms, sleeping rooms and kitchens, were 12 nT, 11 nT and 160 nT, respectively. The living and sleeping room values can be regarded as very low, and they are much lower than corresponding Swedish values. The kitchen values in the two countries seem, however, to be of the same order of magnitude. The report discusses the need for additional measurements in Norwegian houses

  18. Integrated management systems in the nuclear field

    International Nuclear Information System (INIS)

    Beckmerhagen, I.A.; Berg, H.P.; Karapetrovic, S.V.; Willborn, W.O.

    2005-01-01

    In the last years several internationally accepted standards such as the ISO 9000 and ISO 14000 series and other function-specific management systems standards have been developed. At the same time, it has become imperative for organisations to continuously improve their overall quality, environmental and safety performance. Therefore, the need to create integrated management systems is of growing importance to enable an easier handling of the different management systems. This paper has two main objectives. The first one is to address the key issues in the underlying theory of integrated management systems including benefits and limits, the second one is to illustrate the importance of an integrated (in particular safety) management system and the experience feedback providing examples from different areas and different organisations in the nuclear field. (orig.)

  19. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  20. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  1. Eddy Correlation Flux Measurement System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D. R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  2. Aerial radiological measuring system program

    International Nuclear Information System (INIS)

    Doyle, J.F.; Boyns, P.K.

    1972-01-01

    The present ARMS aircraft has an effective survey time of four hours. Typical survey altitudes are 300 to 500 feet for terrain surveys and up to 20,000 feet for cloud tracks. A number of special airframe modifications have been made to accommodate the various sensor systems. The ARMS radiation measurement system consists of fourteen 4-inch diameter by 4-inch thick sodium iodide (NaI) detectors, a summing network for the detector signals, single and multichannel analyzers, analog computers, digital display and recording equipment, a doppler radar position computer, and strip chart recorders. Major subsystems include meteorology sensors, multispectral camera systems, and an infrared scanner for thermal mapping. Additional radiation detectors include an alpha spectrometer and a beta counter, used to count filter samples taken from a 150 cfm air sampler, which is a permanent part of the aircraft. A small lead shield houses a 1 / 2 -in. x 3-in. NaI crystal for beta and gamma counting of air filter samples. Several BF 3 neutron detectors are also available for neutron counting. The raw data from the gross gamma count and the gamma spectral measurements are permanently recorded on paper tape, and they must undergo reduction and analysis for final characterization of the radiological properties of the surveyed area. (U.S.)

  3. Full-field measurements and identification in solid mechanics

    CERN Document Server

    Grediac, Michel

    2008-01-01

    This timely book presents cutting-edge developments by experts in the field on the rapidly developing and scientifically challenging area of full-field measurement techniques used in solid mechanics - including photoelasticity, grid methods, deflectometry, holography, speckle interferometry and digital image correlation. The evaluation of strains and the use of the measurements in subsequent parameter identification techniques to determine material properties are also presented. Since parametric identification techniques require a close coupling of theoretical models and experimental measurements, the book focuses on specific modeling approaches that include finite element model updating, the equilibrium gap method, constitutive equation gap method, virtual field method and reciprocity gap method. In the latter part of the book, the authors discuss two particular applications of selected methods that are of special interest to many investigators: the analysis of localized phenomenon and connections between mi...

  4. Magnetic Field Measurements In Magnetized Plasmas Using Zeeman Broadening Diagnostics

    Science.gov (United States)

    Haque, Showera; Wallace, Matthew; Presura, Radu; Neill, Paul

    2017-10-01

    The Zeeman effect has been used to measure the magnetic field in high energy density plasmas. This method is limited when plasma conditions are such that the line broadening due to the high plasma density and temperature surpasses the Zeeman splitting. We have measured magnetic fields in magnetized laser plasmas under conditions where the Zeeman splitting was not spectrally resolved. The magnetic field strength was determined from the difference in widths of two doublet components, using an idea proposed by Tessarin et al. (2011). Time-gated spectra with one-dimensional space-resolution were obtained at the Nevada Terawatt Facility for laser plasmas created by 20 J, 1 ns Leopard laser pulses, and expanding in the azimuthal magnetic field produced by the 0.6 MA Zebra pulsed power generator. We explore the response of the Al III 4s 2S1/2 - 4p 2P1 / 2 , 3 / 2 doublet components to the external magnetic field spatially along the plasma. Radial magnetic field and electron density profiles were measured within the plasma plume. This work was supported by the DOE/OFES Grant DE-SC0008829 and DOE/NNSA contract DE-FC52-06NA27616.

  5. New Interpretations of Measured Antihydrogen Velocities and Field Ionization Spectra

    International Nuclear Information System (INIS)

    Pohl, T.; Sadeghpour, H. R.; Gabrielse, G.

    2006-01-01

    We present extensive Monte Carlo simulations, showing that cold antihydrogen (H) atoms are produced when antiprotons (p) are gently heated in the side wells of a nested Penning trap. The observed H with high energies, that had seemed to indicate otherwise, are instead explained by a surprisingly effective charge-exchange mechanism. We shed light on the previously measured field-ionization spectrum, and reproduce both the characteristic low-field power law as well as the enhanced H production at higher fields. The latter feature is shown to arise from H atoms too deeply bound to be described as guiding center atoms, atoms with internally chaotic motion

  6. COMPASS magnetic field coils and structure systems

    International Nuclear Information System (INIS)

    Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.

    1987-01-01

    COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings

  7. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  8. Design of exposure systems for ELF electric field bioeffects research

    International Nuclear Information System (INIS)

    Kaune, W.T.; Decker, J.R.; Phillips, R.D.; Gillis, M.F.

    1978-01-01

    Two systems for exposure and sham-exposure of large numbers of rats and mice to uniform, vertical, 60-Hz electric fields have been constructed. The rat system contains four racks of four rectangular 1.0m x 2.2m exposure-electrodes that are stacked vertically with a separation between adjacent electrodes of 0.41 m. Any two of the four exposure racks may be energized to a maximum field strength of 150 kV/m. Each exposure electrode is equipped with 24 Lexan cages, each of which holds a single rat. The cage floor is a stainless steel screen that serves as one electrode. The system for watering animals is contained entirely within the electrode and does not protrude above the cage's floor, thereby preventing distortion of the exposure field and electrical shock or discharge as the animal drinks. The total capacity of the system is 288 rats. A similar system of two racks of five electrodes each is used to expose as many as 450 mice to fields at a maximum strength of 150 kV/m while sham exposing an equal number. Measurements of the electric field reveal an overall uniformity within 4% over the area to be occupied by experimental animals. The field inside a Lexan cage is reduced by about 3%. No corona-discharge has been detected. Measurements of ozone concentration in the rat and mouse exposure systems show no difference from background levels. Harmonic distortion has been eliminated by damping and filtering the high-voltage supply. Animals housed in close proximity are partially shielded from the electric field; the total body current in a rat model is reduced by 35 ± 5% when rats are placed in adjacent cages. (author)

  9. Electric field simulation and measurement of a pulse line ion accelerator

    International Nuclear Information System (INIS)

    Shen Xiaokang; Zhang Zimin; Cao Shuchun; Zhao Hongwei; Zhao Quantang; Liu Ming; Jing Yi; Wang Bo; Shen Xiaoli

    2012-01-01

    An oil dielectric helical pulse line to demonstrate the principles of a Pulse Line Ion Accelerator (PLIA) has been designed and fabricated. The simulation of the axial electric field of an accelerator with CST code has been completed and the simulation results show complete agreement with the theoretical calculations. To fully understand the real value of the electric field excited from the helical line in PLIA, an optical electric integrated electric field measurement system was adopted. The measurement result shows that the real magnitude of axial electric field is smaller than that calculated, probably due to the actual pitch of the resister column which is much less than that of helix. (authors)

  10. Thermal pulse measurements of space charge distributions under an applied electric field in thin films

    International Nuclear Information System (INIS)

    Zheng, Feihu; An, Zhenlian; Zhang, Yewen; Liu, Chuandong; Lin, Chen; Lei, Qingquan

    2013-01-01

    The thermal pulse method is a powerful method to measure space charge and polarization distributions in thin dielectric films, but a complicated calibration procedure is necessary to obtain the real distribution. In addition, charge dynamic behaviour under an applied electric field cannot be observed by the classical thermal pulse method. In this work, an improved thermal pulse measuring system with a supplemental circuit for applying high voltage is proposed to realize the mapping of charge distribution in thin dielectric films under an applied field. The influence of the modified measuring system on the amplitude and phase of the thermal pulse response current are evaluated. Based on the new measuring system, an easy calibration approach is presented with some practical examples. The newly developed system can observe space charge evolution under an applied field, which would be very helpful in understanding space charge behaviour in thin films. (paper)

  11. Out-of-field dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaderka, Robert

    2011-07-13

    This thesis describes the results from measurements of the out-of-field dose in radiotherapy. The dose outside the treatment volume has been determined in a water phantom and an anthropomorphic phantom. Measurements were performed with linac photons, passively delivered protons, scanned protons, passively delivered carbon ions as well as scanned carbon ions. It was found that the use of charged particles for radiotherapy reduces the out-of-field dose by up to three orders of magnitude compared to conventional radiotherapy with photons.

  12. Multiplex measuring systems in physics

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1980-01-01

    The principles of operation of multiplex devices used in different spheres of physics are discussed. The ''multiplex'' notion means that the data output of the device is an integral image of the functional dependence under investigation, but not its readings as in usual instruments. The analysis of the present state of developments of the multiplex systems in optics, nuclear magnetic resonance spectroscopy, in time-of-flight spectrometers for slow and fast neutrons, as well as elementary particle detectors, is given. The construction algorithms for the digital codes are presented, the history of development of the multiplex measuring principle is given [ru

  13. Measurement and analysis of electromagnetic fields from trams, trains and hybrid cars

    International Nuclear Information System (INIS)

    Halgamuge, M. N.; Abeyrathne, C. D.; Mendis, P.

    2010-01-01

    Electricity is used substantially and sources of electric and magnetic fields are, unavoidably, everywhere. The transportation system is a source of these fields, to which a large proportion of the population is exposed. Hence, investigation of the effects of long-term exposure of the general public to low-frequency electromagnetic fields caused by the transportation system is critically important. In this study, measurements of electric and magnetic fields emitted from Australian trams, trains and hybrid cars were investigated. These measurements were carried out under different conditions, locations, and are summarised in this article. A few of the measured electric and magnetic field strengths were significantly lower than those found in prior studies. These results seem to be compatible with the evidence of the laboratory studies on the biological effects that are found in the literature, although they are far lower than international levels, such as those set up in the International Commission on Non-Ionising Radiation Protection guidelines. (authors)

  14. Measurement and analysis of electromagnetic fields from trams, trains and hybrid cars.

    Science.gov (United States)

    Halgamuge, Malka N; Abeyrathne, Chathurika D; Mendis, Priyan

    2010-10-01

    Electricity is used substantially and sources of electric and magnetic fields are, unavoidably, everywhere. The transportation system is a source of these fields, to which a large proportion of the population is exposed. Hence, investigation of the effects of long-term exposure of the general public to low-frequency electromagnetic fields caused by the transportation system is critically important. In this study, measurements of electric and magnetic fields emitted from Australian trams, trains and hybrid cars were investigated. These measurements were carried out under different conditions, locations, and are summarised in this article. A few of the measured electric and magnetic field strengths were significantly lower than those found in prior studies. These results seem to be compatible with the evidence of the laboratory studies on the biological effects that are found in the literature, although they are far lower than international levels, such as those set up in the International Commission on Non-Ionising Radiation Protection guidelines.

  15. Colloquium: Strong-field phenomena in periodic systems

    Science.gov (United States)

    Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.

    2018-04-01

    The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.

  16. Measurement system for ultrahigh temperature thermophysical properties

    International Nuclear Information System (INIS)

    Fukuyama, Hiroyuki

    2015-01-01

    Properties and Simulations Probed with Electromagnetic Containerless Technique (PROSPECT) is a measurement system for ultrahigh temperature thermophysical properties to be able to measure thermophysical properties with high precision by combining AC magnetic field (electromagnetic levitation device) and DC magnetic field (superconducting magnet) to realize the static floating state of metallic melt, in other words, the state of suppressing the surface vibration of droplets, translational motion, and internal convection. The electromagnetic levitation method is a method to obtain a floating force due to the Lorentz force generated by the interaction between high-frequency current flowing in the coil and the induced current generated in a sample, and to heat/melt the sample with the Joule heat generated by its induced current. This paper roughly explains the element technologies of PROSPECT with a focus on the laser modulation calorimetry (laser periodic heating method), normal spectral emissivity measurement method, density measurement, and surface tension measurement method. Furthermore, as the application of PROSPECT to new research deployment, it introduces the observation of phase separation structure in the supercooled solidification structure of Cu-Co alloy. (A.O.)

  17. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    Science.gov (United States)

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  18. Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills

    Science.gov (United States)

    Lucas, G.; Thayer, J. P.; Deierling, W.

    2016-12-01

    Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.

  19. Aerial measuring system sensor modeling

    International Nuclear Information System (INIS)

    Detwiler, Rebecca

    2002-01-01

    The AMS fixed-wing and rotary-wing systems are critical National Nuclear Security Administration (NNSA) Emergency Response assets. This project is principally focused on the characterization of the sensors utilized with these systems via radiation transport calculations. The Monte Carlo N-Particle code (MCNP) which has been developed at Los Alamos National Laboratory was used to model the detector response of the AMS fixed wing and helicopter systems. To validate the calculations, benchmark measurements were made for simple source-detector configurations. The fixed-wing system is an important tool in response to incidents involving the release of mixed fission products (a commercial power reactor release), the threat or actual explosion of a Radiological Dispersal Device, and the loss or theft of a large industrial source (a radiography source). Calculations modeled the spectral response for the sensors contained, a 3-element NaI detector pod and HpGe detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 C i/m2

  20. Thermomechanical fields measurement for fatigue investigation under cyclic thermal shocks

    International Nuclear Information System (INIS)

    Charbal, Ali

    2017-01-01

    Thermal fatigue occurs in nuclear power plant pipes. The temperature variations are due to the turbulent mixing of fluids that have different temperatures. Many experimental setups have been designed but the measured temperatures have only been punctual and out of the zone of interest (e.g., via thermocouples). The equivalent strain variation in the crack initiation region is calculated with numerical thermomechanical simulations. In many cases, the comparisons between numerical and experimental results have shown that the crack initiation predictions in thermal fatigue are non-conservative. a new testing setup is proposed where thermal shocks are applied with a pulsed laser beam while the thermal and kinematic fields on the specimen surface are measured with infrared (IR) and visible cameras, respectively. Experimental testings are performed and different measurement techniques for temperature and kinematic fields are used. IR camera and pyrometers allow to measure the temperature variations in the zone impacted by the laser beam. To estimate the absolute temperature, the surface emissivities at the respective wavelengths are determined by different methods. The absolute temperature field is then used to apply the actual thermal loading in a decoupled FE model after an identification process of the parameters of the laser beam. Once the thermal loading is generated based upon the experimental data, the stress and strain fields can be computed in the region of interest with an elastoplastic law.The experimental strain variations calculated from the DIC measurements are compared with the predictions obtained with the FE simulation. (author) [fr

  1. An electromagnetic field measurement protocol for monitoring power lines

    International Nuclear Information System (INIS)

    Lubritto, C.; Iavazzo, A.; D'Onofrio, A.; Palmieri, A.; Sabbarese, C.; Terrasi, F.

    2002-01-01

    In the actions aiming to prevent risks related to the exposure to Low Frequencies Non Ionising electromagnetic Radiations (ELF-NIR), always arises the need to perform measurements in order to assess the field level existing in the considered sites. As a matter of fact very often it turns out difficult to predict, on the base of calculations, with sufficient approximation the field levels, due to extended variability of environmental conditions (e.g. coexistence of several sources, ground and building conformation, etc..). The measurement procedures must follow a methodology that could allow to minimise the interferences with the measurement set-up and the systematic and accidental errors. Risks for the operator and damages to the instrument should also be taken into account. One of the goal set for this research program was then the definition of the measurement protocol for electromagnetic field generated by low frequency non ionising radiation sources. In particular sources like power lines will be considered in order to validate the protocol by means of in-field measurements

  2. Trapped field measurements on MgB{sub 2} bulk samples

    Energy Technology Data Exchange (ETDEWEB)

    Koblischka, Michael; Karwoth, Thomas; Zeng, XianLin; Hartmann, Uwe [Institute of Experimental Physics, Saarland University, P. O. Box 151150, D-66041 Saarbruecken (Germany); Berger, Kevin; Douine, Bruno [University of Lorraine, GREEN, 54506 Vandoeuvre-les-Nancy (France)

    2016-07-01

    Trapped field measurements were performed on bulk, polycrystalline MgB{sub 2} samples stemming from different sources with the emphasis to develop applications like superconducting permanent magnets ('supermagnets') and electric motors. We describe the setup for the trapped field measurements and the experimental procedure (field cooling, zero-field cooling, field sweep rates). The trapped field measurements were conducted using a cryocooling system to cool the bulk samples to the desired temperatures, and a low-loss cryostat equipped with a room-temperature bore and a maximum field of ±5 T was employed to provide the external magnetic field. The superconducting coil of this cryostat is operated using a bidirectional power supply. Various sweep rates of the external magnetic field ranging between 1 mT/s and 40 mT/s were used to generate the applied field. The measurements were performed with one sample and two samples stacked together. A maximum trapped field of 7 T was recorded. We discuss the results obtained and the problems arising due to flux jumping, which is often seen for the MgB{sub 2} samples cooled to temperatures below 10 K.

  3. Microelectronic sensors for measurement of electromagnetic field of living cells and experimental results

    Czech Academy of Sciences Publication Activity Database

    Jelínek, František; Pokorný, Jiří; Šaroch, Jaroslav; Trkal, Viktor; Hašek, Jiří; Palán, B.

    1999-01-01

    Roč. 48, č. 2 (1999), s. 261-266 ISSN 0302-4598. [Electromagnetic Fields in Biological Systems. Prague, 13.09.1998-16.09.1998] R&D Projects: GA ČR GA102/97/0867 Grant - others:EU COST (XE) OC 244B.40 Institutional research plan: CEZ:AV0Z2067918 Keywords : electromagnetic fields * cellular biophysics * field strength measurement Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.085, year: 1999

  4. Aerial Measuring System Sensor Modeling

    International Nuclear Information System (INIS)

    Detwiler, R.S.

    2002-01-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 microCi/m 2 . The helicopter calculations modeled the transport of americium-241 ( 241 Am) as this is

  5. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...... fundamental and second harmonic elds. The focused piston transducer with a center frequency of 5 MHz is excited by a waveform generator emitting a 6-cycle sine wave. The hydrophone is mounted in the focal plane 118 mm from the transducer. The point spread functions at the focal depth from Field II...

  6. Procedures for field measurements in the case of nuclear accident

    International Nuclear Information System (INIS)

    Barisic, D.; Lulic, S.

    2000-01-01

    Very simplified, reduced and shorted procedures for main objectives of emergency field monitoring in case of nuclear accident are given only. They could be implemented in Croatia using resources nowadays available. Procedures for gamma/beta dose rates in plume and ground deposition survey and unknown situation evaluation, procedures for alpha and gamma/beta surface contamination measurement, field personnel/equipment contamination and decontamination measurement as well as for in-situ gamma spectrometry measurements are presented. Purpose, short discussion, general precautions and limitations as well as basic equipment and supplies needed are given for all of procedures discussed also. Only measuring steps are given with more details in form of short and clear instructions. (author)

  7. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  8. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  9. Planning and Optimization of Wireless LANs through Field Measurements

    OpenAIRE

    Mongia, Puneet Kumar; Singh, B. J.

    2013-01-01

    In this paper, the field measurements of signal strength taken at the frequency of 2432 MHz in indoor & outdoor environments are presented and analyzed. The received signal levels from the base station were monitored manually. Total coverage area considered for the measurement campaign consisted of a mixture of different propagation environments. Based on the experimental data obtained, path loss exponent and standard deviation of signal strength variability are derived. It is shown that the ...

  10. Teaching environmental physics with a field measurement campaign

    International Nuclear Information System (INIS)

    Boman, Johan; Dynefors, Bertil; Kuehlmann-Berenzon, Sharon

    2003-01-01

    With 15 years of experience of teaching environmental physics, we still need to develop our curriculum. In this paper we present our findings from teaching environmental physics in close association with mathematical statistics in an applied field measurement campaign. Here not only environmental physics is taught, but also the concept of experimental planning, design, implementation, and evaluation of a field measurement campaign. The field measurement gives the students the opportunity to follow the whole process starting from experimental planning, including formulating the questions to answer, through design of the experiment, sample collection, analysis, and evaluation, together with the writing of a final report. All possible aspects of the problem that the students are working on can be carefully investigated, but the emphasis has been on understanding the whole process of carrying out a field campaign. This holistic view gives the students more interest in and better motivation for exploring the subject. This course gave the students insight into the field of interdisciplinary environmental research, promoted their creativity, and also gave the teachers a feeling of satisfaction

  11. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  12. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...

  13. EAST machine assembly and its measurement system

    International Nuclear Information System (INIS)

    Wu, S.T.

    2005-01-01

    The EAST (HT-7U) superconducting tokamak consists of a superconducting poloidal field magnet system, a toroidal field magnet system, a vacuum vessel and in-vessel components, thermal shields and a cryostat vessel. The main parts of the machine have been delivered to ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) successionally from 2003. For its complicated constitution and precise requirement, a reasonable assembly procedure and measurement technique should be defined carefully. Before the assembly procedure, a reference frame has been set up with reference fiducial targets on the wall of the test hall by an industrial measurement system. After the torus of TF coils is formed, a new reference frame will be set up from the position of the TF torus. The vacuum vessel with all inner parts will be installed with reference of the new reference frame. The big size and mass of components, special configuration of the superconducting machine with tight installation tolerances of the HT-7U (EAST) machine result in complicated assembly procedure. The procedure had begun with the installation of the support frame and the base of cryostat vessel last year. In this paper, the requirements of the assembly precise for some key components of the machine are described. The reference frame for the assembly and maintenance is explained. The assembly procedure is introduced

  14. Pulsed beams as field probes for precision measurement

    International Nuclear Information System (INIS)

    Hudson, J. J.; Ashworth, H. T.; Kara, D. M.; Tarbutt, M. R.; Sauer, B. E.; Hinds, E. A.

    2007-01-01

    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequency magnetic field amplitude with 15 mm resolution. This diagnostic technique is very powerful in the context of high-precision atomic and molecular physics experiments, where pulsed beams have not hitherto found widespread application

  15. Modelling Field Bus Communications in Mixed-Signal Embedded Systems

    Directory of Open Access Journals (Sweden)

    Alassir Mohamad

    2008-01-01

    Full Text Available Abstract We present a modelling platform using the SystemC-AMS language to simulate field bus communications for embedded systems. Our platform includes the model of an I/O controller IP (in this specific case an C controller that interfaces a master microprocessor with its peripherals on the field bus. Our platform shows the execution of the embedded software and its analog response on the lines of the bus. Moreover, it also takes into account the influence of the circuits's I/O by including their IBIS models in the SystemC-AMS description, as well as the bus lines imperfections. Finally, we present simulation results to validate our platform and measure the overhead introduced by SystemC-AMS over a pure digital SystemC simulation.

  16. Modelling Field Bus Communications in Mixed-Signal Embedded Systems

    Directory of Open Access Journals (Sweden)

    Patrick Garda

    2008-08-01

    Full Text Available We present a modelling platform using the SystemC-AMS language to simulate field bus communications for embedded systems. Our platform includes the model of an I/O controller IP (in this specific case an I2C controller that interfaces a master microprocessor with its peripherals on the field bus. Our platform shows the execution of the embedded software and its analog response on the lines of the bus. Moreover, it also takes into account the influence of the circuits's I/O by including their IBIS models in the SystemC-AMS description, as well as the bus lines imperfections. Finally, we present simulation results to validate our platform and measure the overhead introduced by SystemC-AMS over a pure digital SystemC simulation.

  17. Magnetic field measurements on board of altitude-research rockets

    International Nuclear Information System (INIS)

    Theile, B.; Luehr, H.

    1976-01-01

    Electric currents within the Earth's magneto- and ionosphere can be probed by measuring their magnetic fields. Different payloads of the national sounding rocket programme will carry magnetometers of high resolution and dynamic range. Thorough test procedures are necessary to evaluate the instrument's properties and possible interference problems. (orig.) [de

  18. Functional Measurement in the Field of Empirical Bioethics

    Science.gov (United States)

    Mullet, Etienne; Sorum, Paul C.; Teysseire, Nathalie; Nann, Stephanie; Martinez, Guadalupe Elizabeth Morales; Ahmed, Ramadan; Kamble, Shanmukh; Olivari, Cecilia; Sastre, Maria Teresa Munoz

    2012-01-01

    We present, in a synthetic way, some of the main findings from five studies that were conducted in the field of empirical bioethics, using the Functional Measurement framework. These studies were about (a) the rationing of rare treatments, (b) adolescents' abortions, (c) end-of-life decision-making regarding damaged neonates, (d) end-of-life…

  19. Non-ionizing radiation exposure: electric field strength measurement ...

    African Journals Online (AJOL)

    In this research, the measured values are compared with the international standard recommended by ICNIRP then were also compared with previous study from several locations around Malaysia. The result shows an increase in the values of electromagnetic field radiation. The result of this study could be used for health ...

  20. Electric field measurements in moving ionization fronts during plasma breakdown

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2006-01-01

    We have performed time-resolved, direct measurements of electric field strengths in moving ionization fronts during the breakdown phase of a pulsed plasma. Plasma breakdown, or plasma ignition, is a highly transient process marking the transition from a gas to a plasma. Some aspects of plasma

  1. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  2. Field technique for the measurement of uranium in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, J C [Scintrex Ltd., Concord, Ontario

    1978-05-01

    An analytical method suitable for field determination of trace levels of uranium in natural waters is described. Laser UV radiation causes persistent fluorescence of a uranyl complex. Electronic gating substantially rejects detection of short-lived natural organic matter fluorescence. Further work is required on effects of interferences in samples with complex matrices and interpretative aids such as concurrent conductivity and organic content measurements.

  3. Measurements of weak localization of graphene in inhomogeneous magnetic fields

    DEFF Research Database (Denmark)

    Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.

    2015-01-01

    attribute this to the inhomogeneous field caused by vortices in the superconductor. The deviation, which depends on the carrier concentration in graphene, can be tuned by the gate voltage. In addition, collective vortex motion, known as vortex avalanches, is observed through magnetoresistance measurements...

  4. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M; Honkamaa, T; Niskala, P [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1998-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  5. System for optimizing activation measurements

    International Nuclear Information System (INIS)

    Antonov, V.A.

    1993-01-01

    Optimization procedures make it possible to perform committed activation investigations, reduce the number of experiments, make them less laborious, and increase their productivity. Separate mathematical functions were investigated for given optimization conditions, and these enable numerical optimal parameter values to be established only in the particular cases of specific techniques and mathematical computer programs. In the known mathematical models insufficient account is taken of the variety and complexity of real nuclide mixtures, the influence of background radiation, and the wide diversity of activation measurement conditions, while numerical methods for solving the optimization problem fail to reveal the laws governing the variations of the activation parameters and their functional interdependences. An optimization method was proposed in which was mainly used to estimate the time intervals for activation measurements of a mononuclide, binary or ternary nuclide mixture. However, by forming a mathematical model of activation processes it becomes possible to extend the number of nuclides in the mixture and to take account of the influence of background radiation and the diversity of the measurement alternatives. The analytical expressions and nomograms obtained can be used to determine the number of measurements, their minimum errors, their sensitivities when estimating the quantity of the tracer nuclide, the permissible quantity of interfering nuclides, the permissible background radiation intensity, and the flux of activating radiation. In the worker described herein these investigations are generalized to include spectrally resolved detection of the activation effect in the presence of the tracer and the interfering nuclides. The analytical expressions are combined into a system from which the optimal activation parameters can be found under different given conditions

  6. Quantum noise in the mirror–field system: A field theoretic approach

    International Nuclear Information System (INIS)

    Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien

    2013-01-01

    We revisit the quantum noise problem in the mirror–field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror’s displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation–dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: ► The quantum noise problem in the mirror–field system is re-visited by a field-theoretic approach. ► Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. ► The noise correlations can be used to suppress the overall quantum noise on the mirror.

  7. Quantum noise in the mirror-field system: A field theoretic approach

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, Jen-Tsung, E-mail: cosmology@gmail.com [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Wu, Tai-Hung [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Lee, Da-Shin, E-mail: dslee@mail.ndhu.edu.tw [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); King, Sun-Kun [Institutes of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC (China); Wu, Chun-Hsien [Department of Physics, Soochow University, Taipei, Taiwan, ROC (China)

    2013-02-15

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: Black-Right-Pointing-Pointer The quantum noise problem in the mirror-field system is re-visited by a field-theoretic approach. Black-Right-Pointing-Pointer Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. Black-Right-Pointing-Pointer The noise

  8. Field measurement and interpretation of beta doses and dose rates

    International Nuclear Information System (INIS)

    Selby, J.M.; Swinth, K.L.; Hooker, C.D.; Kenoyer, J.L.

    1983-01-01

    A wide variety of portable survey instruments employing GM, ionization chamber and scintillation detectors exist for the measurement of gamma exposure rates. Often these same survey instruments are used for monitoring beta fields. This is done by making measurements with and without a removable shield which is intended to shield out the non-penetrating component (beta) of the radiation field. The difference does not correspond to an absorbed dose rate for the beta field due to a variety of factors. Among these factors are the dependence on beta energy, source-detector geometries, mixed fields and variable ambient conditions. Attempting to use such measurements directly can lead to errors as high as a factor of 100. In many instances correction factors have been derived, that if properly applied, can reduce these errors substantially. However, this requires some knowledge of the beta spectra, calibration techniques and source geometry. This paper discusses some aspects of the proper use of instruments for beta measurements including the application of appropriate correction factors. Ionization type instruments are commonly used to measure beta dose rates. Through design and calibration these instruments will give an accurate reading only for uniform irradiation of the detection volume. Often in the field it is not feasible to meet these conditions. Large area uniform distributions of activity are not generally encountered and it is not possible to use large source-to-detector distances due to beta particle absorption in air. An example of correction factors required for various point sources is presented when a cutie pie ionization chamber is employed. The instrument reading is multiplied by the appropriate correction factor to obtain the dose rate at the window. When a different detector is used or for other geometries, a different set of correction factors must be used

  9. Measurements of blade aerodynamics on a rotor in the field

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.M.R. [Imperical College, Dept. of Aeronautics, London (United Kingdom)

    1997-12-31

    This contribution describes the field test measurements undertaken on an instrumented rotor at the Rutherford Appleton Laboratory, Oxfordshire, UK, during the period 1994 - 97. The programme was directed at improving the prediction of the steady and unsteady rotor blade loading, particularly the loads arising from the stalling of the blade. The measured data consisted of blade surface pressure distributions sampled at 50Hz at 6 sections along the span of one blade of the 17m diameter, 3 bladed, fixed pitch, upwind H.A.W.T., together with measurements of the incident velocity. (au)

  10. Integral measurement system for radon

    International Nuclear Information System (INIS)

    Garcia H, J.M.; Pena E, R.

    1996-01-01

    The Integral measurement system for Radon is an equipment to detect, counting and storage data of alpha particles produced by Radon 222 which is emanated through the terrestrial peel surface. This equipment was designed in the Special Designs Department of the National Institute of Nuclear Research. It supplies information about the behavior at long time (41 days) on each type of alpha radiation that is present into the environment as well as into the terrestrial peel. The program is formed by an User program, where it is possible to determine the operation parameters of a portable probe that contains, a semiconductor detector, a microprocessor as a control central unit, a real time clock and calendar to determine the occurred events chronology, a non-volatile memory device for storage the acquired data and an interface to establish the serial communications with other personal computers. (Author)

  11. Magnetic field measurements near stand-alone transformer stations.

    Science.gov (United States)

    Kandel, Shaiela; Hareuveny, Ronen; Yitzhak, Nir-Mordechay; Ruppin, Raphael

    2013-12-01

    Extremely low-frequency (ELF) magnetic field (MF) measurements around and above three stand-alone 22/0.4-kV transformer stations have been performed. The low-voltage (LV) cables between the transformer and the LV switchgear were found to be the major source of strong ELF MFs of limited spatial extent. The strong fields measured above the transformer stations support the assessment method, to be used in future epidemiological studies, of classifying apartments located right above the transformer stations as highly exposed to MFs. The results of the MF measurements above the ground around the transformer stations provide a basis for the assessment of the option of implementing precautionary procedures.

  12. Measurement of positron range in matter in strong magnetic fields

    International Nuclear Information System (INIS)

    Hammer, B.E.; Christensen, N.L.

    1995-01-01

    Positron range is one factor that places a limitation on Positron Emission Tomography (PET) resolution. The distance a positron travels through matter before it annihilates with an electron is a function of its initial energy and the electron density of the medium. A strong magnetic field limits positron range when momentum components are transverse to the field. Measurement of positron range was determined by deconvolving the effects of detector response and radioactive distribution from the measured annihilation spread function. The annihilation spread function for a 0.5 mm bead of 68 Ga was measured with 0.2 and 1.0 mm wide slit collimators. Based on the annihilation spread function FWHM (Full Width at Half Maximum) for a 1.0 mm wide slit the median positron range in tissue equivalent material is 0.87, 0.50, 0.22 mm at 0, 5.0 and 9.4 T, respectively

  13. Herding agent field application system development

    Energy Technology Data Exchange (ETDEWEB)

    Buist, Ian; Belore, Randy [SL Ross Environmental Research (Canada)], email: ian@slross.com

    2011-07-01

    Chemical herding agents can be applied to deal with an oil slick. This study investigates the key system components of application systems for herding agents and shows how application systems can also be developed for operational herder usage in drift ice. These two application systems are respectively required for small boat and a helicopter operations. The factors, including the selection of flow rates, pressures and atomizing nozzle types, which give the appropriate herder droplet size distributions for small boat and aerial application systems were investigated in the initial stage of the study. In a later stage, on commercializing herders for in situ burning, further research is expected to deal with the many problems not tackled in the initial stage, such as the mounting of the nozzles, pumps and reservoirs on various aerial platforms and the provision of heating and insulation for cold-weather use. The paper presented the experiments and simulations that have been conducted as well as the basic design parameters for field application systems.

  14. Computer-based measurement and automatizatio aplication research in nuclear technology fields

    International Nuclear Information System (INIS)

    Jiang Hongfei; Zhang Xiangyang

    2003-01-01

    This paper introduces computer-based measurement and automatization application research in nuclear technology fields. The emphasis of narration are the role of software in the development of system, and the network measurement and control software model which has optimistic application foreground. And presents the application examples of research and development. (authors)

  15. Faraday Rotation Measure Study of Cluster Magnetic Fields

    Science.gov (United States)

    Frankel, M. M.; Clarke, T. E.

    2001-12-01

    Magnetic fields are thought to play an important role in galaxy cluster evolution. To this end in this study, we looked at polarized radio sources viewed at small impact parameters to the cores of non-cooling flow clusters. By looking at non-cooling flow clusters we hoped to establish what magnetic fields of clusters look like in the absence of the compressed central magnetic fields of the cooling-flow cores. Clarke, Kronberg and Boehringer (2001) examined Faraday rotation measures of radio probes at relatively large impact parameters to the cores of galaxy clusters. The current study is an extension of the Clarke et al. analysis to probe the magnetic fields in the cores of galaxy clusters. We looked at the Faraday rotation of electromagnetic waves from background or imbedded radio galaxies, which were observed with the VLA in A&B arrays. Our results are consistent with previous findings and exhibit a trend towards higher rotation measures and in turn higher magnetic fields at small impact parameters to cluster cores. This research was made possible through funding from the National Science Foundation.

  16. Air encapsulation. I. Measurement in a field soil

    International Nuclear Information System (INIS)

    Fayer, M.J.; Hillel, D.

    1986-01-01

    Encapsulated air is an important component of shallow water table fluctuations. Their objective was to measure the quantity and persistence of encapsulated air in a field setting. Using sprinkling rates of either 3.5 x 10 -6 or 3.8 x 10 -5 m s -1 , they brought the water table in a field soil from a depth of 1.5 m to the surface on several occasions. Moisture contents during and after sprinkling were monitored with a neutron probe. Twice following sprinkling, the water table was maintained at the surface for more than 20 d, during which time they continued to monitor moisture contents. With the water table at the surface, differences between the porosity and the measured moisture content were attributed to encapsulated air. Encapsulated air contents ranged from 1.1 to 6.3% of the bulk soil volume, depending on the rate of sprinkling, soil depth, and initial soil moisture content. During ponding, encapsulated air persisted at the 0.3-m depth for up to 28 d. The results indicate that encapsulated air is measurable in a field situation and that its quantity and persistence should be considered in analyzing the results of similar field experiments. 16 references

  17. True mean rate measuring system

    International Nuclear Information System (INIS)

    Eichenlaub, D.P.

    1980-01-01

    A digital radiation-monitoring system for nuclear power plants uses digital and microprocessor circuitry to enable rapid processing of pulse information from remote radiation monitors. The pulse rates are analyzed to determine whether new pulse-rate information is statisticaly the same as that previously received and to determine the best possible averaging time, which can be changed so that the statistical error remains below a specified level while the system response time remains short. Several data modules each process the pulse-rate information from several remote radiation monitors. Each data module accepts pulse data from each radiation monitor and measures the true average or mean pulse rate of events occurring with a Poisson distribution to determine the radiation level. They then develop digital output signals which indciate the respective radiation levels and which can be transmitted via multiplexer circuits for additional processing and display. The data modules can accept signals from remote control stations or computer stations via the multiplexer circuit to change operating thresholds and alarm levels in their memories. A check module scans the various data modules to determine whether the output signals are valid. It also acts as a redundant data module and will automatically replace an inoperative unit. (DN)

  18. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  19. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    Science.gov (United States)

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  20. A Cost-Effective Amplifier for Electromagnetic Field Strength Measurement

    National Research Council Canada - National Science Library

    Rusek, A

    2001-01-01

    .... This paper presents an inexpensive broadband amplifier designed to increase the overall gain of a measurement system consisting of a 50 ohm broadband antenna coupled to a 50 ohm input spectrum analyzer...

  1. Internal magnetic field measurements in a translating field-reversed configuration

    International Nuclear Information System (INIS)

    Armstrong, W.T.; Chrien, R.E.; McKenna, K.F.; Rej, D.J.; Sherwood, E.G.; Siemon, R.E.; Tuszewski, M.

    1984-01-01

    Magnetic field probes have been employed to study the internal field structure of Field-Reversed Configurations (FRCs) translating past the probes in the FRX-C/T device. Internal closed flux surfaces can be studied in this manner with minimal perturbation because of the rapid transit of the plasma (translational velocity v/sub z/ approx. 10 cm/μs). Data have been taken using a low-field (5 kG), 5-mtorr-D 2 gas-puff mode of operation in the FRC source coil which yields an initial plasma density of approx. 1 x 10 15 cm -3 and x/sub s/ approx. 0.04. FRCs translate from the approx. 25 cm radius source coil into a 20 cm radius metal translation vessel. Two translation conditions are studied: (1) translation into a 4 kG guide field (matched guide-field case), resulting in similar plasma parameters but with x/sub s/ approx. .45, and (2) translation into a 1 kG guide field (reduced guide-field case), resulting in expansion of the FRC to conditions of density approx. 3 x 10 14 , external field B 0 approx. 2 kG and x/sub s/ approx. 0.7. The expected reversed B/sub z/ structure is observed in both cases. However, the field measurements indicate a possible sideways offset of the FRC from the machine axis in the matched case. There is also evidence of island structure in the reduced guide-field case. Fluctuating levels of B/sub theta/ are ovserved with amplitudes less than or equal to B 0 /3 in both cases. Field measurements on the FRC symmetry axis in the reduced guide-field case indicate β on the separatrix of β/sub s/ approx. = 0.3 (indexed to the external field) has been achieved. This decrease of β/sub s/ with increased x/sub s/ is expected, and desirable for improved plasma confinement

  2. Uniocular and binocular fields of rotation measures: Octopus versus Goldmann.

    Science.gov (United States)

    Rowe, Fiona J; Hanif, Sahira

    2011-06-01

    To compare the range of ocular rotations measured by Octopus versus Goldmann perimetry. Forty subjects (20 controls and 20 patients with impaired ocular movements) were prospectively recruited, age range 21-83 years. Range of uniocular rotations was measured in six vectors corresponding to extraocular muscle actions: 0°, 67°, 141°, 180°, 216°, 293°. Fields of binocular single vision were assessed at 30° intervals. Vector measurements were utilised to calculate an area score for the field of uniocular rotations or binocular field of single vision. Two test speeds were used for Octopus testing: 3°/ and 10°/second. Test duration was two thirds quicker for Octopus 10°/second than for 3°/second stimulus speed, and slightly quicker for Goldmann. Mean area for control subjects for uniocular field was 7910.45 degrees(2) for Goldmann, 7032.14 for Octopus 3°/second and 7840.66 for Octopus 10°/second. Mean area for patient subjects of right uniocular field was 8567.21 degrees(2) for Goldmann, 5906.72 for Octopus 3°/second and 8806.44 for Octopus 10°/second. Mean area for left uniocular field was 8137.49 degrees(2) for Goldmann, 8127.9 for Octopus 3°/second and 8950.54 for Octopus 10°/second. Range of measured rotation was significantly larger for Octopus 10°/second speed. Our results suggest that the Octopus perimeter is an acceptable alternative method of assessment for uniocular ductions and binocular field of single vision. Speed of stimulus significantly alters test duration for Octopus perimetry. Comparisons of results from both perimeters show that quantitative measurements differ, although qualitatively the results are similar. Differences per mean vectors were less than 5° (within clinically accepted variances) for both controls and patients when comparing Goldmann to Octopus 10°/second speed. However, differences were almost 10° for the patient group when comparing Goldmann to Octopus 3°/second speed. Thus, speed of stimulus must be considered

  3. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...

  4. Quantum optical measurements with undetected photons through vacuum field indistinguishability.

    Science.gov (United States)

    Lee, Sun Kyung; Yoon, Tai Hyun; Cho, Minhaeng

    2017-07-26

    Quantum spectroscopy and imaging with undetected idler photons have been demonstrated by measuring one-photon interference between the corresponding entangled signal fields from two spontaneous parametric down conversion (SPDC) crystals. In this Report, we present a new quantum optical measurement scheme utilizing three SPDC crystals in a cascading arrangement; here, neither the detection of the idler photons which interact with materials of interest nor their conjugate signal photons which do not interact with the sample is required. The coherence of signal beams in a single photon W-type path-entangled state is induced and modulated by indistinguishabilities of the idler beams and crucially the quantum vacuum fields. As a result, the optical properties of materials or objects interacting with the idler beam from the first SPDC crystal can be measured by detecting second-order interference between the signal beams generated by the other two SPDC crystals further down the set-up. This gedankenexperiment illustrates the fundamental importance of vacuum fields in generating an optical tripartite entangled state and thus its crucial role in quantum optical measurements.

  5. Measurement of magnetic fields in the Area Metropolitana

    International Nuclear Information System (INIS)

    Masis Mesen, Juan Pablo

    2007-01-01

    The operation and proper handling of equipment for measuring EMR-300 electromagnetic waves are studied and apply that knowledge to determine which areas of the metropolitan area are mostly affected by exposure to the emission of radiation. This team is able to measure magnetic field strength, electric field strength and power density, also can measure the most important parameters in a simple manner. International standards provide maximum values for these parameters that limit human exposure to such radiation. These standards are based on epidemiological several and laboratory that have been carried out in order to determine in which circumstances a biological entity is exposed to a level of radiation that can cause harm to their health. It focuses on measuring the level of radiation in certain areas of interest, which were chosen because are areas with high population density and also in proximity to antennas that emit electromagnetic waves. Before carrying out the data collection was performed a detailed study of which are the recommendations to measure and avoid as far as possible sources of error, once that those recommendations are implemented the making data was started. Data obtained show that these areas do not present any health risk and that levels of magnetic field strength and power density are well below the limits set by both the International Commission on Non-Ionizing Radiation Protection and the Institute of Electrical and Electronics Engineers. On the other hand, based on the obtained results and the study already done before by the Instituto Costarricense de Electricidad, it was concluded that the power density conditions for plane wave is the parameter most effective to quantize the associated risk with different levels of radiation of radio frequency electromagnetic fields. (author) [es

  6. Development of procedure for measurement of Pb isotope ratios in seawater by application of seaFAST sample pre-treatment system and Sector Field Inductively Coupled Plasma Mass Spectrometry

    Science.gov (United States)

    Vassileva, Emilia; Wysocka, Irena

    2016-12-01

    Anthropogenic Pb in the oceans, derived from high-temperature industrial processes, fuel combustion and incineration can have an isotopic signature distinct from naturally occurring Pb, supplied by rock weathering. To identify the different pollution sources accurately and to quantify their relative contributions, Pb isotope ratios are widely used. Due to the high salt content (approximately 3.5% of total dissolved solids) and very low levels of Pb (typically from 1 to 100 ng L- 1) in seawater the determination of Pb isotope ratios requires preliminary matrix separation and analyte preconcentration. An analytical protocol for the measurements of Pb isotope ratios in seawater combining seaFAST sample pre-treatment system and Sector Field Inductively Coupled Plasma Mass Spectrometry (SF ICP-MS) was developed. The application of seaFAST system was advantageous, because of its completely closed working cycle and small volumes of chemicals introduced in pre-treatment step, resulting in very low detection limits and procedural blanks. The preconcentration/matrix separation step was also of crucial importance for minimizing the isobaric and matrix interferences, coming from the seawater. In order to differentiate between anthropogenic and natural Pb sources, particular attention was paid to the determination of 204Pb isotope because of its implication in some geological interpretations. The validation of the analytical procedure was effectuated according to the recommendations of the ISO/IEC 17025 standard. The method was validated by processing the common Pb isotope reference material NIST SRM 981. All major sources of uncertainty were identified and propagated together following the ISO/GUM guidelines. The estimation of the total uncertainty associated to each measurement result was fundamental tool for sorting the main sources of possible biases. The developed analytical procedure was applied to the coastal and open seawater samples, collected in different regions of

  7. The measure system of thermion energy switch over in reactor

    International Nuclear Information System (INIS)

    Li Xing

    1999-01-01

    The system is the application of VI in the field of reactor, to use LabWINDOW/CVI and currency PC collection card, the system can measure and analyse the speciality of V-I and temperature. It is perfectly and high rate performance system, it can be expand to 128 channels for get dissimilitude signal. It can be used in M and C of all kinds field

  8. Field measurement of albedo for limited extent test surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David J. [Portland State University, Department of Mechanical and Materials Engineering, P.O. Box 751-ME, Portland, OR 97207 (United States); Resh, Kyle; Segura, Del [Tulane University, Department of Mechanical Engineering, 400 Lindy Boggs Center, New Orleans, LA 70118 (United States)

    2006-05-15

    A new method is introduced for field measurement of surface albedo. This method consists of the use of a cylindrical shade ring made of opaque fabric with a known (low) albedo placed over a test surface. The albedo measurement is accomplished using two small pyranometers situated so that the downward-facing pyranometer receives radiation only from the test surface and the shade ring. The upward-facing pyranometer simultaneously records the incoming solar radiation. The radiation received by the downward-facing pyramometer is a combination of reflected radiation from shaded and unshaded portions of these two surfaces, requiring detailed accounting of the resulting view factor geometries. The method presented here improves upon past approaches by allowing for smaller sample sizes, minimizing errors associated with reflective properties of the surroundings, and allowing for accurate measurements even under partially cloudy skies. In addition to these methodological improvements we introduce an approach for estimating the uncertainty in the resulting albedo measurements. Results from field measurements are presented to validate the measurement protocol, and to compare its accuracy with the accuracy of a published standard. (author)

  9. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  10. Measuring the Earth’s Magnetic Field from Space

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, G.; Sabaka, T. J.

    2010-01-01

    Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time-space...... coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide...... enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led...

  11. Calculated and measured fields in superferric wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  12. Measurement of gravity and gauge fields using quantum mechanical probes

    International Nuclear Information System (INIS)

    Anandan, J.

    1986-01-01

    The author considers the question of which quantities are observed when the gravitational and gauge fields are measured by a quantum mechanical probe. The motion of a quantum mechanical particle can be constructed, via Huyghens' principle, by the interference of secondary wavelets. Three types of interference phenomena are considered: interference of two coherent beams separated in space-time during part of their motion; interference of two coherent beams which are in the same region in spacetime but differ in energy or mass; and the Josphson effect and its generalization. The author shows how to determine the gravitational field by means of quantum interference. The corresponding problem for gauge fields is treated and a simple proof of the previously proved theorem for the reconstruction of the connection from the holonomy transformations is presented. A heuristic principle for the gravitational interaction of two quantum mechanical particles is formulated which implies the equivalence of inertial and active gravitational masses

  13. The wireless networking system of Earthquake precursor mobile field observation

    Science.gov (United States)

    Wang, C.; Teng, Y.; Wang, X.; Fan, X.; Wang, X.

    2012-12-01

    The mobile field observation network could be real-time, reliably record and transmit large amounts of data, strengthen the physical signal observations in specific regions and specific period, it can improve the monitoring capacity and abnormal tracking capability. According to the features of scatter everywhere, a large number of current earthquake precursor observation measuring points, networking technology is based on wireless broadband accessing McWILL system, the communication system of earthquake precursor mobile field observation would real-time, reliably transmit large amounts of data to the monitoring center from measuring points through the connection about equipment and wireless accessing system, broadband wireless access system and precursor mobile observation management center system, thereby implementing remote instrument monitoring and data transmition. At present, the earthquake precursor field mobile observation network technology has been applied to fluxgate magnetometer array geomagnetic observations of Tianzhu, Xichang,and Xinjiang, it can be real-time monitoring the working status of the observational instruments of large area laid after the last two or three years, large scale field operation. Therefore, it can get geomagnetic field data of the local refinement regions and provide high-quality observational data for impending earthquake tracking forecast. Although, wireless networking technology is very suitable for mobile field observation with the features of simple, flexible networking etc, it also has the phenomenon of packet loss etc when transmitting a large number of observational data due to the wireless relatively weak signal and narrow bandwidth. In view of high sampling rate instruments, this project uses data compression and effectively solves the problem of data transmission packet loss; Control commands, status data and observational data transmission use different priorities and means, which control the packet loss rate within

  14. Determining of the electric field strength using high frequency broadband measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav D.

    2017-01-01

    Full Text Available Exposure of humans to electromagnetic fields of high frequency (above 100 kHz, i.e. radiofrequency radiation from the modern wireless systems, today inevitable is. The purpose of this paper is to highlight the importance of broadband measurements of the electric field of high frequency in order to fast and reliable assessment of human exposure. A practical method of ‘in situ’ measurement the electric field intensity which is related to the frequency range of 3 MHz to 18 GHz, is provided.

  15. Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities

    Directory of Open Access Journals (Sweden)

    Qingsong Bai

    2016-01-01

    Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.

  16. Rocket measurements of electric fields, electron density and temperature during the three phases of auroral substorms

    International Nuclear Information System (INIS)

    Marklund, G.; Block, L.; Lindqvist, P.-A.

    1979-12-01

    On Jan. 27, 1979, three rocket payloads were launched from Kiruna, Sweden, into different phases of two successive auroral substorms. Among other experiments, the payloads carried the RIT double probe electric field experiments, providing electric field, electron density and temperature data, which are presented here. These are discussed in association with observations of particles, ionospheric drifts (STARE) and electric fields in the equatorial plane (GEOS). The motions of the auroral forms, as obtained from auroral pictures are compared with the E x B/B 2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground based magnetometer data (SMA). (Auth.)

  17. Instrumentation for electromagnetic field generation in biological measurements

    International Nuclear Information System (INIS)

    Malaric, K.; Malaric, R.; Tkalec, M.; Lenicek, I.; Sala, A.

    2005-01-01

    Electromagnetic fields (EMFs) are part of everyday life in modern world. Extremely low-frequency EMFs (50 Hz) are produced by most electric home appliance, electric power transmission and distribution lines. For the last ten years mobile phones have been widely used all around the world. They operate on the EMF frequencies from 400 MHz to 1900 MHz. The effects of EMFs on living organisms have been the subject of debate and research for the last thirty years. The instrumentation for generation of EMFs have been designed at the Faculty of Electrical Engineering and Computing, Zagreb, and can be used for controlled exposure to different EMFs. To study the effect of extremely low-frequency EMF, duckweed (Lemna minor) - the model plant in biological measurement, test setup was made for magnetic field in Helmholtz coil and for electric field between two parallel circle electrodes. For the effect of mobile phones frequencies, test setup with exposition to the electromagnetic field was done with Gigahertz Transversal Electromagnetic Mode (GTEM) cell. The research confirmed that instrumentation used in these experiments is suitable for evaluation of biological effects of EMFs. The effect of different field strengths, exposure times and modulation can be tested with these instrumentation.(author)

  18. Broadband measurements of high-frequency electric field levels and exposure ratios determination

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2017-01-01

    Full Text Available The exposure of people to high-frequency electromagnetic fields (over 100 kHz that emanate from modern wireless information transmission systems is inevitable in modern times. Due to the rapid development of new technologies, measuring devices and their connection to measuring systems, the first fifteen years of the 21st century are characterized by the appearance of different approaches to measurements. This prompts the need for the assessment of the exposure of people to these fields. The main purpose of this paper is to show how to determine the exposure ratios based on the results of broadband measurements of the high-frequency electric field in the range of 3 MHz to 18 GHz in the environment.

  19. Indicators System for Poverty Measurement

    Directory of Open Access Journals (Sweden)

    Constantin Mitrut

    2006-10-01

    Full Text Available Poverty represents a life aspect which is focusing the attention of both the macroeconomic analysis and the international comparisons. In order to measure the level being recorded by this phenomenon, there is a system of indicators which are used in order to underline, in a correlated manner, a number of aspects which are characterizing, quality and quantity wise, the evolution of the poverty in a specific country or, to a larger extent, through comparative surveys, at international level. Despite the fact that they are not the only instrument being used within the process of comparison of the stages of social and economic development at the international level, however the poverty indicators are providing a clear significance to the worked out surveys. In fact, the very purpose of the economic activity consists of increasing welfare and, as much as possible, at least reducing, if not eradicating, the poverty. The present work is broadly presenting the methodology as well as, both theoretical and practical, the way of computing the poverty, making a synthesis of the specific used indicators.

  20. Changes in measured vector magnetic fields when transformed into heliographic coordinates

    Science.gov (United States)

    Hagyard, M. J.

    1987-01-01

    The changes that occur in measured magnetic fields when they are transformed into a heliographic coordinate system are investigated. To carry out this investigation, measurements of the vector magnetic field of an active region that was observed at 1/3 the solar radius from disk center are taken, and the observed field is transformed into heliographic coordinates. Differences in the calculated potential field that occur when the heliographic normal component of the field is used as the boundary condition rather than the observed line-of-sight component are also examined. The results of this analysis show: (1) that the observed fields of sunspots more closely resemble the generally accepted picture of the distribution of umbral fields if they are displayed in heliographic coordinates; (2) that the differences in the potential calculations are less than 200 G in field strength and 20 deg in field azimuth outside sunspots; and (3) that differences in the two potential calculations in the sunspot areas are no more than 400 G in field strength but range from 60 to 80 deg in field azimuth in localized umbral areas.

  1. Assessing Precision in Conventional Field Measurements of Individual Tree Attributes

    Directory of Open Access Journals (Sweden)

    Ville Luoma

    2017-02-01

    Full Text Available Forest resource information has a hierarchical structure: individual tree attributes are summed at the plot level and then in turn, plot-level estimates are used to derive stand or large-area estimates of forest resources. Due to this hierarchy, it is imperative that individual tree attributes are measured with accuracy and precision. With the widespread use of different measurement tools, it is also important to understand the expected degree of precision associated with these measurements. The most prevalent tree attributes measured in the field are tree species, stem diameter-at-breast-height (dbh, and tree height. For dbh and height, the most commonly used measuring devices are calipers and clinometers, respectively. The aim of our study was to characterize the precision of individual tree dbh and height measurements in boreal forest conditions when using calipers and clinometers. The data consisted of 319 sample trees at a study area in Evo, southern Finland. The sample trees were measured independently by four trained mensurationists. The standard deviation in tree dbh and height measurements was 0.3 cm (1.5% and 0.5 m (2.9%, respectively. Precision was also assessed by tree species and tree size classes; however, there were no statistically significant differences between the mensurationists for dbh or height measurements. Our study offers insights into the expected precision of tree dbh and height as measured with the most commonly used devices. These results are important when using sample plot data in forest inventory applications, especially now, at a time when new tree attribute measurement techniques based on remote sensing are being developed and compared to the conventional caliper and clinometer measurements.

  2. Mapping system, magnetic measurement and shimming in CRM cyclotron

    International Nuclear Information System (INIS)

    Zhong Junqing; Lv Yinlong; Yin Zhiguo

    2008-01-01

    The Central Region Model (CRM) is a compact H - cyclotron. Because of the intrinsic asymmetry of the magnet, its machining and assembly are very complicated. To guarantee the magnet field distribution, it is necessary to measure and shim the magnetic field. This paper presents a study on the design and use of the mapping system based on the Hall Effect and the re-machining of shimming bars after analyzing the magnetic field measurement data to achieve the isochronous field and good vertical focusing frequency. The method to effectively reduce the amplitude of the 1st harmonic by shimming bars 1s also introduced. (authors)

  3. measurements by Thomson scattering system

    Indian Academy of Sciences (India)

    oirity in measuring the electron temperature (Te) and density (ne) in fusion plasma devices like tokamaks. ... by the plasma electrons is used for the measurements. .... will be in the photon integration mode and will be acquired by a computer.

  4. Field mapping measurements to determine spatial and field dependence of critical current density in YBCO tapes

    International Nuclear Information System (INIS)

    Leclerc, J.; Berger, K.; Douine, B.; Lévêque, J.

    2013-01-01

    Highlights: • A method for characterizing superconducting tapes from field mapping is presented. • A new and efficient field mapping apparatus has been setup. • This method allows the spatial characterization of superconducting tapes. • The critical current density is obtained as a function of the flux density. • This method has been experimentally tested on an YBCO tape. -- Abstract: In this paper a measurement method that allows the determination of the critical current density of superconducting tape from field mapping measurements is presented. This contact-free method allows obtaining characteristics of the superconductor as a function of the position and of the applied flux density. With some modifications, this technique can be used for reel-to-reel measurements. The determination of the critical current density is based on an inverse calculation. This involves calculating the current distribution in the tape from magnetic measurements. An YBaCuO tape has been characterized at 77 K. A defect in this superconductor has been identified. Various tests were carried out to check the efficiency of the method. The inverse calculation was tested theoretically and experimentally. Comparison with a transport current measurement was also performed

  5. A Portable, Field-Deployable Analyzer for Isotopic Water Measurements

    Science.gov (United States)

    Berman, E. S.; Gupta, M.; Huang, Y. W.; Lacelle, D.; McKay, C. P.; Fortson, S.

    2015-12-01

    Water stable isotopes have for many years been used to study the hydrological cycle, catchment hydrology, and polar climate among other applications. Typically, discrete water samples are collected and transported to a laboratory for isotope analysis. Due to the expense and labor associated with such sampling, isotope studies have generally been limited in scope and time-resolution. Field sampling of water isotopes has been shown in recent years to provide dense data sets with the increased time resolution illuminating substantially greater short term variability than is generally observed during discrete sampling. A truly portable instrument also opens the possibility to utilize the instrument as a tool for identifying which water samples would be particularly interesting for further laboratory investigation. To make possible such field measurements of liquid water isotopes, Los Gatos Research has developed a miniaturized, field-deployable liquid water isotope analyzer. The prototype miniature liquid water isotope analyzer (mini-LWIA) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology in a rugged, Pelican case housing for easy transport and field operations. The analyzer simultaneously measures both δ2H and δ18O from liquid water, with both manual and automatic water introduction options. The laboratory precision for δ2H is 0.6 ‰, and for δ18O is 0.3 ‰. The mini-LWIA was deployed in the high Arctic during the summer of 2015 at Inuvik in the Canadian Northwest Territories. Samples were collected from Sachs Harbor, on the southwest coast of Banks Island, including buried basal ice from the Lurentide Ice Sheet, some ice wedges, and other types of ground ice. Methodology and water analysis results from this extreme field deployment will be presented.

  6. Virtual Reality System with Integrated Sound Field Simulation and Reproduction

    Directory of Open Access Journals (Sweden)

    Ingo Assenmacher

    2007-01-01

    Full Text Available A real-time audio rendering system is introduced which combines a full room-specific simulation, dynamic crosstalk cancellation, and multitrack binaural synthesis for virtual acoustical imaging. The system is applicable for any room shape (normal, long, flat, coupled, independent of the a priori assumption of a diffuse sound field. This provides the possibility of simulating indoor or outdoor spatially distributed, freely movable sources and a moving listener in virtual environments. In addition to that, near-to-head sources can be simulated by using measured near-field HRTFs. The reproduction component consists of a headphone-free reproduction by dynamic crosstalk cancellation. The focus of the project is mainly on the integration and interaction of all involved subsystems. It is demonstrated that the system is capable of real-time room simulation and reproduction and, thus, can be used as a reliable platform for further research on VR applications.

  7. Field Testing of Environmentally Friendly Drilling System

    Energy Technology Data Exchange (ETDEWEB)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  8. Optical camera system for radiation field

    International Nuclear Information System (INIS)

    Maki, Koichi; Senoo, Makoto; Takahashi, Fuminobu; Shibata, Keiichiro; Honda, Takuro.

    1995-01-01

    An infrared-ray camera comprises a transmitting filter used exclusively for infrared-rays at a specific wavelength, such as far infrared-rays and a lens used exclusively for infrared rays. An infrared ray emitter-incorporated photoelectric image converter comprising an infrared ray emitting device, a focusing lens and a semiconductor image pick-up plate is disposed at a place of low gamma-ray dose rate. Infrared rays emitted from an objective member are passed through the lens system of the camera, and real images are formed by way of the filter. They are transferred by image fibers, introduced to the photoelectric image converter and focused on the image pick-up plate by the image-forming lens. Further, they are converted into electric signals and introduced to a display and monitored. With such a constitution, an optical material used exclusively for infrared rays, for example, ZnSe can be used for the lens system and the optical transmission system. Accordingly, it can be used in a radiation field of high gamma ray dose rate around the periphery of the reactor container. (I.N.)

  9. The separatrix radius measurement of field-reversed configuration plasma in FRX-L

    International Nuclear Information System (INIS)

    Zhang, Shouyin; Tejero, Erik M.; Taccetti, Jose Martin; Wurden, Glen A.; Intrator, Thomas; Waganaar, William J.

    2004-01-01

    Magnetic pick-up coils and single turn flux loops are installed on the FRX-L device. The combination of the two measurements provides the excluded flux radius that approximates the separatrix radius of the field-reversed configuration plasma. Arrays of similar probes are used to map out local magnetic field dynamics beyond both ends of the theta-coil confinement region to help understand the effects of cusp locations on flux trapping during the FRC formation process. Details on the probe design and system calibrations are presented. The overall system calibration of excluded flux radius measurement is examined by replacing FRC plasma with a known radius aluminum conductor cylinder.

  10. The magnetic field for the ZEUS central detector - analysis and correction of the field measurement

    International Nuclear Information System (INIS)

    Mengel, S.

    1992-06-01

    The magnetic field in the central tracking region of the ZEUS-detector - a facility to investigate highly energetic electron-proton-collisions at the HERA-collider at DESY Hamburg - is generated by a superconducting coil and reaches 18 kG (1.8 T). Some of the tracking devices particularly the drift chambers in the proton forward and rear direction (FTD1-3 and RTD) are not fully contained within the coil and therefore situated in a highly inhomogeneous magnetic field: The radial component B r is up to 6.6 kG, maximum gradients are found to be 300 G/cm for δB r /δr. Evaluating the space drifttime relation necessitates a detailed knowledge of the magnetic field. To reach this goal we analysed the field measurements and corrected them for systematic errors. The corrected data were compared with the field calculations (TOSCA-maps). Measurements and calculations are confirmed by studying consistency with Maxwell's equations. The accuracy reached is better than 100 G throughout the forward and central drift chambers (FTD1-3, CTD) and better than 150 G in the RTD. (orig.) [de

  11. Improvement an enterprises marketing performance measurement system

    Directory of Open Access Journals (Sweden)

    Stanković Ljiljana

    2013-01-01

    Full Text Available Business conditions in which modern enterprises do business are more and more complex. The complexity of the business environment is caused by activities of external and internal factors, which imposes the need for the turn in management focus. One of key turns is related to the need of adaptation and development of new business performance evaluation systems. The evaluation of marketing contribution to business performance is very important however a complex task as well. The marketing theory and practice indicates the need for developing adequate standards and systems for evaluating the efficiency of marketing decisions. The better understanding of marketing standards and ways that managers use is a very important factor that affects the efficiency of strategic decision-making. The paper presents the results of researching the way in which managers perceive and apply marketing performance measures. The data that were received through the field research sample enabled the consideration of the managers' attitudes on practical ways of implementing marketing performance measurement and identifying measures that managers imply as used mostly in business practice.

  12. Tunneling Time and Weak Measurement in Strong Field Ionization.

    Science.gov (United States)

    Zimmermann, Tomáš; Mishra, Siddhartha; Doran, Brent R; Gordon, Daniel F; Landsman, Alexandra S

    2016-06-10

    Tunneling delays represent a hotly debated topic, with many conflicting definitions and little consensus on when and if such definitions accurately describe the physical observables. Here, we relate these different definitions to distinct experimental observables in strong field ionization, finding that two definitions, Larmor time and Bohmian time, are compatible with the attoclock observable and the resonance lifetime of a bound state, respectively. Both of these definitions are closely connected to the theory of weak measurement, with Larmor time being the weak measurement value of tunneling time and Bohmian trajectory corresponding to the average particle trajectory, which has been recently reconstructed using weak measurement in a two-slit experiment [S. Kocsis, B. Braverman, S. Ravets, M. J. Stevens, R. P. Mirin, L. K. Shalm, and A. M. Steinberg, Science 332, 1170 (2011)]. We demonstrate a big discrepancy in strong field ionization between the Bohmian and weak measurement values of tunneling time, and we suggest this arises because the tunneling time is calculated for a small probability postselected ensemble of electrons. Our results have important implications for the interpretation of experiments in attosecond science, suggesting that tunneling is unlikely to be an instantaneous process.

  13. Mobile measurement system for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Kildemoes Moeller, T.

    1997-06-01

    The aim of this project `Udviklingsafproevning af smaa moellevinger` has been to develop a mobile measurement system for wind turbines. The following report describes the measurement system. The project has been financed by the Danish Ministry of Energy. (au)

  14. Dosimetric system for measurement of radioactive contaminations

    International Nuclear Information System (INIS)

    Litynski, Z.; Pienkos, J.P.; Witkowski, J.; Zadrozny, S.

    1985-01-01

    A dosimetric system for personnel dosimetry and monitoring measuring a contamination without time delay and dead time is described. The system ensures many-point measurement and minimalization of background radiation influence. 1 fig. (A.S.)

  15. Application in measurements of SKODA-OZES mobile measuring system

    International Nuclear Information System (INIS)

    Grof, V.; Drab, F.; Icha, K.

    A mobile digital measuring system was built at SKODA - Energeticke strojirenstvi based on digital information system CIS 3000 with the ADT 4100 computer. The system can operate in the BCS or in the RTE-C mode. Two programs are briefly described written for the purpose of measurements. The following applications of the system were tried: testing the reactivity meter on the reactor model, demonstration measurement of the temperature of the medium and display of values on the monitor, measurement of the temperature of the lid of the pressure vessel of the WWER-440 reactor during overlaying and measurement and the adaptive control of band thickness on a KVARTO 200 rolling mill. The measurement system is expected to be used in nuclear power plants and experimental reactors. (M.D.)

  16. Measurement of the gamma field around Silene reactor

    International Nuclear Information System (INIS)

    Spurny, Frantisek; Medioni, Roger.

    1976-07-01

    A method for measuring the gamma component in the mixed field emitted by the Silene facility implanted in Valduc is investigated. Various thermoluminescent phosphors (natural LiF, 7 LiF, SO 4 Ca, Al 2 O 3 ) in containers of different sizes and types are used. The detectors results are corrected for their neutron sensitivity by using coefficients which were determined in previous studies. Alumina is shown to be the most suitable detector for this problem because of the dose ranges to be measured and its low sensitivity to neutrons. A series of measurements carried out at many points in the irradiation hall shows a good homogeneity in the gamma distribution. Results are given for different distances from the source and for a 10 17 fissions power of the reactor [fr

  17. Field nondestructive assay measurements as applied to process inventories

    International Nuclear Information System (INIS)

    Westsik, G.A.

    1979-08-01

    An annual process equipment holdup inventory measurement program for a plutonium processing plant was instituted by Rockwell Hanford Operations (Rockwell) at Richland, Washington. The inventories, performed in 1977 and 1978, were designed to improve plutonium accountability and control. The inventory method used field nondestructive assay (NDA) measurement techniques with portable electronics and sodium iodide detectors. Access to and movement of plutonium in work areas was curtailed during the inventory process using administrative controls. Comparison of the two annual inventories showed good reproducibility of results within the calculated error ranges. For items where no plutonium movement occurred and which contained greater than 20 grams plutonium, the average measurement difference between the two inventories was 22%. The procedures and equipment used and the operational experience from the inventories are described

  18. International Accounting Convergence in the Field of Fair Value Measurement

    Directory of Open Access Journals (Sweden)

    Diana Cozma Ighian

    2015-09-01

    Full Text Available The investors’ desire for high-quality, internationally comparable financial information that is useful for decision-making in increasingly global capital markets imposed an international convergence, the ultimate goal of which is a single set of international accounting standards that companies worldwide would use for both domestic and cross-border financial reporting. The guidance, set out in IFRS 13 Fair Value Measurement and the update to Topic 820 (formerly referred to as SFAS 157, completes a major project of the boards’ joint work to improve IFRSs and US GAAP and to bring about their convergence. This article describes the controversial history of fair value measurement and the main novelties in the field of fair value measurement, arising from the international convergence process.

  19. Estimation of complete temperature fields from measured temperatures

    International Nuclear Information System (INIS)

    Clegg, S.T.; Roemer, R.B.

    1984-01-01

    In hyperthermia treatments, it is desirable to be able to predict complete tissue temperature fields from sampled temperatures taken at a few locations. This is a difficult problem in hyperthermia treatments since the tissue blood perfusion is unknown. An initial attempt to do this automatically using unconstrained optimization techniques to minimize the differences between steady state temperatures measured during a treatment and temperatures (at the same locations) predicted from treatment simulations has been previously reported. A second technique using transient temperatures following a step decrease in power has been developed. This technique, which appears to be able to better predict complete temperature fields is presented and both it and the steady state technique are applied to data from both simulated and experimental hyperthermia treatments. The results of applying the two techniques are compared for one-dimensional situations. One particularly important problem which the transient technique can solve (and the steady state technique does not seem to be able to do as well) is that of predicting the complete temperature field in situations where the true maximum and/or minimum temperatures present are not measured by the available instrumentation

  20. Brush seal performance measurement system

    OpenAIRE

    Aksoy, Serdar; Akşit, Mahmut Faruk; Aksit, Mahmut Faruk; Duran, Ertuğrul Tolga; Duran, Ertugrul Tolga

    2009-01-01

    Brush seals are rapidly replacing conventional labyrinth seals in turbomachinery applications. Upon pressure application, seal stiffness increases drastically due to frictional bristle interlocking. Operating stiffness is critical to determine seal wear life. Typically, seal stiffness is measured by pressing a curved shoe to brush bore. The static-unpressurized measurement is extrapolated to pressurized and high speed operating conditions. This work presents a seal stiffness measurement syste...

  1. Electric field measurement in microwave discharge ion thruster with electro-optic probe.

    Science.gov (United States)

    Ise, Toshiyuki; Tsukizaki, Ryudo; Togo, Hiroyoshi; Koizumi, Hiroyuki; Kuninaka, Hitoshi

    2012-12-01

    In order to understand the internal phenomena in a microwave discharge ion thruster, it is important to measure the distribution of the microwave electric field inside the discharge chamber, which is directly related to the plasma production. In this study, we proposed a novel method of measuring a microwave electric field with an electro-optic (EO) probe based on the Pockels effect. The probe, including a cooling system, contains no metal and can be accessed in the discharge chamber with less disruption to the microwave distribution. This method enables measurement of the electric field profile under ion beam acceleration. We first verified the measurement with the EO probe by a comparison with a finite-difference time domain numerical simulation of the microwave electric field in atmosphere. Second, we showed that the deviations of the reflected microwave power and the beam current were less than 8% due to inserting the EO probe into the ion thruster under ion beam acceleration. Finally, we successfully demonstrated the measurement of the electric-field profile in the ion thruster under ion beam acceleration. These measurements show that the electric field distribution in the thruster dramatically changes in the ion thruster under ion beam acceleration as the propellant mass flow rate increases. These results indicate that this new method using an EO probe can provide a useful guide for improving the propulsion of microwave discharge ion thrusters.

  2. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.

    Science.gov (United States)

    Humphrey, V F

    2000-03-01

    In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.

  3. Analysis and suppression of reflections in far-field antenna measurement ranges

    OpenAIRE

    Sierra Castañer, Manuel; Cano Facila, Francisco Jose; Foged, Lars Jacob; Saccardi, Francesco; Nader Kawassaki, Guilherme; Raimundi, Lucas dos Reis; Vilela Rezende, Stefano Albino

    2013-01-01

    This paper presents the analysis of the reflections in two kind of spherical far field ranges: one if the classical acquisition where the AUT is rotated and the second one corresponds to the systems where the AUT is fixed and the antenna probe is rotated. In large far field systems this is not possible, but this can be used to the measurement of small antennas, for instance, with the SATIMO StarGate system. In both cases, it is assumed that only one frequency is acquired and the results shoul...

  4. Localized damage in soft rock: experiments with field measurement techniques

    International Nuclear Information System (INIS)

    Nguyen, T.L.

    2011-01-01

    The research presented in this thesis concerns, firstly, an experimental study on the process of fracture in uniaxial compression of rock samples containing narrow, rectilinear notches inclined with respect to the axis of loading. Secondly, we study the evolution of shear strain localisation towards fracturing and failure in specimens of the same materials with a particular geometry, involving two rounded notches. This geometry, inspired by the work of Meuwissen et al. (1998) for tension tests on metals, promotes the localisation of shear strain in simple compression before fracture. Two different materials were studied: a natural rock of volcanic origin (Neapolitan Tuff) and an artificial 'roc' (CPIR09). In the studies presented, three full-field measurement techniques have been employed in combination: (i) the Digital Image Correlation (DIC), for measurement of kinematic fields at a sample's surface; (ii)acoustic Emission measurements (AE) and AE source location, to follow the evolution of damage in samples during loading; (iii) X-ray tomography (pre-and post-mortem studies), to characterise preexisting defects and discontinuities in the specimens and to better understand the fracturing in 3D. (author)

  5. Relational description of the measurement process in quantum field theory

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A.

    2002-01-01

    We have recently introduced a realistic, covariant, interpretation for the reduction process in relativistic quantum mechanics. The basic problem for a covariant description is the dependence of the states on the frame within which collapse takes place. A suitable use of the causal structure of the devices involved in the measurement process allowed us to introduce a covariant notion for the collapse of quantum states. However, a fully consistent description in the relativistic domain requires the extension of the interpretation to quantum fields. The extension is far from straightforward. Besides the obvious difficulty of dealing with the infinite degrees of freedom of the field theory, one has to analyse the restrictions imposed by causality concerning the allowed operations in a measurement process. In this paper we address these issues. We shall show that, in the case of partial causally connected measurements, our description allows us to include a wider class of causal operations than the one resulting from the standard way of computing conditional probabilities. This alternative description could be experimentally tested. A verification of this proposal would give stronger support to the realistic interpretations of the states in quantum mechanics. (author)

  6. Using a Control System Ethernet Network as a Field Bus

    CERN Document Server

    De Van, William R; Lawson, Gregory S; Wagner, William H; Wantland, David M; Williams, Ernest

    2005-01-01

    A major component of a typical accelerator distributed control system (DCS) is a dedicated, large-scale local area communications network (LAN). The SNS EPICS-based control system uses a LAN based on the popular IEEE-802.3 set of standards (Ethernet). Since the control system network infrastructure is available throughout the facility, and since Ethernet-based controllers are readily available, it is tempting to use the control system LAN for "fieldbus" communications to low-level control devices (e.g. vacuum controllers; remote I/O). These devices may or may not be compatible with the high-level DCS protocols. This paper presents some of the benefits and risks of combining high-level DCS communications with low-level "field bus" communications on the same network, and describes measures taken at SNS to promote compatibility between devices connected to the control system network.

  7. A prototype tap test imaging system: Initial field test results

    Science.gov (United States)

    Peters, J. J.; Barnard, D. J.; Hudelson, N. A.; Simpson, T. S.; Hsu, D. K.

    2000-05-01

    This paper describes a simple, field-worthy tap test imaging system that gives quantitative information about the size, shape, and severity of defects and damages. The system consists of an accelerometer, electronic circuits for conditioning the signal and measuring the impact duration, a laptop PC and data acquisition and processing software. The images are generated manually by tapping on a grid printed on a plastic sheet laid over the part's surface. A mechanized scanner is currently under development. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Images of the local contact stiffness, deduced from the impact duration using a spring model, revealed quantitatively the stiffness reduction due to flaws and damages, as well as the stiffness enhancement due to substructures. The system has been field tested on commercial and military aircraft as well as rotor blades and engine decks on helicopters. Field test results will be shown and the operation of the system will be demonstrated.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  8. Measuring microbial fitness in a field reciprocal transplant experiment.

    Science.gov (United States)

    Boynton, Primrose J; Stelkens, Rike; Kowallik, Vienna; Greig, Duncan

    2017-05-01

    Microbial fitness is easy to measure in the laboratory, but difficult to measure in the field. Laboratory fitness assays make use of controlled conditions and genetically modified organisms, neither of which are available in the field. Among other applications, fitness assays can help researchers detect adaptation to different habitats or locations. We designed a competitive fitness assay to detect adaptation of Saccharomyces paradoxus isolates to the habitat they were isolated from (oak or larch leaf litter). The assay accurately measures relative fitness by tracking genotype frequency changes in the field using digital droplet PCR (DDPCR). We expected locally adapted S. paradoxus strains to increase in frequency over time when growing on the leaf litter type from which they were isolated. The DDPCR assay successfully detected fitness differences among S. paradoxus strains, but did not find a tendency for strains to be adapted to the habitat they were isolated from. Instead, we found that the natural alleles of the hexose transport gene we used to distinguish S. paradoxus strains had significant effects on fitness. The origin of a strain also affected its fitness: strains isolated from oak litter were generally fitter than strains from larch litter. Our results suggest that dispersal limitation and genetic drift shape S. paradoxus populations in the forest more than local selection does, although further research is needed to confirm this. Tracking genotype frequency changes using DDPCR is a practical and accurate microbial fitness assay for natural environments. © 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.

  9. Full-Field Indentation Damage Measurement Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2017-07-01

    Full Text Available A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  10. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    Science.gov (United States)

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m 2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Measuring the complex field scattered by single submicron particles

    Energy Technology Data Exchange (ETDEWEB)

    Potenza, Marco A. C., E-mail: marco.potenza@unimi.it; Sanvito, Tiziano [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); CIMAINA, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); EOS s.r.l., viale Ortles 22/4, I-20139 Milan (Italy); Pullia, Alberto [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy)

    2015-11-15

    We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  12. Normalized noise power spectrum of full field digital mammography system

    International Nuclear Information System (INIS)

    Norriza Mohd Isa; Wan Muhamad Saridan Wan Hassan

    2009-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality. (Author)

  13. Normalized Noise Power Spectrum of Full Field Digital Mammography System

    International Nuclear Information System (INIS)

    Isa, Norriza Mohd; Wan Hassan, Wan Muhamad Saridan

    2010-01-01

    A method to measure noise power spectrum of a full field digital mammography system is presented. The effect of X-ray radiation dose, size and configuration of region of interest on normalized noise power spectrum (NNPS) was investigated. Flat field images were acquired using RQA-M2 beam quality technique (Mo/Mo anode-filter, 28 kV, 2 mm Al) with different clinical radiation doses. The images were cropped at about 4 cm from the edge of the breast wall and then divided into different size of non-overlapping or overlapping segments. NNPS was determined through detrending, 2-D fast Fourier transformation and normalization. Our measurement shows that high radiation dose gave lower NNPS at a specific beam quality.

  14. Magnetic field measurement in the analyzing magnet of NIS spectrometer

    Science.gov (United States)

    Avramenko, S. A.; Afanas'ev, S. V.; Voloshina, I. G.; Dolgii, S. A.; Yusupov, A. Yu.; Kalmykov, A. V.; Makoveev, V. K.; Nikolaevskii, G. P.; Ostrovskii, I. V.; Perepelkin, E. E.; Peresedov, V. F.; Plyashkevich, S. N.; Rossiiskaya, N. S.; Salmin, R. A.; Spodarets, V. K.; Strokovskii, E. A.; Yudin, I. P.

    2006-12-01

    The main goals of the Nucleon Intrinsic Strangeness experiment (NIS) are the search for the effects of hidden polarized strangeness in the nucleon and the exploration and study of exotic baryons (pentaquarks) in NN reactions. The setup is located in the Laboratory of High Energies at the Joint Institute for Nuclear Research in channel 4V of the Nuclotron extracted beam with the energy between 1 and 4 GeV. The 1SP-40-4V electromagnet of the spectrometer has the external dimensions 3.20 × 3.26 × 4.48 m and the aperture 2.74 × 0.68 m. The magnetic field measurement was performed using the three-component Hall magnetometer in the computer-controlled automated mode. The volume of measurements was 1.03 × 0.60 × 3.92 m. The description of the measuring equipment and measurement procedure is given. The results of the measurements are used for the Monte Carlo computer modeling of the experiment. These results will be used in the analysis of physical data after their acquisition.

  15. On the measurements of large scale solar velocity fields

    International Nuclear Information System (INIS)

    Andersen, B.N.

    1985-01-01

    A general mathematical formulation for the correction of the scattered light influence on solar Doppler shift measurements has been developed. This method has been applied to the straylight correction of measurements of solar rotation, limb effect, large scale flows and oscillations. It is shown that neglecting the straylight errors may cause spurious large scale velocity fields, oscillations and erronous values for the solar rotation and limb effect. The influence of active regions on full disc velocity measurements has been studied. It is shown that a 13 day periodicity in the global velocity signal will be introduced by the passage of sunspots over the solar disc. With different types of low resolution apertures, other periodicities may be introduced. Accurate measurements of the center-to-limb velocity shift are presented for a set of magnetic insensitive lines well suited for solar velocity measurements. The absolute wavelenght shifts are briefly discussed. The stronger lines have a ''supergravitational'' shift of 300-400 m/s at the solar limb. The results may be explained by the presence of a 20-25 m/s poleward meridional flow and a latitudinal dependence of the granular parameters. Using a simple model it is shown that the main properites of the observations are explained by a 5% increase in the granular size with latitude. Data presented indicate that the resonance line K I, 769.9 nm has a small but significant limb effect of 125 m/s from center to limb

  16. HTGR Measurements and Instrumentation Systems

    International Nuclear Information System (INIS)

    Ball, Sydney J.; Holcomb, David Eugene; Cetiner, Mustafa Sacit

    2012-01-01

    This report provides an integrated overview of measurements and instrumentation for near-term future high-temperature gas-cooled reactors (HTGRs). Instrumentation technology has undergone revolutionary improvements since the last HTGR was constructed in the United States. This report briefly describes the measurement and communications needs of HTGRs for normal operations, maintenance and inspection, fuel fabrication, and accident response. The report includes a description of modern communications technologies and also provides a potential instrumentation communications architecture designed for deployment at an HTGR. A principal focus for the report is describing new and emerging measurement technologies with high potential to improve operations, maintenance, and accident response for the next generation of HTGRs, known as modular HTGRs, which are designed with passive safety features. Special focus is devoted toward describing the failure modes of the measurement technologies and assessing the technology maturity.

  17. A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements

    Science.gov (United States)

    Hulot, G.; Thebault, E.; Vigneron, P.

    2015-12-01

    The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.

  18. EPOS1 - a multiparameter measuring system to earthquake prediction research

    Energy Technology Data Exchange (ETDEWEB)

    Streil, T.; Oeser, V. [SARAD GmbH, Dresden (Germany); Heinicke, J.; Koch, U.; Wiegand, J.

    1998-12-31

    The approach to earthquake prediction by geophysical, geochemical and hydrological measurements is a long and winding road. Nevertheless, the results show a progress in that field (e.g. Kobe). This progress is also a result of a new generation of measuring equipment. SARAD has developed a versatile measuring system (EPOS1) based on experiences and recent results from different research groups. It is able to record selected parameters suitable to earthquake prediction research. A micro-computer system handles data exchange, data management and control. It is connected to a modular sensor system. Sensor modules can be selected according to the actual needs at the measuring site. (author)

  19. Measurement of deformation field in CT specimen using laser speckle

    International Nuclear Information System (INIS)

    Jeon, Moon Chang; Kang, Ki Ju

    2001-01-01

    To obtain A 2 experimentally in the J-A 2 theory, deformation field on the lateral surface of a CT specimen was to be determined using laser speckle method. The crack growth was measured using direct current potential drop method and most procedure of experimental and data reduction was performed according to ASTM Standard E1737-96. Laser speckle images during crack propagation were monitored by two CCD cameras to cancel the effect of rotation and translation of the specimen. An algorithm to pursue displacement of a point from each image was developed and successfully used to measure A 2 continuously as the crack tip was propagated. The effects of specimen thickness on J-R curve and A 2 were explored

  20. Reality, measurement and locality in Quantum Field Theory

    International Nuclear Information System (INIS)

    Tommasini, Daniele

    2002-01-01

    It is currently believed that the local causality of Quantum Field Theory (QFT) is destroyed by the measurement process. This belief is also based on the Einstein-Podolsky-Rosen (EPR) paradox and on the so-called Bell's theorem, that are thought to prove the existence of a mysterious, instantaneous action between distant measurements. However, I have shown recently that the EPR argument is removed, in an interpretation-independent way, by taking into account the fact that the Standard Model of Particle Physics prevents the production of entangled states with a definite number of particles. This result is used here to argue in favor of a statistical interpretation of QFT and to show that it allows for a full reconciliation with locality and causality. Within such an interpretation, as Ballentine and Jarret pointed out long ago, Bell's theorem does not demonstrate any nonlocality. (author)

  1. Field soil-water properties measured through radiation techniques

    International Nuclear Information System (INIS)

    1984-07-01

    This report shows a major effort to make soil physics applicable to the behaviour of the field soils and presents a rich and diverse set of data which are essential for the development of effective soil-water management practices that improve and conserve the quality and quantity of agricultural lands. This piece of research has shown that the neutron moisture meter together with some complementary instruments like tensiometers, can be used not only to measure soil water contents but also be extremely handy to measure soil hydraulic characteristics and soil water flow. It is, however, recognized that hydraulic conductivity is highly sensitive to small changes in soil water content and texture, being extremely variable spatially and temporally

  2. Sliding bearing diagnosis with magnetic field measuring; Gleitlagerdiagnose mittels Magnetfeldmessungen

    Energy Technology Data Exchange (ETDEWEB)

    Bittner, H. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik; Kluth, T. [HWTS Zittau (Germany). Fachgebiet Instandhaltung/Technische Diagnostik

    1995-09-01

    Account of their properties sliding bearings are in high demanded and important aggregats. The destruction of a bearing will be almost followed by the destruction of the aggregate. Various methods are existing for sliding bearing diagnosis. This methods often not permit the condition recognition. A new electromagnetical method will be developed. This method permits the condition recognition during working time of the aggregate. It also permits the recognition of wear. The method bases on a measuring of leak current over measuring the generated magnetic fields with Rogowski-coils. (orig.) [Deutsch] Gleitlager befinden sich wegen ihrer Eigenschaften in hoch beanspruchten und exponierten Aggregaten. Die Zerstoerung eines Gleitlagers fuehrt meist auch zur Zerstoerung des gefuehrten Aggregats. Zur Gleitlagerdiagnose existiert eine Reihe Verfahren. Ihnen wird ein elektromagnetisches Verfahren gegenuebergestellt. Damit koennen Gleitlagerzustaende waehrend des Aggregatebetriebs identifiziert werden. Das Verfahren erlaubt gleichermassen die Bestimmung des Lagerverschleisses. Es basiert auf der Ableitstrommessung, bei der sich ausbildende Magnetfelder durch Rogowskispulen ausgemessen werden. (orig.)

  3. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    Science.gov (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  4. Introduction to control system performance measurements

    CERN Document Server

    Garner, K C

    1968-01-01

    Introduction to Control System Performance Measurements presents the methods of dynamic measurements, specifically as they apply to control system and component testing. This book provides an introduction to the concepts of statistical measurement methods.Organized into nine chapters, this book begins with an overview of the applications of automatic control systems that pervade almost every area of activity ranging from servomechanisms to electrical power distribution networks. This text then discusses the common measurement transducer functions. Other chapters consider the basic wave

  5. A remote monitoring system of environmental electromagnetic field in magnetic confinement fusion test facilities

    International Nuclear Information System (INIS)

    Tanaka, Masahiro; Uda, Tatsuhiko; Takami, Shigeyuki; Wang, Jianqing; Fujiwara, Osamu

    2010-01-01

    A remote, continuous environmental electromagnetic field monitoring system for use in magnetic confinement fusion test facilities is developed. Using this system, both the static magnetic field and the high frequency electromagnetic field could be measured. The required frequency range of the measurement system is from 25 to 100 MHz for the ICRF (Ion Cyclotron Range of Frequencies) heating system. The outputs from the measurement instruments are measured simultaneously by custom-built software using a laptop-type personal computer connected to a local area network. In this way, the electromagnetic field strength could be monitored from a control room located about 200 m from the fusion device building. Examples of measurement data from the vicinity of a high-frequency generator and amplifier and the leakage static magnetic field from a fusion test device are presented. (author)

  6. Optical Measurements of Strong Radio-Frequency Fields Using Rydberg Atoms

    Science.gov (United States)

    Miller, Stephanie Anne

    There has recently been an initiative toward establishing atomic measurement standards for field quantities, including radio-frequency, millimeter-wave, and micro-wave electric fields. Current measurement standards are obtained using dipole antennas, which are fundamentally limited in frequency bandwidth (set by the physical size of the antenna) and accuracy (due to the metal perturbing the field during the measurement). Establishing an atomic standard rectifies these problems. My thesis work contributes to an ongoing effort towards establishing the viability of using Rydberg electromagnetically induced transparency (EIT) to perform atom-based measurements of radio-frequency (RF) fields over a wide range of frequencies and field strengths, focusing on strong-field measurements. Rydberg atoms are atoms with an electron excited to a high principal quantum number, resulting in a high sensitivity to an applied field. A model based on Floquet theory is implemented to accurately describe the observed atomic energy level shifts from which information about the field is extracted. Additionally, the effects due to the different electric field domains within the measurement volume are accurately modeled. Absolute atomic measurements of fields up to 296 V/m within a +/-0.35% relative uncertainty are demonstrated. This is the strongest field measured at the time of data publication. Moreover, the uncertainty is over an order of magnitude better than that of current standards. A vacuum chamber setup that I implemented during my graduate studies is presented and its unique components are detailed. In this chamber, cold-atom samples are generated and Rydberg atoms are optically excited within the ground-state sample. The Rydberg ion detection and imaging procedure are discussed, particularly the high magnification that the system provides. By analyzing the position of the ions, the spatial correlation g(2) (r) of Rydberg-atom distributions can be extracted. Aside from ion

  7. Extension of PIV for measuring granular temperature field in dense fluidized beds.

    NARCIS (Netherlands)

    Dijkhuizen, W.; Bokkers, G.A.; Deen, N.G.; van Sint Annaland, M.; Kuipers, J.A.M.

    2007-01-01

    In this work a particle image velocimetry (PIV) technique has been extended to enable the simultaneous measurement of the instantaneous velocity and granular temperature fields. The PIV algorithm has been specifically optimized for dense granular systems and has been thoroughly tested with

  8. Evaluation of Occupational Cold Environments: Field Measurements and Subjective Analysis

    Science.gov (United States)

    OLIVEIRA, A. Virgílio M.; GASPAR, Adélio R.; RAIMUNDO, António M.; QUINTELA, Divo A.

    2014-01-01

    The present work is dedicated to the study of occupational cold environments in food distribution industrial units. Field measurements and a subjective assessment based on an individual questionnaire were considered. The survey was carried out in 5 Portuguese companies. The field measurements include 26 workplaces, while a sample of 160 responses was considered for the subjective assessment. In order to characterize the level of cold exposure, the Required Clothing Insulation Index (IREQ) was adopted. The IREQ index highlights that in the majority of the workplaces the clothing ensembles worn are inadequate, namely in the freezing chambers where the protection provided by clothing is always insufficient. The questionnaires results show that the food distribution sector is characterized by a female population (70.6%), by a young work force (60.7% are less than 35 yr old) and by a population with a medium-length professional career (80.1% in this occupation for less than 10 yr). The incidence of health effects which is higher among women, the distribution of protective clothing (50.0% of the workers indicate one garment) and the significant percentage of workers (>75%) that has more difficulties in performing the activity during the winter represent other important results of the present study. PMID:24583510

  9. Velocity field measurements on high-frequency, supersonic microactuators

    Science.gov (United States)

    Kreth, Phillip A.; Ali, Mohd Y.; Fernandez, Erik J.; Alvi, Farrukh S.

    2016-05-01

    The resonance-enhanced microjet actuator which was developed at the Advanced Aero-Propulsion Laboratory at Florida State University is a fluidic-based device that produces pulsed, supersonic microjets by utilizing a number of microscale, flow-acoustic resonance phenomena. The microactuator used in this study consists of an underexpanded source jet that flows into a cylindrical cavity with a single, 1-mm-diameter exhaust orifice through which an unsteady, supersonic jet issues at a resonant frequency of 7 kHz. The flowfields of a 1-mm underexpanded free jet and the microactuator are studied in detail using high-magnification, phase-locked flow visualizations (microschlieren) and two-component particle image velocimetry. These are the first direct measurements of the velocity fields produced by such actuators. Comparisons are made between the flow visualizations and the velocity field measurements. The results clearly show that the microactuator produces pulsed, supersonic jets with velocities exceeding 400 m/s for roughly 60 % of their cycles. With high unsteady momentum output, this type of microactuator has potential in a range of ow control applications.

  10. Evaluation of occupational cold environments: field measurements and subjective analysis.

    Science.gov (United States)

    Oliveira, A Virgílio M; Gaspar, Adélio R; Raimundo, António M; Quintela, Divo A

    2014-01-01

    The present work is dedicated to the study of occupational cold environments in food distribution industrial units. Field measurements and a subjective assessment based on an individual questionnaire were considered. The survey was carried out in 5 Portuguese companies. The field measurements include 26 workplaces, while a sample of 160 responses was considered for the subjective assessment. In order to characterize the level of cold exposure, the Required Clothing Insulation Index (IREQ) was adopted. The IREQ index highlights that in the majority of the workplaces the clothing ensembles worn are inadequate, namely in the freezing chambers where the protection provided by clothing is always insufficient. The questionnaires results show that the food distribution sector is characterized by a female population (70.6%), by a young work force (60.7% are less than 35 yr old) and by a population with a medium-length professional career (80.1% in this occupation for less than 10 yr). The incidence of health effects which is higher among women, the distribution of protective clothing (50.0% of the workers indicate one garment) and the significant percentage of workers (>75%) that has more difficulties in performing the activity during the winter represent other important results of the present study.

  11. Velocity field measurement in micro-bubble emission boiling

    International Nuclear Information System (INIS)

    Ito, Daisuke; Saito, Yasushi; Natazuka, Jun

    2017-01-01

    Liquid inlet behavior to a heat surface in micro-bubble emission boiling (MEB) was investigated by flow measurement using particle image velocimetry (PIV). Subcooled pool boiling experiments under atmospheric pressure were carried out using a heat surface with a diameter of 10 mm. An upper end of a heater block made of copper was used as the heat surface. Working fluid was the deionized water and the subcooling was varied from 40 K to 70 K. Three K-type thermocouples were installed in the copper block to measure the temperature gradient, and the heat flux and wall superheat were estimated from these temperature data to make a boiling curve. The flow visualization around the heat surface was carried out using a high-speed video camera and a light sheet. The microbubbles generated in the MEB were used as tracer particles and the velocity field was obtained by PIV analysis of the acquired image sequence. As a result, the higher heat fluxes than the critical heat flux could be obtained in the MEB region. In addition, the distribution characteristics of the velocity in MEB region were studied using the PIV results and the location of the stagnation point in the velocity fields was discussed. (author)

  12. A Field Test of the New Portable Gamma Spectrometry System

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung-Ki; Park, Uk Ryang; Park, Seunghoon; Chung, Heejun; Kwak, Sung-Woo [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of); Kim, Yongkwn [NuCare Medical Systems, Inc., Incheon (Korea, Republic of)

    2015-10-15

    In order to perform a field test of the system, the measurement of U-235 enrichment for nuclear fuel pellets was conducted along with the IAEA Physical Inventory Verification (PIV) inspection at the KEPCO Nuclear Fuel (KNF). The enrichment value of U-235 was calculated based on the total counts of the 185.7 keV photopeak and compared with the reference line, drawn by certified sources. The goal of this study is to experimentally evaluate the system performance of the developed system. In this study, the new portable gamma spectrometry system showed a good linearity (R{sup 2}=1) but overestimated the enrichment values than IAEA inspection device. It could be caused by the stability of the new system since it found, right after this measurement, that the accuracy of the system gradually increases and becomes stable over time. Further steps will optimize the design parameter based on these results and repeat measurement with the same samples under the same environment.

  13. Cooperative field test program for wind systems

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  14. A next generation field-portable goniometer system

    Science.gov (United States)

    Harms, Justin D.; Bachmann, Charles M.; Faulring, Jason W.; Ruiz Torres, Andres J.

    2016-05-01

    Various field portable goniometers have been designed to capture in-situ measurements of a materials bi-directional reflectance distribution function (BRDF), each with a specific scientific purpose in mind.1-4 The Rochester Institute of Technology's (RIT) Chester F. Carlson Center for Imaging Science recently created a novel instrument incorporating a wide variety of features into one compact apparatus in order to obtain very high accuracy BRDFs of short vegetation and sediments, even in undesirable conditions and austere environments. This next generation system integrates a dual-view design using two VNIR/SWIR pectroradiometers to capture target reflected radiance, as well as incoming radiance, to provide for better optical accuracy when measuring in non-ideal atmospheric conditions or when background illumination effects are non-negligible. The new, fully automated device also features a laser range finder to construct a surface roughness model of the target being measured, which enables the user to include inclination information into BRDF post-processing and further allows for roughness effects to be better studied for radiative transfer modeling. The highly portable design features automatic leveling, a precision engineered frame, and a variable measurement plane that allow for BRDF measurements on rugged, un-even terrain while still maintaining true angular measurements with respect to the target, all without sacrificing measurement speed. Despite the expanded capabilities and dual sensor suite, the system weighs less than 75 kg, which allows for excellent mobility and data collection on soft, silty clay or fine sand.

  15. Measured performance of the GTA rf systems

    International Nuclear Information System (INIS)

    Denney, P.M.; Jachim, S.P.

    1993-01-01

    This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation

  16. A multileaf collimator field prescription preparation system for conventional radiotherapy

    International Nuclear Information System (INIS)

    Du, M.N.; Yu, C. X.; Symons, M.; Yan, D.; Taylor, R.; Matter, R.C.; Gustafson, G.; Martinez, A.; Wong, J.W.

    1995-01-01

    Purpose: The purpose of this work is to develop a prescription preparation system for efficient field shaping using a multileaf collimator that can be used in community settings as well as research institutions. The efficiency advantage of the computer-controlled multileaf collimator, over cerrobend blocks, to shape radiation fields has been shown in conformal treatments, which typically require complete volumetric computerized tomographic data for three-dimensional radiation treatment planning--a utility not readily available to the general community. As a result, most patients today are treated with conventional radiation therapy. Therefore, we believe that it is very important to fully use the same efficiency advantage of multileaf collimator as a block replacement in conventional practice. Methods and Material: The multileaf collimator prescription preparation system developed by us acquires prescription images from different sources, including film scanner and radiation treatment planning systems. The multileaf collimator angle and leaf positions are set from the desired field contour defined on the prescription image, by minimizing the area discrepancies. Interactive graphical tools include manual adjustment of collimator angle and leaf positions, and definition of portions of the field edges that require maximal conformation. Data files of the final leaf positions are transferred to the multileaf collimator controller via a dedicated communication link. Results: We have implemented the field prescription preparation system and a network model for integrating the multileaf collimator and other radiotherapy modalities for routine treatments. For routine plan evaluation, isodose contours measured with film in solid water phantom at prescription depth are overlaid on the prescription image. Preliminary study indicates that the efficiency advantage of the MLC over cerrobend blocks in conformal therapy also holds true for conventional treatments. Conclusion: Our

  17. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    International Nuclear Information System (INIS)

    Park, Byeolteo; Myung, Hyun

    2014-01-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments. (paper)

  18. Underground localization using dual magnetic field sequence measurement and pose graph SLAM for directional drilling

    Science.gov (United States)

    Park, Byeolteo; Myung, Hyun

    2014-12-01

    With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.

  19. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  20. What SCADA systems can offer to optimize field operations

    International Nuclear Information System (INIS)

    McLean, D.J.

    1997-01-01

    A new technology developed by Kenomic Controls Ltd. of Calgary was designed to solve some of the problems associated with producing gas wells with high gas to liquids ratios. The rationale and the system architecture of the SCADA (Supervisory Control and Data Acquisition) system were described. The most common application of SCADA is the Electronic Flow Measurement (EFM) installation using a solar or thermo-electric generator as a power source for the local electronics. Benefits that the SCADA system can provide to producing fields such as increased revenue, decreased operating costs, decreased fixed capital and working capital requirements, the planning and implementation strategies for SCADA were outlined. A case history of a gas well production optimization system in the Pierceland area of northwest Saskatchewan was provided as an illustrative example. 9 figs