WorldWideScience

Sample records for field line trajectories

  1. On-Line Trajectory Retargeting for Alternate Landing Sites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Barron Associates, Inc. proposes to develop a novel on-line trajectory optimization approach for Reusable Launch Vehicles (RLVs) under failure scenarios, targeting...

  2. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  3. Attitude and Trajectory Estimation Using Earth Magnetic Field Data

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack Y.

    1996-01-01

    The magnetometer has long been a reliable, inexpensive sensor used in spacecraft momentum management and attitude estimation. Recent studies show an increased accuracy potential for magnetometer-only attitude estimation systems. Since the Earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computer and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. Traditionally, satellite attitude and trajectory have been estimated with completely separate system, using different measurement data. Recently, trajectory estimation for low earth orbit satellites was successfully demonstrated in ground software using only magnetometer data. This work proposes a single augmented extended Kalman Filter to simultaneously and autonomously estimate both spacecraft trajectory and attitude with data from a magnetometer and either dynamically determined rates or gyro-measured body rates.

  4. Developmental trajectories of peer victimization: off-line and online experiences during adolescence

    NARCIS (Netherlands)

    Sumter, S.R.; Baumgartner, S.E.; Valkenburg, P.M.; Peter, J.

    2012-01-01

    Purpose: This study investigated the development and consequences of off-line and online victimization during adolescence. We examined the number and shapes of off-line and online victimization trajectories, the relationship between trajectories of off-line and online victimization, and their effect

  5. ac transmission line field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, F.R.; Misakian, M.

    1977-11-01

    The concern in recent years over the environmental effects of electric and magnetic fields from high voltage transmission lines has also focused attention on the accuracy of measurements of these fields. Electric field meters are discussed in terms of theory of operation, parameters affecting performance, meter performance under field and laboratory conditions, and calibration procedures. The performance and calibration of magnetic field meters is described. (LCL)

  6. Multi-step lining-up correction of the CLIC trajectory

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction dep...

  7. Understanding Trajectories of Experience in Situated Learning Field Trips

    Directory of Open Access Journals (Sweden)

    Ilaria Canova Calori

    2013-05-01

    Full Text Available This paper discusses the role context plays in promoting engagement and exploration in situated learning experiences during field trips. We look at field trips where children engage with the physical and social context in order to learn about cultural and social aspects of the city they live in. By drawing on empirical data collected by means of qualitative methods, we discuss how learning unfolds along trajectories of experience towards pre-defined and emerging learning objectives. We reflect of the role technology can play in sup-porting learning experiences outside the classroom.

  8. Trajectory of a light ray in Kerr field: A material medium approach

    CERN Document Server

    Roy, Saswati

    2014-01-01

    The deflection of light ray as it passes around a gravitational mass can be calculated by different methods. Such calculations are generally done by using the null geodesics under both strong field and weak field approximation. However, several authors have studied the gravitational deflection of light ray using material medium approach. For a static, non-rotating spherical mass, one can determine the deflection in Schwarzschild field, by expressing the line element in an isotropic form and calculating the refractive index to determine the trajectory of the light ray. In this paper, we draw our attention to the refractive index of light ray in Kerr field using the material medium approach. The frame dragging effects in Kerr field was considered to calculate the velocity of light ray and finally the refractive index in Kerr field geometry was determined. Hence the deflection of light ray in Kerr field was calculated, assuming far field approximation and compared the results with those calculations done earlier...

  9. A Trajectory Correction based on Multi-Step Lining-up for the CLIC Main Linac

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory method described in this Note retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mai...

  10. Former of Turn Trajectory of Sliding Valve Shaft of Gas Line

    Directory of Open Access Journals (Sweden)

    Dementyev Vladislav. Yu.

    2017-01-01

    Full Text Available Former of turn trajectory of sliding valve shaft of gas line, that allows to provide desired motion trajectory of sliding valve and its full closing, is considered in that paper. Imitation model of that former, research results, which allow to detect influence of gain factor and time constant of position controller on value of speed error, that has impact on delay of output coordinate from setting, and that results to delay of sliding valve motion process to setting position point, are shown.

  11. Modeling and Characterization of Charged Particle Trajectories in an Oscillating Magnetic Field

    CERN Document Server

    Irawan, Dani; Khotimah, Siti Nurul; Latief, Fourier Dzar Eljabbar; Novitrian,

    2015-01-01

    A constant magnetic field has frequently been discussed and has been known that it can cause a charged particle to form interesting trajectories such as cycloid and helix in presence of electric field, but a changing magnetic field is rarely discussed. In this work, modeling and characterization of charged particle trajectories in oscillating magnetic field is reported. The modeling is performed using Euler method with speed corrector. The result shows that there are two types of trajectory patterns that will recur for every $180 n T_0$ ($n = 0, 1, 2, ..$) in increasing of magnetic field oscillation period, where $T_0$ is about $6.25\\times10^{-7}$ s.

  12. Trajectory Correction of the LHC Injection Transfer Lines TI 2 and TI 8

    CERN Document Server

    Hilaire, A; Weisse, E

    1997-01-01

    The LHC injection transfer lines TI 2 and TI 8 will transport very intense high-energy small-emittance proton beams over considerable distances. The relatively tight aperture requires a precise control of the trajectory. A detailed analysis of the trajectory excursions to be expected in the presence of various imperfections has been carried out. To stay within the given aperture a correction scheme is proposed in which two adjacent short straight sections out of every four are equipped with correctors. For both lines together this scheme requires 110 corrector elements. The maximum deflection per corrector remains below 65Ýmrad. Corrector magnets and power supplies will be recuperated from LEP and adapted to their new function. The beam position monitors will use button-type electrodes which can also be recovered from LEP.

  13. The Planning of Straight Line Trajectory in Robotics Using Interactive Graphics

    Directory of Open Access Journals (Sweden)

    Kesheng Wang

    1987-07-01

    Full Text Available The planning of straight line trajectory using the interactive computer graphics simulation of robot manipulator movement is discussed. This new approach to straight line motion planning improves the 'bound deviation joint paths' developed by R. M. Taylor (1979. The new approach has three characteristics: (1 linear interpolation in joint space; (2 unequal intervals for interpolating knot points; (3 using interactive computer graphics to assure that the maximum deviation in the whole segment is less than the pre-specified values. The structure and mathematical basis of a computer program developed for this purpose are presented.

  14. Lightning Performance on Overhead Distribution Lines : After Improvement Field Observation

    Directory of Open Access Journals (Sweden)

    Reynaldo Zoro

    2009-11-01

    Full Text Available Two feeders of 20 kV overhead distribution lines which are located in a high lightning density area are chosen to be observed as a field study due to their good lightning performance after improvement of lightning protection system. These two feeders used the new overhead ground wire and new line arrester equipped with lightning counter on the main lines. The significant reduced of lines outages are reported. Study was carried out to observe these improvements by comparing to the other two feeders line which are not improved and not equipped yet with the ground wire and line arrester. These two feeders located in the nearby area. Two cameras were installed to record the trajectory of the lightning strikes on the improved lines. Lightning peak currents are measured using magnetic tape measurement system installed on the grounding lead of lightning arrester. Lightning overvoltage calculations are carried out by using several scenarios based on observation results and historical lightning data derived from lightning detection network. Lightning overvoltages caused by indirect or direct strikes are analyzed to get the lightning performance of the lines. The best scenario was chosen and performance of the lines were improved significantly by installing overhead ground wire and improvement of lightning arrester installation.

  15. Dividing line between quantum and classical trajectories in a measurement problem: Bohmian time constant.

    Science.gov (United States)

    Nassar, Antonio B; Miret-Artés, Salvador

    2013-10-11

    This Letter proposes an answer to a challenge posed by Bell on the lack of clarity in regards to the dividing line between the quantum and classical regimes in a measurement problem. To this end, a generalized logarithmic nonlinear Schrödinger equation is proposed to describe the time evolution of a quantum dissipative system under continuous measurement. Within the Bohmian mechanics framework, a solution to this equation reveals a novel result: it displays a time constant that should represent the dividing line between the quantum and classical trajectories. It is shown that continuous measurements and damping not only disturb the particle but compel the system to converge in time to a Newtonian regime. While the width of the wave packet may reach a stationary regime, its quantum trajectories converge exponentially in time to classical trajectories. In particular, it is shown that damping tends to suppress further quantum effects on a time scale shorter than the relaxation time of the system. If the initial wave packet width is taken to be equal to 2.8×10(-15) m (the approximate size of an electron), the Bohmian time constant is found to have an upper limit, i.e., τ(Bmax)=10(-26) s.

  16. Collisionless reconnection: magnetic field line interaction

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2012-10-01

    Full Text Available Magnetic field lines are quantum objects carrying one quantum Φ0 = 2πh/e of magnetic flux and have finite radius λm. Here we argue that they possess a very specific dynamical interaction. Parallel field lines reject each other. When confined to a certain area they form two-dimensional lattices of hexagonal structure. We estimate the filling factor of such an area. Anti-parallel field lines, on the other hand, attract each other. We identify the physical mechanism as being due to the action of the gauge potential field, which we determine quantum mechanically for two parallel and two anti-parallel field lines. The distortion of the quantum electrodynamic vacuum causes a cloud of virtual pairs. We calculate the virtual pair production rate from quantum electrodynamics and estimate the virtual pair cloud density, pair current and Lorentz force density acting on the field lines via the pair cloud. These properties of field line dynamics become important in collisionless reconnection, consistently explaining why and how reconnection can spontaneously set on in the field-free centre of a current sheet below the electron-inertial scale.

  17. On the Possible Trajectories of Particles with Spin. II. Particles in the Stationary Homogeneous Magnetic Field

    CERN Document Server

    Tarakanov, Alexander N

    2016-01-01

    The behavior of spinning particles in the stationary homogeneous magnetic field is considered and all types of trajectories for massive and massless particles are found. It is shown that spin of particles in a magnetic field is always arranged parallel or antiparallel to the field. Helicity $e$ plays a role of electric charge. The oscillation frequency of massless particle in a magnetic field increases.

  18. Numerical simulation of flow fields and particle trajectories

    DEFF Research Database (Denmark)

    Mayer, Stefan

    2000-01-01

    A model describing the ciliary driven flow and motion of suspended particles in downstream suspension feeders is developed. The quasi-steady Stokes equations for creeping flow are solved numerically in an unbounded fluid domain around cylindrical bodies using a boundary integral formulation...... region close to the driving ciliary bands and a steady region covering the remaining fluid domain. The size of the unsteady region appears to be comparable to the metachronal wavelength of the ciliary band. A systematic investigation is performed of trajectories of infinitely small (fluid) particles...... in the simulated unsteady ciliary driven flow. A fraction of particles appear to follow trajectories, that resemble experimentally observed particle capture events in the downstream feeding system of the polycheate Sabella penicillus, indicating that particles can be captured by ciliary systems without mechanical...

  19. Spherical aberration from trajectories in real and hard-edge solenoid fields

    Indian Academy of Sciences (India)

    BISWAS B

    2016-06-01

    For analytical, real and hard-edge solenoidal axial magnetic fields, the low-energy electron trajectories are obtained using the third-order paraxial ray equation. Using the particle trajectories, it is shown that the spherical aberration in the hard-edge model is high and it increases monotonously with hard edginess, although the focal length converges, in agreement with a recentfield and spherical aberration model. The model paved the way for a hard-edge approximation that gives correct focal length and spherical aberration, which is verified here by the trajectory method. In essence, we show that exact hard-edge fields give infinite spherical aberrations.

  20. Extended ellipse-line-ellipse trajectory for long-object cone-beam imaging with a mounted C-arm system

    Science.gov (United States)

    Yu, Zhicong; Lauritsch, Günter; Dennerlein, Frank; Mao, Yanfei; Hornegger, Joachim; Noo, Frédéric

    2016-02-01

    Recent reports show that three-dimensional cone-beam (CB) imaging with a floor-mounted (or ceiling-mounted) C-arm system has become a valuable tool in interventional radiology. Currently, a circular short scan is used for data acquisition, which inevitably yields CB artifacts and a short coverage in the direction of the patient table. To overcome these two limitations, a more sophisticated data acquisition geometry is needed. This geometry should be complete in terms of Tuy’s condition and should allow continuous scanning, while being compatible with the mechanical constraints of mounted C-arm systems. Additionally, the geometry should allow accurate image reconstruction from truncated data. One way to ensure such a feature is to adopt a trajectory that provides full R-line coverage within the field-of-view (FOV). An R-line is any segment of line that connects two points on a source trajectory, and the R-line coverage is the set of points that belong to an R-line. In this work, we propose a novel geometry called the extended ellipse-line-ellipse (ELE) for long-object imaging with a mounted C-arm system. This trajectory is built from modules consisting of two elliptical arcs connected by a line. We demonstrate that the extended ELE can be configured in many ways so that full R-line coverage is guaranteed. Both tight and relaxed parametric settings are presented. All results are supported by extensive mathematical proofs provided in appendices. Our findings make the extended ELE trajectory attractive for axially-extended FOV imaging in interventional radiology.

  1. Classical trajectory perspective of atomic ionization in strong laser fields semiclassical modeling

    CERN Document Server

    Liu, Jie

    2014-01-01

    The ionization of atoms and molecules in strong laser fields is an active field in modern physics and has versatile applications in such as attosecond physics, X-ray generation, inertial confined fusion (ICF), medical science and so on. Classical Trajectory Perspective of Atomic Ionization in Strong Laser Fields covers the basic concepts in this field and discusses many interesting topics using the semiclassical model of classical trajectory ensemble simulation, which is one of the most successful ionization models and has the advantages of a clear picture, feasible computing and accounting for many exquisite experiments quantitatively. The book also presents many applications of the model in such topics as the single ionization, double ionization, neutral atom acceleration and other timely issues in strong field physics, and delivers useful messages to readers with presenting the classical trajectory perspective on the strong field atomic ionization. The book is intended for graduate students and researchers...

  2. Field free line magnetic particle imaging

    CERN Document Server

    Erbe, Marlitt

    2014-01-01

    Marlitt Erbe provides a detailed introduction into the young research field of Magnetic Particle Imaging (MPI) and field free line (FFL) imaging in particular. She derives a mathematical description of magnetic field generation for FFL imaging in MPI. To substantiate the simulation studies on magnetic FFL generation with a proof-of-concept, the author introduces the FFL field demonstrator, which provides the world's first experimentally generated rotated and translated magnetic FFL field complying with the requirements for FFL reconstruction. Furthermore, she proposes a scanner design of consi

  3. Single shot trajectory design for region-specific imaging using linear and nonlinear magnetic encoding fields.

    Science.gov (United States)

    Layton, Kelvin J; Gallichan, Daniel; Testud, Frederik; Cocosco, Chris A; Welz, Anna M; Barmet, Christoph; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim

    2013-09-01

    It has recently been demonstrated that nonlinear encoding fields result in a spatially varying resolution. This work develops an automated procedure to design single-shot trajectories that create a local resolution improvement in a region of interest. The technique is based on the design of optimized local k-space trajectories and can be applied to arbitrary hardware configurations that employ any number of linear and nonlinear encoding fields. The trajectories designed in this work are tested with the currently available hardware setup consisting of three standard linear gradients and two quadrupolar encoding fields generated from a custom-built gradient insert. A field camera is used to measure the actual encoding trajectories up to third-order terms, enabling accurate reconstructions of these demanding single-shot trajectories, although the eddy current and concomitant field terms of the gradient insert have not been completely characterized. The local resolution improvement is demonstrated in phantom and in vivo experiments. Copyright © 2012 Wiley Periodicals, Inc.

  4. Dual-well potential field function for articulated manipulator trajectory planning

    Directory of Open Access Journals (Sweden)

    Ahmed Badawy

    2016-06-01

    Full Text Available A new attractive potential field function is proposed in this paper for manipulator trajectory planning. Existing attractive potential field constructs a global minimum through which maneuvering objects move down the gradient of the potential field toward this global minimum. The proposed method constructs a potential field with two minima. The purpose of these two minima is to create a dual attraction between links rather than affecting each link by the preceding one through kinematic constraints.

  5. Hotspots Detection from Trajectory Data Based on Spatiotemporal Data Field Clustering

    Science.gov (United States)

    Qin, K.; Zhou, Q.; Wu, T.; Xu, Y. Q.

    2017-09-01

    City hotspots refer to the areas where residents visit frequently, and large traffic flow exist, which reflect the people travel patterns and distribution of urban function area. Taxi trajectory data contain abundant information about urban functions and citizen activities, and extracting interesting city hotspots from them can be of importance in urban planning, traffic command, public travel services etc. To detect city hotspots and discover a variety of changing patterns among them, we introduce a data field-based cluster analysis technique to the pick-up and drop-off points of taxi trajectory data and improve the method by introducing the time weight, which has been normalized to estimate the potential value in data field. Thus, in the light of the new potential function in data field, short distance and short time difference play a powerful role. So the region full of trajectory points, which is regarded as hotspots area, has a higher potential value, while the region with thin trajectory points has a lower potential value. The taxi trajectory data of Wuhan city in China on May 1, 6 and 9, 2015, are taken as the experimental data. From the result, we find the sustaining hotspots area and inconstant hotspots area in Wuhan city based on the spatiotemporal data field method. Further study will focus on optimizing parameter and the interaction among hotspots area.

  6. Trajectory selection in high harmonic generation by controlling the phase between orthogonal two-color fields.

    Science.gov (United States)

    Brugnera, Leonardo; Hoffmann, David J; Siegel, Thomas; Frank, Felix; Zaïr, Amelle; Tisch, John W G; Marangos, Jonathan P

    2011-10-07

    We demonstrate control of short and long quantum trajectories in high harmonic emission through the use of an orthogonally polarized two-color field. By controlling the relative phase ϕ between the two fields we show via classical and quantum calculations that we can steer the two-dimensional trajectories to return, or not, to the core and so control the relative strength of the short or long quantum trajectory contribution. In experiments, we demonstrate that this leads to robust control over the trajectory contributions using a drive field from a femtosecond laser composed of the fundamental ω at 800 nm (intensity ∼1.2×10(14)  W cm(-2)) and its weaker orthogonally polarized second harmonic 2ω (intensity ∼0.3×10(14)  W cm(-2)) with the relative phase between the ω and 2ω fields varied simply by tilting a fused silica plate. This is the first demonstration of short and long quantum trajectory control at the single-atom level.

  7. HOTSPOTS DETECTION FROM TRAJECTORY DATA BASED ON SPATIOTEMPORAL DATA FIELD CLUSTERING

    Directory of Open Access Journals (Sweden)

    K. Qin

    2017-09-01

    Full Text Available City hotspots refer to the areas where residents visit frequently, and large traffic flow exist, which reflect the people travel patterns and distribution of urban function area. Taxi trajectory data contain abundant information about urban functions and citizen activities, and extracting interesting city hotspots from them can be of importance in urban planning, traffic command, public travel services etc. To detect city hotspots and discover a variety of changing patterns among them, we introduce a data field-based cluster analysis technique to the pick-up and drop-off points of taxi trajectory data and improve the method by introducing the time weight, which has been normalized to estimate the potential value in data field. Thus, in the light of the new potential function in data field, short distance and short time difference play a powerful role. So the region full of trajectory points, which is regarded as hotspots area, has a higher potential value, while the region with thin trajectory points has a lower potential value. The taxi trajectory data of Wuhan city in China on May 1, 6 and 9, 2015, are taken as the experimental data. From the result, we find the sustaining hotspots area and inconstant hotspots area in Wuhan city based on the spatiotemporal data field method. Further study will focus on optimizing parameter and the interaction among hotspots area.

  8. Wilson lines in quantum field theory

    CERN Document Server

    Cherednikov, Igor O; Veken, Frederik F van der

    2014-01-01

    The objective of this book is to get the reader acquainted with theoretical and mathematical foundations of the concept of Wilson loops in the context of modern quantum field theory. It teaches how to perform independently with some elementary calculations on Wilson lines, and shows the recent development of the subject in different important areas of research.

  9. Wilson lines in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cherednikov, Igor Olegovich [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.; Joint Institute of Nuclear Research, Moscow (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Mertens, Tom; Veken, Frederik F. van der [Antwerpen Univ., Antwerp (Belgium). Fysica Dept.

    2014-07-01

    Wilson lines (also known as gauge links or eikonal lines) can be introduced in any gauge field theory. Although the concept of the Wilson exponentials finds an enormously wide range of applications in a variety of branches of modern quantum field theory, from condensed matter and lattice simulations to quantum chromodynamics, high-energy effective theories and gravity, there are surprisingly few books or textbooks on the market which contain comprehensive pedagogical introduction and consecutive exposition of the subject. The objective of this book is to get the potential reader acquainted with theoretical and mathematical foundations of the concept of the Wilson loops in the context of modern quantum field theory, to teach him/her to perform independently some elementary calculations with Wilson lines, and to familiarize him/her with the recent development of the subject in different important areas of research. The target audience of the book consists of graduate and postgraduate students working in various areas of quantum field theory, as well as researchers from other fields.

  10. Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements.

    Directory of Open Access Journals (Sweden)

    Karin B Michels

    Full Text Available Low birthweight, premature birth, intrauterine growth retardation, and maternal malnutrition have been related to an increased risk of cardiovascular disease, type 2 diabetes mellitus, obesity, and neuropsychiatric disorders later in life. Conversely, high birthweight has been linked to future risk of cancer. Global DNA methylation estimated by the methylation of repetitive sequences in the genome is an indicator of susceptibility to chronic diseases. We used data and biospecimens from an epigenetic birth cohort to explore the association between trajectories of fetal and maternal weight and LINE-1 methylation in 319 mother-child dyads. Newborns with low or high birthweight had significantly lower LINE-1 methylation levels in their cord blood compared to normal weight infants after adjusting for gestational age, sex of the child, maternal age at delivery, and maternal smoking during pregnancy (p = 0.007 and p = 0.036, respectively, but the magnitude of the difference was small. Infants born prematurely also had lower LINE-1 methylation levels in cord blood compared to term infants, and this difference, though small, was statistically significant (p = 0.004. We did not find important associations between maternal prepregnancy BMI or gestational weight gain and global methylation of the cord blood or fetal placental tissue. In conclusion, we found significant differences in cord blood LINE-1 methylation among newborns with low and high birthweight as well as among prematurely born infants. Future studies may elucidate whether chromosomal instabilities or other functional consequences of these changes contribute to the increased risk of chronic diseases among individuals with these characteristics.

  11. The bispectrum of single-field inflationary trajectories with $c_{s} \

    CERN Document Server

    Horner, Jonathan S

    2015-01-01

    The bispectrum of single-field inflationary trajectories in which the speed of sound of the inflationary trajectories $c_s$ is constant but not equal to the speed of light $c=1$ is explored. The trajectories are generated as random realisations of the Hubble Slow-Roll (HSR) hierarchy and the bispectra are calculated using numerical techniques that extends previous work. This method allows for out-of-slow-roll models with non-trivial time dependence and arbitrarily low $c_s$. The ensembles obtained using this method yield distributions for the shape and scale-dependence of the bispectrum and their relations with the standard inflationary parameters such as scalar spectral tilt $n_s$ and tensor-to-scalar ratio $r$. The distributions demonstrate the squeezed-limit consistency relations for arbitrary single-field inflationary models.

  12. Resonance and Chaotic Trajectories in Magnetic Field Reversed Configuration

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Landsman; S.A. Cohen; M. Edelman; G.M. Zaslavsky

    2005-04-13

    The nonlinear dynamics of a single ion in a field-reversed configuration (FRC) were investigated. FRC is a toroidal fusion device which uses a specific type of magnetic field to confine ions. As a result of angular invariance, the full three-dimensional Hamiltonian system can be expressed as two coupled, highly nonlinear oscillators. Due to the high nonlinearity in the equations of motion, the behavior of the system is extremely complex, showing different regimes, depending on the values of the conserved canonical angular momentum and the geometry of the fusion vessel. Perturbation theory and averaging were used to derive the unperturbed Hamiltonian and frequencies of the two degrees of freedom. The derived equations were then used to find resonances and compare to Poincar{copyright} surface-of-section plots. A regime was found where the nonlinear resonances were clearly separated by KAM [Kolmogorov-Arnold-Mosher] curves. The structure of the observed island chains was explained. The condition for the destruction of KAM curves and the onset of strong chaos was derived, using Chirikov island overlap criterion, and shown qualitatively to depend both on the canonical angular momentum and geometry of the device. After a brief discussion of the adiabatic regime the paper goes on to explore the degenerate regime that sets in at higher values of angular momenta. In this regime, the unperturbed Hamiltonian can be approximated as two uncoupled linear oscillators. In this case, the system is near-integrable, except in cases of a universal resonance, which results in large island structures, due to the smallness of nonlinear terms, which bound the resonance. The linear force constants, dominant in this regime, were derived and the geometry for a large one-to-one resonance identified. The above analysis showed good agreement with numerical simulations and was able to explain characteristic features of the dynamics.

  13. Implementation on GPU-based acceleration of the m-line reconstruction algorithm for circle-plus-line trajectory computed tomography

    Science.gov (United States)

    Li, Zengguang; Xi, Xiaoqi; Han, Yu; Yan, Bin; Li, Lei

    2016-10-01

    The circle-plus-line trajectory satisfies the exact reconstruction data sufficiency condition, which can be applied in C-arm X-ray Computed Tomography (CT) system to increase reconstruction image quality in a large cone angle. The m-line reconstruction algorithm is adopted for this trajectory. The selection of the direction of m-lines is quite flexible and the m-line algorithm needs less data for accurate reconstruction compared with FDK-type algorithms. However, the computation complexity of the algorithm is very large to obtain efficient serial processing calculations. The reconstruction speed has become an important issue which limits its practical applications. Therefore, the acceleration of the algorithm has great meanings. Compared with other hardware accelerations, the graphics processing unit (GPU) has become the mainstream in the CT image reconstruction. GPU acceleration has achieved a better acceleration effect in FDK-type algorithms. But the implementation of the m-line algorithm's acceleration for the circle-plus-line trajectory is different from the FDK algorithm. The parallelism of the circular-plus-line algorithm needs to be analyzed to design the appropriate acceleration strategy. The implementation can be divided into the following steps. First, selecting m-lines to cover the entire object to be rebuilt; second, calculating differentiated back projection of the point on the m-lines; third, performing Hilbert filtering along the m-line direction; finally, the m-line reconstruction results need to be three-dimensional-resembled and then obtain the Cartesian coordinate reconstruction results. In this paper, we design the reasonable GPU acceleration strategies for each step to improve the reconstruction speed as much as possible. The main contribution is to design an appropriate acceleration strategy for the circle-plus-line trajectory m-line reconstruction algorithm. Sheep-Logan phantom is used to simulate the experiment on a single K20 GPU. The

  14. Density-independent population projection trajectories of chromosome-substituted lines resistant and susceptible to organophosphate insecticides in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Miyo Takahiro

    2004-11-01

    Full Text Available Abstract Background Seasonal fluctuations in susceptibility to organophosphate insecticides were observed in the Katsunuma population of Drosophila melanogaster for two consecutive years; susceptibility to three organophosphates tended to increase in the fall. To examine the hypothesis that variation in fitness among resistant and susceptible genotypes could trigger the change of genetic constitution within the fall population, we investigated density-independent population projection trajectories starting from single adult females with characteristics of chromosome-substituted lines resistant and susceptible to the three organophosphates. Results Density-independent population projection trajectories, expressed as the ratios of the number of each chromosome-substituted line to that of line SSS, for which all chromosomes were derived from the susceptible line, showed significant declines in numbers with time for all the resistant chromosome-substituted lines. Conclusion The declining tendency in the density-independent population projection trajectories of the resistant chromosome-substituted lines could explain the simultaneous decline in the levels of resistance to the three organophosphates, observed in the Katsunuma population in the fall.

  15. Map Matching Based on Conditional Random Fields and Route Preference Mining for Uncertain Trajectories

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2015-01-01

    Full Text Available In order to improve offline map matching accuracy of uncertain GPS trajectories, a map matching algorithm based on conditional random fields (CRF and route preference mining is proposed. In this algorithm, road offset distance and the temporal-spatial relationship between the sampling points are used as features of GPS trajectory in a CRF model, which integrates the temporal-spatial context information flexibly. The driver route preference is also used to bolster the temporal-spatial context when a low GPS sampling rate impairs the resolving power of temporal-spatial context in CRF, allowing the map matching accuracy of uncertain GPS trajectories to get improved significantly. The experimental results show that our proposed algorithm is more accurate than existing methods, especially in the case of a low-sampling-rate.

  16. Bohm Quantum Trajectories of Scalar Field in Trans-Planckian Physics

    Directory of Open Access Journals (Sweden)

    Jung-Jeng Huang

    2012-01-01

    Full Text Available In lattice Schrödinger picture, we investigate the possible effects of trans-Planckian physics on the quantum trajectories of scalar field in de Sitter space within the framework of the pilot-wave theory of de Broglie and Bohm. For the massless minimally coupled scalar field and the Corley-Jacobson type dispersion relation with sextic correction to the standard-squared linear relation, we obtain the time evolution of vacuum state of the scalar field during slow-roll inflation. We find that there exists a transition in the evolution of the quantum trajectory from well before horizon exit to well after horizon exit, which provides a possible mechanism to solve the riddle of the smallness of the cosmological constant.

  17. Towards on-line underwater vehicle trajectory estimation using diffusion-based observers

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Nguyen, Tu Duc

    This work extends previous work (Jouffroy and Opderbecke, 2004) on the estimation of underwater vehicle trajectories using Gyro-Doppler (body-fixed velocities) and acoustic signals (earth-fixed positions). The approach consists of diffusion-based observers processing a whole trajectory segment...

  18. Magnetic field perturbartions in closed-field-line systems with zero toroidal magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Mauel, M; Ryutov, D; Kesner, J

    2003-12-02

    In some plasma confinement systems (e.g., field-reversed configurations and levitated dipoles) the confinement is provided by a closed-field-line poloidal magnetic field. We consider the influence of the magnetic field perturbations on the structure of the magnetic field in such systems and find that the effect of perturbations is quite different from that in the systems with a substantial toroidal field. In particular, even infinitesimal perturbations can, in principle, lead to large radial excursions of the field lines in FRCs and levitated dipoles. Under such circumstances, particle drifts and particle collisions may give rise to significant neoclassical transport. Introduction of a weak regular toroidal magnetic field reduces radial excursions of the field lines and neoclassical transport.

  19. Towards on-line underwater vehicle trajectory estimation using diffusion-based observers

    DEFF Research Database (Denmark)

    Jouffroy, Jerome; Nguyen, Tu Duc

    This work extends previous work (Jouffroy and Opderbecke, 2004) on the estimation of underwater vehicle trajectories using Gyro-Doppler (body-fixed velocities) and acoustic signals (earth-fixed positions). The approach consists of diffusion-based observers processing a whole trajectory segment...... at a time, allowing the consideration of important practical problems such as different information update rates, outages, and outliers in a very simple framework. We detail issues related to real-time applications, such as implementation and convergence. A theorem guaranteeing stability of the observer...

  20. Evolution of field line helicity during magnetic reconnection

    CERN Document Server

    Russell, Alexander J B; Hornig, Gunnar; Wilmot-Smith, Antonia L

    2015-01-01

    We investigate the evolution of field line helicity for non-zero magnetic fields that connect two boundaries, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field topology and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a topologically complex magnetic field, the evolution of field line helicity is dominated by a work-like term ...

  1. Time-reversed particle dynamics calculation with field line tracing at Titan - an update

    Science.gov (United States)

    Bebesi, Zsofia; Erdos, Geza; Szego, Karoly; Juhasz, Antal; Lukacs, Katalin

    2014-05-01

    We use CAPS-IMS Singles data of Cassini measured between 2004 and 2010 to investigate the pickup process and dynamics of ions originating from Titan's atmosphere. A 4th order Runge-Kutta method was applied to calculate the test particle trajectories in a time reversed scenario, in the curved magnetic environment. We evaluated the minimum variance directions along the S/C trajectory for all Cassini flybys during which the CAPS instrument was in operation, and assumed that the field was homogeneous perpendicular to the minimum variance direction. We calculated the magnetic field lines with this method along the flyby orbits and we could determine those observational intervals when Cassini and the upper atmosphere of Titan could be magnetically connected. We used three ion species (1, 2 and 16 amu ions) for time reversed tracking, and also considered the categorization of Rymer et al. (2009) and Nemeth et al. (2011) for further features studies.

  2. Trajectory control of PbSe-γ-Fe2O3 nanoplatforms under viscous flow and an external magnetic field

    Science.gov (United States)

    Etgar, Lioz; Nakhmani, Arie; Tannenbaum, Allen; Lifshitz, Efrat; Tannenbaum, Rina

    2010-04-01

    The flow behavior of nanostructure clusters, consisting of chemically bonded PbSe quantum dots and magnetic γ-Fe2O3 nanoparticles, has been investigated. The clusters are regarded as model nanoplatforms with multiple functionalities, where the γ-Fe2O3 magnets serve as transport vehicles, manipulated by an external magnetic field gradient, and the quantum dots act as fluorescence tags within an optical window in the near-infrared regime. The clusters' flow was characterized by visualizing their trajectories within a viscous fluid (mimicking a blood stream), using an optical imaging method, while the trajectory pictures were analyzed by a specially developed processing package. The trajectories were examined under various flow rates, viscosities and applied magnetic field strengths. The results revealed a control of the trajectories even at low magnetic fields (<1 T), validating the use of similar nanoplatforms as active targeting constituents in personalized medicine.

  3. Trajectory control of PbSe-gamma-Fe2O3 nanoplatforms under viscous flow and an external magnetic field.

    Science.gov (United States)

    Etgar, Lioz; Nakhmani, Arie; Tannenbaum, Allen; Lifshitz, Efrat; Tannenbaum, Rina

    2010-04-30

    The flow behavior of nanostructure clusters, consisting of chemically bonded PbSe quantum dots and magnetic gamma-Fe(2)O(3) nanoparticles, has been investigated. The clusters are regarded as model nanoplatforms with multiple functionalities, where the gamma-Fe(2)O(3) magnets serve as transport vehicles, manipulated by an external magnetic field gradient, and the quantum dots act as fluorescence tags within an optical window in the near-infrared regime. The clusters' flow was characterized by visualizing their trajectories within a viscous fluid (mimicking a blood stream), using an optical imaging method, while the trajectory pictures were analyzed by a specially developed processing package. The trajectories were examined under various flow rates, viscosities and applied magnetic field strengths. The results revealed a control of the trajectories even at low magnetic fields (<1 T), validating the use of similar nanoplatforms as active targeting constituents in personalized medicine.

  4. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    Science.gov (United States)

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.

  5. HCO+ dissociation in a strong laser field: An ab initio classical trajectory study

    Science.gov (United States)

    Lee, Suk Kyoung; Li, Wen; Bernhard Schlegel, H.

    2012-05-01

    We have investigated the photodissociation of HCO+ in a strong field with a wavelength of 10 μm using ab initio molecular dynamics. Classical trajectories were calculated at three field intensities. At 2.9 × 1014 W/cm2 and phase ϕ = 0, protons have two distinct dissociation times, mainly due to the reorientation of HCO+ relative to the field direction prior to dissociation. The kinetic energy distribution at this intensity agrees with Wardlaw's wagging tail model, suggesting that dissociation occurs through barrier-suppression. At 1.7 × 1014 and 8.8 × 1013 W/cm2, barrier suppression is incomplete and the maximum kinetic energy is less than predicted by the wagging tail model.

  6. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling

    Energy Technology Data Exchange (ETDEWEB)

    Shie, Ruei-Hao [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan (China); Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Chan, Chang-Chuan, E-mail: ccchan@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taiwan (China)

    2013-10-15

    Highlights: • An industrial fire can emit hazardous air pollutants into the surrounding areas. • Both on- and off-line monitoring are needed to study air pollution from fires. • Back trajectory and dispersion modeling can trace emission sources of fire-related pollution. -- Abstract: The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography–mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models.

  7. Ultranarrow absorptive spectral line induced by microwave field

    Institute of Scientific and Technical Information of China (English)

    Hu Zheng-Feng; Ma Yi-Sheng; Deng Jian-Liao; He Hui-Juan; Wang Yu-Zhu

    2009-01-01

    This paper investigates the absorptive spectral lines of four-level atomic system driven by a coupling, probe and microwave fields. Due to the perturbation of the microwave field, the original electromagnetically induced transparency is changed to electromagnetically induced absorption and the absorptive spectral line can be very narrow. This ultranarrow spectral line has potential applications to the microwave atomic frequency standard and the measurement of very weak magnetic field.

  8. Rapid Change of Field Line Connectivity and Reconnection in Stochastic Magnetic Fields

    CERN Document Server

    Huang, Yi-Min; Boozer, Allen H

    2014-01-01

    Magnetic fields without a direction of continuous symmetry have the generic feature that neighboring field lines exponentiate away from each other and become stochastic, hence the ideal constraint of preserving magnetic field line connectivity becomes exponentially sensitive to small deviations from ideal Ohm's law. The idea of breaking field line connectivity by stochasticity as a mechanism for fast reconnection is tested with numerical simulations based on reduced magnetohydrodynamics equations with a strong guide field line-tied to two perfectly conducting end plates. Starting from an ideally stable force-free equilibrium, the system is allowed to undergo resistive relaxation. Two distinct phases are found in the process of resistive relaxation. During the quasi-static phase, rapid change of field line connectivity and strong induced flow are found in regions of high field line exponentiation. However, although the field line connectivity of individual field lines can change rapidly, the overall pattern of...

  9. Vehicle trajectory linearisation to enable efficient optimisation of the constant speed racing line

    Science.gov (United States)

    Timings, Julian P.; Cole, David J.

    2012-06-01

    A driver model is presented capable of optimising the trajectory of a simple dynamic nonlinear vehicle, at constant forward speed, so that progression along a predefined track is maximised as a function of time. In doing so, the model is able to continually operate a vehicle at its lateral-handling limit, maximising vehicle performance. The technique used forms a part of the solution to the motor racing objective of minimising lap time. A new approach of formulating the minimum lap time problem is motivated by the need for a more computationally efficient and robust tool-set for understanding on-the-limit driving behaviour. This has been achieved through set point-dependent linearisation of the vehicle model and coupling the vehicle-track system using an intrinsic coordinate description. Through this, the geometric vehicle trajectory had been linearised relative to the track reference, leading to new path optimisation algorithm which can be formed as a computationally efficient convex quadratic programming problem.

  10. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.

    Science.gov (United States)

    Shie, Ruei-Hao; Chan, Chang-Chuan

    2013-10-15

    The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models.

  11. Computer simulation of three-dimensional heavy ion beam trajectory imaging techniques used for magnetic field estimation.

    Science.gov (United States)

    Ling, C; Connor, K A; Demers, D R; Radke, R J; Schoch, P M

    2007-11-01

    A magnetic field mapping technique via heavy ion beam trajectory imaging is being developed on the Madison Symmetric Torus reversed field pinch. This paper describes the computational tools created to model camera images of the light emitted from a simulated ion beam, reconstruct a three-dimensional trajectory, and estimate the accuracy of the reconstruction. First, a computer model is used to create images of the torus interior from any candidate camera location. It is used to explore the visual field of the camera and thus to guide camera parameters and placement. Second, it is shown that a three-dimensional ion beam trajectory can be recovered from a pair of perspectively projected trajectory images. The reconstruction considers effects due to finite beam size, nonuniform beam current density, and image background noise. Third, it is demonstrated that the trajectory reconstructed from camera images can help compute magnetic field profiles, and might be used as an additional constraint to an equilibrium reconstruction code, such as MSTFit.

  12. The effects of self-fields on the electron trajectory in a two-stream free electron laser with a helical wiggler and an axial guiding magnetic field

    Institute of Scientific and Technical Information of China (English)

    S. Saviz; E. Lashani; Farzin M. Aghamir

    2012-01-01

    A theory for the two-stream free-electron laser (TSFEL) with a helical wiggler and an axial guide magnetic field is developed.In the analysis,the effects of self-fields are taken into account.An analysis of the two-stream steady-state electron trajectories is given by solving the equation of motion.Numerical calculations show that there are seven groups of orbits in the presence of self-fields instead of two groups reported in the absence of self-fields.The stability of the trajectories is studied numerically.

  13. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  14. Diffusion coefficient and Kolmogorov entropy of magnetic field lines

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.; Veltri, P.; Malara, F. (Cosenza Univ. (Italy). Dip. di Fisica)

    1984-08-01

    A diffusion equation for magnetic field lines of force in a turbulent magnetic field, which describes both the random walk of a single line and how two nearby lines separate from each other, has been obtained using standard statistical techniques. Starting from such an equation, a closed set of equations for the moments may be obtained, in general, with suitable assumptions. From such a set of equations the Kolmogorov entropy may be explicitly calculated. The results have been applied to the most interesting examples of magnetic field geometries.

  15. Field-line transport in stochastic magnetic fields: Percolation, Levy flights, and non-Gaussian dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.; Veltri, P. (Dipartimento di Fisica, Universita della Calabria, I-87030 Arcavacata di Rende (Italy))

    1995-02-01

    The transport of magnetic field lines is studied numerically in the case where strong three-dimensional magnetic fluctuations are superimposed to a uniform average magnetic field. The magnetic percolation of field lines between magnetic islands is found, as well as a non-Gaussian regime where the field lines exhibit Levy random walks, changing from Levy flights to trapped motion. Anomalous diffusion laws [l angle][Delta][ital x][sub [ital i

  16. Direct simulation of magnetic resonance relaxation rates and line shapes from molecular trajectories.

    Science.gov (United States)

    Rangel, David P; Baveye, Philippe C; Robinson, Bruce H

    2012-06-07

    We simulate spin relaxation processes, which may be measured by either continuous wave or pulsed magnetic resonance techniques, using trajectory-based simulation methodologies. The spin-lattice relaxation rates are extracted numerically from the relaxation simulations. The rates obtained from the numerical fitting of the relaxation curves are compared to those obtained by direct simulation from the relaxation Bloch-Wangsness-Abragam-Redfield theory (BWART). We have restricted our study to anisotropic rigid-body rotational processes, and to the chemical shift anisotropy (CSA) and a single spin-spin dipolar (END) coupling mechanisms. Examples using electron paramagnetic resonance (EPR) nitroxide and nuclear magnetic resonance (NMR) deuterium quadrupolar systems are provided. The objective is to compare those rates obtained by numerical simulations with the rates obtained by BWART. There is excellent agreement between the simulated and BWART rates for a Hamiltonian describing a single spin (an electron) interacting with the bath through the chemical shift anisotropy (CSA) mechanism undergoing anisotropic rotational diffusion. In contrast, when the Hamiltonian contains both the chemical shift anisotropy (CSA) and the spin-spin dipolar (END) mechanisms, the decay rate of a single exponential fit of the simulated spin-lattice relaxation rate is up to a factor of 0.2 smaller than that predicted by BWART. When the relaxation curves are fit to a double exponential, the slow and fast rates extracted from the decay curves bound the BWART prediction. An extended BWART theory, in the literature, includes the need for multiple relaxation rates and indicates that the multiexponential decay is due to the combined effects of direct and cross-relaxation mechanisms.

  17. Mapping Magnetic Field Lines between the Sun and Earth

    Science.gov (United States)

    Li, Bo; Cairns, Iver; Gosling, J. T.; Lobzin, Vasili; Steward, Graham; Neudegg, Dave; Owens, Mathew

    2016-07-01

    Magnetic field topologies between the Sun and Earth are important for the connectivity to Earth of solar suprathermal particles, e.g., solar energetic particles and the electrons in type III solar radio bursts. An approach is developed for mapping large-scale magnetic field lines in the solar equatorial plane, using near-Earth observations and a solar wind model with nonzero azimuthal magnetic field at the source surface. The predicted field line maps show that near both minimal and maximal solar activity the field lines are typically open and that loops with both ends either connected to or disconnected from the Sun occur sometimes. The open field lines, nonetheless, often do not closely follow the Parker spiral, being less or more tightly wound, or strongly azimuthally or radially oriented, or inverted. Assessments of the mapped field line configurations using time-varying suprathermal electron pitch angle distributions (PADs) observed by Wind show that the mapping predictions agree quantitatively (˜90%) with the PAD observations and outperform (by ˜20%) the predictions using the standard Parker spiral model. Application to a type III radio burst observed by Ulysses and Wind shows that the mapping prediction agrees well with the local magnetic field line traced by the type III source path, which covers heliocentric distances of ˜0.1--0.4 AU. Furthermore, applications to local field structures inferred from ACE observations demonstrate that the mapping can predict the majority (65-75%) of the local field line inversions for the multiple phases of the solar cycle.

  18. Note on Bunching of Field Lines in Black Hole Magnetospheres

    CERN Document Server

    Gralla, Samuel E; Rodriguez, Maria J

    2015-01-01

    Numerical simulations of Blandford-Znajek energy extraction at high spin have revealed that field lines tend to bunch near the poles of the event horizon. We show that this behavior can be derived analytically from the assumption of fixed functional dependence of current and field line rotation on magnetic flux. The argument relies crucially on the existence of the Znajek condition, which offers non-trivial information about the fields on the horizon without requiring a full force-free solution. We also provide some new analytic expressions for the parabolic field configuration.

  19. ENVIRONMENTAL POLLUTION BY MAGNETIC FIELD AROUND POWER LINES

    Directory of Open Access Journals (Sweden)

    Vesna Ranković

    2009-09-01

    Full Text Available According to the contemporary epidemiological researches, there are some indications that extremely low frequency electromagnetic fields harm human health which has been proved through numerous scientific studies published in recent years. Today, most countries use the ICNIRP guidelines and Council Recommendation as the scientific basis for their recommended levels of exposure. Magnetic fields from high voltage transmission power lines have been discussed in this paper. The field profiles and their contribution to environmental pollution are studied. The obtained results are found to be useful for discussing the comparison of the field densities on the human body at the ground level under or near the lines.

  20. Resistive instabilities and field line reconnection

    Energy Technology Data Exchange (ETDEWEB)

    White, R.B.

    1980-05-01

    A review is given of the linear theory of reconnection for a plane current layer. The three basic modes are the Rippling Mode, the Gravitational Interchange Mode, and the Tearing Mode. A derivation is given of the magnetic field energy which provides the driving force for the tearing mode. The necessary concepts for the analysis of tearing modes in cylindrical geometry are introduced. The equations governing tearing mode evolution in a tokamak are expanded to lowest order in the inverse aspect ratio. The tearing mode in a toroidal device is closely related to the ideal magnetohydrodynamic kink mode, and this relationship is stressed in the derivations of the linear growth rates for modes with poloidal model number m > 2 and for the quite different m = 1 mode. The nonlinear theory of tearing mode development and the implications of this theory for the understanding of toroidal magnetic confinement devices is reviewed.

  1. Transmission-line networks cloaking objects from electromagnetic fields

    CERN Document Server

    Alitalo, Pekka; Jylhä, Liisi; Venermo, Jukka; Tretyakov, Sergei

    2007-01-01

    We consider a novel method of cloaking objects from the surrounding electromagnetic fields in the microwave region. The method is based on transmission-line networks that simulate the wave propagation in the medium surrounding the cloaked object. The electromagnetic fields from the surrounding medium are coupled into the transmission-line network that guides the waves through the cloak thus leaving the cloaked object undetected. The cloaked object can be an array or interconnected mesh of small inclusions that fit inside the transmission-line network.

  2. Transition state trajectory stability determines barrier crossing rates in chemical reactions induced by time-dependent oscillating fields

    CERN Document Server

    Craven, Galen T; Hernandez, Rigoberto

    2015-01-01

    When a chemical reaction is driven by an external field, the transition state that the system must pass through as it changes from reactant to product -for example, an energy barrier- becomes time-dependent. We show that for periodic forcing the rate of barrier crossing can be determined through stability analysis of the non-autonomous transition state. Specifically, strong agreement is observed between the difference in the Floquet exponents describing stability of the transition state trajectory, which defines a recrossing-free dividing surface [G. T. Craven, T. Bartsch, and R. Hernandez, Phys. Rev. E 89, 040801(R) (2014)], and the rates calculated by simulation of ensembles of trajectories. This result opens the possibility to extract rates directly from the intrinsic stability of the transition state, even when it is time-dependent, without requiring a numerically-expensive simulation of the long-time dynamics of a large ensemble of trajectories.

  3. From Forbidden Coronal Lines to Meaningful Coronal Magnetic Fields

    CERN Document Server

    Judge, Philip G; Landi, Enrico

    2013-01-01

    We review methods to measure magnetic fields within the corona using the polarized light in magnetic-dipole (M1) lines. We are particularly interested in both the global magnetic-field evolution over a solar cycle, and the local storage of magnetic free energy within coronal plasmas. We address commonly held skepticisms concerning angular ambiguities and line-of-sight confusion. We argue that ambiguities are in principle no worse than more familiar remotely sensed photospheric vector-fields, and that the diagnosis of M1 line data would benefit from simultaneous observations of EUV lines. Based on calculations and data from eclipses, we discuss the most promising lines and different approaches that might be used. We point to the S-like [Fe {\\sc XI}] line (J=2 to J=1) at 789.2nm as a prime target line (for ATST for example) to augment the hotter 1074.7 and 1079.8 nm Si-like lines of [Fe {\\sc XIII}] currently observed by the Coronal Multi-channel Polarimeter (CoMP). Significant breakthroughs will be made possibl...

  4. Estimating magnetic fields of homes near transmission lines in the California Power Line Study.

    Science.gov (United States)

    Vergara, Ximena P; Kavet, Robert; Crespi, Catherine M; Hooper, Chris; Silva, J Michael; Kheifets, Leeka

    2015-07-01

    The California Power Line Study is a case-control study investigating the relation between residences near transmission lines and risk of childhood leukemia. It includes 5788 childhood leukemia cases and 5788 matched primary controls born between 1986 and 2007. We describe the methodology for estimating magnetic fields at study residences as well as for characterizing sources of uncertainty in these estimates. Birth residences of study subjects were geocoded and their distances to transmission lines were ascertained. 302 residences were deemed sufficiently close to transmission lines to have non-zero magnetic fields attributable to the lines. These residences were visited and detailed data, describing the physical configuration and dimensions of the lines contributing to the magnetic field at the residence, were collected. Phasing, loading, and directional load flow data for years of birth and diagnosis for each subject as well as for the day of site visit were obtained from utilities when available; when yearly average load for a particular year was not available, extrapolated values based on expert knowledge and prediction models were obtained. These data were used to estimate the magnetic fields at the center, closest and farthest point of each residence. We found good correlation between calculated fields and spot measurements of fields taken on site during visits. Our modeling strategies yielded similar calculated field estimates, and they were in high agreement with utility extrapolations. Phasing was known for over 90% of the lines. Important sources of uncertainty included a lack of information on the precise location of residences located within apartment buildings or other complexes. Our findings suggest that we were able to achieve high specificity in exposure assessment, which is essential for examining the association between distance to or magnetic fields from power lines and childhood leukemia risk.

  5. Distinguished hyperbolic trajectories in time-dependent fluid flows: analytical and computational approach for velocity fields defined as data sets

    Directory of Open Access Journals (Sweden)

    K. Ide

    2002-01-01

    Full Text Available In this paper we develop analytical and numerical methods for finding special hyperbolic trajectories that govern geometry of Lagrangian structures in time-dependent vector fields. The vector fields (or velocity fields may have arbitrary time dependence and be realized only as data sets over finite time intervals, where space and time are discretized. While the notion of a hyperbolic trajectory is central to dynamical systems theory, much of the theoretical developments for Lagrangian transport proceed under the assumption that such a special hyperbolic trajectory exists. This brings in new mathematical issues that must be addressed in order for Lagrangian transport theory to be applicable in practice, i.e. how to determine whether or not such a trajectory exists and, if it does exist, how to identify it in a sequence of instantaneous velocity fields. We address these issues by developing the notion of a distinguished hyperbolic trajectory (DHT. We develop an existence criteria for certain classes of DHTs in general time-dependent velocity fields, based on the time evolution of Eulerian structures that are observed in individual instantaneous fields over the entire time interval of the data set. We demonstrate the concept of DHTs in inhomogeneous (or "forced" time-dependent linear systems and develop a theory and analytical formula for computing DHTs. Throughout this work the notion of linearization is very important. This is not surprising since hyperbolicity is a "linearized" notion. To extend the analytical formula to more general nonlinear time-dependent velocity fields, we develop a series of coordinate transforms including a type of linearization that is not typically used in dynamical systems theory. We refer to it as Eulerian linearization, which is related to the frame independence of DHTs, as opposed to the Lagrangian linearization, which is typical in dynamical systems theory, which is used in the computation of Lyapunov exponents. We

  6. Incoherent scatter plasma lines at angles with the magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, A.; Bjorna, N.; Lilensten, J. (Auroral Observatory, Tromso (Norway) Centre d' Etude des Phenomenes Aleatoires et Geophysiques, St.-Martin-d' Heres (France))

    1992-11-01

    The detectability and damping of photoelectron-enhanced plasma lines, as measured with the EISCAT UHF radar at off-field angles are evaluated, and the measured plasma line intensities are compared to the intensities computed from modeled photoelectron fluxes. It was found that, when allowing for a pitch angle dependence in the flux, the plasma line temperatures can be predicted to within a very good accuracy at altitudes where remnants of the N2 excitation dip are no longer present in the photoelectron distribution. 35 refs.

  7. Large field-of-view transmission line resonator for high field MRI

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johannesson, Kristjan Sundgaard; Boer, Vincent

    2016-01-01

    Transmission line resonators is often a preferable choice for coils in high field magnetic resonance imaging (MRI), because they provide a number of advantages over traditional loop coils. The size of such resonators, however, is limited to shorter than half a wavelength due to high standing wave....... Achieved magnetic field distribution is compared to the conventional transmission line resonator. Imaging experiments are performed using 7 Tesla MRI system. The developed resonator is useful for building coils with large field-of-view....

  8. Large field-of-view transmission line resonator for high field MRI

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Johannesson, Kristjan Sundgaard; Boer, Vincent;

    2016-01-01

    Transmission line resonators is often a preferable choice for coils in high field magnetic resonance imaging (MRI), because they provide a number of advantages over traditional loop coils. The size of such resonators, however, is limited to shorter than half a wavelength due to high standing wave....... Achieved magnetic field distribution is compared to the conventional transmission line resonator. Imaging experiments are performed using 7 Tesla MRI system. The developed resonator is useful for building coils with large field-of-view....

  9. Electronic structure and trajectory control of Dirac fermions in graphene ribbons under the competition between electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mou, E-mail: yangmou1222@gmail.com [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Cui, Yan; Wang, Rui-Qiang; Zhao, Hong-Bo [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2012-03-05

    We investigate the electronic structure of graphene ribbons under the competition between lateral electric and normal magnetic fields. The squeezing of quantum level spacings caused by either field is studied. Based on the knowledge of the dispersion under both fields, we analyze the electronic trajectories near the junctions of different electric and magnetic fields configurations. The junctions can split and join electron beams, and the conductance is quite robust against disorder near the junction interfaces. These junction devices can be used as bricks for building more complicated interference devices. -- Highlights: ► Unified physical picture of graphene ribbon under electric and magnetic fields is provided. ► Squeezing of level spacings caused by electric and magnetic fields is investigated. ► Graphene devices for electron beam split and joint are proposed.

  10. On kinetic line Voronoi operations and finite fields

    DEFF Research Database (Denmark)

    Mioc, Darka; Anton, François; Gold, Christopher

    2009-01-01

    of integers modulo 5: F5 = Z/5Z. We show also an isomorphism between the set of complex operations on the kinetic Voronoi diagram of points and open oriented line segments and the set of differences of new and deleted quad-edge edges induced by these operations, and its explanation using the finite field F15...

  11. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    Science.gov (United States)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  12. Electromagnetic field and radiation for a charge moving along a helical trajectory inside a waveguide with dielectric filling

    CERN Document Server

    Kotanjyan, A S

    2007-01-01

    We investigate the electromagnetic field generated by a point charge moving along a helical trajectory inside a circular waveguide with conducting walls filled by homogeneous dielectric. The parts corresponding to the radiation field are separated and the formulae for the radiation intensity are derived for both TE and TM waves. It is shown that the main part of the radiated quanta is emitted in the form of the TE waves. Various limiting cases are considered. The results of the numerical calculations show that the insertion of the waveguide provides an additional mechanism for tuning the characteristics of the emitted radiation by choosing the parameters of the waveguide and filling medium.

  13. Uncertainties in field-line tracing in the magnetosphere. Part II: the complete internal geomagnetic field

    Directory of Open Access Journals (Sweden)

    K. S. C. Freeman

    Full Text Available The discussion in the preceding paper is restricted to the uncertainties in magnetic-field-line tracing in the magnetosphere resulting from published standard errors in the spherical harmonic coefficients that define the axisymmetric part of the internal geomagnetic field (i.e. gn0 ± δgn0. Numerical estimates of these uncertainties based on an analytic equation for axisymmetric field lines are in excellent agreement with independent computational estimates based on stepwise numerical integration along magnetic field lines. This comparison confirms the accuracy of the computer program used in the present paper to estimate the uncertainties in magnetic-field-line tracing that arise from published standard errors in the full set of spherical harmonic coefficients, which define the complete (non-axisymmetric internal geomagnetic field (i.e. gnm ± δgnm and hnm ± δhnm. An algorithm is formulated that greatly reduces the computing time required to estimate these uncertainties in magnetic-field-line tracing. The validity of this algorithm is checked numerically for both the axisymmetric part of the internal geomagnetic field in the general case (1 ≤ n ≤ 10 and the complete internal geomagnetic field in a restrictive case (0 ≤ m ≤ n, 1 ≤ n ≤ 3. On this basis it is assumed that the algorithm can be used with confidence in those cases for which the computing time would otherwise be prohibitively long. For the complete internal geomagnetic field, the maximum characteristic uncertainty in the geocentric distance of a field line that crosses the geomagnetic equator at a nominal dipolar distance of 2 RE is typically 100 km. The corresponding characteristic uncertainty for a field line that crosses the geomagnetic equator at a nominal dipolar distance of 6 RE is typically 500 km. Histograms and scatter plots showing the characteristic uncertainties associated with magnetic-field-line tracing in the magnetosphere are presented for a range of

  14. Communication: Transition state trajectory stability determines barrier crossing rates in chemical reactions induced by time-dependent oscillating fields.

    Science.gov (United States)

    Craven, Galen T; Bartsch, Thomas; Hernandez, Rigoberto

    2014-07-28

    When a chemical reaction is driven by an external field, the transition state that the system must pass through as it changes from reactant to product--for example, an energy barrier--becomes time-dependent. We show that for periodic forcing the rate of barrier crossing can be determined through stability analysis of the non-autonomous transition state. Specifically, strong agreement is observed between the difference in the Floquet exponents describing stability of the transition state trajectory, which defines a recrossing-free dividing surface [G. T. Craven, T. Bartsch, and R. Hernandez, "Persistence of transition state structure in chemical reactions driven by fields oscillating in time," Phys. Rev. E 89, 040801(R) (2014)], and the rates calculated by simulation of ensembles of trajectories. This result opens the possibility to extract rates directly from the intrinsic stability of the transition state, even when it is time-dependent, without requiring a numerically expensive simulation of the long-time dynamics of a large ensemble of trajectories.

  15. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  16. Method of lines for temperature field of functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    DAI Yao; SUN Qi; HAO Gui-xiang; YAN Xiu-fa; LI Yong-dong

    2005-01-01

    The finite element method (FEM) and the boundary element method (BEM) are often adopted. Howev er, they are not convenient to spatially vary thermal properties of functionally graded material (FGM). Therefore, the method of lines (MOL) is introduced to solve the temperature field of FGM. The basic idea of the method is to semi-discretize the governing equation into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs. The functions of thermal properties are directly embodied in these equations and these properties are not discretized in the domain. Thus, difficulty of FEM and BEM is overcome by the method. As a numerical example, the temperature field of a plane problem is analyzed for FGMs through varying thermal conductivity coefficient by the MOL.

  17. Ionization in Orthogonal Two-Color Laser Fields - Origin and Phase Dependence of Trajectory-Resolved Coulomb Effects

    CERN Document Server

    Richter, Martin; Schöffler, Markus; Jahnke, Till; Schmidt, Lothar Ph H; Dörner, Reinhard

    2016-01-01

    We report on electron momentum distributions from single ionization of Ar in strong orthogonally polarized two-color (OTC) laser fields measured with the COLTRIMS technique. We study the effect of Coulomb focusing whose signature is a cusp like feature in the center of the electron momentum spectrum. While the direct electrons show the expected strong dependence on the phase between the two colors, surprisingly the Coulomb focused structure is almost not influenced by the weak second harmonic streaking field. This effect is explained by the use of a CTMC simulation which describes the tunneled electron wave packet in terms of classical trajectories under the influence of the combined Coulomb- and OTC laser field. We find a subtle interplay between the initial momentum of the electron upon tunneling, the ionization phase and the action of the Coulomb field that makes the Coulomb focused part of the momentum spectrum apparently insensitive to the weaker streaking field.

  18. Estimating Jupiter’s Gravity Field Using Juno Measurements, Trajectory Estimation Analysis, and a Flow Model Optimization

    Science.gov (United States)

    Galanti, Eli; Durante, Daniele; Finocchiaro, Stefano; Iess, Luciano; Kaspi, Yohai

    2017-07-01

    The upcoming Juno spacecraft measurements have the potential of improving our knowledge of Jupiter’s gravity field. The analysis of the Juno Doppler data will provide a very accurate reconstruction of spatial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity field of Jupiter, additional information needs to be incorporated into the analysis, especially regarding the Jovian flow structure and its depth, which can influence the measured gravity field. In this study we propose a new iterative method for the estimation of the Jupiter gravity field, using a simulated Juno trajectory, a trajectory estimation model, and an adjoint-based inverse model for the flow dynamics. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that this method can fit some of the gravitational harmonics better to the “measured” harmonics, mainly because of the added information from the dynamical model, which includes the flow structure. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity harmonics estimated from the Juno and Cassini radio science experiments.

  19. On the generation of magnetic field enhanced microwave plasma line

    Science.gov (United States)

    Chen, Longwei; Zhao, Ying; Wu, Kenan; Wang, Qi; Meng, Yuedong; Ren, Zhaoxing

    2016-12-01

    Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line.

  20. Estimating Attitude, Trajectory, and Gyro Biases in an Extended Kalman Filter using Earth Magnetic Field Data from the Rossi X-Ray Timing Explorer

    Science.gov (United States)

    Deutschmann, Julie; Bar-Itzhack, Itzhack

    1997-01-01

    Traditionally satellite attitude and trajectory have been estimated with completely separate systems, using different measurement data. The estimation of both trajectory and attitude for low earth orbit satellites has been successfully demonstrated in ground software using magnetometer and gyroscope data. Since the earth's magnetic field is a function of time and position, and since time is known quite precisely, the differences between the computed and measured magnetic field components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both trajectory and attitude. This work further tests the single augmented Extended Kalman Filter (EKF) which simultaneously and autonomously estimates spacecraft trajectory and attitude with data from the Rossi X-Ray Timing Explorer (RXTE) magnetometer and gyro-measured body rates. In addition, gyro biases are added to the state and the filter's ability to estimate them is presented.

  1. Electrons on closed field lines of lunar crustal fields in the solar wind wake

    Science.gov (United States)

    Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Takahashi, Futoshi; Fujimoto, Masaki; Harada, Yuki; Yokota, Shoichiro; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi

    2015-04-01

    Plasma signature around crustal magnetic fields is one of the most important topics of the lunar plasma sciences. Although recent spacecraft measurements are revealing solar-wind interaction with the lunar crustal fields on the dayside, plasma signatures around crustal fields on the night side have not been fully studied yet. Here we show evidence of plasma trapping on the closed field lines of the lunar crustal fields in the solar-wind wake, using SELENE (Kaguya) plasma and magnetic field data obtained at 14-15 km altitude from the lunar surface. In contrast to expectation on plasma cavity formation at the strong crustal fields, electron flux is enhanced above Crisium Antipode (CA) anomaly which is one of the strongest lunar crustal fields. The enhanced electron fluxes above CA are characterised by (1) occasional bi-directional field-aligned beams in the lower energy range (<150 eV) and (2) a medium energy component (150-300 eV) that has a double loss-cone distribution representing bounce motion between the two footprints of the crustal magnetic fields. The low-energy electrons on the closed field lines may come from the lunar night side surface, while supply mechanism of medium-energy electrons on the closed field line remains to be solved. We also report that a density cavity in the wake is observed not above the strongest magnetic field but in its vicinity.

  2. Fast wave power flow along SOL field lines in NSTX

    Science.gov (United States)

    Perkins, R. J.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Hosea, J. C.; Jaworski, M. A.; Leblanc, B. P.; Kramer, G. J.; Phillips, C. K.; Roquemore, L.; Taylor, G.; Wilson, J. R.; Ahn, J.-W.; Gray, T. K.; Green, D. L.; McLean, A.; Maingi, R.; Ryan, P. M.; Jaeger, E. F.; Sabbagh, S.

    2012-10-01

    On NSTX, a major loss of high-harmonic fast wave (HHFW) power can occur along open field lines passing in front of the antenna over the width of the scrape-off layer (SOL). Up to 60% of the RF power can be lost and at least partially deposited in bright spirals on the divertor floor and ceiling [1,2]. The flow of HHFW power from the antenna region to the divertor is mostly aligned along the SOL magnetic field [3], which explains the pattern of heat deposition as measured with infrared (IR) cameras. By tracing field lines from the divertor back to the midplane, the IR data can be used to estimate the profile of HHFW power coupled to SOL field lines. We hypothesize that surface waves are being excited in the SOL, and these results should benchmark advanced simulations of the RF power deposition in the SOL (e.g., [4]). Minimizing this loss is critical optimal high-power long-pulse ICRF heating on ITER while guarding against excessive divertor erosion.[4pt] [1] J.C. Hosea et al., AIP Conf Proceedings 1187 (2009) 105. [0pt] [2] G. Taylor et al., Phys. Plasmas 17 (2010) 056114. [0pt] [3] R.J. Perkins et al., to appear in Phys. Rev. Lett. [0pt] [4] D.L. Green et al., Phys. Rev. Lett. 107 (2011) 145001.

  3. MHD Field Line Resonances and Global Modes in Three-Dimensional Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    C.Z. Cheng

    2002-05-30

    By assuming a general isotropic pressure distribution P = P (y,a), where y and a are three-dimensional scalar functions labeling the field lines with B = -y x -a, we have derived a set of MHD eigenmode equations for both global MHD modes and field line resonances (FLR). Past MHD theories are restricted to isotropic pressures with P = P (y only). The present formulation also allows the plasma mass density to vary along the field line. The linearized ideal-MHD equations are cast into a set of global differential equations from which the field line resonance equations of the shear Alfvin waves and slow magnetosonic modes are naturally obtained for general three-dimensional magnetic field geometries with flux surfaces. Several new terms associated with the partial derivative of P with respect to alpha are obtained. In the FLR equations, a new term is found in the shear Alfvin FLR equation due to the geodesic curvature and the pressure gradient in the poloidal flux surface. The coupling between the shear Alfvin waves and the magnetosonic waves is through the combined effects of geodesic magnetic field curvature and plasma pressure as previously derived. The properties of the FLR eigenfunctions at the resonance field lines are investigated, and the behavior of the FLR wave solutions near the FLR surface are derived. Numerical solutions of the FLR equations for three-dimensional magnetospheric fields in equilibrium with high plasma pressure will be presented in a future publication.

  4. Computation of Trajectories and Displacement Fields in a Three-Dimensional Ternary Diffusion Couple: Parabolic Transform Method

    Directory of Open Access Journals (Sweden)

    Marek Danielewski

    2015-01-01

    Full Text Available The problem of Kirkendall’s trajectories in finite, three- and one-dimensional ternary diffusion couples is studied. By means of the parabolic transformation method, we calculate the solute field, the Kirkendall marker velocity, and displacement fields. The velocity field is generally continuous and can be integrated to obtain a displacement field that is continuous everywhere. Special features observed experimentally and reported in the literature are also studied: (i multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple evolve into two locations as a result of the initial distribution, (ii multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple move into two locations due to composition dependent mobilities, and (iii a Kirkendall plane that coincides with the interphase interface. The details of the deformation (material trajectories in these special situations are given using both methods and are discussed in terms of the stress-free strain rate associated with the Kirkendall effect. Our nonlinear transform generalizes the diagonalization method by Krishtal, Mokrov, Akimov, and Zakharov, whose transform of diffusivities was linear.

  5. Extension of high-order harmonic cutoff frequency by synthesizing the waveform of a laser field via the optimization of classical electron trajectory in the laser field

    Institute of Scientific and Technical Information of China (English)

    Zhao Di; Li Fu-Li

    2013-01-01

    We theoretically investigate high-order harmonic generation by employing strong-field approximation (SFA) and present a new approach to the extension of the high-order harmonic cutoff frequency via an exploration of the dependence of high-order harmonic generation on the waveform of laser fields.The dependence is investigated via detailed analysis of the classical trajectories of the ionized electron moving in the continuum in the velocity-position plane.The classical trajectory consists of three sections (Acceleration Away,Deceleration Away,and Acceleration Back),and their relationship with the electron recollision energy is investigated.The analysis of classical trajectories indicates that,besides the final (Acceleration Back) section,the electron recollision energy also relies on the previous two sections.We simultaneously optimize the waveform in all three sections to increase the electron recollision energy,and an extension of the cutoff frequency up to Ip + 20.26Up is presented with a theoretically synthesized waveform of the laser field.

  6. Field quality measurements of a 2-Tesla transmission line magnet

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; /Fermilab; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  7. A molecular line scan in the Hubble deep field north

    Energy Technology Data Exchange (ETDEWEB)

    Decarli, R.; Walter, F.; Colombo, D.; Da Cunha, E.; Rix, H.-W. [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Carilli, C. [NRAO, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Riechers, D. [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Cox, P.; Neri, R.; Downes, D. [IRAM, 300 rue de la Piscine, F-38406 Saint-Martin d' Hères (France); Aravena, M. [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001, Vitacura Santiago (Chile); Bell, E. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Bertoldi, F. [Argelander Institute for Astronomy, University of Bonn, Auf dem Hügel 71, D-53121 Bonn (Germany); Daddi, E.; Sargent, M. [Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot, Irfu/Service d' Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette cedex (France); Dickinson, M. [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Ellis, R. [Astronomy Department, California Institute of Technology, MC105-24, Pasadena, CA 91125 (United States); Lentati, L.; Maiolino, R. [Cavendish Laboratory, University of Cambridge, 19 J. J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Menten, K. M., E-mail: decarli@mpia.de [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); and others

    2014-02-20

    We present a molecular line scan in the Hubble Deep Field North (HDF-N) that covers the entire 3 mm window (79-115 GHz) using the IRAM Plateau de Bure Interferometer. Our CO redshift coverage spans z ≲ 0.45, 1 ≲ z ≲ 1.9 and all z ≳ 2. We reach a CO detection limit that is deep enough to detect essentially all z > 1 CO lines reported in the literature so far. We have developed and applied different line-searching algorithms, resulting in the discovery of 17 line candidates. We estimate that the rate of false positive line detections is ∼2/17. We identify optical/NIR counterparts from the deep ancillary database of the HDF-N for seven of these candidates and investigate their available spectral energy distributions. Two secure CO detections in our scan are identified with star-forming galaxies at z = 1.784 and at z = 2.047. These galaxies have colors consistent with the 'BzK' color selection and they show relatively bright CO emission compared with galaxies of similar dust continuum luminosity. We also detect two spectral lines in the submillimeter galaxy HDF 850.1 at z = 5.183. We consider an additional nine line candidates as high quality. Our observations also provide a deep 3 mm continuum map (1σ noise level = 8.6 μJy beam{sup –1}). Via a stacking approach, we find that optical/MIR bright galaxies contribute only to <50% of the star formation rate density at 1 < z < 3, unless high dust temperatures are invoked. The present study represents a first, fundamental step toward an unbiased census of molecular gas in 'normal' galaxies at high-z, a crucial goal of extragalactic astronomy in the ALMA era.

  8. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS.

    Science.gov (United States)

    De Geeter, N; Crevecoeur, G; Leemans, A; Dupré, L

    2015-01-21

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically, it is the component of this field parallel to the neuron's local orientation, the so-called effective electric field, that can initiate neuronal stimulation. Deeper insights on the stimulation mechanisms can be acquired through extensive TMS modelling. Most models study simple representations of neurons with assumed geometries, whereas we embed realistic neural trajectories computed using tractography based on diffusion tensor images. This way of modelling ensures a more accurate spatial distribution of the effective electric field that is in addition patient and case specific. The case study of this paper focuses on the single pulse stimulation of the left primary motor cortex with a standard figure-of-eight coil. Including realistic neural geometry in the model demonstrates the strong and localized variations of the effective electric field between the tracts themselves and along them due to the interplay of factors such as the tract's position and orientation in relation to the TMS coil, the neural trajectory and its course along the white and grey matter interface. Furthermore, the influence of changes in the coil orientation is studied. Investigating the impact of tissue anisotropy confirms that its contribution is not negligible. Moreover, assuming isotropic tissues lead to errors of the same size as rotating or tilting the coil with 10 degrees. In contrast, the model proves to be less sensitive towards the not well-known tissue conductivity values.

  9. Trajectory control of PbSe-{gamma}-Fe{sub 2}O{sub 3} nanoplatforms under viscous flow and an external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Etgar, Lioz; Lifshitz, Efrat; Tannenbaum, Rina [Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 32000 (Israel); Nakhmani, Arie; Tannenbaum, Allen, E-mail: ssefrat@tx.technion.ac.il, E-mail: rinatan@tx.technion.ac.il [Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2010-04-30

    The flow behavior of nanostructure clusters, consisting of chemically bonded PbSe quantum dots and magnetic {gamma}-Fe{sub 2}O{sub 3} nanoparticles, has been investigated. The clusters are regarded as model nanoplatforms with multiple functionalities, where the {gamma}-Fe{sub 2}O{sub 3} magnets serve as transport vehicles, manipulated by an external magnetic field gradient, and the quantum dots act as fluorescence tags within an optical window in the near-infrared regime. The clusters' flow was characterized by visualizing their trajectories within a viscous fluid (mimicking a blood stream), using an optical imaging method, while the trajectory pictures were analyzed by a specially developed processing package. The trajectories were examined under various flow rates, viscosities and applied magnetic field strengths. The results revealed a control of the trajectories even at low magnetic fields (<1 T), validating the use of similar nanoplatforms as active targeting constituents in personalized medicine.

  10. Unsteady wandering magnetic field lines, turbulence and laboratory flux ropes

    Science.gov (United States)

    Intrator, T.; Sears, J.; Weber, T.; Liu, D.; Pulliam, D.; Lazarian, A.

    2011-12-01

    We describe earth bound laboratory experiment investigations of patchy, unsteady, bursty, patchy magnetic field structures that are unifying features of magnetic reconnection and turbulence in helio, space and astro physics. Macroscopic field lines occupy cross sectional areas, fill up three dimensional (3D) volumes as flux tubes. They contain mass with Newtonian dynamics that follow magneto-hydro-dynamic (MHD) equations of motion. Flux rope geometry can be ubiquitous in laminar reconnection sheet geometries that are themselves unstable to formation of secondary "islands" that in 3D are really flux ropes. Flux ropes are ubiquitous structures on the sun and the rest of the heliosphere. Understanding the dynamics of flux ropes and their mutual interactions offers the key to many important astrophysical phenomena, including magnetic reconnection and turbulence. We describe laboratory investigations on RSX, where 3D interaction of flux ropes can be studied in great detail. We use experimental probes inside the the flux ropes to measure the magnetic and electric fields, current density, density, temperatures, pressure, and electrostatic and vector plasma potentials. Macroscopic magnetic field lines, unsteady wandering characteristics, and dynamic objects with structure down to the dissipation scale length can be traced from data sets in a 3D volume. Computational approaches are finally able to tackle simple 3D systems and we sketch some intriguing simulation results that are consistent with 3D extensions of typical 2D cartoons for magnetic reconnection and turbulence.

  11. 激光加工机器人在相贯线切割中的轨迹规划%Trajectory planning for intersecting line cutting of the laser processing robot

    Institute of Scientific and Technical Information of China (English)

    林海波; 李定街; 张毅; 罗元

    2015-01-01

    When the laser processing robot is cutting along the intersecting line ,the posture of the laser head is requested strictly , and the position model of intersecting line is complex .To solve these problems ,proposed a continuous trajectory planning method which controlling the position and orientation of laser head .Keeping the laser head and the normal direction of the processed sur-face coaxial .The laser head posture is determined by solving the angle of the laser head and the processed curved surface ;accord-ing to characteristics of intersecting line model ,a position interpolation algorithm of the laser head that intersecting line trajectory is obtained by the three points ( any of two points don ’ t belong to the same cylindrical bus ) on the cylindrical surface is presen-ted.The simulation results show that the trajectory planning method can effectively control the position and posture of the laser head.This method has a less calculation and its operation is more convenient .It has an important reference value for trajectory planning of the industrial robot in the field of three-dimension process .%针对激光加工机器人在相贯线切割过程中对激光头的姿态要求严格以及相贯线位置模型复杂的问题,提出了一种控制激光头位置和姿态的连续轨迹规划方法。将激光头与切割点处待加工曲面的法线方向保持同轴,通过求解激光头与切割点处待加工曲面的夹角来确定激光头的姿态;根据相贯线模型的特点,给出一种由圆柱面上三点(任意两点不在同一条母线上)确定相贯线轨迹的激光头位置插补算法。通过仿真验证了该轨迹规划方法可以有效地完成对激光头位置和姿态的控制。该方法计算量小、操作方便,对工业机器人在三维加工时的轨迹规划有一定参考价值。

  12. Cyclotron Line Features from Near-Critical Fields II on the Effect of Anisotropic Radiation Fields

    CERN Document Server

    Araya-Gochez, R A; Araya-Gochez, Rafael A.; Harding, Alice K.

    2000-01-01

    We assess the impact of radiation anisotropy on the line shapes that result from relativistic magnetic Compton scattering in the low-density/high-field regime. A Monte Carlo implementation of radiation transport allows for spatial diffusion of photons in arbitrary geometries and accounts for relativistic angular redistribution. The cross section includes natural line widths and photon "spawning" from up to fourth harmonic photons. In our first paper we noted that even if the photon injection is isotropic a strongly anisotropic radiation field rapidly ensues. We now investigate the angular distribution of cyclotron spectra emerging from an internally irradiated magnetized plasma with a prescribed global geometry (either cylindrical or plane parallel) and the effects of anisotropic photon injection on the line shapes. Varying the input angular distribution permits a better understanding of the line formation process in more realistic scenarios where the radiative mechanisms are influenced by the intrinsic aniso...

  13. Detection of sea-serpent field lines in sunspot penumbrae

    CERN Document Server

    Dalda, A Sainz

    2007-01-01

    We investigate the spatial distribution of magnetic polarities in the penumbra of a spot observed very close to disk center. High-spatial resolution, high-cadence magnetograms taken with the Narrowband Filter Imager aboard Hinode are used in this study. They provide continuous and stable measurements in the photospheric Fe I 630.25 line for long periods of time. We discover small-scale, elongated, bipolar magnetic structures that appear in the mid penumbra and move radially outward across the penumbra. They occur in between the more vertical fields of the penumbra, and can be associated with the horizontal fields that harbor the Evershed flow. Many of them cross the outer penumbral boundary, becoming moving magnetic features in the sunspot moat. We determine the properties of these structures, including their sizes, proper motions, footpoint separation, and lifetimes. The bipolar patches can be interpreted as being produced by sea-serpent field lines that originate in the mid-penumbra and eventually leave the...

  14. Field line mapping and equilibrium reconstructions in new CNT Configuration

    Science.gov (United States)

    Traverso, Peter; Pedersen, Thomas; Brenner, Paul; Sarasola, Xabier; Durand de Gevigney, Benoit

    2010-11-01

    The Columbia Non-neutral Torus (CNT) has the useful feature of having adjustable coil geometry, creating up to three different stellarators each having a completely new shape to its magnetic surfaces and a different Iota profile. Recently the tilt angle between the two interlocking coils has been changed for the first time on CNT, allowing a study of the new magnetic geometry. In the new configuration field line mapping has been accomplished for multiple current ratios and magnetic fields to confirm the existence of good nested magnetic surfaces. At a specific current ratio a large one-three island chain is created. Plasma parameters have been measured with the new coil configuration, both in cases of a large internal island chain, and in cases without. Full 3D equilibrium reconstructions of potential and density are being performed using a modified version of the existing Poisson-Boltzmann solver. Field line mapping in this configuration will be presented, and a progress report on the equilibrium reconstructions will also be given.

  15. Diffusion of magnetic field lines in a confined RFP plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bazzani, A. [Bologna Univ. (Italy). Dip. di Fisica; INFN, Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Lab. di Tecnologia dei Materiali, Bologna (Italy); Di Sebastiano, A. [Bologna Univ. (Italy). Dip. di Fisica; Bologna Univ. (Italy). Dip. di Matematica; Turchetti, G. [Bologna Univ. (Italy). Dip. di Fisica

    1998-12-01

    A volume-preserving symplectic map is proposed to describe the magnetic field lines when the Taylor equilibrium is perturbed in a generic way. The standard scenario is observed by varying the perturbation strength, but the statistical properties in the chaotic regions are not simple due to the presence of boundaries and remnants of invariant structures. Simpler models of volume-preserving maps are proposed. The slowly modulated standard map captures the basic topological and statistical features. The diffusion is analytically described for large perturbations in terms of correlation functions and for small perturbations using the adiabatic theory, provided that the modulation is sufficiently slow.

  16. Phase-field slip-line theory of plasticity

    Science.gov (United States)

    Freddi, Francesco; Royer-Carfagni, Gianni

    2016-09-01

    A variational approach to determine the deformation of an ideally plastic substance is proposed by solving a sequence of energy minimization problems under proper conditions to account for the irreversible character of plasticity. The flow is driven by the local transformation of elastic strain energy into plastic work on slip surfaces, once that a certain energetic barrier for slip activation has been overcome. The distinction of the elastic strain energy into spherical and deviatoric parts is used to incorporate in the model the idea of von Mises plasticity and isochoric plastic strain. This is a "phase field model" because the matching condition at the slip interfaces is substituted by the evolution of an auxiliary phase field that, similar to a damage field, is unitary on the elastic phase and null on the yielded phase. The slip lines diffuse in bands, whose width depends upon a material length-scale parameter. Numerical experiments on representative problems in plane strain give solutions with noteworthy similarities with the results from classical slip-line field theory, but the proposed model is much richer because, accounting for elastic deformations, it can describe the formation of slip bands at the local level, which can nucleate, propagate, widen and diffuse by varying the boundary conditions. In particular, the solution for a long pipe under internal pressure is very different from the one obtainable from the classical macroscopic theory of plasticity. For this case, the location of the plastic bands may be an insight to explain the premature failures that are sometimes encountered during the manufacturing process. This practical example enhances the importance of this new theory based on the mathematical sciences.

  17. Particle trajectories in Weibel magnetic filaments with a flow-aligned magnetic field

    Science.gov (United States)

    Bret, Antoine

    2016-08-01

    > . In the absence of an external guiding magnetic field, these filaments can block the incoming flow, initiating the shock formation, if their size is larger than the Larmor radius of the incoming particles in the peak field. Here we show that this result still holds in the presence of an external magnetic field, provided it is not too high. Yet, for 0\\gtrsim Bf/2, the filaments become unable to stop any particle, regardless of its initial velocity.

  18. Magnetic fields of weak line T-Tauri stars

    Science.gov (United States)

    Hill, Colin A.; MaTYSSE Collaboration

    2017-10-01

    T-Tauri stars (TTS) are late-type pre-main-sequence (PMS) stars that are gravitationally contracting towards the MS. Those that possess a massive accretion disc are known as classical T-Tauri stars (cTTSs), and those that have exhausted the gas in their inner discs are known as weak-line T-Tauri stars (wTTSs). Magnetic fields largely dictate the angular momentum evolution of TTS and can affect the formation and migration of planets. Thus, characterizing their magnetic fields is critical for testing and developing stellar dynamo models, and trialling scenarios currently invoked to explain low-mass star and planet formation. The MaTYSSE programme (Magnetic Topologies of Young Stars and the Survival of close-in Exoplanets) aims to determine the magnetic topologies of ~30 wTTSs and monitor the long-term topology variability of ~5 cTTSs. We present several wTTSs that have been magnetically mapped thus far (using Zeeman Doppler Imaging), where we find a much wider range of field topologies compared to cTTSs and MS dwarfs with similar internal structures.

  19. The field line topology of a uniform magnetic field superposed on the field of a distributed ring current

    Energy Technology Data Exchange (ETDEWEB)

    Chance, M.S. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Greene, J.M.; Jensen, T.H. (General Atomics, San Diego, CA (USA))

    1991-07-01

    A magnetic field line topology with nulls, generated by superimposing a uniform magnetic field onto the field from a distributed ring current, is analyzed. This simple model is amenable to substantial analytical progress and also facilitates the visualization of the three dimensional field geometry. Four nulls are seen to exist and representative field lines and tubes of flux found by numerical integration are presented. An infinite number of topologically distinct flux bundles is found. A convenient mapping is defined which proves very useful in distinguishing between and following the paths of the different tubes of flux as they traverse through the null system. The complexities already present in this simple but nontrivial configuration serve to emphasize the difficulties in analyzing more complicated geometries, but the intuition gained from this study proves beneficial in those cases. One such example is the application to a model of plasmoid formations in the earth's magnetotail. 7 refs., 19 figs.

  20. Analysis on Electric Field Around HVAC-HVDC Hybrid Transmission Lines%Analysis on Electric Field Around HVAC-HVDC Hybrid Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    LI Qian; LIU Jun-xiang; LI Hua; LIN Fu-chang

    2011-01-01

    As the transmission line corridors become more and more rare in China, it is now inevitable for people to construct HVAC-HVDC hybrid transmission lines. The research on the electric field around the transmission lines plays an important role in evaluating the electromagnetic environment nearby. However, few existing research now considered the mutual effect of HVAC-HVDC hybrid transmission lines. Thus, this research designed a program based on windows, which calculated the surface voltage gradient on the transmission lines and the electric field at ground level respectively. This research calculated the surface voltage gradient on the transmission lines by applying the improved method of successive images. For the electric field at ground level under AC transmission line, simula- tion charge method is used, while for the electric field at the ground level under DC transmission lines, deutsch as- sumption method is used. Comparing the results generated by the calculation with those in published literature, the program is reliable. Taking 500 kV transmission lines as an example, when considering the mutual effect of the HVAC-HVDC'lines, the amplitude of the surface voltage gradient will increase by about 10% and the amplitude of the electric field at ground level will increase by about 8%, making the mutual effect of the AC and DC lines unneglectable. Larger part of the electric field at ground level under hybrid lines is produced by the DC line. Thus, in order to control the electric field at ground level under hybrid lines, it should pay more attention on that produced by the DC line.

  1. Particles trajectories in Weibel magnetic filaments with a flow-aligned magnetic field

    CERN Document Server

    Bret, Antoine

    2016-01-01

    For a Weibel shock to form, two plasma shells have to collide and trigger the Weibel instability. At saturation, this instability generates in the overlapping region magnetic filaments with peak field $B_f$. In the absence of an external guiding magnetic field, these filaments can block the incoming flow, initiating the shock formation, if their size is larger than the Larmor radius of the incoming particles in the peak field. Here we show that this results still holds in the presence of an external magnetic field $B_0$, provided it is not too high. Yet, for $B_0 \\gtrsim B_f/2$, the filaments become unable to stop any particle, regardless of its initially velocity.

  2. No alignment of cattle along geomagnetic field lines found

    CERN Document Server

    Hert, J; Pekarek, L; Pavlicek, A; 10.1007/s00359-011-0628-7

    2011-01-01

    This paper presents a study of the body orientation of domestic cattle on free pastures in several European states, based on Google satellite photographs. In sum, 232 herds with 3412 individuals were evaluated. Two independent groups participated in our study and came to the same conclusion that, in contradiction to the recent findings of other researchers, no alignment of the animals and of their herds along geomagnetic field lines could be found. Several possible reasons for this discrepancy should be taken into account: poor quality of Google satellite photographs, difficulties in determining the body axis, selection of herds or animals within herds, lack of blinding in the evaluation, possible subconscious bias, and, most importantly, high sensitivity of the calculated main directions of the Rayleigh vectors to some kind of bias or to some overlooked or ignored confounder. This factor could easily have led to an unsubstantiated positive conclusion about the existence of magnetoreception.

  3. Kolmogorov entropy of magnetic field lines in the percolation regime

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G; Bitane, R; Pommois, P; Veltri, P [Physics Department, University of Calabria, Arcavacata di Rende (Italy)

    2009-01-15

    We report the first numerical computation of the Kolmogorov entropy h of magnetic field lines extending from the quasilinear up to the percolation regime, using a numerical code where one can change both the turbulence level {delta}B/B{sub 0} and the turbulence anisotropy l{sub ||}/l{sub p}erpendicular. We find that the proposed percolation scaling of h is not reproduced, but rather a saturation of h is obtained. Also, we find that the Kolmogorov entropy depends solely on the Kubo number R = ({delta}B/B{sub 0})(l{sub ||}/l{sub p}erpendicular), and not separately on {delta}B/B{sub 0} and l{sub ||}/l{sub p}erpendicular. We apply the results to electron transport in solar coronal loops, which involves the use of the Rechester and Rosenbluth diffusion coefficient, and show that the study of transport in the percolation regime is required.

  4. A line of CFTs: from generalized free fields to SYK

    Science.gov (United States)

    Gross, David J.; Rosenhaus, Vladimir

    2017-07-01

    We point out that there is a simple variant of the SYK model, which we call cSYK, that is SL(2, R) invariant for all values of the coupling. The modification consists of replacing the UV part of the SYK action with a quadratic bilocal term. The corresponding bulk dual is a non-gravitational theory in a rigid AdS2 background. At weak coupling cSYK is a generalized free field theory; at strong coupling, it approaches the infrared of SYK. The existence of this line of fixed points explains the previously found connection between the three-point function of bilinears in these two theories at large q.

  5. 49 CFR 192.717 - Transmission lines: Permanent field repair of leaks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Permanent field repair of... § 192.717 Transmission lines: Permanent field repair of leaks. Each permanent field repair of a leak on a transmission line must be made by— (a) Removing the leak by cutting out and replacing...

  6. Flow lines and export lines of Sabalo Gas Field - the engineering of a complex job; Flow lines e export lines de Sabalo - a engenharia da complexidade

    Energy Technology Data Exchange (ETDEWEB)

    Serodio, Conrado Jose Morbach [GDK Engenharia, Salvador, BA (Brazil)

    2003-07-01

    The construction of the natural gas flow lines and export lines system of the Sabalo field, in the far South of Bolivia is an unique job in the pipeline construction area. Its execution is a turning point in terms of engineering and construction technology in this industry. Among the Aguarague Cordillera (mountains), it runs across rocky canyons for more than 5 km, a 2.100 mt long narrow tunnel to overcome the mountains and steep hills along all the ROW length, with a total extension of 70 km, in line pipes ranging from 10'' and 12'' for the flow lines, 28'' for the gas export line and 8' for the condensate line. An integrated construction work plan was settled in order to face and overcome the complex construction situations found in every feet of the pipeline. Four simultaneous work sites were mobilized, 8 independent work fronts, 700 professionals and more than 150 pieces of heavy construction equipment, brought from 3 different countries. Special techniques were adopted also to handle the challenging detail engineering . All in all, the correct conjunction of a sound engineering work, planning, human resources and equipment and the managing flexibility to create alternatives and solutions at the fast pace required by a dynamic work schedule were essential to succeed, in a job with no room for mistakes. The successfully job completion open new possibilities to other challenging projects alike.(author)

  7. The Effect of Magnetic Field of Multicusp and Wall Material on Electron Trajectories

    Science.gov (United States)

    Khodadadi Azadboni, Fatemeh; Sedaghatizade, Mahmood

    2010-04-01

    In this paper, the effect of electron confinement with magnetic fields in the multicusp ion source has been investigated. That is, electron confinement with magnetic fields plays a very important role for the generation of negative ions at plasma. Three-dimensional spatial distributions of electrons production are obtained for a multicusp ion source. The electron confinement of magnetic fields from various surface materials (such as Al2O3, Al, Au, Cu, w and stainless-steel) have been compared in a multicusp plasma source. The electron confinement effect becomes stronger with increasing N (the number of rows of permanent magnets) and using Al for plasma chamber wall material. The results of investigations have demonstrated good correspondence with experimental data, and therefore the adequacy of the developed approach and the possibility to build more effective source on this basis.

  8. Magnetic Field Line Random Walk in Isotropic Turbulence with Zero Mean Field

    Science.gov (United States)

    Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W. H.; Snodin, A. P.; Wongpan, P.; Chuychai, P.

    2015-01-01

    In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B 0)(l∥/l) for rms magnetic fluctuation b, large-scale mean field B 0, and parallel and perpendicular coherence scales l∥ and l, respectively. Here we examine the FLRW when R → ∞ by taking B 0 → 0 for finite bz (fluctuation component along B 0), which differs from the well-studied route with bz = 0 or bz Lt B 0 as the turbulence becomes quasi-two-dimensional (quasi-2D). Fluctuations with B 0 = 0 are typically isotropic, which serves as a reasonable model of interstellar turbulence. We use a non-perturbative analytic framework based on Corrsin's hypothesis to determine closed-form solutions for the asymptotic field line diffusion coefficient for three versions of the theory, which are directly related to the k -1 or k -2 moment of the power spectrum. We test these theories by performing computer simulations of the FLRW, obtaining the ratio of diffusion coefficients for two different parameterizations of a field line. Comparing this with theoretical ratios, the random ballistic decorrelation version of the theory agrees well with the simulations. All results exhibit an analog to Bohm diffusion. In the quasi-2D limit, previous works have shown that Corrsin-based theories deviate substantially from simulation results, but here we find that as B 0 → 0, they remain in reasonable agreement. We conclude that their applicability is limited not by large R, but rather by quasi-two-dimensionality.

  9. MAGNETIC FIELD LINE RANDOM WALK IN ISOTROPIC TURBULENCE WITH ZERO MEAN FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Sonsrettee, W.; Ruffolo, D.; Snodin, A. P.; Wongpan, P. [Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Subedi, P.; Matthaeus, W. H. [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Chuychai, P., E-mail: bturbulence@gmail.com, E-mail: david.ruf@mahidol.ac.th, E-mail: andrew.snodin@gmail.com, E-mail: pat.wongpan@postgrad.otago.ac.nz, E-mail: piyanate@gmail.com, E-mail: prasub@udel.edu, E-mail: whm@udel.edu [Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400 (Thailand)

    2015-01-01

    In astrophysical plasmas, magnetic field lines often guide the motions of thermal and non-thermal particles. The field line random walk (FLRW) is typically considered to depend on the Kubo number R = (b/B {sub 0})(ℓ{sub ∥}/ℓ ) for rms magnetic fluctuation b, large-scale mean field B {sub 0}, and parallel and perpendicular coherence scales ℓ{sub ∥} and ℓ , respectively. Here we examine the FLRW when R → ∞ by taking B {sub 0} → 0 for finite b{sub z} (fluctuation component along B {sub 0}), which differs from the well-studied route with b{sub z} = 0 or b{sub z} << B {sub 0} as the turbulence becomes quasi-two-dimensional (quasi-2D). Fluctuations with B {sub 0} = 0 are typically isotropic, which serves as a reasonable model of interstellar turbulence. We use a non-perturbative analytic framework based on Corrsin's hypothesis to determine closed-form solutions for the asymptotic field line diffusion coefficient for three versions of the theory, which are directly related to the k {sup –1} or k {sup –2} moment of the power spectrum. We test these theories by performing computer simulations of the FLRW, obtaining the ratio of diffusion coefficients for two different parameterizations of a field line. Comparing this with theoretical ratios, the random ballistic decorrelation version of the theory agrees well with the simulations. All results exhibit an analog to Bohm diffusion. In the quasi-2D limit, previous works have shown that Corrsin-based theories deviate substantially from simulation results, but here we find that as B {sub 0} → 0, they remain in reasonable agreement. We conclude that their applicability is limited not by large R, but rather by quasi-two-dimensionality.

  10. Smoke plume trajectory from in situ burning of crude oil in Alaska: Field experiments and modeling of complex terrain

    Energy Technology Data Exchange (ETDEWEB)

    McGrattan, K.B.; Baum, H.R.; Walton, W.D.; Trelles, J.

    1997-01-01

    The model, ALOFT (A Large Outdoor Fire plume Trajectory), is based on the fundamental conservation equations that govern the introduction of hot gases and particulate matter from a large fire into the atmosphere. Two forms of the Navier-Stokes equations are solved numerically--one to describe the plume rise in the first kilometer, the other to describe the plume transport over tens of kilometers of complex terrain. Each form of the governing equations resolves the flow field at different length scales. Particulate matter, or any non-reacting combustion product, is represented by Lagrangian particles that are advected by the fire-induced flow field. Background atmospheric motion is described in terms of the angular fluctuation of the prevailing wind, and represented by random perturbations to the mean particle paths. Results of the model are compared with three sets of fields experiments. Estimates are made of distances from the fire where ground level concentrations of the combustion products fall below regulatory threshold levels.

  11. Improved Field Homogeneity for Transmission Line MRI Coils Using Series Capacitors

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy; Dong, Yunfeng

    2015-01-01

    High field magnetic resonance imaging (MRI) systems often use short sections of transmission lines for generating and sensing alternating magnetic fields. Due to distributed nature of transmission lines, the generated field is inhomogeneous. This work investigates the application of series capaci...... capacitors to improve the field homogeneity. The resulting magnetic field distribution is estimated analytically and evaluated numerically. The results are compared to a case of a conventional transmission line coil realization....

  12. Trajectory of Charged Particle in Combined Electric and Magnetic Fields Using Interactive Spreadsheets

    Science.gov (United States)

    Tambade, Popat S.

    2011-01-01

    The objective of this article is to graphically illustrate to the students the physical phenomenon of motion of charged particle under the action of simultaneous electric and magnetic fields by simulating particle motion on a computer. Differential equations of motions are solved analytically and path of particle in three-dimensional space are…

  13. Trajectory Analysis of Cloud Properties During the 2014-2015 Holuhraun Lava Field Fissure Eruption in Iceland

    Science.gov (United States)

    Berry, S. E.; Hartmann, D. L.

    2016-12-01

    One of the major uncertainties in climate models and our understanding of anthropogenic effects on the atmosphere is the effect of aerosols on clouds. Anomalously high concentrations of cloud condensation nuclei (CCN) tend to increase cloud droplet concentrations and decrease droplet size leading to cloud brightening, known as the first indirect effect, and reduce the efficiency of precipitation processes leading to longer persistence times, known as the second indirect effect. In pre-industrial times, volcanoes were believed to be a primary source of CCN. The 2014-2015 fissure eruption at the Holuhraun lava field in Iceland, lasting from August 31, 2014 to February 28, 2015, released up to 120kt of sulfur dioxide per day at its peak, dwarfing all anthropogenic sulfur sources in the region. The continuity, magnitude, and length of the eruption makes it an ideal opportunity to examine the cloud-aerosol first indirect effect. Previous studies have shown the average cloud droplet effective radius in the region to drop to its lowest value recorded in the MODIS data record during September and October when the eruption was strongest. We aim to understand how this alteration of cloud properties occurred along parcel paths during the height of the eruption and establish a parcel relative mean magnitude change and activation time. Utilizing MODIS AQUA measurements and HYSPLIT forward trajectories, we composite cloud droplet effective radius, optical depth, and other cloud variables along trajectories, then compare to previous years with similar meteorology. We hope to provide a real world case by which to verify Lagrangian framed cloud-aerosol interactions and pre-industrial models.

  14. Research on the pedals trajectory on cone surface of inside point to element line%圆锥内定点至锥表面垂点轨迹

    Institute of Scientific and Technical Information of China (English)

    曲焱炎; 高岱; 宫娜

    2016-01-01

    为解决实际工程中遇到的圆锥曲线问题,研究圆锥内任意点至所有素线垂足轨迹的方程。根据圆锥形成的性质和向量几何的理论,如果点至素线的方向向量垂直素线方向向量,那么二者向量的点积等于零,由此求出垂足参数表达式。推算并化简垂足轨迹点参数方程,通过极坐标与直角坐标的转换,得出垂足点轨迹为圆锥与球偏交得的两曲面交线以及交线的笛卡尔坐标表达式。结果表明,若以圆锥内一点与圆锥顶点连线为直径作球,则球面与圆锥素线交点和圆锥内定点连线垂直于素线;研究轨迹线的投影性质表明,其正面投影为抛物线,水平投影为闭合的二次曲线。%This paper studies the trajectory equations of pedals of an inside arbitrary point to all element lines of a cone for solving the problem of cone curve in actual engineering. Based on the feature of a cone and the theory of differential geometry, when the vector from an inside arbitrary point to an element line is perpendicular to the vector of that element line, their scalar product has to be zero, thus the parameter expression of the pedals is derived. After calculated and simplified, the parameter equation of track points shows an intersection track line of the cone and an offset sphere. And the expression in the Descartes coordinate is given. Furthermore, a conclusion is obtained that if there defines a sphere by a diameter from the summit to an arbitrary point in the cone, then lines from the given point to the intersection of that sphere and cone are perpendicular to the intersected conical element lines. Meanwhile, the projection property of the trajectory is studied, and the frontal projection is a parabola, and the horizontal projection is a quadratic curve.

  15. Optimal Value of Series Capacitors for Uniform Field Distribution in Transmission Line MRI Coils

    DEFF Research Database (Denmark)

    Zhurbenko, Vitaliy

    2016-01-01

    Transmission lines are often used as coils in high field magnetic resonance imaging (MRI). Due to the distributed nature of transmission lines, coils based on them produce inhomogeneous field. This work investigates application of series capacitors to improve field homogeneity along the coil....... The equations for optimal values of evenly distributed capacitors are derived and expressed in terms of the implemented transmission line parameters.The achieved magnetic field homogeneity is estimated under quasistatic approximation and compared to the regular transmission line resonator. Finally, a more...... practical case of a microstrip line coil with two series capacitors is considered....

  16. 49 CFR 192.713 - Transmission lines: Permanent field repair of imperfections and damages.

    Science.gov (United States)

    2010-10-01

    ... Maintenance § 192.713 Transmission lines: Permanent field repair of imperfections and damages. (a) Each imperfection or damage that impairs the serviceability of pipe in a steel transmission line operating at or... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Permanent field repair...

  17. Magnetic-Field Sensitive Line Ratios in EUV and Soft X-ray Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Beiersdorfer, P; Scofield, J; Brown, G V; Chen, H; Trabert, E; Lepson, J K

    2006-04-24

    We discovered a class of lines that are sensitive to the strength of the ambient magnetic field, and present a measurement of such a line in Ar IX near 49 {angstrom}. Calculations show that the magnitude of field strengths that can be measured ranges from a few hundred gauss to several tens of kilogauss depending on the particular ion emitting the line.

  18. Different developmental trajectories across feature types support a dynamic field model of visual working memory development.

    Science.gov (United States)

    Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin

    2015-05-01

    Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.

  19. Classical trajectories in polar-asymmetric laser fields: Synchronous THz and XUV emission

    Science.gov (United States)

    Gragossian, Aram; Seletskiy, Denis V.; Sheik-Bahae, Mansoor

    2016-10-01

    The interaction of intense near- and mid-infrared laser pulses with rare gases has produced bursts of radiation with spectral content extending into the extreme ultraviolet and soft x-ray region of electromagnetic spectrum. On the other end of the spectrum, laser-driven gas plasmas has been shown to produce coherent sub-harmonic optical waveforms, covering from terahertz (THz) to mid- and near-infrared frequency spectral band. Both processes can be enhanced via a combination of a driving field and its second harmonic. Despite this striking similarity, only limited experimental and theoretical attempts have been made to address these two regimes simultaneously. Here we present systematic experiments and a unifying picture of these processes, based on our extension of the semi-classical three-step model. Further understanding of the generation and coherent control of time-synchronized transients with photon energies from meV to 1 keV can lead to numerous technological advances and to an intriguing possibilities of ultra-broadband investigations into complex condensed matter systems.

  20. Magnetic Energy of Force-Free Fields with Detached Field Lines

    Institute of Scientific and Technical Information of China (English)

    Guo-Qiang Li; You-Qiu Hu

    2003-01-01

    Using an axisymmetrical ideal MHD model in spherical coordinates, we present a numerical study of magnetic configurations characterized by a levitating flux rope embedded in a bipolar background field whose normal field at the solar surface is the same or very close to that of a central dipole. The characteristic plasmaβ (the ratio between gas pressure and magnetic pressure) is taken to be so small (β = 10-4) that the magnetic field is close to being force-free. The system as a whole is then let evolve quasi-statically with a slow increase of either the annular magnetic flux or the axial magnetic flux of the rope, and the total magnetic energy of the system grows accordingly. It is found that there exists an energy threshold: the flux rope sticks to the solar surface in equilibrium if the magnetic energy of the system is below the threshold, whereas it loses equilibrium if the threshold is exceeded. The energy threshold is found to be larger than that of the corresponding fully-open magnetic field by a factor of nearly 1.08 irrespective as to whether the background field is completely closed or partly open, or whether the magnetic energy is enhanced by an increase of annular or axial flux of the rope.This gives an example showing that a force-free magnetic field may have an energylarger than the corresponding open field energy if part of the field lines is allowed to be detached from the solar surface. The implication of such a conclusion in coronal mass ejections is briefly discussed and some comments are made on the maximum energy of force-free magnetic fields.

  1. A Numerical Study of Low-Thrust Limited Power Trajectories between Coplanar Circular Orbits in an Inverse-Square Force Field

    Directory of Open Access Journals (Sweden)

    Sandro da Silva Fernandes

    2012-01-01

    Full Text Available A numerical study of optimal low-thrust limited power trajectories for simple transfer (no rendezvous between circular coplanar orbits in an inverse-square force field is performed by two different classes of algorithms in optimization of trajectories. This study is carried out by means of a direct method based on gradient techniques and by an indirect method based on the second variation theory. The direct approach of the trajectory optimization problem combines the main positive characteristics of two well-known direct methods in optimization of trajectories: the steepest-descent (first-order gradient method and a direct second variation (second-order gradient method. On the other hand, the indirect approach of the trajectory optimization problem involves two different algorithms of the well-known neighboring extremals method. Several radius ratios and transfer durations are considered, and the fuel consumption is taken as the performance criterion. For small-amplitude transfers, the results are compared to the ones provided by a linear analytical theory.

  2. Cosmic Rays trajectory reconstruction in the Earth Magnetosphere: External Field models importance during the last solar active period (from 2011 to 2013)

    Science.gov (United States)

    Grandi, Davide; Della Torre, Stefano; Pensotti, Simonetta; Bobik, Pavol; Kudela, Karel; Rancoita, Pier Giorgio; Gervasi, Massimo; Jeroen Boschini, Matteo; Rozza, Davide; La vacca, Giuseppe; Tacconi, Mauro

    Geomagsphere is a backtracing code for Cosmic Rays trajectory reconstruction in the Earth Magnetosphere that has been developed with last models of Internal (IGRF-11) and External (Tsyganenko 1996 and 2005) field components. This backtracing technique was used to separate Primary Cosmic Rays Particles, in case of allowed trajectory, from Secondary particles, in case of forbidden trajectory. We compared Magnetic Field measurements with and without the external field model with satellite data in past periods, in particular GOES (1998) and CLUSTER (2004) data. For both periods TS05 reproduces the magnetc field components with good accuracy. The specificity of the TS05 model, designed for solar storms, was tested comparing it with data taken by CLUSTER during the last solar active period (from 2011 to 2013) During Solar Flares (occurred march and May 2012), the usage of such an external field has a relevavant impact on fraction of AMS-02 cosmic rays identified as trapped and secondary particles, especially in high geomagnetic latitudes, as was expecte by some previous simulations, in comparison with the Internal Field only.

  3. Excitation of field line resonances by sources outside the magnetosphere

    Directory of Open Access Journals (Sweden)

    A. D. M. Walker

    2005-11-01

    Full Text Available Field line resonances are thought to be excited by sources either at the magnetopause or outside it. Recent observations suggest that they may be associated with coherent oscillations or pressure pulses in the solar wind. In either case the excitation mechanism can be understood by considering the incidence of a harmonic wave on the magnetopause from outside the magnetosphere. Calculations are performed in a plane stratified model that consists of (i a magnetosheath region streaming tailward at uniform velocity (ii a sharp boundary representing the magnetopause, (iii a magnetosphere region in which the Alfvén speed increases monotonically with distance from the magnetopause. The structure implies the existence of a propagating region within the magnetopause bounded by a reflection level or turning point. Beyond this is a region in which waves are evanescent and a resonance level. The reflection and transmission of harmonic waves incident from the magnetosheath is considered in this model. It is shown that, in most cases, because of the mismatch between the magnetosphere and the magnetopause, the wave is reflected from the magnetopause with little penetration. At critical frequencies corresponding to the natural frequencies of the cavity formed between the magnetopause and turning point the signal excites the cavity and may leak evanescently to the resonance. The calculation includes the effect of the counter-streaming magnetosheath and magnetosphere plasmas on the wave. This can lead to amplification or attenuation. The nature of the processes that lead to transmission of the wave from magnetosheath to resonance are considered by synthesising the signal from plane wave spectra. A number of mechanisms for exciting cavity modes are reviewed and the relationship of the calculations to these mechanisms are discussed. Observations needed to discriminate between the mechanisms are specified.

  4. On the Shape of Force-Free Field Lines in the Solar Corona

    KAUST Repository

    Prior, C.

    2012-02-02

    This paper studies the shape parameters of looped field lines in a linear force-free magnetic field. Loop structures with a sufficient amount of kinking are generally seen to form S or inverse S (Z) shapes in the corona (as viewed in projection). For a single field line, we can ask how much the field line is kinked (as measured by the writhe), and how much neighbouring flux twists about the line (as measured by the twist number). The magnetic helicity of a flux element surrounding the field line can be decomposed into these two quantities. We find that the twist helicity contribution dominates the writhe helicity contribution, for field lines of significant aspect ratio, even when their structure is highly kinked. These calculations shed light on some popular assumptions of the field. First, we show that the writhe of field lines of significant aspect ratio (the apex height divided by the footpoint width) can sometimes be of opposite sign to the helicity. Secondly, we demonstrate the possibility of field line structures which could be interpreted as Z-shaped, but which have a helicity value sign expected of an S-shaped structure. These results suggest that caution should be exercised in using two-dimensional images to draw conclusions on the helicity value of field lines and flux tubes. © 2012 Springer Science+Business Media B.V.

  5. Electromagnetic Field Evaluation of a 500kV High Voltage Overhead Line

    Directory of Open Access Journals (Sweden)

    Chen Chun

    2013-02-01

    Full Text Available Many scientific articles have been written about electromagnetic field distributions under high voltage overhead transmission lines. However, some readers are still left wondering just how exactly the distribution curves formed by the fields are related to the mathematical models used. This paper presents case study results of a 500 kV alternating current overhead transmission line, and explicitly shows how the fields vary under high voltage lines by employing easily understood mathematical models. The numerical simulations, done using MATLAB, can help anyone willing to evaluate the amount of electromagnetic fields available under any other high voltage overhead transmission line. The magnitudes of the fields obtained are compared with the standard values set by the International Radiation Protection Agency so as to assess the integrity of external insulation of the line. Thus, the technical staff can easily attend to complaints that may arise about the electromagnetic field effects from the line.

  6. A new approach for estimating the Jupiter and Saturn gravity fields using Juno and Cassini measurements, trajectory estimation analysis, and a dynamical wind model optimization

    Science.gov (United States)

    Galanti, Eli; Durante, Daniele; Iess, Luciano; Kaspi, Yohai

    2017-04-01

    The ongoing Juno spacecraft measurements are improving our knowledge of Jupiter's gravity field. Similarly, the Cassini Grand Finale will improve the gravity estimate of Saturn. The analysis of the Juno and Cassini Doppler data will provide a very accurate reconstruction of spacial gravity variations, but these measurements will be very accurate only over a limited latitudinal range. In order to deduce the full gravity fields of Jupiter and Saturn, additional information needs to be incorporated into the analysis, especially with regards to the planets' wind structures. In this work we propose a new iterative approach for the estimation of Jupiter and Saturn gravity fields, using simulated measurements, a trajectory estimation model, and an adjoint based inverse thermal wind model. Beginning with an artificial gravitational field, the trajectory estimation model is used to obtain the gravitational moments. The solution from the trajectory model is then used as an initial guess for the thermal wind model, and together with an optimization method, the likely penetration depth of the winds is computed, and its uncertainty is evaluated. As a final step, the gravity harmonics solution from the thermal wind model is given back to the trajectory model, along with an estimate of their uncertainties, to be used as a priori for a new calculation of the gravity field. We test this method both for zonal harmonics only and with a full gravity field including tesseral harmonics. The results show that by using this method some of the gravitational moments are fitted better to the `observed' ones, mainly due to the added information from the dynamical model which includes the wind structure and its depth. Thus, it is suggested that the method presented here has the potential of improving the accuracy of the expected gravity moments estimated from the Juno and Cassini radio science experiments.

  7. Trajectory Resolved High-order Harmonic Generation in Elliptically Polarized Fields in the Presence of Window Resonances

    CERN Document Server

    Larsen, E W; Lorek, E; Heyl, C M; Palecek, D; L'Huillier, A; Zigmantas, D; Mauritsson, J

    2015-01-01

    We experimentally investigate how the ellipticity of the driving laser pulses influences high-order harmonic generation from the first two sets of quantum trajectories. Using long pulses at a high repetition rate in a tight focusing configuration combined with a spectrometer that resolves the harmonic emission both spatially and spectrally, allows for a clear separation of the emission generated by the long and the short trajectories. We find that a model describing the long trajectories has to include a sub-cycle change in both ionization rate and initial electron velocity distribution as well as a change of the excursion time when the ellipticity is changed. Additionally, we find that the configuration interaction between two electrons influences the ellipticity dependence of both trajectories through the AC-Stark shift.

  8. Power line field sensing to support autonomous navigation of small unmanned aerial vehicles

    Science.gov (United States)

    Matthews, John; Bukshpun, Leonid; Pradhan, Ranjit

    2013-06-01

    Autonomous navigation around power lines in a complex urban environment is a critical challenge facing small unmanned aerial vehicles (SUAVs). As part of an ongoing development of an electric and magnetic field sensor system designed to provide SUAVs with the capability to sense and avoid power transmission and distribution lines by monitoring their electric and magnetic field signatures, we have performed field measurements and analysis of power-line signals. We discuss the nature of the power line signatures to be detected, and optimal strategies for detecting these signals amid SUAV platform noise and environmental interference. Based on an analysis of measured power line signals and vehicle noise, we have found that, under certain circumstances, power line harmonics can be detected at greater range than the fundamental. We explain this phenomenon by combining a model of power line signal nonlinearity with the quasi-static electric and magnetic signatures of multiphase power lines.

  9. Centrifugally driven relativistic dynamics on curved trajectories

    CERN Document Server

    Rogava, A; Osmanov, Z; Rogava, Andria; Dalakishvili, George; Osmanov, Zaza

    2003-01-01

    Motion of test particles along rotating curved trajectories is considered. The problem is studied both in the laboratory and the rotating frames of reference. It is assumed that the system rotates with the constant angular velocity $\\omega = const$. The solutions are found and analyzed for the case when the form of the trajectory is given by an Archimedes spiral. It is found that particles can reach infinity while they move along these trajectories and the physical interpretation of their behaviour is given. The analogy of this idealized study with the motion of particles along the curved rotating magnetic field lines in the pulsar magnetosphere is pointed out. We discuss further physical development (the conserved total energy case, when $\\omega \

  10. Line Profile Asymmetries and the Chromospheric Flare Velocity Field

    Science.gov (United States)

    Kuridze, D.; Mathioudakis, M.; Simões, P. J. A.; Rouppe van der Voort, L.; Carlsson, M.; Jafarzadeh, S.; Allred, J. C.; Kowalski, A. F.; Kennedy, M.; Fletcher, L.; Graham, D.; Keenan, F. P.

    2015-11-01

    The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Hα and Ca ii λ8542 lines are studied using high spatial, temporal, and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1 m Solar Telescope. The temporal evolution of the Hα line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum and excess in the blue wing (blue asymmetry) after maximum. However, the Ca ii λ8542 line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesize spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Hα is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, we conclude that the steep velocity gradients in the flaring chromosphere modify the wavelength of the central reversal in the Hα line profile. The shift in the wavelength of maximum opacity to shorter and longer wavelengths generates the red and blue asymmetries, respectively.

  11. The covariant description of electric and magnetic field lines of null fields: application to Hopf-Rañada solutions

    Science.gov (United States)

    van Enk, S. J.

    2013-05-01

    The concept of electric and magnetic field lines is intrinsically non-relativistic. Nonetheless, for certain types of fields satisfying certain geometric properties, field lines can be defined covariantly. More precisely, two Lorentz-invariant 2D surfaces in spacetime can be defined such that magnetic and electric field lines are determined, for any observer, by the intersection of those surfaces with spacelike hyperplanes. An instance of this type of field is constituted by the so-called Hopf-Rañada solutions of the source-free Maxwell equations, which have been studied because of their interesting topological properties, namely, linkage of their field lines. In order to describe both geometric and topological properties in a succinct manner, we employ the tools of geometric algebra (aka Clifford algebra) and use the Clebsch representation for the vector potential as well as the Euler representation for both magnetic and electric fields. This description is easily made covariant, thus allowing us to define electric and magnetic field lines covariantly in a compact geometric language. The definitions of field lines can be phrased in terms of 2D surfaces in space. We display those surfaces in different reference frames, showing how those surfaces change under Lorentz transformations while keeping their topological properties. As a byproduct we also obtain relations between optical helicity, optical chirality and generalizations thereof, and their conservation laws.

  12. Career Performance Trajectories in Track and Field Jumping Events from Youth to Senior Success: The Importance of Learning and Development

    Science.gov (United States)

    Moisè, Paolo; Franceschi, Alberto; Trova, Francesco; Panero, Davide; La Torre, Antonio; Rainoldi, Alberto; Schena, Federico; Cardinale, Marco

    2017-01-01

    Introduction The idea that early sport success can be detrimental for long-term sport performance is still under debate. Therefore, the aims of this study were to examine the career trajectories of Italian high and long jumpers to provide a better understanding of performance development in jumping events. Methods The official long-jump and high-jump rankings of the Italian Track and Field Federation were collected from the age of 12 to career termination, for both genders from the year 1994 to 2014. Top-level athletes were identified as those with a percentile of their personal best performance between 97 and 100. Results The age of entering competitions of top-level athletes was not different than the rest of the athletic population, whereas top-level athletes performed their personal best later than the rest of the athletes. Top-level athletes showed an overall higher rate of improvement in performance from the age of 13 to the age of 18 years when compared to all other individuals. Only 10–25% of the top-level adult athletes were top-level at the age of 16. Around 60% of the top-level young at the age of 16 did not maintain the same level of performance in adulthood. Female high-jump represented an exception from this trend since in this group most top-level young become top-level adult athletes. Conclusions These findings suggest that performance before the age of 16 is not a good predictor of adult performance in long and high jump. The annual rate of improvements from 13 to 18 years should be included as a predictor of success rather than performance per se. Coaches should be careful about predicting future success based on performances obtained during youth in jumping events. PMID:28129370

  13. Potential emission flux to aerosol pollutants over Bengal Gangetic plain through combined trajectory clustering and aerosol source fields analysis

    Science.gov (United States)

    Kumar, D. Bharath; Verma, S.

    2016-09-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over Bengal Gangetic plain urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol (AOD: 0.77; AE: 1.17) were respectively slightly higher than and nearly equal to that at Kgp (AOD: 0.71; AE: 1.18). Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal and the Arabian sea clusters at Kol and that from the Indo-Gangetic plain (IGP) cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, primarily over upper IGP (e.g. Punjab, Haryana), lower IGP (e.g. Uttarpradesh) and eastern region (e.g. west Bengal, Bihar, northeast India) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp, elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were primarily from upper, lower, upper/lower IGP clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from eastern region and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from northwest India (NWI) was comparable to that from AFR at Kol SL/EL.

  14. Career Performance Trajectories in Track and Field Jumping Events from Youth to Senior Success: The Importance of Learning and Development.

    Science.gov (United States)

    Boccia, Gennaro; Moisè, Paolo; Franceschi, Alberto; Trova, Francesco; Panero, Davide; La Torre, Antonio; Rainoldi, Alberto; Schena, Federico; Cardinale, Marco

    2017-01-01

    The idea that early sport success can be detrimental for long-term sport performance is still under debate. Therefore, the aims of this study were to examine the career trajectories of Italian high and long jumpers to provide a better understanding of performance development in jumping events. The official long-jump and high-jump rankings of the Italian Track and Field Federation were collected from the age of 12 to career termination, for both genders from the year 1994 to 2014. Top-level athletes were identified as those with a percentile of their personal best performance between 97 and 100. The age of entering competitions of top-level athletes was not different than the rest of the athletic population, whereas top-level athletes performed their personal best later than the rest of the athletes. Top-level athletes showed an overall higher rate of improvement in performance from the age of 13 to the age of 18 years when compared to all other individuals. Only 10-25% of the top-level adult athletes were top-level at the age of 16. Around 60% of the top-level young at the age of 16 did not maintain the same level of performance in adulthood. Female high-jump represented an exception from this trend since in this group most top-level young become top-level adult athletes. These findings suggest that performance before the age of 16 is not a good predictor of adult performance in long and high jump. The annual rate of improvements from 13 to 18 years should be included as a predictor of success rather than performance per se. Coaches should be careful about predicting future success based on performances obtained during youth in jumping events.

  15. CALCULATION METHOD OF ELECTRIC POWER LINES MAGNETIC FIELD STRENGTH BASED ON CYLINDRICAL SPATIAL HARMONICS

    Directory of Open Access Journals (Sweden)

    A.V. Erisov

    2016-05-01

    Full Text Available Purpose. Simplification of accounting ratio to determine the magnetic field strength of electric power lines, and assessment of their environmental safety. Methodology. Description of the transmission lines of the magnetic field by using techniques of spatial harmonic analysis in the cylindrical coordinate system is carried out. Results. For engineering calculations of electric power lines magnetic field with sufficient accuracy describes their first spatial harmonic magnetic field. Originality. Substantial simplification of the definition of the impact of the construction of transmission line poles on the value of its magnetic field and the bands of land alienation sizes. Practical value. The environmentally friendly projection electric power lines on the level of the magnetic field.

  16. Uncertainties in field-line tracing in the magnetosphere. Part I: the axisymmetric part of the internal geomagnetic field

    Directory of Open Access Journals (Sweden)

    J. Comer

    Full Text Available The technique of tracing along magnetic field lines is widely used in magnetospheric physics to provide a "magnetic frame of reference'' that facilitates both the planning of experiments and the interpretation of observations. The precision of any such magnetic frame of reference depends critically on the accurate representation of the various sources of magnetic field in the magnetosphere. In order to consider this important problem systematically, a study is initiated to estimate first the uncertainties in magnetic-field-line tracing in the magnetosphere that arise solely from the published (standard errors in the specification of the geomagnetic field of internal origin. Because of the complexity in computing these uncertainties for the complete geomagnetic field of internal origin, attention is focused in this preliminary paper on the uncertainties in magnetic-field-line tracing that result from the standard errors in just the axisymmetric part of the internal geomagnetic field. An exact analytic equation exists for the magnetic field lines of an arbitrary linear combination of axisymmetric multipoles. This equation is used to derive numerical estimates of the uncertainties in magnetic-field-line tracing that are due to the published standard errors in the axisymmetric spherical harmonic coefficients (i.e. gn0 ± δgn0. Numerical results determined from the analytic equation are compared with computational results based on stepwise numerical integration along magnetic field lines. Excellent agreement is obtained between the analytical and computational methods in the axisymmetric case, which provides great confidence in the accuracy of the computer program used for stepwise numerical integration along magnetic field lines. This computer program is then used in the following paper to estimate the uncertainties in magnetic-field-line tracing in the magnetosphere that arise from the published standard errors in the full set of spherical

  17. Halpha line profile asymmetries and the chromospheric flare velocity field

    CERN Document Server

    Kuridze, D; Simões, P J A; van der Voort, L Rouppe; Carlsson, M; Jafarzadeh, S; Allred, J C; Kowalski, A F; Kennedy, M; Fletcher, L; Graham, D; Keenan, F P

    2015-01-01

    The asymmetries observed in the line profiles of solar flares can provide important diagnostics of the properties and dynamics of the flaring atmosphere. In this paper the evolution of the Halpha and Ca II 8542 {\\AA} lines are studied using high spatial, temporal and spectral resolution ground-based observations of an M1.1 flare obtained with the Swedish 1-m Solar Telescope. The temporal evolution of the Halpha line profiles from the flare kernel shows excess emission in the red wing (red asymmetry) before flare maximum, and excess in the blue wing (blue asymmetry) after maximum. However, the Ca II 8542 {\\AA} line does not follow the same pattern, showing only a weak red asymmetry during the flare. RADYN simulations are used to synthesise spectral line profiles for the flaring atmosphere, and good agreement is found with the observations. We show that the red asymmetry observed in Halpha is not necessarily associated with plasma downflows, and the blue asymmetry may not be related to plasma upflows. Indeed, w...

  18. The covariant description of field lines: application to linked beams of light

    CERN Document Server

    van Enk, S J

    2013-01-01

    The concept of electric and magnetic field lines is intrinsically non-relativistic. Nonetheless, for certain types of fields satisfying certain {\\em geometric} properties, field lines can be defined covariantly. More precisely, two Lorentz-invariant 2D surfaces in spacetime can be defined such that magnetic and electric field lines are determined, for any observer, by the intersection of those surfaces with spacelike hyperplanes. An instance of this type of field is constituted by the so-called Hopf-Ranada solutions of the source-free Maxwell equations, which have been studied because of their interesting topological properties, namely, linkage of their field lines. In order to describe both geometric and topological properties in a succinct manner, we employ the tools of Geometric Algebra (aka Clifford Algebra) and use the Clebsch representation for the vector potential as well as the Euler representation for both magnetic and electric fields. This description is easily made covariant, thus allowing us to de...

  19. Laserspectroscopic investigations of the lithium- D-lines in magnetic fields

    Science.gov (United States)

    Windholz, L.; Jäger, H.; Musso, M.; Zerza, G.

    1990-03-01

    Laser-atomic-beam investigations of the lithium D 1- and D 2-line in magnetic fields were performed using cw-laser excitation and fluorescence detection. For both isotopes6Li and7Li, the hyperfine splittings of the ground level 22 S 1/2 and the upper level of the D 1-line, 22 P 1/2, as well as the isotopic shifts of the D 1- and the D 2-line were determined from the registrations without field. In magnetic fields, Zeeman- and Paschen-Back-effects of the lines were studied. Using the Zeeman pattern of the D 1-line for a calibration of the field strength, values for the hyperfine constants A and B of the 22 P 3/2-level of7Li could be derived from the Zeeman pattern of the D 2-line.

  20. 49 CFR 192.715 - Transmission lines: Permanent field repair of welds.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Transmission lines: Permanent field repair of... § 192.715 Transmission lines: Permanent field repair of welds. Each weld that is unacceptable under § 192.241(c) must be repaired as follows: (a) If it is feasible to take the segment of transmission...

  1. Magnetic Fields and UV-line Variability in beta Cephei

    NARCIS (Netherlands)

    R.S. Schnerr; H.F. Henrichs; S.P. Owocki; A. ud-Doula; R.H.D. Townsend

    2007-01-01

    We present results of numerical simulations of wind variability in the magnetic B1 IVe star beta Cephei. 2D-MHD simulations are used to determine the structure of the wind. From these wind models we calculate line profiles for different aspect angles to simulate rotation. The results are compared wi

  2. The field line map approach for simulations of magnetically confined plasmas

    CERN Document Server

    Stegmeir, Andreas; Maj, Omar; Hallatschek, Klaus; Lackner, Karl

    2015-01-01

    In the presented field line map approach the simulation domain of a tokamak is covered with a cylindrical grid, which is Cartesian within poloidal planes. Standard finite-difference methods can be used for the discretisation of perpendicular (w.r.t.~magnetic field lines) operators. The characteristic flute mode property $\\left(k_{\\parallel}\\ll k_{\\perp}\\right)$ of structures is exploited computationally by a grid sparsification in the toroidal direction. A field line following discretisation of parallel operators is then required, which is achieved via a finite difference along magnetic field lines. This includes field line tracing and interpolation or integration. The main emphasis of this paper is on the discretisation of the parallel diffusion operator. Based on the support operator method a scheme is constructed which exhibits only very low numerical perpendicular diffusion. The schemes are implemented in the new code GRILLIX, and extensive benchmarks are presented which show the validity of the approach ...

  3. The choice of the concept of magnetic field lines or of electric current lines: Alfvén medal lecture

    Directory of Open Access Journals (Sweden)

    S.-I. Akasofu

    2011-07-01

    Full Text Available In 1967, at the Birkeland Symposium in Sandefjord, Norway, Professor Hannes Alfvén stated that the second approach (in solving unsolved problems by the standard MHD theory to cosmic electrodynamics is to "thaw" the "frozen-in" magnetic field lines. "We can illustrate essential properties of the electromagnetic state of space either by depicting the magnetic field lines or by depicting electric current lines," he said. There has been much progress in space physics since the Birkeland Symposium more than 40 years ago, but unfortunately our scientific community has not really succeeded in thawing the frozen-in field lines. Instead, it has pursued magnetic reconnection, a concept that Alfvén had been critical of. It is shown here that we have to study many unsolved problems and problems thought to be solved in terms of both the magnetic field line concept and the current system concept. In taking Alfvén's approach, we must consider the whole system, including the power supply (dynamo process and its transmission and distribution (electric currents and observed phenomena (power dissipation processes. Such a consideration can provide physical insight into many of our unsolved problems and problems thought to be solved. In this paper, we consider substorm onset processes, the substorm current system, sunspots, solar flares, coronal mass ejections, the interplanetary current sheet, and the magnetic field configuration of the heliosphere in terms of the current system concept. In particular, it is shown that a study of the current system is essential in substorm studies, more than changes of the magnetic field configuration in the magnetotail.

  4. The choice of the concept of magnetic field lines or of electric current lines: Alfvén medal lecture

    Science.gov (United States)

    Akasofu, S.-I.

    2011-07-01

    In 1967, at the Birkeland Symposium in Sandefjord, Norway, Professor Hannes Alfvén stated that the second approach (in solving unsolved problems by the standard MHD theory) to cosmic electrodynamics is to "thaw" the "frozen-in" magnetic field lines. "We can illustrate essential properties of the electromagnetic state of space either by depicting the magnetic field lines or by depicting electric current lines," he said. There has been much progress in space physics since the Birkeland Symposium more than 40 years ago, but unfortunately our scientific community has not really succeeded in thawing the frozen-in field lines. Instead, it has pursued magnetic reconnection, a concept that Alfvén had been critical of. It is shown here that we have to study many unsolved problems and problems thought to be solved in terms of both the magnetic field line concept and the current system concept. In taking Alfvén's approach, we must consider the whole system, including the power supply (dynamo process) and its transmission and distribution (electric currents) and observed phenomena (power dissipation processes). Such a consideration can provide physical insight into many of our unsolved problems and problems thought to be solved. In this paper, we consider substorm onset processes, the substorm current system, sunspots, solar flares, coronal mass ejections, the interplanetary current sheet, and the magnetic field configuration of the heliosphere in terms of the current system concept. In particular, it is shown that a study of the current system is essential in substorm studies, more than changes of the magnetic field configuration in the magnetotail.

  5. Solar monochromatic images in magneto-sensitive spectral lines and maps of vector magnetic fields

    Science.gov (United States)

    Shihui, Y.; Jiehai, J.; Minhan, J.

    1985-01-01

    A new method which allows by use of the monochromatic images in some magneto-sensitive spectra line to derive both the magnetic field strength as well as the angle between magnetic field lines and line of sight for various places in solar active regions is described. In this way two dimensional maps of vector magnetic fields may be constructed. This method was applied to some observational material and reasonable results were obtained. In addition, a project for constructing the three dimensional maps of vector magnetic fields was worked out.

  6. Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: Implications for tomography of thick biological sections

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, A.A.; Hohmann-Marriott, M.F.; Zhang, G. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766 (United States); Leapman, R.D. [Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bldg. 13, Rm. 3N17, 13 South Drive, Bethesda, MD 20892-5766 (United States)], E-mail: leapmanr@mail.nih.gov

    2009-02-15

    A Monte Carlo electron-trajectory calculation has been implemented to assess the optimal detector configuration for scanning transmission electron microscopy (STEM) tomography of thick biological sections. By modeling specimens containing 2 and 3 at% osmium in a carbon matrix, it was found that for 1-{mu}m-thick samples the bright-field (BF) and annular dark-field (ADF) signals give similar contrast and signal-to-noise ratio provided the ADF inner angle and BF outer angle are chosen optimally. Spatial resolution in STEM imaging of thick sections is compromised by multiple elastic scattering which results in a spread of scattering angles and thus a spread in lateral distances of the electrons leaving the bottom surface. However, the simulations reveal that a large fraction of these multiply scattered electrons are excluded from the BF detector, which results in higher spatial resolution in BF than in high-angle ADF images for objects situated towards the bottom of the sample. The calculations imply that STEM electron tomography of thick sections should be performed using a BF rather than an ADF detector. This advantage was verified by recording simultaneous BF and high-angle ADF STEM tomographic tilt series from a stained 600-nm-thick section of C. elegans. It was found that loss of spatial resolution occurred markedly at the bottom surface of the specimen in the ADF STEM but significantly less in the BF STEM tomographic reconstruction. Our results indicate that it might be feasible to use BF STEM tomography to determine the 3D structure of whole eukaryotic microorganisms prepared by freeze-substitution, embedding, and sectioning.

  7. Resolving magnetic field line stochasticity and parallel thermal transport in MHD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Y.; Callen, J.D.; Hegna, C.C. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics

    1998-12-31

    Heat transport along braided, or chaotic magnetic field lines is a key to understand the disruptive phase of tokamak operations, both the major disruption and the internal disruption (sawtooth oscillation). Recent sawtooth experimental results in the Tokamak Fusion Test Reactor (TFTR) have inferred that magnetic field line stochasticity in the vicinity of the q = 1 inversion radius plays an important role in rapid changes in the magnetic field structures and resultant thermal transport. In this study, the characteristic Lyapunov exponents and spatial correlation of field line behaviors are calculated to extract the characteristic scale length of the microscopic magnetic field structure (which is important for net radial global transport). These statistical values are used to model the effect of finite thermal transport along magnetic field lines in a physically consistent manner.

  8. Magnetic Field Line Random Walk in Isotropic Turbulence with Varying Mean Field

    Science.gov (United States)

    Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W. H.; Snodin, A. P.; Wongpan, P.; Chuychai, P.; Rowlands, G.; Vyas, S.

    2016-08-01

    In astrophysical plasmas, the magnetic field line random walk (FLRW) plays an important role in guiding particle transport. The FLRW behavior is scaled by the Kubo number R=(b/{B}0)({{\\ell }}\\parallel /{{\\ell }}\\perp ) for rms magnetic fluctuation b, large-scale mean field {{\\boldsymbol{B}}}0, and coherence scales parallel ({{\\ell }}\\parallel ) and perpendicular ({{\\ell }}\\perp ) to {{\\boldsymbol{B}}}0. Here we use a nonperturbative analytic framework based on Corrsin’s hypothesis, together with direct computer simulations, to examine the R-scaling of the FLRW for varying B 0 with finite b and isotropic fluctuations with {{\\ell }}\\parallel /{{\\ell }}\\perp =1, instead of the well-studied route of varying {{\\ell }}\\parallel /{{\\ell }}\\perp for b \\ll {B}0. The FLRW for isotropic magnetic fluctuations is also of astrophysical interest regarding transport processes in the interstellar medium. With a mean field, fluctuations may have variance anisotropy, so we consider limiting cases of isotropic variance and transverse variance (with b z = 0). We obtain analytic theories, and closed-form solutions for extreme cases. Padé approximants are provided to interpolate all versions of theory and simulations to any B 0. We demonstrate that, for isotropic turbulence, Corrsin-based theories generally work well, and with increasing R there is a transition from quasilinear to Bohm diffusion. This holds even with b z = 0, when different routes to R\\to ∞ are mathematically equivalent; in contrast with previous studies, we find that a Corrsin-based theory with random ballistic decorrelation works well even up to R = 400, where the effects of trapping are barely perceptible in simulation results.

  9. The differential equations defining deflection of particles of ion beam from axial trajectory in electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Baisanov, O.A. [Military Institute of Air Defense Forces, Aktobe (Kazakhstan); Doskeyev, G.A.; Doskeyev, T.G. [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan); Spivak-Lavrov, I.F., E-mail: spivakif@rambler.ru [Aktobe State University named after K. Zhubanov, Aktobe (Kazakhstan)

    2011-07-21

    The exact differential equations defining deviations of the paths of charged particles from the axial trajectory are derived in curvilinear coordinates. These equations are in a form suited for carrying out relativistically correct numerical calculations of the dynamics of charged particle beams.

  10. The behaviour of magnetic field lines and drifts in 3D configurations

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, O. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-04-01

    The magnetic topology and the particles drift orbits in 3D configurations are analyzed with numerical tools developed during this thesis (the MFLT3D code and the VENUS code) or with existing codes (the VMEC code and the TERPSICHORE code). We will focus our study on the effect of a magnetic perturbation in a MHD equilibrium and on the neoclassical transport in new 3D reactor designs. Firstly, the magnetic structure and particle drift orbits are studied in a monotonic q-profile and in a reversed shear TEXTOR equilibrium that is subject to a magnetic perturbation driven by the Dynamic Ergodic Divertor (DED). The main results prove that there exists a transport barrier for the magnetic field lines and for circulating particles in the reversed shear case when the DED is applied. This transport barrier occurs near the surface of minimum q-value where the KAM theory may be invalid. Moreover, we have remarked that trapped particles are lost due to the presence of the ripple and the DED does not affect their trajectories. Then, we have observed that a magnetic perturbation produced by saddle coils, for example, can control internal instabilities like tearing modes in the JET tokamak. We have shown that depending on the n mode number, the saddle coils have beneficial effects on the island width of internal instabilities. Finally, the study of neoclassical transport and Q-particles confinement are analyzed in 3D reactor designs like the QAS3, the ST/sphellamak hybrid and the sphellamak. We have observed that neither the QAS3 nor the ST/sphellamak are quasiaxisymmetric configurations. Thus the transport process is governed by the helical deformation of the magnetic field strength and these configurations do not confine the trapped Q-particles. On the other hand, the sphellamak is a nearly isodynamic structure in the plasma core which leads to good Q-particle confinement and the neoclassical transport is very similar to that obtained in a 2D equivalent tokamak. (author)

  11. On fibrils and field lines: The nature of H$\\alpha$ fibrils in the solar chromosphere

    CERN Document Server

    Leenaarts, Jorrit; van der Voort, Luc Rouppe

    2015-01-01

    Observations of the solar chromosphere in the line-core of the \\Halpha\\ line show dark elongated structures called fibrils that show swaying motion. We performed a 3D radiation-MHD simulation of a network region, and computed synthetic \\Halpha\\ images from this simulation to investigate the relation between fibrils and the magnetic field lines in the chromosphere. The periods, amplitudes and phase-speeds of the synthetic fibrils are consistent with those observed. We analyse the relation between the synthetic fibrils and the field lines threading through them, and find that some fibrils trace out the same field line along the fibril's length, but there are also fibrils that sample different field lines at different locations along their length. Fibrils sample the same field lines on a time scale of $\\sim200$~s. This is shorter than their own lifetime. We analysed the evolution of the atmosphere along a number of field lines that thread through fibrils and find that they carry slow-mode waves that load mass in...

  12. Calculation and measurement of electric field under HVDC transmission lines

    Science.gov (United States)

    Kasdi, A.; Zebboudj, Y.; Yala, H.

    2007-03-01

    A stable corona discharge in a two conductors-to-plane configuration is analysed in this paper. A linear biased probe, without end-effect, has been adapted to a linear geometry and is used for the first time to measure the ground-plane current density and electric field during the bipolar corona. The values of the electric field and the current density are maximum under the two coronating conductors and decrease when moving away from them. Furthermore, a hybrid technique is developed to obtain a general solution of the governing equations of the coupled space-charge and electric field problem. The technique is to use the finite-element method (FEM) to solve Poisson's equation, and the method of characteristic (MOC) to find the charge density from a current-continuity relation. The model avoids resorting to the Deutsch assumption. The computed values are in good agreement with experimental data.

  13. Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline

    Directory of Open Access Journals (Sweden)

    E. W. Grafarend

    1997-06-01

    Full Text Available The length of the gravitational field lines/of the orthogonal trajectories of a family of gravity equipotential surfaces/of the plumbline between a terrestrial topographic point and a point on a reference equipotential surface like the geoid í also known as the orthometric height í plays a central role in Satellite Geodesy as well as in Physical Geodesy. As soon as we determine the geometry of the Earth pointwise by means of a satellite GPS (Global Positioning System: «global problem solver» we are left with the problem of converting ellipsoidal heights (geometric heights into orthometric heights (physical heights. For the computation of the plumbline we derive its three differential equations of first order as well as the three geodesic equations of second order. The three differential equations of second order take the form of a Newton differential equation when we introduce the parameter time via the Marussi gauge on a conformally flat three-dimensional Riemann manifold and the generalized force field, the gradient of the superpotential, namely the modulus of gravity squared and taken half. In particular, we compute curvature and torsion of the plumbline and prove their functional relationship to the second and third derivatives of the gravity potential. For a spherically symmetric gravity field, curvature and torsion of the plumbline are zero, the plumbline is straight. Finally we derive the three Lagrangean as well as the six Hamiltonian differential equations of the plumbline, in particular in their star form with respect to Marussi gauge.

  14. RESEARCH ON THE PROFESSIONAL TRAJECTORY OF THE HIGHSCHOOL AND UNIVERSITY STUDENTS FROM THE FIELDS OF GEOGRAPHY AND PHYSICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Grigore Vasile HERMAN

    2016-06-01

    Full Text Available The present study is meant to monitor the professional trajectory of highschool and university students who benefited from professional counselling and guidance in order to identify the occupational niches and to improve the educational behaviour present in the professional training process of the future graduates. We used the method of the sociological survey (questionnaire based and the quantitative method of collecting and analysing data.

  15. A New Numerical Approach to Evaluate Variation of Electric Field Strength at the End of Particle Trajectory in Nuclear Track Detectors

    Institute of Scientific and Technical Information of China (English)

    SUN Xiu-Dong; Ali Mostofizadeh; HOU Chun-Feng; M.Reza Kardan

    2008-01-01

    A geometrical model for an electrochemical etching(ECE)track in a dielectric detector is defined and a primary programme is written to generate the track.The generated track is transformed to an M×N matrix of primary voltages.Using a numerical method,the matrix of final voltages is computed,and using another numerical approach.the electric field strengths in the elements of detector volume are computed.The final field strength at the end of particle trajectory is obtained.The results of our numerical computation show that there are exact correlations between the field strength at the end of particle trajectory and the parameters of track under ECE.It is found that although two traditional models of Mason and Smythe in dielectrics can be partly applied for short we find that there is an expressive relationship between the field strength and the incidence angle of impacted particle.while the mentioned traditional models are not able to explain this effect.

  16. LZIFU: an emission-line fitting toolkit for integral field spectroscopy data

    CERN Document Server

    Ho, I-Ting; Groves, Brent; Rich, Jeffrey A; Rupke, David S N; Hampton, Elise; Kewley, Lisa J; Bland-Hawthorn, Joss; Croom, Scott M; Richards, Samuel; Schaefer, Adam L; Sharp, Rob; Sweet, Sarah M

    2016-01-01

    We present LZIFU (LaZy-IFU), an IDL toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy (IFS) data. LZIFU is useful for the investigation of the dynamical, physical and chemical properties of gas in galaxies. LZIFU has already been applied to many world-class IFS instruments and large IFS surveys, including the Wide Field Spectrograph, the new Multi Unit Spectroscopic Explorer (MUSE), the Calar Alto Legacy Integral Field Area (CALIFA) survey, the Sydney-Australian-astronomical-observatory Multi-object Integral-field spectrograph (SAMI) Galaxy Survey. Here we describe in detail the structure of the toolkit, and how the line fluxes and flux uncertainties are determined, including the possibility of having multiple distinct kinematic components. We quantify the performance of LZIFU, demonstrating its accuracy and robustness. We also show examples of applying LZIFU to CALIFA and SAMI data to construct emission line and kinematic maps, and investigate complex, skewed line prof...

  17. The Magnetic Physical Optics Scattered Field in Terms of a Line Integral

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2000-01-01

    An exact line integral representation Is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by a magnetic Hertzian dipole. A numerical example is presented to illustrate the exactness of the line integral representation...

  18. Biological effects of power line fields: New York State Power Lines Project Scientific Advisory Panel: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ahlbom, A.; Albert, E.N.; Fraser-Smith, A.C.; Grodzinsky, A.J.; Marron, M.T.; Martin, A.O.; Persinger, M.A.; Shelanski, M.L.; Wolpow, E.R.

    1987-07-01

    The New York State Power Lines Project was established to conduct research and to review the scientific literature to determine whether health hazards of electric and magnetic fields are possible. Particular attention was directed to the fields generated by 765-kV overhead transmission lines. The research program provided support to 16 research groups studying human, animal and isolated cell sensitivity to electric and magnetic fields. No effects were found on reproduction, growth or development. Several studies showed no evidence of genetic or chromosomal damage that might lead to inherited effects or cause cancer. While most measurements of behavior and brain function did not demonstrate changes, some did show changes that were small but consistent. Some of these appear to result from changes in body rhythms, and might interfere with normal sleep patterns. There were also changes in pain responses and in the ability of rats to learn. A more serious concern comes from a study of cancer in children suggesting that children with leukemia and brain cancer are more likely to live in homes where there are elevated 60-Hz magnetic field levels. Although much more research is needed before the question whether the magnetic fields actually cause or promote cancer can be resolved, the basis for such an hypothesis is now established. 159 refs., 12 figs., 7 tabs.

  19. Evolution of the Magnetic Field Line Diffusion Coefficient and Non-Gaussian Statistics

    Science.gov (United States)

    Snodin, A. P.; Ruffolo, D.; Matthaeus, W. H.

    2016-08-01

    The magnetic field line random walk (FLRW) plays an important role in the transport of energy and particles in turbulent plasmas. For magnetic fluctuations that are transverse or almost transverse to a large-scale mean magnetic field, theories describing the FLRW usually predict asymptotic diffusion of magnetic field lines perpendicular to the mean field. Such theories often depend on the assumption that one can relate the Lagrangian and Eulerian statistics of the magnetic field via Corrsin’s hypothesis, and additionally take the distribution of magnetic field line displacements to be Gaussian. Here we take an ordinary differential equation (ODE) model with these underlying assumptions and test how well it describes the evolution of the magnetic field line diffusion coefficient in 2D+slab magnetic turbulence, by comparisons to computer simulations that do not involve such assumptions. In addition, we directly test the accuracy of the Corrsin approximation to the Lagrangian correlation. Over much of the studied parameter space we find that the ODE model is in fairly good agreement with computer simulations, in terms of both the evolution and asymptotic values of the diffusion coefficient. When there is poor agreement, we show that this can be largely attributed to the failure of Corrsin’s hypothesis rather than the assumption of Gaussian statistics of field line displacements. The degree of non-Gaussianity, which we measure in terms of the kurtosis, appears to be an indicator of how well Corrsin’s approximation works.

  20. Plasma physics on auroral field lines - The formation of ion conic distributions

    Science.gov (United States)

    Ashour-Abdalla, M.; Okuda, H.

    1983-01-01

    The formation of the conical distribution function and the acceleration of ions on aurora field lines are considered. Ion cyclotron waves were assumed to be excited by drifting electrons associated with the return current in the auroral zone. A theoretical analysis of ion cyclotron waves is given, and a simulation model is described. Simulation results are presented. The heating of ions and the evolution of ion cyclotron waves on auroral field lines and in the magnetosphere are discussed.

  1. Pattern search for the visualization of scalar, vector, and line fields

    OpenAIRE

    Wang, Zhongjie

    2015-01-01

    The main topic of this thesis is pattern search in data sets for the purpose of visual data analysis. By giving a reference pattern, pattern search aims to discover similar occurrences in a data set with invariance to translation, rotation and scaling. To address this problem, we developed algorithms dealing with different types of data: scalar fields, vector fields, and line fields. For scalar fields, we use the SIFT algorithm (Scale-Invariant Feature Transform) to find a sparse sampling ...

  2. Quantum trajectories

    CERN Document Server

    Chattaraj, Pratim Kumar

    2010-01-01

    The application of quantum mechanics to many-particle systems has been an active area of research in recent years as researchers have looked for ways to tackle difficult problems in this area. The quantum trajectory method provides an efficient computational technique for solving both stationary and time-evolving states, encompassing a large area of quantum mechanics. Quantum Trajectories brings the expertise of an international panel of experts who focus on the epistemological significance of quantum mechanics through the quantum theory of motion.Emphasizing a classical interpretation of quan

  3. Infrared Dual-line Hanle diagnostic of the Coronal Vector Magnetic Field

    Directory of Open Access Journals (Sweden)

    Gabriel Ionel Dima

    2016-04-01

    Full Text Available Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g. ~4G at a height of 0.1Rsun above an active region and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 um line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 Rsun. Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 um forbidden line with linear polarization observations of the HeI 1.0830 um permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step towards interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST is completed in 2019.

  4. Infrared Dual-line Hanle diagnostic of the Coronal Vector Magnetic Field

    Science.gov (United States)

    Dima, Gabriel; Kuhn, Jeffrey; Berdyugina, Svetlana

    2016-04-01

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g. ~4G at a height of 0.1Rsun above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 um line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 Rsun. Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 um forbidden line with linear polarization observations of the HeI 1.0830 um permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step towards interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.

  5. Measuring stellar magnetic fields from high resolution spectroscopy of near-infrared lines

    Science.gov (United States)

    Leone, F.; Vacca, W. D.; Stift, M. J.

    2003-10-01

    Zeeman splitting of otherwise degenerate levels provides a straight-forward method of measuring stellar magnetic fields. In the optical, the relative displacements of the Zeeman components are quite small compared to the rotational line broadening, and therefore observations of Zeeman splitting are usually possible only for rather strong magnetic fields in very slowly rotating stars. However, the magnitude of the Zeeman splitting is proportional to the square of the wavelength, whereas rotational line broadening mechanisms are linear in wavelength; therefore, there is a clear advantage in using near-infrared spectral lines to measure surface stellar magnetic fields. We have obtained high resolution (R >= 25 000) spectra in the 15 625-15 665 Å region for two magnetic chemically peculiar stars, viz. HD 176232 and HD 201601, and for the suspected magnetic chemically peculiar star HD 180583, as part of a pilot study aimed at determining the accuracy with which we can measure stellar magnetic fields using the Zeeman splitting of near-infrared lines. We confirm that in principle the magnetic field strength can be estimated from the magnetic intensification of spectral lines, i.e. the increase in equivalent width of a line over the zero-field value. However, due to line blending as well as the dependence of this intensification on abundance and field geometry, accurate estimates of the magnetic field strengths can be obtained only by modelling the line profiles by means of spectral synthesis techniques. Using this approach, we find a 1.4 kG magnetic field modulus in HD 176132 and an upper limit of 0.2 kG in HD 180583. The very weak infrared lines in the spectrum of HD 201601 are consistent with a 3.9 kG field modulus estimated from the splitting of the Fe II 6149.258 Å line seen in an optical spectrum. Finally, we would like to draw attention to the fact that there are no sufficiently detailed and reliable atomic line lists available for the near-infrared region that

  6. Experimental analysis of a TEM plane transmission line for DNA studies at 900 MHz EM fields

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, F [Dipartimento di Fisica, Laboratorio di Elettronica Applicata e Strumentazione, LEAS INFN sez. di Lecce, Universita degli Studi di Lecce, Via Provinciale Lecce-Arnesano, CP 193, 73100 Lecce (Italy); Doria, D [Dipartimento di Fisica, Laboratorio di Elettronica Applicata e Strumentazione, LEAS INFN sez. di Lecce, Universita degli Studi di Lecce, Via Provinciale Lecce-Arnesano, CP 193, 73100 Lecce (Italy); Lorusso, A [Dipartimento di Fisica, Laboratorio di Elettronica Applicata e Strumentazione, LEAS INFN sez. di Lecce, Universita degli Studi di Lecce, Via Provinciale Lecce-Arnesano, CP 193, 73100 Lecce (Italy); Nassisi, V [Dipartimento di Fisica, Laboratorio di Elettronica Applicata e Strumentazione, LEAS INFN sez. di Lecce, Universita degli Studi di Lecce, Via Provinciale Lecce-Arnesano, CP 193, 73100 Lecce (Italy); Velardi, L [Dipartimento di Fisica, Laboratorio di Elettronica Applicata e Strumentazione, LEAS INFN sez. di Lecce, Universita degli Studi di Lecce, Via Provinciale Lecce-Arnesano, CP 193, 73100 Lecce (Italy); Alifano, P [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Laboratorio di Microbiologia, Universita degli Studi di Lecce, Via Provinciale Lecce-Monteroni, CP 193, 73100 Lecce (Italy); Monaco, C [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Laboratorio di Microbiologia, Universita degli Studi di Lecce, Via Provinciale Lecce-Monteroni, CP 193, 73100 Lecce (Italy); Tala, A [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Laboratorio di Microbiologia, Universita degli Studi di Lecce, Via Provinciale Lecce-Monteroni, CP 193, 73100 Lecce (Italy); Tredici, M [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Laboratorio di Microbiologia, Universita degli Studi di Lecce, Via Provinciale Lecce-Monteroni, CP 193, 73100 Lecce (Italy); Raino, A [Dipartimento di Fisica, INFN sez. di Bari, Universita degli Studi di Bari, Via Amendola, 173, 70126 Bari (Italy)

    2006-07-07

    A suitable plane transmission line was developed and its behaviour analysed at 900 MHz radiofrequency fields to study DNA mutability and the repair of micro-organisms. In this work, utilizing such a device, we investigated the behaviour of DNA mutability and repair of Escherichia coli strains. The transmission line was very simple and versatile in changing its characteristic resistance and field intensity by varying its sizes. In the absence of cell samples inside the transmission line, the relative modulation of the electric and/or magnetic field was {+-}31% with respect to the mean values, allowing the processing of more samples at different exposure fields in a single run. A slight decrease in spontaneous mutability to rifampicin-resistance of the E. coli JC411 strain was demonstrated in mismatch-repair proficient samples exposed to the radio-frequency fields during their growth on solid medium.

  7. Test particle transport in perturbed magnetic fields in tokamaks

    NARCIS (Netherlands)

    de Rover, M.; Schilham, A.M.R.; Montvai, A.; Cardozo, N. J. L.

    1999-01-01

    Numerical calculations of magnetic field line trajectories in a tokamak are used to investigate the common hypotheses that (i) field lines in a chaotic field make a Gaussian random walk and (ii) that the poloidal component of the magnetic field is uniform in regions with a chaotic magnetic field. Bo

  8. Quiet Sun Magnetic Field Measurements Based on Lines with Hyperfine Structure

    CERN Document Server

    Almeida, J Sanchez; Degl'Innocenti, E Landi; Berrilli, F

    2007-01-01

    The Zeeman pattern of MnI lines is sensitive to hyperfine structure (HFS) and, they respond to hG magnetic field strengths differently from the lines used in solar magnetometry. This peculiarity has been employed to measure magnetic field strengths in quiet Sun regions. However, the methods applied so far assume the magnetic field to be constant in the resolution element. The assumption is clearly insufficient to describe the complex quiet Sun magnetic fields, biasing the results of the measurements. We present the first syntheses of MnI lines in realistic quiet Sun model atmospheres. The syntheses show how the MnI lines weaken with increasing field strength. In particular, kG magnetic concentrations produce NnI 5538 circular polarization signals (Stokes V) which can be up to two orders of magnitude smaller than the weak magnetic field approximation prediction. Consequently, (1) the polarization emerging from an atmosphere having weak and strong fields is biased towards the weak fields, and (2) HFS features c...

  9. Magnetic field measurements and wind-line variability of OB-type stars

    NARCIS (Netherlands)

    Schnerr, R.S.; Henrichs, H.F.; Neiner, C.; Verdugo, E.; de Jong, J.; Geers, V.C.; Wiersema, K.; van Dalen, B.; Tijani, A.; Plaggenborg, B.; Rygl, K.L.J.

    2008-01-01

    Context. The first magnetic fields in O- and B-type stars that do not belong to the Bp-star class, have been discovered. The cyclic UV wind-line variability, which has been observed in a significant fraction of early-type stars, is likely to be related to such magnetic fields. Aims. We attempt to

  10. An Operator Perturbation Method of Polarized Line Transfer V. Diagnosis of Solar Weak Magnetic Fields

    Indian Academy of Sciences (India)

    K. N. Nagendra; H. Frisch; M. Faurobert-Scholl; F. Paletou

    2000-09-01

    We present an application of the PALI (Polarized Approximate Lambda Iteration) method to the resonance scattering in spectral lines formed in the presence of weak magnetic fields. The method is based on an operator perturbation approach, and can efficiently give solutions for oriented vector magnetic fields in the solar atmosphere.

  11. Analysis of the three-dimensional trajectories of dusts observed with a stereoscopic fast framing camera in the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, M., E-mail: shoji@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Masuzaki, S. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan); Tanaka, Y. [Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Pigarov, A.Yu.; Smirnov, R.D. [University of California at San Diego, La Jolla, CA 92093 (United States); Kawamura, G.; Uesugi, Y.; Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Gifu (Japan)

    2015-08-15

    The three-dimensional trajectories of dusts have been observed with two stereoscopic fast framing cameras installed in upper and outer viewports in the Large Helical Device (LHD). It shows that the dust trajectories locate in divertor legs and an ergodic layer around the main plasma confinement region. While it is found that most of the dusts approximately move along the magnetic field lines with acceleration, there are some dusts which have sharply curved trajectories crossing over the magnetic field lines. A dust transport simulation code was modified to investigate the dust trajectories in fully three dimensional geometries such as LHD plasmas. It can explain the general trend of most of observed dust trajectories by the effect of the plasma flow in the peripheral plasma. However, the behavior of the some dusts with sharply curved trajectories is not consistent with the simulations.

  12. Plasma transport in the interplanetary space: Percolation and anomalous diffusion of magnetic-field lines

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.; Veltri, P. [Arcavacata di Rende, Cosenza, Univ. della Calabria (Italy). Dipt. di Fisica

    1997-11-01

    The magnetic fluctuations due to, e.g., magnetohydrodynamic turbulence cause a magnetic-field line random walk that influences many cosmic plasma phenomena. The results of a three-dimensional numerical simulation of a turbulent magnetic field in plane geometry are presented here. Magnetic percolation, Levy flights, and non-Gaussian random walk of the magnetic-field lines are found for moderate perturbation levels. In such a case plasma transport can be anomalous, i.e., either super diffusive or sub diffusive. Increasing the perturbation level a Gaussian diffusion regime is attained. The implications on the structure of the electron fore shock and of planetary magneto pauses are discussed.

  13. A low field study of the flux line lattice in CeRu 2

    Science.gov (United States)

    Huxley, A.; van Dijk, N. H.; McK Paul, D.; Cubitt, R.; Lejay, P.

    1999-01-01

    The flux line lattice in CeRu 2 has been studied by small-angle neutron scattering. The scattering potential is found to be well described in terms of a linear superposition of single flux-line profiles, while an increase in the mosaic spread of the diffraction peaks at low fields is consistent with the theory of weak collective pinning. The pinning parameter deduced from the data gives the correct onset field of a peak in the critical current observed at higher field.

  14. A Monte Carlo simulation of magnetic field line tracing in the solar wind

    Directory of Open Access Journals (Sweden)

    P. Pommois

    2001-01-01

    Full Text Available It is well known that the structure of magnetic field lines in solar wind can be influenced by the presence of the magnetohydrodynamic turbulence. We have developed a Monte Carlo simulation which traces the magnetic field lines in the heliosphere, including the effects of magnetic turbulence. These effects are modelled by random operators which are proportional to the square root of the magnetic field line diffusion coefficient. The modelling of the random terms is explained, in detail, in the case of numerical integration by discrete steps. Furthermore, a proper evaluation of the diffusion coefficient is obtained by a numerical simulation of transport in anisotropic magnetic turbulence. The scaling of the fluctuation level and of the correlation lengths with the distance from the Sun are also taken into account. As a consequence, plasma transport across the average magnetic field direction is obtained. An application to the propagation of energetic particles from corotating interacting regions to high heliographic latitudes is considered.

  15. Electric field simulation and measurement of a pulse line ion accelerator

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiao-Kang; ZHANG Zi-Min; CAO Shu-Chun; ZHAO Hong-Wei; WANG Bo; SHEN Xiao-Li; ZHAO Quan-Tang; LIU Ming; JING Yi

    2012-01-01

    An oil dielectric helical pulse line to demonstrate the principles of a Pulse Line Ion Accelerator (PL1A) has been designed and fabricated.The simulation of the axial electric field of an accelerator with CST code has been completed and the simulation results show complete agreement with the theoretical calculations.To fully understand the real value of the electric field excited from the helical line in PLIA,an optical electric integrated electric field measurement system was adopted.The measurement result shows that the real magnitude of axial electric field is smaller than that calculated,probably due to the actual pitch of the resister column which is much less than that of helix.

  16. Determination of magnetic fields in broad line region of active galactic nuclei from polarimetric observations

    Science.gov (United States)

    Piotrovich, Mikhail; Silant'ev, Nikolai; Gnedin, Yuri; Natsvlishvili, Tinatin; Buliga, Stanislava

    2017-02-01

    Magnetic fields play an important role in confining gas clouds in the broad line region (BLR) of active galactic nuclei (AGN) and in maintaining the stability of these clouds. Without magnetic fields the clouds would not be stable, and soon after their formation they would expand and disperse. We show that the strength of the magnetic field can be derived from the polarimetric observations. Estimates of magnetic fields for a number of AGNs are based on the observed polarization degrees of broad Hα lines and nearby continuum. The difference between their values allows us to estimate the magnetic field strength in the BLR using the method developed by Silant'ev et al. (2013). Values of magnetic fields in BLR for a number of AGNs have been derived.

  17. Three-dimensional photogrammetric measurement of magnetic field lines in the WEGA stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Drewelow, Peter; Braeuer, Torsten; Otte, Matthias; Wagner, Friedrich; Werner, Andreas [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Wendelsteinstr. 1, D-17491 Greifswald (Germany)

    2009-12-15

    The magnetic confinement of plasmas in fusion experiments can significantly degrade due to perturbations of the magnetic field. A precise analysis of the magnetic field in a stellarator-type experiment utilizes electrons as test particles following the magnetic field line. The usual fluorescent detector for this electron beam limits the provided information to two-dimensional cut views at certain toroidal positions. However, the technique described in this article allows measuring the three-dimensional structure of the magnetic field by means of close-range photogrammetry. After testing and optimizing the main diagnostic components, measurements of the magnetic field lines were accomplished with a spatial resolution of 5 mm. The results agree with numeric calculations, qualifying this technique as an additional tool to investigate magnetic field configurations in a stellarator. For a possible future application, ways are indicated on how to reduce experimental error sources.

  18. Three-dimensional photogrammetric measurement of magnetic field lines in the WEGA stellarator.

    Science.gov (United States)

    Drewelow, Peter; Bräuer, Torsten; Otte, Matthias; Wagner, Friedrich; Werner, Andreas

    2009-12-01

    The magnetic confinement of plasmas in fusion experiments can significantly degrade due to perturbations of the magnetic field. A precise analysis of the magnetic field in a stellarator-type experiment utilizes electrons as test particles following the magnetic field line. The usual fluorescent detector for this electron beam limits the provided information to two-dimensional cut views at certain toroidal positions. However, the technique described in this article allows measuring the three-dimensional structure of the magnetic field by means of close-range photogrammetry. After testing and optimizing the main diagnostic components, measurements of the magnetic field lines were accomplished with a spatial resolution of 5 mm. The results agree with numeric calculations, qualifying this technique as an additional tool to investigate magnetic field configurations in a stellarator. For a possible future application, ways are indicated on how to reduce experimental error sources.

  19. A criterion to detect line plumes from velocity fields in turbulent convection

    CERN Document Server

    Koothur, Vipin

    2015-01-01

    We present a simple, new criterion to extract line plumes from the velocity fields, without using the temperature field, in a horizontal plane close to the plate in turbulent convection. The existing coherent structure detection criteria from velocity fields, proposed for shear driven wall turbulence, are first shown to be inadequate for turbulent convection. Based on physical arguments, we then propose that the negative values of $\\overline{\

  20. Lessening the Effects of Projection for Line-of-Sight Magnetic Field Data

    Science.gov (United States)

    Leka, K. D.; Barnes, Graham; Wagner, Eric

    2016-05-01

    A method for treating line-of-sight magnetic field data (Blos) is developed for the goal of reconstructing the radially-directed component (Br) of the solar photospheric magnetic field. The latter is generally the desired quantity for use as a boundary for modeling efforts and observational interpretation of the surface field, but the two are only equivalent where the viewing angle is exactly zero (μ=1.0). A common approximation known as the "μ-correction", which assumes all photospheric field to be radial, is compared to a method which invokes a potential field constructed to match the observed Blos (Alissandrakis 1981; Sakurai 1982), from which the potential field radial field component (Brpot) is recovered.We compare this treatment of Blos data to the radial component derived from SDO/HMI full-disk vector magnetograms as the "ground truth", and discuss the implications for data analysis and modeling efforts. In regions that are truly dominated by radial field, the μ-correction performs acceptably if not better than the potential-field approach. However, for any solar structure which includes horizontal fields, i.e. active regions, the potential-field method better recovers magnetic neutral line location and the inferred strength of the radial field.This work was made possible through contracts with NASA, NSF, and NOAA/SBIR.

  1. Impact of the Eulerian chaos of magnetic field lines in magnetic reconnection

    Science.gov (United States)

    Firpo, M.-C.; Ettoumi, W.; Lifschitz, A. F.; Retinò, A.; Farengo, R.; Ferrari, H. E.; García-Martínez, P. L.

    2016-12-01

    Stochasticity is an ingredient that may allow the breaking of the frozen-in law in the reconnection process. It will first be argued that the non-ideal effects may be considered as an implicit way to introduce stochasticity. Yet there also exists an explicit stochasticity that does not require the invocation of non-ideal effects. This comes from the spatial (or Eulerian) chaos of magnetic field lines that can show up only in a truly three-dimensional description of magnetic reconnection since the two-dimensional models impose the integrability of the magnetic field lines. Some implications of this magnetic braiding, such as the increased particle finite-time Lyapunov exponents and increased acceleration of charged particles, are discussed in the frame of tokamak sawteeth that forms a laboratory prototype of spontaneous magnetic reconnection. A justification for an increased reconnection rate with chaotic vs. the integrable magnetic field lines is proposed. Moreover, in 3D, the Eulerian chaos of the magnetic field lines may coexist with the Eulerian chaos of velocity field lines, that is more commonly named the turbulence.

  2. Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines

    CERN Document Server

    Raouafi, N E; Gibson, S; Fineschi, S; Solanki, S K

    2016-01-01

    The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the H I Ly-$\\alpha$ and the He I 10830 {\\AA} lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magne...

  3. A comparison of field-line resonances observed at the Goose Bay and Wick radars

    Directory of Open Access Journals (Sweden)

    G. Provan

    Full Text Available Previous observations with the Goose Bay HF coherent-scatter radar have revealed structured spectral peaks at ultra-low frequencies. The frequencies of these spectral peaks have been demonstrated to be extremely consistent from day to day. The stability of these spectral peaks can be seen as evidence for the existence of global magnetospheric cavity modes whose resonant frequencies are independent of latitude. Field-line resonances occur when successive harmonics of the eigenfrequency of the magnetospheric cavity or waveguide match either the first harmonic eigenfrequency of the geomagnetic field lines or higher harmonics of this frequency. Power spectra observed at the SABRE VHF coherent-scatter radar at Wick, Scotland, during night and early morning are revealed to show similarly clearly structured spectral peaks. These spectral peaks are the result of local field-line resonances due to Alfvén waves standing on magnetospheric field lines. A comparison of the spectra observed by the Goose Bay and Wick radars demonstrate that the frequencies of the field-line resonances are, on average, almost identical, despite the different latitudinal ranges covered by the two radars. Possible explanations for the similarity of the signatures on the two radar systems are discussed.

  4. Effects of correlated turbulent velocity fields on the formation of maser lines

    CERN Document Server

    Boeger, R; Hegmann, M

    2003-01-01

    The microturbulent approximation of turbulent motions is widely used in radiative transfer calculations. Mainly motivated by its simple computational application it is probably in many cases an oversimplified treatment of the dynamical processes involved. This aspect is in particular important in the analysis of maser lines, since the strong amplification of radiation leads to a sensitive dependence of the radiation field on the overall velocity structure. To demonstrate the influence of large scale motions on the formation of maser lines we present a simple stochastic model which takes velocity correlations into account. For a quantitative analysis of correlation effects, we generate in a Monte Carlo simulation individual realizations of a turbulent velocity field along a line of sight. Depending on the size of the velocity correlation length we find huge deviations between the resulting random profiles in respect of line shape, intensity and position of single spectral components. Finally, we simulate the e...

  5. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NARCIS (Netherlands)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically,

  6. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS

    NARCIS (Netherlands)

    De Geeter, N.; Crevecoeur, G.; Leemans, A.; Dupré, L.

    2015-01-01

    In transcranial magnetic stimulation (TMS), an applied alternating magnetic field induces an electric field in the brain that can interact with the neural system. It is generally assumed that this induced electric field is the crucial effect exciting a certain region of the brain. More specifically,

  7. Magnetic field measurements and wind-line variability of OB-type stars

    CERN Document Server

    Schnerr, R S; Neiner, C; Verdugo, E; de Jong, J; Geers, V C; Wiersema, K; van Dalen, B; Tijani, A; Plaggenborg, B; Rygl, K L J

    2010-01-01

    Context. The first magnetic fields in O- and B-type stars that do not belong to the Bp-star class, have been discovered. The cyclic UV wind-line variability, which has been observed in a significant fraction of early-type stars, is likely to be related to such magnetic fields. Aims. We attempt to improve our understanding of massive-star magnetic fields, and observe twenty-five carefully-selected, OB-type stars. Methods. Of these stars we obtain 136 magnetic field strength measurements. We present the UV wind-line variability of all selected targets and summarise spectropolarimetric observations acquired using the MUSICOS spectropolarimeter, mounted at the TBL, Pic du Midi, between December 1998 and November 2004. From the average Stokes I and V line profiles, derived using the LSD method, we measure the magnetic field strengths, radial velocities, and first moment of the line profiles. Results. No significant magnetic field is detected in any OB-type star that we observed. Typical 1{\\sigma} errors are betwee...

  8. Data-Model Comparisons of Photoelectron Flux Intensities on the Strong Crustal Field Lines at Mars

    Science.gov (United States)

    Liemohn, Michael; Trantham, Matthew; Mitchell, David

    2010-05-01

    This study quantifies the factors controlling photoelectron fluxes on strong crustal field lines in the Martian ionosphere. Using data from Mars Global Surveyor's Magnetometer and Electron Reflectometer instruments, dayside electron populations near the strong crustal fields in the southern hemisphere are analyzed versus various controlling parameters. These parameters include a Mars F10.7 proxy, a solar wind pressure proxy, local solar zenith angle, magnetic elevation angle, magnetic field strength. It was found that solar EUV radiation (corrected for solar zenith angle and the Mars-Sun distance) has the strongest influence on the photoelectron fluxes, and during different time periods this radiation has a stronger influence than at others times. Second, fluxes show a slight enhancement when the magnetic elevation angle is near zero degrees (horizontal field lines). Finally, other parameters, such as pressure and magnetic field strength, seem to have no major influence. These measurement-based results are then compared against numerical modeling flux intensities to quantify the physical mechanisms behind the observed relationships. The numerical code used for this study is our superthermal electron transport model, which solves for the electric distribution function along a magnetic field line. The code includes the influence of a variable magnetic field strength, pitch angle scattering and mirror trapping, and collisional energy cascading. The influence of solar EUV flux, atmospheric composition, solar wind dynamic pressure, and the local magnetic field are systematically investigated with this code to understand why some of these parameters have a strong influence on photoelectron flux intensity while others do not.

  9. Interface Profiles near Three-Phase Contact Lines in Electric Fields

    OpenAIRE

    Buehrle, Juergen; Herminghaus, Stephan; Mugele, Frieder

    2003-01-01

    Long-range electrostatic fields deform the surface profile of a conductive liquid in the vicinity of the contact line. We have investigated the equilibrium profiles by balancing electrostatic and capillary forces locally at the liquid vapor interface. Numerical results show that the contact angle at the contact line approaches Young's angle. Simultaneously, the local curvature displays a weak algebraic divergence. Furthermore, we present an asymptotic analytical model, which confirms these re...

  10. Minimal Exit Trajectories with Optimum Correctional Manoeuvres

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1980-10-01

    Full Text Available Minimal exit trajectories with optimum correctional manoeuvers to a rocket between two coplaner, noncoaxial elliptic orbits in an inverse square gravitational field have been investigated. Case of trajectories with no correctional manoeuvres has been analysed. In the end minimal exit trajectories through specified orbital terminals are discussed and problem of ref. (2 is derived as a particular case.

  11. Magnetic field measurements in sunspots using spectral lines with different Lande factors

    Science.gov (United States)

    Lozitsky, V.; Osipov, S.

    2017-06-01

    Results of direct measurements of magnetic fields in sunspots are presented. Observations were carried out in June-July 2015 on Horizontal Solar Telescope AtsU-5 of Main Astronomical Observatory of National Academy of Science of Ukraine. Magnetic fields were measured by the Zeeman splitting of some spectral lines of FeI, MnI and NiI placed nearly FeI 5434.5 Å and FeI 6093.66 Å Effective Lande factors of these lines, geff, are in range from -0.22 - 2.14. Significant differences were found both for lines with different and closest values of geff. In some places of sunspots, FeI 5434.5 Å line (geff = -0.014) displays a realible splitting which corresponds to magnetic field strengths up to 2.5 kG. In all cases under study, FeI 6094.419 Å line with negative Lande factor (geff = -0.22) has the sign of splitting as a line with positive Lande factor (geff > 0). The possible reasons of this effect are discussed.

  12. Numerical analysis of ionized fields associated with HVDC transmission lines including effect of wind

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.

    1998-12-31

    The effects of corona discharge on the conductor surface of HVDC power transmission lines were studied. Corona discharges generate ion flow and can cause power losses and environmental concerns. Solving the problem of the ion flow field is difficult because of its nonlinearity and the effect of wind. The following two numerical algorithms were presented which address the problem associated with strong wind or bundled lines: (1) the finite element method (FEM) based optimization algorithm, and (2) the upwind FVM based relaxation algorithm. Both were successfully tested on a coaxial cylindrical configuration and on a unipolar line model in the presence of wind.

  13. LZIFU: an emission-line fitting toolkit for integral field spectroscopy data

    Science.gov (United States)

    Ho, I.-Ting; Medling, Anne M.; Groves, Brent; Rich, Jeffrey A.; Rupke, David S. N.; Hampton, Elise; Kewley, Lisa J.; Bland-Hawthorn, Joss; Croom, Scott M.; Richards, Samuel; Schaefer, Adam L.; Sharp, Rob; Sweet, Sarah M.

    2016-09-01

    We present lzifu (LaZy-IFU), an idl toolkit for fitting multiple emission lines simultaneously in integral field spectroscopy (IFS) data. lzifu is useful for the investigation of the dynamical, physical and chemical properties of gas in galaxies. lzifu has already been applied to many world-class IFS instruments and large IFS surveys, including the Wide Field Spectrograph, the new Multi Unit Spectroscopic Explorer (MUSE), the Calar Alto Legacy Integral Field Area (CALIFA) survey, the Sydney-Australian-astronomical-observatory Multi-object Integral-field spectrograph (SAMI) Galaxy Survey. Here we describe in detail the structure of the toolkit, and how the line fluxes and flux uncertainties are determined, including the possibility of having multiple distinct kinematic components. We quantify the performance of lzifu, demonstrating its accuracy and robustness. We also show examples of applying lzifu to CALIFA and SAMI data to construct emission line and kinematic maps, and investigate complex, skewed line profiles presented in IFS data. The code is made available to the astronomy community through github. lzifu will be further developed over time to other IFS instruments, and to provide even more accurate line and uncertainty estimates.

  14. Artifacts in field free line magnetic particle imaging in the presence of inhomogeneous and nonlinear magnetic fields

    Directory of Open Access Journals (Sweden)

    Medimagh Hanne

    2015-09-01

    Full Text Available Introduction: Magnetic Particle Imaging (MPI is an emerging medical imaging modality that detects super-paramagnetic particles exploiting their nonlinear magnetization response. Spatial encoding can be realized using a Field Free Line (FFL, which is generated, rotated and translated through the Field of View (FOV using a combination of magnetic gradient fields and homogeneous excitation fields. When scaling up systems and/or enlarging the FOV in comparison to the scanner bore, ensuring homogeneity and linearity of the magnetic fields becomes challenging. The present contribution describes the first comprehensive, systematic study on the influence of magnetic field imperfections in FFL MPI. Methods: In a simulation study, 14 different FFL scanner setups have been examined. Starting from an ideal scanner using perfect magnetic fields, defined imperfections have been introduced in a range of configurations (nonlinear gradient fields, inhomogeneous excitation fields, or inhomogeneous receive fields, or a combination thereof. In the first part of the study, the voltage induced in the receive channels parallel and perpendicular to the FFL translation have been studied for discrete FFL angles. In the second part, an imaging process has been simulated comparing different image reconstruction approaches. Results: The induced voltage signals demonstrate illustratively the effect of the magnetic field imperfections. In images reconstructed using a Radon-based approach, the magnetic field imperfections lead to pronounced artifacts, especially if a deconvolution using the point spread function is performed. In images reconstructed using a system function based approach, variations in local image quality become visible. Conclusion: For Radon-based image reconstruction in FFL MPI in the presence of inhomogeneous and nonlinear magnetic fields, artifact correction methods will have to be developed. In this regard, a first approach has recently been presented by

  15. Role of stochastic anisotropy and shear on magnetic field lines diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M [Department of Physics, University of Craiova, Association Euratom-MEdC, Romania 13 A.I.Cuza Str, 200585 Craiova (Romania); Petrisor, I [Department of Physics, University of Craiova, Association Euratom-MEdC, Romania 13 A.I.Cuza Str, 200585 Craiova (Romania); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Brussels (Belgium)

    2007-11-15

    Anisotropy in the magnetic fluctuation spectrum (stochastic anisotropy) and magnetic shear induce variations of global averaged quantities such as the running and the asymptotic diffusion tensors that can be investigated using a semi-analytical method. The study considers ranges for the anisotropy parameter, magnetic Kubo number and shear parameter leading to contrasting dynamical behaviors. In particular, the trapping of the stochastic magnetic field lines is analyzed. An asymptotic 'poloidal' velocity larger for stronger anisotropy is obtained for the wandering of the magnetic field lines for different values of the paramete0008.

  16. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    Science.gov (United States)

    Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki

    2016-03-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.

  17. Inference of the chromospheric magnetic field orientation in the Ca ii 8542 Å line fibrils

    Science.gov (United States)

    Asensio Ramos, A.; de la Cruz Rodríguez, J.; Martínez González, M. J.; Socas-Navarro, H.

    2017-03-01

    Context. Solar chromospheric fibrils, as observed in the core of strong chromospheric spectral lines, extend from photospheric field concentrations suggesting that they trace magnetic field lines. These images have been historically used as proxies of magnetic fields for many purposes. Aims: Use statistical analysis to test whether the association between fibrils and magnetic field lines is justified. Methods: We use a Bayesian hierarchical model to analyze several tens of thousands of pixels in spectro-polarimetric chromospheric images of penumbrae and chromospheric fibrils. We compare the alignment between the field azimuth inferred from the linear polarization signals through the transverse Zeeman effect and the direction of the fibrils in the image. Results: We conclude that, in the analyzed fields of view, fibrils are often well aligned with the magnetic field azimuth. Despite this alignment, the analysis also shows that there is a non-negligible dispersion. In penumbral filaments, we find a dispersion with a standard deviation of 16°, while this dispersion goes up to 34° in less magnetized regions.

  18. Impact of Magnetic Draping, Convection, and Field Line Tying on Magnetopause Reconnection Under Northward IMF

    Science.gov (United States)

    Wendel, Deirdre E.; Reiff, Patricia H.; Goldstein, Melvyn L.

    2010-01-01

    We simulate a northward IMF cusp reconnection event at the magnetopause using the OpenGGCM resistive MHD code. The ACE input data, solar wind parameters, and dipole tilt belong to a 2002 reconnection event observed by IMAGE and Cluster. Based on a fully three-dimensional skeleton separators, nulls, and parallel electric fields, we show magnetic draping, convection, ionospheric field line tying play a role in producing a series of locally reconnecting nulls with flux ropes. The flux ropes in the cusp along the global separator line of symmetry. In 2D projection, the flux ropes the appearance of a tearing mode with a series of 'x's' and 'o's' but bearing a kind of 'guide field' that exists only within the magnetopause. The reconnecting field lines in the string of ropes involve IMF and both open and closed Earth magnetic field lines. The observed magnetic geometry reproduces the findings of a superposed epoch impact parameter study derived from the Cluster magnetometer data for the same event. The observed geometry has repercussions for spacecraft observations of cusp reconnection and for the imposed boundary conditions reconnection simulations.

  19. Anomalous diffusion and Levy random walk of magnetic field lines in three dimensional turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.; Veltri, P.; Basile, G.; Principato, S. [Dipartimento di Fisica, Universita della Calabria, I-87030 Arcavacata di Rende (Italy)

    1995-07-01

    The transport of magnetic field lines is studied numerically where three dimensional (3-D) magnetic fluctuations, with a power law spectrum, and periodic over the simulation box are superimposed on an average uniform magnetic field. The weak and the strong turbulence regime, {delta}{ital B}{similar_to}{ital B}{sub 0}, are investigated. In the weak turbulence case, magnetic flux tubes are separated from each other by percolating layers in which field lines undergo a chaotic motion. In this regime the field lines may exhibit Levy, rather than Gaussian, random walk, changing from Levy flights to trapped motion. The anomalous diffusion laws {l_angle}{Delta}{ital x}{sup 2}{sub {ital i}}{r_angle}{proportional_to}{ital s}{sup {alpha}} with {alpha}{gt}1 and {alpha}{lt}1, are obtained for a number of cases, and the non-Gaussian character of the field line random walk is pointed out by computing the kurtosis. Increasing the fluctuation level, and, therefore stochasticity, normal diffusion ({alpha}{congruent}1) is recovered and the kurtoses reach their Gaussian value. However, the numerical results show that neither the quasi-linear theory nor the two dimensional percolation theory can be safely extrapolated to the considered 3-D strong turbulence regime. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. Religious World-Denying and Trajectories of Activism in the Field of Strongly-Religious Corporative Actors

    Directory of Open Access Journals (Sweden)

    Olga Michel

    2014-03-01

    Full Text Available This comparative case study links together the scholarly discourses on religiously-motivated world-rejecting and religious activism. It provides empirical evidence for differentiation between four ideal-typed patterns of religious activism as they relate to different trajectories and spheres of religious world-denying in strongly religious movements: Pattern I (world conquerors targets inner-worldly sphere of activism in the particular state, using the full scope of political tools to promote its religiously-fueled political agenda. Pattern II (world transformers creatively combines inner-worldly and other-worldly spheres of activism, applying political strategies in the most advantageous political situations and primarily focusing on strategic missionary activism in “the world.” Pattern III (world creators utilizes different forms of civic engagement to re-create “the righteous world” on the congregational level, but also participates in missionary activities. Finally, pattern IV (world renouncers renounces any inner-worldly forms of political or civic engagement as “sinful activity.”

  1. Magnetic stochasticity in magnetically confined fusion plasmas chaos of field lines and charged particle dynamics

    CERN Document Server

    Abdullaev, Sadrilla

    2014-01-01

    This is the first book to systematically consider the modern aspects of chaotic dynamics of magnetic field lines and charged particles in magnetically confined fusion plasmas.  The analytical models describing the generic features of equilibrium magnetic fields and  magnetic perturbations in modern fusion devices are presented. It describes mathematical and physical aspects of onset of chaos, generic properties of the structure of stochastic magnetic fields, transport of charged particles in tokamaks induced by magnetic perturbations, new aspects of particle turbulent transport, etc. The presentation is based on the classical and new unique mathematical tools of Hamiltonian dynamics, like the action--angle formalism, classical perturbation theory, canonical transformations of variables, symplectic mappings, the Poincaré-Melnikov integrals. They are extensively used for analytical studies as well as for numerical simulations of magnetic field lines, particle dynamics, their spatial structures and  statisti...

  2. The Mechanisms of Electron Acceleration During Multiple X Line Magnetic Reconnection with a Guide Field

    CERN Document Server

    Wang, Huanyu; Huang, Can; Wang, Shui

    2016-01-01

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional (2-D) particle-in-cell (PIC) simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. The electrons remain almost magnetized, and we can then analyze the contributions of the parallel electric field, Fermi and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection by comparing with a guide-center theory. The results show that with the proceeding of magnetic reconnection, two magnetic islands are formed in the simulation domain. The electrons are accelerated by both the parallel electric field in the vicinity of the X lines and Fermi mechanism due to the contraction of the two magnetic islands. Then the two magnetic islands begin to merge into one, and in such a process electrons can be accelerated by the parallel electric field and betatron mechanisms. ...

  3. ORBXYZ: A 3D single-particle orbit code for following charged particle trajectories in equilibrium magnetic fields

    Science.gov (United States)

    Anderson, D. V.; Cohen, R. H.; Ferguson, J. R.; Johnston, B. M.; Sharp, C. B.; Willmann, P. A.

    1981-06-01

    The single particle orbit code, TIBRO, was modified extensively to improve the interpolation methods used and to allow use of vector potential fields in the simulation of charged particle orbits on a 3D domain. A 3D cubic B-spline algorithm is used to generate spline coefficients used in the interpolation. Smooth and accurate field representations are obtained. When vector potential fields are used, the 3D cubic spline interpolation formula analytically generates the magnetic field used to push the particles. This field has del.BETA = 0 to computer roundoff. When magnetic induction is used the interpolation allows del.BETA does not equal 0, which can lead to significant nonphysical results. Presently the code assumes quadrupole symmetry, but this is not an essential feature of the code and could be easily removed for other applications.

  4. Field Research Facility Data Integration Framework Data Management Plan: Survey Lines Dataset

    Science.gov (United States)

    2016-08-01

    clearinghouse tool using the Environmental Systems Research Institute (Esri) Geoportal technology . Once the XML metadata is loaded into the Metadata Manager ...ER D C/ CH L SR -1 6- 4 Coastal Ocean Data Systems Program Field Research Facility Data Integration Framework Data Management Plan...Systems Program ERDC/CHL SR-16-4 August 2016 Field Research Facility Data Integration Framework Data Management Plan Survey Lines Dataset Michael F

  5. Field Line Resonances in Quiet and Disturbed Time Three-dimensional Magnetospheres

    CERN Document Server

    Chi Zhu Cheng

    2002-01-01

    Numerical solutions for field line resonances (FLR) in the magnetosphere are presented for three-dimensional equilibrium magnetic fields represented by two Euler potentials as B = -j Y -a, where j is the poloidal flux and a is a toroidal angle-like variable. The linearized ideal-MHD equations for FLR harmonics of shear Alfvin waves and slow magnetosonic modes are solved for plasmas with the pressure assumed to be isotropic and constant along a field line. The coupling between the shear Alfvin waves and the slow magnetosonic waves is via the combined effects of geodesic magnetic field curvature and plasma pressure. Numerical solutions of the FLR equations are obtained for a quiet time magnetosphere as well as a disturbed time magnetosphere with a thin current sheet in the near-Earth region. The FLR frequency spectra in the equatorial plane as well as in the auroral latitude are presented. The field line length, magnetic field intensity, plasma beta, geodesic curvature and pressure gradient in the poloidal flux...

  6. Field validation of protocols developed to evaluate in-line mastitis detection systems

    NARCIS (Netherlands)

    Kamphuis, C.; Dela Rue, B.T.; Eastwood, C.R.

    2016-01-01

    This paper reports on a field validation of previously developed protocols for evaluating the performance of in-line mastitis-detection systems. The protocols outlined 2 requirements of these systems: (1) to detect cows with clinical mastitis (CM) promptly and accurately to enable timely and

  7. Path integral approach for electron transport in disturbed magnetic field lines

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ryutaro; Nakajima, Noriyoshi; Takamaru, Hisanori

    2002-05-01

    A path integral method is developed to investigate statistical property of an electron transport described as a Langevin equation in a statically disturbed magnetic field line structure; especially a transition probability of electrons strongly tied to field lines is considered. The path integral method has advantages that 1) it does not include intrinsically a growing numerical error of an orbit, which is caused by evolution of the Langevin equation under a finite calculation accuracy in a chaotic field line structure, and 2) it gives a method of understanding the qualitative content of the Langevin equation and assists to expect statistical property of the transport. Monte Carlo calculations of the electron distributions under both effects of chaotic field lines and collisions are demonstrated to comprehend above advantages through some examples. The mathematical techniques are useful to study statistical properties of various phenomena described as Langevin equations in general. By using parallel generators of random numbers, the Monte Carlo scheme to calculate a transition probability can be suitable for a parallel computation. (author)

  8. An Exact Line Integral Representation of the Magnetic Physical Optics Scattered Field

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2003-01-01

    An exact line integral representation is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by electric or magnetic Hertzian dipoles. The positions of source and observation points can be almost arbitrary. Numerical examples...

  9. Interlaboratory comparison of measuring results of magnetic field near 400 kV overhead power line

    Directory of Open Access Journals (Sweden)

    Grbić Maja

    2012-01-01

    Full Text Available The paper presents a comparison of measured results of magnetic field near 400 kV overhead power lines obtained by three laboratories. This interlaboratory comparison was performed to ensure confidence in the quality of the test results. The measured results were analyzed with standard methods, using En number, based on which the evaluation of the laboratories was performed.

  10. Interface Profiles near Three-Phase Contact Lines in Electric Fields

    NARCIS (Netherlands)

    Buehrle, Juergen; Herminghaus, Stephan; Mugele, Frieder

    2003-01-01

    Long-range electrostatic fields deform the surface profile of a conductive liquid in the vicinity of the contact line. We have investigated the equilibrium profiles by balancing electrostatic and capillary forces locally at the liquid vapor interface. Numerical results show that the contact angle at

  11. Direct design of two freeform optical surfaces for wide field of view line imaging applications

    Science.gov (United States)

    Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian

    2016-04-01

    In this paper, we propose a multi-fields direct design method aiming to calculate two freeform surfaces with an entrance pupil incorporated for wide field of view on-axis line imaging applications. Both infinite and finite conjugate objectives can be designed with this approach. Since a wide angle imaging system requires more than few discrete perfect imaging points, the multi-fields design approach is based on partial coupling of multiple fields, which guarantees a much more balanced imaging performance over the full field of view. The optical path lengths (OPLs) and image points of numerous off-axis fields are calculated during the procedure, thus very few initial parameters are needed. The procedure to calculate such a freeform lens is explained in detail. We have designed an exemplary monochromatic single lens to demonstrate the functionality of the design method. A rotationally symmetric counterpart following the same specifications is compared in terms of RMS spot radius to demonstrate the clear benefit that freeform lens brings to on-axis line imaging systems. In addition, a practical achromatic wide angle objective is designed by combining our multi-fields design method with classic optical design strategies, serving as a very good starting point for further optimization in a commercial optical design program. The results from the perspective of aberrations plots and MTF values show a very good and well balanced performance over the full field of view.

  12. Charge Acceleration and Field-Lines Curvature: A Fundamental Symmetry and Consequent Asymmetries

    CERN Document Server

    Elitzur, Avshalom C; Beniamini, Paz

    2012-01-01

    When a charge accelerates, its field-lines curve in a typical pattern. This pattern resembles the curvature induced on the field-lines by a neighboring charge. Not only does the latter case involve a similar curvature, it moreover results in attraction/repulsion. This suggests a hitherto unnoticed causal symmetry: charge acceleration-field curvature. We prove quantitatively that these two phenomena are essentially one and the same. The field stores some of the charge's mass, yet it is extended in space, hence when the charge accelerates, inertia makes the field lag behind. The resulting stress in the field stores some of the charge's kinetic energy in the form of potential energy. The electrostatic interaction is the approximate mirror image of this process: The potential energy stored within the field turns into the charge's kinetic energy. This partial symmetry offers novel insights into two debated issues in electromagnetism. The question whether a charge radiates in a gravitational field receives a new tw...

  13. Electron motion analysis of a radial-radiated electron beam in a radial-line drift tube with finite magnetic field conducted

    Science.gov (United States)

    Dang, Fangchao; Zhang, Xiaoping; Zhong, Huihuang

    2017-02-01

    Radial-radiated electron beam is widely employed in radial-line structure microwave devices. The quality of the electron beam has a crucial effect on the operating performance of these devices. This paper analyzes theoretically this electron motion in a radial-line drift tube with finite magnetic field conducted. The beam width, spatial period, and fluctuation amplitude are quantitatively analyzed with different beam current parameters. By the particle-in-cell simulation, we examine the theoretical analysis under the condition of a designed realistic coil configuration. It indicates that the derived beam envelope function is capable of predicting the radial-radiated beam trajectory approximately. Meanwhile, it is found that the off-axial z-direction magnetic field, in spite of its greatly slight amplitude, is also one necessary consideration for the propagation characteristic of the radial-radiated electron beam. Furthermore, the presented electron motion analysis may be instructive for the design of the electronic optical system of the radial-line structure microwave devices.

  14. Classification and analysis of emission-line galaxies using mean field independent component analysis

    CERN Document Server

    Allen, James T; Richardson, Chris T; Ferland, Gary J; Baldwin, Jack A

    2013-01-01

    We present an analysis of the optical spectra of narrow emission-line galaxies, based on mean field independent component analysis (MFICA). Samples of galaxies were drawn from the Sloan Digital Sky Survey (SDSS) and used to generate compact sets of `continuum' and `emission-line' component spectra. These components can be linearly combined to reconstruct the observed spectra of a wider sample of galaxies. Only 10 components - five continuum and five emission line - are required to produce accurate reconstructions of essentially all narrow emission-line galaxies; the median absolute deviations of the reconstructed emission-line fluxes, given the signal-to-noise ratio (S/N) of the observed spectra, are 1.2-1.8 sigma for the strong lines. After applying the MFICA components to a large sample of SDSS galaxies we identify the regions of parameter space that correspond to pure star formation and pure active galactic nucleus (AGN) emission-line spectra, and produce high S/N reconstructions of these spectra. The phys...

  15. Mean-field Density Functional Theory of a Three-Phase Contact Line

    Science.gov (United States)

    Lin, Chang-You

    A three-phase contact line in a three-phase fluid system is modeled by a mean-field density functional theory. We use a variational approach to find the Euler-Lagrange equations. Analytic solutions are obtained in the two-phase regions at large distances from the contact line. We employ a triangular grid and use a successive over-relaxation method to find numerical solutions in the entire domain for the special case of equal interfacial tensions for the two-phase interfaces. We use the Kerins-Boiteux formula to obtain a line tension associated with the contact line. This line tension turns out to be negative. We associate line adsorption with the change of line tension as the governing potentials change. We develop a geometrical interpretation to generalize our potential in order to study less symmetric systems as occur in some practical phase diagrams. A set of special cases of this new potential are linear transformations from our original potential. In those special cases, we can obtain solutions by scaling of our former results.

  16. Micromagnetic structure of the domain wall with Bloch lines in an electric field

    Science.gov (United States)

    Borich, M. A.; Tankeev, A. P.; Smagin, V. V.

    2016-07-01

    The micromagnetic structure of the domain wall (DW) with periodically distributed horizontal Bloch lines in a ferromagnetic film in an external electric field has been studied. The effect of the electric field on the internal DW micromagnetic structure is caused by inhomogeneous magnetoelectric coupling. Possible scenarios of the DW internal structure transformations implemented with varying the electric fields strength have been analyzed in detail. For each scenario, static characteristics of the system, such as the energy, DW profile, DW effective thickness, and electric polarization have been calculated.

  17. Stable anisotropic plasma confinement in magnetic configurations with convex-concave field lines

    Science.gov (United States)

    Tsventoukh, M. M.

    2014-02-01

    It is shown that a combination of the convex and the concave part of a field line provides a strong stabilizing action against convective (flute-interchange) plasma instability (Tsventoukh 2011 Nucl. Fusion 51 112002). This results in internal peaking of the stable plasma pressure profile that is calculated from the collisionless kinetic stability criterion for any magnetic confinement system with combination of mirrors and cusps. Connection of the convex and concave field line parts results in a reduction of the space charge that drives the unstable E × B motion, as there is an opposite direction of the particle drift in a non-uniform field at convex and concave field lines. The pressure peaking arises at the minimum of the second adiabatic invariant J that takes place at the ‘middle’ of a tandem mirror-cusp transverse cross-section. The position of the minimum in J varies with the particle pitch angle that results in a shift of the peaking position depending on plasma anisotropy. This allows one to improve a stable peaked pressure profile at a convex-concave field by changing the plasma anisotropy over the trap cross-section. Examples of such anisotropic distribution functions are found that give an additional substantial enhancement in the maximal central pressure. Furthermore, the shape of new calculated stable profiles has a wide central plasma layer instead of a narrow peak.

  18. Thermonuclear Supernovae: Probing Magnetic Fields by Late-Time IR Line Profiles

    CERN Document Server

    Penney, R

    2014-01-01

    We study the imprint of magnetic fields B on late-time IR line profiles and light curves of Type Ia Supernovae. As a benchmark, we use the explosion of a Chandrasekhar mass M_{Ch White Dwarf (WD) and, specifically, a delayed detonation model. We assume WDs with initial magnetic surface fields between 1 and 1E9G. We discuss large-scale dipole and small-scale magnetic fields. We find that the [Fe II] line at 1.644 mu can be used to analyze the overall chemical and density structure of the exploding WD up to day 200 without considering B. Subsequently, positron transport and magnetic field effects become important. By day 500, the profile becomes sensitive to the morphology of B and directional dependent for dipole fields. Small or no directional dependence of the spectra is found for small-scale B. After about 200 days, persistent broad-line, flat-topped or stumpy profiles require high density burning which is the signature of a WD close to M_Ch. Narrow peaked profiles are a signature of chemical mixing or sub-...

  19. Singular surfaces in the open field line region of a diverted tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reiman, A.

    1995-05-01

    The structure of the open field lines of a slightly nonaxisymmetric, poloidally diverted tokamak is explored by numerical integration of the field line equations for a simple model field. In practice, the nonaxisymmetry could be produced self-consistently by the nonlinear evolution of a free-boundary MHD mode, or it could be produced by field errors, or it could be imposed externally by design. In the presence of a nonaxisymmetric perturbation, the tokamak is shown to develop open field line regions of differing topology separated by singular surfaces. It is argued that the singular surfaces can be expected to play a role analogous to that of rational toroidal flux surfaces, in terms of constraining ideal MHD perturbations and thus constraining the free-energy that can be tapped by ideal MHD instabilities. The possibility of active control of free-boundary instabilities by means of currents driven on the open singular surfaces, which are directly accessible from the divertor plates, is discussed. Also discussed is the possibility of early detection of imminent disruptions through localized measurement of the singular surface currents.

  20. Empirical predictions for (sub-)millimeter line and continuum deep fields

    CERN Document Server

    da Cunha, Elisabete; Decarli, Roberto; Bertoldi, Frank; Carilli, Chris; Daddi, Emanuele; Elbaz, David; Ivison, Rob; Maiolino, Roberto; Riechers, Dominik; Rix, Hans-Walter; Sargent, Mark; Smail, Ian; Weiss, Axel

    2013-01-01

    [abridged] Modern (sub-)millimeter/radio interferometers will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[CII] lines and dust continuum emission. In this paper, we present empirical predictions for such (sub-)millimeter line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared ACS and NICMOS data on the Hubble Ultra Deep Field. Using a physically-motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13,099 galaxies with redshifts up to z=5, and obtain median likelihood estimates of their stellar mass, star formation rate, dust attenuation and dust luminosity. We derive statistical constrai...

  1. Dynamic effects of restoring footpoint symmetry on closed magnetic field lines

    CERN Document Server

    Reistad, J P; Tenfjord, P; Laundal, K M; Snekvik, K; Haaland, S; Milan, S E; Oksavik, K; Frey, H U; Grocott, A

    2016-01-01

    Here we present an event where simultaneous global imaging of the aurora from both hemispheres reveals a large longitudinal shift of the nightside aurora of about 3 h, being the largest relative shift reported on from conjugate auroral imaging. This is interpreted as evidence of closed field lines having very asymmetric footpoints associated with the persistent positive $\\textit{y}$ component of the interplanetary magnetic field before and during the event. At the same time, the Super Dual Auroral Radar Network observes the ionospheric nightside convection throat region in both hemispheres. The radar data indicate faster convection toward the dayside in the dusk cell in the Southern Hemisphere compared to its conjugate region. We interpret this as a signature of a process acting to restore symmetry of the displaced closed magnetic field lines resulting in flux tubes moving faster along the banana cell than the conjugate orange cell. The event is analyzed with emphasis on Birkeland currents (BC) associated wit...

  2. Velocity statistics from spectral line data effects of density-velocity correlations, magnetic field, and shear

    CERN Document Server

    Esquivel, A; Pogosyan, D; Cho, J; Esquivel, Alejandro; Cho, Jungyeon

    2003-01-01

    In a previous work Lazarian and Pogosyan suggested a technique to extract velocity and density statistics, of interstellar turbulence, by means of analysing statistics of spectral line data cubes. In this paper we test that technique, by studying the effect of correlation between velocity and density fields, providing a systematic analysis of the noise, and exploring the effect of a linear shear. We make use of both compressible MHD simulations and synthetic data to emulate spectroscopic observations. With such synthetic spectroscopic data, we studied anisotropies of the two point statistics and related those anisotropies with the magnetic field direction. This presents a new technique for magnetic field studies. The results show that the velocity and density spectral indices measured are consistent with the analytical predictions. We identified the dominant source of error with the limited number of data points along a given line of sight. We argue that in real observations the number of emmiting elements is...

  3. Field-Line Localized Destabilization of Ballooning Modes in Three-Dimensional Tokamaks

    Science.gov (United States)

    Willensdorfer, M.; Cote, T. B.; Hegna, C. C.; Suttrop, W.; Zohm, H.; Dunne, M.; Strumberger, E.; Birkenmeier, G.; Denk, S. S.; Mink, F.; Vanovac, B.; Luhmann, L. C.; ASDEX Upgrade Team

    2017-08-01

    Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n =2 error field and during a moderate level of edge localized mode mitigation. The observed ballooning modes are localized to the field lines which experience one of the two zero crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium. This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.

  4. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  5. Cyclotron Lines: From Magnetic Field Strength Estimators to Geometry Tracers in Neutron Stars

    Indian Academy of Sciences (India)

    Chandreyee Maitra

    2017-09-01

    With forty years since the discovery of the first cyclotron line in Her X-1, there have been remarkable advancements in the field related to the study of the physics of accreting neutron stars – cyclotron lines have been a major torchbearer in this regard, from being the only direct estimator of the magnetic field strength, a tracer of accretion geometry and an indicator of the emission beam in these systems. The main flurry of activities have centred around studying the harmonic separations, luminosity dependence, pulse phase dependence and more recently, the shapes of the line and the trend for long-term evolution in the line energy. This article visits the important results related to cyclotron lines since its discovery and reviews their significance. An emphasis is laid on pulse phase resolved spectroscopy and the important clues a joint timing and spectral study in this context can provide, to build a complete picture for the physics of accretion and hence X-ray emission in accreting neutron stars.

  6. Modeling and Simulation Analysis of Power Frequency Electric Field of UHV AC Transmission Line

    Directory of Open Access Journals (Sweden)

    Chen Han

    2015-02-01

    Full Text Available In order to study the power frequency electric field of UHV AC transmission lines, this paper which models and calculates using boundary element method simulates various factors influencing the distribution of the power frequency electric field, such as the conductor arrangement, the over-ground height, the split spacing and the sub conductor radius. Different influence of various factors on the electric field distribution will be presented. In a single loop, using VVV triangular arrangement is the most secure way; in a dual loop, the electric field intensity using reverse phase sequence is weaker than that using positive phase sequence. Elevating the over-ground height and reducing the conductor split spacing will both weaken the electric field intensity, while the change of sub conductor radius can hardly cause any difference. These conclusions are important for electric power company to detect circuit.

  7. Field Simulations and Mechanical Implementation of Electrostatic Elements for the ELENA Transfer Lines

    CERN Document Server

    Barna, D; Borburgh, J; Carli, C; Vanbavinckhove, G

    2014-01-01

    The Antiproton Decelerator (AD) complex at CERN will be extended by an extra low energy anti-proton ring (ELENA) [1] further decelerating the anti-protons thus improving their trapping. The kinetic energy of 100 keV at ELENA extraction facilitates the use of electrostatic transfer lines to the experiments. The mechanical implementation of the electrostatic devices are presented with focus on their alignment, bakeout compatibility, ultra-high vacuum compatibility and polarity switching. Field optimisations for an electrostatic crossing device of three beam lines are shown.

  8. Coupling the Gaussian free fields with free and with zero boundary conditions via common level lines

    OpenAIRE

    Qian, Wei; Werner, Wendelin

    2017-01-01

    We describe level-line decompositions of the two-dimensional Gaussian Free Field (GFF) with free boundary conditions. In particular, we point out a simple way to couple the GFF with free boundary conditions in a domain with the GFF with zero boundary conditions in the same domain: Starting from the latter, one just has to sample at random all the signs of the height gaps on its boundary touching 0-level lines (these signs are alternating for the zero-boundary GFF) in order to obtain a free bo...

  9. The magnetic field of the double-lined spectroscopic binary system HD 5550

    Science.gov (United States)

    Alecian, E.; Tkachenko, A.; Neiner, C.; Folsom, C. P.; Leroy, B.

    2016-05-01

    Context. The origin of fossil fields in intermediate- and high-mass stars is poorly understood, as is the interplay between binarity and magnetism during stellar evolution. Thus we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems as a function of binarity properties. Aims: This paper specifically aims to characterise the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate mass. Methods: We gathered 25 high-resolution spectropolarimetric observations of HD 5550 using the instrument Narval. We first fitted the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light ratio of the system. We then applied the multi-line least-square deconvolution (LSD) technique to the intensity and circularly polarised spectra, which provided us with mean LSD I and V line profiles. We fitted the Stokes I line profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the V profiles using the oblique rotator model to characterise the magnetic fields of both stars. Results: We confirm the Ap nature of the primary, which has previously been reported, and find that the secondary displays spectral characteristics typical of an Am star. While a magnetic field is clearly detected in the lines of the primary, no magnetic field is detected in the secondary in any of our observations. If a dipolar field were present at the surface of the Am star, its polar strength must be below 40 G. The faint variability observed in the Stokes V profiles of the Ap star allowed us to propose a rotation period of 6.84-0.39+0.61 d, which is close to the orbital period (~6.82 d), suggesting that the star is synchronised with its orbit. By fitting the variability of the V profiles, we propose that the

  10. Optical Mobius Strips in Three Dimensional Ellipse Fields: Lines of Circular Polarization

    CERN Document Server

    Freund, Isaac

    2009-01-01

    The major and minor axes of the polarization ellipses that surround singular lines of circular polarization in three dimensional optical ellipse fields are shown to be organized into Mobius strips. These strips can have either one or three half-twists, and can be either right- or left-handed. The normals to the surrounding ellipses generate cone-like structures. Two special projections, one new geometrical, and seven new topological indices are developed to characterize the rather complex structures of the Mobius strips and cones. These eight indices, together with the two well-known indices used until now to characterize singular lines of circular polarization, could, if independent, generate 16,384 geometrically and topologically distinct lines. Geometric constraints and 13 selection rules are discussed that reduce the number of lines to 2,104, some 1,150 of which have been observed in practice; this number of different C lines is ~ 350 times greater than the three types of lines recognized previously. Stat...

  11. THE MECHANISMS OF ELECTRON ACCELERATION DURING MULTIPLE X LINE MAGNETIC RECONNECTION WITH A GUIDE FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui, E-mail: qmlu@ustc.edu.cn [CAS Key Lab of Geospace Environment, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026 (China)

    2016-04-20

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both the parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.

  12. A current filamentation mechanism for breaking magnetic field lines during reconnection.

    Science.gov (United States)

    Che, H; Drake, J F; Swisdak, M

    2011-06-01

    During magnetic reconnection, the field lines must break and reconnect to release the energy that drives solar and stellar flares and other explosive events in space and in the laboratory. Exactly how this happens has been unclear, because dissipation is needed to break magnetic field lines and classical collisions are typically weak. Ion-electron drag arising from turbulence, dubbed 'anomalous resistivity', and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory support the anomalous resistivity idea but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report computer simulations that show that neither of the two previously favoured mechanisms controls how magnetic field lines reconnect in the plasmas of greatest interest, those in which the magnetic field dominates the energy budget. Rather, we find that when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that causes the rate of reconnection to increase abruptly. This filamentary web can be explored in the laboratory or in space with satellites that can measure the resulting electromagnetic turbulence.

  13. Lightning and Electric Field Structure of a Squall Line During TELEX

    Science.gov (United States)

    Macgorman, D.; Rust, D.; Bruning, E.; Ramig, N.; Apostolakopoulos, I.; Schuur, T.; Biggerstaff, M.; Straka, J.; Krehbiel, P.; Rison, B.; Hamlin, T.

    2004-12-01

    During the 2004 field program for the Thunderstorm Electrification and Lightning Experiment (TELEX), simultaneous electric field soundings, three-dimensional lightning mapping observations, high-resolution Doppler radar data, polarimetric radar data, and environmental soundings were acquired for several mesoscale convective systems, supercell storms, and non-severe thunderstorms. The overall data set was of particularly high quality for a squall line that produced frequent lightning in southern and central Oklahoma on the morning of 19 June 2004. A total of five balloon-borne electric field soundings were launched into the leading line of convection and into the trailing stratiform region. Two 5-cm wavelength mobile Doppler radars (SMART-R's) provided coordinated volume scans every 3 min throughout the period of operations. Furthermore, all operations were well within range of the 10-cm wavelength polarimetric radar and the three-dimensional lightning mapping array. This presentation will emphasize lightning mapping and electric field observations to characterize the electrical behavior of the convective line and the stratiform region.

  14. Evidence and relevance of spatially chaotic magnetic field lines in MCF devices

    Science.gov (United States)

    Firpo, M.-C.; Lifschitz, A. F.; Ettoumi, W.; Farengo, R.; Ferrari, H. E.; García-Martínez, P. L.

    2017-03-01

    Numerical evidence for the existence of spatially chaotic magnetic field lines about the collapse phase of tokamak sawteeth with incomplete reconnection is presented. This uses the results of extensive test particle simulations in different sets of electromagnetic perturbations tested against experimental JET measurements. In tokamak sawteeth, that form a laboratory prototype of magnetic reconnection, the relative magnetic perturbation δ B/B may reach a few percents. This does not apply to tokamak operating regimes dominated by turbulence where δ B/B is usually not larger than {10}-4. However, this small magnetic perturbation being sustained by a large spectrum of modes is shown to be sufficient to ensure the existence of stochastic magnetic field lines. This has important consequences for magnetic confinement fusion where electrons are dominantly governed by the magnetic force. Indeed some overlap between magnetic resonances can locally induce chaotic magnetic field lines enabling the spatial redistribution of the electron population and of its thermal content. As they are the swiftest plasma particles, electrons feed back the most rapid perturbations of the magnetic field.

  15. Simulation and Field Measurement of Quadrupole Magnets for KOMAC 20MeV Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Chung, B. H.; Kim, H. S.; Song, Y. G.; Kwon, H. J.; Cho, Y. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this paper, quadrupole magnets the same as installed at the beam line simulated and analyzed for magnetic fields. Also quadrupole magnets will be measured field stability and evaluated reliability on long time operation. Control system consisted of Labview program and communication method consisted of Ethernet and Rs-232 with optical fiber for devices safety from high voltage and/or high current. As a results the DC power supply is controlled, magnetic fields data is acquired and coil temperature is measured. Magnetic field with hall sensor and temperature with K-type thermo-couple are measured with conversion factor using by voltmeter. Korea Multi-purpose Accelerator Complex (KOMAC) was developed at Gyeongju in Korea in 2012. KOMAC including a 50-keV ion source, a 3-MeV RFQ, and a 100-MeV DTL. And beam line consists of 20-MeV and 100-MeV for user. Proton beam transferred from the linac to the beam line using by dipole magnets and transferred proton beam focused and decreased beam loss and by quadrupole magnets.

  16. LINES

    Directory of Open Access Journals (Sweden)

    Minas Bakalchev

    2015-10-01

    Full Text Available The perception of elements in a system often creates their interdependence, interconditionality, and suppression. The lines from a basic geometrical element have become the model of a reductive world based on isolation according to certain criteria such as function, structure, and social organization. Their traces are experienced in the contemporary world as fragments or ruins of a system of domination of an assumed hierarchical unity. How can one release oneself from such dependence or determinism? How can the lines become less “systematic” and forms more autonomous, and less reductive? How is a form released from modernistic determinism on the new controversial ground? How can these elements or forms of representation become forms of action in the present complex world? In this paper, the meaning of lines through the ideas of Le Corbusier, Leonidov, Picasso, and Hitchcock is presented. Spatial research was made through a series of examples arising from the projects of the architectural studio “Residential Transformations”, which was a backbone for mapping the possibilities ranging from playfulness to exactness, as tactics of transformation in the different contexts of the contemporary world.

  17. Field Performance of Transgenic Sugarcane Lines Resistant to Sugarcane Mosaic Virus

    Science.gov (United States)

    Yao, Wei; Ruan, Miaohong; Qin, Lifang; Yang, Chuanyu; Chen, Rukai; Chen, Baoshan; Zhang, Muqing

    2017-01-01

    Sugarcane mosaic disease is mainly caused by the sugarcane mosaic virus (SCMV), which can significantly reduce stalk yield and sucrose content of sugarcane in the field. Coat protein mediated protection (CPMP) is an effective strategy to improve virus resistance. A 2-year field study was conducted to compare five independent transgenic sugarcane lines carrying the SCMV-CP gene (i.e., B2, B36, B38, B48, and B51) with the wild-type parental clone Badila (WT). Agronomic performance, resistance to SCMV infection, and transgene stability were evaluated and compared with the wild-type parental clone Badila (WT) at four experimental locations in China across two successive seasons, i.e., plant cane (PC) and 1st ratoon cane (1R). All transgenic lines derived from Badila had significantly greater tons of cane per hectare (TCH) and tons of sucrose per hectare (TSH) as well as lower SCMV disease incidence than those from Badila in the PC and 1R crops. The transgenic line B48 was highly resistant to SCMV with less than 3% incidence of infection. The recovery phenotype of transgenic line B36 was infected soon after virus inoculation, but the subsequent leaves showed no symptoms of infection. Most control plants developed symptoms that persisted and spread throughout the plant with more than 50% incidence. B48 recorded an average of 102.72 t/ha, which was 67.2% more than that for Badila. The expression of the transgene was stable over many generations with vegetative propagation. These results show that SCMV-resistant transgenic lines derived from Badila can provide resistant germplasm for sugarcane breeding and can also be used to study virus resistance mechanisms. This is the first report on the development and field performance of transgenic sugarcane plants that are resistant to SCMV infection in China. PMID:28228765

  18. Software for evaluating magnetic induction field generated by power lines: implementation of a new algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Comelli, M.; Benes, M.; Bampo, A.; Villalta, R. [Regional Environment Protection Agency of Friuli Venezia Giulia (ARPA FVG), Environmental Physics, Udine (Italy)

    2006-07-01

    The Regional Environment Protection Agency of Friuli Venezia Giulia (A.R.P.A. F.V.G., Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Furthermore, none of them is preset for cyclic calculus to determine the time evolution of induction in a certain exposure area. Finally, the output data are not immediately importable by ArcView, the G.I.S. used by A.R.P.A. F.V.G., and it is not always possible to implement the territory orography to determine the field at specified heights above the ground. P.h.i.d.e.l., an innovative software, tackles and works out al l the above mentioned problems. The power line wires interested in its implementation are represented by poly lines, and the field is analytically calculated, with no further approximation, not even when more power lines are concerned. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in G.I.S. and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 {mu}T bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003. (authors)

  19. Acceleration of hydrogen ions and conic formation along auroral field lines

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, H.; Ashour-Abdalla, M.

    1982-05-01

    Electrostatic ion cyclotron turbulence and the formation of ion conics at low altitudes (approx. = 1500 km) along auroral field lines have been investigated analytically and by plasma numerical simulations. Ion cyclotron waves are assumed to be driven unstable by the up-going cold ionospheric electrons associated with the downward auroral current. When the electron drift speed is comparable to the electron thermal speed, it is found that the large amplitude, e phi/T/sub e/ approx. = 1, coherent, ..omega.. = ..cap omega../sub i/, ion cyclotron waves shoudl exist along auroral field lines at low altitudes extending approx. = 500 to 1000 km. Ion conics are associated with the cyclotron turbulence and the ion bulk temperature is found to increase a factor of 10 of the initial ionospheric temperature, while the temperature of the high energy tail can be as much as a factor of 100 of the ionospheric temperature. Theory and simulations agree well.

  20. Proton rich nuclei at and beyond the proton drip line in the Relativistic Mean Field theory

    CERN Document Server

    Geng, L S; Meng, J

    2003-01-01

    The Relativistic Mean Field theory is applied to the analysis of ground-state properties of deformed proton-rich odd-Z nuclei in the region $55\\le Z \\le 73$ >. The model uses the TMA and NL3 effective interactions in the mean-field Lagrangian, and describes pairing correlations by the density-independent delta-function interaction. The model predicts the location of the proton drip line, the ground-state quadrupole deformation, one-proton separation energy at and beyond the proton drip line, the deformed single-particle orbital occupied by the odd valence proton and the corresponding spectroscopic factor. The results are in good agreement with the available experimental data except for some odd-odd nuclei in which the proton-neutron pairing may become important and are close to those of Relativistic Hartree-Bogoliubov model.

  1. Spectral Inversion of Multi-Line Full-Disk Observations of Quiet Sun Magnetic Fields

    CERN Document Server

    Balthasar, H

    2012-01-01

    Spectral inversion codes are powerful tools to analyze spectropolarimetric observations, and they provide important diagnostics of solar magnetic fields. Inversion codes differ by numerical procedures, approximations of the atmospheric model, and description of radiative transfer. Stokes Inversion based on Response functions (SIR) is an implementation widely used by the solar physics community. It allows to work with different atmospheric components, where gradients of different physical parameters are possible, e.g., magnetic field strength and velocities. The spectropolarimetric full-disk observations were carried out with the Stokesmeter of the Solar Telescope for Operative Predictions (STOP) at the Sayan Observatory on 3 February 2009, when neither an active region nor any other extended flux concentration was present on the Sun. In this study of quiet Sun magnetic fields, we apply the SIR code simultaneously to 15 spectral lines. A tendency is found that weaker magnetic field strengths occur closer to th...

  2. YIELD AND ITS COMPONENTS IN FIELD PEA (Pisum arvense L. LINES

    Directory of Open Access Journals (Sweden)

    A TEKELI

    2004-04-01

    Full Text Available Morphological characters such as main stem length (cm, number of branches per plant, leaf length (cm, number of leaves per main stem, number of leaflets per leaf, diameter of main stem (mm, pods / main stem and seeds / pod as well as agricultural herbage yield (t ha-1, dry matter yield (t ha-1, seed yield (t ha-1, crude protein (% were investigated in Trakya, during the 1999-2002. The maximum main stem length (124.375 cm, leaf length (24.808 cm, number of pods per main stem (16.526, herbage yield (27.881 t ha-1, dry matter yield (7.319 t ha-1 and seed yield (2.590 t ha-1 were determined from the 16-K and 16-DY field pea lines. K line has given higher values than four lines for the number of branches per plant (5.567. Main stem diameter ranged from 3.077 to 4.300 mm. It’s found that the 23.025 leaves/main stem, 6.833 leaflets/leaf, 7.692 seeds/pod and 17.550% crude protein from the field pea lines.

  3. Radiative Properties of Zeeman Components of Atomic Multiplets: Dependence of Line Intensities on the Magnetic Field

    Science.gov (United States)

    Ovsyannikov, V. D.; Chaplygin, E. V.

    2000-12-01

    Analytical expressions for the dependence of the intensity of Zeeman components of doublet lines on the magnetic field are obtained. Sharp changes of these function on passing from the anomalous Zeeman effect to the Paschen-Back effect lead to the disappearance of marginal lines and the equalization of intensities of remaining lines. In the region of the complete Paschen-Back effect, a strong influence on these dependences is produced by the dynamic atom-field interaction, which weakens the paramagnetic effect in the states with a positive magnetic quantum number m and enhances the effect in the states with a negative m. Simple analytical expressions are obtained that take into account the effect of the diamagnetic interaction on line intensities. The role of the diamagnetic interaction increases in Rydberg atomic states with a large spin-orbit splitting. For the states with m > 0, it can lead to the “diamagnetic reversal” of the Paschen-Back effect, i.e., the recovery of the anomalous Zeeman effect.

  4. Ambipolar transport via trapped-electron whistler instability along open magnetic field lines.

    Science.gov (United States)

    Guo, Zehua; Tang, Xian-Zhu

    2012-09-28

    An open field line plasma is bounded by a chamber wall which intercepts the magnetic field. Steady state requires an upstream plasma source balancing the particle loss to the boundary. In cases where the electrons have a long mean free path, ambipolarity in parallel transport critically depends on collisionless detrapping of the electrons via wave-particle interaction. The trapped-electron whistler instability, whose nonlinear saturation produces a spectrum of whistler waves that is responsible for the electron detrapping flux, is shown to be an unusually robust kinetic instability, which is essential to the universality of the ambipolar constraint in plasma transport.

  5. The effect of electron thermal conduction on plasma pressure gradient during reconnection of magnetic field lines

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.K.

    1987-12-01

    The interplay of electron cross-field thermal conduction and the reconnection of magnetic field lines around an m = 1 magnetic island prior to a sawtooth crash can generate a large pressure gradient in a boundary layer adjacent to the reconnecting surface, leading to an enhanced gradient of poloidal beta to satisfy the threshold condition for ideal MHD modes. This narrow boundary layer and the short onset time of a sawtooth crash can be supported by fine-grained turbulent processes in a tokamak plasma. 11 refs.

  6. Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    CERN Document Server

    Pan, R; Lefevre, T; Gillepsie, WA; CERN. Geneva. ATS Department

    2015-01-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding(EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  7. Extremely Low Frequency Electromagnetic Field (ELF-EMF and childhood leukemia near transmission lines: a review

    Directory of Open Access Journals (Sweden)

    P. A. Kokate

    2016-04-01

    Full Text Available This article presents a systematic review of most cited studies from developed countries those shed light on the potential relation between childhood leukemia and extremely low frequency electromagnetic field (ELF-EMF. All the findings of articles critically segregated as per some neglected parameters like number of samples, exposure duration, frequency range, distance from the radiation sources, and location during measurement of magnetic field density near power lines. Literature of major 50 studies are divided according to pooled analysis / meta-analysis, residential zone assessment and case-control studies.

  8. Threaded-Field-Lines Model for the Low Solar Corona Powered by the Alfven Wave Turbulence

    CERN Document Server

    Sokolov, Igor V; Manchester, Ward B; Ozturk, Doga Can Su; Szente, Judit; Taktakishvili, Aleksandre; Tóth, Gabor; Jin, Meng; Gombosi, Tamas I

    2016-01-01

    We present an updated global model of the solar corona, including the transition region. We simulate the realistic tree-dimensional (3D) magnetic field using the data from the photospheric magnetic field measurements and assume the magnetohydrodynamic (MHD) Alfv\\'en wave turbulence and its non-linear dissipation to be the only source for heating the coronal plasma and driving the solar wind. In closed field regions the dissipation efficiency in a balanced turbulence is enhanced. In the coronal holes we account for a reflection of the outward propagating waves, which is accompanied by generation of weaker counter-propagating waves. The non-linear cascade rate degrades in strongly imbalanced turbulence, thus resulting in colder coronal holes. The distinctive feature of the presented model is the description of the low corona as almost-steady-state low-beta plasma motion and heat flux transfer along the magnetic field lines. We trace the magnetic field lines through each grid point of the lower boundary of the g...

  9. An Analysis of Magnetic Field Environment Near High-Voltage Power Lines and Contact Wires of Electric Railways

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Image method is used in this paper to calculate the value of magnetic field near high-voltage transmission lines and electric railways. Areas in which the magnetic field is less than 0.002 Gauss are given and the magnetic pollution of high-voltage power transmission lines and electric railways is discussed

  10. The field line map approach for simulations of magnetically confined plasmas

    Science.gov (United States)

    Stegmeir, Andreas; Coster, David; Maj, Omar; Hallatschek, Klaus; Lackner, Karl

    2016-01-01

    Predictions of plasma parameters in the edge and scrape-off layer of tokamaks is difficult since most modern tokamaks have a divertor and the associated separatrix causes the usually employed field/flux-aligned coordinates to become singular on the separatrix/X-point. The presented field line map approach avoids such problems as it is based on a cylindrical grid: standard finite-difference methods can be used for the discretisation of perpendicular (w.r.t. magnetic field) operators, and the characteristic flute mode property (k∥ ≪k⊥) of structures is exploited computationally via a field line following discretisation of parallel operators which leads to grid sparsification in the toroidal direction. This paper is devoted to the discretisation of the parallel diffusion operator (the approach taken is very similar to the flux-coordinate independent (FCI) approach which has already been adopted to a hyperbolic problem (Ottaviani, 2011; Hariri, 2013)). Based on the support operator method, schemes are derived which maintain the self-adjointness property of the parallel diffusion operator on the discrete level. These methods have very low numerical perpendicular diffusion compared to a naive discretisation which is a critical issue since magnetically confined plasmas exhibit a very strong anisotropy. Two different versions of the discrete parallel diffusion operator are derived: the first is based on interpolation where the order of interpolation and therefore the numerical diffusion is adjustable; the second is based on integration and is advantageous in cases where the field line map is strongly distorted. The schemes are implemented in the new code GRILLIX, and extensive benchmarks and numerous examples are presented which show the validity of the approach in general and GRILLIX in particular.

  11. A General Equation Derived by Field Theory for the Use of Uniform Transmission Line with Mutual Inductance

    Institute of Scientific and Technical Information of China (English)

    HONGQingquan; WANGJiancheng; CHENShennian

    2004-01-01

    Beginning with 2 independent equations in integral form derived from Maxwell equation, a most general equation is inferred for the use of uniform transmission line where mutual inductance exists between two conductors in all different line segments of unit lengths;and moreover, the formulas of the magnitude of parameters are given for the use of line segments of unit length on uniform transmission line. A method of field theory is thus offered for analyzing distributed parameter circuit.

  12. A simulation study on image reconstruction in magnetic particle imaging with field-free-line encoding

    CERN Document Server

    Murase, Kenya

    2016-01-01

    The purpose of this study was to present image reconstruction methods for magnetic particle imaging (MPI) with a field-free-line (FFL) encoding scheme and to propose the use of the maximum likelihood-expectation maximization (ML-EM) algorithm for improving the image quality of MPI. The feasibility of these methods was investigated by computer simulations, in which the projection data were generated by summing up the Fourier harmonics obtained from the MPI signals based on the Langevin function. Images were reconstructed from the generated projection data using the filtered backprojection (FBP) method and the ML-EM algorithm. The effects of the gradient of selection magnetic field (SMF), the strength of drive magnetic field (DMF), the diameter of magnetic nanoparticles (MNPs), and the number of projection data on the image quality of the reconstructed images were investigated. The spatial resolution of the reconstructed images became better with increasing gradient of SMF and with increasing diameter of MNPs u...

  13. Coherent population oscillation produced by saturating probe and pump fields on the intercombination Line

    CERN Document Server

    Vafafard, A; Agarwal, G S

    2016-01-01

    We present a theoretical study of the experiments on coherent population oscillations and coher- ent population trapping on the intercombination line of 174Y b. The transition involves a change of the spin and thus can not be interpreted in terms of an effective Lambda system. The reported experiments are done in the regime where both pump and probe fields can saturate the transition. We demonstrate by both numerical and analytical calculations the appearance of the interference minimum as both pump and probe start saturating the transition. We present an analytical result for the threshold probe power when the interference minimum can appear. We also present de- tailed study of the appearance of the interference minimum when magnetic fields are applied. The magnetic fields not only create Zeeman splittings but in addition make the system open because of the couplings to other levels. We show the possibility of interference minimum at the position of subharmonic resonances.

  14. Reduction of the Earth's magnetic field inhibits growth rates of model cancer cell lines.

    Science.gov (United States)

    Martino, Carlos F; Portelli, Lucas; McCabe, Kevin; Hernandez, Mark; Barnes, Frank

    2010-12-01

    Small alterations in static magnetic fields have been shown to affect certain chemical reaction rates ex vivo. In this manuscript, we present data demonstrating that similar small changes in static magnetic fields between individual cell culture incubators results in significantly altered cell cycle rates for multiple cancer-derived cell lines. This change as assessed by cell number is not a result of apoptosis, necrosis, or cell cycle alterations. While the underlying mechanism is unclear, the implications for all cell culture experiments are clear; static magnetic field conditions within incubators must be considered and/or controlled just as one does for temperature, humidity, and carbon dioxide concentration. Copyright © 2010 Wiley-Liss, Inc.

  15. Ab initio implementation of quantum trajectory mean-field approach and dynamical simulation of the N{sub 2}CO photodissociation

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Binbin; Liu, Lihong; Cui, Ganglong; Fang, Wei-Hai, E-mail: fangwh@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China); Cao, Jun [Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Normal College, Guiyang 550018 (China); Feng, Wei; Li, Xin-qi [Department of Physics, Beijing Normal University, Beijing 100875 (China)

    2015-11-21

    In this work, the recently introduced quantum trajectory mean-field (QTMF) approach is implemented and employed to explore photodissociation dynamics of diazirinone (N{sub 2}CO), which are based on the high-level ab initio calculation. For comparison, the photodissociation process has been simulated as well with the fewest-switches surface hopping (FSSH) and the ab initio multiple spawning (AIMS) methods. Overall, the dynamical behavior predicted by the three methods is consistent. The N{sub 2}CO photodissociation at λ > 335 nm is an ultrafast process and the two C—N bonds are broken in a stepwise way, giving birth to CO and N{sub 2} as the final products in the ground state. Meanwhile, some noticeable differences were found in the QTMF, FSSH, and AIMS simulated time constants for fission of the C—N bonds, excited-state lifetime, and nonadiabatic transition ratios in different intersection regions. These have been discussed in detail. The present study provides a clear evidence that direct ab initio QTMF approach is one of the reliable tools for simulating nonadiabatic dynamics processes.

  16. Analysis of Magnetic Field Distribution Under Power Lines with Changing Direction and Carrying Different Current%Analysis of Magnetic Field Distribution Under Power Lines with Changing Direction and Carrying Different Current

    Institute of Scientific and Technical Information of China (English)

    T. Matsumoto; H. Hirata; H. Tarao; N. Hayashi; K. Isaka

    2011-01-01

    Transmission power lines are a common source of extremely low frequency (ELF) magnetic fields which are usually analyzed as serial lines in one direction. Overhead vertical-type double-circuit power lines, which are generally used in Japan, sometimes carry different current for each circuit and change direction. In this paper, we focused on both the angle of direction change and the current balance in order to clarify the characteristics of distribution of magnetic fields at a height of 1 m. The magnetic field distributions were analyzed considering both the angle of power lines changing direction and the current balance of each circuit. The total magnetic field under overhead vertical-type double-circuit power lines with same current was generally reduced in comparison with that under a single-circuit power line due to phase difference. The total magnetic fields around the turning point where the change of transmission lines direction increased because each circuit came closer in that area. The component of Bz effect on total magnetic field was greatest around the maximum of total magnetic fields nearby the turning point.

  17. Excessive magnetic field flux density distribution from overhead isolated powerline conductors due to neutral line current.

    Science.gov (United States)

    Netzer, Moshe

    2013-06-01

    Overhead isolated powerline conductors (hereinafter: "OIPLC") are the most compact form for distributing low voltage currents. From the known physics of magnetic field emission from 3-phase power lines, it is expected that excellent symmetry of the 120° shifted phase currents and where compact configuration of the 3-phase+neutral line exist, the phase current vectorial summation of the magnetic field flux density (MFFD) is expected to be extremely low. However, despite this estimation, an unexpectedly very high MFFD was found in at least three towns in Israel. This paper explains the reasons leading to high MFFD emissions from compact OIPLC and the proper technique to fix it. Analysis and measurement results had led to the failure hypothsis of neutral line poor connection design and poor grounding design of the HV-LV utility transformers. The paper elaborates on the low MFFD exposure level setup by the Israeli Environmental Protection Office which adopted a rather conservative precaution principal exposure level (2 mG averaged over 24 h).

  18. Bias-field controlled phasing and power combination of gyromagnetic nonlinear transmission lines.

    Science.gov (United States)

    Reale, D V; Bragg, J-W B; Gonsalves, N R; Johnson, J M; Neuber, A A; Dickens, J C; Mankowski, J J

    2014-05-01

    Gyromagnetic Nonlinear Transmission Lines (NLTLs) generate microwaves through the damped gyromagnetic precession of the magnetic moments in ferrimagnetic material, and are thus utilized as compact, solid-state, frequency agile, high power microwave (HPM) sources. The output frequency of a NLTL can be adjusted by control of the externally applied bias field and incident voltage pulse without physical alteration to the structure of the device. This property provides a frequency tuning capability not seen in many conventional e-beam based HPM sources. The NLTLs developed and tested are mesoband sources capable of generating MW power levels in the L, S, and C bands of the microwave spectrum. For an individual NLTL the output power at a given frequency is determined by several factors including the intrinsic properties of the ferrimagnetic material and the transmission line structure. Hence, if higher power levels are to be achieved, it is necessary to combine the outputs of multiple NLTLs. This can be accomplished in free space using antennas or in a transmission line via a power combiner. Using a bias-field controlled delay, a transient, high voltage, coaxial, three port, power combiner was designed and tested. Experimental results are compared with the results of a transient COMSOL simulation to evaluate combiner performance.

  19. Investigation of the behavior of protection elements against field radiated line coupled UWB-pulses

    Directory of Open Access Journals (Sweden)

    R. Krzikalla

    2006-01-01

    Full Text Available To protect electronic systems against electromagnetic interferences in general nonlinear protection circuits are used. These protection circuits are optimized mostly against special transient interferences such as lightning electromagnetic pulses (LEMP or electromagnetic pulses caused by nuclear explosions (NEMP. Previous investigations have shown that these protection elements could be undermined by so-called ultra wideband (UWB pulses. Thereby a direct charge of the UWB-pulse to the elements has been assumed. This assumption was a worst case approximation because in practice UWB-pulses only get into systems by coupling effects. In this investigation the behavior of typical nonlinear protection elements has been tested with field radiated line coupled UWB-pulses. For that line coupled UWB-pulses have been defined depending on the coupling behavior of typical electronic systems and a possibility of generation of this kind of pulses is presented. After it typical nonlinear protection elements such as spark gaps, varistors and protection diodes have been tested with the previously defined test pulses. Finally the measured behavior of the elements has been compared with the behavior by direct charged UWB-pulses and the protection effect of the elements against field radiated line coupled UWB-pulses is re-evaluated.

  20. Optical M0bius Strips in Three Dimensional Ellipse Fields: Lines of Linear Polarization

    CERN Document Server

    Freund, Isaac

    2009-01-01

    The minor axes of, and the normals to, the polarization ellipses that surround singular lines of linear polarization in three dimensional optical ellipse fields are shown to be organized into Mobius strips and into structures we call rippled rings (r-rings). The Mobius strips have two full twists, and can be either right- or left-handed. The major axes of the surrounding ellipses generate cone-like structures. Three orthogonal projections that give rise to 15 indices are used to characterize the different structures. These indices, if independent, could generate 839,808 geometrically and topologically distinct lines; selection rules are presented that reduce the number of lines to 8,248, some 5,562 of which have been observed in a computer simulation. Statistical probabilities are presented for the most important index combinations in random fields. It is argued that it is presently feasible to perform experimental measurements of the Mobius strips, r-rings, and cones described here theoretically.

  1. Three-dimensional temperature field in a line-heater embedded by a spiral electric resistor

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, S.Y.; Wei, P.S.; Wang, Z.P. [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, 70, Lien-hai Road, Kaohsiung 804, Taiwan (China)

    2006-06-15

    In this study, three-dimensional temperature fields induced by AC and DC through a spiral electric resistor in a line-heater are numerically investigated. Electric heaters have been widely found, for example, in houses as dryers, stoves, and water heaters, and in industrial and research institutions as elements of equipments. The line-heater in the present model is realistically considered to have multiple regions composed of a spiral electric resistor, electrically insulated region, covering outer layer, and two terminal pins with distinct thermal and electrical properties. Solving unsteady three-dimensional heat conduction equations in distinct regions, the surface temperatures predicted as a function of time in this model are confirmed by the measured data. The calculated results quantitatively show that high surface temperatures of the heater can be reached by increasing dimensionless joule heat parameter, radius of the spiral electric resistor or pins, thermal diffusivity of the insulation region, and decreasing Biot number and radius of insulation region. The effects of the pins on surface temperature are also studied. Aside from showing that DC produces higher temperature than AC, the results indicate that the effects of current frequency on temperature fields are insignificant. The findings can be generalized to a curved heater, because any local location can be considered as a small line-segment. The present work provides general and quantitative data valuable for designing an efficient heater/furnace. [Author].

  2. Effective field theory and keV lines from dark matter

    CERN Document Server

    Krall, Rebecca; Roxlo, Thomas

    2014-01-01

    We survey operators that can lead to a keV photon line from dark matter decay or annihilation. We are motivated in part by recent claims of an unexplained 3.5 keV line in galaxy clusters and in Andromeda, but our results could apply to any hypothetical line observed in this energy range. We find that given the amount of flux that is observable, explanations in terms of decay are more plausible than annihilation, at least if the annihilation is directly to Standard Model states rather than intermediate particles. The decay case can be explained by a scalar or pseudoscalar field coupling to photons suppressed by a scale not far below the reduced Planck mass, which can be taken as a tantalizing hint of high-scale physics. The scalar case is particularly interesting from the effective field theory viewpoint, and we discuss it at some length. Because of a quartically divergent mass correction, naturalness strongly suggests the theory should be cut off at or below the 1000 TeV scale. The most plausible such natural...

  3. Effects of Pulsed Electromagnetic Field on Differentiation of HUES-17 Human Embryonic Stem Cell Line

    Directory of Open Access Journals (Sweden)

    Yi-Lin Wu

    2014-08-01

    Full Text Available Electromagnetic fields are considered to potentially affect embryonic development, but the mechanism is still unknown. In this study, human embryonic stem cell (hESC line HUES-17 was applied to explore the mechanism of exposure on embryonic development to pulsed electromagnetic field (PEMF for 400 pulses at different electric field intensities and the differentiation of HUES-17 cells was observed after PEMF exposure. The expression of alkaline phosphatase (AP, stage-specific embryonic antigen-3 (SSEA-3, SSEA-4 and the mRNA level and protein level of Oct4, Sox2 and Nanog in HUES-17 cells remained unchanged after PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m. Four hundred pulses PEMF exposure at the electric field intensities of 50, 100, 200 or 400 kV/m did not affect the differentiation of HUES-17 cells. The reason why electromagnetic fields affect embryonic development may be due to other mechanisms rather than affecting the differentiation of embryonic stem cells.

  4. DIRECT OBSERVATION OF SOLAR CORONAL MAGNETIC FIELDS BY VECTOR TOMOGRAPHY OF THE CORONAL EMISSION LINE POLARIZATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Kramar, M. [Physics Department, The Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Lin, H. [Institute for Astronomy, University of Hawaii at Manoa, 34 Ohia Ku Street, Pukalani, Maui, HI 96768 (United States); Tomczyk, S., E-mail: kramar@cua.edu, E-mail: lin@ifa.hawaii.edu, E-mail: tomczyk@ucar.edu [High Altitude Observatory, 3080 Center Green Drive, Boulder, CO 80301 (United States)

    2016-03-10

    We present the first direct “observation” of the global-scale, 3D coronal magnetic fields of Carrington Rotation (CR) Cycle 2112 using vector tomographic inversion techniques. The vector tomographic inversion uses measurements of the Fe xiii 10747 Å Hanle effect polarization signals by the Coronal Multichannel Polarimeter (CoMP) and 3D coronal density and temperature derived from scalar tomographic inversion of Solar Terrestrial Relations Observatory (STEREO)/Extreme Ultraviolet Imager (EUVI) coronal emission lines (CELs) intensity images as inputs to derive a coronal magnetic field model that best reproduces the observed polarization signals. While independent verifications of the vector tomography results cannot be performed, we compared the tomography inverted coronal magnetic fields with those constructed by magnetohydrodynamic (MHD) simulations based on observed photospheric magnetic fields of CR 2112 and 2113. We found that the MHD model for CR 2112 is qualitatively consistent with the tomography inverted result for most of the reconstruction domain except for several regions. Particularly, for one of the most noticeable regions, we found that the MHD simulation for CR 2113 predicted a model that more closely resembles the vector tomography inverted magnetic fields. In another case, our tomographic reconstruction predicted an open magnetic field at a region where a coronal hole can be seen directly from a STEREO-B/EUVI image. We discuss the utilities and limitations of the tomographic inversion technique, and present ideas for future developments.

  5. Effects of External Radiation Fields on Line Emission—Application to Star-forming Regions

    Science.gov (United States)

    Chatzikos, Marios; Ferland, G. J.; Williams, R. J. R.; Porter, Ryan; van Hoof, P. A. M.

    2013-12-01

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background, as well as by a nearby active galactic nucleus. These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code CLOUDY. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field and show that about 60% of its emission lines are sensitive to background subtraction. We argue that this geometric approach could provide an additional tool toward understanding the complex radiation fields of starburst galaxies.

  6. Stability of transgene expression, field performance and recombination breeding of transformed barley lines

    DEFF Research Database (Denmark)

    Horvath, H.; Jensen, L.G.; Wong, O.T.

    2001-01-01

    in homozygous transgenic T-3 plants, and these remained constant over a 3-year period. In micro-malting experiments, the heat-stable enzyme reached levels of up to 1.4 mug.mg(-1) protein and survived kiln drying at levels of 70-100%. In the field trials of 1997 and 1998 the transgenic lines had a reduced 1000...... lines yielded approximately 6 t.ha(-1) and Golden Promise 7.7 t.ha(-1). Cross-breeding was carried out to transfer the transgene into a more suitable genetic background. Crosses of the semi-dwarf ari-e mutant Golden Promise gave rise to the four morphological phenotypes nutans, high erect, erect...... transformants were observed in some F-4 lines homozygous for the morphological phenotypes and for the transgene. In the case of a homozygous nutans line, the transgenic plants had a higher 1000-grain weight than those lacking the transgene. Like mutants providing useful output traits, transgenic plants...

  7. Measuring galaxy [OII] emission line doublet with future ground-based wide-field spectroscopic surveys

    CERN Document Server

    Comparat, Johan; Bacon, Roland; Mostek, Nick J; Newman, Jeffrey A; Schlegel, David J; Yèche, Christophe

    2013-01-01

    The next generation of wide-field spectroscopic redshift surveys will map the large-scale galaxy distribution in the redshift range 0.7< z<2 to measure baryonic acoustic oscillations (BAO). The primary optical signature used in this redshift range comes from the [OII] emission line doublet, which provides a unique redshift identification that can minimize confusion with other single emission lines. To derive the required spectrograph resolution for these redshift surveys, we simulate observations of the [OII] (3727,3729) doublet for various instrument resolutions, and line velocities. We foresee two strategies about the choice of the resolution for future spectrographs for BAO surveys. For bright [OII] emitter surveys ([OII] flux ~30.10^{-17} erg /cm2/s like SDSS-IV/eBOSS), a resolution of R~3300 allows the separation of 90 percent of the doublets. The impact of the sky lines on the completeness in redshift is less than 6 percent. For faint [OII] emitter surveys ([OII] flux ~10.10^{-17} erg /cm2/s like ...

  8. Hybrid trajectory spaces

    NARCIS (Netherlands)

    Collins, P.J.

    2005-01-01

    In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na

  9. ¹⁴N Quadrupole Resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor.

    Science.gov (United States)

    Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel

    2015-01-01

    As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)).

  10. Field line distribution of density at L=4.8 inferred from observations by CLUSTER

    Directory of Open Access Journals (Sweden)

    S. Schäfer

    2009-02-01

    Full Text Available For two events observed by the CLUSTER spacecraft, the field line distribution of mass density ρ was inferred from Alfvén wave harmonic frequencies and compared to the electron density ne from plasma wave data and the oxygen density nO+ from the ion composition experiment. In one case, the average ion mass M≈ρ/ne was about 5 amu (28 October 2002, while in the other it was about 3 amu (10 September 2002. Both events occurred when the CLUSTER 1 (C1 spacecraft was in the plasmatrough. Nevertheless, the electron density ne was significantly lower for the first event (ne=8 cm−3 than for the second event (ne=22 cm−3, and this seems to be the main difference leading to a different value of M. For the first event (28 October 2002, we were able to measure the Alfvén wave frequencies for eight harmonics with unprecedented precision, so that the error in the inferred mass density is probably dominated by factors other than the uncertainty in frequency (e.g., magnetic field model and theoretical wave equation. This field line distribution (at L=4.8 was very flat for magnetic latitude |MLAT|≲20° but very steeply increasing with respect to |MLAT| for |MLAT|≳40°. The total variation in ρ was about four orders of magnitude, with values at large |MLAT| roughly consistent with ionospheric values. For the second event (10 September 2002, there was a small local maximum in mass density near the magnetic equator. The inferred mass density decreases to a minimum 23% lower than the equatorial value at |MLAT|=15.5°, and then steeply increases as one moves along the field line toward the ionosphere. For this event we were also able to examine the spatial dependence of the electron density using measurements of ne from all four CLUSTER spacecraft. Our analysis indicates that the density varies with L at L~5 roughly like L−4, and that ne is also locally peaked at the magnetic equator, but with a smaller peak. The value of ne reaches a density minimum

  11. Ultra-fast line-field low coherence holographic elastography using spatial phase shifting

    Science.gov (United States)

    Liu, Chih-Hao; Schill, Alexander; Raghunathan, Raksha; Wu, Chen; Singh, Manmohan; Han, Zhaolong; Nair, Achuth; Larin, Kirill V.

    2017-01-01

    Optical coherence elastography (OCE) is an emerging technique for quantifying tissue biomechanical properties. Generally, OCE relies on point-by-point scanning. However, long acquisition times make point-by-point scanning unfeasible for clinical use. Here we demonstrate a noncontact single shot line-field low coherence holography system utilizing an automatic Hilbert transform analysis based on a spatial phase shifting technique. Spatio-temporal maps of elastic wave propagation were acquired with only one air-pulse excitation and used to quantify wave velocity and sample mechanical properties at a line rate of 200 kHz. Results obtained on phantoms were correlated with data from mechanical testing. Finally, the stiffness of porcine cornea at different intraocular pressures was also quantified in situ.

  12. Resolving the coronal line region of NGC1068 with near infrared integral field spectroscopy

    CERN Document Server

    Mazzalay, X; Komossa, S; McGregor, Peter J

    2012-01-01

    We present AO-assisted J- and K-band integral field spectroscopy of the inner 300 x 300 pc of the Seyfert 2 galaxy NGC1068. The data were obtained with the Gemini NIFS integral field unit spectrometer, which provided us with high-spatial and -spectral resolution sampling. The wavelength range covered by the observations allowed us to study the [CaVIII], [SiVI], [SiVII], [AlIX] and [SIX] coronal-line (CL) emission, covering ionization potentials up to 328 eV. The observations reveal very rich and complex structures, both in terms of velocity fields and emission-line ratios. The CL emission is elongated along the NE-SW direction, with the stronger emission preferentially localized to the NE of the nucleus. CLs are emitted by gas covering a wide range of velocities, with maximum blueshifts/redshifts of ~ -1600/1000 km/s. There is a trend for the gas located on the NE side of the nucleus to be blueshifted while the gas located towards the SW is redshifted. The morphology and the kinematics of the near-infrared CL...

  13. Coordinated observation of field line resonance in the mid-tail

    Directory of Open Access Journals (Sweden)

    Y. Zheng

    2006-03-01

    Full Text Available Standing Alfvén waves of 1.1 mHz (~15 min in period were observed by the Cluster satellites in the mid-tail during 06:00-07:00 UT on 8 August 2003. Pulsations with the same frequency were also observed at several ground stations near Cluster's footpoint. The standing wave properties were determined from the electric and magnetic field measurements of Cluster. Data from the ground magnetometers indicated a latitudinal amplitude and phase structure consistent with the driven field line resonance (FLR at 1.1 mHz. Simultaneously, quasi-periodic oscillations at different frequencies were observed in the post-midnight/early morning sector by GOES 12 (l0≈8.7, Polar (l0≈11-14 and Geotail (l0≈9.8. The 8 August 2003 event yields rare and interesting datasets. It provides, for the first time, coordinated in situ and ground-based observations of a very low frequency FLR in the mid-tail on stretched field lines.

  14. An asymptotic preserving method for strongly anisotropic diffusion equations based on field line integration

    Science.gov (United States)

    Tang, Min; Wang, Yihong

    2017-02-01

    In magnetized plasma, the magnetic field confines the particles around the field lines. The anisotropy intensity in the viscosity and heat conduction may reach the order of 1012. When the boundary conditions are periodic or Neumann, the strong diffusion leads to an ill-posed limiting problem. To remove the ill-conditionedness in the highly anisotropic diffusion equations, we introduce a simple but very efficient asymptotic preserving reformulation in this paper. The key idea is that, instead of discretizing the Neumann boundary conditions locally, we replace one of the Neumann boundary condition by the integration of the original problem along the field line, the singular 1 / ɛ terms can be replaced by O (1) terms after the integration, which yields a well-posed problem. Small modifications to the original code are required and no change of coordinates nor mesh adaptation are needed. Uniform convergence with respect to the anisotropy strength 1 / ɛ can be observed numerically and the condition number does not scale with the anisotropy.

  15. Ap stars with resolved magnetically split lines: Magnetic field determinations from Stokes I and V spectra⋆

    Science.gov (United States)

    Mathys, G.

    2017-05-01

    Context. Some Ap stars that have a strong enough magnetic field and a sufficiently low v sini show spectral lines resolved into their magnetically split components. Aims: We present the results of a systematic study of the magnetic fields and other properties of those stars. Methods: This study is based on 271 new measurements of the mean magnetic field modulus ⟨ B ⟩ of 43 stars, 231 determinations of the mean longitudinal magnetic field ⟨ Bz ⟩ and of the crossover ⟨ Xz ⟩ of 34 stars, and 229 determinations of the mean quadratic magnetic field ⟨ Bq ⟩ of 33 stars. Those data were used to derive new values or meaningful lower limits of the rotation periods Prot of 21 stars. Variation curves of the mean field modulus were characterised for 25 stars, the variations of the longitudinal field were characterised for 16 stars, and the variations of the crossover and of the quadratic field were characterised for 8 stars. Our data are complemented by magnetic measurements from the literature for 41 additional stars with magnetically resolved lines. Phase coverage is sufficient to define the curve of variation of ⟨ B ⟩ for 2 of these stars. Published data were also used to characterise the ⟨ Bz ⟩ curves of variation for 10 more stars. Furthermore, we present 1297 radial velocity measurements of the 43 Ap stars in our sample that have magnetically resolved lines. Nine of these stars are spectroscopic binaries for which new orbital elements were derived. Results: The existence of a cut-off at the low end of the distribution of the phase-averaged mean magnetic field moduli ⟨ B ⟩ av of the Ap stars with resolved magnetically split lines, at about 2.8 kG, is confirmed. This reflects the probable existence of a gap in the distribution of the magnetic field strengths in slowly rotating Ap stars, below which there is a separate population of stars with fields weaker than 2 kG. In more than half of the stars with magnetically resolved lines that have a

  16. Neural mass modeling of power-line magnetic fields effects on brain activity

    Directory of Open Access Journals (Sweden)

    Julien eModolo

    2013-04-01

    Full Text Available Neural mass models are an appropriate framework to study brain activity, combining a high degree of biological realism while being mathematically tractable. These models have been used, with a certain success, to simulate brain electric (electroencephalography, EEG and metabolic (functional magnetic resonance imaging, fMRI activity. However, concrete applications of neural mass models have remained limited to date. Motivated by experimental results obtained in humans, we propose in this paper a neural mass model designed to study the interaction between power-line magnetic fields (60 Hz in North America and brain activity. The model includes pyramidal cells; dendrite-projecting, slow GABAergic neurons; soma-projecting, fast GABAergic neurons; and glutamatergic interneurons. A simple phenomenological model of interaction between the induced electric field and neuron membranes is also considered, along with a model of post-synaptic calcium concentration and associated changes in synaptic weights Simulated EEG signals are produced in a simple protocol, both in the absence and presence of a 60 Hz magnetic field. These results are discussed based on results obtained previously in humans. Notably, results highlight that 1 EEG alpha (8-12 Hz power can be modulated by weak membrane depolarizations induced by the exposure; 2 the level of input noise has a significant impact on EEG alpha power modulation; and 3 neural mass network size results in a different alpha rhythm modulation than when an individual neural mass is considered. Results obtained from the model shed new light on the effects of power-line magnetic fields on brain activity, and will provide guidance in future human experiments. This may represent a valuable contribution to international regulation agencies setting guidelines on magnetic field values to which the general public and workers can be exposed.

  17. Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.

    Science.gov (United States)

    Bente, Klaas; Weber, Matthias; Graeser, Matthias; Sattel, Timo F; Erbe, Marlitt; Buzug, Thorsten M

    2015-02-01

    It has been shown that magnetic particle imaging (MPI), an imaging method suggested in 2005, is capable of measuring the spatial distribution of magnetic nanoparticles. Since the particles can be administered as biocompatible suspensions, this method promises to perform well as a tracer-based medical imaging technique. It is capable of generating real-time images, which will be useful in interventional procedures, without utilizing any harmful radiation. To obtain a signal from the administered superparamagnetic iron oxide (SPIO) particles, a sinusoidal changing external homogeneous magnetic field is applied. To achieve spatial encoding, a gradient field is superimposed. Conventional MPI works with a spatial encoding field that features a field free point (FFP). To increase sensitivity, an improved spatial encoding field, featuring a field free line (FFL) can be used. Previous FFL scanners, featuring a 1-D excitation, could demonstrate the feasibility of the FFL-based MPI imaging process. In this work, an FFL-based MPI scanner is presented that features a 2-D excitation field and, for the first time, an electronic rotation of the spatial encoding field. Furthermore, the role of relaxation effects in MPI is starting to move to the center of interest. Nevertheless, no reconstruction schemes presented thus far include a dynamical particle model for image reconstruction. A first application of a model that accounts for relaxation effects in the reconstruction of MPI images is presented here in the form of a simplified, but well performing strategy for signal deconvolution. The results demonstrate the high impact of relaxation deconvolution on the MPI imaging process.

  18. Enhancing isolation of antenna arrays by simultaneously blocking and guiding magnetic field lines using magnetic metamaterials

    Science.gov (United States)

    Liu, Zhaotang; Wang, Jiafu; Qu, Shaobo; Zhang, Jieqiu; Ma, Hua; Xu, Zhuo; Zhang, Anxue

    2016-10-01

    In this article, we propose to enhance the isolation of antenna arrays by manipulating the near-field magnetic coupling between adjacent antennas using magnetic metamaterials (MMs). Due to the artificially designed negative or large permeability, MMs can concentrate or block the magnetic field lines where they are located, which allows us to tune the near-field magnetic coupling strengths between antennas. MMs can play a two-fold role in enhancing antenna isolation. On one hand, the magnetic fields can be blocked in gaps between adjacent antennas using MMs with negative permeability; on the other hand, the magnetic fields can be pulled towards the borders of the antenna array using MMs with large permeability. As an example, we demonstrated a four-element patch antenna array with split-ring resonators (SRR) integrated in the substrate. The measured results show that the isolation can be enhanced by more than 10 dB with the integration of SRRs, even if the gap between antennas is only about 0.082λ. This work provides an effective alternative to the design of high-isolation antenna arrays.

  19. Studies of Dynamic, Radiative Macroscopic Magnetized HED Plasmas with Closed B-Field Lines

    Energy Technology Data Exchange (ETDEWEB)

    Frese, Michael H. [NumerEx, LLC, Albuquerque, NM (United States); Frese, Sherry D. [NumerEx, LLC, Albuquerque, NM (United States)

    2013-11-01

    The purpose of this research has been to study the physics of macroscopic magnetized high-energy-density laboratory plasmas (HEDLPs) created through the compression of a high-beta compact toroid (CT) plasma having closed magnetic field lines. The high-beta CT chosen for this work is a field-reversed configuration (FRC). The basic approach is to investigate CT plasmas as they are compressed to a HED state by the electromagnetic implosion of a surrounding metallic shell or solid liner (Figure 1). The shell provides an axisymmetric, electrically-conducting boundary around the plasma and its supporting magnetic field and is imploded by means of the magnetic pressure force arising from axial current flow in the liner interacting with its associated azimuthal magnetic field. Compression of the CT will bring the plasma to fusion temperatures at higher densities and magnetic fields (multi-MegaGauss [MG]) than have previously been present in conventional magnetic fusion approaches. The resulting energy densities will be ~1 Mbar or greater and thus will place the plasma in a parameter space intermediate to MFE and IFE. This work has been a collaboration between the Air Force Research Laboratory, Los Alamos National Laboratory, and NumerEx, LLC.

  20. Analysis of the ITER low field side reflectometer transmission line system.

    Science.gov (United States)

    Hanson, G R; Wilgen, J B; Bigelow, T S; Diem, S J; Biewer, T M

    2010-10-01

    A critical issue in the design of the ITER low field side reflectometer is the transmission line (TL) system. A TL connects each launcher to a diagnostic instrument. Each TL will typically consist of ∼42 m of corrugated waveguide and up to ten miter bends. Important issues for the performance of the TL system are mode conversion and reflections. Minimizing these issues are critical to minimizing standing waves and phase errors. The performance of TL system is analyzed and recommendations are given.

  1. Analytical Formulation for Electromagnetic Leakage Field to Transmission Line Coupling through Covered Apertures of Multiple Enclosures

    Directory of Open Access Journals (Sweden)

    Jianhong Hao

    2017-01-01

    Full Text Available An efficient analytical model has been developed for predicting the electromagnetic leakage field coupling with a lossless two-conductor transmission line (TL through covered apertures of multiple enclosures. The analytical results have been successfully compared with those from the full-wave simulation software CST over a broad frequency range. The analytical model can be employed to analyze the effect of different factors including the position and the direction of the electric dipole, the conductivity of the conductive sheet, the quantity of the aperture, and the direction of the TL on the induced currents. Besides, it can also deal with apertures in multiple sides of the enclosures.

  2. Field validation of protocols developed to evaluate in-line mastitis detection systems.

    Science.gov (United States)

    Kamphuis, C; Dela Rue, B T; Eastwood, C R

    2016-02-01

    This paper reports on a field validation of previously developed protocols for evaluating the performance of in-line mastitis-detection systems. The protocols outlined 2 requirements of these systems: (1) to detect cows with clinical mastitis (CM) promptly and accurately to enable timely and appropriate treatment and (2) to identify cows with high somatic cell count (SCC) to manage bulk milk SCC levels. Gold standard measures, evaluation tests, performance measures, and performance targets were proposed. The current study validated the protocols on commercial dairy farms with automated in-line mastitis-detection systems using both electrical conductivity (EC) and SCC sensor systems that both monitor at whole-udder level. The protocol for requirement 1 was applied on 3 commercial farms. For requirement 2, the protocol was applied on 6 farms; 3 of them had low bulk milk SCC (128×10(3) cells/mL) and were the same farms as used for field evaluation of requirement 1. Three farms with high bulk milk SCC (270×10(3) cells/mL) were additionally enrolled. The field evaluation methodology and results were presented at a workshop including representation from 7 international suppliers of in-line mastitis-detection systems. Feedback was sought on the acceptance of standardized performance evaluation protocols and recommended refinements to the protocols. Although the methodology for requirement 1 was relatively labor intensive and required organizational skills over an extended period, no major issues were encountered during the field validation of both protocols. The validation, thus, proved the protocols to be practical. Also, no changes to the data collection process were recommended by the technology supplier representatives. However, 4 recommendations were made to refine the protocols: inclusion of an additional analysis that ignores small (low-density) clot observations in the definition of CM, extension of the time window from 4 to 5 milkings for timely alerts for CM

  3. Quantum scalar fields in the half-line. A heat kernel/zeta function approach

    OpenAIRE

    Mateos Guilarte, Juan; Muñoz-Castañeda, Jose María; Senosiaín Aramendía, María Jesús

    2009-01-01

    [EN]In this paper we shall study vacuum fluctuations of a single scalar field with Dirichlet boundary conditions in a finite but very long line. The spectral heat kernel, the heat partition function and the spectral zeta function are calculated in terms of Riemann Theta functions, the error function, and hypergeometric PFQ functions. [ES]En este artículo vamos a estudiar las fluctuaciones en el vacío de un campo escalar con las condiciones de contorno de Dirichlet en una línea finita pero muy...

  4. Electromagnetic Field Interaction With Transmission Lines From Classical Theory to HF Radiation Effects

    CERN Document Server

    Tkachenko, Sergey V

    2008-01-01

    The evaluation of the electromagnetic field coupling to transmission lines is an important problem in electromagnetic compatibility. The unabated increase in the operating frequency of electronic products and the emergence of sources of disturbances with higher frequency content (such as High Power Microwave and Ultra-Wide Band systems) have led to a breakdown of the TL approximation's basic assumptions for a number of applications. In the last decade or so, the generalization of the TL theory to take into account high frequency effects has emerged as an important topic of study in electromagn

  5. Developments in digital in-line holography enable validated measurement of 3D particle field dynamics.

    Energy Technology Data Exchange (ETDEWEB)

    Guildenbecher, Daniel Robert

    2013-12-01

    Digital in-line holography is an optical technique which can be applied to measure the size, three-dimensional position, and three-component velocity of disperse particle fields. This work summarizes recent developments at Sandia National Laboratories focused on improvement in measurement accuracy, experimental validation, and applications to multiphase flows. New routines are presented which reduce the uncertainty in measured position along the optical axis to a fraction of the particle diameter. Furthermore, application to liquid atomization highlights the ability to measure complex, three-dimensional structures. Finally, investigation of particles traveling at near sonic conditions prove accuracy despite significant experimental noise due to shock-waves.

  6. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    Science.gov (United States)

    Viezzer, E.; Dux, R.; Dunne, M. G.

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line Dα. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  7. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade.

    Science.gov (United States)

    Viezzer, E; Dux, R; Dunne, M G

    2016-11-01

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line Dα. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  8. A new beam emission polarimetry diagnostic for measuring the magnetic field line angle at the plasma edge of ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Viezzer, E., E-mail: eleonora.viezzer@ipp.mpg.de, E-mail: eviezzer@us.es [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany); Department of Atomic, Molecular, and Nuclear Physics, University of Seville, Avda. Reina Mercedes, 41012 Seville (Spain); Dux, R.; Dunne, M. G. [Max-Planck-Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-11-15

    A new edge beam emission polarimetry diagnostic dedicated to the measurement of the magnetic field line angle has been installed on the ASDEX Upgrade tokamak. The new diagnostic relies on the motional Stark effect and is based on the simultaneous measurement of the polarization direction of the linearly polarized π (parallel to the electric field) and σ (perpendicular to the electric field) lines of the Balmer line D{sub α}. The technical properties of the system are described. The calibration procedures are discussed and first measurements are presented.

  9. Trajectories in a changing field

    DEFF Research Database (Denmark)

    Steensen, Jette Johanne Elisabeth

    2009-01-01

    A comparative analysis between teacher education in Denmark and the USA reveals how teacher trainings programmes, socio-economic background and cultural contexts interact. The main conclusion of the chapter is that the interplay of diversity and identity emphases the limitations of teacher educat...

  10. Evaluation of the Trajectory Sensitivity Analysis of the DFIG Control Parameters in Response to Changes in Wind Speed and the Line Impedance Connection to the Grid DFIG

    Directory of Open Access Journals (Sweden)

    Mehdi Fooladgar

    2015-01-01

    Full Text Available Economic and environmental conditions often make large stations and transmission lines, restrictions are placed. Small and medium-sized production units connected to existing systems as a strategy is in progress. These units are usually near the center of the load placed and distributed generators (DG famous are the DG are allowed types vary, such as induction generators rack squirrel-connected wind turbines, generators fed induction double mounted wind turbines, fuel cells connected to the system by power electronic converters or synchronous generator connected to the turbine combustion [10]. This way sensitivity analysis in systems of distributed generation (DG is assessed. It is shown that the method can detect the effect of control parameters listed wind turbine connected to a double-fed induction generator (DFIG Badoou the impedance of the changing the speed of on the stability of the transmission line useful system invested. The control parameters of the importance of influencing the behavior of DFIG are divided.

  11. Quasi-bound complexes in collisions of different linear molecules: Classical trajectory study of their manifestations in rotational relaxation and spectral line broadening

    Science.gov (United States)

    Ivanov, Sergey V.

    2016-07-01

    Stable bimolecular complexes (tightly bound dimers) in the gas phase are usually created during third body stabilization of their unstable precursors-quasi-bound complexes (QCs). The latter can arise under the condition that at least one of the colliding partners has an internal degree of freedom. In this article, the principal difference between "orbitings" and QCs is demonstrated in the classical nonreactive scattering picture. Additionally, fractions of QCs in binary collisions of different linear molecules are compared. Also in the article the influence of QCs on rotational R-T relaxation and on vibration-rotational spectral line broadening is discussed. Explicit formulae shedding light on the QCs contribution to the R-T relaxation cross section and the line width and shift are presented. The obtained results emphasize the need for including QCs in every theoretical modeling of spectroscopic manifestation of intermolecular interactions. Besides the topics above, the possible manifestation of non-impact effects in the central regions of spectral lines due to QCs is stated. And finally, special consideration is given to the problem of adequate simulation of QCs formation at different pressures.

  12. Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants

    Science.gov (United States)

    Noureldin, Kareem; Hirsch, Tobias; Pitz-Paal, Robert

    2017-06-01

    Optimizing solar field operation and control is a key factor to improve the competitiveness of line-focus solar thermal power plants. However, the risks of assessing new and innovative control strategies on operational power plants hinder such optimizations and result in applying more conservative control schemes. In this paper, we describe some applications for a whole solar field transient in-house simulation tool developed at the German Aerospace Centre (DLR), the Virtual Solar Field (VSF). The tool offers a virtual platform to simulate real solar fields while coupling the thermal and hydraulic conditions of the field with high computational efficiency. Using the tool, developers and operator can probe their control strategies and assess the potential benefits while avoiding the high risks and costs. In this paper, we study the benefits gained from controlling the loop valves and of using direct normal irradiance maps and forecasts for the field control. Loop valve control is interesting for many solar field operators since it provides a high degree of flexibility to the control of the solar field through regulating the flow rate in each loop. This improves the reaction to transient condition, such as passing clouds and field start-up in the morning. Nevertheless, due to the large number of loops and the sensitivity of the field control to the valve settings, this process needs to be automated and the effect of changing the setting of each valve on the whole field control needs to be taken into account. We used VSF to implement simple control algorithms to control the loop valves and to study the benefits that could be gained from using active loop valve control during transient conditions. Secondly, we study how using short-term highly spatially-resolved DNI forecasts provided by cloud cameras could improve the plant energy yield. Both cases show an improvement in the plant efficiency and outlet temperature stability. This paves the road for further

  13. Auroral displays near the 'foot' of the field line of the ATS-5 satellite

    Science.gov (United States)

    Akasofu, S.-I.; Deforest, S.; Mcilwain, C.

    1974-01-01

    Summary of an extensive correlative study of ATS-5 particle and magnetic field data with all-sky photographs from Great Whale River which is near the 'foot' of the field lines passing through the ATS-5 satellite. In particular, an effort is made to identify specific particle features with specific auroral displays during substorms, such as a westward traveling surge, poleward expansive motion, and drifting patches. It is found that, in early evening hours, the first encounter of ATS-5 with hot plasma is associated with the equatorward shift of the diffuse aurora, but not necessarily with westward traveling surges (even when the satellite is embedded in the plasma sheet). In the midnight sector, an injection corresponds very well to the initial brightening of an auroral arc. Specific features of morning sector auroras are difficult to correlate with specific particle features.

  14. Recent advances in measuring chromospheric magnetic fields in the He I 10830 Å line

    Science.gov (United States)

    Lagg, A.

    During the last decade advances in instrumentation, atomic physics and modeling have greatly improved the access to the chromospheric magnetic field vector. High sensitivity polarimeters like the Tenerife Infrared Polarimeter (TIP2, VTT) or the Spectro-Polarimeter for Infrared and Optical Regions (SPINOR, HAO) lead to reliable Zeeman measurements using the He I 10830 Å triplet. The simultaneously measured Si I 10827 Å line provides additional information on the structure of the underlying photosphere. Theoretical modeling of the Hanle and the Paschen-Back effect helped to significantly improve the analysis of polarization measurements in the He I triplet, allowing to directly visualize the magnetic structure of spicules, polar prominences and active regions. Here, I will summarize the results of chromospheric magnetic field measurements using this interesting triplet obtained in the last couple of years and discuss the great potential it has to further uncover the complex structure of the chromosphere and its coupling to the photosphere.

  15. Increase in the scattering of electric field lines in a new high voltage SOI MESFET

    Science.gov (United States)

    Anvarifard, Mohammad K.

    2016-09-01

    This paper illustrates a new efficient technique to enhance the critical features of a silicon-on-insulator metal-semiconductor field-effect transistor (SOI MESFET) applied in high voltage applications. The structure we proposed utilizes a new method to scatter the electric field lines along the channel region. Realization of two trenches with different materials, which a trench is created in the channel region and the other one is created in the buried oxide, helps the proposed structure to improve the breakdown voltage, driving current, drain-source conductance, minimum noise figure, unilateral power gain and output power density. Exploring the obtained results, the proposed structure has superior electrical performance in comparison to the conventional structure.

  16. Trajectory Tracking Control for a Wheeled Mobile Robot Using Fractional Order PIaDb Controller

    Directory of Open Access Journals (Sweden)

    Salah M. Swadi

    2014-09-01

    Full Text Available Nowadays, Wheeled Mobile Robots (WMRs have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of mobile robot was driven for the case where the centroid of mobile robot platform is not coincide with reference frame of mobile robot (i.e. reference frame is located at midpoint of driven wheels axis, while the inertia is counted for. The Evolutionary Algorithm has been used to modified the parameters (Kp, Kd, Ki,a, and b of the FOPID controller for wheeled mobile robot. Simulation results show the effectiveness of the proposed control algorithm: that is demonstrated by applied this controller at four case studies (Circular trajectory, S-shape trajectory, Infinity trajectory, and Line trajectory at two cases, with presences of disturbance and without, these results shows good matching between desired trajectory and simulation one while error in posture goes to zero rapidly.

  17. Characterization of Line Nanopatterns on Positive Photoresist Produced by Scanning Near-Field Optical Microscope

    Directory of Open Access Journals (Sweden)

    Sadegh Mehdi Aghaei

    2015-01-01

    Full Text Available Line nanopatterns are produced on the positive photoresist by scanning near-field optical microscope (SNOM. A laser diode with a wavelength of 450 nm and a power of 250 mW as the light source and an aluminum coated nanoprobe with a 70 nm aperture at the tip apex have been employed. A neutral density filter has been used to control the exposure power of the photoresist. It is found that the changes induced by light in the photoresist can be detected by in situ shear force microscopy (ShFM, before the development of the photoresist. Scanning electron microscope (SEM images of the developed photoresist have been used to optimize the scanning speed and the power required for exposure, in order to minimize the final line width. It is shown that nanometric lines with a minimum width of 33 nm can be achieved with a scanning speed of 75 µm/s and a laser power of 113 mW. It is also revealed that the overexposure of the photoresist by continuous wave laser generated heat can be prevented by means of proper photoresist selection. In addition, the effects of multiple exposures of nanopatterns on their width and depth are investigated.

  18. Detecting planets around active stars: impact of magnetic fields on radial velocities and line bisectors

    Science.gov (United States)

    Hébrard, É. M.; Donati, J.-F.; Delfosse, X.; Morin, J.; Boisse, I.; Moutou, C.; Hébrard, G.

    2014-09-01

    Although technically challenging, detecting Earth-like planets around very low mass stars is in principle accessible to the existing velocimeters of highest radial-velocity (RV) precision. However, low-mass stars being active, they often feature dark spots and magnetic regions at their surfaces generating a noise level in RV curves (called activity jitter) that can severely limit our practical ability at detecting Earth-like planets. Whereas the impact of dark spots on RV data has been extensively studied in the literature, that of magnetic features only received little attention up to now. In this paper, we aim at quantifying the impact of magnetic fields (and the Zeeman broadening they induce) on line profiles, line bisectors and RV data. With a simple model, we quantitatively study the RV signals and bisector distortions that small magnetic regions or global magnetic dipoles can generate, especially at infrared wavelengths where the Zeeman broadening is much larger than that in the visible. We report in particular that the impact of magnetic features on line bisectors can be different from that of cool spots when the rotational broadening is comparable to or larger than the Zeeman broadening; more specifically, we find in this case that the top and bottom sections of the bisectors are anticorrelated, i.e. the opposite behaviour of what is observed for cool spots. We finally suggest new options to show and ultimately filter the impact of the magnetic activity on RV curves.

  19. Global Simulation of Proton Precipitation Due to Field Line Curvature During Substorms

    Science.gov (United States)

    Gilson, M. L.; Raeder, J.; Donovan, E.; Ge, Y. S.; Kepko, L.

    2012-01-01

    The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 RE for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place.

  20. Sub-mm Emission Line Deep Fields: CO and [CII] Luminosity Functions out to z = 6

    CERN Document Server

    Popping, Gergö; Decarli, Roberto; Spaans, Marco; Somerville, Rachel S; Trager, Scott C

    2016-01-01

    Now that ALMA is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. Deep fields are ideal to study the luminosity function of sub-mm emission lines, ultimately tracing the atomic and molecular gas properties of galaxies. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J=1-0 up to CO J=6-5 and [CII] at redshifts z=0-6. We find that: 1) our model correctly reproduces the CO and [CII] emission of low- and high-redshift galaxies and reproduces the available constraints on the CO luminosity function at z1.5 and the CO luminosity of individual galaxies at intermediate redshifts. We argue that this is driven by a lack of cold gas in galaxies at intermediate redshifts as predicted by cosmological simulations of galaxy formation. This may lay at the root of other problems theoretical models face at the same redshifts.

  1. Calcium signalling in human neutrophil cell lines is not affected by low-frequency electromagnetic fields.

    Science.gov (United States)

    Golbach, Lieke A; Philippi, John G M; Cuppen, Jan J M; Savelkoul, Huub F J; Verburg-van Kemenade, B M Lidy

    2015-09-01

    We are increasingly exposed to low-frequency electromagnetic fields (LF EMFs) by electrical devices and power lines, but if and how these fields interact with living cells remains a matter of debate. This study aimed to investigate the potential effect of LF EMF exposure on calcium signalling in neutrophils. In neutrophilic granulocytes, activation of G-protein coupled receptors leads to efflux of calcium from calcium stores and influx of extracellular calcium via specialised calcium channels. The cytoplasmic rise of calcium induces cytoskeleton rearrangements, modified gene expression patterns, and cell migration. If LF EMF modulates intracellular calcium signalling, this will influence cellular behaviour and may eventually lead to health problems. We found that calcium mobilisation upon chemotactic stimulation was not altered after a short 30 min or long-term LF EMF exposure in human neutrophil-like cell lines HL-60 or PLB-985. Neither of the two investigated wave forms (Immunent and 50 Hz sine wave) at three magnetic flux densities (5 μT, 300 μT, and 500 μT) altered calcium signalling in vitro. Gene-expression patterns of calcium-signalling related genes also did not show any significant changes after exposure. Furthermore, analysis of the phenotypical appearance of microvilli by scanning electron microscopy revealed no alterations induced by LF EMF exposure. The findings above indicate that exposure to 50 Hz sinusoidal or Immunent LF EMF will not affect calcium signalling in neutrophils in vitro.

  2. Enhanced ion acoustic lines due to strong ion cyclotron wave fields

    Directory of Open Access Journals (Sweden)

    H. Bahcivan

    2008-07-01

    Full Text Available The Fast Auroral Snapshot Explorer (FAST satellite detected intense and coherent 5–20 m electric field structures in the high-latitude topside auroral ionosphere between the altitudes of 350 km and 650 km. These electric fields appear to belong to electrostatic ion cyclotron (EIC waves in terms of their frequency and wavelengths. Numerical simulations of the response of an electron plasma to the parallel components of these fields show that the waves are likely to excite a wave-driven parallel ion acoustic (IA instability, through the creation of a highly non-Maxwellian electron distribution function, which when combined with the (assumed Maxwellian ion distribution function provides inverse Landau damping. Because the counter-streaming threshold for excitation of EIC waves is well below that for excitation of IA waves (assuming Maxwellian statistics our results suggest a possible two step mechanism for destabilization of IA waves. Combining this simulation result with the observational fact that these EIC waves share a common phenomenology with the naturally enhanced IA lines (NEIALS observed by incoherent scatter radars, especially that they both occur near field-aligned currents, leads to the proposition that this two-step mechanism is an alternative path to NEIALS.

  3. Matched field noise suppression: Principle with application to towed hydrophone line array

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Discrete noise source suppression in underwater acoustic channel has attracted great attention in recent years. The paper proposes a new principle for dealing with the problem. This new principle is called matched field noise suppression (MFNS). Based on a previous work of the authors group, a full understanding about how a discrete noise source shows effects on the performance of a towed hydrophone line array has been obtained. In light of that finding, MFNS is proposed, which explores and utilizes the characteristics of the noise transmission channel to achieve much greater suppression of the noise in comparison with existing approaches. MFNS combines the concept of matched field processing (MFP) and optimal sensor array processing (OSAP) together to suppress the discrete noise source and to maintain an optimal beam for receiving far-field wanted plane wave signals. A MFNS beam-former is deduced in constraint with signal plane-wave response being unit and noise matched field response being zero. A closed-form solution of the weight vector for the beam-former is given. Computer simulation results agree well to the theoretical analysis.

  4. Multiple mechanisms account for variation in base-line sensitivity to azole fungicides in field isolates of Mycosphaerella graminicola

    NARCIS (Netherlands)

    Stergiopoulos, I.; Nistelrooy, van J.G.M.; Kema, G.H.J.; Waard, de M.A.

    2003-01-01

    Molecular mechanisms that account for variation in base-line sensitivity to azole fungicides were examined in a collection of twenty field isolates, collected in France and Germany, of the wheat pathogen Mycosphaerella graminicola (Fuckel) Schroeter. The isolates tested represent the wide base-line

  5. Internal electric-field-lines distribution in CdZnTe detectors measured using X-ray mapping

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov,A.E.; , .; Camarda, G.S.; Cui, Y.; Hossain, A.; Yang, G.; Yao, H.W.; James, R.B.

    2009-10-19

    The ideal operation of CdZnTe devices entails having a uniformly distributed internal electric field. Such uniformity especially is critical for thick long-drift-length detectors, such as large-volume CPG and 3-D multi-pixel devices. Using a high-spatial resolution X-ray mapping technique, we investigated the distribution of the electric field in real devices. Our measurements demonstrate that in thin detectors, <5 mm, the electric field-lines tend to bend away from the side surfaces (i.e., a focusing effect). In thick detectors, >1 cm, with a large aspect ratio (thickness-to-width ratio), we observed two effects: the electric field lines bending away from or towards the side surfaces, which we called, respectively, the focusing field-line distribution and the defocusing field-line distribution. In addition to these large-scale variations, the field-line distributions were locally perturbed by the presence of extended defects and residual strains existing inside the crystals. We present our data clearly demonstrating the non-uniformity of the internal electric field.

  6. Classical trajectories and quantum tunneling

    CERN Document Server

    Ivlev, B I

    2003-01-01

    The problem of inter-band tunneling in a semiconductor (Zener breakdown) in a nonstationary and homogeneous electric field is solved exactly. Using the exact analytical solution, the approximation based on classical trajectories is studied. A new mechanism of enhanced tunneling through static non-one-dimensional barriers is proposed in addition to well known normal tunneling solely described by a trajectory in imaginary time. Under certain conditions on the barrier shape and the particle energy, the probability of enhanced tunneling is not exponentially small even for non-transparent barriers, in contrast to the case of normal tunneling.

  7. A multi-spacecraft survey of magnetic field line draping in the dayside magnetosheath

    Directory of Open Access Journals (Sweden)

    I. J. Coleman

    2005-03-01

    Full Text Available When the interplanetary magnetic field (IMF encounters the Earth's magnetosphere, it is compressed and distorted. This distortion is known as draping, and plays an important role in the interaction between the IMF and the geomagnetic field. This paper considers a particular aspect of draping, namely how the orientation of the IMF in a plane perpendicular to the Sun-Earth line (the clock angle is altered by draping in the magnetosheath close to the dayside magnetopause. The clock angle of the magnetosheath field is commonly estimated from the interplanetary magnetic field (IMF measured by upstream monitoring spacecraft either by assuming that the draping process does not significantly alter the clock angle ("perfect draping" or that the change in clock angle is reasonably approximated by a gas dynamic model. In this paper, the magnetosheath clock angles measured during 36 crossings of the magnetopause by the Geotail and Interball-Tail spacecraft are compared to the upstream IMF clock angles measured by the Wind spacecraft. Overall, about 30% of data points exhibit perfect draping within ±10°, and 70% are within 30°. The differences between the IMF and magnetosheath clock angles are not, in general, well-ordered in any systematic fashion which could be accounted for by hydrodynamic draping. The draping behaviour is asymmetric with respect to the y-component of the IMF, and the form of the draping distribution function is dependent on solar wind pressure. While the average clock angle observed in the magnetosheath does reflect the orientation of the IMF to within ~30° or less, the assumption that the magnetosheath field direction at any particular region of the magnetopause at any instant is approximately similar to the IMF direction is not justified. This study shows that reconnection models which assume laminar draping are unlikely to accurately reflect the distribution of reconnection sites across the dayside magnetopause.

  8. Latitude-independent Pc5 Geomagnetic Pulsations Associated With Field Line Resonance

    Science.gov (United States)

    Sung, S.; Kim, K.; Lee, D.; Cattell, C. A.; Andre, M.; Khotyaintsev, Y. V.

    2004-12-01

    The latitude-independent Pc5 pulsations with a spectral peak at ˜2.8 mHz were observed with IMAGE and SAMNET magnetometer array in the morning sector (0700-1000 local time) on April 29 (Day 119), 2001. The spectral amplitude had a local peak at ˜67° geomagnetic latitude, where a sudden phase change of ˜180° appeared. A vortical equivalent ionospheric current structure centered at latitude between 67° and 71° was observed during the Pc5 pulsations and the rotational sense of the current vortex was reversed for one cycle of the pulsation. During the interval of the enhancement of the Pc5 pulsations, the POLAR spacecraft in the morning side crossed near the magnetic shell (L ˜ 8) corresponding to the latitude where the spectral amplitude was maximum, and observed ˜2.8 mHz pulsations in the radial electric field and compressional magnetic field components. Since the toroidal mode Alfvén waves in the magnetosphere are characterized by an electric field perturbation in the radial direction, the simultaneous presence of the pulsations in both components indicates that a field line resonance (FLR) was driven by compressional Pc5 pulsations. Using solar wind data, we conformed that the compressional Pc5 pulsations at POLAR occurred during an interval of enhanced solar wind dynamic pressure. From the analysis of the ground magnetometer data and POLAR data, we suggest that latitude independent ground magnetic perturbations are caused by the vortical equivalent current generated by FLR-associated field-aligned currents.

  9. A partially mesh-free scheme for representing anisotropic spatial variations along field lines

    Science.gov (United States)

    McMillan, Ben F.

    2017-03-01

    A common numerical task is to represent functions which are highly spatially anisotropic, and to solve differential equations related to these functions. One way such anisotropy arises is that information transfer along one spatial direction is much faster than in others. In this situation, the derivative of the function is small in the local direction of a vector field B. In order to define a discrete representation, a set of surfaces Mi indexed by an integer i are chosen such that mapping along the field B induces a one-to-one relation between the points on surface Mi to those on Mi+1. For simple cases Mi may be surfaces of constant coordinate value. On each surface Mi, a function description is constructed using basis functions defined on a regular structured mesh. The definition of each basis function is extended from the surface M along the lines of the field B by multiplying it by a smooth compact support function whose argument increases with distance along B. Function values are evaluated by summing contributions associated with each surface Mi. This does not require any special connectivity of the meshes used in the neighbouring surfaces M, which substantially simplifies the meshing problem compared to attempting to find a space filling anisotropic mesh. We explore the numerical properties of the scheme, and show that it can be used to efficiently solve differential equations for certain anisotropic problems.

  10. Line geometry and electromagnetism IV: electromagnetic fields as infinitesimal Lorentz transformations

    CERN Document Server

    Delphenich, D H

    2016-01-01

    It is first shown that the scalar product on any orthogonal space (V, g) allows one to define linear isomorphisms of the vector spaces of bivectors and 2-forms on V with the underlying vector spaces of the Lie algebra so(p, q) and its dual, respectively. When those isomorphisms are applied to the electromagnetic excitation bivector and field strength 2-form, resp., one can associate various algebraic constructions that pertain to them as bivector fields and 2-forms with corresponding constructions in terms of so(1, 3) and its dual. The subsequent association with corresponding things in line geometry will then become straightforward. In particular, the fields can be represented by motors, such as screws and wrenches, while the Cartan-Killing form on so(1, 3) is isometric to the scalar product on bivectors that gives the Klein quadric. When the space of bivectors (and therefore the space of 2-forms) is given an almost-complex structure (and therefore, a complex structure), one can also represent most of the co...

  11. Relative Localization in Wireless Sensor Networks for Measurement of Electric Fields under HVDC Transmission Lines

    Directory of Open Access Journals (Sweden)

    Yong Cui

    2015-02-01

    Full Text Available In the wireless sensor networks (WSNs for electric field measurement system under the High-Voltage Direct Current (HVDC transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes’ neighbor lists based on the Received Signal Strength Indicator (RSSI values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  12. Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines.

    Science.gov (United States)

    Cui, Yong; Wang, Qiusheng; Yuan, Haiwen; Song, Xiao; Hu, Xuemin; Zhao, Luxing

    2015-02-04

    In the wireless sensor networks (WSNs) for electric field measurement system under the High-Voltage Direct Current (HVDC) transmission lines, it is necessary to obtain the electric field distribution with multiple sensors. The location information of each sensor is essential to the correct analysis of measurement results. Compared with the existing approach which gathers the location information by manually labelling sensors during deployment, the automatic localization can reduce the workload and improve the measurement efficiency. A novel and practical range-free localization algorithm for the localization of one-dimensional linear topology wireless networks in the electric field measurement system is presented. The algorithm utilizes unknown nodes' neighbor lists based on the Received Signal Strength Indicator (RSSI) values to determine the relative locations of nodes. The algorithm is able to handle the exceptional situation of the output permutation which can effectively improve the accuracy of localization. The performance of this algorithm under real circumstances has been evaluated through several experiments with different numbers of nodes and different node deployments in the China State Grid HVDC test base. Results show that the proposed algorithm achieves an accuracy of over 96% under different conditions.

  13. Numerical Analysis of Impurity Transport along Magnetic Field Lines in Tokamak Scrape-Off Layer

    Science.gov (United States)

    Chung, Tae Kyun; Hong, Sang Hee

    1996-11-01

    A flow of impurity ions along the magnetic field lines in tokamak SOL (scrape-off layer) is investigated by a one-dimensional numerical analysis. The background values of SOL plasma, fields such as density, velocity, temperature and electric field, are obtained from an edge plasma transport code EDGETRAN(A 2-D edge plasma transport code with limited and diverted tokamak configurations developed by Dr. Kihak Im at Seoul National University). Impurity ions are generated by ionizations of neutral atoms in tokamak. The density profile of neutral atoms is given at an initial state. Impurity ions in a single-charged state develop into multi-charged states by ionization and recombination reactions. Impurity productions at the divertor target plate by sputterings are also considered as main source terms. As a numerics, FDM(Finite Difference Method) is employed. The Neumann condition on impurity density and the Dirchlet condition on impurity velocity are provided for their boundary conditions at a symmetry plane of the layer. No strict boundary condition on the target plate is given except an external source prescribed by sputtering rates.

  14. Evidence of transverse magnetospheric field line oscillations as observed from Cluster and ground magnetometers

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    2005-03-01

    Full Text Available The dynamic spectrum of ULF waves from magnetic field data obtained by the elliptically orbiting Cluster satellites (with an apogee of 119000km, perigee of 19000km and the orbital period of 57h have been prepared in the frequency range 0 to 120mHz when the satellite was near its perigee. The existence of field line oscillations, with increasing frequency in the inbound sector and decreasing frequency in the outbound sector, is seen in the transverse components, indicating the presence of independently oscillating local magnetic flux tubes in the form of transverse standing Alfvén waves. The results show that toroidal and poloidal modes are excited simultaneously. The analysis of simultaneous ground magnetometer data at the footprint of the satellite suggests that these modes are also excited due to coupling to magnetospheric waveguide modes. The clear signature of a resonant fundamental mode is seen in the ground data whereas Cluster detects a harmonic of this frequency. Lower frequency modes indicative of waveguide oscillations are seen in both the ground data and the compressional field at Cluster.

  15. A partially mesh-free scheme for representing anisotropic spatial variations along field lines

    CERN Document Server

    McMillan, Ben F

    2016-01-01

    A common numerical task is to represent functions which are highly spatially anisotropic, and to solve differential equations related to these functions. One way such anisotropy arises is that information transfer along one spatial direction is much faster than in others. In this situation, the derivative of the function is small in the local direction of a vector field $\\mathbf{b}$. In order to define a discrete representation, a set of surfaces $M_i$ indexed by an integer $i$ are chosen such that mapping along the field $\\mathbf{b}$ induces a one-to-one relation between the points on surface $M_i$ to those on $M_{i+1}$. For simple cases $M_i$ may be surfaces of constant coordinate value. On each surface $M_i$, a function description is constructed using basis functions defined on a regular structured mesh. The definition of each basis function is extended from the surface $M$ along the lines of the field $\\mathbf{b}$ by multiplying it by a smooth compact support function whose argument increases with distan...

  16. Kolmogorov-Sinai entropy in field line diffusion by anisotropic magnetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Milovanov, Alexander V [Associazione Euratom-ENEA sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, C.P. 65, I-00044 Frascati, Rome (Italy); Bitane, Rehab [Laboratoire Cassiopee, UNSA, CNRS, Observatoire de la Cote d' Azur, BP 4229, 06304 Nice Cedex 4 (France); Zimbardo, Gaetano [Dipartimento di Fisica, Universita degli Studi della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Arcavacata di Rende (Italy)

    2009-07-15

    The Kolmogorov-Sinai (KS) entropy in turbulent diffusion of magnetic field lines is analyzed on the basis of a numerical simulation model and theoretical investigations. In the parameter range of strongly anisotropic magnetic turbulence the KS entropy is shown to deviate considerably from the earlier predicted scaling relations (1992 Rev. Mod. Phys. 64 961). In particular, a slowing down logarithmic behavior versus the so-called Kubo number R >> 1 (R = ({delta}B/B{sub 0}) ({xi}{sub ||}/{xi}{sub perpendicular}), where {delta}B/B{sub 0} is the ratio of the rms magnetic fluctuation field to the magnetic field strength, and {xi}{sub perpendicular} and {xi}{sub ||} are the correlation lengths in respective dimensions) is found instead of a power-law dependence. These discrepancies are explained from general principles of Hamiltonian dynamics. We discuss the implication of Hamiltonian properties in governing the paradigmatic 'percolation' transport, characterized by R {yields} {infinity}, associating it with the concept of pseudochaos (random non-chaotic dynamics with zero Lyapunov exponents). Applications of this study pertain to both fusion and astrophysical plasma and by mathematical analogy to problems outside the plasma physics.

  17. Ribbons characterize magnetohydrodynamic magnetic fields better than lines: a lesson from dynamo theory

    CERN Document Server

    Blackman, Eric G

    2014-01-01

    Blackman & Brandenburg argued that magnetic helicity conservation in dynamo theory can in principle be captured by diagrams of mean field dynamos when the magnetic fields are represented by ribbons or tubes, but not by lines. Here we present such a schematic ribbon diagram for the $\\alpha^2$ dynamo that tracks magnetic helicity and provides distinct scales of large scale magnetic helicity, small scale magnetic helicity, and kinetic helicity involved in the process. This also motivates our construction of a new ``2.5 scale'' minimalist generalization of the helicity-evolving equations for the \\alpha^2 dynamo that separately allows for these three distinct length scales while keeping only two dynamical equations. We solve these equations and, as in previous studies, find that the large scale field first grows at a rate independent of the magnetic Reynolds number R_M before quenching to an R_M dependent regime. But we also show that the larger the ratio of the wavenumber where the small scale current helicit...

  18. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment

    Science.gov (United States)

    Sheftman, D.; Gupta, D.; Roche, T.; Thompson, M. C.; Giammanco, F.; Conti, F.; Marsili, P.; Moreno, C. D.

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  19. The study of slip line field and upper bound method based on associated flow and non-associated flow rules

    Institute of Scientific and Technical Information of China (English)

    Zheng Yingren; Deng Chujian; Wang Jinglin

    2010-01-01

    At present,associated flow rule of traditional plastic theory is adopted in the slip line field theory and upper bound method of geotechnical materials.So the stress characteristic line conforms to the velocity line.It is proved that geotechnical materials do not abide by the associated flow rule.It is impossible for the stress characteristic line to conform to the velocity line.Generalized plastic mechanics theoretically proved that plastic potential surface intersects the Mohr-Coulomb yield surface with an angle,so that the velocity line must be studied by non-associated flow rule.According to limit analysis theory,the theory of slip line field is put forward in this paper,and then the ultimate boating capacity of strip footing is obtained based on the associated flow rule and the non-associated flow rule individually.These two results are identical since the ultimate bearing capacity is independent of flow rule.On the contrary,the velocity fields of associated and non-associated flow rules are different which shows the velocity field based on the associated flow rule is incorrect.

  20. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    Science.gov (United States)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  1. Computing with spatial trajectories

    CERN Document Server

    2011-01-01

    Covers the fundamentals and the state-of-the-art research inspired by the spatial trajectory data Readers are provided with tutorial-style chapters, case studies and references to other relevant research work This is the first book that presents the foundation dealing with spatial trajectories and state-of-the-art research and practices enabled by trajectories

  2. High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT

    Science.gov (United States)

    Fechtig, Daniel J.; Kumar, Abhishek; Ginner, Laurin; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-03-01

    MHz OCT allows mitigating undesired influence of motion artifacts during retinal assessment, but comes in state-of-the-art point scanning OCT at the price of increased system complexity. By changing the paradigm from scanning to parallel OCT for in vivo retinal imaging the three-dimensional (3D) acquisition time is reduced without a trade-off between speed, sensitivity and technological requirements. Furthermore, the intrinsic phase stability allows for applying digital refocusing methods increasing the in-focus imaging depth range. Line field parallel interferometric imaging (LPSI) is utilizing a commercially available swept source, a single-axis galvo-scanner and a line scan camera for recording 3D data with up to 1MHz A-scan rate. Besides line-focus illumination and parallel detection, we mitigate the necessity for high-speed sensor and laser technology by holographic full-range imaging, which allows for increasing the imaging speed by low sampling of the optical spectrum. High B-scan rates up to 1kHz further allow for implementation of lable-free optical angiography in 3D by calculating the inter B-scan speckle variance. We achieve a detection sensitivity of 93.5 (96.5) dB at an equivalent A-scan rate of 1 (0.6) MHz and present 3D in vivo retinal structural and functional imaging utilizing digital refocusing. Our results demonstrate for the first time competitive imaging sensitivity, resolution and speed with a parallel OCT modality. LPSI is in fact currently the fastest OCT device applied to retinal imaging and operating at a central wavelength window around 800 nm with a detection sensitivity of higher than 93.5 dB.

  3. Stability of transgene expression, field performance and recombination breeding of transformed barley lines

    DEFF Research Database (Denmark)

    Horvath, H.; Jensen, L.G.; Wong, O.T.;

    2001-01-01

    originated from three independent primary transformants obtained by the biolistic method with three plasmids containing respectively, the bar gene, the uidA gene and the gene for a protein-engineered heat-stable (1,3-1,4)-beta -glucanase. Three production levels of recombinant beta -glucanase were identified...... in homozygous transgenic T-3 plants, and these remained constant over a 3-year period. In micro-malting experiments, the heat-stable enzyme reached levels of up to 1.4 mug.mg(-1) protein and survived kiln drying at levels of 70-100%. In the field trials of 1997 and 1998 the transgenic lines had a reduced 1000...

  4. No Line on the Horizon: On Uniform Acceleration and Gluonic Fields at Strong Coupling

    CERN Document Server

    Garcia, J Antonio; Pulido, Eric J

    2012-01-01

    We study a few assorted questions about the behavior of strings on anti-de Sitter spacetime (AdS), or equivalently, `flux tubes' in strongly-coupled conformal field theories (CFTs). For the case where the `flux tube' is sourced by a uniformly accelerated quark (or, more generally, a quark that asymptotes to uniform acceleration in the remote past), we point out that the dual string embedding known heretofore terminates unphysically at the worldsheet horizon, and identify the correct continuation, which is found to encode a gluonic shock wave. For arbitrary quark motion, we show that, contrary to common understanding, the worldsheet horizon does not in general represent a dividing line between the portions of the string respectively dual to the quark and to the gluonic radiation emitted by it.

  5. General broken lines as advanced track fitting method

    Energy Technology Data Exchange (ETDEWEB)

    Kleinwort, Claus

    2012-01-15

    In HEP experiments the description of the trajectory of a charged particle is obtained from a fit to measurements in tracking detectors. The parametrization of the trajectory has to account for bending in the magnetic field, energy loss and multiple scattering in the detector material. General broken lines implement a track model with proper description of multiple scattering leading to linear equations with a special structure of the corresponding matrix allowing for a fast solution with the computing time depending linearly on the number of measurements. The calculation of the full covariance matrix along the trajectory enables the application to track based alignment and calibration of large detectors with global methods. (orig.)

  6. A gradient stable scheme for a phase field model for the moving contact line problem

    KAUST Repository

    Gao, Min

    2012-02-01

    In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.

  7. Modelling chromospheric line profiles as diagnostics of velocity fields in {\\omega} Centauri red giant stars

    CERN Document Server

    Vieytes, M; Cacciari, C; Origlia, L; Pancino, E

    2010-01-01

    Context. Mass loss of ~0.1-0.3 M$_{\\odot}$ from Population II red giant stars (RGB) is a requirement of stellar evolution theory in order to account for several observational evidences in globular clusters. Aims. The aim of this study is to detect the presence of outward velocity fields, which are indicative of mass outflow, in six luminous red giant stars of the stellar cluster {\\omega} Cen. Methods. We compare synthetic line profiles computed using relevant model chromospheres to observed profiles of the H{\\alpha} and Ca II K lines. The spectra were taken with UVES (R=45,000) and the stars were selected so that three of them belong to the metal-rich population and three to the metal-poor population, and sample as far down as 1 to 2.5 magnitudes fainter than the respective RGB tips. Results. We do indeed reveal the presence of low-velocity outward motions in four of our six targets, without any apparent correlation with astrophysical parameters. Conclusions. This provides direct evidence that outward velocit...

  8. Role of finite ionospheric conductivity on toroidal field line oscillations in the Earth's magnetosphere -- Analytic solutions

    Science.gov (United States)

    Bulusu, Jayashree; Sinha, A. K.; Vichare, Geeta

    2016-06-01

    An analytic solution has been formulated to study the role of ionospheric conductivity on toroidal field line oscillations in the Earth's magnetosphere. The effect of ionospheric conductivity is addressed in two limits, viz, (a) when conductance of Alfvén wave is much different from ionospheric Pedersen conductance and (b) when conductance of Alfvén wave is close to the ionospheric Pedersen conductance. In the former case, the damping is not significant and standing wave structures are formed. However, in the latter case, the damping is significant leading to mode translation. Conventionally, "rigid-end" and "free-end" cases refer to eigenstructures for infinitely large and vanishingly small limit of ionospheric conductivity, respectively. The present work shows that when the Pedersen conductance overshoots (undershoots) the Alfvén wave conductance, a free-end (rigid-end) mode gets transformed to rigid-end (free-end) mode with an increase (decrease) in harmonic number. This transformation takes place within a small interval of ionospheric Pedersen conductance around Alfvén wave conductance, beyond which the effect of conductivity on eigenstructures of field line oscillations is small. This regime of conductivity limit (the difference between upper and lower limits of the interval) decreases with increase in harmonic number. Present paper evaluates the damping effect for density index other than the standard density index m = 6, using perturbation technique. It is found that for a small departure from m = 6, both mode frequency and damping rate become a function of Pedersen conductivity.

  9. Magnetic field dependence of the coupling efficiency of a superconducting transmission line due to the proximity effect

    NARCIS (Netherlands)

    Zhu, S.; Zijlstra, T.; Golubov, A.A.; Van den Bemt, M.; Baryshev, A.M.; Klapwijk, T.M.

    2009-01-01

    The coupling efficiency of a Nb superconducting transmission line has been measured using a Fourier transform spectrometer for different magnetic fields. It is found that the coupling decreases with increasing magnetic field when the frequency is close to the gap of the Nb superconductor. This is at

  10. Simulation of Electrons' Trajectories in the Lunar Electric and Magnetic Field%太阳风电子在月表电磁场中的运动

    Institute of Scientific and Technical Information of China (English)

    冯永勇; 赵华; 刘振兴

    2011-01-01

    月表磁异常区的分布是月球探测工程的重要内容.但是由于月表电磁环境错综复杂,通常认为月球表面在特殊的空间天气条件下会带有数千伏电压.以往的空间研究已经证实,表面的带电与放电容易造成卫星仪器的异常或失联.月表电场对电子反射法有重要影响,研究分析不同电磁条件下太阳风电子的运动轨迹,对月表环境(电磁环境,太阳风条件,等离子体参数等)的研究可以更加深入细致.通过模拟向月表运动的太阳风电子的运动轨迹,分析了月表电磁环境的改变对太阳风电子反射的影响,并着重研究了月表电场对电子反射法遥感探测月表磁异常的影响,为探测月表电磁环境提供了重要的信息.%The increasing interest in lunar exploration requires a better understanding of environment at the lunar surface. Like any object in plasma, the surface of the Moon charges to an electric potential that minimizes the total incident current. Surface charging is an universal process affecting all airless regolith-covered bodies. However, there are still many details that remain unclear and need to be discussed to understand those possible processes such as ion sputtering and electrically-driven dust transport. There are also many subjects that require further study, such as the temporal and spatial variation of lunar surface charging. Simulation and analysis of trajectories of the electrons under different conditions would help to predict surface potential, which in turn would benefit the understanding of the lunar environment. In this paper, the solar wind electrons which are moving toward the moon surface are traced to study the effect of surface potential on solar wind electrons reflected by the lunar crustal magnetic field. Statistic of number of electrons that reflected under different conditions is also analyzed. The calculations and simulations show that the variation of either magnetic field or potential

  11. Gamma-Gamma Absorption in the Broad Line Region Radiation Fields of Gamma-Ray Blazars

    CERN Document Server

    Boettcher, Markus

    2016-01-01

    The expected level of gamma-gamma absorption in the Broad Line Region (BLR) radiation field of gamma-ray loud Flat Spectrum Radio Quasars (FSRQs)is evaluated as a function of the location of the gamma-ray emission region. This is done self-consistently with parameters inferred from the shape of the spectral energy distribution (SED) in a single-zone leptonic EC-BLR model scenario. We take into account all geometrical effects both in the calculation of the gamma-gamma opacity and the normalization of the BLR radiation energy density. As specific examples, we study the FSRQs 3C279 and PKS 1510-089, keeping the BLR radiation energy density at the location of the emission region fixed at the values inferred from the SED. We confirm previous findings that the optical depth due to $\\gamma\\gamma$ absorption in the BLR radiation field exceeds unity for both 3C279 and PKS 1510-089 for locations of the gamma-ray emission region inside the inner boundary of the BLR. It decreases monotonically, with distance from the cen...

  12. Field-Line Tracing from Locations of Polar Cap Neutral Density Anomalies to the Magnetosphere

    Science.gov (United States)

    Sutton, E. K.; Lin, C. S.; Huang, C. Y.; Cooke, D. L.

    2015-12-01

    Localized neutral density enhancement in the polar cap above 70o magnetic latitude have been frequently observed during major geomagnetic storms. It has been suggested that energy input responsible for producing localized neutral density spikes is the dominant energy deposition in the polar cap. To better understand the origin of polar cap neutral density anomalies (PCNDAs) we trace magnetic field lines from the polar cap region at about 400 km to the magnetosphere using the data-based Tsyganenko magnetic field model TS05 [Tsyganenko and Sitnov, 2005] for the periods when CHAMP detected PCNDAs during major magnetic storms with the minimum Dst , X. X. Zhang, S. Q. Liu, Y. L. Wang, and J. C. Gong (2010), A three-dimensional asymmetric magnetopause model, J. Geophys. Res., 115, A04207, doi:10.1029/2009JA014235.Tsyganenko, N. A., and M. I. Sitnov (2005), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi:10.1029/2004JA010798.

  13. The magnetic field of the double-lined spectroscopic binary system HD 5550

    CERN Document Server

    Alecian, E; Neiner, C; Folsom, C P; Leroy, B

    2016-01-01

    (Abridged) In the framework of the BinaMicS project, we have begun a study of the magnetic properties of a sample of intermediate-mass and massive short-period binary systems, as a function of binarity properties. We report in this paper the characterisation of the magnetic field of HD 5550, a double-lined spectroscopic binary system of intermediate-mass, using high-resolution spectropolarimetric Narval observations of HD 5550. We first fit the intensity spectra using Zeeman/ATLAS9 LTE synthetic spectra to estimate the effective temperatures, microturbulent velocities, and the abundances of some elements of both components, as well as the light-ratio of the system. We then fit the least-square deconvolved $I$ profiles to determine the radial and projected rotational velocities of both stars. We then analysed the shape and evolution of the LSD $V$ profiles using the oblique rotator model to characterise the magnetic fields of both stars. We confirm the Ap nature of the primary, previously reported in the liter...

  14. Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach

    CERN Document Server

    Yadav, H L; Toki, H

    2004-01-01

    Recently it has been demonstrated, considering Ni and Ca isotopes as prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach wherein the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculation of pairing energy provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB) description of the ground state properties of the drip-line neutron rich nuclei. The applicability of RMF+BCS is essentially due to the fact that the main contribution to the pairing correlations is provided by the low-lying resonant states. General validity of this approach is demonstrated by the detailed calculations for the ground state properties of the chains of isotopes of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have been used for the effective mean-field Lagrangian. Comprehensive results for the two neutron separation energy, rms radii, single particle pairing gaps and pairing energies etc. are pres...

  15. A heretical view on linear Regge trajectories

    CERN Document Server

    Diakonov, D; Diakonov, Dmitri; Petrov, Victor

    2003-01-01

    We discuss a possibility that linear Regge trajectories originate not from gluonic strings connecting quarks, as it is usually assumed, but from pion excitations of light hadrons. From this point of view, at large angular momenta both baryons and mesons lying on linear Regge trajectories are slowly rotating thick strings of pion field, giving rise to a universal slope computable from the pion decay constant. The finite resonance widths are mainly due to the semiclassical radiation of pion fields by the rotating elongated chiral solitons. Quantum fluctuations about the soliton determine a string theory which, being quantized, gives the quantum numbers for Regge trajectories.

  16. Magnetic fields in M-dwarfs: quantitative results from detailed spectral synthesis in FeH lines

    CERN Document Server

    Shulyak, D; Wende, S; Kochukhov, O; Piskunov, N; Seifahrt, A

    2010-01-01

    Strong surface magnetic fields are ubiquitously found in M-dwarfs with mean intensities on the order of few thousand Gauss-three orders of magnitude higher than the mean surface magnetic field of the Sun. These fields and their interaction with photospheric convection are the main source of stellar activity, which is of big interest to study links between parent stars and their planets. Moreover, the understanding of stellar magnetism, as well as the role of different dynamo-actions in particular, is impossible without explaining magnetic fields in M-dwarfs. Measuring magnetic field intensities and geometries in such cool objects, however, is strongly limited to our ability to simulate the Zeeman effect in molecular lines. In this work, we present quantitative results of modelling and analysis of the magnetic fields in selected M-dwarfs in FeH Wing-Ford lines and strong atomic lines. Some particular FeH lines are found to be the excellent probes of the magnetic field.

  17. Astronomy behind Enemy Lines: Colonial American Field Expeditions, 1761--1780

    Science.gov (United States)

    Schechner, Sara J.

    2012-09-01

    In May 1761, John Winthrop packed up two students, two telescopes, a clock, and an octant, and embarked for Newfoundland, to observe the Transit of Venus. Winthrop's departure was hasty. Only days before had the President and Fellows of Harvard College approve Professor Winthrop's request to take the college apparatus behind enemy lines during the French and Indian War, to serve the cause of science. Winthrop knew he had no time to waste if he were to reach St. Johns and properly calibrate his equipment before the Transit. In 1761 Winthrop was the sole North American astronomer in a global network helping to determine the distance from the Earth to the Sun. The expedition was a major achievement for colonial astronomy, especially in time of war. Winthrop, however, looked forward to a second chance to observe a transit in 1769. Benjamin Franklin urged him to go to Lake Superior, but preparations for the transit were thwarted by two events: the loss of Harvard's apparatus in a 1764 fire; and pre-Revolutionary War politics in the American colonies. In the end, Winthrop was forced to content himself with observations in Cambridge. In 1780 Winthrop's successor at Harvard, Samuel Williams, risked the college apparatus once again. During the American War of Independence, he received permission to go behind British enemy lines in order to observe a total solar eclipse in Penobscot Bay, Maine. Limitations placed on his encampment led him to be slightly outside totality, but able to observe what would later be known as Baily's beads. This paper will examine the challenges of observational science in provincial America, especially when one had to negotiate with enemies to have access to the best apparatus and field sites.

  18. Improved Ligand-Field Calculation of Energy Spectrum and R-Line Thermal Shift of MgO:Cr3+

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zheng-Jie; MA Dong-Ping

    2007-01-01

    Traditional ligand-field theory has to be improved by taking into account both pure electronic contribution and electron-phonon interaction one (including lattice-vibrational relaxation energy). By means of improved ligand-field theory, the R-line, t322T1 lines, t22(3T1)e4T2, and t22(3T1)e4T1 bands, ground-state g factor, four strain-induced levelsplittings, and R-line thermalshift of MgO:Cr3+ have been calculated. The results are in very good agreement with the experimental data. It is found that for MgO:Cr3+, the contributions due to electron-phonon interaction (EPI) come from the first-order term. In thermal shift of R-line of MgO:Cr3+, the temperature-dependent contribution due to EPI is dominant.

  19. Square to hexagonal symmetry transition of the flux line lattice in YNi2B2C for different field orientations

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Gammel, P.L.; Barber, B.P.

    1998-01-01

    Using small-angle neutron scattering we have studied the magnetic flux line lattice in YNi2B2C with the field rotated 30(:) away from the crystalline c-axis. Previously we have reported on a square to hexagonal symmetry transition of the fluc line lattice below 1 kOe for H parallel to c. We find...... that the rotation of the field shifts the transition to higher fields in agreement with theoretical prediction. Two different directions in the ab-plane were chosen as axes of rotation. Rotating the field around [1,1,0] shifts the onset of the transition up to 3 kOe. Rotating the field around [1,0,0] stabilizes...

  20. Uncertainty evaluation in the measurement of power frequency electric and magnetic fields from AC overhead power lines.

    Science.gov (United States)

    Ztoupis, I N; Gonos, I F; Stathopulos, I A

    2013-11-01

    Measurements of power frequency electric and magnetic fields from alternating current power lines are carried out in order to evaluate the exposure levels of the human body on the general public. For any electromagnetic field measurement, it is necessary to define the sources of measurement uncertainty and determine the total measurement uncertainty. This paper is concerned with the problems of measurement uncertainty estimation, as the measurement uncertainty budget calculation techniques recommended in standardising documents and research studies are barely described. In this work the total uncertainty of power frequency field measurements near power lines in various measurement sites is assessed by considering not only all available equipment data, but also contributions that depend on the measurement procedures, environmental conditions and characteristics of the field source, which are considered to increase the error of measurement. A detailed application example for power frequency field measurements is presented here by accredited laboratory.

  1. Service oriented architecture for scientific analysis at W7-X. An example of a field line tracer

    Energy Technology Data Exchange (ETDEWEB)

    Bozhenkov, S.A., E-mail: boz@ipp.mpg.de; Geiger, J.; Grahl, M.; Kißlinger, J.; Werner, A.; Wolf, R.C.

    2013-11-15

    Highlights: • We briefly overview available web-service protocols, and explain why SOAP standards are chosen. • We explain the basics of the SOAP technology and give both the usage and development patterns with corresponding examples. • We develop a new W7-X field line tracing service. • The service can calculate Poincaré maps, connection lengths, magnetic coordinates, heat fluxes, etc. with a realistic device geometry. • With the tracer service, we model the influence of 1/1 error field on the W7-X divertor heat loads. -- Abstract: Service oriented architecture based on web-services is a universal method of combining software components. SOAP web-services chosen for W7-X are characterized by strong standards and readily available tools. In this paper the SOAP technology is explained and is illustrated with a new service for field line tracing. The field line tracing package consists of a C++ library and a web-service interface. It features a flexible structure and can handle a realistic machine geometry. The following problems can be solved: getting a field line; making Poincaré maps; calculating flux surface characteristics; calculating heat fluxes to the wall; constructing magnetic coordinates, etc. The service is applied to estimate W7-X divertor loads with an 1/1 error field.

  2. Measurement and Modeling of Personal Exposure to the Electric and Magnetic Fields in the Vicinity of High Voltage Power Lines

    OpenAIRE

    Tourab, Wafa; Babouri, Abdesselam

    2015-01-01

    Background This work presents an experimental and modeling study of the electromagnetic environment in the vicinity of a high voltage substation located in eastern Algeria (Annaba city) specified with a very high population density. The effects of electromagnetic fields emanating from the coupled multi-lines high voltage power systems (MLHV) on the health of the workers and people living in proximity of substations has been analyzed. Methods Experimental Measurements for the Multi-lines power...

  3. An Exact Line Integral Representation of the Physical Optics Far Field from Plane PEC Scatterers Illuminnated by Hertzian Dipoles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Meincke, Peter; Jørgensen, Erik;

    2003-01-01

    We derive a line integral representation of the physical optics scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles. The source and observation points can take on almost arbitrary positions. To illustrate the exactness and efficiency of the new line integral, numerical comparisons with the conventional surface radiation integral are carried out....

  4. In-line application of electric field in capillary separation systems: Joule heating, pH and conductivity.

    Science.gov (United States)

    Eriksson, Björn O; Skuland, Inger Lill; Marlin, Nicola D; Andersson, Magnus B O; Blomberg, Lars G

    2008-03-15

    This study concerns the technique electric field-assisted capillary liquid chromatography. In this technique, an electric field is applied over the separation capillary in order to provide an additional selectivity. In this technique, the electric field is applied in-line in the separation capillary and here the electric current is the factor limiting the magnitude of applied electric field. The influence of Joule heating and other factors on the current in such systems has been investigated. The temperature in the capillary was first measured within a standard CE set-up, as function of effect per unit of length. Then the same cooling system was applied to an in-line set-up, to replicate the conditions between the two systems, and thus the temperature. Thus Joule heating effects could then be calculated within the in-line system. It was found that for systems applying an electric field in line, the direct influence from Joule heating was only relatively small. The pH in the capillary was measured in the in-line set-up using cresol red/TRIS solutions as pH probe. Significant changes in pH were observed and the results suggested that electrolysis of water is the dominant electrode reaction in the in-line system. In summary, the observed conductivity change in in-line systems was found to be mainly due to the pH change by hydrolysis of water, but primarily not due the temperature change in the capillary column.

  5. Study of the interplay between magnetic shear and resonances using Hamiltonian models for the magnetic field lines

    CERN Document Server

    Firpo, Marie-Christine; 10.1063/1.3562493

    2011-01-01

    The issue of magnetic confinement in magnetic fusion devices is addressed within a purely magnetic approach. Using some Hamiltonian models for the magnetic field lines, the dual impact of low magnetic shear is shown in a unified way. Away from resonances, it induces a drastic enhancement of magnetic confinement that favors robust internal transport barriers (ITBs) and stochastic transport reduction. When low-shear occurs for values of the winding of the magnetic field lines close to low-order rationals, the amplitude thresholds of the resonant modes that break internal transport barriers by allowing a radial stochastic transport of the magnetic field lines may be quite low. The approach can be applied to assess the robustness versus magnetic perturbations of general (almost) integrable magnetic steady states, including non-axisymmetric ones such as the important single helicity steady states. This analysis puts a constraint on the tolerable mode amplitudes compatible with ITBs and may be proposed as a possibl...

  6. Emission Line Astronomy - Coronagraphic Tunable Narrow Band Imaging and Integral Field Spectroscopy. Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to continue our program of emission line astronomy featuring three areas of emphasis: 1) The distribution and nature of high redshift emission line...

  7. Trajectory Indexing Using Movement Constraints

    DEFF Research Database (Denmark)

    Pfoser, D.; Jensen, Christian Søndergaard

    2005-01-01

    With the proliferation of mobile computing, the ability to index efficiently the movements of mobile objects becomes important. Objects are typically seen as moving in two-dimensional (x,y) space, which means that their movements across time may be embedded in the three-dimensional (x,y,t) space....... Further, the movements are typically represented as trajectories, sequences of connected line segments. In certain cases, movement is restricted; specifically, in this paper, we aim at exploiting that movements occur in transportation networks to reduce the dimensionality of the data. Briefly, the idea...... is to reduce movements to occur in one spatial dimension. As a consequence, the movement occurs in two-dimensional (x,t) space. The advantages of considering such lower-dimensional trajectories are that the overall size of the data is reduced and that lower-dimensional data is to be indexed. Since off...

  8. Bird radar validation in the field by time-referencing line-transect surveys.

    Science.gov (United States)

    Dokter, Adriaan M; Baptist, Martin J; Ens, Bruno J; Krijgsveld, Karen L; van Loon, E Emiel

    2013-01-01

    Track-while-scan bird radars are widely used in ornithological studies, but often the precise detection capabilities of these systems are unknown. Quantification of radar performance is essential to avoid observational biases, which requires practical methods for validating a radar's detection capability in specific field settings. In this study a method to quantify the detection capability of a bird radar is presented, as well a demonstration of this method in a case study. By time-referencing line-transect surveys, visually identified birds were automatically linked to individual tracks using their transect crossing time. Detection probabilities were determined as the fraction of the total set of visual observations that could be linked to radar tracks. To avoid ambiguities in assigning radar tracks to visual observations, the observer's accuracy in determining a bird's transect crossing time was taken into account. The accuracy was determined by examining the effect of a time lag applied to the visual observations on the number of matches found with radar tracks. Effects of flight altitude, distance, surface substrate and species size on the detection probability by the radar were quantified in a marine intertidal study area. Detection probability varied strongly with all these factors, as well as species-specific flight behaviour. The effective detection range for single birds flying at low altitude for an X-band marine radar based system was estimated at ~1.5 km. Within this range the fraction of individual flying birds that were detected by the radar was 0.50 ± 0.06 with a detection bias towards higher flight altitudes, larger birds and high tide situations. Besides radar validation, which we consider essential when quantification of bird numbers is important, our method of linking radar tracks to ground-truthed field observations can facilitate species-specific studies using surveillance radars. The methodology may prove equally useful for optimising

  9. Kubo number and magnetic field line diffusion coefficient for anisotropic magnetic turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Pommois, P.; Veltri, P.; Zimbardo, G.

    2001-06-01

    The magnetic field line diffusion coefficients D{sub x} and D{sub y} are obtained by numerical simulations in the case that all the magnetic turbulence correlation lengths l{sub x}, l{sub y}, and l{sub z} are different. We find that the variety of numerical results can be organized in terms of the Kubo number, the definition of which is extended from R=({delta}B/B{sub 0})(l{sub {parallel}}/l{sub {perpendicular}}) to R=({delta}B/B{sub 0})(l{sub z}/l{sub x}), for l{sub x}{ge}l{sub y}. Here, l{sub {parallel}} (l{sub {perpendicular}}) is the correlation length along (perpendicular to) the average field B{sub 0}=B{sub 0}{cflx e}{sub z}. We have anomalous, non-Gaussian transport for R{approx_lt}0.1, in which case the mean square deviation scales nonlinearly with time. For R{approx_gt}1 we have several Gaussian regimes: an almost quasilinear regime for 0.1{approx_lt}R{approx_lt}1, an intermediate, transition regime for 1{approx_lt}R{approx_lt}10, and a percolative regime for R{approx_gt}10. An analytical form of the diffusion coefficient is proposed, D{sub i}=D({delta}Bl{sub z}/B{sub 0}l{sub x}){sup {mu}}(l{sub i}/l{sub x}){sup {nu}}l{sub x}{sup 2}/l{sub z}, which well describes the numerical simulation results in the quasilinear, intermediate, and percolative regimes.

  10. Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.Y. E-mail: hysun@165e.com; Hu, H.N.; Sun, Y.P.; Nie, X.F

    2004-08-01

    Influence of rotating in-plane field on vertical Bloch lines in the walls of second kind of dumbbell domains (IIDs) was investigated, and a critical in-plane field range [H{sub ip}{sup 1},H{sub ip}{sup 2}] of which vertical-Bloch lines (VBLs) annihilated in IIDs is found under rotating in-plane field (H{sub ip}{sup 1} is the maximal critical in-plane-field of which hard domains remain stable, H{sub ip}{sup 2} is the minimal critical in-plane-field of which all of the hard domains convert to soft bubbles (SBs, without VBLs)). It shows that the in-plane field range [H{sub ip}{sup 1}, H{sub ip}{sup 2}] changes with the change of the rotating angle {delta}{phi} H{sub ip}{sup 1} maintains stable, while H{sub ip}{sup 2} decreases with the decreasing of rotating angle {delta}{phi}. Comparing it with the spontaneous shrinking experiment of IIDs under both bias field and in-plane field, we presume that under the application of in-plane field there exists a direction along which the VBLs in the domain walls annihilate most easily, and it is in the direction that domain walls are perpendicular to the in-plane field.

  11. Evaluating (and Improving) Estimates of the Solar Radial Magnetic Field Component from Line-of-Sight Magnetograms

    Science.gov (United States)

    Leka, K. D.; Barnes, G.; Wagner, E. L.

    2017-02-01

    Although for many solar physics problems the desirable or meaningful boundary is the radial component of the magnetic field Br, the most readily available measurement is the component of the magnetic field along the line of sight to the observer, B_{los}. As this component is only equal to the radial component where the viewing angle is exactly zero, some approximation is required to estimate Br at all other observed locations. In this study, a common approximation known as the "μ-correction", which assumes all photospheric field to be radial, is compared to a method that invokes computing a potential field that matches the observed B_{los}, from which the potential field radial component, Br^{pot} is recovered. We demonstrate that in regions that are truly dominated by a radially oriented field at the resolution of the data employed, the μ-correction performs acceptably if not better than the potential-field approach. However, it is also shown that for any solar structure that includes horizontal fields, i.e. active regions, the potential-field method better recovers both the strength of the radial field and the location of magnetic neutral line.

  12. Geometric diffusion of quantum trajectories.

    Science.gov (United States)

    Yang, Fan; Liu, Ren-Bao

    2015-07-16

    A quantum object can acquire a geometric phase (such as Berry phases and Aharonov-Bohm phases) when evolving along a path in a parameter space with non-trivial gauge structures. Inherent to quantum evolutions of wavepackets, quantum diffusion occurs along quantum trajectories. Here we show that quantum diffusion can also be geometric as characterized by the imaginary part of a geometric phase. The geometric quantum diffusion results from interference between different instantaneous eigenstate pathways which have different geometric phases during the adiabatic evolution. As a specific example, we study the quantum trajectories of optically excited electron-hole pairs in time-reversal symmetric insulators, driven by an elliptically polarized terahertz field. The imaginary geometric phase manifests itself as elliptical polarization in the terahertz sideband generation. The geometric quantum diffusion adds a new dimension to geometric phases and may have applications in many fields of physics, e.g., transport in topological insulators and novel electro-optical effects.

  13. Effect of equatorial line nodes on the upper critical field and London penetration depth

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, V G [Ames Laboratory; Prozorov, R [Ames Laboratory

    2014-09-01

    The upper critical field Hc2 and its anisotropy are calculated for order parameters with line nodes at the equators, kz=0, of the Fermi surface of uniaxial superconductors. It is shown that characteristic features found in Fe-based materials (a nearly linear Hc2(T) in a broad T domain, a low and increasing on warming anisotropy γH=Hc2,ab/Hc2,c) can be caused by competing effects of the equatorial nodes and of the Fermi surface anisotropy. For certain material parameters, γH(T)-1 may change sign upon warming, in agreement with the recorded behavior of FeTeS systems. It is also shown that the anisotropy of the penetration depth γλ=λc/λab decreases upon warming to reach γH at Tc, in agreement with data available. For some materials γλ(T) may change upon warming, from γλ>1 at low Ts to γλ<1 at high Ts.

  14. A WFC3 Grism Emission Line Redshift Catalog in the GOODS-South Field

    CERN Document Server

    Morris, Aaron M; Trump, Jonathan R; Weiner, Benjamin J; Hathi, Nimish P; Barro, Guillermo; Dahlen, Tomas; Faber, Sandra M; Finkelstein, Steven L; Fontana, Adriano; Ferguson, Henry C; Grogin, Norman A; Grützbauch, Ruth; Guo, Yicheng; Hsu, Li-Ting; Koekemoer, Anton M; Koo, David C; Mobasher, Bahram; Pforr, Janine; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn

    2015-01-01

    We combine HST/WFC3 imaging and G141 grism observations from the CANDELS and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1.1 0.6. The resulting spectra are visually inspected to identify emission lines and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of sigma_NMAD=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 square arcmin and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677 1.5. In addition, ...

  15. Advanced Discontinuous Galerkin Algorithms and First Open-Field Line Turbulence Simulations

    Science.gov (United States)

    Hammett, G. W.; Hakim, A.; Shi, E. L.

    2016-10-01

    New versions of Discontinuous Galerkin (DG) algorithms have interesting features that may help with challenging problems of higher-dimensional kinetic problems. We are developing the gyrokinetic code Gkeyll based on DG. DG also has features that may help with the next generation of Exascale computers. Higher-order methods do more FLOPS to extract more information per byte, thus reducing memory and communications costs (which are a bottleneck at exascale). DG uses efficient Gaussian quadrature like finite elements, but keeps the calculation local for the kinetic solver, also reducing communication. Sparse grid methods might further reduce the cost significantly in higher dimensions. The inner product norm can be chosen to preserve energy conservation with non-polynomial basis functions (such as Maxwellian-weighted bases), which can be viewed as a Petrov-Galerkin method. This allows a full- F code to benefit from similar Gaussian quadrature as used in popular δf gyrokinetic codes. Consistent basis functions avoid high-frequency numerical modes from electromagnetic terms. We will show our first results of 3 x + 2 v simulations of open-field line/SOL turbulence in a simple helical geometry (like Helimak/TORPEX), with parameters from LAPD, TORPEX, and NSTX. Supported by the Max-Planck/Princeton Center for Plasma Physics, the SciDAC Center for the Study of Plasma Microturbulence, and DOE Contract DE-AC02-09CH11466.

  16. Field study of age-differentiated strain for assembly line workers in the automotive industry.

    Science.gov (United States)

    Börner, Kerstin; Scherf, Christian; Leitner-Mai, Bianca; Spanner-Ulmer, Birgit

    2012-01-01

    A field study in an automotive supply industry company was conducted to explore age-differentiated strain of assembly line workers. Subjective and objective data from 23 female workers aged between 27 and 57 years were collected at the workplace belt buckle assembly during morning shifts. Subjects with medication or chronic diseases affecting heart rate and breath rate were excluded. For subjective data generation different questionnaires were used. Before the Work Ability Index and the Munich Chronotype Questionnaire were completed by the subjects. Short questionnaires (strain-ratings, NASA-TLX) directly at begin and end of the work were used for obtaining shift-related data. During the whole shift (6 a.m. - 2.45 p.m.) bodily functions were logged with a wireless chest strap. In addition, the motion of the hand-arm-system was recorded for 30 times, 3 minutes each after a fixed time-schedule. First results show that younger subjects need significant less time for assembly (mean = 14.940 s) compared to older subjects (mean = 17.040 s; t(472.026) = -9.278 , p < 0.01).

  17. Lunar and interplanetary trajectories

    CERN Document Server

    Biesbroek, Robin

    2016-01-01

    This book provides readers with a clear description of the types of lunar and interplanetary trajectories, and how they influence satellite-system design. The description follows an engineering rather than a mathematical approach and includes many examples of lunar trajectories, based on real missions. It helps readers gain an understanding of the driving subsystems of interplanetary and lunar satellites. The tables and graphs showing features of trajectories make the book easy to understand. .

  18. Flux quanta, magnetic field lines, merging – some sub-microscale relations of interest in space plasma physics

    Directory of Open Access Journals (Sweden)

    R. A. Treumann

    2011-06-01

    Full Text Available We clarify the notion of magnetic field lines in plasma by referring to sub-microscale (quantum mechanical particle dynamics. It is demonstrated that magnetic field lines in a field of strength B carry single magnetic flux quanta Φ0=h/e. The radius of a field line in the given magnetic field B is calculated. It is shown that such field lines can merge and annihilate only over the length ℓ of their strictly anti-parallel sections, for which case we estimate the power generated. The length ℓ becomes a function of the inclination angle θ of the two merging magnetic flux tubes (field lines. Merging is possible only in the interval 12πθ≤π. This provides a sub-microscopic basis for "component reconnection" in classical macro-scale reconnection. We also find that the magnetic diffusion coefficient in plasma appears in quanta D0m=eΦ0/me=h/me. This lets us conclude that the bulk perpendicular plasma resistivity is limited and cannot be less than η0⊥0eΦ0/me0h/me~10−9 Ohm m. This resistance is an invariant.

  19. Solar Wind Activity Dependence of the Occurrence of Field-Line Resonance at low Latitudes (L~1.3)

    Science.gov (United States)

    Takasaki, S.; Kawano, H.; Tanaka, Y.; Yoshikawa, A.; Seto, M.; Iijima, M.; Yumoto, K.

    2002-12-01

    It is known that the field line resonance (FLR below) is caused by hydromagnetic waves in the magnetosphere. The fundamental field line eigenfrequency can be expressed by the magnetic field line length, the magnetic field intensity, and the plasma density at the magnetic field line. We can measure the fundamental field line eigenfrequency by ground-based observation. The field line length and the magnetic field intensity can be calculated from some magnetic field model (such as the IGRF model) of the magnetosphere. Then, it is possible that the plasma density at the magnetic field line is determined by these factors. The final aim of this study is to monitor and study time-dependent changes in the plasmaspheric plasma distributions by using ground magnetic field observations. For this purpose, we are working in the following three research phases. The first phase is to confirm the possibility of identifying FLR at low-latitudes (L~1.3). The second phase is to examine the correlation between FLR and solar wind parameters. The third phase is to estimate the plasma density from the FLR data, and monitor the density in a continuous manner. We are now in the third phase, and we report here the results of the first two phase. In the first phase, in order to investigate features of FLR close to the Earth, we installed three magnetometers in Japan at L~1.3 (at Kawatabi, Zaou, and Iitate), and started observing ULF geomagnetic pulsations. Each adjacent stations are separated in latitude by 50 to 100 km. The magnetic field data from these stations and Kakioka geomagnetic observatory, Japan, were analyzed by using the amplitude-ratio method and the cross-phase method. As a result, we identified FLR events whose frequency decreased with decreasing geomagnetic latitude; we infer that this feature was caused by heavy ion mass loading to low-L field lines. In the second phase, we studied the dependence of the occurrence probability of the above-identified FLR events on solar wind

  20. The magnetic field near power lines in the Moscow region: the results of measurements and their analyze

    Directory of Open Access Journals (Sweden)

    Prokofyeva A.S.

    2014-12-01

    Full Text Available The aim: to analyze the real power frequency magnetic field (50 Hz values near power lines. The material. Long-term measurements of the power frequency magnetic field (50 Hz near power lines of 110 kV, 220 kVand 500 kVin the Moscow region. Methods. Measurements were made by tracks which were perpendicular to the wires. Length of tracks was up to 40 m. Sensor of measurer was located on 1.8 m under the ground. General quantity of measurement points were 1103. The results. Was obtained general characteristics of real values of strength of electric field and values of magnetic flux density depending to distance to the projection last wire near power lines. Conclusion. Analysis of the results has the values of the magnetic field of power lines correspond to the Russian rules in all cases. Using additional World Health Organization safety criteria for magnetic fields (the class of carcinogenic risks 2B requires the expansion of the health safety zone 2-3 times.

  1. Sampling High-Dimensional Bandlimited Fields on Low-Dimensional Manifolds

    CERN Document Server

    Unnikrishnan, Jayakrishnan

    2011-01-01

    Consider the task of sampling and reconstructing a bandlimited spatial field in $\\Re^2$ using moving sensors that take measurements along their path. It is inexpensive to increase the sampling rate along the paths of the sensors but more expensive to increase the total distance traveled by the sensors per unit area, which we call the \\emph{path density}. In this paper we introduce the problem of designing sensor trajectories that are minimal in path density subject to the condition that the measurements of the field on these trajectories admit perfect reconstruction of bandlimited fields. We study various possible designs of sampling trajectories. Generalizing some ideas from the classical theory of sampling on lattices, we obtain necessary and sufficient conditions on certain configurations of straight line trajectories for perfect reconstruction. We show that a single set of equispaced parallel lines has the lowest path density from certain restricted classes of trajectories that admit perfect reconstructio...

  2. Trajectory P system

    Institute of Scientific and Technical Information of China (English)

    Subbaiah Annadurai; Thiyagarajan Kalyani; Vincent Rajkumar Dare; Durairaj Gnanaraj Thomas

    2008-01-01

    Membrane computing is a branch of natural computing aiming to abstract computing ideas for the structure and the functioning of living cells as well as from the way the cells are organized in tissues or higher-order structures.Trajectories are used as a tool for modeling language operations and other related objects.A trajectory P system consists of a membrane structure in which the object in each membrane is a collection of words and the evolutionary rules are given in terms of trajectories.In this paper,we present some properties of trajectory P systems.

  3. Measurement of field area based on tractor operation trajectory%基于拖拉机作业轨迹的农田面积测量

    Institute of Scientific and Technical Information of China (English)

    鲁植雄; 钟文军; 刁秀永; 梅士坤; 周晶; 程准

    2015-01-01

    The rapid development of modern agriculture in China has put forward higher requirements for agricultural machinery operation. In terms of area measurement, GPS (global positioning system) has become an important measuring tool, completely changed the traditional mode of operation, liberated the labor force, and improved the operation efficiency. Field operation is still basically in the stage of manual operation, so it is inevitable that there is much repetitive operation and missing operation. How to accurately measure the area of operation, this is a necessary issue. In this paper, the adaptive Kalman filter was used to improve GPS positioning accuracy for accurately measuring the tractor operation area. The adaptive Kalman filtering algorithm was mainly to solve the problem of the degradation of the system’s filtering accuracy and the divergence of the system in the case of noise statistics being unknown or not accurate. In order to achieve the system noise estimation of adaptive filtering, we used the covariance matching technology and the Kalman filter residual error to realize the algorithm. In this research, the LABVIEW software was used to get latitude and longitude data of GPS receiver. And then the Gauss projection algorithm was used to change the longitude and latitude data into plane coordinates to calculate the area. To test and verify the influence of different ways of operation on the operation efficiency, back tillage, spindle tillage and alternative plough method were chosen. Firstly, this research used MATLAB to identify the operation trajectory, then used different color to show the area of operation, and used the image processing method to calculate the effective operation area, the actual operation area, and the missed and repeated tillage rate, which were used to evaluate the operation efficiency of the tractor. In order to verify the feasibility of the algorithm, the accuracy of single point positioning and the accuracy of area measurement

  4. Assessment of Human Exposure to Magnetic Field from Overhead High Voltage Transmission Lines in a City in South Western Nigeria

    OpenAIRE

    Ponnle Akinlolu; Adedeji Kazeem

    2015-01-01

    The increase in electricity consumption, population, and land use has now forced high voltage transmission lines (HVTLs) either to pass or be installed around or through urban cities. This increases the level of human exposure to electromagnetic field radiation as this field produced around the HVTLs extends outwards covering some distance. This may cause a number of health hazards. It is even dangerous to a human who touch any metallic object in proximity of the HVTL, as it may have an appre...

  5. An EIRP Measurement Method for Base-Station Antennas Using Field Strengths Measured along a Single Straight Line

    OpenAIRE

    Soon-Soo Oh; Young-Hwan Lee

    2013-01-01

    We describe an EIRP measurement technique for a base-station antenna. The proposed method especially can be applied to the base-station antenna installed in real environments. Fresnel region measurement method is an optimal technique to avoid the far-field multipath interference, and, furthermore, it could shorten the measurement time. For detecting only the field strengths along a single straight line, we also propose a simple phase-retrieval method. For verification, a simulation and experi...

  6. SYNTHESIS OF AN ACTIVE SHIELDING SYSTEM OF THE MAGNETIC FIELD OF POWER LINES BASED ON MULTIOBJECTIVE OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    B. I. Kuznetsov

    2016-12-01

    Full Text Available Purpose. The synthesis of the active shielding systems by technogenic magnetic field generated by the different types of high voltage power lines in a given region of space using various cables of controlled magnetic field sources. Methodology. The initial parameters for the synthesis of active shielding system parameters are the location of the high voltage power lines with respect to the protected transmission line space, geometry and number of cables, operating currents, as well as the size of the protected space and normative value magnetic field induction, which should be achieved as a result of shielding. The objective of the synthesis of the active shielding system is to determine their number, configuration, spatial arrangement, wiring diagrams and compensation cables currents, setting algorithm of the control systems as well as the resulting value of the induction magnetic field at the points of the protected space. Synthesis of active shielding system is reduced to the problem of multiobjective nonlinear programming with constraints in which calculation of the objective functions and constraints are carried out on the basis of Biot – Savart – Laplace law. The problem is solved by a stochastic multi-agent optimization of multiswarm of particles which can significantly reduce the time to solve it. Results. Active screening system synthesis results for the various types of transmission lines and with different amounts of controlled cables is given. The possibility of a significant reduction in the level of induction of the magnetic field source within a given region of space. Originality. For the first time carried out the synthesis of the active shielding systems, by magnetic field generated by the different types of high voltage power lines within a given region of space controlled by a magnetic field sources with different amounts of controlled cables. Practical value, Practical recommendations on reasonable choice of the number

  7. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description: CENTER OF GRAVITY VERSUS WATER MASS 1

    Energy Technology Data Exchange (ETDEWEB)

    Heiblum, Reuven H. [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Altaratz, Orit [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Koren, Ilan [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Feingold, Graham [Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder Colorado USA; Kostinski, Alexander B. [Department of Physics, Michigan Technological University, Houghton Michigan USA; Khain, Alexander P. [The Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem Israel; Ovchinnikov, Mikhail [Atmosphere Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Fredj, Erick [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Dagan, Guy [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Pinto, Lital [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Yaish, Ricki [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Chen, Qian [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2016-06-07

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.

  8. Assessment of Human Exposure to Magnetic Field from Overhead High Voltage Transmission Lines in a City in South Western Nigeria

    Directory of Open Access Journals (Sweden)

    Ponnle Akinlolu

    2015-05-01

    Full Text Available The increase in electricity consumption, population, and land use has now forced high voltage transmission lines (HVTLs either to pass or be installed around or through urban cities. This increases the level of human exposure to electromagnetic field radiation as this field produced around the HVTLs extends outwards covering some distance. This may cause a number of health hazards. It is even dangerous to a human who touch any metallic object in proximity of the HVTL, as it may have an appreciable voltage induced on it due to inductive, capacitive or resistive interference from the line. This paper evaluates the magnetic field produced at mid-span by a 132kV, and a 330kV, 50Hz adjacent HVTLs with horizontal and vertical configuration in Akure, a city in South Western Nigeria using analytical method from electromagnetic field theory. This is then compared to the recommended standard limit of public exposure to magnetic field. The results of the computation showed that currently, the general public exposure to the magnetic field along the HVTLs is safe. However, right of way (ROW along the power lines is being violated as buildings and work places exist within the ROW.

  9. Field-aligned particle acceleration on auroral field lines by interaction with transient density cavities stimulated by kinetic Alfvén waves

    Directory of Open Access Journals (Sweden)

    P. A. Bespalov

    2006-09-01

    Full Text Available We consider the field-aligned acceleration of energetic ions and electrons which takes place on auroral field lines due to their interaction with time-varying density cavities stimulated by the strong oscillating field-aligned currents of kinetic Alfvén waves. It is shown that when the field-aligned current density of these waves increases, such that the electron drift speed exceeds the electron thermal speed, ion acoustic perturbations cease to propagate along the field lines and instead form purely-growing density perturbations. The rarefactions in these perturbations are found to grow rapidly to form density cavities, limited by the pressure of the bipolar electric fields which occur within them. The time scale for growth and decay of the cavities is much shorter than the period of the kinetic Alfvén waves. Energetic particles traversing these growing and decaying cavities will be accelerated by their time-varying field-aligned electric fields in a process that is modelled as a series of discrete random perturbations. The evolution of the particle distribution function is thus determined by the Fokker-Planck equation, with an energy diffusion coefficient that is proportional to the square of the particle charge, but is independent of the mass and energy. Steady-state solutions for the distribution functions of the accelerated particles are obtained for the case of an arbitrary energetic particle population incident on a scattering layer of finite length along the field lines, showing how the reflected and transmitted distributions depend on the typical "random walk" energy change of the particles within the layer compared to their initial energy. When this typical energy change is large compared to the initial energy, the reflected population is broadly spread in energy about a mean which is comparable with the initial energy, while the transmitted population has the form of a strongly accelerated field-aligned beam. We suggest that these

  10. THE METHODS OF CALCULATIONS OF THE TEMPERATURE BREAKDOWN FIELD IN THE LINE OF THE MODEM HIGH-SPEED WIRE MILL

    Directory of Open Access Journals (Sweden)

    S. M. Zhuchkov

    2007-01-01

    Full Text Available The calculation methods of the temperature field of the breakdown, being rolled in lines of the modern high-speed wire mill, is developed on the basis of solving of problem of the contact exchange of hot metal with cold rollers.

  11. Field application of self-healing concrete with natural fibres as linings for irrigation canals in Ecuador

    NARCIS (Netherlands)

    Sierra Beltran, M.G.; Jonkers, H.M.; Mors, R.M.; Mera-Ortiz, W.

    2015-01-01

    This paper describes the first field application of self-healing concrete with alkaliphilic spore-forming bacteria and reinforced with natural fibres. The application took place in the highlands in Ecuador in July 2014. The concrete was cast as linings for an irrigation canal that transports water f

  12. Field application of self-healing concrete with natural fibres as linings for irrigation canals in Ecuador

    NARCIS (Netherlands)

    Sierra Beltran, M.G.; Jonkers, H.M.; Mors, R.M.; Mera-Ortiz, W.

    2015-01-01

    This paper describes the first field application of self-healing concrete with alkaliphilic spore-forming bacteria and reinforced with natural fibres. The application took place in the highlands in Ecuador in July 2014. The concrete was cast as linings for an irrigation canal that transports water

  13. Field application of self-healing concrete with natural fibres as linings for irrigation canals in Ecuador

    NARCIS (Netherlands)

    Sierra Beltran, M.G.; Jonkers, H.M.; Mors, R.M.; Mera-Ortiz, W.

    2015-01-01

    This paper describes the first field application of self-healing concrete with alkaliphilic spore-forming bacteria and reinforced with natural fibres. The application took place in the highlands in Ecuador in July 2014. The concrete was cast as linings for an irrigation canal that transports water f

  14. First in situ evidence of electron pitch angle scattering due to magnetic field line curvature in the Ion diffusion region

    Science.gov (United States)

    Zhang, Y. C.; Shen, C.; Marchaudon, A.; Rong, Z. J.; Lavraud, B.; Fazakerley, A.; Yao, Z.; Mihaljcic, B.; Ji, Y.; Ma, Y. H.; Liu, Z. X.

    2016-05-01

    Theory predicts that the first adiabatic invariant of a charged particle may be violated in a region of highly curved field lines, leading to significant pitch angle scattering for particles whose gyroradius are comparable to the radius of the magnetic field line curvature. This scattering generates more isotropic particle distribution functions, with important impacts on the presence or absence of plasma instabilities. Using magnetic curvature analysis based on multipoint Cluster spacecraft observations, we present the first investigation of magnetic curvature in the vicinity of an ion diffusion region where reconnected field lines are highly curved. Electrons at energies > 8 keV show a clear pitch angle ordering between bidirectional and trapped distribution in surrounding regions, while we show that in the more central part of the ion diffusion region electrons above such energies become isotropic. By contrast, colder electrons (~1 keV) retain their bidirectional character throughout the diffusion regions. The calculated adiabatic parameter K2 for these electrons is in agreement with theory. This study provides the first observational evidence for particle pitch angle scattering due to magnetic field lines with well characterized curvature in a space plasma.

  15. The hybrid reactor project based on the straight field line mirror concept

    Science.gov (United States)

    Ågren, O.; Noack, K.; Moiseenko, V. E.; Hagnestâl, A.; Källne, J.; Anglart, H.

    2012-06-01

    The straight field line mirror (SFLM) concept is aiming towards a steady-state compact fusion neutron source. Besides the possibility for steady state operation for a year or more, the geometry is chosen to avoid high loads on materials and plasma facing components. A comparatively small fusion hybrid device with "semi-poor" plasma confinement (with a low fusion Q factor) may be developed for industrial transmutation and energy production from spent nuclear fuel. This opportunity arises from a large fission to fusion energy multiplication ratio, Qr = Pfis/Pfus>>1. The upper bound on Qr is primarily determined by geometry and reactor safety. For the SFLM, the upper bound is Qr≈150, corresponding to a neutron multiplicity of keff=0.97. Power production in a mirror hybrid is predicted for a substantially lower electron temperature than the requirement Te≈10 keV for a fusion reactor. Power production in the SFLM seems possible with Q≈0.15, which is 10 times lower than typically anticipated for hybrids (and 100 times smaller than required for a fusion reactor). This relaxes plasma confinement demands, and broadens the range for use of plasmas with supra-thermal ions in hybrid reactors. The SFLM concept is based on a mirror machine stabilized by qudrupolar magnetic fields and large expander tanks beyond the confinement region. The purpose of the expander tanks is to distribute axial plasma loss flow over a sufficiently large area so that the receiving plates can withstand the heat. Plasma stability is not relying on a plasma flow into the expander regions. With a suppressed plasma flow into the expander tanks, a possibility arise for higher electron temperature. A brief presentation will be given on basic theory for the SFLM with plasma stability and electron temperature issues, RF heating computations with sloshing ion formation, neutron transport computations with reactor safety margins and material load estimates, magnetic coil designs as well as a discussion on

  16. Pseudo-field line resonances in ground Pc5 pulsation events

    Directory of Open Access Journals (Sweden)

    D. V. Sarafopoulos

    2005-02-01

    Full Text Available In this work we study four representative cases of Pc5 ground pulsation events with discrete and remarkably stable frequencies extended at least in a high-latitude range of ~20°; a feature that erroneously gives the impression for an oscillation mode with "one resonant field line". Additionally, the presented events show characteristic changes in polarization sense, for a meridian chain of stations from the IMAGE array, and maximize their amplitude at or close to the supposed resonant magnetic field shell, much like the typical FLR. Nevertheless, they are not authentic FLRs, but pseudo-FLRs, as they are called. These structures are produced by repetitive and tilted twin-vortex structures caused by magnetopause surface waves, which are probably imposed by solar wind pressure waves. The latter is confirmed with in-situ measurements obtained by the Cluster satellites, as well as the Geotail, Wind, ACE, and LANL 1994-084 satellites. This research effort is largely based on two recent works: first, Sarafopoulos (2004a has observationally established that a solar wind pressure pulse (stepwise pressure variation produces a twin-vortex (single vortex current system over the ionosphere; second, Sarafopoulos (2004b has studied ground events with characteristic dispersive latitude-dependent structures and showed that these are associated with twin-vortex ionosphere current systems. In this work, we show that each pseudo-FLR event is associated with successive and tilted large-scale twin-vortex current systems corresponding to a magnetopause surface wave with wavelength 10-20RE. We infer that between an authentic FLR, which is a spatially localized structure with an extent 0.5RE in the magnetospheric equatorial plane, and the magnetopause surface wavelength, there is a scale factor of 20-40. A chief observational finding, in this work, is that there are Pc5 ground pulsation events showing two gradual and latitude

  17. Rolling Force and Rolling Moment in Spline Cold Rolling Using Slip-line Field Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dawei; LI Yongtang; FU Jianhua; ZHENG Quangang

    2009-01-01

    Rolling force and rolling moment are prime process parameter of external spline cold rolling. However, the precise theoretical formulae of rolling force and rolling moment are still very fewer, and the determination of them depends on experience. In the present study, the mathematical models of rolling force and rolling moment are established based on stress field theory of slip-line. And the isotropic hardening is used to improve the yield criterion. Based on MATLAB program language environment, calculation program is developed according to mathematical models established. The rolling force and rolling moment could be predicted quickly via the calculation program, and then the reliability of the models is validated by FEM. Within the range of module of spline m=0.5-1.5 mm, pressure angle of reference circle α=30.0°-45.0°, and number of spline teeth Z=19-54, the rolling force and rolling moment in rolling process (finishing rolling is excluded) are researched by means of virtualizing orthogonal experiment design. The results of the present study indicate that:the influences of module and number of spline teeth on the maximum rolling force and rolling moment in the process are remarkable;in the case of pressure angle of reference circle is little, module of spline is great, and number of spline teeth is little, the peak value of rolling force in rolling process may appear in the midst of the process;the peak value of rolling moment in rolling process appears in the midst of the process, and then oscillator weaken to a stable value. The results of the present study may provide guidelines for the determination of power of the motor and the design of hydraulic system of special machine, and provide basis for the farther researches on the precise forming process of external spline cold rolling.

  18. Asymmetrical flow field-flow fractionation with on-line detection for drug transfer studies: a feasibility study

    DEFF Research Database (Denmark)

    Hinna, A.; Steiniger, F.; Hupfeld, S.

    2014-01-01

    Knowledge about drug retention within colloidal carriers is of uppermost importance particularly if drug targeting is anticipated. The aim of the present study was to evaluate asymmetrical flow field-flow fractionation (AF4) with on-line UV/VIS drug quantification for its suitability to determine...... both release and transfer of drug from liposomal carriers to a model acceptor phase consisting of large liposomes. The hydrophobic porphyrin 5,10,15,20-tetrakis(4-hydroxyphenyl)21H,23H-porphine (p-THPP), a fluorescent dye with an absorbance maximum in the visible range and structural similarity...... channel geometries. Drug quantification by on-line absorbance measurements was established by comprehensive evaluation of the size-dependent turbidity contribution in on-line UV/VIS detection and by comparison with off-line results obtained for the respective dye-loaded donor formulations (dissolved...

  19. The relative number of Seyfert 2 galaxies. I - Spectra of emission-line galaxies in the Wasilewski field

    Science.gov (United States)

    Osterbrock, Donald E.; Shaw, Richard A.

    1988-04-01

    Slit spectra were obtained of all the Seyfert galaxy candidates and many other emission-line galaxies discovered (or recovered) by Wasilewski in his objective-prism survey centered on the region of North Galactic Pole. Redshifts and relative emission-line fluxes were measured for these galaxies, and all of their spectra were classified. Per unit volume of space, the relative numbers of Seyfert (1+1.5) to Seyfert (1.8+1.9) to Seyfert 2 are approximately 0.1/0.1/0.8. If the same galaxies were to evolve through all these stages, they would spend most of their AGN lifetimes as Seyfert 2s. If all Seyfert nuclei were similar objects with central broad-line regions hidden by obscuring disks to various extents, the disks would be thick and the line broadening due to any presumed rotational or radial velocity field in the plane of the disk would be greatly reduced by projection effects.

  20. The ESA's Space Trajectory Analysis software suite

    Science.gov (United States)

    Ortega, Guillermo

    The European Space Agency (ESA) initiated in 2005 an internal activity to develop an open source software suite involving university science departments and research institutions all over the world. This project is called the "Space Trajectory Analysis" or STA. This article describes the birth of STA and its present configuration. One of the STA aims is to promote the exchange of technical ideas, and raise knowledge and competence in the areas of applied mathematics, space engineering, and informatics at University level. Conceived as a research and education tool to support the analysis phase of a space mission, STA is able to visualize a wide range of space trajectories. These include among others ascent, re-entry, descent and landing trajectories, orbits around planets and moons, interplanetary trajectories, rendezvous trajectories, etc. The article explains that STA project is an original idea of the Technical Directorate of ESA. It was born in August 2005 to provide a framework in astrodynamics research at University level. As research and education software applicable to Academia, a number of Universities support this development by joining ESA in leading the development. ESA and Universities partnership are expressed in the STA Steering Board. Together with ESA, each University has a chair in the board whose tasks are develop, control, promote, maintain, and expand the software suite. The article describes that STA provides calculations in the fields of spacecraft tracking, attitude analysis, coverage and visibility analysis, orbit determination, position and velocity of solar system bodies, etc. STA implements the concept of "space scenario" composed of Solar system bodies, spacecraft, ground stations, pads, etc. It is able to propagate the orbit of a spacecraft where orbital propagators are included. STA is able to compute communication links between objects of a scenario (coverage, line of sight), and to represent the trajectory computations and

  1. 14 CFR 417.207 - Trajectory analysis.

    Science.gov (United States)

    2010-01-01

    ... potential three-sigma trajectory dispersions about the nominal trajectory. (2) A fuel exhaustion trajectory...) Trajectory model. A final trajectory analysis must use a six-degree of freedom trajectory model to...

  2. PANTHER. Trajectory Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Wilson, Andrew T. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Valicka, Christopher G. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Kegelmeyer, W. Philip [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Shead, Timothy M. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Newton, Benjamin D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Czuchlewski, Kristina Rodriguez [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generally be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.

  3. Bohmian mechanics and quantum field theory.

    Science.gov (United States)

    Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino

    2004-08-27

    We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.

  4. Greenhouse and Field Evaluation of Multiple Virus Resistant Lagenaria siceraria Lines Potentially useful for Watermelon Rootstocks

    Science.gov (United States)

    In previous evaluations we identified numerous lines of bottle gourd (Lagenaria siceraria) with complete or partial resistance to Zucchini yellow mosaic virus (ZYMV). In the present study, we were interested in developing bottle gourd lines with multiple virus resistance that could be useful as roo...

  5. Field data and numerical modeling: A multiple lines of evidence approach for assessing vapor intrusion exposure risks.

    Science.gov (United States)

    Pennell, Kelly G; Scammell, Madeleine K; McClean, Michael D; Suuberg, Eric M; Moradi, Ali; Roghani, Mohammadyousef; Ames, Jennifer; Friguglietti, Leigh; Indeglia, Paul A; Shen, Rui; Yao, Yijun; Heiger-Bernays, Wendy J

    2016-06-15

    USEPA recommends a multiple lines of evidence approach to make informed decisions at vapor intrusion sites because the vapor intrusion pathway is notoriously difficult to characterize. Our study uses this approach by incorporating groundwater, soil gas, indoor air field measurements and numerical models to evaluate vapor intrusion exposure risks in a Metro-Boston neighborhood known to exhibit lower than anticipated indoor air concentrations based on groundwater concentrations. We collected and evaluated five rounds of field sampling data over the period of one year. Field data results show a steep gradient in soil gas concentrations near the groundwater surface; however as the depth decreases, soil gas concentration gradients also decrease. Together, the field data and the numerical model results suggest that a subsurface feature is limiting vapor transport into indoor air spaces at the study site and that groundwater concentrations are not appropriate indicators of vapor intrusion exposure risks in this neighborhood. This research also reveals the importance of including relevant physical models when evaluating vapor intrusion exposure risks using the multiple lines of evidence approach. Overall, the findings provide insight about how the multiple lines of evidence approach can be used to inform decisions by using field data collected using regulatory-relevant sampling techniques, and a well-established 3-D vapor intrusion model.

  6. The redshift and the blueshift of spectral lines and the motion of mass-points in gravitational fields of photon stars

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-fan; YANG Xue-dong; CHEN Zhi-lai

    2007-01-01

    The redshift and the blueshift of spectral lines in gravitational fields of photon stars are studied when the observing and emitting points of the spectral lines locate at different positions. And the motion of masspoints is also studied. The studies show that the redshift and the blueshift of spectral lines in gravitational fields of photon stars can be arbitrarily positive, and the motion of mass-points in gravitational fields of photon stars can be used to determine the mass of photon stars.

  7. Low frequency modulation of transionospheric radio wave amplitude at low-latitudes: possible role of field line oscillations

    Directory of Open Access Journals (Sweden)

    A. K. Sinha

    Full Text Available Ionospheric scintillations of radio waves at low-latitudes are associated with electron density irregularities. These irregularities are field-aligned and can provide excitation energy all along the field line to non-local field-aligned oscillations, such as the local field line oscillations. Eigen-periods of toroidal field line oscillations at low-latitudes, computed by using the dipole magnetic field and ion distributions obtained from the International Reference Ionosphere (IRI for typical nighttime conditions, fall in the range of 20–25 s. When subjected to spectral analysis, signal strength of the radio waves recorded on the 250 MHz beacon at Pondicherry (4.5° N dip, Mumbai (13.4° N dip and Ujjain (18.6° N dip exhibit periodicities in the same range. For the single event for which simultaneous ground magnetic data were available, the geomagnetic field also oscillated at the same periodicity. The systematic presence of a significant peak in the 20–25 s range during periods of strong radio wave scintillations, and its absence otherwise suggests the possibility that field line oscillations are endogenously excited by the irregularities, and the oscillations associated with the excited field line generate the modulation characteristics of the radio waves received on the ground. The frequency of modulation is found to be much lower than the characteristic frequencies that define the main body of scintillations, and they probably correspond to scales that are much larger than the typical Fresnel scale. It is possible that the refractive mechanism associated with larger scale long-lived irregularities could be responsible for the observed phenomenon. Results of a preliminary numerical experiment that uses a sinusoidal phase irregularity in the ionosphere as a refracting media are presented. The results show that phase variations which are large enough to produce a focal plane close to the ground can reproduce features that are not

  8. The Magnetic Topology of the Weak-Lined T Tauri Star V410 - A Simultaneous Temperature and Magnetic Field Inversion

    CERN Document Server

    Carroll, T A; Rice, J B; Kuenstler, A

    2012-01-01

    We present a detailed temperature and magnetic investigation of the T Tauri star V410 Tau by means of a simultaneous Doppler- and Zeeman-Doppler Imaging. Moreover we introduce a new line profile reconstruction method based on a singular value decomposition (SVD) to extract the weak polarized line profiles. One of the key features of the line profile reconstruction is that the SVD line profiles are amenable to radiative transfer modeling within our Zeeman-Doppler Imaging code iMap. The code also utilizes a new iterative regularization scheme which is independent of any additional surface constraints. To provide more stability a vital part of our inversion strategy is the inversion of both Stokes I and Stokes V profiles to simultaneously reconstruct the temperature and magnetic field surface distribution of V410 Tau. A new image-shear analysis is also implemented to allow the search for image and line profile distortions induced by a differential rotation of the star. The magnetic field structure we obtain for ...

  9. Assessment of electromagnetic field levels from surrounding high-tension overhead power lines for proposed land use.

    Science.gov (United States)

    Al-Bassam, E; Elumalai, A; Khan, A; Al-Awadi, L

    2016-05-01

    The surrounding outdoor environment for new development has a big effect on the indoor quality of life. The main aim of this work was to determine the suitability of the area for building new schools with reference to electromagnetic field (EMF) effects. The specific objective of this study was to detect the safe distance from the EMF posed by the high-tension overhead power lines in the vicinity of the specified area. The measurements were taken for both the electric and magnetic fields in different months in order to detect the highest EMF levels during the peak power load season. EMDEX II with E-probe and EMDEX II with Linda were used for the measurements. These instruments were all calibrated by ENERTECH Company in USA. The EMF associated with high tension transmission lines that surrounded the proposed site has to be below 0.2 μT (Italian EMF regulations are the most suitable regulations for the establishment of schools in Kuwait). The safety clearance distance from the existing 300-kV high-tension power line has been assigned as 200 m and from other existing 132-kV high-tension power line was 50 m. The proposed site with its predefined boundaries has a magnetic field below the Italian EMF regulations for the establishment of new schools.

  10. 多回直流输电线路的离子流场计算%Ion Flow Field Calculation of Multi-circuit DC Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    李伟; 张波; 何金良

    2008-01-01

    An upwind finite element (FE) based algorithm to calculate the ion flow field in the vicinity of multi-circuit DC transmission lines is described. The initial value estimation and boundary condition are optimized, so details of the transmission lines such as bundle conductors and ground wires can be taken into account in the simulation model. Comparison between measured and computed ground level total electrical field and ion current density shows satisfactory agreement. The ion flow field of a ±500 kV HVDC Project with bipolar lines on the same tower is simulated. The total electrical field and ion current density on ground level are compared among different line arrangements.

  11. No effects of power line frequency extremely low frequency electromagnetic field exposure on selected neurobehavior tests of workers inspecting transformers and distribution line stations versus controls.

    Science.gov (United States)

    Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang

    2014-03-01

    We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study.

  12. Enhanced Axial Resolution of Wide-Field Two-Photon Excitation Microscopy by Line Scanning Using a Digital Micromirror Device

    Directory of Open Access Journals (Sweden)

    Jong Kang Park

    2017-03-01

    Full Text Available Temporal focusing multiphoton microscopy is a technique for performing highly parallelized multiphoton microscopy while still maintaining depth discrimination. While the conventional wide-field configuration for temporal focusing suffers from sub-optimal axial resolution, line scanning temporal focusing, implemented here using a digital micromirror device (DMD, can provide substantial improvement. The DMD-based line scanning temporal focusing technique dynamically trades off the degree of parallelization, and hence imaging speed, for axial resolution, allowing performance parameters to be adapted to the experimental requirements. We demonstrate this new instrument in calibration specimens and in biological specimens, including a mouse kidney slice.

  13. Vortex-based line beam optical tweezers

    Science.gov (United States)

    Cheng, Shubo; Tao, Shaohua

    2016-10-01

    A vortex-based line beam, which has a straight-line shape of intensity and possesses phase gradient along the line trajectory is developed and applied for optical manipulation in this paper. The intensity and phase distributions of the beam in the imaging plane of the Fourier transform are analytically studied. Simulation results show that the length of the line and phase gradient possessed by a vortex-based line beam are dependent on the topological charge and the azimuthal proportional constant. A superposition of multiple phase-only holograms with elliptical azimuthal phases can be used to generate an array of vortex-based line beams. Optical trapping with the vortex-based line beams has been implemented. Furthermore, the automatic transportation of microparticles along the line trajectory perpendicular to the optical axis is realized with an array of the beams. The generation method for the vortex-based line beam is simple. The beam would have potential applications in fields such as optical trapping, laser machining, and so on.

  14. Aircraft path planning with the use of smooth trajectories

    Science.gov (United States)

    Belokon', S. A.; Zolotukhin, Yu. N.; Nesterov, A. A.

    2017-01-01

    A simplified method of plane trajectory calculation is proposed for solving the problem of planning a path defined by a sequence of waypoints. The trajectory consists of oriented segments of straight lines joined by clothoids (Cornu spirals). The efficiency of the method is validated by means of numerical simulations in the MATLAB/Simulink environment.

  15. Level Lines of Gaussian Free Field II: Whole-Plane GFF

    OpenAIRE

    Wang, Menglu; WU Hao

    2015-01-01

    We study the level lines of GFF starting from interior points. We show that the level line of GFF starting from an interior point turns out to be a sequence of level loops. The sequence of level loops satisfies "target-independent" property. All sequences of level loops starting from interior points give a tree-structure of the plane. We also introduce the continuum exploration process of GFF starting from interior. The continuum exploration process of whole-plane GFF satisfies "reversibility".

  16. Evaluation and measurement of magnetic field exposure at a typical high-voltage substation and its power lines.

    Science.gov (United States)

    Ozen, S

    2008-01-01

    This study presents a survey of magnetic field measurements including those resulting from 380/154 kV power substations, which play a vital role in human body biological studies. The survey was carried out in the main power substation of Antalya, Turkey, located at the suburban region of the city, under actual loads. The paper also presents the actual magnetic field strength measured near the 380/154 kV substation and power transmission lines (380 and 154 kV) connecting to the substation. Since most part of these lines pass through a residential area, they have been included in the study, and the actual magnetic field variation around them has been investigated by comparative analysis of measured data. For the occupants working at substations, occupational exposure has been analysed with actual magnetic fields at operating locations. Induced internal electric fields and current densities in the occupants' body due to exposure to external magnetic fields produced by a conventional 380/154 kV power substation have been investigated.

  17. Reflections on a trajectory in Occupational Therapy

    Directory of Open Access Journals (Sweden)

    Selma Lancmam

    2012-12-01

    Full Text Available This text is part of the memorial presented as a requirement of the contest for full professor positionin Occupational Therapy at the School of Medicine from the University of Sao Paulo. The reflections presentedaim to trace the trajectory contextualized in different periods and institutions where the writer has worked, andhow they have blended with the academic development of Occupational Therapy itself. The text also seeks todiscuss the solidification process of the writer’s training as a researcher and the results arisen thereof. Thesecourses were built on research and culminated in the Mental Health and Work search line and its interfaces withOccupational Therapy. Across the text, the academic and scientific development in the field of occupationaltherapy is reflected and, finally, discussions are pointed out on the necessary consolidation of the area in researchand graduate studies and, therefore, in the dissemination of knowledge by publications indexed and relevant tothe field. The text is both a personal account and a true representation of the profession development in Brazilin the past thirty years.

  18. Cross-field motion of plasma blob-filaments and related particle flux in an open magnetic field line configuration on QUEST

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.Q., E-mail: hqliu@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Hanada, K. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Nishino, N. [Graduate School of Engineering, Hiroshima University, Hiroshima 7398511 (Japan); Ogata, R.; Ishiguro, M. [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 8168580 (Japan); Gao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zushi, H.; Nakamura, K.; Fujisawa, A.; Idei, H.; Hasegawa, M. [Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 8168580 (Japan)

    2013-07-15

    Blob-filaments have been observed by combined measurement with a fast camera and a movable Langmuir probe in an open magnetic field line configuration of electron cyclotron resonance (ECR) heating plasma in QUEST. Blob-filaments extended along field lines do correspond to over-dense plasma structures and propagated across the field lines to the outer wall. The radial velocity of the blob structure, V{sub b}, was obtained by three methods and was dominantly driven by the E × B force. The radial velocity, size of the blob showed good agreements with the results obtained by sheath-connected interchange theoretical model. V{sub b} corresponds to roughly 0.02–0.07 of the local sound speed (C{sub s}) in QUEST. The higher moments (skewness S and kurtosis K) representing the shape of PDF of density fluctuation are studied. Their least squares fitting with quadratic polynomial is K = (1.60 ± 0.27)S{sup 2} − (0.46 ± 0.20). The larger blob structures, occurring only 10% of the time, can carry more than 60% loss of the entire radial particle flux.

  19. A demonstration and evaluation of trajectory mapping

    Energy Technology Data Exchange (ETDEWEB)

    Morris, G.A. [Rice Univ., Houston, TX (United States). Dept. of Space Physics and Astronomy

    1994-09-01

    Problem of creating synoptic maps from asynoptically gathered data has prompted the development of a number schemes, the most notable being the Kalman filter, Salby-Fourier technique, and constituent reconstruction. This thesis presents a new technique, called trajectory mapping, which employs a simple model of air parcel motion to create synoptic maps from asynoptically gathered data. Four sources of trajectory mapping errors were analyzed; results showed that (1) the computational error is negligible; (2) measurement uncertainties can result in errors which grow with time scales of a week; (3) isentropic approximations lead to errors characterized by time scales of a week; and (4) wind field inaccuracies can cause significant errors in individual parcel trajectories in a matter of hours. All the studies, however, indicated that while individual trajectory errors can grow rapidly, constituent distributions, such as on trajectory maps, are much more robust, maintaining a high level of accuracy for periods on the order of several weeks. This technique was successfully applied to a variety of problems:(1) dynamical wave- breaking events; (2) satellite data validation for both instrument accuracy and precision; and (3) accuracy of meteorological wind fields. Such demonstrations imply that trajectory mapping will become an important tool in answering questions of global change, particularly the issue of ozone depletion.

  20. Structured trajectory planning of collision-free lane change using the vehicle-driver integration data

    Institute of Scientific and Technical Information of China (English)

    WANG JiangFeng; ZHANG Qian; ZHANG ZhiQ; YAN XueDong

    2016-01-01

    In this paper,the structured trajectory planning of lane change in collision-free road environment is studied and validated using the vehicle-driver integration data,and a new trajectory planning model for lane change is proposed based on linear offset and sine function to balance driver comfort and vehicle dynamics.The trajectory curvature of the proposed model is continuous without mutation,and the zero-based curvature at the starting and end points during lane change assures the motion direction of end points in parallel with the lane line.The field experiment are designed to collect the vehicle-driver integration data,such as steering angle,brake pedal angel and accelerator pedal angel.The correction Correlation analysis of lane-changing maneuver and influencing variables is conducted to obtain the significant variables that can be used to calibrate and test the proposed model.The results demonstrate that vehicle velocity and Y-axis acceleration have significant effects on the lane-changing maneuver,so that the model recalibrated by the samples of different velocity ranges and Y-axis accelerations has better fitted performance compared with the model calibrated by the sample trajectory.In addition,the proposed model presents a decreasing tendency of the lane change trajectory fitted MAE with the increase of time span of calibrating samples at the starting stage.

  1. Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing

    Science.gov (United States)

    Yaqoob, Zahid; Choi, Wonshik; Oh, Seungeun; Lue, Niyom; Park, Yongkeun; Fang-Yen, Christopher; Dasari, Ramachandra R.; Badizadegan, Kamran; Feld, Michael S.

    2010-01-01

    We report a quantitative phase microscope based on spectral domain optical coherence tomography and line-field illumination. The line illumination allows self phase-referencing method to reject common-mode phase noise. The quantitative phase microscope also features a separate reference arm, permitting the use of high numerical aperture (NA > 1) microscope objectives for high resolution phase measurement at multiple points along the line of illumination. We demonstrate that the path-length sensitivity of the instrument can be as good as 41 pm/Hz, which makes it suitable for nanometer scale study of cell motility. We present the detection of natural motions of cell surface and two-dimensional surface profiling of a HeLa cell. PMID:19550464

  2. Full-zone spectral envelope function formalism for the optimization of line and point tunnel field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Verreck, Devin, E-mail: devin.verreck@imec.be; Groeseneken, Guido [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium); Verhulst, Anne S.; Mocuta, Anda; Collaert, Nadine; Thean, Aaron [imec, Kapeldreef 75, 3001 Leuven (Belgium); Van de Put, Maarten; Magnus, Wim [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Sorée, Bart [imec, Kapeldreef 75, 3001 Leuven (Belgium); Department of Physics, Universiteit Antwerpen, 2020 Antwerpen (Belgium); Department of Electrical Engineering, KU Leuven, 3001 Leuven (Belgium)

    2015-10-07

    Efficient quantum mechanical simulation of tunnel field-effect transistors (TFETs) is indispensable to allow for an optimal configuration identification. We therefore present a full-zone 15-band quantum mechanical solver based on the envelope function formalism and employing a spectral method to reduce computational complexity and handle spurious solutions. We demonstrate the versatility of the solver by simulating a 40 nm wide In{sub 0.53}Ga{sub 0.47}As lineTFET and comparing it to p-n-i-n configurations with various pocket and body thicknesses. We find that the lineTFET performance is not degraded compared to semi-classical simulations. Furthermore, we show that a suitably optimized p-n-i-n TFET can obtain similar performance to the lineTFET.

  3. Ornithopter transition trajectories

    Science.gov (United States)

    Dietl, John M.; Garcia, Ephrahim

    2010-04-01

    The design of stable trim conditions for forward flight and for hover has been achieved. In forward flight, an ornithopter is configured like a conventional airplane or large bird. Its fuselage is essentially horizontal and the wings heave in a vertical plane. In hover, however, the body pitches vertically so that the wing stroke in the horizontal plane. Thrust directed downward, the vehicle remains aloft while the downdraft envelops the tail to provide enough flow for vehicle control and stabilization. To connect these trajectories dynamically is the goal. The naïve approach-to choose two stable trajectories and switch between them-has been accomplished. A new approach is to establish an open-loop trajectory through a trajectory optimization algorithm-optimized for shortest altitude drop, shortest stopping distance, or lowest energy consumption.

  4. Ion shell distributions as free energy source for plasma waves on auroral field lines mapping to plasma sheet boundary layer

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-06-01

    Full Text Available Ion shell distributions are hollow spherical shells in velocity space that can be formed by many processes and occur in several regions of geospace. They are interesting because they have free energy that can, in principle, be transmitted to ions and electrons. Recently, a technique has been developed to estimate the original free energy available in shell distributions from in-situ data, where some of the energy has already been lost (or consumed. We report a systematic survey of three years of data from the Polar satellite. We present an estimate of the free energy available from ion shell distributions on auroral field lines sampled by the Polar satellite below 6 RE geocentric radius. At these altitudes the type of ion shells that we are especially interested in is most common on auroral field lines close to the polar cap (i.e. field lines mapping to the plasma sheet boundary layer, PSBL. Our analysis shows that ion shell distributions that have lost some of their free energy are commonly found not only in the PSBL, but also on auroral field lines mapping to the boundary plasma sheet (BPS, especially in the evening sector auroral field lines. We suggest that the PSBL ion shell distributions are formed during the so-called Velocity Dispersed Ion Signatures (VDIS events. Furthermore, we find that the partly consumed shells often occur in association with enhanced wave activity and middle-energy electron anisotropies. The maximum downward ion energy flux associated with a shell distribution is often 10mWm-2 and sometimes exceeds 40mWm-2 when mapped to the ionosphere and thus may be enough to power many auroral processes. Earlier simulation studies have shown that ion shell distributions can excite ion Bernstein waves which, in turn, energise electrons in the parallel direction. It is possible that ion shell distributions are the link between the X-line and the auroral wave activity and electron

  5. Electromagnetic Field Interference on Transmission Lines due to On-Board Antenna

    Directory of Open Access Journals (Sweden)

    Heekwon Lee

    2015-01-01

    Full Text Available As the available space in the board of a mobile device becomes smaller and more compact, circuit elements and transmission lines are arranged in very close proximity, especially from the antennas which are usually installed on the same board. Due to the various on-board antennas which are designed in small space, the transmission lines on the board are electromagnetically interfered, resulting in the performance degradation of the circuit. So the engineers and circuit designers should find the least interfered place for the transmission lines and components to minimize the electromagnetic interferences. This paper discusses and presents a methodology to find the least sensitive position in the induced current distribution as well as in the noise power delivered from the antenna. For this purpose some vertical, horizontal, and bent transmission lines with antenna on the same board are designed and fabricated with and without common ground, and the transferred powers to the transmission lines were measured and were also simulated using a full-wave simulator. The results predicted by the EM simulation model were successfully confirmed through the measurement of S-parameters in the experimental setup, which shows the validness of the suggested analysis method.

  6. Automated Cooperative Trajectories

    Science.gov (United States)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  7. Reprint of: Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    Energy Technology Data Exchange (ETDEWEB)

    Pan, R., E-mail: rui.pan@stfc.ac.uk [Accelerator Science and Technology Centre, Science and Technology Facilities Council, Darebsury Laboratory, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); School of Engineering, Physics and Mathematics, University of Dundee, Nethergate, Dundee DD1 4HN (United Kingdom); Jamison, S.P. [Accelerator Science and Technology Centre, Science and Technology Facilities Council, Darebsury Laboratory, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); Lefevre, T. [CERN, CH-1211 Geneva 23 (Switzerland); Gillespie, W.A. [School of Engineering, Physics and Mathematics, University of Dundee, Nethergate, Dundee DD1 4HN (United Kingdom)

    2016-09-11

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding (EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  8. Ubiquity of chaotic magnetic-field lines generated by three-dimensionally crossed wires in modern electric circuits.

    Science.gov (United States)

    Hosoda, M; Miyaguchi, T; Imagawa, K; Nakamura, K

    2009-12-01

    We investigate simple three-dimensionally crossed wires carrying electric currents which generate chaotic magnetic-field lines (CMFLs). As such wire systems, cross-ring and perturbed parallel-ring wires are studied, since topologically equivalent configurations to these systems can often be found in contemporary electric and integrated circuits. For realistic fundamental wire configurations, the conditions for wire dimensions (size) and current values to generate CMFLs are numerically explored under the presence of the weak but inevitable geomagnetic field. As a result, it is concluded that CMFLs can exist everywhere; i.e., they are ubiquitous in the modern technological world.

  9. Performance of sheath electric field measurement by saturation spectroscopy in Balmer-α line of atomic hydrogen

    Science.gov (United States)

    Nishiyama, Shusuke; Katayama, Kento; Nakano, Haruhisa; Goto, Motoshi; Sasaki, Koichi

    2017-03-01

    We developed a diode laser-based system for measuring the sheath electric fields in low-temperature plasmas. The Stark spectrum of the Balmer-α line of atomic hydrogen was measured by saturation spectroscopy with a fine spectral resolution. The spectrum observed experimentally was consistent with the theoretical Stark spectrum, and we succeeded in evaluating the electric field strength on the basis of the experimental Stark spectrum. A sensitive detection limit of 10 V/cm was achieved by the developed system.

  10. Pressure-induced Paschen-Back effect of R-lines in alexandrite under high magnetic field

    Science.gov (United States)

    Kuroda, Noritaka; Kanda, Hiroyuki; Kido, Giyuu; Takeda, Masayasu; Nishina, Yuichiro; Nakagawa, Yasuaki

    1992-06-01

    Magneto-luminescence of R-lines has been studied in alexandrite subjected to quasi-hydrostatic pressures near 8 GPa at 77 K. In contrast to the previous experiment under low pressures, the Zeeman spectrum exhibits Paschen-Back behavior if a magnetic field up to 15 T is applied parallel to the b- and c-axes of the crystal. This phenomenon reflects that the transverse moment of spins of the 2E term of Cr(3+) ions is significantly reduced by pressure. Pressure strengthens the Ising character of the spins by elevating axial symmetry of the crystal field.

  11. On the reliable determination of the magnetic field for first flux-line penetration in technical niobium material

    Energy Technology Data Exchange (ETDEWEB)

    Ganapati Rao Myneni

    2007-09-05

    We present a way to reliably determine the field for first penetration H$_P$ in various kinds of bulk samples of niobium material used in the technical applications like fabrication of superconducting RF-cavities. Special attention is given to the role of flux line pinning in the determination of H$_P$. It is observed that the pinning properties and H$_P$ can change (or can be altered) significantly with the chemical treatment of bulk niobium. A correlation is proposed between H$_P$ of the niobium materials and the anomalous high-field Q-drop observed in the superconducting RF-cavities fabricated using such niobium material.

  12. On the reliable determination of the magnetic field for first flux-line penetration in technical niobium material

    Energy Technology Data Exchange (ETDEWEB)

    Roy, S B; Sahni, V C [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Myneni, G R [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States)

    2008-06-15

    We present a way to reliably determine the field for first penetration H{sub P} in various kinds of bulk samples of niobium material used in technical applications like the fabrication of superconducting RF cavities. Special attention is given to the role of flux-line pinning in the determination of H{sub P}. It is observed that the pinning properties and H{sub P} can be altered significantly with the chemical treatment of bulk niobium. A correlation is proposed between H{sub P} of the niobium materials and the anomalous high-field Q drop observed in the superconducting RF cavities fabricated using such niobium material.

  13. Reprint of: Coulomb field strength measurement by electro-optic spectral decoding system at the CALIFES beam line

    Science.gov (United States)

    Pan, R.; Jamison, S. P.; Lefevre, T.; Gillespie, W. A.

    2016-09-01

    Electro-optic (EO) techniques are increasingly used for longitudinal bunch profile measurements. A bunch profile monitor, based on electro-optic spectral decoding (EOSD), has been developed and demonstrated on the CALIFES beam line at CERN. The EO response is analysed using a frequency domain description, and two methods for extraction of absolute Coulomb field strengths from the electron bunch are demonstrated. Measurements at field strengths up to 1.3 MV/m agree with the expectation based on independent charge measurements.

  14. Comparison Between the Trajectories of Electric Field Resonances and those of Rational Surfaces in TJ-II; Comparacion entre las Trayectorias Correspondientes a Resonancias del Campo Electrico y las de Superficies Racionales en el TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.; Liniers, M. [Ciemat. Madrid (Spain)

    2000-07-01

    Both the radial electric field resonance case and the corresponding to rational magnetic surfaces, show a number of similar behaviours: a) Strong sensitivity of the passing particle loss fraction, and mainly of their los times, to lower order rational values of the ratio between the poloidal and toroidal rotation angular velocities. b) In both cases there exist similar simple analytical models that allow qualitative predictions for the phase space regions where resonant effects can be expected. c) Strong similitude of trajectories, as well in the Poincare diagrams as in the angular maps. Near the resonant regions a extreme minimization of the radial excursion appears, and both diagrams present a minimum filling. At both sides of these regions there are wide excursions, directed alternatively towards the inner and the outer parts of the plasma. Far from these resonant zones the diagrams filling comes back to be continuous. d) All these behaviours are more marked, and the topology change more sudden, the lower is the periodicity order of the resonance, and are extremely clear for the 1/3 and 1/2 cases. This wealth of similar behaviour suggests a single origin for all these phenomena, linked with the trajectory topology, that will be the subject of a specific study. (Author) 13 refs.

  15. CONTINUUM INTENSITY AND [O i] SPECTRAL LINE PROFILES IN SOLAR 3D PHOTOSPHERIC MODELS: THE EFFECT OF MAGNETIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Fabbian, D.; Moreno-Insertis, F., E-mail: damian@iac.es, E-mail: fmi@iac.es [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain)

    2015-04-01

    The importance of magnetic fields in three-dimensional (3D) magnetoconvection models of the Sun’s photosphere is investigated in terms of their influence on the continuum intensity at different viewing inclination angles and on the intensity profile of two [O i] spectral lines. We use the RH numerical radiative transfer code to perform a posteriori spectral synthesis on the same time series of magnetoconvection models used in our publications on the effect of magnetic fields on abundance determination. We obtain a good match of the synthetic disk-center continuum intensity to the absolute continuum values from the Fourier Transform Spectrometer (FTS) observational spectrum; the match of the center-to-limb variation synthetic data to observations is also good, thanks, in part, to the 3D radiation transfer capabilities of the RH code. The different levels of magnetic flux in the numerical time series do not modify the quality of the match. Concerning the targeted [O i] spectral lines, we find, instead, that magnetic fields lead to nonnegligible changes in the synthetic spectrum, with larger average magnetic flux causing both of the lines to become noticeably weaker. The photospheric oxygen abundance that one would derive if instead using nonmagnetic numerical models would thus be lower by a few to several centidex. The inclusion of magnetic fields is confirmed to be important for improving the current modeling of the Sun, here in particular in terms of spectral line formation and of deriving consistent chemical abundances. These results may shed further light on the still controversial issue regarding the precise value of the solar oxygen abundance.

  16. Field Robotics in Sports: Automatic Generation of guidance Lines for Automatic Grass Cutting, Striping and Pitch Marking of Football Playing Fields

    Directory of Open Access Journals (Sweden)

    Ole Green

    2011-03-01

    Full Text Available Progress is constantly being made and new applications are constantly coming out in the area of field robotics. In this paper, a promising application of field robotics in football playing fields is introduced. An algorithmic approach for generating the way points required for the guidance of a GPS-based field robotic through a football playing field to automatically carry out periodical tasks such as cutting the grass field, pitch and line marking illustrations and lawn striping is represented. The manual operation of these tasks requires very skilful personnel able to work for long hours with very high concentration for the football yard to be compatible with standards of Federation Internationale de Football Association (FIFA. In the other side, a GPS-based guided vehicle or robot with three implements; grass mower, lawn stripping roller and track marking illustrator is capable of working 24 h a day, in most weather and in harsh soil conditions without loss of quality. The proposed approach for the automatic operation of football playing fields requires no or very limited human intervention and therefore it saves numerous working hours and free a worker to focus on other tasks. An economic feasibility study showed that the proposed method is economically superimposing the current manual practices.

  17. A microwave transmission-line network guiding electromagnetic fields through a dense array of metallic objects

    CERN Document Server

    Alitalo, Pekka; Vehmas, Joni; Tretyakov, Sergei

    2008-01-01

    We present measurements of a transmission-line network, designed for cloaking applications in the microwave region. The network is used for channelling microwave energy through an electrically dense array of metal objects, which is basically impenetrable to the impinging electromagnetic radiation. With the designed transmission-line network the waves emitted by a source placed in an air-filled waveguide, are coupled into the network and guided through the array of metallic objects. Our goal is to illustrate the simple manufacturing, assembly, and the general feasibility of these types of cloaking devices.

  18. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for [CII] Line and Dust Emission in 6

    Science.gov (United States)

    Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.

    2016-12-01

    We present a search for [C ii] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212-272 GHz, encompass approximately the range of 6 4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C ii] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C ii] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M ⊙ yr-1. We find that the two highest-SFR objects have candidate [C ii] lines with luminosities that are consistent with the low-redshift L [C ii] versus SFR relation. The other candidates have significantly higher [C ii] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C ii] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C ii] emitters at 6 universe.

  19. Diagnosis of Magnetic and Electric Fields of Chromospheric Jets through Spectropolarimetric Observations of HI Paschen Lines

    CERN Document Server

    Anan, Tetsu; Ichimoto, Kiyoshi

    2014-01-01

    Magnetic fields govern the plasma dynamics in the outer layers of the solar atmosphere, and electric fields acting on neutral atoms that move across the magnetic field enable us to study the dynamical coupling between neutrals and ions in the plasma. In order to measure the magnetic and electric fields of chromospheric jets, the full Stokes spectra of the Paschen series of neutral hydrogen in a surge and in some active region jets that took place at the solar limb were observed on May 5, 2012, using the spectropolarimeter of the Domeless Solar Telescope at Hida observatory, Japan. First, we inverted the Stokes spectra taking into account only the effect of magnetic fields on the energy structure and polarization of the hydrogen levels. Having found no definitive evidence of the effects of electric fields in the observed Stokes profiles, we then estimated an upper bound for these fields by calculating the polarization degree under the magnetic field configuration derived in the first step, with the additional ...

  20. Solution space analysis of Double Lunar-Swingby periodic trajectory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The Double Lunar-Swingby(DLS)periodic trajectory is a type of large-scale trajectory in Restricted Three-Body Problem framework.First,the principium of the DLS periodic trajectory is studied,and a preliminary design of the DLS trajectory is developed by the Patched Conic method.Second,the solution space of the DLS periodic trajectory is discussed in detail and in combination with numerical simulation,a distribution about orbital parameter relationship in the solution space is given.Finally,the variations of the orbital elements with different rotation angular velocities of geocentric apsidal line are found,and two typical orbits are given according to three reference frames.It is shown that Patched Conic method is feasible for the DLS periodic trajectory solution space analysis,and the conclusions will be valuable to the deep-space exploration orbit design in future.

  1. Compressing spatio-temporal trajectories

    DEFF Research Database (Denmark)

    Gudmundsson, Joachim; Katajainen, Jyrki; Merrick, Damian

    2009-01-01

    A trajectory is a sequence of locations, each associated with a timestamp, describing the movement of a point. Trajectory data is becoming increasingly available and the size of recorded trajectories is getting larger. In this paper we study the problem of compressing planar trajectories such tha...

  2. Trajectories of Listeria-type motility in two dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-12-01

    Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.

  3. Childhood cancer and magnetic fields from high-voltage power lines in England and Wales: a case–control study

    Science.gov (United States)

    Kroll, M E; Swanson, J; Vincent, T J; Draper, G J

    2010-01-01

    Background: Epidemiological evidence suggests that chronic low-intensity extremely-low-frequency magnetic-field exposure is associated with increased risk of childhood leukaemia; it is not certain the association is causal. Methods: We report a national case–control study relating childhood cancer risk to the average magnetic field from high-voltage overhead power lines at the child's home address at birth during the year of birth, estimated using National Grid records. From the National Registry of Childhood Tumours, we obtained records of 28 968 children born in England and Wales during 1962–1995 and diagnosed in Britain under age 15. We selected controls from birth registers, matching individually by sex, period of birth, and birth registration district. No participation by cases or controls was required. Results: The estimated relative risk for each 0.2 μT increase in magnetic field was 1.14 (95% confidence interval 0.57 to 2.32) for leukaemia, 0.80 (0.43–1.51) for CNS/brain tumours, and 1.34 (0.84–2.15) for other cancers. Conclusion: Although not statistically significant, the estimate for childhood leukaemia resembles results of comparable studies. Assuming causality, the estimated attributable risk is below one case per year. Magnetic-field exposure during the year of birth is unlikely to be the whole cause of the association with distance from overhead power lines that we previously reported. PMID:20877338

  4. The numerical simulation and forecast of spilled oil trajectory in Yacheng oil and gas field sea area%崖城油气田附近海域溢油漂移轨迹数值模拟预测

    Institute of Scientific and Technical Information of China (English)

    王璟; 娄安刚; 曹振东

    2012-01-01

    通过采用不规则的三角网格和有限体积法的FVCOM模式,建立三维潮流数值模型.利用大海域计算得到的调和常数值作为开边界的输入值,模拟出崖城附近海域的潮流和潮位变化情况.在潮流、潮位验证正确的前提下,利用欧拉—拉格朗日追踪方法,建立了溢油轨迹预测模型,进行崖城油气田附近海域溢油中心轨迹的预测,同时预测了溢油漂移的平均速率和油膜抵达敏感区的时间,为油气田实施应急措施提供技术支持.%Based on the unstructured grid finite-volume coastal ocean model (FVCOM), the complete three-dimensional fine-solution equation group of shallow-sea tide is used to compute the tidal current and sea-level variations in Yacheng sea area. The open boundary conditions are provided by the open oceanic model. The simulation of the tidal current and sea-level are verified with the observation data. By Euler-Lagarangian tracing method, a trajectory forecasting model for spilled oil is established to predict the trajectory of the oil-film centre, the averaging moving rate and the reaching time of the oil to the sensitive area in Yacheng oil and gas field sea area. It offers some effective technologies for the emergency response to the oil and gas field.

  5. HIDES spectroscopy of bright detached eclipsing binaries from the $Kepler$ field - I. Single-lined objects

    CERN Document Server

    Hełminiak, K G; Kambe, E; Kozłowski, S K; Sybilski, P; Ratajczak, M; Maehara, H; Konacki, M

    2016-01-01

    We present results of our spectroscopic observations of nine detached eclipsing binaries (DEBs), selected from the $Kepler$ Eclipsing Binary Catalog, that only show one set of spectral lines. Radial velocities (RVs) were calculated from the high resolution spectra obtained with the HIDES instrument, attached to the 1.88-m telescope at the Okayama Astrophysical Observatory, and from the public APOGEE archive. In our sample we found five single-lined binaries, with one component dominating the spectrum. The orbital and light curve solutions were found for four of them, and compared with isochrones, in order to estimate absolute physical parameters and evolutionary status of the components. For the fifth case we only update the orbital parameters, and estimate the properties of the unseen star. Two other systems show orbital motion with a period known from the eclipse timing variations (ETVs). For these we obtained parameters of outer orbits, by translating the ETVs to RVs of the centre of mass of the eclipsing ...

  6. First Field Experience of On-line Partial Discharge Monitoring of MV Cable Systems with location

    Energy Technology Data Exchange (ETDEWEB)

    Van der Wielen, P.; Steennis, F.

    2009-06-15

    A new measuring system is presented for the on-line monitoring and location of partial discharges (PDs) in medium-voltage power cables. The system uses two inductive sensors, each at one cable end. The measuring system is called PD-OL, which stands for PD detection Online with Location. A pulse injection system is used for the time synchronization of the data intake at both cable ends and for the on-line calibration. PD data is send via internet to the KEMA Control Center for interpretation and final presentation, made visible on a secured website for the network owners. This paper discusses the basics of PD-OL and a number of measurement results.

  7. Managing a front-line field hospital in Libya: Description of case mix and lessons learned for future humanitarian emergencies

    Directory of Open Access Journals (Sweden)

    Adam C. Levine

    2012-06-01

    Full Text Available Between June and August 2011, International Medical Corps deployed a field hospital near the front-line of the fighting between government troops and opposition fighters in Western Libya. The field hospital cared for over 1300 combatants and non-combatants from both sides of the conflict during that time period, the vast majority of them presenting with war-related injuries. Over 60% of battle-related injuries were due to shrapnel wounds and blast injuries from exploding small mortars, with smaller percentages due to battle-related motor vehicle accidents, gun shot wounds, burns, and other causes. The most pertinent lessons learned from our experience were the importance of dedicating significant resources to logistics and supply chain management, the rewards garnered from building strong ties with the local community early in the deployment of the field hospital, and the need to pay careful attention to basic principles of humanitarian ethics.

  8. Milking liquid nano-droplets by an IR laser: a new modality for the visualization of electric field lines

    Science.gov (United States)

    Vespini, Veronica; Coppola, Sara; Grilli, Simonetta; Paturzo, Melania; Ferraro, Pietro

    2013-04-01

    Liquid handling at micron- and nano-scale is of paramount importance in many fields of application such as biotechnology and biochemistry. In fact, the microfluidics technologies play an important role in lab-on-a-chip devices and, in particular, the dispensing of liquid droplets is a required functionality. Different approaches have been developed for manipulating, dispensing and controlling nano-droplets under a wide variety of configurations. Here we demonstrate that nano-droplets can be drawn from liquid drop or film reservoirs through a sort of milking effect achieved by the absorption of IR laser radiation into a pyroelectric crystal. The generation of the pyroelectric field induced by the IR laser is calculated numerically and a specific experiment has been designed to visualize the electric field stream lines that are responsible for the liquid milking effect. The experiments performed are expected to open a new route for the visualization, measure and characterization procedures in the case of electrohydrodynamic applications.

  9. An EIRP Measurement Method for Base-Station Antennas Using Field Strengths Measured along a Single Straight Line

    Directory of Open Access Journals (Sweden)

    Soon-Soo Oh

    2013-01-01

    Full Text Available We describe an EIRP measurement technique for a base-station antenna. The proposed method especially can be applied to the base-station antenna installed in real environments. Fresnel region measurement method is an optimal technique to avoid the far-field multipath interference, and, furthermore, it could shorten the measurement time. For detecting only the field strengths along a single straight line, we also propose a simple phase-retrieval method. For verification, a simulation and experiment have been performed. An anechoic chamber was utilized in this paper before the real environment test with the outdoor measurement system. The transformed far-field pattern and EIRP agree closely with the reference data within a valid angle. The proposed method can be applied for the EIRP in situ measurements without moving a vehicle loading the EIRP measurement apparatus.

  10. Moon Landing Trajectory Optimization

    Directory of Open Access Journals (Sweden)

    Ibrahim Mustafa MEHEDI

    2016-03-01

    Full Text Available Trajectory optimization is a crucial process during the planning phase of a spacecraft landing mission. Once a trajectory is determined, guidance algorithms are created to guide the vehicle along the given trajectory. Because fuel mass is a major driver of the total vehicle mass, and thus mission cost, the objective of most guidance algorithms is to minimize the required fuel consumption. Most of the existing algorithms are termed as “near-optimal” regarding fuel expenditure. The question arises as to how close to optimal are these guidance algorithms. To answer this question, numerical trajectory optimization techniques are often required. With the emergence of improved processing power and the application of new methods, more direct approaches may be employed to achieve high accuracy without the associated difficulties in computation or pre-existing knowledge of the solution. An example of such an approach is DIDO optimization. This technique is applied in the current research to find these minimum fuel optimal trajectories.

  11. HIDES spectroscopy of bright detached eclipsing binaries from the Kepler field - I. Single-lined objects

    Science.gov (United States)

    Hełminiak, K. G.; Ukita, N.; Kambe, E.; Kozłowski, S. K.; Sybilski, P.; Ratajczak, M.; Maehara, H.; Konacki, M.

    2016-09-01

    We present results of our spectroscopic observations of nine detached eclipsing binaries (DEBs), selected from the Kepler Eclipsing Binary Catalog, that only show one set of spectral lines. Radial velocities (RVs) were calculated from the high-resolution spectra obtained with the HIgh-Dispersion Echelle Spectrograph (HIDES) instrument, attached to the 1.88-m telescope at the Okayama Astrophysical Observatory, and from the public Apache Point Observatory Galactic Evolution Experiment archive. In our sample, we found five single-lined binaries, with one component dominating the spectrum. The orbital and light-curve solutions were found for four of them, and compared with isochrones, in order to estimate absolute physical parameters and evolutionary status of the components. For the fifth case, we only update the orbital parameters, and estimate the properties of the unseen star. Two other systems show orbital motion with a period known from the eclipse timing variations (ETVs). For these we obtained parameters of outer orbits, by translating the ETVs to RVs of the centre of mass of the eclipsing binary, and combining with the RVs of the outer star. Of the two remaining ones, one is most likely a blend of a faint background DEB with a bright foreground star, which lines we see in the spectra, and the last case is possibly a quadruple bearing a sub-stellar mass object. Where possible, we compare our results with literature, especially with results from asteroseismology. We also report possible detections of solar-like oscillations in our RVs.

  12. Discovery of Convoys in Trajectory Databases

    CERN Document Server

    Jeung, Hoyoung; Zhou, Xiaofang; Jensen, Christian S; Shen, Heng Tao

    2010-01-01

    As mobile devices with positioning capabilities continue to proliferate, data management for so-called trajectory databases that capture the historical movements of populations of moving objects becomes important. This paper considers the querying of such databases for convoys, a convoy being a group of objects that have traveled together for some time. More specifically, this paper formalizes the concept of a convoy query using density-based notions, in order to capture groups of arbitrary extents and shapes. Convoy discovery is relevant for real-life applications in throughput planning of trucks and carpooling of vehicles. Although there has been extensive research on trajectories in the literature, none of this can be applied to retrieve correctly exact convoy result sets. Motivated by this, we develop three efficient algorithms for convoy discovery that adopt the well-known filter-refinement framework. In the filter step, we apply line-simplification techniques on the trajectories and establish distance b...

  13. The iron $K_\\alpha$ lines as a tool for magnetic field estimations in non-flat accretion flows

    CERN Document Server

    Zakharov, A F; Bao, Y

    2004-01-01

    Observations of AGNs and microquasars by ASCA, RXTE, Chandra and XMM-Newton indicate the existence of broad X-ray emission lines of ionized heavy elements in their spectra. Such spectral lines were discovered also in X-ray spectra of neutron stars and X-ray afterglows of GRBs. Recently, Zakharov et al. (MNRAS, 2003, 342, 1325) described a procedure to estimate an upper limit of the magnetic fields in regions from which X-ray photons are emitted. The authors simulated typical profiles of the iron $K_\\alpha$ line in the presence of magnetic field and compared them with observational data in the framework of the widely accepted accretion disk model. Here we further consider typical Zeeman splitting in the framework of a model of non-flat accretion flows, which is a generalization of previous consideration into non-equatorial plane motion of particles emitting X-ray photons. Using perspective facilities of space borne instruments (e.g. Constellation-X mission) a better resolution of the blue peak structure of iro...

  14. Using an artificial neural network to classify multicomponent emission lines with integral field spectroscopy from SAMI and S7

    Science.gov (United States)

    Hampton, E. J.; Medling, A. M.; Groves, B.; Kewley, L.; Dopita, M.; Davies, R.; Ho, I.-T.; Kaasinen, M.; Leslie, S.; Sharp, R.; Sweet, S. M.; Thomas, A. D.; Allen, J.; Bland-Hawthorn, J.; Brough, S.; Bryant, J. J.; Croom, S.; Goodwin, M.; Green, A.; Konstantantopoulos, I. S.; Lawrence, J.; López-Sánchez, Á. R.; Lorente, N. P. F.; McElroy, R.; Owers, M. S.; Richards, S. N.; Shastri, P.

    2017-09-01

    Integral field spectroscopy (IFS) surveys are changing how we study galaxies and are creating vastly more spectroscopic data available than before. The large number of resulting spectra makes visual inspection of emission line fits an infeasible option. Here, we present a demonstration of an artificial neural network (ANN) that determines the number of Gaussian components needed to describe the complex emission line velocity structures observed in galaxies after being fit with lzifu. We apply our ANN to IFS data for the S7 survey, conducted using the Wide Field Spectrograph on the ANU 2.3 m Telescope, and the SAMI Galaxy Survey, conducted using the SAMI instrument on the 4 m Anglo-Australian Telescope. We use the spectral fitting code lzifu (Ho et al. 2016a) to fit the emission line spectra of individual spaxels from S7 and SAMI data cubes with 1-, 2- and 3-Gaussian components. We demonstrate that using an ANN is comparable to astronomers performing the same visual inspection task of determining the best number of Gaussian components to describe the physical processes in galaxies. The advantage of our ANN is that it is capable of processing the spectra for thousands of galaxies in minutes, as compared to the years this task would take individual astronomers to complete by visual inspection.

  15. Electric Mars: A Large Trans-Terminator Electric Potential Drop on Closed Magnetic Field Lines Above Utopia Planitia

    Science.gov (United States)

    Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-Andre

    2017-01-01

    Abstract Parallel electric fields and their associated electric potential structures play a crucial role inionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN(MAVEN) Mars Scout, we present the discovery and measurement of a substantial (Phi) Mars 7.7 +/-0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (Phi) Mars of 10.9 +/- 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.

  16. Effects of External Radiation Fields on Line Emission - Application to Star-forming Regions

    CERN Document Server

    Chatzikos, Marios; Williams, Robin; van Hoof, Peter; Porter, Ryan

    2013-01-01

    A variety of astronomical environments contain clouds irradiated by a combination of isotropic and beamed radiation fields. For example, molecular clouds may be irradiated by the isotropic cosmic microwave background (CMB), as well as by a nearby active galactic nucleus (AGN). These radiation fields excite atoms and molecules and produce emission in different ways. We revisit the escape probability theorem and derive a novel expression that accounts for the presence of external radiation fields. We show that when the field is isotropic the escape probability is reduced relative to that in the absence of external radiation. This is in agreement with previous results obtained under ad hoc assumptions or with the two-level system, but can be applied to complex many-level models of atoms or molecules. This treatment is in the development version of the spectral synthesis code Cloudy. We examine the spectrum of a Spitzer cloud embedded in the local interstellar radiation field, and show that about 60 percent of it...

  17. Silhouette and spectral line profiles in the special modification of the Kerr black hole geometry generated by quintessential fields

    CERN Document Server

    Schee, Jan

    2016-01-01

    We study optical effects in quintessential Kerr black hole spacetimes corresponding to the limiting case of the equation-of-state parameter $\\omega_{q}=-1/3$ of the quintessence. In dependence on the dimensionless quintessential field parameter $c$, we determine the black hole silhouette and the spectral line profiles of Keplerian disks generated in this special quintessential Kerr geometry, representing an extension of the general modifications of the Kerr geometry introduced recently by Ghasemi-Nodehi and Bambi \\cite{Gha-Bam:2016:EPJC:}. We demonstrate that due to the influence of the parameter $c$, the silhouette is almost homogeneously enlarged, and the spectral line profiles are redshifted with almost conserved shape.

  18. Silhouette and spectral line profiles in the special modification of the Kerr black hole geometry generated by quintessential fields

    Energy Technology Data Exchange (ETDEWEB)

    Schee, Jan; Stuchlik, Zdenek [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre for Theoretical Physics and Astrophysics, Opava (Czech Republic)

    2016-11-15

    We study optical effects in quintessential Kerr black hole spacetimes corresponding to the limiting case of the equation-of-state parameter ω{sub q} = -1/3 of the quintessence. In dependence on the dimensionless quintessential field parameter c, we determine the black hole silhouette and the spectral line profiles of Keplerian disks generated in this special quintessential Kerr geometry, representing an extension of the general modifications of the Kerr geometry introduced recently by Ghasemi-Nodehi and Bambi (Eur. Phys. J. C 56:290, 2016). We demonstrate that due to the influence of the parameter c, the silhouette is almost homogeneously enlarged, and the spectral line profiles are redshifted with almost conserved shape. (orig.)

  19. A new method for immunoassays using field-flow fractionation with on-line, continuous chemiluminescence detection.

    Science.gov (United States)

    Melucci, D; Guardigli, M; Roda, B; Zattoni, A; Reschiglian, P; Roda, A

    2003-06-13

    Chemiluminescence detection has already been combined with different separation techniques such as HPLC and capillary electrophoresis. In this work, it was applied to gravitational field-flow fractionation, a low-cost, flow-assisted separation technique for micronsized particles suited to further on-line detection of the separated analytes. Horseradish peroxidase was used as model sample, either free in solution or immobilized onto micronsized, polystyrene beads. The chemiluminescent substrates were added directly into the mobile phase, and the continuous, steady-state chemiluminescence generated during elution was detected on-line by either a flow-through luminometer or a CCD camera. Ultra-low detection limits, two orders of magnitude lower than those achievable with spectrophotometric detection, were found. The possibility to fully separate and quantitate free and bead-immobilized enzymes is reported, as a step towards the development of multianalyte, ultra-sensitive, micronsized beads-based flow-assisted immunoassays.

  20. A technical note about Phidel: a new software for evaluating magnetic induction field generated by power lines.

    Science.gov (United States)

    Comelli, M; Benes, M; Bampo, A; Villalta, R

    2007-01-01

    The Regional Environment Protection Agency of Friuli Venezia Giulia (ARPA FVG, Italy) has performed an analysis on existing software designed to calculate magnetic induction field generated by power lines. As far as the agency's requirements are concerned the tested programs display some difficulties in the immediate processing of electrical and geometrical data supplied by plant owners, and in certain cases turn out to be inadequate in representing complex configurations of power lines. Phidel, an innovative software, tackles and works out all the above-mentioned problems. Therefore, the obtained results, when compared with those of other programs, are the closest to experimental measurements. The output data can be employed both in the GIS and Excel environments, allowing the immediate overlaying of digital cartography and the determining of the 3 and 10 muT bands, in compliance with the Italian Decree of the President of the Council of Ministers of 8 July 2003.

  1. Estimation of local planetary gravity fields using line of sight gravity data and an integral operator

    Science.gov (United States)

    Barriot, J. P.; Balmino, G.

    1992-09-01

    A novel method is presented for mapping line-of-sight gravity data (LOSGD) joining planetary probes and observers during Doppler tracking operations, with a view to geodetic and geophysical applications. LOSGD are in this case mapped as gravity anomalies along a radial direction, at constant altitude, using an inversion procedure in conjunction with a Tikhonov-Arsenine regularization method. The application of different regularization-parameter choices to a synthetic case is followed by application to the real case of Pioneer-Venus orbiter data for Venus' Gula Mons.

  2. Skyrme mean-field studies of nuclei far from the stability line

    CERN Document Server

    Heenen, P H; Cwiok, S; Nazarewicz, W; Valor, A

    1999-01-01

    Two applications of mean-field calculations based on 3D coordinate-space techniques are presented. The first concerns the structure of odd-N superheavy elements that have been recently observed experimentally and shows the ability of the method to describe, in a self-consistent way, very heavy odd-mass nuclei. Our results are consistent with the experimental data. The second application concerns the introduction of correlations beyond a mean-field approach by means of projection techniques and configuration mixing. Results for Mg isotopes demonstrate that the restoration of rotational symmetry plays a crucial role in the description of 32Mg.

  3. Effect of External Disturbing Gravity Field on Spacecraft Guidance and Surveying Line Layout for Marine Gravity Survey

    Directory of Open Access Journals (Sweden)

    HUANG Motao

    2016-11-01

    Full Text Available Centred on the support requirement of flying track control for a long range spacecraft, a detail research is made on the computation of external disturbing gravity field, the survey accuracy of gravity anomaly on the earth' surface and the program of surveying line layout for marine gravity survey. Firstly, the solution expression of navigation error for a long range spacecraft is analyzed and modified, and the influence of the earth's gravity field on flying track of spacecraft is evaluated. Then with a given limited quota of biased error of spacecraft drop point, the accuracy requirement for calculating the external disturbing gravity field is discussed and researched. Secondly, the data truncation error and the propagated data error are studied and estimated, and the quotas of survey resolution and computation accuracy for gravity anomaly on the earth' surface are determined. Finally, based on the above quotas, a corresponding program of surveying line layout for marine gravity survey is proposed. A numerical test has been made to prove the reasonableness and validity of the suggested program.

  4. Scan-less, line-field confocal microscopy by combination of wavelength/space conversion with dual optical comb

    Science.gov (United States)

    Yasui, Takeshi; Hase, Eiji; Miyamoto, Shuji; Hsieh, Yi-Da; Minamikawa, Takeo; Yamamoto, Hirotsugu

    2016-03-01

    Optical frequency comb (OFC) has attracted attentions for optical frequency metrology in visible and infrared regions because the mode-resolved OFC spectrum can be used as a precise frequency ruler due to both characteristics of broadband radiation and narrow-line CW radiation. Furthermore, the absolute accuracy of all frequency modes in OFC is secured by phase-locking a repetition frequency frep and a carrier-envelope-offset frequency fceo to a frequency standard. However, application fields of OFC other than optical frequency metrology are still undeveloped. One interesting aspect of OFC except for the frequency ruler is optical carrier having a huge number of discrete frequency channels because OFC is composed of a series of frequency spikes regularly separated by frep in the broad spectral range. If a certain quantity to be measured is encoded on each comb mode by dimensional conversion, a huge number of data for the measured quantity can be obtained from a single mode-resolved spectrum of OFC. In this paper, we encode the confocal microscopic line-image of a sample on the mode-resolved OFC spectrum by the dimensional conversion between wavelength and 1D-space. The resulting image-encoded OFC spectrum is acquired by an optical spectrum analyzer or dual comb spectrometer. Finally, the line image of the sample is decoded from the spectral amplitude of the mode-resolved OFC spectrum. The combination of OFC with the dimensional conversion enables to establish both confocal modality and line-field imaging under the scan-less condition.

  5. In vitro cytotoxicity of Selol-loaded magnetic nanocapsules against neoplastic cell lines under AC magnetic field activation

    Science.gov (United States)

    Falqueiro, A. M.; Siqueira-Moura, M. P.; Jardim, D. R.; Primo, F. L.; Morais, P. C.; Mosiniewicz-Szablewska, E.; Suchocki, P.; Tedesco, A. C.

    2012-04-01

    The goals of this study are to evaluate invitro compatibility of magnetic nanomaterials and their therapeutic potential against cancer cells. Highly stable ionic magnetic fluid sample (maghemite, γ-Fe2O3) and Selol were incorporated into polymeric nanocapsules by nanoprecipitation method. The cytotoxic effect of Selol-loaded magnetic nanocapsules was assessed on murine melanoma (B16-F10) and oral squamous cell carcinoma (OSCC) cell lines following AC magnetic field application. The influence of different nanocapsules on cell viability was investigated by colorimetric MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. In the absence of AC magnetic field Selol-loaded magnetic nanocapsules, containing 100 µg/mL Selol plus 5 × 1012 particle/mL, showed antitumoral activity of about 50% on B16-F10 melanoma cells while OSCC carcinoma cells demonstrated drug resistance at all concentrations of Selol and magnetic fluid (range of 100-500 µg/mL Selol and 5 × 1012-2.5 × 1013 particle/mL). On the other hand, under AC applied fields (1 MHz and 40 Oe amplitude) B16-F10 cell viability was reduced down to 40.5% (±3.33) at the highest concentration of nanoencapsulated Selol. The major effect, however, was observed on OSCC cells since the cell viability drops down to about 33.3% (±0.38) under application of AC magnetic field. These findings clearly indicate that the Selol-loaded magnetic nanocapsules present different toxic effects on neoplastic cell lines. Further, the cytotoxic effect was maximized under AC magnetic field application on OSCC, which emphasizes the effectiveness of the magnetohyperthermia approach.

  6. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Science.gov (United States)

    Zhang, Xu; Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming; Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN-LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  7. High intensity proton beam transportation through fringe field of 70 MeV compact cyclotron to beam line targets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xu, E-mail: emmazhang103@gmail.com [China Institute of Atomic Energy (China); Li, Ming; Wei, Sumin; Xing, Jiansheng; Hu, Yueming [China Institute of Atomic Energy (China); Johnson, Richard R.; Piazza, Leandro; Ryjkov, Vladimir [BEST Cyclotron Inc (Canada)

    2016-06-01

    From the stripping points, the high intensity proton beam of a compact cyclotron travels through the fringe field area of the machine to the combination magnet. Starting from there the beams with various energy is transferred to the switching magnet for distribution to the beam line targets. In the design of the extraction and transport system for the compact proton cyclotron facilities, such as the 70 MeV in France and the 100 MeV in China, the space charge effect as the beam crosses the fringe field has not been previously considered; neither has the impact on transverse beam envelope coupled from the longitudinal direction. Those have been concerned much more with the higher beam-power because of the beam loss problem. In this paper, based on the mapping data of 70 MeV cyclotron including the fringe field by BEST Cyclotron Inc (BEST) and combination magnet field by China Institute of Atomic Energy (CIAE), the beam extraction and transport are investigated for the 70 MeV cyclotron used on the SPES project at Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro (INFN–LNL). The study includes the space charge effect and longitudinal and transverse coupling mentioned above, as well as the matching of beam optics using the beam line for medical isotope production as an example. In addition, the designs of the ±45° switching magnets and the 60° bending magnet for the extracted beam with the energy from 35 MeV to 70 MeV have been made. Parts of the construction and field measurements of those magnets have been done as well. The current result shows that, the design considers the complexity of the compact cyclotron extraction area and fits the requirements of the extraction and transport for high intensity proton beam, especially at mA intensity levels.

  8. Investigation of superparamagnetic (Fe3O4) nanoparticles and magnetic field exposures on CHO-K1 cell line

    Science.gov (United States)

    Coker, Zachary; Estlack, Larry; Hussain, Saber; Choi, Tae-Youl; Ibey, Bennett L.

    2016-03-01

    Rapid development in nanomaterial synthesis and functionalization has led to advanced studies in actuation and manipulation of cellular functions for biomedical applications. Often these actuation techniques employ externally applied magnetic fields to manipulate magnetic nanomaterials inside cell bodies in order to drive or trigger desired effects. While cellular interactions with low-frequency magnetic fields and nanoparticles have been extensively studied, the fundamental mechanisms behind these interactions remain poorly understood. Additionally, modern investigations on these concurrent exposure conditions have been limited in scope, and difficult to reproduce. This study presents an easily reproducible method of investigating the biological impact of concurrent magnetic field and nanoparticle exposure conditions using an in-vitro CHO-K1 cell line model, with the purpose of establishing grounds for in-depth fundamental studies of the mechanisms driving cellular-level interactions. Cells were cultured under various nanoparticle and magnetic field exposure conditions from 0 to 500 μg/ml nanoparticle concentrations, and DC, 50 Hz, or 100 Hz magnetic fields with 2.0 mT flux density. Cells were then observed by confocal fluorescence microscopy, and subject to biological assays to determine the effects of concurrent extreme-low frequency magnetic field and nanoparticle exposures on cellnanoparticle interactions, such as particle uptake and cell viability by MTT assay. Current results indicate little to no variation in effect on cell cultures based on magnetic field parameters alone; however, it is clear that deleterious synergistic effects of concurrent exposure conditions exist based on a significant decrease in cell viability when exposed to high concentrations of nanoparticles and concurrent magnetic field.

  9. On-line field measurements of VOC emissions from a spruce tree at SMEAR Estonia

    Science.gov (United States)

    Bourtsoukidis, Efstratios; Bonn, Boris; Noe, Steffen

    2013-04-01

    We have investigated VOC emissions from a Norway spruce tree (Picea abies) in a hemi-boreal mixed forest in September and October 2012, using Proton Transfer Reaction Mass Spectrometry and Gas Chromatography - Mass Spectrometry techniques, applied in a dynamic branch enclosure system that was automatically operated with an electrical compressor. Parallel to BVOC measurements a vast amount of atmospheric (CO2, CH4, H2O, CO, particles) and meteorological (temperature, relative humidity, photosynthetic active radiation, wind speed and direction, precipitation) parameters were measured in the ambient atmosphere and inside the cuvette enclosure (temperature, relative humidity, O3). Prior to the measuring period, an innovatory experimental setup was built at Järvselja forest station, in order to accomplish the detection of BVOC and minimize sampling losses. Therefore, a new inlet line, consisting of 19.4m of heated and isolated glass tube was constructed. The new inlet system applied, allowed the on-line detection and calculation of sesquiterpene (SQT) emission rates for the first time in a hemi-boreal forest site. It total, 12 atmospheric relevant BVOCs were continuously monitored for a three week period and the emission rates were derived. Along with diurnal profiles and continuous timeless, some interesting observations showed the possibility of ozone effect on SQT emissions, the possibility of radiation effect on MT emissions, the higher induced emissions due to mechanical stress and the possibility for a valid intercomparison between different spruce trees located in mountain Kleiner Feldberg (Germany) and in Järvseja forest station (Estonia).

  10. Wide-field Survey of Emission-line Stars in IC 1396

    Science.gov (United States)

    Nakano, M.; Sugitani, K.; Watanabe, M.; Fukuda, N.; Ishihara, D.; Ueno, M.

    2012-03-01

    We have made an extensive survey of emission-line stars in the IC 1396 H II region to investigate the low-mass population of pre-main-sequence (PMS) stars. A total of 639 Hα emission-line stars were detected in an area of 4.2 deg2 and their i' photometry was measured. Their spatial distribution exhibits several aggregates near the elephant trunk globule (Rim A) and bright-rimmed clouds at the edge of the H II region (Rim B and SFO 37, 38, 39, 41), and near HD 206267, which is the main exciting star of the H II region. Based on the extinction estimated from the near-infrared color-color diagram, we have selected PMS star candidates associated with IC 1396. The age and mass were derived from the extinction-corrected color-magnitude diagram and theoretical PMS tracks. Most of our PMS candidates have ages of low-mass stars for 10 Myr. The birth of the exciting star could be the late stage of slow but contiguous star formation in the natal molecular cloud. It may have triggered the formation of many low-mass stars at the dense inhomogeneity in and around the H II region by a radiation-driven implosion.

  11. Wide-Field Survey of Emission-line Stars in IC 1396

    CERN Document Server

    Nakano, M; Watanabe, M; Fukuda, N; Ishihara, D; Ueno, M

    2012-01-01

    We have made an extensive survey of emission-line stars in the IC 1396 HII region to investigate the low-mass population of pre-main sequence (PMS) stars. A total of 639 H-alpha emission-line stars were detected in an area of 4.2 deg^2 and their i'-photometry was measured. Their spatial distribution exhibits several aggregates near the elephant trunk globule (Rim A) and bright-rimmed clouds at the edge of the HII region (Rim B and SFO 37, 38, 39, 41), and near HD 206267, which is the main exciting star of the HII region. Based on the extinction estimated from the near-infrared (NIR) color-color diagram, we have selected pre-main sequence star candidates associated with IC 1396. The age and mass were derived from the extinction corrected color-magnitude diagram and theoretical pre-main sequence tracks. Most of our PMS candidates have ages of < 3 Myr and masses of 0.2-0.6 Mo. Although it appears that only a few stars were formed in the last 1 Myr in the east region of the exciting star, the age difference am...

  12. Trajectory Browser: An online tool for interplanetary trajectory analysis and visualization

    Science.gov (United States)

    Foster, C.

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and Δ V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and Δ V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release in early 2013.

  13. Field evaluation of soybean lines from a new source of resistance to Cercospora kikuchii, 2013

    Science.gov (United States)

    Purple seed stain, which is caused by the fungus Cercospora kikuchii, is an important seed disease which causes soybean seed quality losses when environmental conditions favor its growth, and harvest is delayed due to wet field conditions. Frogeye leaf spot caused by the fungus Cercospora sojina is...

  14. Biological effects from electric fields associated with high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    Efforts during the past year by the US Department of Energy and the Electric Power Research Institute-funded laboratories to investigate the biological effects from electric fields are described in resume form. Investigations generally have been summarized with objectives, accomplishments of the past year, and some indication of projected studies.

  15. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1986-01-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report. 57 refs., 10 figs.

  16. Low-thrust rocket trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Keaton, P.W.

    1987-03-01

    The development of low-thrust propulsion systems to complement chemical propulsion systems will greatly enhance the evolution of future space programs. Two advantages of low-thrust rockets are stressed: first, in a strong gravitational field, such as occurs near the Earth, freighter missions with low-thrust engines require one-tenth as much propellant as do chemical engines. Second, in a weak gravitational field, such as occurs in the region between Venus and Mars, low-thrust rockets are faster than chemical rockets with comparable propellant mass. The purpose here is to address the physics of low-thrust trajectories and to interpret the results with two simple models. Analytic analyses are used where possible - otherwise, the results of numerical calculations are presented in graphs. The author has attempted to make this a self-contained report.

  17. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode

    OpenAIRE

    Becker, Wolfgang, 1962-; Hirvonen, Liisa; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar; Netz, Holger; Smietana, Stefan; Suhling, Klaus

    2016-01-01

    We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ∼190 to 230 ps full width at hal...

  18. Trajectory Based Traffic Analysis

    DEFF Research Database (Denmark)

    Krogh, Benjamin Bjerre; Andersen, Ove; Lewis-Kelham, Edwin

    2013-01-01

    -and-click analysis, due to a novel and efficient indexing structure. With the web-site daisy.aau.dk/its/spqdemo/we will demonstrate several analyses, using a very large real-world data set consisting of 1.9 billion GPS records (1.5 million trajectories) recorded from more than 13000 vehicles, and touching most...

  19. The GEANT4 toolkit capability in the hadron therapy field: simulation of a transport beam line

    Science.gov (United States)

    Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Raffaele, L.; Russo, G.; Guatelli, S.; Pia, M. G.

    2006-01-01

    At Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare of Catania (Sicily, Italy), the first Italian hadron therapy facility named CATANA (Centro di AdroTerapia ed Applicazioni Nucleari Avanzate) has been realized. Inside CATANA 62 MeV proton beams, accelerated by a superconducting cyclotron, are used for the radiotherapeutic treatments of some types of ocular tumours. Therapy with hadron beams still represents a pioneer technique, and only a few centers worldwide can provide this advanced specialized cancer treatment. On the basis of the experience so far gained, and considering the future hadron-therapy facilities to be developed (Rinecker, Munich Germany, Heidelberg/GSI, Darmstadt, Germany, PSI Villigen, Switzerland, CNAO, Pavia, Italy, Centro di Adroterapia, Catania, Italy) we decided to develop a Monte Carlo application based on the GEANT4 toolkit, for the design, the realization and the optimization of a proton-therapy beam line. Another feature of our project is to provide a general tool able to study the interactions of hadrons with the human tissue and to test the analytical-based treatment planning systems actually used in the routine practice. All the typical elements of a hadron-therapy line, such as diffusers, range shifters, collimators and detectors were modelled. In particular, we simulated the Markus type ionization chamber and a Gaf Chromic film as dosimeters to reconstruct the depth (Bragg peak and Spread Out Bragg Peak) and lateral dose distributions, respectively. We validated our simulated detectors comparing the results with the experimental data available in our facility.

  20. WIDE-FIELD SURVEY OF EMISSION-LINE STARS IN IC 1396

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, M. [Faculty of Education and Welfare Science, Oita University, Oita 870-1192 (Japan); Sugitani, K. [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Watanabe, M. [Department of Cosmosciences, Hokkaido University, Sapporo 060-0810 (Japan); Fukuda, N. [Department of Computer Simulation, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Ishihara, D. [Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Ueno, M., E-mail: mnakano@oita-u.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara 252-5210 (Japan)

    2012-03-15

    We have made an extensive survey of emission-line stars in the IC 1396 H II region to investigate the low-mass population of pre-main-sequence (PMS) stars. A total of 639 H{alpha} emission-line stars were detected in an area of 4.2 deg{sup 2} and their i' photometry was measured. Their spatial distribution exhibits several aggregates near the elephant trunk globule (Rim A) and bright-rimmed clouds at the edge of the H II region (Rim B and SFO 37, 38, 39, 41), and near HD 206267, which is the main exciting star of the H II region. Based on the extinction estimated from the near-infrared color-color diagram, we have selected PMS star candidates associated with IC 1396. The age and mass were derived from the extinction-corrected color-magnitude diagram and theoretical PMS tracks. Most of our PMS candidates have ages of <3 Myr and masses of 0.2-0.6 M{sub Sun }. Although it appears that only a few stars were formed in the last 1 Myr in the east region of the exciting star, the age difference among subregions in our surveyed area is not clear from the statistical test. Our results may suggest that massive stars were born after the continuous formation of low-mass stars for 10 Myr. The birth of the exciting star could be the late stage of slow but contiguous star formation in the natal molecular cloud. It may have triggered the formation of many low-mass stars at the dense inhomogeneity in and around the H II region by a radiation-driven implosion.

  1. 基于轨迹图像的气液旋风分离器液滴粒度、浓度、速度的在线测量%In-line measurement of size, concentration and velocity of drops from gas-liquid cyclone separator based on trajectory image processing

    Institute of Scientific and Technical Information of China (English)

    刘海龙; 陈孝震; 蔡小舒; 余方

    2012-01-01

    For measuring size, concentration and velocity of droplets from the cyclone separator inlet and outlet, a measurement system based on trajectory image processing was developed. Principles of measurement were introduced. Droplets from cyclone separator were always spherical under the surface tension of water. It was reasonable to approximate the width of trajectory particle image as the diameter of droplets. The distance over which droplets moved in exposure time was obtained from trajectory image by processing, and the velocity of droplets could be easily calculated. Telecentric lens was used as an important part of measurement system. Common lens exhibited varying magnification for objects at different distances from the lens, but telecentric lens provided the same magnification at all distances, so droplets at different distances were the same size in the image. Firstly, images of particles were taken by capture system, and images were processed with a computer program. Then the particle size, concentration and velocity could be calculated. The system was installed in an experimental set-up that was used to study the performance of the cyclone separator. The experiment results showed that the system avoided the inversing process and had high size resolution as compared with traditional measurement system with the light scattering method. And it could make a measurement in line, and was better than other systems.

  2. A study of dark resonance splitting for the D 1 line of 87Rb in strong magnetic fields

    Science.gov (United States)

    Sargsyan, A.; Mirzoyan, R.; Sarkisyan, D.

    2012-11-01

    The process of electromagnetically induced transparency (EIT) is studied using an extremely thin cell with thickness of a vapor column of rubidium atoms L = 794 nm. Wavelengths of resonant laser beams λ ≈ 794 nm. Results of the study of behavior of the EIT resonance (which is also called the "dark" resonance) formed in the Л system of the D 1 line of 87Rb atoms in strong magnetic fields up to 1700 G (0.17 T) are reported for the first time. Three dark resonances are recorded in magnetic fields with induction B 650 G, and only one dark resonance is retained at B > 1200 G. A method of the formation of a dark resonance at a given frequency is demonstrated that will allow, under the corresponding conditions, the formation of a dark resonance also at B > 0.2 T. The experimental results are well described by the known theoretical models. Practical applications of these results are indicated.

  3. Picosecond wide-field time-correlated single photon counting fluorescence microscopy with a delay line anode detector

    Science.gov (United States)

    Hirvonen, Liisa M.; Becker, Wolfgang; Milnes, James; Conneely, Thomas; Smietana, Stefan; Le Marois, Alix; Jagutzki, Ottmar; Suhling, Klaus

    2016-08-01

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reduced lifetime near the coverslip in TIR compared to epifluorescence FLIM.

  4. Magnetic Measurement of the Current Center Line of the Toroidal Field Coil of ITER at Room Temperature

    CERN Document Server

    Deniau, L; Buzio, M; Knaster, J; Savary, F

    2012-01-01

    Geometrical deformations and assembly errors in the ITER Toroidal Field (TF) coils will lead to magnetic field perturbations, which could degrade plasma confinement and eventually lead to disruption. Extensive computational studies of the influence of coil deformations and assembly errors on plasma behavior have given the basis for definition of the geometric tolerance of the Current Centre Line (CCL) of the winding pack of the TF coil. This paper describes an analysis method to establish the feasibility to measure the magnetic CCL locus of the final winding pack (WP) with accuracy better than 1 mm. The proposed method is based on arrays of gradient coils accurately mounted with respect to the WP fiducial marks and datum surfaces. The magnetic measurements will be performed at defined locations around the WP perimeter to characterize accurately the CCL locus. The analysis emphases the robustness and sensitivity of the method versus the measurement location and the TF coil 3D geometrical deformation. The analy...

  5. Trajectory grouping structure

    Directory of Open Access Journals (Sweden)

    Maike Buchin

    2015-03-01

    Full Text Available The collective motion of a set of moving entities like people, birds, or other animals, is characterized by groups arising, merging, splitting, and ending. Given the trajectories of these entities, we define and model a structure that captures all of such changes using the Reeb graph, a concept from topology. The trajectory grouping structure has three natural parameters that allow more global views of the data in group size, group duration, and entity inter-distance. We prove complexity bounds on the maximum number of maximal groups that can be present, and give algorithms to compute the grouping structure efficiently. We also study how the trajectory grouping structure can be made robust, that is, how brief interruptions of groups can be disregarded in the global structure, adding a notion of persistence to the structure. Furthermore, we showcase the results of experiments using data generated by the NetLogo flocking model and from the Starkey project. The Starkey data describe the movement of elk, deer, and cattle. Although there is no ground truth for the grouping structure in this data, the experiments show that the trajectory grouping structure is plausible and has the desired effects when changing the essential parameters. Our research provides the first complete study of trajectory group evolvement, including combinatorial,algorithmic, and experimental results.

  6. Propagation of whistler-mode chorus to low altitudes: divergent ray trajectories and ground accessibility

    Directory of Open Access Journals (Sweden)

    J. Chum

    2005-12-01

    Full Text Available We investigate the ray trajectories of nonductedly propagating lower-band chorus waves with respect to their initial angle θ0, between the wave vector and ambient magnetic field. Although we consider a wide range of initial angles θ0, in order to be consistent with recent satellite observations, we pay special attention to the intervals of initial angles θ0, for which the waves propagate along the field lines in the source region, i.e. we mainly focus on waves generated with &theta0 within an interval close to 0° and on waves generated within an interval close to the Gendrin angle. We demonstrate that the ray trajectories of waves generated within an interval close to the Gendrin angle with a wave vector directed towards the lower L-shells (to the Earth significantly diverge at the frequencies typical for the lower-band chorus. Some of these diverging trajectories reach the topside ionosphere having θ close to 0°; thus, a part of the energy may leak to the ground at higher altitudes where the field lines have a nearly vertical direction. The waves generated with different initial angles are reflected. A small variation of the initial wave normal angle thus very dramatically changes the behaviour of the resulting ray. Although our approach is rather theoretical, based on the ray tracing simulation, we show that the initial angle θ0 of the waves reaching the ionosphere (possibly ground is surprisingly close - differs just by several degrees from the initial angles which fits the observation of magnetospherically reflected chorus revealed by CLUSTER satellites. We also mention observations of diverging trajectories on low altitude satellites.

  7. Bohmian trajectories for an evaporating blackhole

    Energy Technology Data Exchange (ETDEWEB)

    Acacio de Barros, J. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: acacio@fisica.ufjf.br; Oliveira-Neto, G. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: gilneto@fisica.ufjf.br; Vale, T.B. [Departamento de Fisica, Instituto de Ciencias Exatas, Universidade Federal de Juiz de Fora, CEP 36036-330, Juiz de Fora, Minas Gerais (Brazil)]. E-mail: tiberio@fisica.ufjf.br

    2005-03-14

    In this work we apply Bohm's interpretation to the quantized spherically-symmetric blackhole coupled to a massless scalar field. We show that the quantum trajectories for linear combinations of eigenstates of the Wheeler-DeWitt equation form a large set of different curves that cannot be predicted by the standard interpretation of quantum mechanics. Some of them are consistent with the expected value of the time derivative of the mass, whereas other trajectories are not, because they represent blackholes that switch from absorbing to emitting regimes.

  8. Clustering vessel trajectories with alignment kernels under trajectory compression

    NARCIS (Netherlands)

    de Vries, G.; van Someren, M.

    2010-01-01

    In this paper we apply a selection of alignment measures, such as dynamic time warping and edit distance, to the problem of clustering vessel trajectories. Vessel trajectories are an example of moving object trajectories, which have recently become an important research topic. The alignment measures

  9. Integral field spectroscopy of planetary nebulae: mapping the line diagnostics and hydrogen-poor zones with VLT FLAMES

    CERN Document Server

    Tsamis, Y G; Péquignot, D; Barlow, M J; Danziger, I J; Liu, X -W

    2008-01-01

    (Abridged) Results from the first dedicated study of Galactic PNe by means of optical integral field spectroscopy with the VLT FLAMES Argus IFU are presented. Three typical Galactic-disk PNe have been mapped with the 11.5''x7.2'' Argus array: two dimensional spectral maps of NGC 5882, 6153 and 7009 with 297 spatial pixels per target were obtained at sub-arcsec resolutions and 297 spectra per target were obtained in the 396.4-507.8 nm range. Spatially resolved maps of emission lines and of nebular physical properties were produced. The abundances of helium and of doubly ionized carbon and oxygen were derived from optical recombination lines (ORLs), while those of O^2+ were also derived from the collisionally excited lines (CELs). The abundance discrepancy problem was investigated by mapping the ratio of ORL/CEL abundances for O^2+ (the abundance discrepancy factor; ADF) across the face of the PNe. The ADF varies between targets and also with position within the targets attaining values of ~40 in the case of NG...

  10. A wide-field TCSPC FLIM system based on an MCP PMT with a delay-line anode

    Science.gov (United States)

    Becker, Wolfgang; Hirvonen, Liisa M.; Milnes, James; Conneely, Thomas; Jagutzki, Ottmar; Netz, Holger; Smietana, Stefan; Suhling, Klaus

    2016-09-01

    We report on the implementation of a wide-field time-correlated single photon counting (TCSPC) method for fluorescence lifetime imaging (FLIM). It is based on a 40 mm diameter crossed delay line anode detector, where the readout is performed by three standard TCSPC boards. Excitation is performed by a picosecond diode laser with 50 MHz repetition rate. The photon arrival timing is obtained directly from the microchannel plates, with an instrumental response of ˜190 to 230 ps full width at half maximum depending on the position on the photocathode. The position of the photon event is obtained from the pulse propagation time along the two delay lines, one in x and one in y. One end of a delay line is fed into the "start" input of the corresponding TCSPC board, and the other end is delayed by 40 ns and fed into the "stop" input. The time between start and stop is directly converted into position, with a resolution of 200-250 μm. The data acquisition software builds up the distribution of the photons over their spatial coordinates, x and y, and their times after the excitation pulses, typically into 512 × 512 pixels and 1024 time channels per pixel. We apply the system to fluorescence lifetime imaging of cells labelled with Alexa 488 phalloidin in an epi-fluorescence microscope and discuss the application of our approach to other fluorescence microscopy methods.

  11. Behavior of Torsional Alfven Waves and Field Line Resonance on Rotating Magnetars

    CERN Document Server

    Kojima, T O Y

    2005-01-01

    Torsional Alfven waves are likely excited with bursts in rotating magnetars. These waves are probably propagated through corotating atmospheres toward a vacuum exterior. We have studied the physical effects of the azimuthal wave number and the characteristic height of the plasma medium on wave transmission. In this work, explicit calculations were carried out based on the three-layered cylindrical model. We found that the coupling strength between the internal shear and the external Alfven modes is drastically enhanced, when resonance occurs in the corotating plasma cavity. The spatial structure of the electromagnetic fields in the resonance cavity is also investigated when Alfven waves exhibit resonance.

  12. Generalized potentials for a mean-field density functional theory of a three-phase contact line

    Science.gov (United States)

    Lin, Chang-You; Widom, Michael; Sekerka, Robert F.

    2013-07-01

    We investigate generalized potentials for a mean-field density functional theory of a three-phase contact line. Compared to the symmetrical potential introduced in our previous article [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.85.011120 85, 011120 (2012)], the three minima of these potentials form a small triangle located arbitrarily within the Gibbs triangle, which is more realistic for ternary fluid systems. We multiply linear functions that vanish at edges and vertices of the small triangle, yielding potentials in the form of quartic polynomials. We find that a subset of such potentials has simple analytic far-field solutions and is a linear transformation of our original potential. By scaling, we can relate their solutions to those of our original potential. For special cases, the lengths of the sides of the small triangle are proportional to the corresponding interfacial tensions. For the case of equal interfacial tensions, we calculate a line tension that is proportional to the area of the small triangle.

  13. Depth Estimation and Specular Removal for Glossy Surfaces Using Point and Line Consistency with Light-Field Cameras.

    Science.gov (United States)

    Tao, Michael W; Su, Jong-Chyi; Wang, Ting-Chun; Malik, Jitendra; Ramamoorthi, Ravi

    2016-06-01

    Light-field cameras have now become available in both consumer and industrial applications, and recent papers have demonstrated practical algorithms for depth recovery from a passive single-shot capture. However, current light-field depth estimation methods are designed for Lambertian objects and fail or degrade for glossy or specular surfaces. The standard Lambertian photoconsistency measure considers the variance of different views, effectively enforcing point-consistency, i.e., that all views map to the same point in RGB space. This variance or point-consistency condition is a poor metric for glossy surfaces. In this paper, we present a novel theory of the relationship between light-field data and reflectance from the dichromatic model. We present a physically-based and practical method to estimate the light source color and separate specularity. We present a new photo consistency metric, line-consistency, which represents how viewpoint changes affect specular points. We then show how the new metric can be used in combination with the standard Lambertian variance or point-consistency measure to give us results that are robust against scenes with glossy surfaces. With our analysis, we can also robustly estimate multiple light source colors and remove the specular component from glossy objects. We show that our method outperforms current state-of-the-art specular removal and depth estimation algorithms in multiple real world scenarios using the consumer Lytro and Lytro Illum light field cameras.

  14. A view from the field: phone help line in India helps indentify HIV risk behaviors.

    Science.gov (United States)

    Chandiramani, R

    1998-01-01

    TARSHI, a confidential phone help line in India, provides sexuality information, counseling, and referrals in English and Hindi. About 80% of callers are men and 70% are in the 15-30 year age group. An analysis of the subject matter of these calls indicates widespread ignorance about HIV transmission, a cultural belief that masturbation is an unacceptable way to satisfy sexual desires, lack of awareness of the connection between sexually transmitted diseases and HIV, exposure to misleading Westernized images of sexuality through the mass media, clandestine premarital sexual activity engineered to protect the hymen, lack of knowledge about conception, the belief that women who appear respectable and healthy could not be HIV-infected, societal dismissal of the reality of homosexual relationships in India, unprotected intercourse with commercial sex workers, women's fears of insisting on protected sex, child sexual abuse, the widespread practice of sexual relations between young men and older women, and the emergence of advertisements for sexual services. It is essential that HIV/AIDS prevention programs in India recognize these factors and address people's needs in a clear, nonjudgmental manner.

  15. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra; Haynes, Ellen; Turner, Geoffrey B.; Sykes, Robert W.; Decker, Stephen R.; Davis, Mark F.; Dixon, Richard A.; Wang, Zeng-Yu; Neal Stewart, C.

    2016-01-21

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In the present study we sought to further improve biomass characteristics by crossing the downregulated COMT T1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. T2 hybrids produced with T1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.

  16. Sub-mm emission line deep fields: CO and [C II] luminosity functions out to z = 6

    Science.gov (United States)

    Popping, Gergö; van Kampen, Eelco; Decarli, Roberto; Spaans, Marco; Somerville, Rachel S.; Trager, Scott C.

    2016-09-01

    Now that Atacama Large (Sub)Millimeter Array is reaching its full capabilities, observations of sub-mm emission line deep fields become feasible. We couple a semi-analytic model of galaxy formation with a radiative transfer code to make predictions for the luminosity function of CO J =1-0 out to CO J = 6-5 and [C II] at redshifts z= 0-6. We find that (1) our model correctly reproduces the CO and [C II] emission of low- and high-redshift galaxies and reproduces the available constraints on the CO luminosity function at z ≤ 2.75; (2) we find that the CO and [C II] luminosity functions of galaxies increase from z = 6 to z = 4, remain relatively constant till z = 1 and rapidly decrease towards z = 0. The galaxies that are brightest in CO and [C II] are found at z ˜ 2; (3) the CO J = 3-2 emission line is most favourable to study the CO luminosity and global H2 mass content of galaxies, because of its brightness and observability with currently available sub-mm and radio instruments; (4) the luminosity functions of high-J CO lines show stronger evolution than the luminosity functions of low-J CO lines; (5) our model barely reproduces the available constraints on the CO and [C II] luminosity function of galaxies at z ≥ 1.5 and the CO luminosity of individual galaxies at intermediate redshifts. We argue that this is driven by a lack of cold gas in galaxies at intermediate redshifts as predicted by cosmological simulations of galaxy formation.

  17. Tokamak magnetic field lines described by simple maps. Dedicated to Professor Celso Grebogi on the occasion of his 60th birthday

    Science.gov (United States)

    Portela, J. S. E.; Caldas, I. L.; Viana, R. L.

    2008-12-01

    The magnetic field line structure in a tokamak can be obtained by direct numerical integration of the field line equations. However, this is a lengthy procedure and the analysis of the solution may be very time-consuming. Otherwise we can use simple two-dimensional, area-preserving maps, obtained either by approximations of the magnetic field line equations, or from dynamical considerations. These maps can be quickly iterated, furnishing solutions that mirror the ones obtained from direct numerical integration, and which are useful when long-term studies of field line behavior are necessary (e.g. in diffusion calculations). In this work we focus on a set of simple tokamak maps for which these advantages are specially pronounced.

  18. An exact line integral representation of the physical optics scattered field: the case of a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles

    DEFF Research Database (Denmark)

    Johansen, Peter M.; Breinbjerg, Olav

    1995-01-01

    An exact line integral representation of the electric physical optics scattered field is presented. This representation applies to scattering configurations with perfectly electrically conducting polyhedral structures illuminated by a finite number of electric Hertzian dipoles. The positions...

  19. Anomalous particle diffusion and Levy random walk of magnetic field lines in three dimensional solar wind turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, G.

    2005-07-01

    Plasma transport in the presence of turbulence depends on a variety of parameters like the fluctuation level ? B/B0, the ratio between the particle Larmor radius and the turbulence correlation lengths, and the turbulence anisotropy. In this presentation, we review the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B0 = B0ez and a Fourier representation for magnetic fluctuations, with wavectors forming any angle with respect to B0. The energy density spectrum is a power law, and in k space the constant amplitude surfaces are ellipsoids, described by the correlation lengths lx, ly, lz, which quantify the anisotropy of turbulence. For magnetic field lines, we find that transport perpendicular to the background field depends on the Kubo number R = ? B B0 lz lx . For small Kubo numbers, R ? 1, we find anomalous, non Gaussian transport regimes (both sub and superdiffusive) which can be described as a Levy random walk. Increasing the Kubo number, i.e., the fluctuation level ? B/B0 and/or the ratio lz/lx, we find first a quasilinear and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field heavily depends on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, ? B/B0 ? 0.5 ?1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case lz/lx ? 1, with Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for lz/lx > 1 normal, Gaussian diffusion is found. Increasing the ratio between the particle Larmor radius and the turbulence correlation lengths, the parallel superdiffusion is

  20. Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Zimbardo, Gaetano [Dipartimento di Fisica, Universita della Calabria, Ponte P. Bucci, Cubo 31C, I-87036 Arcavacata di Rende (Italy)

    2005-12-15

    Plasma transport in the presence of turbulence depends on a variety of parameters such as the fluctuation level, {delta}B/B{sub 0}, the ratio between the particle Larmor radius and the turbulence correlation length, and the turbulence anisotropy. In this paper, we present the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B{sub 0} = B{sub 0} e{sub z} and a Fourier representation for magnetic fluctuations, which includes wavectors oblique with respect to B{sub 0}. The energy density spectrum is a power law, and in k space it is described by the correlation lengths l{sub x}, l{sub y}, l{sub z}, which quantify the anisotropy of turbulence. For magnetic field lines, transport perpendicular to the background field depends on the Kubo number R ({delta}B/B{sub 0}) (l{sub z}/l{sub x}). For small Kubo numbers, R << 1, anomalous, non-Gaussian transport regimes (both sub- and superdiffusive) are found, which can be described as a Levy random walk. Increasing the Kubo number, i.e. the fluctuation level, {delta}B/B{sub 0}, or the ratio l{sub z}/l{sub x}, we find first a quasilinear regime and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field depends heavily on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, {delta}B/B{sub 0}{approx_equal} 0.5-1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case l{sub z}/l{sub x} {<=} 1, with a Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for l{sub z}/l{sub x} > 1 normal Gaussian diffusion is found. A possible expression for

  1. Broad-line Reverberation in the Kepler-field Seyfert Galaxy Zw 229-015

    Science.gov (United States)

    Barth, Aaron J.; Nguyen, My L.; Malkan, Matthew A.; Filippenko, Alexei V.; Li, Weidong; Gorjian, Varoujan; Joner, Michael D.; Bennert, Vardha Nicola; Botyanszki, Janos; Cenko, S. Bradley; Childress, Michael; Choi, Jieun; Comerford, Julia M.; Cucciara, Antonino; da Silva, Robert; Duchêne, Gaspard; Fumagalli, Michele; Ganeshalingam, Mohan; Gates, Elinor L.; Gerke, Brian F.; Griffith, Christopher V.; Harris, Chelsea; Hintz, Eric G.; Hsiao, Eric; Kandrashoff, Michael T.; Keel, William C.; Kirkman, David; Kleiser, Io K. W.; Laney, C. David; Lee, Jeffrey; Lopez, Liliana; Lowe, Thomas B.; Moody, J. Ward; Morton, Alekzandir; Nierenberg, A. M.; Nugent, Peter; Pancoast, Anna; Rex, Jacob; Rich, R. Michael; Silverman, Jeffrey M.; Smith, Graeme H.; Sonnenfeld, Alessandro; Suzuki, Nao; Tytler, David; Walsh, Jonelle L.; Woo, Jong-Hak; Yang, Yizhe; Zeisse, Carl

    2011-05-01

    The Seyfert 1 galaxy Zw 229-015 is among the brightest active galaxies being monitored by the Kepler mission. In order to determine the black hole mass in Zw 229-015 from Hβ reverberation mapping, we have carried out nightly observations with the Kast Spectrograph at the Lick 3 m telescope during the dark runs from 2010 June through December, obtaining 54 spectroscopic observations in total. We have also obtained nightly V-band imaging with the Katzman Automatic Imaging Telescope at Lick Observatory and with the 0.9 m telescope at the Brigham Young University West Mountain Observatory over the same period. We detect strong variability in the source, which exhibited more than a factor of two change in broad Hβ flux. From cross-correlation measurements, we find that the Hβ light curve has a rest-frame lag of 3.86+0.69 -0.90 days with respect to the V-band continuum variations. We also measure reverberation lags for Hα and Hγ and find an upper limit to the Hδ lag. Combining the Hβ lag measurement with a broad Hβ width of σline = 1590 ± 47 km s-1 measured from the rms variability spectrum, we obtain a virial estimate of M BH = 1.00+0.19 -0.24 × 107 M sun for the black hole in Zw 229-015. As a Kepler target, Zw 229-015 will eventually have one of the highest-quality optical light curves ever measured for any active galaxy, and the black hole mass determined from reverberation mapping will serve as a benchmark for testing relationships between black hole mass and continuum variability characteristics in active galactic nuclei.

  2. Effect of low frequency (LF) electric fields on gene expression of a bone human cell line.

    Science.gov (United States)

    Caputo, Mariella; Zirpoli, Hylde; De Rosa, Maria Caterina; Rescigno, Tania; Chiadini, Francesco; Scaglione, Antonio; Stellato, Claudia; Giurato, Giorgio; Weisz, Alessandro; Tecce, Mario Felice; Bisceglia, Bruno

    2014-12-01

    We evaluated the effects, on cultured human SaOS-2 cells, of exposures to the low frequency (LF) electric signal (60 kHz sinusoidal wave, 24.5 V peak-to-peak voltage, amplitude modulated by a 12.5 Hz square wave, 50% duty cycle) from an apparatus of current clinical use in bone diseases requiring regenerating processes. Cells in flasks were exposed to a capacitively coupled electric field giving electric current density in the sample of 4 µA/cm(2). The whole expressed cellular mRNAs were systematically analyzed by "DNA microchips" technology to identify all individual species quantitatively affected by field exposure. Comparisons were made between RNA samples from exposed and control sham-exposed cells. Results indicated that immediately and 4 h after exposure there were almost no differentially modulated mRNA species. However, samples obtained at 24 h after exposure showed a small number of limitedly differential signals (7 down-regulated and 3 up-regulated with a cut-off value of ±1.5; 38 and 11, respectively, with a cut-off value of ±1.3), which included mostly mRNA encoding transcription factors and DNA binding proteins. Nevertheless, in identical experimental conditions, we previously demonstrated enzymatic changes of alkaline phosphatase occurring immediately after exposure and declining in a few hours. Therefore, since enzymatic changes occur before those observed at gene regulation level, it is conceivable that only earlier effects are directly due the treatment and then these effects are later able to affect gene expression only indirectly.

  3. Analysis of Controlled Trajectory Optimization for Canard Trajectory Correction Fuze

    Institute of Scientific and Technical Information of China (English)

    郭泽荣; 李世义; 申强

    2004-01-01

    The optimization method of the canard trajectory correction fuze's controlled trajectory phase is researched by using the aerodynamics of aerocraft and the optimal control theory, the trajectory parameters of the controlled trajectory phase based on the least energy cost are determined. On the basis of determining the control starting point and the target point, the optimal trajectory and the variation rule of the normal overload with the least energy cost are provided, when there is no time restriction in the simulation process. The results provide a theoretical basis for the structure design of the canard mechanism.

  4. Detecting Hotspots from Taxi Trajectory Data Using Spatial Cluster Analysis

    Science.gov (United States)

    Zhao, P. X.; Qin, K.; Zhou, Q.; Liu, C. K.; Chen, Y. X.

    2015-07-01

    A method of trajectory clustering based on decision graph and data field is proposed in this paper. The method utilizes data field to describe spatial distribution of trajectory points, and uses decision graph to discover cluster centres. It can automatically determine cluster parameters and is suitable to trajectory clustering. The method is applied to trajectory clustering on taxi trajectory data, which are on the holiday (May 1st, 2014), weekday (Wednesday, May 7th, 2014) and weekend (Saturday, May 10th, 2014) respectively, in Wuhan City, China. The hotspots in four hours (8:00-9:00, 12:00-13:00, 18:00-19:00 and 23:00-24:00) for three days are discovered and visualized in heat maps. In the future, we will further research the spatiotemporal distribution and laws of these hotspots, and use more data to carry out the experiments.

  5. Trajectory Planning for Robots in Dynamic Human Environments

    DEFF Research Database (Denmark)

    Svenstrup, Mikael; Bak, Thomas; Andersen, Hans Jørgen

    2010-01-01

    This paper present a trajectory planning algorithm for a robot operating in dynamic human environments. Environments such as pedestrian streets, hospital corridors and train stations. We formulate the problem as planning a minimal cost trajectory through a potential field, defined from...... the perceived position and motion of persons in the environment. A Rapidly-exploring Random Tree (RRT) algorithm is proposed as a solution to the planning problem. A new method for selecting the best trajectory in the RRT, according to the cost of traversing a potential field, is presented. The RRT expansion...... vertex to the tree. Instead of executing a whole trajectory, when planned, the algorithm uses an Model Predictive Control (MPC) approach, where only a short segment of the trajectory is executed while a new iteration of the RRT is done. The planning algorithm is demonstrated in a simulated pedestrian...

  6. Trajectory Generation Method with Convolution Operation on Velocity Profile

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon [Hanyang Univ., Seoul (Korea, Republic of); Kim, Doik [Korea Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-03-15

    The use of robots is no longer limited to the field of industrial robots and is now expanding into the fields of service and medical robots. In this light, a trajectory generation method that can respond instantaneously to the external environment is strongly required. Toward this end, this study proposes a method that enables a robot to change its trajectory in real-time using a convolution operation. The proposed method generates a trajectory in real time and satisfies the physical limits of the robot system such as acceleration and velocity limit. Moreover, a new way to improve the previous method, which generates inefficient trajectories in some cases owing to the characteristics of the trapezoidal shape of trajectories, is proposed by introducing a triangle shape. The validity and effectiveness of the proposed method is shown through a numerical simulation and a comparison with the previous convolution method.

  7. Semantic enrichment of GPS trajectories

    NARCIS (Netherlands)

    Graaff, de Victor; Keulen, van Maurice; By, de Rolf

    2012-01-01

    Semantic annotation of GPS trajectories helps us to recognize the interests of the creator of the GPS trajectories. Automating this trajectory annotation circumvents the requirement of additional user input. To annotate the GPS traces automatically, two types of automated input are required: 1) a co

  8. Fast inversion of Zeeman line profiles using central moments. II. Stokes V moments and determination of vector magnetic fields

    Science.gov (United States)

    Mein, P.; Uitenbroek, H.; Mein, N.; Bommier, V.; Faurobert, M.

    2016-06-01

    Context. In the case of unresolved solar structures or stray light contamination, inversion techniques using four Stokes parameters of Zeeman profiles cannot disentangle the combined contributions of magnetic and nonmagnetic areas to the observed Stokes I. Aims: In the framework of a two-component model atmosphere with filling factor f, we propose an inversion method restricting input data to Q , U, and V profiles, thus overcoming ambiguities from stray light and spatial mixing. Methods: The V-moments inversion (VMI) method uses shifts SV derived from moments of V-profiles and integrals of Q2, U2, and V2 to determine the strength B and inclination ψ of a magnetic field vector through least-squares polynomial fits and with very few iterations. Moment calculations are optimized to reduce data noise effects. To specify the model atmosphere of the magnetic component, an additional parameter δ, deduced from the shape of V-profiles, is used to interpolate between expansions corresponding to two basic models. Results: We perform inversions of HINODE SOT/SP data for inclination ranges 0 <ψ< 60° and 120 <ψ< 180° for the 630.2 nm Fe i line. A damping coefficient is fitted to take instrumental line broadening into account. We estimate errors from data noise. Magnetic field strengths and inclinations deduced from VMI inversion are compared with results from the inversion codes UNNOFIT and MERLIN. Conclusions: The VMI inversion method is insensitive to the dependence of Stokes I profiles on the thermodynamic structure in nonmagnetic areas. In the range of Bf products larger than 200 G, mean field strengths exceed 1000 G and there is not a very significant departure from the UNNOFIT results because of differences between magnetic and nonmagnetic model atmospheres. Further improvements might include additional parameters deduced from the shape of Stokes V profiles and from large sets of 3D-MHD simulations, especially for unresolved magnetic flux tubes.

  9. Three-dimensional calculation of the electromagnetic fields produced by power transmission lines; Calculo tridimensional de los campos electromagneticos producidos por lineas electricas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Juan C.; Bisceglia, Mateo; Acosta, Eduardo O. [Universidad de Buenos Aires (Argentina). Facultad de Ingenieria. Lab. de Electrooptica]. E-mail: jcfernan@fi.uba.ar

    2001-07-01

    The used methods for calculation of produced electromagnetic fields by power transmission lines, assumes straight power transmission lines working in parallel to a plane soil. The influence of the associated curvature to its weight is depreciated, or it is introduced by means of a horizontal line of a intermediate height among the maximum and minimum heights of the power line. In this work it is compared the created values by horizontal and catenary lines. By means of investigations, it has been found a situation where for larger arrows there are great differences between the exact calculation and the approximation of horizontal line, and also the situation which shows that the better approximation is obtained by means of placing the horizontal line something above the minimum height.

  10. Electromagnetic fields at the sea bottom induced by a line of immersed electric dipoles

    Directory of Open Access Journals (Sweden)

    Edson E.S. Sampaio

    2011-09-01

    Full Text Available The analysis of electromagnetic fields caused by alternate or transient electric currents flowing along a cable in sea water has several applications. It supports the interpretation of electromagnetic geophysical data and safety procedures against the threat of sea mines. The approach to the problem employs a magnetic vector potential in the frequency domain due to a pulse source electric dipole, and performs Laplace and Hankel transforms and integration along the cable, to describe the variation of the magnetic induction field due to an electric dipole of finite length. The result is applicable to shallow or deep sea water environments, adaptable to any transmitting current waveform and useful for wave-field separation. The prospects relate to a horizontal receiving coil at the sea bottom and simulate: a minesweeper campaign with a current source at the sea surface or a geophysical survey with a current source close to the sea floor. Therefore, the present analysis may serve: to define parameters in counter-sweeping of submarine mines; to map the conductivity of sediments under shallow waters for the prevention and control of contamination; and as a first approach in the characterization of offshore mineral and oil economic deposits.A análise de campos eletromagnéticos causados por correntes alternadas ou transientes fluindo ao longo de um cabo na água do mar tem várias aplicações. Ela prove suporte à interpretação de dados geofísicos eletromagnéticos e aos procedimentos de segurança contra a ameaça de minas submarinas. A abordagem do problema emprega um potencial vetorial magnético, no domínio da frequência, devido a um dipolo elétrico com uma fonte tipo pulso e calcula transformações de Laplace e de Hankel e integração ao longo do comprimento do cabo, para descrever a variação temporal do campo magnético de indução devido a um dipolo elétrico de comprimento finito. O resultado é aplicável em ambientes de água do

  11. SELFI: an object-based, Bayesian method for faint emission line source detection in MUSE deep field data cubes

    Science.gov (United States)

    Meillier, Céline; Chatelain, Florent; Michel, Olivier; Bacon, Roland; Piqueras, Laure; Bacher, Raphael; Ayasso, Hacheme

    2016-04-01

    We present SELFI, the Source Emission Line FInder, a new Bayesian method optimized for detection of faint galaxies in Multi Unit Spectroscopic Explorer (MUSE) deep fields. MUSE is the new panoramic integral field spectrograph at the Very Large Telescope (VLT) that has unique capabilities for spectroscopic investigation of the deep sky. It has provided data cubes with 324 million voxels over a single 1 arcmin2 field of view. To address the challenge of faint-galaxy detection in these large data cubes, we developed a new method that processes 3D data either for modeling or for estimation and extraction of source configurations. This object-based approach yields a natural sparse representation of the sources in massive data fields, such as MUSE data cubes. In the Bayesian framework, the parameters that describe the observed sources are considered random variables. The Bayesian model leads to a general and robust algorithm where the parameters are estimated in a fully data-driven way. This detection algorithm was applied to the MUSE observation of Hubble Deep Field-South. With 27 h total integration time, these observations provide a catalog of 189 sources of various categories and with secured redshift. The algorithm retrieved 91% of the galaxies with only 9% false detection. This method also allowed the discovery of three new Lyα emitters and one [OII] emitter, all without any Hubble Space Telescope counterpart. We analyzed the reasons for failure for some targets, and found that the most important limitation of the method is when faint sources are located in the vicinity of bright spatially resolved galaxies that cannot be approximated by the Sérsic elliptical profile. The software and its documentation are available on the MUSE science web service (muse-vlt.eu/science).

  12. Three-dimensional Model Analysis of Electric Field Excited by Multi-circuit Intersecting Overhead Transmission Lines

    Institute of Scientific and Technical Information of China (English)

    XIAO Dongping; LEI Hui; ZHANG Zhanlong; HE Wei

    2013-01-01

    This work is carried out to predict the special distribution of electric field induced by multi-circuit intersecting overhead high-voltage (HV) transmission lines (TLs) within a large range without any expensive and time-consuming computation.The two main parts of the presented methodology are 1) setting up a three-dimensional (3D) model to calculate the electric field based on combining catenary equations with charge simulation method and 2) calculating the hybrid electric field excited by multi-circuit intersecting TLs using coordinate transformation and superposition technique.Examples of different TLs configurations,including a 220 kV single-circuit horizontally configured TLs,a 500 kV single-circuit triangularly configured TLs and a combination of the 220 kV TLs and the 550 kV TLs,are illustrated to verify the validity of this methodology.A more complicatal configurations,including a 500 kV double-circuit TLs and two 220kV single-circuit horizontally configured TLs,are also calculated.Conclusions were drawn from the simulation:1) The presented 3D model outperforms 2D models in describing the electric field distribution generated by practical HV TLs with sag and span.2) Coordinate transformation and superposition technique considerably simplify the electric field computation for multi-circuit TLs configurations,which makes it possible to deal with complex engineering problems.3) The electric field in the area covered by multiple intersecting overhead TLs is distorted and the hybrid electric field strength in some partial region increases so sharply that it might exceed the admissible value.4) The configuration parameters of the TLs and the spatial configuration of multi-circuit TLs,for instance,the height of TLs,the length of span and the intersection angle of multiple circuits,influence the strength and the distribution of hybrid electric field.The influence regularities summarized in this paper can be referred by future TL designs to meet the electromagnetic

  13. Stark spectroscopy of atomic hydrogen balmer-alpha line for electric field measurement in plasmas by saturation spectroscopy

    Science.gov (United States)

    Nishiyama, S.; Katayama, K.; Nakano, H.; Goto, M.; Sasaki, K.

    2016-09-01

    Detailed structures of electric fields in sheath and pre-sheath regions of various plasmas are interested from the viewpoint of basic plasma physics. Several researchers observed Stark spectra of Doppler-broadened Rydberg states to evaluate electric fields in plasmas; however, these measurements needed high-power, expensive tunable lasers. In this study, we carried out another Stark spectroscopy with a low-cost diode laser system. We applied saturation spectroscopy, which achieves a Doppler-free wavelength resolution, to observe the Stark spectrum of the Balmer-alpha line of atomic hydrogen in the sheath region of a low-pressure hydrogen plasma. The hydrogen plasma was generated in an ICP source which was driven by on-off modulated rf power at 20 kHz. A planar electrode was inserted into the plasma. Weak probe and intense pump laser beams were injected into the plasma from the counter directions in parallel to the electrode surface. The laser beams crossed with a small angle above the electrode. The observed fine-structure spectra showed shifts, deformations, and/or splits when varying the distance between the observation position and the electrode surface. The detection limit for the electric field was estimated to be several tens of V/cm.

  14. Solar Magnetic Field Studies Using the 12-Micron Emission Lines. IV. Observations of a Delta-Region Solar Flare

    CERN Document Server

    Jennings, D E; McCabe, G; Sada, P; Moran, T; Jennings, Donald E.; Deming, Drake; Sada, Pedro; Moran, Thomas

    2002-01-01

    We have recently developed the capability to make solar vector (Stokes IQUV) magnetograms using the infrared line of MgI at 12.32 microns. On 24 April 2001, we obtained a vector magnetic map of solar active region NOAA 9433, fortuitously just prior to the occurrence of an M2 flare. Examination of a sequence of SOHO/MDI magnetograms, and comparison with ground-based H-alpha images, shows that the flare was produced by the cancellation of newly emergent magnetic flux outside of the main sunspot. The very high Zeeman-sensitivity of the 12-micron data allowed us to measure field strengths on a spatial scale which was not directly resolvable. At the flare trigger site, opposite polarity fields of 2700 and 1000 Gauss occurred within a single 2 arc-sec resolution element, as revealed by two resolved Zeeman splittings in a single spectrum. Our results imply an extremely high horizontal field strength gradient (5 G/km) prior to the flare, significantly greater than seen in previous studies. We also find that the magne...

  15. Irreversibility line and magnetic field dependence of the critical current in superconducting MgB sub 2 bulk samples

    CERN Document Server

    Gioacchino, D D; Tripodi, P; Grimaldi, G

    2003-01-01

    The third harmonic components of the ac susceptibility of MgB sub 2 bulk samples have been measured as a function of applied magnetic fields, together with standard magnetization cycles. The irreversibility line (IL) of the magnetic field has been extracted from the onset of the third harmonic components. Using a (1 - t) supalpha glass/liquid best fit where alpha 1.27 IL shows a coherent length xi divergence with exponent nu = 0.63, which indicates a 3D behaviour. Moreover, using the numerical solution of the non-linear magnetic diffusion equation, considering the creep model in a 3D vortex glass, a good description of the vortex dynamics has been obtained. The behaviour of the magnetization amplitude (approx Hz) and the ac susceptibility signals (kHz), at different applied magnetic fields, 3.5 T < H sub d sub c < 4.5 T, and at the reduced temperature 0.86 < t < 0.93 (T = 22 K), shows that the superconducting dynamic response of vortices in the MgB sub 2 samples is not evidently dependent on the f...

  16. Interference, Reduced Action, and Trajectories

    Science.gov (United States)

    Floyd, Edward R.

    2007-09-01

    Instead of investigating the interference between two stationary, rectilinear wave functions in a trajectory representation by examining the trajectories of the two rectilinear wave functions individually, we examine a dichromatic wave function that is synthesized from the two interfering wave functions. The physics of interference is contained in the reduced action for the dichromatic wave function. As this reduced action is a generator of the motion for the dichromatic wave function, it determines the dichromatic wave function’s trajectory. The quantum effective mass renders insight into the behavior of the trajectory. The trajectory in turn renders insight into quantum nonlocality.

  17. Identification of the plasma instabilities responsible for decameter-scale ionospheric irregularities on plasmapause field lines

    Science.gov (United States)

    Eltrass, Ahmed; Ruohoniemi, J. Michael; Mahmoudian, Alireza; Scales, Wayne; De Larquier, Sebastien; Baker, Joseph; Greenwald, Ray; Erickson, Philip

    The mid-latitude SuperDARN radars have revealed decameter-scale ionospheric irregularities during quiet geomagnetic periods that have been proposed to be responsible for the observed low-velocity Sub-Auroral Ionospheric Scatter (SAIS). The mechanism responsible for the growth of such common irregularities is still unknown. Joint measurements by Millstone Hill Incoherent Scatter Radar (ISR) and SuperDARN HF radar located at Wallops Island, Virginia reported by Greenwald et al. [2006] have determined decameter-scale irregularities with low drift velocities in the quiet-time mid-latitude night-side ionosphere. Temperature gradient instability (TGI) is investigated as the cause of irregularities associated with these SuperDARN echoes. The electrostatic dispersion relation for TGI has been extended into the kinetic regime appropriate for SuperDARN radar frequencies by including Landau damping, finite gyro-radius effects, and temperature anisotropy. This dispersion relation allows study of the TGI over a wide range of parameter regimes that have not been considered for such ionospheric applications up to this time. The calculations of electron temperature and density gradients in the direction perpendicular to the geomagnetic field have shown that the TGI growth is possible in the top-side F-region for the duration of the experiment. A time series for the growth rate has been developed for mid-latitude ionospheric irregularities observed by SuperDARN in the top-side F-region [Greenwald et al., 2006]. This time series is computed for both perpendicular and meridional density and temperature gradients. These observations show the role of TGI is dominant over the gradient drift instability (GDI) in this case. Nonlinear evolution of the TGI has been studied utilizing gyro-kinetic "Particle In Cell" (PIC) simulations with Monte Carlo collisions. This allows detailed study of saturation amplitude, particle flux, heat flux, diffusion coefficient, and thermal diffusivity of the

  18. Theoretical Foundation of Copernicus: A Unified System for Trajectory Design and Optimization

    Science.gov (United States)

    Ocampo, Cesar; Senent, Juan S.; Williams, Jacob

    2010-01-01

    The fundamental methods are described for the general spacecraft trajectory design and optimization software system called Copernicus. The methods rely on a unified framework that is used to model, design, and optimize spacecraft trajectories that may operate in complex gravitational force fields, use multiple propulsion systems, and involve multiple spacecraft. The trajectory model, with its associated equations of motion and maneuver models, are discussed.

  19. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 2. Aerosol effects on warm convective clouds: Center of Gravity Versus Water Mass 2

    Energy Technology Data Exchange (ETDEWEB)

    Heiblum, Reuven H. [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Altaratz, Orit [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Koren, Ilan [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Feingold, Graham [Chemical Sciences Division, NOAA Earth System Research Laboratory (ESRL), Boulder Colorado USA; Kostinski, Alexander B. [Department of Physics, Michigan Technological University, Houghton Michigan USA; Khain, Alexander P. [Institute of Earth Sciences, Hebrew University of Jerusalem, Jerusalem Israel; Ovchinnikov, Mikhail [Atmosphere Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Fredj, Erick [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Dagan, Guy [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Pinto, Lital [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Yaish, Ricki [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Chen, Qian [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2016-06-07

    In Part I of this work a 3D cloud tracking algorithm and phase-space of center of gravity altitude versus cloud liquid water mass (CvM space) were introduced and described in detail. We showed how new physical insight can be gained by following cloud trajectories in the CvM space. Here, this approach is used to investigate aerosol effects on cloud fields of warm cumuli. We show a clear effect of the aerosol loading on the shape and size of CvM clusters. We also find fundamental differences in the CvM space between simulations using bin versus bulk microphysical schemes, with the bin scheme precipitation expressing much higher sensitivity to changes in aerosol concentrations. Using the bin microphysical scheme, we find that the increase in cloud center of gravity altitude with increase in aerosol concentrations occurs for a wide range of cloud sizes. This is attributed to reduced sedimentation, increased buoyancy and vertical velocities, and increased environmental instability, all of which are tightly coupled to inhibition of precipitation processes and subsequent feedbacks of clouds on their environment. Many of the physical processes shown here are consistent with processes typically associated with cloud invigoration.

  20. High I on/I off current ratio graphene field effect transistor: the role of line defect.

    Science.gov (United States)

    Tajarrod, Mohammad Hadi; Saghai, Hassan Rasooli

    2015-01-01

    The present paper casts light upon the performance of an armchair graphene nanoribbon (AGNR) field effect transistor in the presence of one-dimensional topological defects. The defects containing 5-8-5 sp(2)-hybridized carbon rings were placed in a perfect graphene sheet. The atomic scale behavior of the transistor was investigated in the non-equilibrium Green's function (NEGF) and tight-binding Hamiltonian frameworks. AGNRFET basic terms such as the on/off current, transconductance and subthreshold swing were investigated along with the extended line defect (ELD). The results indicated that the presence of ELDs had a significant effect on the parameters of the GNRFET. Compared to conventional transistors, the increase of the I on/I off ratio in graphene transistors with ELDs enhances their applicability in digital devices.