WorldWideScience

Sample records for field landau levels

  1. Anti-levitation of Landau levels in vanishing magnetic fields

    Science.gov (United States)

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    Soon after the discovery of the quantum Hall effects in two-dimensional electron systems, the question on the fate of the extended states in a Landau level in vanishing magnetic (B) field arose. Many theoretical models have since been proposed, and experimental results remain inconclusive. In this talk, we report experimental observation of anti-levitation behavior of Landau levels in vanishing B fields (down to as low as B 58 mT) in a high quality heterojunction insulated-gated field-effect transistor (HIGFET). We observed that, in the Landau fan diagram of electron density versus magnetic field, the positions of the magneto-resistance minima at Landau level fillings ν = 4, 5, 6 move below the ``traditional'' Landau level line to lower electron densities. This clearly differs from what was observed in the earlier experiments where in the same Landau fan plot the density moved up. Our result strongly supports the anti-levitation behavior predicted recently. Moreover, the even and odd Landau level filling states show quantitatively different behaviors in anti-levitation, suggesting that the exchange interactions, which are important at odd fillings, may play a role. SNL is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Zero-field magnetic response functions in Landau levels

    Science.gov (United States)

    Gao, Yang; Niu, Qian

    2017-07-01

    We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic response functions at zero temperature, such as zero-field magnetization and susceptibility, the Onsager’s rule can be corrected order by order. Such a perspective is further reinterpreted as a quantization of the semiclassical electron density in solids. Our theory not only reproduces Onsager’s rule at zeroth order and the Berry phase and magnetic moment correction at first order but also explains the nature of higher-order corrections in a universal way. In applications, those higher-order corrections are expected to curve the linear relation between the level index and the inverse of the magnetic field, as already observed in experiments. Our theory then provides a way to extract the correct value of Berry phase as well as the magnetic susceptibility at zero temperature from Landau level fan diagrams in experiments. Moreover, it can be used theoretically to calculate Landau levels up to second-order accuracy for realistic models.

  3. Chern-Simons field theory of two-dimensional electrons in the lowest Landau level

    International Nuclear Information System (INIS)

    Zhang, L.

    1996-01-01

    We propose a fermion Chern-Simons field theory describing two-dimensional electrons in the lowest Landau level. This theory is constructed with a complete set of states, and the lowest-Landau-level constraint is enforced through a δ functional described by an auxiliary field λ. Unlike the field theory constructed directly with the states in the lowest Landau level, this theory allows one, utilizing the physical picture of open-quote open-quote composite fermion,close-quote close-quote to study the fractional quantum Hall states by mapping them onto certain integer quantum Hall states; but, unlike its application in the unconstrained theory, such a mapping is sensible only when interactions between electrons are present. An open-quote open-quote effective mass,close-quote close-quote which characterizes the scale of low energy excitations in the fractional quantum Hall systems, emerges naturally from our theory. We study a Gaussian effective theory and interpret physically the dressed stationary point equation for λ as an equation for the open-quote open-quote mass renormalization close-quote close-quote of composite fermions. copyright 1996 The American Physical Society

  4. Bargmann representation for Landau levels in two dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Rohringer, Nina [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Burgdoerfer, Joachim [Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria); Macris, Nicolas [Institut de Physique Theorique, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)

    2003-04-11

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field.

  5. Bargmann representation for Landau levels in two dimensions

    International Nuclear Information System (INIS)

    Rohringer, Nina; Burgdoerfer, Joachim; Macris, Nicolas

    2003-01-01

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field

  6. Bargmann representation for Landau levels in two dimensions

    CERN Document Server

    Rohringer, N; Macris, N

    2003-01-01

    We present a formulation of the quantum mechanics of an electron gas confined to two dimensions in a strong magnetic field within the framework of the Hilbert space of analytic functions (Bargmann's space). Our approach extends the representation introduced by Girvin and Jach for the ground state to arbitrary Landau levels and to the regime of coupling between Landau levels. By projecting out the rapid cyclotron motion, the quantum mechanics of the slow guiding centre motion is converted into a system of coupled-channel equations describing the coupling between Landau levels due to the (disorder) potentials. In the limit of strong fields, the coupled-channel equations can be solved perturbatively. For the single-channel case we derive a WKB-like quantization condition for the one-dimensional motion along equipotential lines for arbitrary Landau levels. Two applications of this formalism are discussed: the weak-levitation problem in quantum Hall systems and a two-electron quantum dot in a strong magnetic field...

  7. The lowest Landau level in QCD

    Directory of Open Access Journals (Sweden)

    Bruckmann Falk

    2017-01-01

    Full Text Available The thermodynamics of Quantum Chromodynamics (QCD in external (electro-magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL. Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.

  8. Landau Levels of Majorana Fermions in a Spin Liquid.

    Science.gov (United States)

    Rachel, Stephan; Fritz, Lars; Vojta, Matthias

    2016-04-22

    Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.

  9. Impact of Many-Body Effects on Landau Levels in Graphene

    Science.gov (United States)

    Sonntag, J.; Reichardt, S.; Wirtz, L.; Beschoten, B.; Katsnelson, M. I.; Libisch, F.; Stampfer, C.

    2018-05-01

    We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies.

  10. Relativistic Landau levels in the rotating cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, M.S. [Universidade Estadual do Ceara, Grupo de Fisica Teorica (GFT), Fortaleza, CE (Brazil); Muniz, C.R. [Universidade Estadual do Ceara, Faculdade de Educacao, Ciencias e Letras de Iguatu, Iguatu, CE (Brazil); Christiansen, H.R. [Instituto Federal de Ciencia, Educacao e Tecnologia, IFCE Departamento de Fisica, Sobral (Brazil); Bezerra, V.B. [Universidade Federal da Paraiba-UFPB, Departamento de Fisica, Caixa Postal 5008, Joao Pessoa, PB (Brazil)

    2016-09-15

    In the spacetime induced by a rotating cosmic string we compute the energy levels of a massive spinless particle coupled covariantly to a homogeneous magnetic field parallel to the string. Afterwards, we consider the addition of a scalar potential with a Coulomb-type and a linear confining term and completely solve the Klein-Gordon equations for each configuration. Finally, assuming rigid-wall boundary conditions, we find the Landau levels when the linear defect is itself magnetized. Remarkably, our analysis reveals that the Landau quantization occurs even in the absence of gauge fields provided the string is endowed with spin. (orig.)

  11. Electric-field induced spin accumulation in the Landau level states of topological insulator thin films

    Science.gov (United States)

    Siu, Zhuo Bin; Chowdhury, Debashree; Basu, Banasri; Jalil, Mansoor B. A.

    2017-08-01

    A topological insulator (TI) thin film differs from the more typically studied thick TI system in that the former has both a top and a bottom surface where the states localized at both surfaces can couple to one other across the finite thickness. An out-of-plane magnetic field leads to the formation of discrete Landau level states in the system, whereas an in-plane magnetization breaks the angular momentum symmetry of the system. In this work, we study the spin accumulation induced by the application of an in-plane electric field to the TI thin film system where the Landau level states and inter-surface coupling are simultaneously present. We show, via Kubo formula calculations, that the in-plane spin accumulation perpendicular to the magnetization due to the electric field vanishes for a TI thin film with symmetric top and bottom surfaces. A finite in-plane spin accumulation perpendicular to both the electric field and magnetization emerges upon applying either a differential magnetization coupling or a potential difference between the two film surfaces. This spin accumulation results from the breaking of the antisymmetry of the spin accumulation around the k-space equal-energy contours.

  12. A novel method of including Landau level mixing in numerical studies of the quantum Hall effect

    International Nuclear Information System (INIS)

    Wooten, Rachel; Quinn, John; Macek, Joseph

    2013-01-01

    Landau level mixing should influence the quantum Hall effect for all except the strongest applied magnetic fields. We propose a simple method for examining the effects of Landau level mixing by incorporating multiple Landau levels into the Haldane pseudopotentials through exact numerical diagonalization. Some of the resulting pseudopotentials for the lowest and first excited Landau levels will be presented

  13. Raise and collapse of pseudo Landau levels in graphene

    Science.gov (United States)

    Castro, Eduardo V.; Cazalilla, Miguel A.; Vozmediano, María A. H.

    2017-12-01

    Lattice deformations couple to the low-energy electronic excitations of graphene as vector fields similar to the electromagnetic potential. The observation of strain-induced pseudo Landau levels with scanning tunnel microscopy experiments has been one of the most exciting events in the history of graphene. Nevertheless, the experimental observation presents some ambiguities. Similar strain patterns show different images that are sometimes difficult to interpret. In this Rapid Communication, we show that, for some strain configurations, the deformation potential acts as a parallel electric field able to destabilize the Landau level structure via a mechanism identical to that occurring for real electromagnetic fields. This effect also alters the estimations of the value of the pseudomagnetic field, which can be significantly bigger. The mechanism applies equally if the electric field has an external origin, which opens the door to an electric control of giant pseudomagnetic fields in graphene.

  14. Landau levels on a torus

    OpenAIRE

    Enrico OnofriDipartimento di Fisica, Universita` di Parma, and INFN, Gruppo Collegato di Parma, Parma, Italy

    2015-01-01

    Landau levels have represented a very rich field of research, which has gained widespread attention after their application to quantum Hall effect. In a particular gauge, the holomorphic gauge, they give a physical implementation of Bargmann's Hilbert space of entire functions. They have also been recognized as a natural bridge between Feynman's path integral and Geometric Quantization. We discuss here some mathematical subtleties involved in the formulation of the problem when one tries to s...

  15. Terahertz imaging of Landau levels in HgTe-based topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Kadykov, Aleksandr M.; Krishtopenko, Sergey S. [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Torres, Jeremie [Institut d' Electronique et des Systèmes (IES), UMR 5214 CNRS–Université de Montpellier, Montpellier (France); Consejo, Christophe; Ruffenach, Sandra; Marcinkiewicz, Michal; But, Dmytro; Teppe, Frederic, E-mail: frederic.teppe@umontpellier.fr [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Knap, Wojciech [Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS–Université de Montpellier, Montpellier (France); Institute of High Pressure Institute Physics, Polish Academy of Sciences, 01-447 Warsaw (Poland); Morozov, Sergey V.; Gavrilenko, Vladimir I. [Institute for Physics of Microstructures, Russian Academy of Sciences, GSP-105, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Mikhailov, Nikolai N. [Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent' eva 13, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation); Dvoretsky, Sergey A. [Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, pr. Akademika Lavrent' eva 13, 630090 Novosibirsk (Russian Federation)

    2016-06-27

    We report on sub-terahertz photoconductivity under the magnetic field of a two dimensional topological insulator based on HgTe quantum wells. We perform a detailed visualization of Landau levels by means of photoconductivity measured at different gate voltages. This technique allows one to determine a critical magnetic field, corresponding to topological phase transition from inverted to normal band structure, even in almost gapless samples. The comparison with realistic calculations of Landau levels reveals a smaller role of bulk inversion asymmetry in HgTe quantum wells than it was assumed previously.

  16. Investigation of Landau level spin reversal in (110) oriented p-type GaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Isik, Nebile

    2009-09-01

    In this thesis, the Landau level crossing or anticrossing of hole levels has been investigated in p-type GaAs 400 Aa wide quantum wells. In magneto-transport measurements, this is evidenced with the presence of an anomalous peak in the longitudinal resistance measurements at {nu}=1. In the transversal resistance measurements, no signature of this anomalous peak is observed. By increasing the hole density in the quantum well by applying a top gate voltage, the position of the anomalous peak shifts to higher magnetic fields. At very high densities, anomalous peak disappears. By applying a back gate voltage, the electric field in the quantum well is tuned. A consequence is that the geometry of the quantum well is tuned from square to triangular. The anomalous peak position is shown to depend also on the back gate voltage applied. Temperature dependence of the peak height is consistent with thermal activation energy gap ({delta}/2= 135 {mu}eV). The activation energy gap as a function of the magnetic field has a parabolic like dependence, with the minimum of 135 {mu}eV at 4 T. The peak magnitude is observed to decrease with increasing temperature. An additional peak is observed at {nu}=2 minimum. This additional peak at {nu}=2 might be due to the higher Landau level crossing. The p-type quantum wells have been investigated by photoluminescence spectroscopy, as a function of the magnetic field. The polarization of the emitted light has been analyzed in order to distinguish between the transitions related to spin of electron {+-} 1/2 and spin of hole -+ 3/2. The transition energies of the lowest electron Landau levels with spin {+-} 1/2 and hole Landau levels with spin -+ 3/2 versus magnetic field show crossing at 4 T. The heavy hole Landau levels with spins {+-} 3/2 are obtained by the substraction of transition energies from the sum of lowest electron Landau level energy and the energy gap of GaAs. The heavy hole Landau levels show a crossing at 4 T. However, due to the

  17. Observation of roton density of states in two-dimensional Landau-level excitations

    International Nuclear Information System (INIS)

    Pinczuk, A.; Valladares, J.P.; Heiman, D.; Gossard, A.C.; English, J.H.; Tu, C.W.; Pfeiffer, L.; West, K.

    1988-01-01

    Inelastic light scattering by inter-Landau-level excitations of the 2D electron gas in high-mobility GaAs structures in a perpendicular magnetic field was observed at the energies of the critical points in the mode dispersions. For Landau-level filling factors /nu//ge/, structure in the spectra indicates the excitonic binding and roton behavior predicted by the Hartree-Fock approximation. The large critical-point wave vectors, qapprox. >((h/2/pi/)c/eB)/sup -1/2/approx. >10/sup 6/ cm/sup -1/, are probably accessible in resonant light scattering through the residual disorder that broadens the Landau levels

  18. The Interplay of Rashba Spin-Orbit Interaction and Landau Level Broadening on a Two-Dimensional Electron Gas Under a Tilted Magnetic Field

    International Nuclear Information System (INIS)

    Gammag, Rayda; Villagonzalo, Cristine

    2012-01-01

    A two-dimensional electron gas in a tilted magnetic field with Rashba spin-orbit interaction (RSOI) was studied. The RSOI is accredited to the asymmetry of the heterostructure where the two-dimensional electron gas is found. The effects of the disorder-attributed Landau level broadening and the RSOI on the spin splitting were identified by simulating the density of states which was assumed to take a Gaussian shape. Increased Landau level broadening obscures the spin splitting and increases the overlap between spin states resulting to stout Gaussian peaks. On the other hand, stronger RSOI amplifies the splitting and lessens the overlap between spin states of the Landau levels. The splitting, however, results to stouter peaks. The similarity in the RSOI and Landau level broadening effects can be explained by recognizing that the asymmetry of the heterostructure is in itself a form of structural disorder.

  19. Pulsar kicks with modified Urca and electrons in Landau levels

    International Nuclear Information System (INIS)

    Henley, Ernest M.; Johnson, Mikkel B.; Kisslinger, Leonard S.

    2007-01-01

    We derive the energy asymmetry given the protoneutron star during the time when the neutrino sphere is near the surface of the protoneutron star, using the modified Urca process. The electrons produced with the antineutrinos are in Landau levels due to the strong magnetic field, and this leads to asymmetry in the neutrino momentum, and a pulsar kick. The magnetic field must be strong enough for a large fraction of the electrons to be in the lowest Landau level; however, there is no direct dependence of our pulsar velocity on the strength of the magnetic field. Our main prediction is that the large pulsar kicks start at about 10 s and last for about 10 s, with the corresponding neutrinos correlated with the direction of the magnetic field. We predict a pulsar velocity of 1.03x10 -4 (T/10 10 K) 7 km/s, which reaches 1000 km/s if T≅10 11 K

  20. Exact Landau levels in two-dimensional electron systems with Rashba and Dresselhaus spin-orbit interactions in a perpendicular magnetic field

    International Nuclear Information System (INIS)

    Zhang Degang

    2006-01-01

    We study a two-dimensional electron system in the presence of both Rashba and Dresselhaus spin-orbit interactions in a perpendicular magnetic field. Defining two suitable boson operators and using the unitary transformations we are able to obtain the exact Landau levels in the range of all the parameters. When the strengths of the Rashba and Dresselhaus spin-orbit interactions are equal, a new analytical solution for the vanishing Zeeman energy is found, where the orbital and spin wavefunctions of the electron are separated. It is also shown that in this case the Zeeman and spin-orbit splittings are independent of the Landau level index n. Due to the Zeeman energy, new crossing between the eigenstates vertical bar n, k, s = 1, σ) and vertical bar n + 1, k, s' = -1, σ') is produced at a certain magnetic field for larger Rashba spin-orbit coupling. This degeneracy leads to a resonant spin Hall conductance if it happens at the Fermi level. (letter to the editor)

  1. Landau levels and shallow donor states in GaAs/AlGaAs multiple quantum wells at megagauss magnetic fields

    Science.gov (United States)

    Zybert, M.; Marchewka, M.; Sheregii, E. M.; Rickel, D. G.; Betts, J. B.; Balakirev, F. F.; Gordon, M.; Stier, A. V.; Mielke, C. H.; Pfeffer, P.; Zawadzki, W.

    2017-03-01

    Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at megagauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6-300 K. The 14 ×14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magnetodonor states in the GaAs wells and possibly in the AlGaAs barriers. The magnetodonor energies are calculated using a variational procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed magneto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.

  2. Magneto-transport in the zero-energy Landau level of single-layer and bilayer graphene

    International Nuclear Information System (INIS)

    Zeitler, U; Giesbers, A J M; Elferen, H J van; Kurganova, E V; McCollam, A; Maan, J C

    2011-01-01

    We present recent low-temperature magnetotransport experiments on single-layer and bilayer graphene in high magnetic field up to 33 T. In single layer graphene the fourfold degeneracy of the zero-energy Landau level is lifted by a gap opening at filling factor ν = 0. In bilayer graphene, we observe a partial lifting of the degeneracy of the eightfold degenerate zero-energy Landau level.

  3. Dynamic nuclear polarization at high Landau levels in a quantum point contact

    Science.gov (United States)

    Fauzi, M. H.; Noorhidayati, A.; Sahdan, M. F.; Sato, K.; Nagase, K.; Hirayama, Y.

    2018-05-01

    We demonstrate a way to polarize and detect nuclear spin in a gate-defined quantum point contact operating at high Landau levels. Resistively detected nuclear magnetic resonance (RDNMR) can be achieved up to the fifth Landau level and at a magnetic field lower than 1 T. We are able to retain the RDNMR signals in a condition where the spin degeneracy of the first one-dimensional (1D) subband is still preserved. Furthermore, the effects of orbital motion on the first 1D subband can be made smaller than those due to electrostatic confinement. This developed RDNMR technique is a promising means to study electronic states in a quantum point contact near zero magnetic field.

  4. Quantum transport in graphene in presence of strain-induced pseudo-Landau levels

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Leconte, Nicolas; Barrios-Vargas, Jose E.

    2016-01-01

    We report on mesoscopic transport fingerprints in disordered graphene caused by strain-field induced pseudomagnetic Landau levels (pLLs). Efficient numerical real space calculations of the Kubo formula are performed for an ordered network of nanobubbles in graphene, creating pseudomagnetic fields...

  5. Electrically pumped graphene-based Landau-level laser

    Science.gov (United States)

    Brem, Samuel; Wendler, Florian; Winnerl, Stephan; Malic, Ermin

    2018-03-01

    Graphene exhibits a nonequidistant Landau quantization with tunable Landau-level (LL) transitions in the technologically desired terahertz spectral range. Here, we present a strategy for an electrically driven terahertz laser based on Landau-quantized graphene as the gain medium. Performing microscopic modeling of the coupled electron, phonon, and photon dynamics in such a laser, we reveal that an inter-LL population inversion can be achieved resulting in the emission of coherent terahertz radiation. The presented paper provides a concrete recipe for the experimental realization of tunable graphene-based terahertz laser systems.

  6. Landau levels and magneto-transport property of monolayer phosphorene

    Science.gov (United States)

    Zhou, X. Y.; Zhang, R.; Sun, J. P.; Zou, Y. L.; Zhang, D.; Lou, W. K.; Cheng, F.; Zhou, G. H.; Zhai, F.; Chang, Kai

    2015-01-01

    We investigate theoretically the Landau levels (LLs) and magneto-transport properties of phosphorene under a perpendicular magnetic field within the framework of the effective k·p Hamiltonian and tight-binding (TB) model. At low field regime, we find that the LLs linearly depend both on the LL index n and magnetic field B, which is similar with that of conventional semiconductor two-dimensional electron gas. The Landau splittings of conduction and valence band are different and the wavefunctions corresponding to the LLs are strongly anisotropic due to the different anisotropic effective masses. An analytical expression for the LLs in low energy regime is obtained via solving the decoupled Hamiltonian, which agrees well with the numerical calculations. At high magnetic regime, a self-similar Hofstadter butterfly (HB) spectrum is obtained by using the TB model. The HB spectrum is consistent with the LL fan calculated from the effective k·p theory in a wide regime of magnetic fields. We find the LLs of phosphorene nanoribbon depend strongly on the ribbon orientation due to the anisotropic hopping parameters. The Hall and the longitudinal conductances (resistances) clearly reveal the structure of LLs. PMID:26159856

  7. Landau levels and shallow donor states in GaAs/AlGaAs multiple quantum wells at mega-gauss magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Zybert, M. [Univ. of Rzeszow, Pigonia (Poland); Marchweka, M. [Univ. of Rzeszow, Pigonia (Poland); Sheregii, E. M. [Center for Microelectronics and Nanotechnology, University of Rzeszow; Rickel, Dwight Gene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Betts, Jonathan Bobby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Balakirev, Fedor Fedorovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gordon, Michael Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stier, Andreas V. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mielke, Charles H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pfeffer, P. [Polish Academy of Sciences (PAS), Warsaw (Poland); Zawadski, W. [Polish Academy of Sciences (PAS), Warsaw (Poland)

    2017-03-06

    Landau levels and shallow donor states in multiple GaAs/AlGaAs quantum wells (MQWs) are investigated by means of the cyclotron resonance at mega-gauss magnetic fields. Measurements of magneto-optical transitions were performed in pulsed fields up to 140 T and temperatures from 6 to 300 K. The 14 x 14 P.p band model for GaAs is used to interpret free-electron transitions in a magnetic field. Temperature behavior of the observed resonant structure indicates, in addition to the free-electron Landau states, contributions of magneto-donor states in the GaAs wells and possibly in the AlGaAs barriers. The magneto-donor energies are calculated using a variational procedure suitable for high magnetic fields and accounting for conduction band nonparabolicity in GaAs. It is shown that the above states, including their spin splitting, allow one to interpret the observed mengeto-optical transitions in MQWs in the middle infrared region. Our experimental and theoretical results at very high magnetic fields are consistent with the picture used previously for GaAs/AlGaAs MQWs at lower magnetic fields.

  8. The effect of exchange interaction on quasiparticle Landau levels in narrow-gap quantum well heterostructures.

    Science.gov (United States)

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2012-04-04

    Using the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens. Matter 23 385601) on exchange enhancement of the g-factor in narrow-gap quantum well heterostructures by calculating the exchange renormalization of quasiparticle energies, the density of states at the Fermi level and the quasiparticle g-factor for different Landau levels overlapping. We demonstrate that exchange interaction yields more pronounced Zeeman splitting of the density of states at the Fermi level and leads to the appearance of peak-shaped features in the dependence of the Landau level energies on the magnetic field at integer filling factors. We also find that the quasiparticle g-factor does not reach the maximum value at odd filling factors in the presence of large overlapping of spin-split Landau levels. We advance an argument that the behavior of the quasiparticle g-factor in weak magnetic fields is defined by a random potential of impurities in narrow-gap heterostructures. © 2012 IOP Publishing Ltd

  9. Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems

    International Nuclear Information System (INIS)

    Smith, Peter M; Kennett, Malcolm P

    2012-01-01

    Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role. (paper)

  10. The "Forgotten" Pseudomomenta and Gauge Changes in Generalized Landau Level Problems: Spatially Nonuniform Magnetic and Temporally Varying Electric Fields

    Science.gov (United States)

    Konstantinou, Georgios; Moulopoulos, Konstantinos

    2017-05-01

    By perceiving gauge invariance as an analytical tool in order to get insight into the states of the "generalized Landau problem" (a charged quantum particle moving inside a magnetic, and possibly electric field), and motivated by an early article that correctly warns against a naive use of gauge transformation procedures in the usual Landau problem (i.e. with the magnetic field being static and uniform), we first show how to bypass the complications pointed out in that article by solving the problem in full generality through gauge transformation techniques in a more appropriate manner. Our solution provides in simple and closed analytical forms all Landau Level-wavefunctions without the need to specify a particular vector potential. This we do by proper handling of the so-called pseudomomentum ěc {{K}} (or of a quantity that we term pseudo-angular momentum L z ), a method that is crucially different from the old warning argument, but also from standard treatments in textbooks and in research literature (where the usual Landau-wavefunctions are employed - labeled with canonical momenta quantum numbers). Most importantly, we go further by showing that a similar procedure can be followed in the more difficult case of spatially-nonuniform magnetic fields: in such case we define ěc {{K}} and L z as plausible generalizations of the previous ordinary case, namely as appropriate line integrals of the inhomogeneous magnetic field - our method providing closed analytical expressions for all stationary state wavefunctions in an easy manner and in a broad set of geometries and gauges. It can thus be viewed as complementary to the few existing works on inhomogeneous magnetic fields, that have so far mostly focused on determining the energy eigenvalues rather than the corresponding eigenkets (on which they have claimed that, even in the simplest cases, it is not possible to obtain in closed form the associated wavefunctions). The analytical forms derived here for these

  11. Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors

    Science.gov (United States)

    Liarte, Danilo B.; Transtrum, Mark K.; Sethna, James P.

    2016-10-01

    We investigate the effects of material anisotropy on the superheating field of layered superconductors. We provide an intuitive argument both for the existence of a superheating field, and its dependence on anisotropy, for κ =λ /ξ (the ratio of magnetic to superconducting healing lengths) both large and small. On the one hand, the combination of our estimates with published results using a two-gap model for MgB2 suggests high anisotropy of the superheating field near zero temperature. On the other hand, within Ginzburg-Landau theory for a single gap, we see that the superheating field shows significant anisotropy only when the crystal anisotropy is large and the Ginzburg-Landau parameter κ is small. We then conclude that only small anisotropies in the superheating field are expected for typical unconventional superconductors near the critical temperature. Using a generalized form of Ginzburg Landau theory, we do a quantitative calculation for the anisotropic superheating field by mapping the problem to the isotropic case, and present a phase diagram in terms of anisotropy and κ , showing type I, type II, or mixed behavior (within Ginzburg-Landau theory), and regions where each asymptotic solution is expected. We estimate anisotropies for a number of different materials, and discuss the importance of these results for radio-frequency cavities for particle accelerators.

  12. Infrared spectroscopy of Landau levels of graphene.

    Science.gov (United States)

    Jiang, Z; Henriksen, E A; Tung, L C; Wang, Y-J; Schwartz, M E; Han, M Y; Kim, P; Stormer, H L

    2007-05-11

    We report infrared studies of the Landau level (LL) transitions in single layer graphene. Our specimens are density tunable and show in situ half-integer quantum Hall plateaus. Infrared transmission is measured in magnetic fields up to B=18 T at selected LL fillings. Resonances between hole LLs and electron LLs, as well as resonances between hole and electron LLs, are resolved. Their transition energies are proportional to sqrt[B], and the deduced band velocity is (-)c approximately equal to 1.1 x 10(6) m/s. The lack of precise scaling between different LL transitions indicates considerable contributions of many-particle effects to the infrared transition energies.

  13. Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2.

    Science.gov (United States)

    Liu, J Y; Hu, J; Graf, D; Zou, T; Zhu, M; Shi, Y; Che, S; Radmanesh, S M A; Lau, C N; Spinu, L; Cao, H B; Ke, X; Mao, Z Q

    2017-09-21

    Relativistic fermions in topological quantum materials are characterized by linear energy-momentum dispersion near band crossing points. Under magnetic fields, relativistic fermions acquire Berry phase of π in cyclotron motion, leading to a zeroth Landau level (LL) at the crossing point, a signature unique to relativistic fermions. Here we report the unusual interlayer quantum transport behavior resulting from the zeroth LL mode observed in the time reversal symmetry breaking type II Weyl semimetal YbMnBi 2 . The interlayer magnetoresistivity and Hall conductivity of this material are found to exhibit surprising angular dependences under high fields, which can be well fitted by a model, which considers the interlayer quantum tunneling transport of the zeroth LL's Weyl fermions. Our results shed light on the unusual role of zeroth LLl mode in transport.The transport behavior of the carriers residing in the lowest Landau level is hard to observe in most topological materials. Here, Liu et al. report a surprising angular dependence of the interlayer magnetoresistivity and Hall conductivity arising from the lowest Landau level under high magnetic field in type II Weyl semimetal YbMnBi 2 .

  14. Inhomogeneous Weyl and Dirac Semimetals: Transport in Axial Magnetic Fields and Fermi Arc Surface States from Pseudo-Landau Levels

    Science.gov (United States)

    Grushin, Adolfo G.; Venderbos, Jörn W. F.; Vishwanath, Ashvin; Ilan, Roni

    2016-10-01

    Topological Dirac and Weyl semimetals have an energy spectrum that hosts Weyl nodes appearing in pairs of opposite chirality. Topological stability is ensured when the nodes are separated in momentum space and unique spectral and transport properties follow. In this work, we study the effect of a space-dependent Weyl node separation, which we interpret as an emergent background axial-vector potential, on the electromagnetic response and the energy spectrum of Weyl and Dirac semimetals. This situation can arise in the solid state either from inhomogeneous strain or nonuniform magnetization and can also be engineered in cold atomic systems. Using a semiclassical approach, we show that the resulting axial magnetic field B5 is observable through an enhancement of the conductivity as σ ˜B52 due to an underlying chiral pseudomagnetic effect. We then use two lattice models to analyze the effect of B5 on the spectral properties of topological semimetals. We describe the emergent pseudo-Landau-level structure for different spatial profiles of B5, revealing that (i) the celebrated surface states of Weyl semimetals, the Fermi arcs, can be reinterpreted as n =0 pseudo-Landau levels resulting from a B5 confined to the surface, (ii) as a consequence of position-momentum locking, a bulk B5 creates pseudo-Landau levels interpolating in real space between Fermi arcs at opposite surfaces, and (iii) there are equilibrium bound currents proportional to B5 that average to zero over the sample, which are the analogs of bound currents in magnetic materials. We conclude by discussing how our findings can be probed experimentally.

  15. Landau-level spectroscopy of massive Dirac fermions in single-crystalline ZrTe5 thin flakes

    Science.gov (United States)

    Jiang, Y.; Dun, Z. L.; Zhou, H. D.; Lu, Z.; Chen, K.-W.; Moon, S.; Besara, T.; Siegrist, T. M.; Baumbach, R. E.; Smirnov, D.; Jiang, Z.

    2017-07-01

    We report infrared magnetospectroscopy studies on thin crystals of an emerging Dirac material ZrTe5 near the intrinsic limit. The observed structure of the Landau-level transitions and zero-field infrared absorption indicate a two-dimensional Dirac-like electronic structure, similar to that in graphene but with a small relativistic mass corresponding to a 9.4-meV energy gap. Measurements with circularly polarized light reveal a significant electron-hole asymmetry, which leads to splitting of the Landau-level transitions at high magnetic fields. Our model, based on the Bernevig-Hughes-Zhang effective Hamiltonian, quantitatively explains all observed transitions, determining the values of the Fermi velocity, Dirac mass (or gap), electron-hole asymmetry, and electron and hole g factors.

  16. Tuning of graphene nanoribbon Landau levels by a nanotube

    International Nuclear Information System (INIS)

    Li, T S; Chang, S C; Lin, M F

    2009-01-01

    We investigate theoretically the effects of a nanotube on the graphene nanoribbon Landau level spectrum utilizing the tight-binding model. The addition of a nanotube changes the original dispersionless Landau subbands into distorted parabolic ones, creates additional band-edge states, and modifies the subband spacings. Moreover, the dispersion relations rely sensitively on the nanotube location. The nanotube-ribbon couplings disrupt the Landau wavefunctions and lift their spatial symmetry, which will change the selection rule of optical transitions. The numbers, frequencies and heights of the density of states (DOS) peaks are found to be strongly dependent on the magnetic flux density and the nanotube location. The evolution of the DOS peak with the magnetic flux density is explored. The graphene nanoribbon Landau levels are shown to be modified in an unexpected fashion by the nanotube-ribbon interactions. These predictions can be validated by measuring the spectra of scanning tunneling experiments or magneto-optical experiments, and they are most observable by placing the nanotube at the electron wavefunction localization sites.

  17. On the Ginzburg-Landau critical field in three dimensions

    DEFF Research Database (Denmark)

    Fournais, Søren; Helffer, Bernard

    2009-01-01

    We study the three-dimensional Ginzburg-Landau model of superconductivity. Several natural definitions of the (third) critical field, HC3, governing the transition from the superconducting state to the normal state, are considered. We analyze the relation between these fields and give conditions ...

  18. Magnetic field-induced Landau Fermi liquid in high-T{sub c} metals

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya.; Shaginyan, V.R

    2003-08-25

    We consider the behavior of strongly correlated electron liquid in high-temperature superconductors within the framework of the fermion condensation model. We show that at low temperatures the normal state recovered by the application of a magnetic field larger than the critical field can be viewed as the Landau Fermi liquid induced by the magnetic field. In this state, the Wiedemann-Franz law and the Korringa law are held and the elementary excitations are the Landau Fermi liquid quasiparticles. Contrary to what might be expected from the Landau theory, the effective mass of quasiparticles depends on the magnetic field. The recent experimental verifications of the Wiedemann-Franz law in heavily hole-overdoped, overdoped and optimally doped cuprates and the verification of the Korringa law in the electron-doped copper oxide superconductor strongly support the existence of fermion condensate in high-T{sub c} metals.

  19. From Landau's hydrodynamical model to field theory model to field theory models of multiparticle production: a tribute to Peter

    International Nuclear Information System (INIS)

    Cooper, F.

    1996-01-01

    We review the assumptions and domain of applicability of Landau's Hydrodynamical Model. By considering two models of particle production, pair production from strong electric fields and particle production in the linear σ model, we demonstrate that many of Landau's ideas are verified in explicit field theory calculations

  20. STS Observations of Landau Levels at Graphite Surfaces

    OpenAIRE

    Matsui, T.; Kambara, H.; Niimi, Y.; Tagami, K.; Tsukada, M.; Fukuyama, Hiroshi

    2004-01-01

    Scanning tunneling spectroscopy measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra, which grow with increasing field, both at positive and negative bias voltages. These are associated with Landau quantization of the quasi two-dimensional electrons and holes in graphite in magnetic fields perpendicular...

  1. Strongly Anisotropic Electronic Transport at Landau Level Filling Factor ν =9/2 and ν =5/2 under a Tilted Magnetic Field

    International Nuclear Information System (INIS)

    Pan, W.; Tsui, D.C.; Pan, W.; Du, R.R.; Du, R.R.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.; Stormer, H.L.; Stormer, H.L.

    1999-01-01

    We have investigated the influence of an increasing in-plane magnetic field on the states of half filling of Landau levels (ν=11/2, 9/2, 7/2, thinspandthinsp 5/2) of a two-dimensional electron system. In the electrically anisotropic phase at ν=9/2 and 11/2 an in-plane magnetic field of ∼1 - 2 T overcomes its initial pinning to the crystal lattice and reorients this phase. In the initially isotropic phases at ν=5/2 and 7/2 an in-plane magnetic field induces a strong electrical anisotropy. In all cases, for high in-plane fields the high-resistance axis is parallel to the direction of the in-plane field. copyright 1999 The American Physical Society

  2. Irreducible diagrams in Landau-Ginzburg field theory

    Energy Technology Data Exchange (ETDEWEB)

    Witten, Jr, T A [Michigan Univ., Ann Arbor (USA). Dept. of Psychology

    1981-10-19

    It is shown that the free energy W of a Landau-Ginzburg-Wilson field theory with O(n) symmetry may be written in terms of the generating function V of diagrams irreducible in both propagator and interaction lines. This generalizes and simplifies a recent result of Des Cloizeaux. The functions W and V are related by a type of Legendre transformation on the bare mass variable.

  3. Splitting of the zero-energy Landau level and universal dissipative conductivity at critical points in disordered graphene.

    Science.gov (United States)

    Ortmann, Frank; Roche, Stephan

    2013-02-22

    We report on robust features of the longitudinal conductivity (σ(xx)) of the graphene zero-energy Landau level in the presence of disorder and varying magnetic fields. By mixing an Anderson disorder potential with a low density of sublattice impurities, the transition from metallic to insulating states is theoretically explored as a function of Landau-level splitting, using highly efficient real-space methods to compute the Kubo conductivities (both σ(xx) and Hall σ(xy)). As long as valley degeneracy is maintained, the obtained critical conductivity σ(xx) =/~ 1.4e(2)/h is robust upon an increase in disorder (by almost 1 order of magnitude) and magnetic fields ranging from about 2 to 200 T. When the sublattice symmetry is broken, σ(xx) eventually vanishes at the Dirac point owing to localization effects, whereas the critical conductivities of pseudospin-split states (dictating the width of a σ(xy) = 0 plateau) change to σ(xx) =/~ e(2)/h, regardless of the splitting strength, superimposed disorder, or magnetic strength. These findings point towards the nondissipative nature of the quantum Hall effect in disordered graphene in the presence of Landau level splitting.

  4. Landau levels from neutral Bogoliubov particles in two-dimensional nodal superconductors under strain and doping gradients

    Science.gov (United States)

    Nica, Emilian M.; Franz, Marcel

    2018-02-01

    Motivated by recent work on strain-induced pseudomagnetic fields in Dirac and Weyl semimetals, we analyze the possibility of analogous fields in two-dimensional nodal superconductors. We consider the prototypical case of a d -wave superconductor, a representative of the cuprate family, and find that the presence of weak, spatially varying strain leads to pseudomagnetic fields and Landau quantization of Bogoliubov quasiparticles in the low-energy sector. A similar effect is induced by the presence of generic, weak doping gradients. In contrast to genuine magnetic fields in superconductors, the strain- and doping-gradient-induced pseudomagnetic fields couple in a way that preserves time-reversal symmetry and is not subject to the screening associated with the Meissner effect. These effects can be probed by tuning weak applied supercurrents which lead to shifts in the energies of the Landau levels and hence to quantum oscillations in thermodynamic and transport quantities.

  5. Competing Quantum Hall Phases in the Second Landau Level in Low Density Limit

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Serafin, A. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Xia, J. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Liang, Y. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Sullivan, N. S. [Univ. of Florida, Gainesville, FL (United States). National High Magnetic Field Lab. (MagLab); Baldwin, K. W. [Princeton Univ., NJ (United States); West, K. W. [Princeton Univ., NJ (United States); Pfeiffer, L. N. [Princeton Univ., NJ (United States); Tsui, D. C. [Princeton Univ., NJ (United States)

    2015-01-01

    Up to date, studies of the fractional quantum Hall effect (FQHE) states in the second Landau level have mainly been carried out in the high electron density regime, where the electron mobility is the highest. Only recently, with the advance of high quality low density MBE growth, experiments have been pushed to the low density regime [1], where the electron-electron interactions are strong and the Landau level mixing parameter, defined by κ = e2/εIB/ℏωe, is large. Here, lB = (ℏe/B)1/2 is the magnetic length and ωc = eB/m the cyclotron frequency. All other parameters have their normal meanings. It has been shown that a large Landau level mixing effect strongly affects the electron physics in the second Landau level [2].

  6. The constraint for the lowest Landau level and the effective field theory approach for the fractional quantum hall system

    International Nuclear Information System (INIS)

    Ma Zhongshui; Su Zhaobin.

    1992-09-01

    By applying the Dirac quantization method, we build the constraint that all electrons are in the lowest Landau level into the Chern-Simons field theory approach for the fractional quantum Hall system and show that the constraint can be transmuted from hierarchy to hierarchy. For a finite system, we derive that the action for each hierarchy can be split into two parts: a surface part provides the action for the edge excitations while the remaining part is precisely the bulk action for the next hierarchy. An the action for the edge could be decoupled from the bulk only at the hierarchy filling. (author). 16 refs

  7. Landau and modern physics

    International Nuclear Information System (INIS)

    Pokrovsky, Valery L

    2009-01-01

    This article describes the history of the creation and further development of Landau's famous works on phase transitions, diamagnetism of electron gas (Landau levels), and quantum transitions at a level crossing (the Landau-Zener phenomenon), and its role in modern physics. (methodological notes)

  8. Validity of the lowest-Landau-level approximation for rotating Bose gases

    International Nuclear Information System (INIS)

    Morris, Alexis G.; Feder, David L.

    2006-01-01

    The energy spectrum for an ultracold rotating Bose gas in a harmonic trap is calculated exactly for small systems, allowing the atoms to occupy several Landau levels. Two vortexlike states and two strongly correlated states (the Pfaffian and Laughlin) are considered in detail. In particular, their critical rotation frequencies and energy gaps are determined as a function of particle number, interaction strength, and the number of Landau levels occupied (up to three). For the vortexlike states, the lowest-Landau-level (LLL) approximation is justified only if the interaction strength decreases with the number of particles; nevertheless, the constant of proportionality increases rapidly with the angular momentum per particle. For the strongly correlated states, however, the interaction strength can increase with particle number without violating the LLL condition. The results suggest that, in large systems, the Pfaffian and Laughlin states might be stabilized at rotation frequencies below the centrifugal limit for sufficiently large interaction strengths, with energy gaps a significant fraction of the trap energy

  9. Excited Landau levels, orbital angular momentum and axial anomaly

    International Nuclear Information System (INIS)

    Teryaev, O.V.

    1993-01-01

    The IR cutoff via the exclusion of the high orbital momentum components for the excited Landau levels leads to the physical interpretation of the cancellation between the explicity and anomalous chiral symmetry breaking. 21 refs

  10. Axion production from Landau quantization in the strong magnetic field of magnetars

    Science.gov (United States)

    Maruyama, Tomoyuki; Balantekin, A. Baha; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2018-04-01

    We utilize an exact quantum calculation to explore axion emission from electrons and protons in the presence of the strong magnetic field of magnetars. The axion is emitted via transitions between the Landau levels generated by the strong magnetic field. The luminosity of axions emitted by protons is shown to be much larger than that of electrons and becomes stronger with increasing matter density. Cooling by axion emission is shown to be much larger than neutrino cooling by the Urca processes. Consequently, axion emission in the crust may significantly contribute to the cooling of magnetars. In the high-density core, however, it may cause heating of the magnetar.

  11. Study of Landau spectrum for a two-dimensional random magnetic field

    International Nuclear Information System (INIS)

    Furtlehner, C.

    1997-01-01

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of 'strong' mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author)

  12. Three-body interactions and the Landau levels using Nikiforov

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given.

  13. Electric Conductivity of Hot and Dense Quark Matter in a Magnetic Field with Landau Level Resummation via Kinetic Equations

    Science.gov (United States)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2018-04-01

    We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σ∥, we need to solve kinetic equations. Then, we numerically find that σ∥ has only a mild dependence on μ and the quark mass mq. Moreover, σ∥ first decreases and then linearly increases as a function of B , leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ∥ at a nonzero B remains within the range of the lattice-QCD estimate at B =0 .

  14. Three-body interactions and the Landau levels using Nikiforov ...

    Indian Academy of Sciences (India)

    In this article, the eigenvalues for the three-body interactions on the line and the Landau levels in the presence of topological defects have been regenerated by the Nikiforov–Uvarov (NU) method. Two exhaustive lists of such exactly solvable potentials are given. Keywords. Nikiforov–Uvarov (NU) method; three-body ...

  15. From Mahan excitons to Landau levels at high magnetic fields: 2DFT spectroscopy reveals hidden quantum correlations (Conference Presentation)

    Science.gov (United States)

    Karaiskaj, Denis

    2017-02-01

    Two-dimensional electron gases have been the subject of research for decades. Modulation doped GaAs quantum wells in the absence of magnetic fields exhibit interesting many-body physics such as the Fermi edge singularity or Mahan exciton and can be regarded as a collective excitation of the system. Under high magnetic fields Landau levels form which have been studied using transport and optical measurements. Nonlinear coherent two-dimensional Fourier transform (2DFT) spectroscopy however provides new insights into these systems. We present the 2DFT spectra of Mahan Excitons associated with the heavy-hole and light-hole resonances observed in a modulation doped GaAs/AlGaAs single quantum well [1]. These resonances are observed to be strongly coupled through many-body interactions. The 2DFT spectra were measured using co-linear, cross-linear, and co-circular polarizations and reveal striking differences. Furthermore, 2DFT spectra at high magnetic fields performed at the National High Magnetic Field Lab (NHMFL) in Tallahassee, Florida will be discussed. The spectra exhibit new features and peculiar line shapes suggesting interesting underlying physics. [1] J. Paul, C. E. Stevens, C. Liu, P. Dey, C. McIntyre, V. Turkowski, J. L. Reno, D. J. Hilton, and D. Karaiskaj, Phys. Rev. Lett.116, 157401 (2016).

  16. Fractional charge and inter-Landau-level states at points of singular curvature.

    Science.gov (United States)

    Biswas, Rudro R; Son, Dam Thanh

    2016-08-02

    The quest for universal properties of topological phases is fundamentally important because these signatures are robust to variations in system-specific details. Aspects of the response of quantum Hall states to smooth spatial curvature are well-studied, but challenging to observe experimentally. Here we go beyond this prevailing paradigm and obtain general results for the response of quantum Hall states to points of singular curvature in real space; such points may be readily experimentally actualized. We find, using continuum analytical methods, that the point of curvature binds an excess fractional charge and sequences of quantum states split away, energetically, from the degenerate bulk Landau levels. Importantly, these inter-Landau-level states are bound to the topological singularity and have energies that are universal functions of bulk parameters and the curvature. Our exact diagonalization of lattice tight-binding models on closed manifolds demonstrates that these results continue to hold even when lattice effects are significant. An important technological implication of these results is that these inter-Landau-level states, being both energetically and spatially isolated quantum states, are promising candidates for constructing qubits for quantum computation.

  17. Landau-Zener-Stueckelberg interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Shevchenko, S.N., E-mail: sshevchenko@ilt.kharkov.u [B.Verkin Institute for Low Temperature Physics and Engineering, Kharkov (Ukraine); RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Ashhab, S.; Nori, Franco [RIKEN Advanced Science Institute, Wako-shi, Saitama (Japan); Department of Physics, The University of Michigan, Ann Arbor, MI (United States)

    2010-07-15

    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  18. Landau-Zener-Stueckelberg interferometry

    International Nuclear Information System (INIS)

    Shevchenko, S.N.; Ashhab, S.; Nori, Franco

    2010-01-01

    A transition between energy levels at an avoided crossing is known as a Landau-Zener transition. When a two-level system (TLS) is subject to periodic driving with sufficiently large amplitude, a sequence of transitions occurs. The phase accumulated between transitions (commonly known as the Stueckelberg phase) may result in constructive or destructive interference. Accordingly, the physical observables of the system exhibit periodic dependence on the various system parameters. This phenomenon is often referred to as Landau-Zener-Stueckelberg (LZS) interferometry. Phenomena related to LZS interferometry occur in a variety of physical systems. In particular, recent experiments on LZS interferometry in superconducting TLSs (qubits) have demonstrated the potential for using this kind of interferometry as an effective tool for obtaining the parameters characterizing the TLS as well as its interaction with the control fields and with the environment. Furthermore, strong driving could allow for fast and reliable control of the quantum system. Here we review recent experimental results on LZS interferometry, and we present related theory.

  19. Gyrotropic Zener tunneling and nonlinear IV curves in the zero-energy Landau level of graphene in a strong magnetic field.

    Science.gov (United States)

    Laitinen, Antti; Kumar, Manohar; Hakonen, Pertti; Sonin, Edouard

    2018-01-12

    We have investigated tunneling current through a suspended graphene Corbino disk in high magnetic fields at the Dirac point, i.e. at filling factor ν = 0. At the onset of the dielectric breakdown the current through the disk grows exponentially before ohmic behaviour, but in a manner distinct from thermal activation. We find that Zener tunneling between Landau sublevels dominates, facilitated by tilting of the source-drain bias potential. According to our analytic modelling, the Zener tunneling is strongly affected by the gyrotropic force (Lorentz force) due to the high magnetic field.

  20. Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels

    International Nuclear Information System (INIS)

    Chhaiba, Hassan; Demni, Nizar; Mouayn, Zouhair

    2016-01-01

    To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering the total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.

  1. Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels

    Energy Technology Data Exchange (ETDEWEB)

    Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com [Department of Mathematics, Faculty of Sciences, Ibn Tofail University, P.O. Box 133, Kénitra (Morocco); Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr [IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma [Department of Mathematics, Faculty of Sciences and Technics (M’Ghila), Sultan Moulay Slimane, P.O. Box 523, Béni Mellal (Morocco)

    2016-07-15

    To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering the total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.

  2. Landau quantization of Dirac fermions in graphene and its multilayers

    Science.gov (United States)

    Yin, Long-Jing; Bai, Ke-Ke; Wang, Wen-Xiao; Li, Si-Yu; Zhang, Yu; He, Lin

    2017-08-01

    When electrons are confined in a two-dimensional (2D) system, typical quantum-mechanical phenomena such as Landau quantization can be detected. Graphene systems, including the single atomic layer and few-layer stacked crystals, are ideal 2D materials for studying a variety of quantum-mechanical problems. In this article, we review the experimental progress in the unusual Landau quantized behaviors of Dirac fermions in monolayer and multilayer graphene by using scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Through STS measurement of the strong magnetic fields, distinct Landau-level spectra and rich level-splitting phenomena are observed in different graphene layers. These unique properties provide an effective method for identifying the number of layers, as well as the stacking orders, and investigating the fundamentally physical phenomena of graphene. Moreover, in the presence of a strain and charged defects, the Landau quantization of graphene can be significantly modified, leading to unusual spectroscopic and electronic properties.

  3. Study of Landau spectrum for a two-dimensional random magnetic field; Etude du spectre de Landau pour un champ magnetique aleatoire en dimension deux

    Energy Technology Data Exchange (ETDEWEB)

    Furtlehner, C. [Paris-6 Univ., 75 (France)

    1997-09-24

    This thesis deals with the two-dimensional problem of a charged particle coupled to a random magnetic field. Various situations are considered, according to the relative importance of the mean value of field and random component. The last one is conceived as a distribution of magnetic impurities (punctual vortex), having various statistical properties (local or non-local correlations, Poisson distribution, etc). The study of this system has led to two distinct situations: - the case of the charged particle feeling the influence of mean field that manifests its presence in the spectrum of broadened Landau levels; - the disordered situation in which the spectrum can be distinguished from the free one only by a low energy Lifshits behaviour. Additional properties are occurring in the limit of `strong` mean field, namely a non-conventional low energy behaviour (in contrast to Lifshits behaviour) which was interpreted in terms of localized states. (author) 78 refs.

  4. Generators of dynamical symmetries and the correct gauge transformation in the Landau level problem: use of pseudomomentum and pseudo-angular momentum

    Science.gov (United States)

    Konstantinou, Georgios; Moulopoulos, Konstantinos

    2016-11-01

    Due to the importance of gauge symmetry in all fields of physics, and motivated by an article written almost three decades ago that warns against a naive handling of gauge transformations in the Landau level problem (a quantum electron moving in a spatially uniform magnetic field), we point out a proper use of the generators of dynamical symmetries combined with gauge transformation methods to easily obtain exact analytical solutions for all Landau level-wavefunctions in arbitrary gauge. Our method is different from the old argument and provides solutions in an easier manner and in a broader set of geometries and gauges; in so doing, it eliminates the need for extra procedures (i.e. a change of basis) pointed out as a necessary step in the old literature, and gives back the standard simple result, provided that an appropriate use is made of the dynamical symmetries of the system and their generators. In this way the present work will at least be useful for university-level education, i.e. in advanced classes in quantum mechanics and condensed matter physics. In addition, it clarifies the actual role of the gauge in the Landau level problem, which often appears confusing in the usual derivations provided in textbooks. Finally, we go further by showing that a similar methodology can be made to apply to the more difficult case of a spatially non-uniform magnetic field (where closed analytical results are rare), in which case the various generators (pseudomomentum and pseudo-angular momentum) appear as line integrals of the inhomogeneous magnetic field; we give closed analytical solutions for all cases, and show how the old and rather forgotten Bawin-Burnel gauge shows up naturally as a ‘reference gauge’ in all solutions.

  5. Pseudo Landau levels and quantum oscillations in strained Weyl semimetals

    Science.gov (United States)

    Alisultanov, Z. Z.

    2018-05-01

    The crystal lattice deformation in Weyl materials where the two chiralities are separated in momentum space leads to the appearance of gauge pseudo-fields. We investigated the pseudo-magnetic field induced quantum oscillations in strained Weyl semimetal (WSM). In contrast to all previous works on this problem, we use here a more general tilted Hamiltonian. Such Hamiltonian, seems to be is more suitable for a strained WSMs. We have shown that a pseudo-magnetic field induced magnetization of strained WSM is nonzero due to the fact that electric field (gradient of the deformation potential) is induced simultaneously with the pseudo-magnetic field. This related with fact that the pseudo Landau levels (LLs) in strained WSM are differ in vicinities of different WPs due to the presence of tilt in spectrum. Such violation of the equivalence between Weyl points (WPs) leads to modulation of quantum oscillations. We also showed that magnetization magnitude can be changed by application of an external electric field. In particular, it can be reduced to zero. The possibility of controlling of the magnetization by an electric field is interesting both from a fundamental point of view (a new type of magneto-electric effect) and application point of view (additional possibility to control diamagnetism of deformed WSMs). Finally, a coexistence of type-I and type-II Weyl fermions is possible in the system under investigation. Such phase is absolutely new for physics of topological systems.

  6. Fine structure of the lowest Landau level in suspended trilayer graphene

    NARCIS (Netherlands)

    van Elferen, H. J.; Veligura, A.; Tombros, N.; Kurganova, E. V.; van Wees, B. J.; Maan, J. C.; Zeitler, U.

    2013-01-01

    Magnetotransport experiments on ABC-stacked suspended trilayer graphene reveal a complete splitting of the 12-fold degenerated lowest Landau level, and, in particular, the opening of an exchange-driven gap at the charge neutrality point. A quantitative analysis of distinctness of the quantum Hall

  7. Partially filled Landau level at even denominators: A vortex metal with a Berry phase

    Science.gov (United States)

    You, Yizhi

    2018-04-01

    We develop a vortex metal theory for a partially filled Landau level at ν =1/2 n whose ground state contains a composite Fermi surface formed by the vortex of electrons. In the projected Landau-level limit, the composite Fermi surface contains a -π/n Berry phase. Such a fractional Berry phase is a consequence of Landau-level projection which produces the Girvin-MacDonald-Platzman [S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Phys. Rev. B 33, 2481 (1986), 10.1103/PhysRevB.33.2481] guiding center algebra and embellishes an anomalous velocity to the equation of motion for the vortex metal. Further, we investigate a particle-hole symmetric bilayer system with ν1=1/2 n and ν2=1 -1/2 n at each layer, and demonstrate that the -π/n Berry phase on the composite Fermi surface leads to the suppression of 2 kf backscattering between the particle-hole partner bilayer, which could be a smoking gun to detect the fractional Berry phase. We also mention various instabilities and competing orders in such bilayer systems, including a Z4 n topological order phase driven by quantum criticality.

  8. Stability of zero-mode Landau levels in bilayer graphene against disorder in the presence of the trigonal warping

    International Nuclear Information System (INIS)

    Kawarabayashi, Tohru; Hasugai, Yasuhiro; Aoki, Hideo

    2013-01-01

    The stability of the zero-energy Landau levels in bilayer graphene against the chiral symmetric disorder is examined in the presence of the trigonal warping. Based on the tight-binding lattice model with a bond disorder correlated over several lattice constants, it is shown that among the four Landau levels per spin and per valley, two Landau levels exhibit the anomalous sharpness as in the absence of the trigonal warping, while the other two are broadened, yielding split peaks in the density of states. This can be attributed to the fact that the total chirality in each valley is ±2, which is protected topologically even in the presence of an intra-valley scattering due to disorder

  9. Landau-Ginzburg skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Davenport, Ian C.; Melnikov, Ilarion V. [Department of Physics and Astronomy, James Madison University,Harrisonburg, VA 22807 (United States)

    2017-05-10

    We study the class of indecomposable two-dimensional Landau-Ginzburg theories with (2,2) supersymmetry and central charge c < 6 with the aim of classifying all such theories up to marginal deformations. Our results include cases overlooked in previous classifications. The results are rigorous for three or fewer fields and more generally are rigorous if we assume an extra bound. Numerics suggest that we have the complete set of indecomposable Landau-Ginzburg families with c < 6. This set consists of 38 infinite families and a finite list of 418 sporadic cases. The basic tools are classic results of Kreuzer and Skarke on quasi-homogeneous isolated singularities and solutions to certain feasibility integer programming problems.

  10. Landau-Zener-Stückelberg Interferometry of a Single Electronic Spin in a Noisy Environment

    Directory of Open Access Journals (Sweden)

    Pu Huang

    2011-08-01

    Full Text Available We demonstrate quantum coherent control of single electronic spins in a nitron-vacancy center in diamond by exploiting and implementing the general concept of Landau-Zener-Stückelberg interferometry at room temperature. The interferometry manipulates an effective two-level system of electronic spins which are coupled to the nearby ^{14}N nuclear spin in the nitron-vacancy center as well as the nuclear spin bath in the diamond. With a microwave field to control the energy gap between the two levels and an AC field as the time-dependent driving field in Landau-Zener-Stückelberg interferometry, the interference pattern can be generated and controlled by controlling a number of parameters in the fields, corresponding to coherent control of the state of the electronic spins. In particular, the interference pattern is observed oscillating as a function of the frequency of the microwave field. Decays in the visibility of the interference pattern are also observed and well explained by numerical simulation which takes into account the thermal fluctuations arising from the nuclear bath. Therefore, our work also demonstrates that Landau-Zener-Stückelberg interferometry can be used for probing decoherence processes of electronic spins.

  11. Ginzburg-Landau-type theory of nonpolarized spin superconductivity

    Science.gov (United States)

    Lv, Peng; Bao, Zhi-qiang; Guo, Ai-Min; Xie, X. C.; Sun, Qing-Feng

    2017-01-01

    Since the concept of spin superconductor was proposed, all the related studies concentrate on the spin-polarized case. Here, we generalize the study to the spin-non-polarized case. The free energy of nonpolarized spin superconductor is obtained, and Ginzburg-Landau-type equations are derived by using the variational method. These Ginzburg-Landau-type equations can be reduced to the spin-polarized case when the spin direction is fixed. Moreover, the expressions of super linear and angular spin currents inside the superconductor are derived. We demonstrate that the electric field induced by the super spin current is equal to the one induced by an equivalent charge obtained from the second Ginzburg-Landau-type equation, which shows self-consistency of our theory. By applying these Ginzburg-Landau-type equations, the effect of electric field on the superconductor is also studied. These results will help us get a better understanding of the spin superconductor and related topics such as the Bose-Einstein condensate of magnons and spin superfluidity.

  12. Tunable Landau-Zener transitions using continuous- and chirped-pulse-laser couplings

    Science.gov (United States)

    Sarreshtedari, Farrokh; Hosseini, Mehdi

    2017-03-01

    The laser coupled Landau-Zener avoided crossing has been investigated with an aim towards obtaining the laser source parameters for precise controlling of the state dynamics in a two-level quantum system. The conventional Landau-Zener equation is modified for including the interaction of the system with a laser field during a bias energy sweep and the obtained Hamiltonian is numerically solved for the investigation of the two-state occupation probabilities. We have shown that in the Landau-Zener process, using an additional laser source with controlled amplitude, frequency, and phase, the system dynamics could be arbitrarily engineered. This is while, by synchronous frequency sweeping of a chirped-pulse laser, the system could be guided into a resonance condition, which again gives the remarkable possibility for precise tuning and controlling of the quantum system dynamics.

  13. Integrable time-dependent Hamiltonians, solvable Landau-Zener models and Gaudin magnets

    Science.gov (United States)

    Yuzbashyan, Emil A.

    2018-05-01

    We solve the non-stationary Schrödinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrödinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnik-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.

  14. Weiss oscillations and particle-hole symmetry at the half-filled Landau level

    Science.gov (United States)

    Cheung, Alfred K. C.; Raghu, S.; Mulligan, Michael

    2017-06-01

    Particle-hole symmetry in the lowest Landau level of the two-dimensional electron gas requires the electrical Hall conductivity to equal ±e2/2 h at half filling. We study the consequences of weakly broken particle-hole symmetry for magnetoresistance oscillations about half filling in the presence of an applied periodic one-dimensional electrostatic potential using the Dirac composite fermion theory proposed by Son [Son, Phys. Rev. X 5, 031027 (2015), 10.1103/PhysRevX.5.031027]. At fixed electron density, the oscillation minima are asymmetrically biased towards higher magnetic fields, while at fixed magnetic field the oscillations occur symmetrically as the electron density is varied about half filling. We find an approximate "sum rule" obeyed for all pairs of oscillation minima that can be tested in experiment. The locations of the magnetoresistance oscillation minima for the composite fermion theory of Halperin, Lee, and Read (HLR) and its particle-hole conjugate agree exactly. Within the current experimental resolution, the locations of the oscillation minima produced by the Dirac composite fermion coincide with those of HLR. These results may indicate that all three composite fermion theories describe the same long-wavelength physics.

  15. Landau levels in biased graphene structures with monolayer-bilayer interfaces

    Science.gov (United States)

    Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Ketabi, S. A.; Peeters, F. M.

    2017-09-01

    The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling microscopy.

  16. Synthetic Landau Levels and Spinor Vortex Matter on a Haldane Spherical Surface with a Magnetic Monopole.

    Science.gov (United States)

    Zhou, Xiang-Fa; Wu, Congjun; Guo, Guang-Can; Wang, Ruquan; Pu, Han; Zhou, Zheng-Wei

    2018-03-30

    We present a flexible scheme to realize exact flat Landau levels on curved spherical geometry in a system of spinful cold atoms. This is achieved by applying the Floquet engineering of a magnetic quadrupole field to create a synthetic monopole field in real space. The system can be exactly mapped to the electron-monopole system on a sphere, thus realizing Haldane's spherical geometry for fractional quantum Hall physics. This method works for either bosons or fermions. We investigate the ground-state vortex pattern for an s-wave interacting atomic condensate by mapping this system to the classical Thompson's problem. The distortion and stability of the vortex pattern are further studied in the presence of dipolar interaction. Our scheme is compatible with the current experimental setup, and may serve as a promising route of investigating quantum Hall physics and exotic spinor vortex matter on curved space.

  17. Landau damping dynamic aperture and octupole in LHC

    CERN Document Server

    Gareyte, Jacques; Ruggiero, F

    1997-01-01

    Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...

  18. Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models, and stimulated Raman adiabatic passage

    International Nuclear Information System (INIS)

    Graefe, E. M.; Korsch, H. J.; Witthaut, D.

    2006-01-01

    We investigate the dynamics of a Bose-Einstein condensate in a triple-well trap in a three-level approximation. The interatomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. Additional eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three-level Landau-Zener model and the stimulated Raman adiabatic passage (STIRAP) scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning

  19. Decoherence and Landau-Damping

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  20. Spatial Landau-Zener-Stueckelberg interference in spinor Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Zhang, J.-N.; Sun, C.-P.; Yi, S.; Nori, Franco

    2011-01-01

    We investigate the Stueckelberg oscillations of a spin-1 Bose-Einstein condensate subject to a spatially inhomogeneous transverse magnetic field and a periodic longitudinal field. We show that the time-domain Stueckelberg oscillations result in modulations in the density profiles of all spin components due to the spatial inhomogeneity of the transverse field. This phenomenon represents the Landau-Zener-Stueckelberg interference in the space domain. Since the magnetic dipole-dipole interaction between spin-1 atoms induces an inhomogeneous effective magnetic field, interference fringes also appear if a dipolar spinor condensate is driven periodically. We also point out some potential applications of this spatial Landau-Zener-Stuekelberg interference.

  1. Aspects of Landau condensation in atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1980-01-01

    Some aspects of Landau condensation in atomic physics are reviewed both as regards current work on Rydberg states under laboratory conditions and from the viewpoint of the prospects of spontaneous decay of neutral vacuum with superheavy elements. The characteristics of the hydrogen-atom spectrum in a strong magnetic field are presented and discussed using essentially semiclassical arguments. Some schematic attempt at a global interpretation of the Rydberg spectrum near the ionization limit is also given. Then the action of an electric field on the quasi-Landau spectrum is discussed. The conditions for spontaneous production of positrons from neutral vacuum decay with superheavy elements are reconsidered for the case when the system experiences ultrastrong magnetic fields, as in pulsars and white dwarfs. It is shown that spontaneous decay of neutral vacuum may occur at lower Z values than 169. The possible importance of such effects during heavy-ion collisions is briefly discussed. We deal with some qualitative trends of the problem of an atom in a magnetic field with particular emphasis on diamagnetic effects. In the last few years, we have had the capability of making accurate experimental investigations of Rydberg atoms, and perhaps in the future we will develop fundamentally new means of studying heavy-ion collisions. Accordingly it seems of interest to make qualitative remarks regarding the present state of the problem and the possible importance of Landau condensation in various domains of atomic physics now under active development. (author)

  2. Energy spread in SLC linac with Landau damping

    International Nuclear Information System (INIS)

    Seeman, J.

    1984-01-01

    The possibility of using Landau damping to reduce the growth of the beam size due to transverse wake fields has been known for some time. Recently K. Bane has calculated the effects of Landau damping for the SLC. The energy spread is then slowly removed so that at the end of the linac it has returned to the SLC specification of less than +0.5%. The purpose of the energy spread is to reduce the resonant driving of the tail of the bunch by the head. In this note the expected energy spreads within the beam are tabulated at various positions along the linac for use by those people designing momentum dependent equipment and for those interested in Landau damping

  3. Degeneracy of the lowest Landau level and suq(2) on the Poincare half plane

    International Nuclear Information System (INIS)

    Jellal, A.

    2000-01-01

    It is shown that the presence of the quantum group symmetry su q (2) in the quantum Hall effect on the Poincare upper half plane the degeneracy of the lowest Landau level. It is also shown that the relation between the degeneracy and the cyclic representation of su q (2) appears in accordance with q being a kth root of unity. (Authors)

  4. Quantum driving protocols for a two-level system: From generalized Landau-Zener sweeps to transitionless control

    DEFF Research Database (Denmark)

    Malossi, Nicola; Bason, Mark George; Viteau, Matthieu

    2013-01-01

    We present experimental results on the preparation of a desired quantum state in a two-level system with the maximum possible fidelity using driving protocols ranging from generalizations of the linear Landau-Zener protocol to transitionless driving protocols that ensure perfect following of the ...

  5. Proposal for a magnetic field induced graphene dot

    International Nuclear Information System (INIS)

    Maksym, P A; Roy, M; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S; Aoki, H

    2010-01-01

    Quantum dots induced by a strong magnetic field applied to a single layer of graphene in the perpendicular direction are investigated. The dot is defined by a model potential which consists of a well of depth ΔV relative to a flat asymptotic part and quantum states formed from the zeroth Landau level are considered. The energy of the dot states cannot be lower than -ΔV relative to the asymptotic potential. Consequently, when ΔV is chosen to be about half of the gap between the zeroth and first Landau levels, the dot states are isolated energetically in the gap between Landau level 0 and Landau level -1. This is confirmed with numerical calculations of the magnetic field dependent energy spectrum and the quantum states. Remarkably, an antidot formed by reversing the sign of ΔV also confines electrons but in the energy region between Landau level 0 and Landau level +1. This unusual behaviour gives an unambiguous signal of the novel physics of graphene quantum dots.

  6. Possibility of Landau damping of gravitational waves

    International Nuclear Information System (INIS)

    Gayer, S.; Kennel, C.F.

    1979-01-01

    There is considerable uncertainty in the literature concerning whether or not transverse traceless gravitational waves can Landau damp. Physically, the issue is whether particles of nonzero mass can comove with surfaces of constant wave phase, and therefore, loosely, whether gravitational waves can have phase speeds less than that of light. We approach the question of Landau damping in various ways. We consider first the propagation of small-amplitude gravitational waves in an ideal fluid-filled Robertson-Walker universe of zero spatial curvature. We argue that the principle of equivalence requires those modes to be lightlike. We show that a freely moving particle interacting only with the collective fields cannot comove with such waves if it has nonzero mass. The equation for gravitational waves in collisionless kinetic gases differs from that for fluid media only by terms so small that deviations from lightlike propagation are unmeasurable. Thus, we conclude that Landau damping of small-amplitude, transverse traceless gravitational waves is not possible

  7. Landau parameters for finite range density dependent nuclear interactions

    International Nuclear Information System (INIS)

    Farine, M.

    1997-01-01

    The Landau parameters represent the effective particle-hole interaction at Fermi level. Since between the physical observables and the Landau parameters there is a direct relation their derivation from an effective interaction is of great interest. The parameter F 0 determines the incompressibility K of the system. The parameter F 1 determines the effective mass (which controls the level density at the Fermi level). In addition, F 0 ' determines the symmetry energy, G 0 the magnetic susceptibility, and G 0 ' the pion condensation threshold in nuclear matter. This paper is devoted to a general derivation of Landau parameters for an interaction with density dependent finite range terms. Particular carefulness is devoted to the inclusion of rearrangement terms. This report is part of a larger project which aims at defining a new nuclear interaction improving the well-known D1 force of Gogny et al. for describing the average nuclear properties and exotic nuclei and satisfying, in addition, the sum rules

  8. Alteration of the ground state by external magnetic fields. [External field, coupling constant ratio, static tree level approximation

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, B J; Shepard, H K [New Hampshire Univ., Durham (USA). Dept. of Physics

    1976-03-22

    By fully exploiting the mathematical and physical analogy to the Ginzburg-Landau theory of superconductivity, a complete discussion of the ground state behavior of the four-dimensional Abelian Higgs model in the static tree level approximation is presented. It is shown that a sufficiently strong external magnetic field can alter the ground state of the theory by restoring a spontaneously broken symmetry, or by creating a qualitatively different 'vortex' state. The energetically favored ground state is explicitly determined as a function of the external field and the ratio between coupling constants of the theory.

  9. Hamiltonian formalism of Whitham-type hierarchies and topological Landau-Ginsburg models

    International Nuclear Information System (INIS)

    Dubrovin, B.A.

    1992-01-01

    We show that the bi-hamiltonian structure of the averaged Gelfand-Dikii hierarchy is involved in the Landau-Ginsburg topological models (for A n -Series): The Casimirs for the first P.B. give the correct coupling parameters for the perturbed topological minimal model; the correspondence {coupling parameters}→{primary fields} is determined by the second P.B. The partition function (at the tree level) and the chiral algebra for LG minimal models are calculated for any genus g. (orig.)

  10. Topological approach to quantum Hall effects and its important applications: higher Landau levels, graphene and its bilayer

    Science.gov (United States)

    Jacak, Janusz; Łydżba, Patrycja; Jacak, Lucjan

    2017-05-01

    In this paper the topological approach to quantum Hall effects is carefully described. Commensurability conditions together with proposed generators of a system braid group are employed to establish the fractional quantum Hall effect hierarchies of conventional semiconductors, monolayer and bilayer graphene structures. Obtained filling factors are compared with experimental data and a very good agreement is achieved. Preliminary constructions of ground-state wave functions in the lowest Landau level are put forward. Furthermore, this work explains why pyramids of fillings from higher bands are not counterparts of the well-known composite-fermion hierarchy - it provides with the cause for an intriguing robustness of ν = 7/3 , 8/3 and 5/2 states (also in graphene). The argumentation why paired states can be developed in two-subband systems (wide quantum wells) only when the Fermi energy lies in the first Landau level is specified. Finally, the paper also clarifies how an additional surface in bilayer systems contributes to an observation of the fractional quantum Hall effect near half-filling, ν = 1/2 .

  11. Electrostatic field in superconductors IV: theory of Ginzburg-Landau type

    Czech Academy of Sciences Publication Activity Database

    Lipavský, Pavel; Koláček, Jan

    2009-01-01

    Roč. 23, 20-21 (2009), s. 4505-4511 ISSN 0217-9792 R&D Projects: GA ČR GA202/04/0585; GA ČR GA202/05/0173; GA AV ČR IAA1010312 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.408, year: 2009

  12. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    Energy Technology Data Exchange (ETDEWEB)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-06-15

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  13. Ginzburg-Landau vortices driven by the Landau-Lifshitz-Gilbert equation

    International Nuclear Information System (INIS)

    Kurzke, Matthias; Melcher, Christof; Moser, Roger; Spirn, Daniel

    2009-01-01

    A simplified model for the energy of the magnetization of a thin ferromagnetic film gives rise to a version of the theory of Ginzburg-Landau vortices for sphere-valued maps. In particular we have the development of vortices as a certain parameter tends to 0. The dynamics of the magnetization is ruled by the Landau-Lifshitz-Gilbert equation, which combines characteristic properties of a nonlinear Schroedinger equation and a gradient flow. This paper studies the motion of the vortex centers under this evolution equation. (orig.)

  14. Landau-Ginsburg models with N=2 supersymmetry as conventional conformal theories

    International Nuclear Information System (INIS)

    Marshakov, A.

    1990-01-01

    The conformal Landau-Ginsburg (LG) models are identified with the Toda-like two-dimensional field theories. At least in the N=2 supersymmetric case they possess a simple free-field representation, related to the Nicolai map. (orig.)

  15. Landau-Zener transitions and Dykhne formula in a simple continuum model

    Science.gov (United States)

    Dunham, Yujin; Garmon, Savannah

    The Landau-Zener model describing the interaction between two linearly driven discrete levels is useful in describing many simple dynamical systems; however, no system is completely isolated from the surrounding environment. Here we examine a generalizations of the original Landau-Zener model to study simple environmental influences. We consider a model in which one of the discrete levels is replaced with a energy continuum, in which we find that the survival probability for the initially occupied diabatic level is unaffected by the presence of the continuum. This result can be predicted by assuming that each step in the evolution for the diabatic state evolves independently according to the Landau-Zener formula, even in the continuum limit. We also show that, at least for the simplest model, this result can also be predicted with the natural generalization of the Dykhne formula for open systems. We also observe dissipation as the non-escape probability from the discrete levels is no longer equal to one.

  16. Landau level broadening without disorder, non-integer plateaus without interactions- an alternative model of the quantum Hall effect

    International Nuclear Information System (INIS)

    Kramer, T.

    2006-01-01

    I review some aspects of an alternative model of the quantum Hall effect, which is not based on the presence of disorder potentials. Instead, a quantization of the electronic drift current in the presence of crossed electric and magnetic fields is employed to construct a non-linear transport theory. Another important ingredient of the alternative theory is the coupling of the two-dimensional electron gas to the leads and the applied voltages. By working in a picture where the external voltages fix the chemical potential in the 2D subsystem, the experimentally observed linear relation between the voltage and the location of the quantum Hall plateaus finds an natural explanation. Also, the classical Hall effect emerges as a natural limit of the quantum Hall effect. For low temperatures (or high currents), a non-integer substructure splits higher Landau levels into sublevels. The appearance of substructure and non-integer plateaus in the resistivity is not linked to electron-electron interactions, but caused by the presence of a (linear) electric field. Some of the resulting fractions correspond exactly to half-integer plateaus. (Author)

  17. Landau Damping Revisited

    International Nuclear Information System (INIS)

    Rees, John; Chao, Alexander

    2008-01-01

    Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread

  18. Statistical mechanics of low-dimensional Ginzburg-Landau fields. Some new results

    International Nuclear Information System (INIS)

    Barsan, V.

    1987-08-01

    The Ginzburg-Landau theory for low-dimensional systems is approached using the transfer matrix method. Analitical formulae for the thermodynamical quantities of interest are obtained in the one-dimensional case. An exact expression for the free energy of of a planar array of linear chains is deduced. A good agrement with numerical and experimental data is found.(authors)

  19. Numerical Analysis of Ginzburg-Landau Models for Superconductivity.

    Science.gov (United States)

    Coskun, Erhan

    Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.

  20. Surface Acoustic Bloch Oscillations, the Wannier-Stark Ladder, and Landau-Zener Tunneling in a Solid

    Science.gov (United States)

    de Lima, M. M., Jr.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2010-04-01

    We present the experimental observation of Bloch oscillations, the Wannier-Stark ladder, and Landau-Zener tunneling of surface acoustic waves in perturbed grating structures on a solid substrate. A model providing a quantitative description of our experimental observations, including multiple Landau-Zener transitions of the anticrossed surface acoustic Wannier-Stark states, is developed. The use of a planar geometry for the realization of the Bloch oscillations and Landau-Zener tunneling allows a direct access to the elastic field distribution. The vertical surface displacement has been measured by interferometry.

  1. Fourier acceleration in lattice gauge theories. I. Landau gauge fixing

    International Nuclear Information System (INIS)

    Davies, C.T.H.; Batrouni, G.G.; Katz, G.R.; Kronfeld, A.S.; Lepage, G.P.; Wilson, K.G.; Rossi, P.; Svetitsky, B.

    1988-01-01

    Fourier acceleration is a useful technique which can be applied to many different numerical algorithms in order to alleviate the problem of critical slowing down. Here we describe its application to an optimization problem in the simulation of lattice gauge theories, that of gauge fixing a configuration of link fields to the Landau gauge (partial/sub μ/A/sup μ/ = 0). We find that a steepest-descents method of gauge fixing link fields at β = 5.8 on an 8 4 lattice can be made 5 times faster using Fourier acceleration. This factor will grow as the volume of the lattice is increased. We also discuss other gauges that are useful to lattice-gauge-theory simulations, among them one that is a combination of the axial and Landau gauges. This seems to be the optimal gauge to impose for the Fourier acceleration of two other important algorithms, the inversion of the fermion matrix and the updating of gauge field configurations

  2. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    , which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag and diffusion of the magnetic field aligned component of the vorticity associated with the E×B drift. Therefore, a correct description of collisional effects in turbulent plasmas requires the equilibrium......The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...... operator, even for like-particle collisions....

  3. Frictional Coulomb drag in strong magnetic fields

    DEFF Research Database (Denmark)

    Bønsager, Martin Christian; Flensberg, Karsten; Hu, Ben Yu-Kuang

    1997-01-01

    A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21) is eval......A treatment of frictional Coulomb drag between two two-dimensional electron layers in a strong perpendicular magnetic field, within the independent electron picture, is presented. Assuming fully resolved Landau levels, the linear response theory expression for the transresistivity rho(21...

  4. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, I. C.; Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, João Pessoa, PB 58051-970 (Brazil)

    2016-01-07

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  5. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    Science.gov (United States)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels.

  6. Rotating effects on the Landau quantization for an atom with a magnetic quadrupole moment

    International Nuclear Information System (INIS)

    Fonseca, I. C.; Bakke, K.

    2016-01-01

    Based on the single particle approximation [Dmitriev et al., Phys. Rev. C 50, 2358 (1994) and C.-C. Chen, Phys. Rev. A 51, 2611 (1995)], the Landau quantization associated with an atom with a magnetic quadrupole moment is introduced, and then, rotating effects on this analogue of the Landau quantization is investigated. It is shown that rotating effects can modify the cyclotron frequency and breaks the degeneracy of the analogue of the Landau levels

  7. Vortex lattices in a rotating Fermi superfluid in the BCS–BEC crossover with many Landau levels

    International Nuclear Information System (INIS)

    Song, Tie-ling; Ma, C.R.; Ma, Yong-li

    2012-01-01

    We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross–Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS–BEC crossover. - Highlights: ► We present an analysis of vortex lattice in an interacting trapped rotating Fermi superfluid gas. ► Decomposing the vortex from the condensate, we can explain the vortex lattice. ► The calculation is consistent with numerical and experimental data. ► It can characterize experimentally properties in different regimes of the BCS–BEC crossover.

  8. Phase Diagram of the ν=5/2 Fractional Quantum Hall Effect: Effects of Landau-Level Mixing and Nonzero Width

    Directory of Open Access Journals (Sweden)

    Kiryl Pakrouski

    2015-04-01

    Full Text Available Interesting non-Abelian states, e.g., the Moore-Read Pfaffian and the anti-Pfaffian, offer candidate descriptions of the ν=5/2 fractional quantum Hall state. But, the significant controversy surrounding the nature of the ν=5/2 state has been hampered by the fact that the competition between these and other states is affected by small parameter changes. To study the phase diagram of the ν=5/2 state, we numerically diagonalize a comprehensive effective Hamiltonian describing the fractional quantum Hall effect of electrons under realistic conditions in GaAs semiconductors. The effective Hamiltonian takes Landau-level mixing into account to lowest order perturbatively in κ, the ratio of the Coulomb energy scale to the cyclotron gap. We also incorporate the nonzero width w of the quantum-well and subband mixing. We find the ground state in both the torus and spherical geometries as a function of κ and w. To sort out the nontrivial competition between candidate ground states, we analyze the following four criteria: its overlap with trial wave functions, the magnitude of energy gaps, the sign of the expectation value of an order parameter for particle-hole symmetry breaking, and the entanglement spectrum. We conclude that the ground state is in the universality class of the Moore-Read Pfaffian state, rather than the anti-Pfaffian, for κ<κ_{c}(w, where κ_{c}(w is a w-dependent critical value 0.6≲κ_{c}(w≲1. We observe that both Landau-level mixing and nonzero width suppress the excitation gap, but Landau-level mixing has a larger effect in this regard. Our findings have important implications for the identification of non-Abelian fractional quantum Hall states.

  9. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity

    Science.gov (United States)

    Li, Xinwei; Bamba, Motoaki; Zhang, Qi; Fallahi, Saeed; Gardner, Geoff C.; Gao, Weilu; Lou, Minhan; Yoshioka, Katsumasa; Manfra, Michael J.; Kono, Junichiro

    2018-06-01

    A two-level system resonantly interacting with an a.c. magnetic or electric field constitutes the physical basis of diverse phenomena and technologies. However, Schrödinger's equation for this seemingly simple system can be solved exactly only under the rotating-wave approximation, which neglects the counter-rotating field component. When the a.c. field is sufficiently strong, this approximation fails, leading to a resonance-frequency shift known as the Bloch-Siegert shift. Here, we report the vacuum Bloch-Siegert shift, which is induced by the ultra-strong coupling of matter with the counter-rotating component of the vacuum fluctuation field in a cavity. Specifically, an ultra-high-mobility two-dimensional electron gas inside a high-Q terahertz cavity in a quantizing magnetic field revealed ultra-narrow Landau polaritons, which exhibited a vacuum Bloch-Siegert shift up to 40 GHz. This shift, clearly distinguishable from the photon-field self-interaction effect, represents a unique manifestation of a strong-field phenomenon without a strong field.

  10. Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane

    International Nuclear Information System (INIS)

    Govaerts, Jan; Hounkonnou, M Norbert; Mweene, Habatwa V

    2009-01-01

    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.

  11. Variations on the planar Landau problem: canonical transformations, a purely linear potential and the half-plane

    Energy Technology Data Exchange (ETDEWEB)

    Govaerts, Jan [Center for Particle Physics and Phenomenology (CP3), Institut de Physique Nucleaire, Universite catholique de Louvain (UCL), 2, Chemin du Cyclotron, B-1348 Louvain-la Neuve (Belgium); Hounkonnou, M Norbert [International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair), University of Abomey-Calavi, 072 BP 50, Cotonou (Benin); Mweene, Habatwa V [Physics Department, University of Zambia, PO Box 32379, Lusaka (Zambia)], E-mail: Jan.Govaerts@uclouvain.be, E-mail: hounkonnou@yahoo.fr, E-mail: norbert.hounkonnou@cipma.uac.bj, E-mail: habatwamweene@yahoo.com, E-mail: hmweene@unza.zm

    2009-12-04

    The ordinary Landau problem of a charged particle in a plane subjected to a perpendicular homogeneous and static magnetic field is reconsidered from different points of view. The role of phase space canonical transformations and their relation to a choice of gauge in the solution of the problem is addressed. The Landau problem is then extended to different contexts, in particular the singular situation of a purely linear potential term being added as an interaction, for which a complete purely algebraic solution is presented. This solution is then exploited to solve this same singular Landau problem in the half-plane, with as motivation the potential relevance of such a geometry for quantum Hall measurements in the presence of an electric field or a gravitational quantum well.

  12. The Landau theory of phase transitions

    Indian Academy of Sciences (India)

    2 Department of Computer Sci- ence, Indian ... in plasma physics, the Landau pole in quantum electro-. Keywords ... with Vitalyn Ginzburg, Landau made a milestone con- tribution to ..... This work was supported by the Physics Olympiad Pro-.

  13. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  14. Landau-like theory for universality of critical exponents in quasistationary states of isolated mean-field systems.

    Science.gov (United States)

    Ogawa, Shun; Yamaguchi, Yoshiyuki Y

    2015-06-01

    An external force dynamically drives an isolated mean-field Hamiltonian system to a long-lasting quasistationary state, whose lifetime increases with population of the system. For second order phase transitions in quasistationary states, two nonclassical critical exponents have been reported individually by using a linear and a nonlinear response theories in a toy model. We provide a simple way to compute the critical exponents all at once, which is an analog of the Landau theory. The present theory extends the universality class of the nonclassical exponents to spatially periodic one-dimensional systems and shows that the exponents satisfy a classical scaling relation inevitably by using a key scaling of momentum.

  15. Dynamic and statistical thermodynamic properties of electrons in a thin quantum well in a parallel magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Glasser, M Lawrence; Dong Bing

    2006-01-01

    We carry out a theoretical analysis of quantum well electron dynamics in a parallel magnetic field of arbitrary strength, for a narrow quantum well. An explicit analytical closed-form solution is obtained for the retarded Green's function for Landau-quantized electrons in skipping states of motion between the narrow well walls, effectively involving in-plane translational motion, and hybridized with the zero-field lowest subband energy eigenstate. The dispersion relation for electron eigenstates is examined, and we find a plethora of such discrete Landau-quantized modes coupled to the subband state. In the weak field limit, we determine low magnetic field corrections to the lowest subband state energy associated with close-packing (phase averaging) of the Landau levels in the skipping states. At higher fields the discrete energy levels of the well lie between adjacent Landau levels, but they are not equally spaced, albeit undamped. Furthermore, we also examine the associated thermodynamic Green's function for Landau-quantized electrons in a thin quantum well in a parallel magnetic field and construct the (grand) thermodynamic potential (logarithm of the grand partition function) determining the statistical thermodynamics of the system

  16. Simplified Model of Nonlinear Landau Damping

    International Nuclear Information System (INIS)

    Yampolsky, N.A.; Fisch, N.J.

    2009-01-01

    The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.

  17. The energy density of a Landau damped plasma wave

    NARCIS (Netherlands)

    Best, R. W. B.

    1999-01-01

    In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite

  18. Time-dependent Ginzburg-Landau equations for rotating and accelerating superconductors

    Czech Academy of Sciences Publication Activity Database

    Lipavský, P.; Bok, J.; Koláček, Jan

    2013-01-01

    Roč. 492, Sept (2013), 144-151 ISSN 0921-4534 R&D Projects: GA ČR(CZ) GAP204/11/0015 Institutional support: RVO:68378271 Keywords : superconductivity * Ginzburg-Landau theory * London field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.110, year: 2013

  19. Two-level systems driven by large-amplitude fields

    Science.gov (United States)

    Nori, F.; Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.

    2009-03-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition, (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Two-level systems driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007). S. Ashhab et al, unpublished.

  20. Direct URCA-processes in neutron star quark core with strong magnetic field.

    Directory of Open Access Journals (Sweden)

    Belyaev Vasily

    2017-01-01

    In evaluations, the strength of magnetic field corresponds to the case, where the quarks of medium occupy a lot of Landau levels, while the electrons are in ground Landau level. The analytical dependence of neutrino emissivity on chemical potentials of quarks and electrons, temperature and magnetic field strength is obtained and briefly discussed. The result could be important in application to a massive strongly magnetized neutron star with quark core.

  1. Coulomb interactions in dense two-dimensional electron systems in a magnetic field

    International Nuclear Information System (INIS)

    Cheng, Szucheng.

    1988-01-01

    The simplest model of a two-dimensional system ignores the Coulomb interactions between the electrons. In this approximation, the electrons occupy the Landau levels, broadened by impurities and irregularities in the lattice. This independent electron approximation has usually been used to discuss observations for electron densities ρ and magnetic fields B where bar ν > 1 (bar ν triple-bond the number of Landau levels occupied). The most famous example is the theory of the integral Quantum Hall effect. However, when bar ν 1, electron-electron interactions should become important through the mixing of Landau levels. This thesis describes calculations for bar ν > 1 on phenomena which should be sensitive to electron-electron interactions: Wigner crystallization, the stability of the Landau levels under electron-electron interactions, the existence of quasiparticles and quasiholes, and the densities of states. The main results obtained concern: (1) The values of ρ and B where crystallization should occur when bar ν > 1. (2) The effect of electron-electron interactions in broadening the individual Landau levels, and in distributing the amplitudes for the excitation of independent electrons over many Landau levels. (3) The existence of quasiparticles and quasiholes whose lifetime is infinite near the Fermi level

  2. Specific heat of Ginzburg-Landau fields in the n-1 expansion

    International Nuclear Information System (INIS)

    Bray, A.J.

    1975-01-01

    The n -1 expansion for the specific heat C/subv/ of the n-component Ginzburg-Landau model is discussed in terms of an n -1 expansion for the irreducible polarization. In the low-temperature limit, each successive term of the latter expansion diverges more strongly than the last, invalidating a truncation of this series at any finite order in 1/n. The most divergent terms in each order are identified and summed. The results provide justification for the usual truncated expansions for C/subv/

  3. Towards a generalized Landau theory of quasi-particles for hot dense matter

    International Nuclear Information System (INIS)

    Leermakers, R.

    1985-01-01

    In this thesis it is tried to construct a Landau quasi-particle theory for relativistic systems, using field-theoretical methods. It includes a perturbative calculation of the pressure of a quark-gluon plasma. It reports the existence of a hitherto unnoticed plasmon contribution of the order g 3 due to transverse quasi-gluons. A new and Lorentz covariant formulation of the Landau theory is being developed, for a general relativistic system. A detailed calculation is presented of the observables of a quantum electrodynamical (QED) plasma, in lowest orders of perturbation theory. A transverse plasmon effect is discovered, both analytically and numerically. In addition, the analysis shows quasi-electrons and positrons to be stable excitations at any temperature. This is proven in all orders of perturbation theory. Along with a Landau theory for quark-gluon matter, a linearized kinetic equation is derived for the singlet quark distribution function, with a collision term for soft encounters between quasi-quarks. (Auth.)

  4. Lev Landau and the concept of neutron stars

    International Nuclear Information System (INIS)

    Yakovlev, Dmitrii G; Haensel, Pawel; Baym, Gordon; Pethick, Christopher

    2013-01-01

    We review Lev Landau's role in the history of neutron star physics in the 1930s. According to the recollections of Rosenfeld (Proc. 16th Solvay Conference on Physics, 1974, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion must have taken place in March 1931, before the discovery of the neutron, and that they, in fact, discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion 1, 285). In this paper, Landau mentioned the possible existence of dense stars that look like one giant nucleus; this could be regarded as an early theoretical prediction or anticipation of neutron stars, albeit prior to the discovery of the neutron. The coincidence of the dates of the neutron discovery and the publication of the paper has led to an erroneous association of Landau's paper with the discovery of the neutron. In passing, we outline Landau's contribution to the theory of white dwarfs and to the hypothesis of stars with neutron cores. (from the history of physics)

  5. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  6. Two-level systems driven by large-amplitude fields

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, Franco

    2007-01-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems

  7. Gauges for the Ginzburg-Landau equations of superconductivity

    International Nuclear Information System (INIS)

    Fleckinger-Pelle, J.; Kaper, H.G.

    1995-01-01

    This note is concerned with gauge choices for the time-dependent Ginzburg-Landau equations of superconductivity. The requiations model the state of a superconducting sample in a magnetic field near the critical tempeature. Any two solutions related through a ''gauge transformation'' describe the same state and are physically indistinquishable. This ''gauge invariance'' can be exploited for analtyical and numerical purposes. A new gauge is proposed, which reduces the equations to a particularly attractive form

  8. Transit-Time Damping, Landau Damping, and Perturbed Orbits

    Science.gov (United States)

    Simon, A.; Short, R. W.

    1997-11-01

    Transit-time damping(G.J. Morales and Y.C. Lee, Phys. Rev. Lett. 33), 1534 (1974).*^,*(P.A. Robinson, Phys. Fluids B 3), 545 (1991).** has traditionally been obtained by calculating the net energy gain of transiting electrons, of velocity v, to order E^2* in the amplitude of a localized electric field. This necessarily requires inclusion of the perturbed orbits in the equation of motion. A similar method has been used by others(D.R. Nicholson, Introduction to Plasma Theory) (Wiley, 1983).*^,*(E.M. Lifshitz and L.P. Pitaevskifi, Physical Kinetics) (Pergamon, 1981).** to obtain a ``physical'' picture of Landau damping in a nonlocalized field. The use of perturbed orbits seems odd since the original derivation of Landau (and that of Dawson) never went beyond a linear picture of the dynamics. We introduce a novel method that takes advantage of the time-reversal invariance of the Vlasov equation and requires only the unperturbed orbits to obtain the result. Obviously, there is much reduction in complexity. Application to finite slab geometry yields a simple expression for the damping rate. Equivalence to much more complicated results^2* is demonstrated. This method allows us to calculate damping in more complicated geometries and more complex electric fields, such as occur in SRS in filaments. See accompanying talk.(R.W. Short and A. Simon, this conference.) This work was supported by the U.S. DOE Office of Inertial Confinement Fusion under Co-op Agreement No. DE-FC03-92SF19460.

  9. Monolayer phosphorene under time-dependent magnetic field

    Science.gov (United States)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  10. Generalized Landau-Pollak uncertainty relation

    International Nuclear Information System (INIS)

    Miyadera, Takayuki; Imai, Hideki

    2007-01-01

    The Landau-Pollak uncertainty relation treats a pair of rank one projection valued measures and imposes a restriction on their probability distributions. It gives a nontrivial bound for summation of their maximum values. We give a generalization of this bound (weak version of the Landau-Pollak uncertainty relation). Our generalization covers a pair of positive operator valued measures. A nontrivial but slightly weak inequality that can treat an arbitrary number of positive operator valued measures is also presented. A possible application to the problem of separability criterion is also suggested

  11. Asymmetric Landau bands due to spin–orbit coupling

    International Nuclear Information System (INIS)

    Erlingsson, Sigurdur I; Manolescu, Andrei; Marinescu, D C

    2015-01-01

    We show that the Landau bands obtained in a two-dimensional lateral semiconductor superlattice with spin–orbit coupling (SOC) of the Rashba/Dresselhaus type, linear in the electron momentum, placed in a tilted magnetic field, do not follow the symmetry of the spatial modulation. Moreover, this phenomenology is found to depend on the relative tilt of magnetic field and on the SOC type: (a) when only Rashba SOC exists and the magnetic field is tilted in the direction of the superlattice (b) Dresselhaus SOC exists and the magnetic field is tilted in the direction perpendicular to the superlattice. Consequently, measurable properties of the modulated system become anisotropic in a tilted magnetic field when the field is conically rotated around the z axis, at a fixed polar angle, as we demonstrate by calculating the resistivity and the magnetization. (paper)

  12. Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Chu, M.S.

    1996-01-01

    The inertia and Landau damping of low-frequency magnetohydrodynamical modes are investigated using the drift-kinetic energy principle for the motion along the magnetic field. Toroidal trapping of the ions decreases the Landau damping and increases the inertia for frequencies below (r/R) 1/2 v thi /qR. The theory is applied to toroidicity-induced Alfvacute en eigenmodes and to resistive wall modes in rotating plasmas. An explanation of the beta-induced Alfvacute en eigenmode is given in terms of the Pfirsch endash Schlueter-like enhancement of inertia at low frequency. The toroidal inertia enhancement also increases the effects of plasma rotation on resistive wall modes. copyright 1996 American Institute of Physics

  13. Magnetic-field-controlled negative differential conductance in scanning tunneling spectroscopy of graphene npn junction resonators

    Science.gov (United States)

    Li, Si-Yu; Liu, Haiwen; Qiao, Jia-Bin; Jiang, Hua; He, Lin

    2018-03-01

    Negative differential conductance (NDC), characterized by the decreasing current with increasing voltage, has attracted continuous attention for its various novel applications. The NDC typically exists in a certain range of bias voltages for a selected system and controlling the regions of NDC in curves of current versus voltage (I -V ) is experimentally challenging. Here, we demonstrate a magnetic-field-controlled NDC in scanning tunneling spectroscopy of graphene npn junction resonators. The magnetic field not only can switch on and off the NDC, but also can continuously tune the regions of the NDC in the I -V curves. In the graphene npn junction resonators, magnetic fields generate sharp and pronounced Landau-level peaks with the help of the Klein tunneling of massless Dirac fermions. A tip of scanning tunneling microscope induces a relatively shift of the Landau levels in graphene beneath the tip. Tunneling between the misaligned Landau levels results in the magnetic-field-controlled NDC.

  14. Composite Fermi surface in the half-filled Landau level with anisotropic electron mass

    Science.gov (United States)

    Ippoliti, Matteo; Geraedts, Scott; Bhatt, Ravindra

    We study the problem of interacting electrons in the lowest Landau level at half filling in the quantum Hall regime, when the electron dispersion is given by an anisotropic mass tensor. Based on experimental observations and theoretical arguments, the ground state of the system is expected to consist of composite Fermions filling an elliptical Fermi sea, with the anisotropy of the ellipse determined by the competing effects of the isotropic Coulomb interaction and anisotropic electron mass tensor. We test this idea quantitatively by using a numerical density matrix renormalization group method for quantum Hall systems on an infinitely long cylinder. Singularities in the structure factor allow us to map the Fermi surface of the composite Fermions. We compute the composite Fermi surface anisotropy for several values of the electron mass anisotropy which allow us to deduce the functional dependence of the former on the latter. This research was supported by Department of Energy Office of Basic Energy Sciences through Grant No. DE-SC0002140.

  15. On Landau damping

    KAUST Repository

    Mouhot, Clément

    2011-09-01

    Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.

  16. Reentrant high-magnetic field superconductivity in a clean two-dimensional superconductor with shallow band

    Science.gov (United States)

    Koshelev, Alexei E.; Song, Kok Wee

    We investigate the superconducting instability in the magnetic field for a clean two-dimensional multiple-band superconductor in the vicinity of the Lifshitz transition when one of the bands is very shallow. Due to a small number of carriers in this band, the quasiclassical Werthamer-Helfand approximation breaks down and Landau quantization has to be taken into account. We found that the transition temperature Tc 2 (H) has giant oscillations and is resonantly enhanced at the magnetic fields corresponding to full occupancy of the Landau levels in the shallow band. This enhancement is especially pronounced for the lowest Landau level. As a consequence, the reentrant superconducting regions in the temperature-field phase diagram emerge at low temperatures near the magnetic fields at which the chemical potential matches the Landau levels. These regions may be disconnected from the main low-field superconducting region. The specific behavior depends on the relative strength of the intraband and interband coupling constants and the effect is most pronounced when the interband coupling dominates. The Zeeman spin splitting reduces sizes of the reentrant regions and changes their location in the parameter space. The predicted behavior may realize in the gate-tuned FeSe monolayer. This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Office of Science, under Award No. DEAC0298CH1088.

  17. Effects of periodic scattering potential on Landau quantization and ballistic transport of electrons in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College, CUNY, 695 Park Avenue, New York, NY 10065, USA and Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, NY 10065 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, NM 87117 (United States); Fekete, Paula [West Point Military Academy, West Point, NY (United States); Zhemchuzhna, Liubov [Department of Physics, North Carolina Central University, Durham, North Carolina 27707 (United States)

    2014-03-31

    A two-dimensional periodic array of scatterers has been introduced to a single layer of graphene in the presence of an external magnetic field perpendicular to the graphene layer. The eigenvalue equation for such a system has been solved numerically to display the structure of split Landau subbands as functions of both wave number and magnetic flux. The effects of pseudo-spin coupling and Landau subbands mixing by a strong scattering potential have been demonstrated. Additionally, we investigated the square barrier tunneling problem when magnetic field is present, as well as demonstrate the crucial difference in the modulated band structure between graphene and the two-dimensional electron gas. The low-magnetic field regime is particularly interesting for Dirac fermions and has been discussed. Tunneling of Dirac electrons through a magnetic potential barrier has been investigated to complement the reported results on electrostatic potential scattering in the presence of an ambient magnetic field.

  18. Effects of periodic scattering potential on Landau quantization and ballistic transport of electrons in graphene

    International Nuclear Information System (INIS)

    Gumbs, Godfrey; Iurov, Andrii; Huang, Danhong; Fekete, Paula; Zhemchuzhna, Liubov

    2014-01-01

    A two-dimensional periodic array of scatterers has been introduced to a single layer of graphene in the presence of an external magnetic field perpendicular to the graphene layer. The eigenvalue equation for such a system has been solved numerically to display the structure of split Landau subbands as functions of both wave number and magnetic flux. The effects of pseudo-spin coupling and Landau subbands mixing by a strong scattering potential have been demonstrated. Additionally, we investigated the square barrier tunneling problem when magnetic field is present, as well as demonstrate the crucial difference in the modulated band structure between graphene and the two-dimensional electron gas. The low-magnetic field regime is particularly interesting for Dirac fermions and has been discussed. Tunneling of Dirac electrons through a magnetic potential barrier has been investigated to complement the reported results on electrostatic potential scattering in the presence of an ambient magnetic field

  19. Hc2 of anisotropy two-band superconductors by Ginzburg-Landau approach

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Changjan, A.; Kumvongsa, C.; Yoksan, S.

    2006-01-01

    The purpose of this research is to study the upper critical field H c2 of two-band superconductors by two-band Ginzburg-Landau approach. The analytical formula of H c2 included anisotropy of order parameter and anisotropy of effective-mass are found. The parameters of the upper critical field in ab-plane (H c2 - bar ab ) and c-axis (H c2 - bar c ) can be found by fitting to the experimental data. Finally, we can find the ratio of upper critical field that temperature dependent in the range of experimental result

  20. Solutions without phase-slip for the Ginsburg-Landau equation

    International Nuclear Information System (INIS)

    Collet, P.; Eckmann, J.P.

    1992-01-01

    We consider the Ginsburg-Landau equation for a complex scalar field in one dimension and consider initial data which have two different stationary solutions as their limits in space as x→±∞. If these solutions are not very different, then we show that the initial data will evolve to a stationary solution by a 'phase melting' process which avoids 'phase slips,' i.e., which does not go through zero amplitude. (orig.)

  1. Selective-field-ionization dynamics of a lithium m=2 Rydberg state: Landau-Zener model versus quantal approach

    International Nuclear Information System (INIS)

    Foerre, M.; Hansen, J.P.

    2003-01-01

    The selective-field-ionization (SFI) dynamics of a Rydberg state of lithium with magnetic quantum number m=2 is studied in detail based on two different theoretical models: (1) a close coupling integration of the Schroedinger equation and (2) the multichannel (incoherent) Landau-Zener (MLZ) model. The m=2 states are particularly interesting, since they define a border zone between fully adiabatic (m=0,1) and fully diabatic (m>2) ionization dynamics. Both sets of calculations are performed up to, and above, the classical ionization limit. It is found that the MLZ model is excellent in the description of the fully diabatic dynamics while certain discrepancies between the time dependent quantal amplitudes appear when the dynamics become involved. Thus, in this region, the analysis of experimental SFI spectra should be performed with care

  2. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    Science.gov (United States)

    Rivera, R.; Villarroel, D.

    2002-10-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics.

  3. Exact solutions to the Mo-Papas and Landau-Lifshitz equations

    International Nuclear Information System (INIS)

    Rivera, R.; Villarroel, D.

    2002-01-01

    Two exact solutions of the Mo-Papas and Landau-Lifshitz equations for a point charge in classical electrodynamics are presented here. Both equations admit as an exact solution the motion of a charge rotating with constant speed in a circular orbit. These equations also admit as an exact solution the motion of two identical charges rotating with constant speed at the opposite ends of a diameter. These exact solutions allow one to obtain, starting from the equation of motion, a definite formula for the rate of radiation. In both cases the rate of radiation can also be obtained, with independence of the equation of motion, from the well known fields of a point charge, that is, from the Maxwell equations. The rate of radiation obtained from the Mo-Papas equation in the one-charge case coincides with the rate of radiation that comes from the Maxwell equations; but in the two-charge case the results do not coincide. On the other hand, the rate of radiation obtained from the Landau-Lifshitz equation differs from the one that follows from the Maxwell equations in both the one-charge and two-charge cases. This last result does not support a recent statement by Rohrlich in favor of considering the Landau-Lifshitz equation as the correct and exact equation of motion for a point charge in classical electrodynamics

  4. Landau damping of dust acoustic solitary waves in nonthermal plasmas

    Science.gov (United States)

    Ghai, Yashika; Saini, N. S.; Eliasson, B.

    2018-01-01

    Dust acoustic (DA) solitary and shock structures have been investigated under the influence of Landau damping in a dusty plasma containing two temperature nonthermal ions. Motivated by the observations of Geotail spacecraft that reported two-temperature ion population in the Earth's magnetosphere, we have investigated the effect of resonant wave-particle interactions on DA nonlinear structures. The Korteweg-de Vries (KdV) equation with an additional Landau damping term is derived and its analytical solution is presented. The solution has the form of a soliton whose amplitude decreases with time. Further, we have illustrated the influence of Landau damping and nonthermality of the ions on DA shock structures by a numerical solution of the Landau damping modified KdV equation. The study of the time evolution of shock waves suggests that an initial shock-like pulse forms an oscillatory shock at later times due to the balance of nonlinearity, dispersion, and dissipation due to Landau damping. The findings of the present investigation may be useful in understanding the properties of nonlinear structures in the presence of Landau damping in dusty plasmas containing two temperature ions obeying nonthermal distribution such as in the Earth's magnetotail.

  5. Magnetotransport properties of 8-Pmmn borophene: effects of Hall field and strain.

    Science.gov (United States)

    Islam, S K Firoz

    2018-07-11

    The polymorph of 8-Pmmn borophene is an anisotropic Dirac material with tilted Dirac cones at two valleys. The tilting of the Dirac cones at two valleys are in opposite directions, which manifests itself via the valley dependent Landau levels in presence of an in-plane electric field (Hall field). The valley dependent Landau levels cause valley polarized magnetotransport properties in presence of the Hall field, which is in contrast to the monolayer graphene with isotropic non-tilted Dirac cones. The longitudinal conductivity and Hall conductivity are evaluated by using linear response theory in low temperature regime. An analytical approximate form of the longitudinal conductivity is also obtained. It is observed that the tilting of the Dirac cones amplifies the frequency of the longitudinal conductivity oscillation (Shubnikov-de Haas). On the other hand, the Hall conductivity exhibits graphene-like plateaus except the appearance of valley dependent steps which are purely attributed to the Hall field induced lifting of the valley degeneracy in the Landau levels. Finally we look into the different cases when the Hall field is applied to the strained borophene and find that valley dependency is fully dominated by strain rather than Hall field. Another noticeable point is that if the real magnetic field is replaced by the strain induced pseudo magnetic field then the electric field looses its ability to cause valley polarized transport.

  6. A rigorous proof of the Landau-Peierls formula and much more

    DEFF Research Database (Denmark)

    Briet, Philippe; Cornean, Horia; Savoie, Baptiste

    2012-01-01

    We present a rigorous mathematical treatment of the zero-field orbital magnetic susceptibility of a non-interacting Bloch electron gas, at fixed temperature and density, for both metals and semiconductors/insulators. In particular, we obtain the Landau-Peierls formula in the low temperature and d...... and density limit as conjectured by Kjeldaas and Kohn (Phys Rev 105:806–813, 1957)....

  7. The rubber band revisited: Wang–Landau simulation

    International Nuclear Information System (INIS)

    Ferreira, Lucas S; Caparica, Álvaro A; Neto, Minos A; Galiceanu, Mircea D

    2012-01-01

    In this work we apply Wang–Landau simulations to a simple model which has exact solutions both in the microcanonical and canonical formalisms. The simulations were carried out by using an updated version of the Wang–Landau sampling. We consider a homopolymer chain consisting of N monomers units which may assume any configuration on the two-dimensional lattice. By imposing constraints to the moves of the polymers we obtain three different models. Our results show that updating the density of states only after every N monomer moves leads to a better precision. We obtain the specific heat and the end-to-end distance per monomer and test the precision of our simulations by comparing the location of the maximum of the specific heat with the exact results and conventional Wang–Landau simulations for the three types of walk. (paper)

  8. Landau-Zener-Stueckelberg interferometry with low- and high-frequency driving

    Science.gov (United States)

    Shevchenko, Sergey; Ashhab, Sahel; Nori, Franco

    2010-03-01

    The problem of a periodically driven two-level system cannot be solved exactly. The rotating-wave approximation (RWA) is the most common approximation used to analyze this problem. I will discuss an alternative approximation that applies in the case of very strong driving, where the RWA is generally invalid. The dynamics is approximated by a sequence of Landau-Zener transitions that can interfere constructively or destructively, depending on the Stueckelberg phase accumulated between transitions. It turns out that the resonance conditions are qualitatively different for the cases of low- and high-frequency driving. I will discuss the two respective limits. I will also show that our theoretical results describe recent experiments on Landau-Zener-Stuckelberg interferometry with superconducting qubits [S.N. Shevchenko, S. Ashhab, and F. Nori, arXiv:0911.1917].

  9. Bounce-harmonic Landau Damping of Plasma Waves

    Science.gov (United States)

    Anderegg, Francois

    2015-11-01

    We present measurement of plasma wave damping, spanning the temperature regimes of direct Landau damping, bounce-harmonic Landau damping, inter-species drag damping, and viscous damping. Direct Landau damping is dominant at high temperatures, but becomes negligible as v vph / 5 . The measurements are conducted in trapped pure ion plasmas contained in Penning-Malmberg trap, with wave-coherent LIF diagnostics of particle velocities. Our focus is on bounce harmonics damping, controlled by an applied ``squeeze'' potential, which generates harmonics in the wave potential and in the particle dynamics. A particle moving in z experiences a non-sinusoidal mode potential caused by the squeeze, producing high spatial harmonics with lower phase velocity. These harmonics are Landau damped even when the mode phase velocity vph is large compared to the thermal velocity v , since the nth harmonic is resonant with a particle bouncing at velocity vb =vph / n . Here we increase the bounce harmonics through applied squeeze potential; but some harmonics are always present in finite length systems. For our centered squeeze geometry, theory shows that only odd harmonics are generated, and predicts the Landau damping rate from vph / n . Experimentally, the squeeze potential increases the wave damping and reduces its frequency. The frequency shift occurs because the squeeze potential reduces the number of particle where the mode velocity is the largest, therefore reducing the mode frequency. We observe an increase in the damping proportional to Vs2,and a frequency reduction proportional to Vs , in quantitative agreement with theory. Wave-coherent laser induced fluorescence allows direct observation of bounce resonances on the particle distribution, here predominantly at vph / 3 . A clear increase of the bounce harmonics is visible on the particle distribution when the squeeze potential is applied. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693.

  10. The Rubber Band Revisited: Wang-Landau Simulation

    OpenAIRE

    Ferreira, Lucas S.; Caparica, Alvaro A.; Neto, Minos A.; Galiceanu, Mircea D.

    2012-01-01

    In this work we apply Wang-Landau simulations to a simple model which has exact solutions both in the microcanonical and canonical formalisms. The simulations were carried out by using an updated version of the Wang-Landau sampling. We consider a homopolymer chain consisting of $N$ monomers units which may assume any configuration on the two-dimensional lattice. By imposing constraints to the moves of the polymers we obtain three different models. Our results show that updating the density of...

  11. Breaking the hidden symmetry in the Ginzburg-Landau equation

    NARCIS (Netherlands)

    Doelman, A.

    1997-01-01

    In this paper we study localised, traveling, solutions to a Ginzburg-Landau equation to which we have added a small, O ( " ), 0 < "? 1, quintic term. We consider this term as a model for the higher order nonlinearities which appear in the derivation of the Ginzburg-Landau equation. By a combination

  12. Modulated Langmuir waves and nonlinear Landau damping

    International Nuclear Information System (INIS)

    Yajima, Nobuo; Oikawa, Masayuki; Satsuma, Junkichi; Namba, Chusei.

    1975-01-01

    The nonlinear Schroedinger euqation with an integral term, iusub(t)+P/2.usub(xx)+Q/u/ 2 u+RP∫sub(-infinity)sup(infinity)[/u(x',t)/ 2 /(x-x')]dx'u=0, which describes modulated Langmuir waves with the nonlinear Landau damping effect, is solved by numerical calculations. Especially, the effects of nonlinear Landau damping on solitary wave solutions are studied. For both cases, PQ>0 and PQ<0, the results show that the solitary waves deform in an asymmetric way changing its velocity. (auth.)

  13. Landau damping due to tune spreads in betatron amplitude and momentum

    International Nuclear Information System (INIS)

    Lee, S.Y.; Tran, P.; Weng, W.T.

    1989-01-01

    Due to the large space charge transverse impedance in a low energy synchrotron, the coherent tune shift causes the Landau damping to be ineffective in damping the transverse coherent motion. We analyze the effect of Landau damping that is caused by the tune spreads of the betatron amplitude (space charge and/or octupole) and momentum. We find that the Landau damping becomes more significant in our two dimensional analysis. 5 refs

  14. Hofstadter spectrum in electric and magnetic fields

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2005-01-01

    The problem of Bloch electrons in two dimensions subjected to magnetic and intense electric fields is investigated. Magnetic translations, electric evolution, and energy translation operators are used to specify the solutions of the Schroedinger equation. For rational values of the magnetic flux quanta per unit cell and commensurate orientations of the electric field relative to the original lattice, an extended superlattice can be defined and a complete set of mutually commuting space-time symmetry operators is obtained. Dynamics of the system is governed by a finite difference equation that exactly includes the effects of: an arbitrary periodic potential, an electric field orientated in a commensurable direction of the lattice, and coupling between Landau levels. A weak periodic potential broadens each Landau level in a series of minibands, separated by the corresponding minigaps. The addition of the electric field induces a series of avoided and exact crossing of the quasienergies, for sufficiently strong electric field the spectrum evolves into equally spaced discreet levels, in this 'magnetic Stark ladder' the energy separation is an integer multiple of hE/aB, with a the lattice parameter

  15. Breaking the hidden symmetry in the Ginzburg-Landau equation

    NARCIS (Netherlands)

    Doelman, A.

    1996-01-01

    In this paper we study localised, traveling, solutions to a Ginzburg-Landau equation to which we have added a small, O(e), 0 < e << 1, quintic term. We consider this term as a model for the higher order nonlinearities which appear in the derivation of the Ginzburg-Landau equation. By a combination

  16. Evolutionary algorithms applied to Landau-gauge fixing

    International Nuclear Information System (INIS)

    Markham, J.F.

    1998-01-01

    Current algorithms used to put a lattice gauge configuration into Landau gauge either suffer from the problem of critical slowing-down or involve an additions computational expense to overcome it. Evolutionary Algorithms (EAs), which have been widely applied to other global optimisation problems, may be of use in gauge fixing. Also, being global, they should not suffer from critical slowing-down as do local gradient based algorithms. We apply EA'S and also a Steepest Descent (SD) based method to the problem of Landau Gauge Fixing and compare their performance. (authors)

  17. Geometric singularities and spectra of Landau-Ginzburg models

    International Nuclear Information System (INIS)

    Greene, B.R.; Roan, S.S.; Yau, S.T.

    1991-01-01

    Some mathematical and physical aspects of superconformal string compactification in weighted projective space are discussed. In particular, we recast the path integral argument establishing the connection between Landau-Ginsburg conformal theories and Calabi-Yau string compactification in a geometric framework. We then prove that the naive expression for the vanishing of the first Chern class for a complete intersection (adopted from the smooth case) is sufficient to ensure that the resulting variety, which is generically singular, can be resolved to a smooth Calabi-Yau space. This justifies much analysis which has recently been expended on the study of Landau-Ginzburg models. Furthermore, we derive some simple formulae for the determination of the Witten index in these theories which are complementary to those derived using semiclassical reasoning by Vafa. Finally, we also comment on the possible geometrical significance of unorbifolded Landau-Ginzburg theories. (orig.)

  18. On the effects on a Landau-type system for an atom with no permanent electric dipole moment due to a Coulomb-type potential

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Abinael B.; Bakke, Knut, E-mail: kbakke@fisica.ufpb.br

    2016-02-15

    We analyse the bound states for a Landau-type system for an atom with no permanent electric dipole moment subject to a Coulomb-type potential. By comparing the energy levels for bound states of the system with the Landau quantization for an atom with no permanent electric dipole moment (Furtado et al., 2006), we show that the energy levels of the Landau-type system are modified, where the degeneracy of the energy levels is broken. Another quantum effect investigated is a dependence of the angular frequency of the system on the quantum numbers associated with the radial modes and the angular momentum. As examples, we obtain the angular frequency and the energy levels associated with the ground state and the first excited state of the system.

  19. On the effects on a Landau-type system for an atom with no permanent electric dipole moment due to a Coulomb-type potential

    International Nuclear Information System (INIS)

    Oliveira, Abinael B.; Bakke, Knut

    2016-01-01

    We analyse the bound states for a Landau-type system for an atom with no permanent electric dipole moment subject to a Coulomb-type potential. By comparing the energy levels for bound states of the system with the Landau quantization for an atom with no permanent electric dipole moment (Furtado et al., 2006), we show that the energy levels of the Landau-type system are modified, where the degeneracy of the energy levels is broken. Another quantum effect investigated is a dependence of the angular frequency of the system on the quantum numbers associated with the radial modes and the angular momentum. As examples, we obtain the angular frequency and the energy levels associated with the ground state and the first excited state of the system.

  20. Carrier tunneling in high magnetic fields

    NARCIS (Netherlands)

    Christianen, P.C.M.; Bruggink, I.E.M.; Maan, J.C.; Vleuten, van der W.C.

    1995-01-01

    Proceedings of the XXIV International School of Semiconducting Coinpounds, Jaszowiec 1995. A magnetic field induced coupling is observed between the Landau levels with different quantum number of two GaAs quantum wells separated by a thin (Ga,Al)As tunnel barrier using

  1. Chiral correlators in Landau-Ginsburg theories and N=2 superconformal models

    International Nuclear Information System (INIS)

    Howe, P.S.; West, P.C.

    1989-01-01

    Chiral correlation functions are computed in N=2 Landau-Ginsburg models using the ε-expansion and the superconformal Ward identities for the Landau-Ginsburg effective action. They are also computed directly using superconformal model techniques. The same results are obtained yielding further confirmation of the identification of superconformal minimal models with Landau-Ginsburg models evaluated at their fixed points. The formulae for the chiral commutators that we compute are extremely simple when expressed in terms of effective actions. (orig.)

  2. Real-time relaxation and kinetics in hot scalar QED: Landau damping

    International Nuclear Information System (INIS)

    Boyanovsky, D.; Vega, H.J. de; Holman, R.; Kumar, S.P.; Pisarski, R.D.

    1998-01-01

    The real time evolution of non-equilibrium expectation values with soft length scales ∼k -1 >(eT) -1 is solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via power laws to asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of exponential decay. In the process we rederive the HTL effective action using non-equilibrium field theory. Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian approximation fails to describe the dynamics both at short and long times. We find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We find an unusual dressing dynamics of bare particles and anomalous (logarithmic) relaxation of hard quasiparticles. copyright 1998 The American Physical Society

  3. Theory of a condensed charged-Bose, charged Fermi gas and Ginzburg--Landau studies of superfluid 3He

    International Nuclear Information System (INIS)

    Dahl, D.A.

    1976-01-01

    Two independent topics in the field of condensed matter physics are examined: the condensed charged-Bose, charged Fermi gas and superfluid 3 He. Green's function (field theoretic) methods are used to derive the low-temperature properties of a dense, neutral gas of condensed charged bosons and degenerate charged fermions. Restriction is made to the case where the fermion mass is much lighter than the boson mass. Linear response and the density-density correlation function are examined and shown to exhibit two collective modes: a plasmon branch and a phonon branch with speed equal to that of ionic sound in solids. Comparison with a possible astrophysical application (white dwarf stars) is made. The behavior near the superfluid transition temperature (Ginzburg--Landau regime) of 3 He is then studied. Gorkov equations are derived and studied in the weak-coupling limit. In this way the form and order of magnitude estimates of coefficients appearing in the Ginzburg--Landau theory are obtained. Weak-coupling particle and spin currents are derived. Various perturbations break the large degeneracy of the states and have experimental implications. The electric contribution to the Ginzburg--Landau free energy is studied for the proposed A and B phases. Imposition of an electric field orients the axial state, but does not give rise to shifts in the NMR resonances. Shifts and discontinuous jumps in the longitudinal and transverse signals are predicted for the Balian--Werthamer state, the details depending on the relative strengths of the fields, as well as the angle between them

  4. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Condrea, E., E-mail: condrea@nano.asm.md [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); Gilewski, A. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); MagNet, 50-421 Wroclaw (Poland); Nicorici, A. [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2016-03-11

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  5. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    International Nuclear Information System (INIS)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-01-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  6. Discretisation errors in Landau gauge on the lattice

    International Nuclear Information System (INIS)

    Bonnet DR, Frederic; Bowman O, Patrick; Leinweber B, Derek; Williams G, Anthony; Richards G, David G.

    1999-01-01

    Lattice discretization errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasize the importance of implementing an improved gauge fixing condition

  7. Quantum corrections to nonlinear ion acoustic wave with Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)

    2014-07-15

    Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.

  8. On the landau levels on the hyperbolic plane

    International Nuclear Information System (INIS)

    Comtet, A.

    1986-04-01

    The classical and quantum mechanics of a charged particle moving on the hyperbolic plane in a constant magnetic field is discussed. The underlying SL(2,R) symmetry leads to a general description of various possible trajectories. In contrast with the flat case, it is shown that closed orbits only arise for sufficiently strong fields. At the quantum level a group theoretical approach including both bound and continuum states is presented. It is shown that the semiclassical approximation leads to the exact bound state spectrum. The resolvent and its flat space limit are constructed in closed form

  9. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  10. Revisiting the Landau fluid closure.

    Science.gov (United States)

    Hunana, P.; Zank, G. P.; Webb, G. M.; Adhikari, L.

    2017-12-01

    Advanced fluid models that are much closer to the full kinetic description than the usual magnetohydrodynamic description are a very useful tool for studying astrophysical plasmas and for interpreting solar wind observational data. The development of advanced fluid models that contain certain kinetic effects is complicated and has attracted much attention over the past years. Here we focus on fluid models that incorporate the simplest possible forms of Landau damping, derived from linear kinetic theory expanded about a leading-order (gyrotropic) bi-Maxwellian distribution function f_0, under the approximation that the perturbed distribution function f_1 is gyrotropic as well. Specifically, we focus on various Pade approximants to the usual plasma response function (and to the plasma dispersion function) and examine possibilities that lead to a closure of the linear kinetic hierarchy of fluid moments. We present re-examination of the simplest Landau fluid closures.

  11. Design of an rf quadrupole for Landau damping

    Science.gov (United States)

    Papke, K.; Grudiev, A.

    2017-08-01

    The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC) with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM) spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  12. Ginzburg-Landau equation and vortex liquid phase of Fermi liquid superconductors

    International Nuclear Information System (INIS)

    Ng, T-K; Tse, W-T

    2007-01-01

    In this paper we study the Ginzburg-Landau (GL) equation for Fermi liquid superconductors with strong Landau interactions F 0s and F 1s . We show that Landau interactions renormalize two parameters entering the GL equation, leading to the renormalization of the compressibility and superfluid density. The renormalization of the superfluid density in turn leads to an unconventional (2D) Berezinskii-Kosterlitz-Thouless (BKT) transition and vortex liquid phase. Application of the GL equation to describe underdoped high-T c cuprates is discussed

  13. Discretisation errors in Landau gauge on the lattice

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Bowmen, P.O.; Leinweber, D.B.

    1999-01-01

    Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition improves comparison with the continuum Landau gauge in two ways: (1) through the elimination of O(a 2 ) errors and (2) through a secondary effect of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition. Copyright (1999) CSIRO Australia

  14. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    1999-01-01

    The elementary building blocks of matter are quarks. Hence, it is fundamental to describe hadrons and nuclei in terms of quarks and gluons, the subject of which is called Quark Nuclear Physics. The quark-dynamics is described by Quantum Chromodynamics (QCD). Our interest is the non-perturbative aspect of QCD as confinement, chiral symmetry breaking, hadronization etc. We introduce the dual Ginzburg-Landau theory (DGL), where the color monopole fields and their condensation is the QCD vacuum, play essential roles in describing these non-perturbative phenomena. We emphasize its connection to QCD through the use of the Abelian gauge. We apply the DGL theory to various observables. We discuss then the connection of the monopole fields with instantons, which are the classical solutions of the non-Abelian gauge theory and connect through the tunneling process QCD vacuum with different winding numbers. (author)

  15. An Approach to Quad Meshing Based On Cross Valued Maps and the Ginzburg-Landau Theory

    Energy Technology Data Exchange (ETDEWEB)

    Viertel, Ryan [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Mathematics; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osting, Braxton [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Mathematics

    2017-08-01

    A generalization of vector fields, referred to as N-direction fields or cross fields when N=4, has been recently introduced and studied for geometry processing, with applications in quadrilateral (quad) meshing, texture mapping, and parameterization. We make the observation that cross field design for two-dimensional quad meshing is related to the well-known Ginzburg-Landau problem from mathematical physics. This identification yields a variety of theoretical tools for efficiently computing boundary-aligned quad meshes, with provable guarantees on the resulting mesh, for example, the number of mesh defects and bounds on the defect locations. The procedure for generating the quad mesh is to (i) find a complex-valued "representation" field that minimizes the Dirichlet energy subject to a boundary constraint, (ii) convert the representation field into a boundary-aligned, smooth cross field, (iii) use separatrices of the cross field to partition the domain into four sided regions, and (iv) mesh each of these four-sided regions using standard techniques. Under certain assumptions on the geometry of the domain, we prove that this procedure can be used to produce a cross field whose separatrices partition the domain into four sided regions. To solve the energy minimization problem for the representation field, we use an extension of the Merriman-Bence-Osher (MBO) threshold dynamics method, originally conceived as an algorithm to simulate motion by mean curvature, to minimize the Ginzburg-Landau energy for the optimal representation field. Lastly, we demonstrate the method on a variety of test domains.

  16. Remarks on the Landau-Ginzburg potential and RG-flow for SU(2)-coset models

    International Nuclear Information System (INIS)

    Marzban, C.

    1989-09-01

    The existence of a Landau-Ginzburg (LG)-field for the SU(2)-coset models is motivated and conjectured. The general form of the LG potential for the A-series is found, and the RG-flow pattern suggested by this is shown to agree with that found by other authors, thereby further supporting the conjecture. (author). 17 refs

  17. Energy spectrum and density of states for a graphene quantum dot in a magnetic field

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J; Liu, S Y

    2010-01-01

    In this paper, we determine the spectrum and density of states of a graphene quantum dot in a normal quantizing magnetic field. To accomplish this, we employ the retarded Green function for a magnetized, infinite-sheet graphene layer to describe the dynamics of a tightly confined graphene quantum dot subject to Landau quantization. Considering a δ (2) (r) potential well that supports just one subband state in the well in the absence of a magnetic field, the effect of Landau quantization is to 'splinter' this single energy level into a proliferation of many Landau-quantized states within the well. Treating the graphene sheet and dot as a closed system subject to a fully Hermitian Hamiltonian (including boundary conditions), there is no indication of decay of the Landau-quantized graphene dot states into the quantized states of the host graphene sheet for 'tight' confinement by the δ (2) (r) potential well, notwithstanding extension of the dot Green function (and eigenfunctions) outside the δ (2) (r) potential well.

  18. Integral definition of transition time in the Landau-Zener model

    International Nuclear Information System (INIS)

    Yan Yue; Wu Biao

    2010-01-01

    We give a general definition for the transition time in the Landau-Zener model. This definition allows us to compute numerically the Landau-Zener transition time at any sweeping rate without ambiguity in both diabatic and adiabatic bases. With this new definition, analytical results are obtained in both the adiabatic limit and the sudden limit.

  19. Aspects of renormalization in finite-density field theory

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, A. Liam; Torroba, Gonzalo; Wang, Huajia

    2015-05-26

    We study the renormalization of the Fermi surface coupled to a massless boson near three spatial dimensions. For this, we set up a Wilsonian RG with independent decimation procedures for bosons and fermions, where the four-fermion interaction “Landau parameters” run already at tree level. Our explicit one-loop analysis resolves previously found obstacles in the renormalization of finite-density field theory, including logarithmic divergences in nonlocal interactions and the appearance of multilogarithms. The key aspects of the RG are the above tree-level running, and a UV-IR mixing between virtual bosons and fermions at the quantum level, which is responsible for the renormalization of the Fermi velocity. We apply this approach to the renormalization of 2 k F singularities, and to Fermi surface instabilities in a companion paper, showing how multilogarithms are properly renormalized. We end with some comments on the renormalization of finite-density field theory with the inclusion of Landau damping of the boson.

  20. Landau-Kleffner syndrome: study of four cases Síndrome de Landau-Kleffner: estudo de quatro casos

    Directory of Open Access Journals (Sweden)

    Lúcia H. Coutinho dos Santos

    2002-06-01

    Full Text Available We describe four patients with clinical features of Landau-Kleffner syndrome and discuss electroencephalographic features, treatment and prognosis. Anticonvulsants and prednisone were used for treatment with good control of seizures in all cases and a less effect response in acquired aphasia. Further studies are necessary to elucidate the causes and management of this syndrome.Descrevemos quatro pacientes com achados clínicos de síndrome de Landau Kleffner . São discutidos os aspectos relacionados aos achados eletrencefalográficos, tratamento e prognóstico. Anticonvulsivantes e prednisona foram os principais métodos terapêuticos utilizados com controle das crises convulsivas em todos os casos e resposta variável quanto a afasia adquirida. Mais estudos são necessários para elucidar as causas e o manejo desta síndrome

  1. Nucleation of bulk superconductivity close to critical magnetic fields

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2011-01-01

    We consider the two-dimensional Ginzburg–Landau functional with constant applied magnetic field. For applied magnetic fields close to the second critical field HC2 and large Ginzburg–Landau parameter, we provide leading order estimates on the energy of minimizing configurations. We obtain a fine ...

  2. Effects of periodic modulation on the Landau-Zener transition

    International Nuclear Information System (INIS)

    Duan Suqing; Fu Libin; Liu Jie; Zhao Xiangeng

    2005-01-01

    We study the quantum tunnelling of a two-level crossing system which extends the standard Landau-Zener model with applying a periodic modulation on its energy sweep. By directly integrating the time evolution operator we obtain the analytic expressions of tunnelling probability in the cases of high and low modulation frequency limit as well as in weak inter-level coupling limit. Our formula clarify the conditions for resonance occurrence, with the help of it we can readily manipulate the system in a desired way, say, to enhance or suppress the tunnelling probability effectively through adjusting the modulation properly

  3. Collisional width of giant resonances and interplay with Landau damping

    International Nuclear Information System (INIS)

    Bonasera, A.; Burgio, G.F.; Di Toro, M.; Wolter, H.H.

    1989-01-01

    We present a semiclassical method to calculate the widths of giant resonances. We solve a mean-field kinetic equation (Vlasov equation) with collision terms treated within the relaxation time approximation to construct a damped strength distribution for collective motions. The relaxation time is evaluated from the time evolution of distortions in the nucleon momentum distribution using a test-particle approach. The importance of an energy dependent nucleon-nucleon cross section is stressed. Results are shown for isoscalar giant quadrupole and octupole motions. A quite important interplay between self-consistent (Landau) and collisional damping is revealed

  4. Approximate solution of generalized Ginzburg-Landau-Higgs system via homotopy perturbation method

    Energy Technology Data Exchange (ETDEWEB)

    Lu Juhong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Dept. of Information Engineering, Coll. of Lishui Professional Tech., Zhejiang (China); Zheng Chunlong [School of Physics and Electromechanical Engineering, Shaoguan Univ., Guangdong (China); Shanghai Inst. of Applied Mathematics and Mechanics, Shanghai Univ., SH (China)

    2010-04-15

    Using the homotopy perturbation method, a class of nonlinear generalized Ginzburg-Landau-Higgs systems (GGLH) is considered. Firstly, by introducing a homotopic transformation, the nonlinear problem is changed into a system of linear equations. Secondly, by selecting a suitable initial approximation, the approximate solution with arbitrary degree accuracy to the generalized Ginzburg-Landau-Higgs system is derived. Finally, another type of homotopic transformation to the generalized Ginzburg-Landau-Higgs system reported in previous literature is briefly discussed. (orig.)

  5. Solution Theory of Ginzburg-Landau Theory on BCS-BEC Crossover

    Directory of Open Access Journals (Sweden)

    Shuhong Chen

    2014-01-01

    Full Text Available We establish strong solution theory of time-dependent Ginzburg-Landau (TDGL systems on BCS-BEC crossover. By the properties of Besov, Sobolev spaces, and Fourier functions and the method of bootstrapping argument, we deduce that the global existence of strong solutions to time-dependent Ginzburg-Landau systems on BCS-BEC crossover in various spatial dimensions.

  6. From the atomic bomb to the Landau Institute autobiography top non-secret

    CERN Document Server

    Khalatnikov, Isaak M

    2012-01-01

    The book is an expanded autobiography of the famous theoretical physicist Isaak Khalatnikov. He worked together with L.D. Landau at the Institute for Physical Problems lead by P.L. Kapitza. He is the co-author of L.D. Landau in a number of important works. They worked together in the frame of the so-called Nuclear Bomb Project. After the death of L.D. Landau, I.M. Khalatnikov initiated the establishment of the Institute for Theoretical Physics, named in honour of L.D. Landau, within the USSR Academy of Sciences. He headed this institute from the beginning as its Director. The institute inherited almost all traditions of the Landau scientific school and played a prominent role in the development of theoretical physics. So, this is a story about how the institute was created, how it worked, and about the life of the physicists in the "golden age" of the Soviet science. A separate chapter is devoted to today´s life of the institute and the young generation of physicists working now in science. It is an historic...

  7. The Coulomb law and atomic levels in a superstrong B

    Directory of Open Access Journals (Sweden)

    Vysotsky M.I.

    2014-04-01

    Full Text Available The spectrum of atomic levels of hydrogen-like ions originating from the lowest Landau level in an external homogeneous superstrong magnetic field is obtained. The influence of the screening of the Coulomb potential on the values of critical nuclear charges is studied.

  8. On the quantum Landau collision operator and electron collisions in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Daligault, Jérôme, E-mail: daligaul@lanl.gov [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2016-03-15

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  9. On the quantum Landau collision operator and electron collisions in dense plasmas

    Science.gov (United States)

    Daligault, Jérôme

    2016-03-01

    The quantum Landau collision operator, which extends the widely used Landau/Fokker-Planck collision operator to include quantum statistical effects, is discussed. The quantum extension can serve as a reference model for including electron collisions in non-equilibrium dense plasmas, in which the quantum nature of electrons cannot be neglected. In this paper, the properties of the Landau collision operator that have been useful in traditional plasma kinetic theory and plasma transport theory are extended to the quantum case. We outline basic properties in connection with the conservation laws, the H-theorem, and the global and local equilibrium distributions. We discuss the Fokker-Planck form of the operator in terms of three potentials that extend the usual two Rosenbluth potentials. We establish practical closed-form expressions for these potentials under local thermal equilibrium conditions in terms of Fermi-Dirac and Bose-Einstein integrals. We study the properties of linearized quantum Landau operator, and extend two popular approximations used in plasma physics to include collisions in kinetic simulations. We apply the quantum Landau operator to the classic test-particle problem to illustrate the physical effects embodied in the quantum extension. We present useful closed-form expressions for the electron-ion momentum and energy transfer rates. Throughout the paper, similarities and differences between the quantum and classical Landau collision operators are emphasized.

  10. Cyclotron resonance in InAs/AlSb quantum wells in magnetic fields up to 45 T

    Energy Technology Data Exchange (ETDEWEB)

    Spirin, K. E., E-mail: spirink@ipmras.ru; Krishtopenko, S. S. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Sadofyev, Yu. G. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Drachenko, O. [Laboratoire National des Champs Magn’etiques Intenses (France); Helm, M. [Forschungszentrum Dresden–Rossendorf, Dresden High-Magnetic-Field Laboratory and Institute of Ion-Beam Physics and Materials Research (Germany); Teppe, F.; Knap, W. [GIS-TERALAB Universite Montpellier II, Laboratoire Charles Coulomb UMR CNRS 5221 (L2C) (France); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-12-15

    Electron cyclotron resonance in InAs/AlSb heterostructures with quantum wells of various widths in pulsed magnetic fields up to 45 T are investigated. Our experimental cyclotron energies are in satisfactory agreement with the results of theoretical calculations performed using the eight-band kp Hamiltonian. The shift of the cyclotron resonance (CR) line, which corresponds to the transition from the lowest Landau level to the low magnetic-field region, is found upon varying the electron concentration due to the negative persistent photoconductivity effect. It is shown that the observed shift of the CR lines is associated with the finite width of the density of states at the Landau levels.

  11. Design of an rf quadrupole for Landau damping

    Directory of Open Access Journals (Sweden)

    K. Papke

    2017-08-01

    Full Text Available The recently proposed superconducting quadrupole resonator for Landau damping in accelerators is subjected to a detailed design study. The optimization process of two different cavity types is presented following the requirements of the High Luminosity Large Hadron Collider (HL-LHC with the main focus on quadrupolar strength, surface peak fields, and impedance. The lower order and higher order mode (LOM and HOM spectrum of the optimized cavities is investigated and different approaches for their damping are proposed. On the basis of an example the first two higher order multipole errors are calculated. Likewise on this example the required rf power and optimal external quality factor for the input coupler is derived.

  12. Exact Quantization of the Even-Denominator Fractional Quantum Hall State at ν =5/2 Landau Level Filling Factor

    International Nuclear Information System (INIS)

    Pan, W.; Tsui, D.C.; Pan, W.; Xia, J.; Shvarts, V.; Adams, D.E.; Xia, J.; Shvarts, V.; Adams, D.E.; Stormer, H.L.; Stormer, H.L.; Pfeiffer, L.N.; Baldwin, K.W.; West, K.W.

    1999-01-01

    We report ultralow temperature experiments on the obscure fractional quantum Hall effect at Landau level filling factor ν=5/2 in a very high-mobility specimen of μ=1.7x10 7 cm 2 /V s . We achieve an electron temperature as low as ∼4 mK , where we observe vanishing R xx and, for the first time, a quantized Hall resistance, R xy =h/(5/2)e 2 to within 2ppm. R xy at the neighboring odd-denominator states ν=7/3 and 8/3 is also quantized. The temperature dependences of the R xx minima at these fractional fillings yield activation energy gaps Δ 5/2 =0.11 , Δ 7/3 =0.10 , and Δ 8/3 =0.055 K . copyright 1999 The American Physical Society

  13. New Wang-Landau approach to obtain phase diagrams for multicomponent alloys

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2017-10-01

    We develop an approach to apply the Wang-Landau algorithm to multicomponent alloys in a semi-grand-canonical ensemble. Although the Wang-Landau algorithm has great advantages over conventional sampling methods, there are few applications to alloys. This is because calculating compositions in a semi-grand-canonical ensemble via the Wang-Landau algorithm requires a multidimensional density of states in terms of total energy and compositions, and constructing it is difficult from the viewpoints of both implementation and computational cost. In this study, we develop a simple approach to calculate the alloy phase diagram based on the Wang-Landau algorithm, and show that a number of one-dimensional densities of states could lead to compositions in a semi-grand-canonical ensemble as a multidimensional density of states could. Finally, we apply the present method to Cu-Au and Pd-Rh alloys and confirm that the present method successfully describes the phase diagram with high efficiency, validity, and accuracy.

  14. Non perturbative analysis of an N=2 Landau-Ginsburg model

    International Nuclear Information System (INIS)

    Leaf Herrmann, W.A.

    1993-01-01

    We analyze the topological sector of an N=2 Landau-Ginsburg model using nonperturbative methods. In particular, we study the renormalization group flow between two superconformal minimal models, numerically compute the correlation functions along this trajectory, and compare the results to semi-classical calculations. We also study some aspects of arbitrary supersymmetric perturbations of the Landau-Ginsburg model. 20 refs, 4 figs

  15. Generalized Landau-Lifshitz models on the interval

    International Nuclear Information System (INIS)

    Doikou, Anastasia; Karaiskos, Nikos

    2011-01-01

    We study the classical generalized gl n Landau-Lifshitz (L-L) model with special boundary conditions that preserve integrability. We explicitly derive the first non-trivial local integral of motion, which corresponds to the boundary Hamiltonian for the sl 2 L-L model. Novel expressions of the modified Lax pairs associated to the integrals of motion are also extracted. The relevant equations of motion with the corresponding boundary conditions are determined. Dynamical integrable boundary conditions are also examined within this spirit. Then the generalized isotropic and anisotropic gl n Landau-Lifshitz models are considered, and novel expressions of the boundary Hamiltonians and the relevant equations of motion and boundary conditions are derived.

  16. Dynamics of Coulomb correlations in semiconductors in high magnetic fields

    International Nuclear Information System (INIS)

    Fromer, Neil Alan

    2002-01-01

    Current theories have been successful in explaining many nonlinear optical experiments in undoped semiconductors. However, these theories require a ground state which is assumed to be uncorrelated. Strongly correlated systems of current interest, such as a two dimensional electron gas in a high magnetic field, cannot be explained in this manner because the correlations in the ground state and the low energy collective excitations cause a breakdown of the conventional techniques. We perform ultrafast time-resolved four-wave mixing on $n$-modulation doped quantum wells, which contain a quasi-two dimensional electron gas, in a large magnetic field, when only a single Landau level is excited and also when two levels are excited together. We find evidence for memory effects and as strong coupling between the Landau levels induced by the electron gas. We compare our results with simulations based on a new microscopic approach capable of treating the collective effects and correlations of the doped electrons, and find a good qualitative agreement. By looking at the individual contributions to the model, we determine that the unusual correlation effects seen in the experiments are caused by the scattering of photo-excited electron-hole pairs with the electron gas, leading to new excited states which are not present in undoped semiconductors, and also by exciton-exciton interactions mediated by the long-lived collective excitations of the electron gas, inter-Landau level magnetoplasmons

  17. Landau-Ginzburg Limit of Black Hole's Quantum Portrait: Self Similarity and Critical Exponent

    CERN Document Server

    Dvali, Gia

    2012-01-01

    Recently we have suggested that the microscopic quantum description of a black hole is an overpacked self-sustained Bose-condensate of N weakly-interacting soft gravitons, which obeys the rules of 't Hooft's large-N physics. In this note we derive an effective Landau-Ginzburg Lagrangian for the condensate and show that it becomes an exact description in a semi-classical limit that serves as the black hole analog of 't Hooft's planar limit. The role of a weakly-coupled Landau-Ginzburg order parameter is played by N. This description consistently reproduces the known properties of black holes in semi-classical limit. Hawking radiation, as the quantum depletion of the condensate, is described by the slow-roll of the field N. In the semiclassical limit, where black holes of arbitrarily small size are allowed, the equation of depletion is self similar leading to a scaling law for the black hole size with critical exponent 1/3.

  18. Landau degeneracy and black hole entropy

    International Nuclear Information System (INIS)

    Costa, M.S.; Perry, M.J.

    1998-01-01

    We consider the supergravity solution describing a configuration of intersecting D4-branes with non-vanishing world-volume gauge fields. The entropy of such a black hole is calculated in terms of the D-branes quantised charges. The non-extreme solution is also considered and the corresponding thermodynamical quantities are calculated in terms of a D-brane/anti-D-brane system. To perform the quantum mechanical D-brane analysis we study open strings with their ends on branes with a magnetic condensate. Applying the results to our D-brane system we manage to have a perfect agreement between the D-brane entropy counting and the corresponding semi-classical result. The Landau degeneracy of the open string states describing the excitations of the D-brane system enters in a crucial way. We also derive the near-extreme results which agree with the semi-classical calculations. (orig.)

  19. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Science.gov (United States)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  20. Ginsburg-Landau theory of two antagonistic order parameters: magnetism and superconductivity

    International Nuclear Information System (INIS)

    Suhl, H.

    1978-01-01

    An attempt is made to construct a Ginsburg-Landau theory of so-called magnetic superconductors. Two order parameters, the magnetization field and the gap function, are introduced in such a way as to inhibit each others growth. It is found that the non-local character of the superconducting order parameter must be taken into account in any evaluation of effects of the critical magnetic fluctuations. Some predictions are made within the limits of Ornstein-Zoernicke-like fluctuation theory and some comparison is made with available data. (Auth.)

  1. Thirty years of the Landau Institute selected papers

    CERN Document Server

    Khalatnikov, I M

    1996-01-01

    The Landau Institute for Theoretical Physics was created in 1965 by a group of LD Landau's pupils. Very soon, it was widely recognized as one of the world's leading centers in theoretical physics. According to Science Magazine, the Institute in the eighties had the highest citation index among all the scientific organizations in the former Soviet Union. This collection of the best papers of the Institute reflects the development of the many directions in the exact sciences during the last 30 years. The reader can find the original formulations of well-known notions in condensed matter theory,

  2. Landau retardation on the occurrence scattering time in quantum electron–hole plasmas

    International Nuclear Information System (INIS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2016-01-01

    The Landau damping effects on the occurrence scattering time in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Shukla–Stenflo–Bingham effective potential model is employed to obtain the occurrence scattering time in a quantum electron–hole plasma. The result shows that the influence of Landau damping produces the imaginary term in the scattering amplitude. It is then found that the Landau damping generates the retardation effect on the occurrence scattering time. It is found that the occurrence scattering time increases in forward scattering domains and decreases in backward scattering domains with an increase of the Landau parameter. It is also found that the occurrence scattering time decreases with increasing collision energy. In addition, it is found that the quantum shielding effect enhances the occurrence scattering time in the forward scattering and, however, suppresses the occurrence scattering time in the backward scattering. - Highlights: • The Landau damping effects on the occurrence scattering time are investigated in a quantum electron–hole plasma. • The Shukla–Stenflo–Bingham potential model is employed to obtain the occurrence scattering time in quantum plasmas. • The influence of quantum shielding on the occurrence scattering time is discussed.

  3. Landau Damping of the Weak Head-Tail Instability at Tevatron

    CERN Document Server

    Ivanov, Petr M; Annala, Jerry; Lebedev, Valeri; Shiltsev, Vladimir

    2005-01-01

    Landau damping of the head-tail modes in Tevatron beam with the help of octupole-generated betatron tune spreads permits to reduce chromaticity from 15-20 units to zero thus significantly improving the beam lifetime. The octupole strengths have been experimentally optimized at different stages of the Tevatron operation, from proton injection to collision. Predictions of the analytical Landau damping model are compared with the experimental results.

  4. Thermoelectric Transport Signatures of Dirac Composite Fermions in the Half-Filled Landau Level

    Science.gov (United States)

    Potter, Andrew C.; Serbyn, Maksym; Vishwanath, Ashvin

    2016-07-01

    The half-filled Landau level is expected to be approximately particle-hole symmetric, which requires an extension of the Halperin-Lee-Read (HLR) theory of the compressible state observed at this filling. Recent work indicates that, when particle-hole symmetry is preserved, the composite fermions experience a quantized π -Berry phase upon winding around the composite Fermi surface, analogous to Dirac fermions at the surface of a 3D topological insulator. In contrast, the effective low-energy theory of the composite fermion liquid originally proposed by HLR lacks particle-hole symmetry and has vanishing Berry phase. In this paper, we explain how thermoelectric transport measurements can be used to test the Dirac nature of the composite fermions by quantitatively extracting this Berry phase. First, we point out that longitudinal thermopower (Seebeck effect) is nonvanishing because of the unusual nature of particle-hole symmetry in this context and is not sensitive to the Berry phase. In contrast, we find that off-diagonal thermopower (Nernst effect) is directly related to the topological structure of the composite Fermi surface, vanishing for zero Berry phase and taking its maximal value for π Berry phase. In contrast, in purely electrical transport signatures, the Berry phase contributions appear as small corrections to a large background signal, making the Nernst effect a promising diagnostic of the Dirac nature of composite fermions.

  5. Measurements of the superconducting fluctuations in optimally doped BaFe2−xNixAs2 under high magnetic fields: probing the 3D-anisotropic Ginzburg–Landau approach

    International Nuclear Information System (INIS)

    Rey, R I; Ramos-Álvarez, A; Carballeira, C; Mosqueira, J; Vidal, F; Salem-Sugui, S Jr.; Alvarenga, A D; Zhang, Rui; Luo, Huiqian

    2014-01-01

    The superconducting fluctuations well inside the normal state of Fe-based superconductors were experimentally studied through the in-plane paraconductivity in several high-quality, optimally doped BaFe 2−x Ni x As 2 crystals. These measurements were performed in magnetic fields with amplitudes up to 14 T, and different orientations relative to the c-axis of the crystals (θ=0 ∘ , 53 ∘ , and 90 ∘ ). The results allowed a stringent check of the applicability of a recently proposed Ginzburg–Landau approach for the fluctuating electrical conductivity of three-dimensional (3D) anisotropic materials in the presence of finite applied magnetic fields. (papers)

  6. On Landau Scenario of Chaotization for Beam Distribution

    International Nuclear Information System (INIS)

    Parsa, Z.; Zadorozhny, V.

    1999-01-01

    We examine a problem in nonlinear dynamics in which both regular and chaotic motions are possible. Thus we deal with some of the fundamental theoretical problem of accelerator physics, mathematics theory of dynamical systems, and other fields of physics. The focus is on the appearance of chaos in a beam distribution. A study of the problem is based on two observations. The First observation is that using Lyapunov method and its extension we obtain solutions of partial differential equations. Using this approach we discuss the problem of finding a solution of Vlasov-Poisson equation, i.e., some stationary solution where we consider magnetic field as some disturbance with a small parameter. Thus the solution of Vlasov equation yields an asymptotic series such that the solution of Vlasov-Poisson equation is the basis solution for one. The second observation is that physical chaos is weakly limit of, well known, the Landau bifurcation's. This fact we have proved using ideas on the Nature of Turbulence

  7. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    International Nuclear Information System (INIS)

    Misguich, J.H.

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation

  8. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Energy Technology Data Exchange (ETDEWEB)

    Misguich, J.H

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.

  9. Collisional spin-oriented Sherman function in electron-hole semiconductor plasmas: Landau damping effect

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-04-01

    The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.

  10. Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory

    Energy Technology Data Exchange (ETDEWEB)

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence RI 02912 (United States)

    2016-03-14

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N=4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. We observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  11. Landau singularities and symbology: one- and two-loop MHV amplitudes in SYM theory

    International Nuclear Information System (INIS)

    Dennen, Tristan; Spradlin, Marcus; Volovich, Anastasia

    2016-01-01

    We apply the Landau equations, whose solutions parameterize the locus of possible branch points, to the one- and two-loop Feynman integrals relevant to MHV amplitudes in planar N=4 super-Yang-Mills theory. We then identify which of the Landau singularities appear in the symbols of the amplitudes, and which do not. We observe that all of the symbol entries in the two-loop MHV amplitudes are already present as Landau singularities of one-loop pentagon integrals.

  12. Landau-Ginzburg Orbifolds, Mirror Symmetry and the Elliptic Genus

    OpenAIRE

    Berglund, P.; Henningson, M.

    1994-01-01

    We compute the elliptic genus for arbitrary two dimensional $N=2$ Landau-Ginzburg orbifolds. This is used to search for possible mirror pairs of such models. We show that if two Landau-Ginzburg models are conjugate to each other in a certain sense, then to every orbifold of the first theory corresponds an orbifold of the second theory with the same elliptic genus (up to a sign) and with the roles of the chiral and anti-chiral rings interchanged. These orbifolds thus constitute a possible mirr...

  13. Holography with a Landau pole

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Antón F. [Departament de Física Quántica i Astrofísica and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain); Mateos, David [Departament de Física Quántica i Astrofísica and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, ES-08010, Barcelona (Spain); Pantelidou, Christiana [Departament de Física Quántica i Astrofísica and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona (Spain); Tarrío, Javier [Physique Théorique et Mathématique, Université Libre de Bruxelles (ULB), and International Solvay Institutes, Campus de la Plaine CP 231, B-1050, Brussels (Belgium)

    2017-02-08

    Holography for UV-incomplete gauge theories is important but poorly understood. A paradigmatic example is d=4, N=4 super Yang-Mills coupled to N{sub f} quark flavors, which possesses a Landau pole at a UV scale Λ{sub LP}. The dual gravity solution exhibits a UV singularity at a finite proper distance along the holographic direction. Despite this, holographic renormalization can be fully implemented via analytic continuation to an AdS solution. The presence of a UV cut-off manifests itself in several interesting ways. At energies E≪Λ{sub LP} no pathologies appear, as expected from effective field theory. In contrast, at scales E≲Λ{sub LP} the gravitational potential becomes repulsive, and at temperatures T≲Λ{sub LP} the specific heat becomes negative. Although we focus on N=4 super Yang-Mills with flavor, our qualitative results apply to a much more general class of theories, since they only depend on the fact that the metric near the UV singularity is a hyper-scaling violating metric with exponent θ>d−1.

  14. Holography with a Landau pole

    International Nuclear Information System (INIS)

    Faedo, Antón F.; Mateos, David; Pantelidou, Christiana; Tarrío, Javier

    2017-01-01

    Holography for UV-incomplete gauge theories is important but poorly understood. A paradigmatic example is d=4, N=4 super Yang-Mills coupled to N f quark flavors, which possesses a Landau pole at a UV scale Λ LP . The dual gravity solution exhibits a UV singularity at a finite proper distance along the holographic direction. Despite this, holographic renormalization can be fully implemented via analytic continuation to an AdS solution. The presence of a UV cut-off manifests itself in several interesting ways. At energies E≪Λ LP no pathologies appear, as expected from effective field theory. In contrast, at scales E≲Λ LP the gravitational potential becomes repulsive, and at temperatures T≲Λ LP the specific heat becomes negative. Although we focus on N=4 super Yang-Mills with flavor, our qualitative results apply to a much more general class of theories, since they only depend on the fact that the metric near the UV singularity is a hyper-scaling violating metric with exponent θ>d−1.

  15. Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2005-01-01

    In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)

  16. Critical Landau Velocity in Helium Nanodroplets

    NARCIS (Netherlands)

    Brauer, N.B.; Smolarek, S.; Loginov, E.; Mateo, D.; Hernando, A.; Pi, M.; Barranco, M.; Buma, W.J.; Drabbels, M.

    2013-01-01

    The best-known property of superfluid helium is the vanishing viscosity that objects experience while moving through the liquid with speeds below the so-called critical Landau velocity. This critical velocity is generally considered a macroscopic property as it is related to the collective

  17. Disordered λ φ4+ρ φ6 Landau-Ginzburg model

    Science.gov (United States)

    Diaz, R. Acosta; Svaiter, N. F.; Krein, G.; Zarro, C. A. D.

    2018-03-01

    We discuss a disordered λ φ4+ρ φ6 Landau-Ginzburg model defined in a d -dimensional space. First we adopt the standard procedure of averaging the disorder-dependent free energy of the model. The dominant contribution to this quantity is represented by a series of the replica partition functions of the system. Next, using the replica-symmetry ansatz in the saddle-point equations, we prove that the average free energy represents a system with multiple ground states with different order parameters. For low temperatures we show the presence of metastable equilibrium states for some replica fields for a range of values of the physical parameters. Finally, going beyond the mean-field approximation, the one-loop renormalization of this model is performed, in the leading-order replica partition function.

  18. Dispersion relation and Landau damping of waves in high-energy density plasmas

    International Nuclear Information System (INIS)

    Zhu Jun; Ji Peiyong

    2012-01-01

    We present a theoretical investigation on the propagation of electromagnetic waves and electron plasma waves in high energy density plasmas using the covariant Wigner function approach. Based on the covariant Wigner function and Dirac equation, a relativistic quantum kinetic model is established to describe the physical processes in high-energy density plasmas. With the zero-temperature Fermi–Dirac distribution, the dispersion relation and Landau damping of waves containing the relativistic quantum corrected terms are derived. The relativistic quantum corrections to the dispersion relation and Landau damping are analyzed by comparing our results with those obtained in classical and non-relativistic quantum plasmas. We provide a detailed discussion on the Landau damping obtained in classical plasmas, non-relativistic Fermi plasmas and relativistic Fermi plasmas. The contributions of the Bohm potential, the Fermi statistics pressure and relativistic effects to the dispersion relation and Landau damping of waves are quantitatively calculated with real plasma parameters. (paper)

  19. A Fokker-Planck-Landau collision equation solver on two-dimensional velocity grid and its application to particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, E. S.; Chang, C. S., E-mail: cschang@pppl.gov [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Korea Advanced Institute of Science and Technology, Yuseong-gu, DaeJeon 305-701 (Korea, Republic of)

    2014-03-15

    An approximate two-dimensional solver of the nonlinear Fokker-Planck-Landau collision operator has been developed using the assumption that the particle probability distribution function is independent of gyroangle in the limit of strong magnetic field. The isotropic one-dimensional scheme developed for nonlinear Fokker-Planck-Landau equation by Buet and Cordier [J. Comput. Phys. 179, 43 (2002)] and for linear Fokker-Planck-Landau equation by Chang and Cooper [J. Comput. Phys. 6, 1 (1970)] have been modified and extended to two-dimensional nonlinear equation. In addition, a method is suggested to apply the new velocity-grid based collision solver to Lagrangian particle-in-cell simulation by adjusting the weights of marker particles and is applied to a five dimensional particle-in-cell code to calculate the neoclassical ion thermal conductivity in a tokamak plasma. Error verifications show practical aspects of the present scheme for both grid-based and particle-based kinetic codes.

  20. Generalized Landau-Lifshitz-Gilbert equation for uniformly magnetized bodies

    Energy Technology Data Exchange (ETDEWEB)

    Serpico, C. [Dipartimento di Ingegneria Elettrica, Universita di Napoli ' FedericoII' , Via Claudio 21, I-80125 Naples (Italy)], E-mail: serpico@unina.it; Mayergoyz, I.D. [ECE Department and UMIACS, University of Maryland, College Park, MD 20742 (United States); Bertotti, G. [Istituto Nazionale di Ricerca Metrologica (INRiM), I-10135 Turin (Italy); D' Aquino, M. [Dipartimento per le Tecnologie, University of Napoli ' Parthenope' , I-80133 Naples (Italy); Bonin, R. [Istituto Nazionale di Ricerca Metrologica (INRiM), I-10135 Turin (Italy)

    2008-02-01

    We consider generalized Landau-Lifshitz-Gilbert (LLG) deterministic dynamics in uniformly magnetized bodies. The dynamics take place on the unit sphere {sigma}, and are characterized by a vector field v tangential to {sigma}. By using Helmholtz decomposition on {sigma}, it is proven that v is uniquely defined by two potentials {chi} and {psi}. Potential {chi} can be identified with the free energy of the system, while {psi} describes non-conservative interactions of the system with the environment. The presence of {psi} modifies the usual energy balance of LLG dynamics. Instead of purely relaxation dynamics we may have steady injection of energy through non-conservative interactions. The implications of the new form of the energy balance are discussed in detail.

  1. Renormalization group equations and the Lifshitz point in noncommutative Landau-Ginsburg theory

    International Nuclear Information System (INIS)

    Chen, G.-H.; Wu, Y.-S.

    2002-01-01

    A one-loop renormalization group (RG) analysis is performed for noncommutative Landau-Ginsburg theory in an arbitrary dimension. We adopt a modern version of the Wilsonian RG approach, in which a shell integration in momentum space bypasses the potential IR singularities due to UV-IR mixing. The momentum-dependent trigonometric factors in interaction vertices, characteristic of noncommutative geometry, are marginal under RG transformations, and their marginality is preserved at one loop. A negative Θ-dependent anomalous dimension is discovered as a novel effect of the UV-IR mixing. We also found a noncommutative Wilson-Fisher (NCWF) fixed point in less than four dimensions. At large noncommutativity, a momentum space instability is induced by quantum fluctuations, and a consequential first-order phase transition is identified together with a Lifshitz point in the phase diagram. In the vicinity of the Lifshitz point, we introduce two critical exponents ν m and β k , whose values are determined to be 1/4 and 1/2, respectively, at mean-field level

  2. The Landau-Lifshitz equation of the ferromagnetic spin chain and harmonic maps

    International Nuclear Information System (INIS)

    Guo Boling; Hong Minchun.

    1992-05-01

    We prove a global existence of solutions for the Landau-Lifshitz equation of the ferromagnetic spin chain from an m-dimensional manifold M into the unit sphere S 2 of R 3 and establish some new links between harmonic maps and the solutions of the Landau-Lifshitz equation. (author). 25 refs

  3. Electric field-induced valley degeneracy lifting in uniaxial strained graphene: Evidence from magnetophonon resonance

    Science.gov (United States)

    Assili, Mohamed; Haddad, Sonia; Kang, Woun

    2015-03-01

    A double peak structure in the magnetophonon resonance (MPR) spectrum of uniaxial strained graphene, under crossed electric and magnetic fields, is predicted. We focus on the Γ point optical phonon modes coupled to the inter-Landau level transitions 0 ⇆±1 where MPR is expected to be more pronounced at high magnetic field. We derive the frequency shifts and the broadenings of the longitudinal and transverse optical phonon modes taking into account the effect of the strain modified electronic spectrum on the electron-phonon coupling. We show that the MPR line for a given phonon mode acquires a double peak structure originating from the twofold valley degeneracy lifting. The latter is due to the different Landau level spacings in the two Dirac valleys resulting from the simultaneous action of the inplane electric field and the strain-induced Dirac cone tilt. We discuss the role of some key parameters such as disorder, strain, doping, and electric field amplitude on the emergence of the double peak structure.

  4. ENERGY DISSIPATION AND LANDAU DAMPING IN TWO- AND THREE-DIMENSIONAL PLASMA TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tak Chu; Howes, Gregory G. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Klein, Kristopher G. [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States); TenBarge, Jason M. [IREAP, University of Maryland, College Park, MD 20742 (United States)

    2016-12-01

    Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of the linear Landau damping of Alfvén waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively, the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.

  5. Dual Ginzburg-Landau theory and quark nuclear physics

    International Nuclear Information System (INIS)

    Toki, H.; Suganuma, H.; Ichie, H.; Monden, H.; Umisedo, S.

    1998-01-01

    In quark nuclear physics (QNP), where hadrons and nuclei are described in terms of quarks and gluons, confinement and chiral symmetry breaking are the most fundamental phenomena. The dual Ginzburg-Landau (DGL) theory, which contains monopole fields as the most essential degrees of freedom and their condensation in the vacuum, is able to describe both phenomena. We discuss also the recovery of the chiral symmetry and the deconfinement phase transition at finite temperature in the DGL theory. As for the connection to QCD, we study the instanton configurations in the abelian gauge a la 't Hooft. We find a close connection between instantons and QCD monopoles. We demonstrate also the signature of confinement as the appearance of long monopole trajectories in the MA gauge for the case of dense instanton configurations. (orig.)

  6. Robust control problems of vortex dynamics in superconducting films with Ginzburg-Landau complex systems

    OpenAIRE

    Belmiloudi, Aziz

    2006-01-01

    We formulate and study robust control problems for a two-dimensional time-dependent Ginzburg-Landau model with Robin boundary conditions on phase-field parameter, which describes the phase transitions taking place in superconductor films with variable thickness. The objective of such study is to control the motion of vortices in the superconductor films by taking into account the influence of noises in data. Firstly, we introduce the perturbation problem of the nonlinear ...

  7. Symmetry breaking in Landau gauge. A comment to a paper by T. Kennedy and C. King

    International Nuclear Information System (INIS)

    Borgs, C.; Nill, F.

    1986-01-01

    The authors generalize the result of T. Kennedy and C. King (Princeton preprint, 1985) on the non-compact abelian lattice Higgs model in Landau gauge in order to show that there are states parameterized by an angle such that the expectation value of the Higgs field is described by a phase factor and a value which is uniformly bounded away from zero. (HSI)

  8. Efficient solution of 3D Ginzburg-Landau problem for mesoscopic superconductors

    International Nuclear Information System (INIS)

    Pereira, Paulo J; Moshchalkov, Victor V; Chibotaru, Liviu F

    2014-01-01

    The recently proposed approach for the solution of Ginzburg-Landau (GL) problem for 2D samples of arbitrary shape is, in this article, extended over 3D samples having the shape of (i) a prism with arbitrary base and (ii) a solid of revolution with arbitrary profile. Starting from the set of Laplace operator eigenfunctions of a 2D object, we construct an approximation to or the exact eigenfunctions of the Laplace operator of a 3D structure by applying an extrusion or revolution to these solutions. This set of functions is used as the basis to construct the solutions of the linearized GL equation. These solutions are then used as basis for the non-linear GL equation much like the famous LCAO method. To solve the non-linear equation, we used the Newton-Raphson method starting from the solution of the linear equation, i.e., the nucleation distribution of superconducting condensate. The vector potential approximations typically used in 2D cases, i.e., considering it as corresponding to applied constant field, are in the 3D case harder to justify. For that reason, we use a locally corrected Nystrom method to solve the second Ginzburg-Landau equation. The complete solution of GL problem is then achieved by solving self-consistently both equations

  9. Nonlinear stability of source defects in the complex Ginzburg–Landau equation

    International Nuclear Information System (INIS)

    Beck, Margaret; Nguyen, Toan T; Sandstede, Björn; Zumbrun, Kevin

    2014-01-01

    In an appropriate moving coordinate frame, source defects are time-periodic solutions to reaction–diffusion equations that are spatially asymptotic to spatially periodic wave trains whose group velocities point away from the core of the defect. In this paper, we rigorously establish nonlinear stability of spectrally stable source defects in the complex Ginzburg–Landau equation. Due to the outward transport at the far field, localized perturbations may lead to a highly non-localized response even on the linear level. To overcome this, we first investigate in detail the dynamics of the solution to the linearized equation. This allows us to determine an approximate solution that satisfies the full equation up to and including quadratic terms in the nonlinearity. This approximation utilizes the fact that the non-localized phase response, resulting from the embedded zero eigenvalues, can be captured, to leading order, by the nonlinear Burgers equation. The analysis is completed by obtaining detailed estimates for the resolvent kernel and pointwise estimates for Green's function, which allow one to close a nonlinear iteration scheme. (paper)

  10. Weak coupling polaron and Landau-Zener scenario: Qubits modeling

    Science.gov (United States)

    Jipdi, M. N.; Tchoffo, M.; Fokou, I. F.; Fai, L. C.; Ateuafack, M. E.

    2017-06-01

    The paper presents a weak coupling polaron in a spherical dot with magnetic impurities and investigates conditions for which the system mimics a qubit. Particularly, the work focuses on the Landau-Zener (LZ) scenario undergone by the polaron and derives transition coefficients (transition probabilities) as well as selection rules for polaron's transitions. It is proven that, the magnetic impurities drive the polaron to a two-state superposition leading to a qubit structure. We also showed that the symmetry deficiency induced by the magnetic impurities (strong magnetic field) yields to the banishment of transition coefficients with non-stacking states. However, the transition coefficients revived for large confinement frequency (or weak magnetic field) with the orbital quantum numbers escorting transitions. The polaron is then shown to map a qubit independently of the number of relevant states with the transition coefficients lifted as LZ probabilities and given as a function of the electron-phonon coupling constant (Fröhlich constant).

  11. Level shifts induced by a short-range potential

    International Nuclear Information System (INIS)

    Karnakov, B.M.; Mur, V.D.

    1984-01-01

    Formulas are derived which express the shifts of levels with energies Esub(n)sup((0)) << rsub(c)sup(-2) in a field Vsub(f)(r) induced by a short-range potential U(r) of radius rsub(c) in terms of the low energy scattering parameters (scattering length and effective radius) with a moment l in the potential. If the interaction between the particle and center is nonresonant, the method developed is identical to perturbation theory on the scattering length. The theory is extended to systems with random degeneracy (Vsub(f) is the Coulomb potential). Formulas describing quasi-intersection of terms are obtained for the case of resonance interaction with the center in a partial wave with l not equal to 0 when energetically close levels are present in both U and Vsub(f). Some features of the level shift are mentioned for the case when the level possesses an anomalously small coupling energy and its coresponding wave function becomes delocalized with decrease of the coupling energy to zero. The problem is discussed of the level shift when the potential Vsub(f) is a potential well surrounded by a weaklyt penetrable barrier. Some applications of the theory to a particle in the field of two short-range potentials or in the field of a short-range and Coulomb centers are considered. Formulas are also obtained for the shifts and widths of the Landau levels and of the shallow level with an arbitrary moment which perturbs the Landau levels

  12. Landau levels on the hyperbolic plane

    International Nuclear Information System (INIS)

    Fakhri, H; Shariati, M

    2004-01-01

    The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength. (letter to the editor)

  13. Landau levels on the hyperbolic plane

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, H [Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran 19395-5531 (Iran, Islamic Republic of); Shariati, M [Department of Physics, Khajeh Nassir-Al-Deen Toosi University of Technology, Tehran 15418 (Iran, Islamic Republic of)

    2004-11-05

    The quantum states of a spinless charged particle on a hyperbolic plane in the presence of a uniform magnetic field with a generalized quantization condition are proved to be the bases of the irreducible Hilbert representation spaces of the Lie algebra u(1, 1). The dynamical symmetry group U(1, 1) with the explicit form of the Lie algebra generators is extracted. It is also shown that the energy has an infinite-fold degeneracy in each of the representation spaces which are allocated to the different values of the magnetic field strength. Based on the simultaneous shift of two parameters, it is also noted that the quantum states realize the representations of Lie algebra u(2) by shifting the magnetic field strength. (letter to the editor)

  14. A Landau fluid model for dissipative trapped electron modes

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths

  15. The Wang-Landau Sampling Algorithm

    Science.gov (United States)

    Landau, David P.

    2003-03-01

    Over the past several decades Monte Carlo simulations[1] have evolved into a powerful tool for the study of wide-ranging problems in statistical/condensed matter physics. Standard methods sample the probability distribution for the states of the system, usually in the canonical ensemble, and enormous improvements have been made in performance through the implementation of novel algorithms. Nonetheless, difficulties arise near phase transitions, either due to critical slowing down near 2nd order transitions or to metastability near 1st order transitions, thus limiting the applicability of the method. We shall describe a new and different Monte Carlo approach [2] that uses a random walk in energy space to determine the density of states directly. Once the density of states is estimated, all thermodynamic properties can be calculated at all temperatures. This approach can be extended to multi-dimensional parameter spaces and has already found use in classical models of interacting particles including systems with complex energy landscapes, e.g., spin glasses, protein folding models, etc., as well as for quantum models. 1. A Guide to Monte Carlo Simulations in Statistical Physics, D. P. Landau and K. Binder (Cambridge U. Press, Cambridge, 2000). 2. Fugao Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001); Phys. Rev. E64, 056101-1 (2001).

  16. Dynamical transitions in large systems of mean field-coupled Landau-Stuart oscillators: Extensive chaos and cluster states.

    Science.gov (United States)

    Ku, Wai Lim; Girvan, Michelle; Ott, Edward

    2015-12-01

    In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.

  17. Landau - Great scientist and teacher

    International Nuclear Information System (INIS)

    1968-01-01

    In 1962 a feeling of deep sadness was experienced by the whole scientific world when it was learned that L.D. Landau, one of the most distinguished physicists and teachers of the USSR, has been seriously injured in a road accident. All the resources of his own country and ready assistance from many others combined to save his life, but early this year the long fight to recover his faculties ended with his death. (author)

  18. The Landau-Placzek ratio for multicomponent fluids

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Laidlaw, W.G.

    1972-01-01

    Under the assumption that the coupling between the sound modes and modes associated with heat and mass diffusion can be neglected, an expression for the Landau-Placzek ratio for multicomponent fluids is derived using thermodynamic fluctuation theory. Applications of the general formula to ternary

  19. Microscopic Derivation of the Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Frank, Rupert; Hainzl, Christian; Seiringer, Robert

    2014-01-01

    We present a summary of our recent rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Close to the critical temperature, GL arises as an effective theory on the macroscopic scale. The relevant scaling limit...

  20. Symmetry of Uniaxial Global Landau--de Gennes Minimizers in the Theory of Nematic Liquid Crystals

    KAUST Repository

    Henao, Duvan; Majumdar, Apala

    2012-01-01

    We extend the recent radial symmetry results by Pisante [J. Funct. Anal., 260 (2011), pp. 892-905] and Millot and Pisante [J. Eur. Math. Soc. (JEMS), 12 (2010), pp. 1069- 1096] (who show that the equivariant solutions are the only entire solutions of the three-dimensional Ginzburg-Landau equations in superconductivity theory) to the Landau-de Gennes framework in the theory of nematic liquid crystals. In the low temperature limit, we obtain a characterization of global Landau-de Gennes minimizers, in the restricted class of uniaxial tensors, in terms of the well-known radial-hedgehog solution. We use this characterization to prove that global Landau-de Gennes minimizers cannot be purely uniaxial for sufficiently low temperatures. Copyright © by SIAM.

  1. Isoscalar giant resonances and Landau parameters with density-dependent effective interactions

    International Nuclear Information System (INIS)

    Kohno, Michio; Ando, Kazuhiko

    1979-01-01

    Discussion is given on the relations between the Landau parameters and the isoscalar giant (quadrupole- and monopole-) resonance energies by using general density-dependent interactions. In the limit of infinite nuclear matter, the isoscalar giant quadrupole energy is shown to depend not only on the effective mass but also on the Landau parameter F 2 . Collective energies of the isoscalar giant resonances are calculated for 16 O and 40 Ca with four different effective interactions, G-0, B1, SII and SV, by using the scaling- and constrained Hartree-Fock-methods. It is shown that the dependence of the collective energies on the effective interactions is essentially determined by the Landau parameters. The G-0 force is found to be most successful in reproducing the giant resonance energies. Validity of the RPA-moment theorems is examined for the case of local density-dependent interactions. (author)

  2. Indefinite-metric quantum field theory of general relativity, 2

    International Nuclear Information System (INIS)

    Nakanishi, Noboru

    1978-01-01

    The canonical commutation relations are analyzed in detail in the manifestly covariant quantum field theory of general relativity proposed previously. It is explicitly proved that the BRS charge is indeed the generator of the BRS transformation both in the Landau gauge and in the non-Landau one. The equivalence between the field equations and the Heisenberg equations is confirmed. (author)

  3. Landau damping in trapped Bose condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, B; Zaremba, E [Department of Physics, Queen' s University, Kingston, ON K7L 3N6 (Canada)

    2003-07-01

    We study Landau damping in dilute Bose-Einstein condensed gases in both spherical and prolate ellipsoidal harmonic traps. We solve the Bogoliubov equations for the mode spectrum in both of these cases, and calculate the damping by summing over transitions between excited quasiparticle states. The results for the spherical case are compared to those obtained in the Hartree-Fock (HF) approximation, where the excitations take on a single-particle character, and excellent agreement between the two approaches is found. We have also taken the semiclassical limit of the HF approximation and obtain a novel expression for the Landau damping rate involving the time-dependent self-diffusion function of the thermal cloud. As a final approach, we study the decay of a condensate mode by making use of dynamical simulations in which both the condensate and thermal cloud are evolved explicitly as a function of time. A detailed comparison of all these methods over a wide range of sample sizes and trap geometries is presented.

  4. A fast non-Fourier method for Landau-fluid operators

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A. M., E-mail: dimits1@llnl.gov; Joseph, I.; Umansky, M. V. [Lawrence Livermore National Laboratory, L-637, P.O. Box 808, Livermore, California 94511-0808 (United States)

    2014-05-15

    An efficient and versatile non-Fourier method for the computation of Landau-fluid (LF) closure operators [Hammett and Perkins, Phys. Rev. Lett. 64, 3019 (1990)] is presented, based on an approximation by a sum of modified-Helmholtz-equation solves (SMHS) in configuration space. This method can yield fast-Fourier-like scaling of the computational time requirements and also provides a very compact data representation of these operators, even for plasmas with large spatial nonuniformity. As a result, the method can give significant savings compared with direct application of “delocalization kernels” [e.g., Schurtz et al., Phys. Plasmas 7, 4238 (2000)], both in terms of computational cost and memory requirements. The method is of interest for the implementation of Landau-fluid models in situations where the spatial nonuniformity, particular geometry, or boundary conditions render a Fourier implementation difficult or impossible. Systematic procedures have been developed to optimize the resulting operators for accuracy and computational cost. The four-moment Landau-fluid model of Hammett and Perkins has been implemented in the BOUT++ code using the SMHS method for LF closure. Excellent agreement has been obtained for the one-dimensional plasma density response function between driven initial-value calculations using this BOUT++ implementation and matrix eigenvalue calculations using both Fourier and SMHS non-Fourier implementations of the LF closures. The SMHS method also forms the basis for the implementation, which has been carried out in the BOUT++ code, of the parallel and toroidal drift-resonance LF closures. The method is a key enabling tool for the extension of gyro-Landau-fluid models [e.g., Beer and Hammett, Phys. Plasmas 3, 4046 (1996)] to codes that treat regions with strong profile variation, such as the tokamak edge and scrapeoff-layer.

  5. Landau-de Gennes theory of surface-enhanced ordering in smectic films.

    Science.gov (United States)

    Shalaginov, A N; Sullivan, D E

    2001-03-01

    A Landau theory for surface-enhanced ordering in smectic-A free-standing films is described, based on a generalization of de Gennes' model for a "presmectic" fluid confined between two walls. According to the theory, smectic ordering in free-standing films heated above the bulk smectic melting temperature is due to an intrinsic surface contribution rather than an external field. The theory yields a persistent finite-size effect, in that the film melting temperatures do not tend to the bulk transition temperature in the limit of infinite film thickness. It also predicts that a continuous transition from (N+1)- to N-layer films is impossible without an external field. The theory closely fits existing experimental data on layer-thinning transitions in compounds which exhibit a bulk smectic-A to nematic phase transition. Possible origins of the intrinsic surface contribution are discussed.

  6. Landau damping effects on collision-induced quantum interference in electron-hole plasmas

    International Nuclear Information System (INIS)

    Hwa-Min, Kim; Young-Dae, Jung

    2007-01-01

    The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle θ L = π/4. (authors)

  7. Landau damping effects on collision-induced quantum interference in electron-hole plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hwa-Min, Kim [Daegu Univ. Catholic, Dept. of Electronics Engineering (Korea, Republic of); Young-Dae, Jung [Hanyang Univ., Dept. of Applied Physics, Seoul (Korea, Republic of)

    2007-07-15

    The Landau damping effects on the quantum interference in electron collisions are investigated in a quantum plasma composed of electrons and holes. The Born method and the total spin states are considered to obtain the scattering cross-section by using the effective screened potential model. It is found that the Landau damping effects enhance the scattering cross-section, especially, near the scattering angle {theta}{sub L} = {pi}/4. (authors)

  8. Quenching oscillating behaviors in fractional coupled Stuart-Landau oscillators

    Science.gov (United States)

    Sun, Zhongkui; Xiao, Rui; Yang, Xiaoli; Xu, Wei

    2018-03-01

    Oscillation quenching has been widely studied during the past several decades in fields ranging from natural sciences to engineering, but investigations have so far been restricted to oscillators with an integer-order derivative. Here, we report the first study of amplitude death (AD) in fractional coupled Stuart-Landau oscillators with partial and/or complete conjugate couplings to explore oscillation quenching patterns and dynamics. It has been found that the fractional-order derivative impacts the AD state crucially. The area of the AD state increases along with the decrease of the fractional-order derivative. Furthermore, by introducing and adjusting a limiting feedback factor in coupling links, the AD state can be well tamed in fractional coupled oscillators. Hence, it provides one an effective approach to analyze and control the oscillating behaviors in fractional coupled oscillators.

  9. Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂.

    Science.gov (United States)

    Jeon, Sangjun; Zhou, Brian B; Gyenis, Andras; Feldman, Benjamin E; Kimchi, Itamar; Potter, Andrew C; Gibson, Quinn D; Cava, Robert J; Vishwanath, Ashvin; Yazdani, Ali

    2014-09-01

    Condensed-matter systems provide a rich setting to realize Dirac and Majorana fermionic excitations as well as the possibility to manipulate them for potential applications. It has recently been proposed that chiral, massless particles known as Weyl fermions can emerge in certain bulk materials or in topological insulator multilayers and give rise to unusual transport properties, such as charge pumping driven by a chiral anomaly. A pair of Weyl fermions protected by crystalline symmetry effectively forming a massless Dirac fermion has been predicted to appear as low-energy excitations in a number of materials termed three-dimensional Dirac semimetals. Here we report scanning tunnelling microscopy measurements at sub-kelvin temperatures and high magnetic fields on the II-V semiconductor Cd3As2. We probe this system down to atomic length scales, and show that defects mostly influence the valence band, consistent with the observation of ultrahigh-mobility carriers in the conduction band. By combining Landau level spectroscopy and quasiparticle interference, we distinguish a large spin-splitting of the conduction band in a magnetic field and its extended Dirac-like dispersion above the expected regime. A model band structure consistent with our experimental findings suggests that for a magnetic field applied along the axis of the Dirac points, Weyl fermions are the low-energy excitations in Cd3As2.

  10. Landau-Lifshitz sigma-models, fermions and the AdS/CFT correspondence

    OpenAIRE

    Stefanski Jr, B.

    2007-01-01

    We define Landau-Lifshitz sigma models on general coset space $G/H$, with $H$ a maximal stability sub-group of $G$. These are non-relativistic models that have $G$-valued N\\"other charges, local $H$ invariance and are classically integrable. Using this definition, we construct the $PSU(2,2|4)/PS(U(2|2)^2)$ Landau-Lifshitz sigma-model. This sigma model describes the thermodynamic limit of the spin-chain Hamiltonian obtained from the complete one-loop dilatation operator of the N=4 super Yang-M...

  11. Viscosity effect in Landau's hydrodynamical model

    International Nuclear Information System (INIS)

    Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore

    1979-01-01

    The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)

  12. Multiparticle phenomena and Landau damping

    International Nuclear Information System (INIS)

    Talman, R.

    1987-01-01

    The purpose of this paper is to survey various methods of studying multiparticle phenomena in accelerators. Both experimental and theoretical methods are described. An effort has been made to emphasize the intuitive and qualitative aspects rather than the detailed mathematics. Some of the terms or concepts to be explained are coherent and incoherent tunes, normal modes, Landau damping, beam-transfer functions, and feedback. These are all of daily importance in the interpretation of colliding-beam observations and the control of performance

  13. The dynamics of magnetic vortices in type II superconductors with pinning sites studied by the time dependent Ginzburg–Landau model

    Energy Technology Data Exchange (ETDEWEB)

    Sørensen, Mads Peter, E-mail: mpso@dtu.dk [Department of Applied Mathematics and Computer Science, Richard Petersens Plads, Bldg. 324, Technical University of Denmark, Kongens Lyngby DK-2800 (Denmark); Pedersen, Niels Falsig [Department of Applied Mathematics and Computer Science, Richard Petersens Plads, Bldg. 324, Technical University of Denmark, Kongens Lyngby DK-2800 (Denmark); Ögren, Magnus [School of Science and Technology, Örebro University, Örebro SE-70182 (Sweden)

    2017-02-15

    We investigate the dynamics of magnetic vortices in type II superconductors with normal state pinning sites using the Ginzburg–Landau equations. Simulation results demonstrate hopping of vortices between pinning sites, influenced by external magnetic fields and external currents. The system is highly nonlinear and the vortices show complex nonlinear dynamical behaviour.

  14. Fine structure of the isoscalar giant quadrupole resonance in 40Ca due to Landau damping?

    International Nuclear Information System (INIS)

    Usman, I.; Buthelezi, Z.; Carter, J.; Cooper, G.R.J.; Fearick, R.W.; Foertsch, S.V.; Fujita, H.; Fujita, Y.; Kalmykov, Y.; Neumann-Cosel, P. von; Neveling, R.; Papakonstantinou, P.; Richter, A.; Roth, R.; Shevchenko, A.; Sideras-Haddad, E.; Smit, F.D.

    2011-01-01

    The fragmentation of the Isoscalar Giant Quadrupole Resonance (ISGQR) in 40 Ca has been investigated in high energy-resolution experiments using proton inelastic scattering at E p =200 MeV. Fine structure is observed in the region of the ISGQR and its characteristic energy scales are extracted from the experimental data by means of a wavelet analysis. The experimental scales are well described by Random Phase Approximation (RPA) and second-RPA calculations with an effective interaction derived from a realistic nucleon-nucleon interaction by the Unitary Correlation Operator Method (UCOM). In these results characteristic scales are already present at the mean-field level pointing to their origination in Landau damping, in contrast to the findings in heavier nuclei and also to SRPA calculations for 40 Ca based on phenomenological effective interactions, where fine structure is explained by the coupling to two-particle-two-hole (2p-2h) states.

  15. Oscillatory magneto-convection under magnetic field modulation

    Directory of Open Access Journals (Sweden)

    Palle Kiran

    2018-03-01

    Full Text Available In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is used to derive an amplitude of oscillatory convection for weakly nonlinear mode. Heat transfer is quantified in terms of the Nusselt number, which is governed by the Landau equation. The variation of the modulation excitation of the magnetic field alternates heat transfer in the layer. The modulation excitation of the magnetic field is used either to enhance or diminish the heat transfer in the system. Further, it is found that, oscillatory mode of convection enhances the heat transfer and than stationary convection. The results have possible technological applications in magnetic fluid based systems involving energy transmission. Keywords: Weakly nonlinear theory, Oscillatory convection, Complex Ginzburg Landau model, Magnetic modulation

  16. Electron Landau damping of ion Bernstein waves in tokamak plasmas

    International Nuclear Information System (INIS)

    Brambilla, M.

    1998-01-01

    Absorption of ion Bernstein (IB) waves by electrons is investigated. These waves are excited by linear mode conversion in tokamak plasmas during fast wave (FW) heating and current drive experiments in the ion cyclotron range of frequencies. Near mode conversion, electromagnetic corrections to the local dispersion relation largely suppress electron Landau damping of these waves, which becomes important again, however, when their wavelength is comparable to the ion Larmor radius or shorter. The small Larmor radius wave equations solved by most numerical codes do not correctly describe the onset of electron Landau damping at very short wavelengths, and these codes, therefore, predict very little damping of IB waves, in contrast to what one would expect from the local dispersion relation. We present a heuristic, but quantitatively accurate, model which allows account to be taken of electron Landau damping of IB waves in such codes, without affecting the damping of the compressional wave or the efficiency of mode conversion. The possibilities and limitations of this approach are discussed on the basis of a few examples, obtained by implementing this model in the toroidal axisymmetric full wave code TORIC. (author)

  17. Symmetric Double Quantum Dot Energy States in a High Magnetic Field

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J; Sawamura, Makoto

    2011-01-01

    The dynamical Green's function and energy spectrum of a 2D symmetric quantum double-dot system on a planar host in a normal magnetic field are analyzed here, representing the two dots by Dirac delta function potentials. The proliferation of energy levels due to Landau quantization is examined in detail.

  18. Spatially Localized Particle Energization by Landau Damping in Current Sheets

    Science.gov (United States)

    Howes, G. G.; Klein, K. G.; McCubbin, A. J.

    2017-12-01

    Understanding the mechanisms of particle energization through the removal of energy from turbulent fluctuations in heliospheric plasmas is a grand challenge problem in heliophysics. Under the weakly collisional conditions typical of heliospheric plasma, kinetic mechanisms must be responsible for this energization, but the nature of those mechanisms remains elusive. In recent years, the spatial localization of plasma heating near current sheets in the solar wind and numerical simulations has gained much attention. Here we show, using the innovative and new field-particle correlation technique, that the spatially localized particle energization occurring in a nonlinear gyrokinetic simulation has the velocity space signature of Landau damping, suggesting that this well-known collisionless damping mechanism indeed actively leads to spatially localized heating in the vicinity of current sheets.

  19. Under the spell of Landau when theoretical physics was shaping destinies

    CERN Document Server

    2013-01-01

    This invaluable collection of memoirs and reviews on scientific activities of the most prominent theoretical physicists belonging to the Landau School - Landau, Anselm, Gribov, Zeldovich, Kirzhnits, Migdal, Ter-Martirosyan and Larkin - are being published in English for the first time. The main goal is to acquaint readers with the life and work of outstanding Soviet physicists who, to a large extent, shaped theoretical physics in the 1950s - 70s. Many intriguing details have remained unknown beyond the "Iron Curtain" which was dismantled only with the fall of the USSR.

  20. Nonlinear damping of oblique whistler mode waves through Landau resonance

    Science.gov (United States)

    Hsieh, Y.; Omura, Y.

    2017-12-01

    Nonlinear trapping of electrons through Landau resonance is a characteristic dynamics in oblique whistler-mode wave particle interactions. The resonance velocity of the Landau resonance at quasi-parallel propagation becomes very close to the parallel group velocity of whistler-mode wave at frequency around 0.5 Ωe, causing a long distance of resonant interaction and strong acceleration of resonant electrons [1]. We demonstrate these effective accelerations for electrons with high equatorial pitch angle ( > 60°) by test particle simulations with parameters for the Earth's inner magnetosphere at L=5. In the simulations, we focus on slightly oblique whistler mode waves with wave normal angle 10.1002/2016JA023255.

  1. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin

    2016-11-02

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  2. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2016-01-01

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  3. Ensemble inequivalence: Landau theory and the ABC model

    International Nuclear Information System (INIS)

    Cohen, O; Mukamel, D

    2012-01-01

    It is well known that systems with long-range interactions may exhibit different phase diagrams when studied within two different ensembles. In many of the previously studied examples of ensemble inequivalence, the phase diagrams differ only when the transition in one of the ensembles is first order. By contrast, in a recent study of a generalized ABC model, the canonical and grand-canonical ensembles of the model were shown to differ even when they both exhibit a continuous transition. Here we show that the order of the transition where ensemble inequivalence may occur is related to the symmetry properties of the order parameter associated with the transition. This is done by analyzing the Landau expansion of a generic model with long-range interactions. The conclusions drawn from the generic analysis are demonstrated for the ABC model by explicit calculation of its Landau expansion. (paper)

  4. Metriplectic Gyrokinetics and Discretization Methods for the Landau Collision Integral

    Science.gov (United States)

    Hirvijoki, Eero; Burby, Joshua W.; Kraus, Michael

    2017-10-01

    We present two important results for the kinetic theory and numerical simulation of warm plasmas: 1) We provide a metriplectic formulation of collisional electrostatic gyrokinetics that is fully consistent with the First and Second Laws of Thermodynamics. 2) We provide a metriplectic temporal and velocity-space discretization for the particle phase-space Landau collision integral that satisfies the conservation of energy, momentum, and particle densities to machine precision, as well as guarantees the existence of numerical H-theorem. The properties are demonstrated algebraically. These two result have important implications: 1) Numerical methods addressing the Vlasov-Maxwell-Landau system of equations, or its reduced gyrokinetic versions, should start from a metriplectic formulation to preserve the fundamental physical principles also at the discrete level. 2) The plasma physics community should search for a metriplectic reduction theory that would serve a similar purpose as the existing Lagrangian and Hamiltonian reduction theories do in gyrokinetics. The discovery of metriplectic formulation of collisional electrostatic gyrokinetics is strong evidence in favor of such theory and, if uncovered, the theory would be invaluable in constructing reduced plasma models. Supported by U.S. DOE Contract Nos. DE-AC02-09-CH11466 (EH) and DE-AC05-06OR23100 (JWB) and by European Union's Horizon 2020 research and innovation Grant No. 708124 (MK).

  5. Ginzburg-Landau equation as a heuristic model for generating rogue waves

    Science.gov (United States)

    Lechuga, Antonio

    2016-04-01

    Envelope equations have many applications in the study of physical systems. Particularly interesting is the case 0f surface water waves. In steady conditions, laboratory experiments are carried out for multiple purposes either for researches or for practical problems. In both cases envelope equations are useful for understanding qualitative and quantitative results. The Ginzburg-Landau equation provides an excellent model for systems of that kind with remarkable patterns. Taking into account the above paragraph the main aim of our work is to generate waves in a water tank with almost a symmetric spectrum according to Akhmediev (2011) and thus, to produce a succession of rogue waves. The envelope of these waves gives us some patterns whose model is a type of Ginzburg-Landau equation, Danilov et al (1988). From a heuristic point of view the link between the experiment and the model is achieved. Further, the next step consists of changing generating parameters on the water tank and also the coefficients of the Ginzburg-Landau equation, Lechuga (2013) in order to reach a sufficient good approach.

  6. Improved Landau gauge fixing and discretisation errors

    International Nuclear Information System (INIS)

    Bonnet, F.D.R.; Bowman, P.O.; Leinweber, D.B.; Richards, D.G.; Williams, A.G.

    2000-01-01

    Lattice discretisation errors in the Landau gauge condition are examined. An improved gauge fixing algorithm in which O(a 2 ) errors are removed is presented. O(a 2 ) improvement of the gauge fixing condition displays the secondary benefit of reducing the size of higher-order errors. These results emphasise the importance of implementing an improved gauge fixing condition

  7. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    International Nuclear Information System (INIS)

    Li Juan; Wang Yifei; Gong Changde

    2011-01-01

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength φ, and a staggered-flux part with strength Δφ. Various properties of the Hall conductances and Hofstadter butterflies are studied. When φ is fixed, variation of Δφ leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero Δφs have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of Δφ = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by Δφ.

  8. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Li Juan; Wang Yifei; Gong Changde, E-mail: yfwang_nju@hotmail.com [Center for Statistical and Theoretical Condensed Matter Physics, and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2011-04-20

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength {phi}, and a staggered-flux part with strength {Delta}{phi}. Various properties of the Hall conductances and Hofstadter butterflies are studied. When {phi} is fixed, variation of {Delta}{phi} leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero {Delta}{phi}s have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of {Delta}{phi} = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by {Delta}{phi}.

  9. Use of riser tube rotation equipment in the Emlichheim and Landau petroleum mines of Wintershall AG Erdoelwerke; Einsatz von Steigrohrdrehvorrichtungen in den Erdoelfoerderbetrieben Emlichheim und Landau der Wintershall AG Erdoelwerke

    Energy Technology Data Exchange (ETDEWEB)

    Caspari, R. [Wintershall AG Erdoelwerke, Emlichheim (Germany)

    1998-12-31

    Riser tube rotation equipment has been in use in the Emlichheim and Landau petroleum wells since 1994 in order to ensure longer life of the riser tubes. (orig.) [Deutsch] In den von Wintershall operierten Erdoelfoerderbetrieben Emlichheim und Landau werden ca. 90% der Bohrungen mit Gestaengetiefpumpen gefoerdert. Aufgrund der lagerstaettentechnischen Gegebenheiten, der Thermalmassnahmen in Emlichheim und der Infrastruktur der Betriebe koennen andere Foerderhilfsmittel wie Tauchkreiselpumpe, Excenterschneckenpumpe oder Gasliften nur bedingt zum Einsatz kommen. Ein wesentlicher Faktor fuer den wirtschaftlichen Betrieb dieser Bohrungen sind die Aufwaeltigungen zur Beseitigung von Schaeden an der Tiefpumpe, dem Pumpgestaenge und den Steigrohren. Waehrend die Einsatzdauer der Tiefpumpen und des Pumpgestaenges durch hoeherwertige Materialguete und geeignete Optimierungsmassnahmen erhoeht werden konnten, sind die Standzeiten der Steigrohre nahezu unveraendert geblieben. Um diese zu erhoehen, werden in den Erdoelfoerderbetrieben Emlichheim und Landau seit April 1994 Steigrohrdrehvorrichtungen eingesetzt. (orig.)

  10. Topological phase transitions in an inverted InAs/GaSb quantum well driven by tilted magnetic fields

    Science.gov (United States)

    Hsu, Hsiu-Chuan; Jhang, Min-Jyun; Chen, Tsung-Wei; Guo, Guang-Yu

    2017-05-01

    The helical edge states in a quantum spin Hall insulator are presumably protected by time-reversal symmetry. However, even in the presence of magnetic field which breaks time-reversal symmetry, the helical edge conduction can still exist, dubbed as pseudo quantum spin Hall effect. In this paper, the effects of the magnetic fields on the pseudo quantum spin Hall effect and the phase transitions are studied. We show that an in-plane magnetic field drives a pseudo quantum spin Hall state to a metallic state at a high field. Moreover, at a fixed in-plane magnetic field, an increasing out-of-plane magnetic field leads to a reentrance of pseudo quantum spin Hall state in an inverted InAs/GaSb quantum well. The edge state probability distribution and Chern numbers are calculated to verify that the reentrant states are topologically nontrivial. The origin of the reentrant behavior is attributed to the nonmonotonic bending of Landau levels and the Landau level mixing caused by the orbital effect induced by the in-plane magnetic field. The robustness to disorder is demonstrated by the numerically calculated quantized conductance for disordered nanowires within Landauer-Büttiker formalism.

  11. Bose-Einstein correlation in Landau's model

    International Nuclear Information System (INIS)

    Hama, Y.; Padula, S.S.

    1986-01-01

    Bose-Einstein correlation is studied by taking an expanding fluid given by Landau's model as the source, where each space-time point is considered as an independent and chaotic emitting center with Planck's spectral distribution. As expected, the correlation depends on the relative angular positions as well as on the overall localization of the measuring system and it turns out that the average dimension of the source increases with the multiplicity N/sub ch/

  12. Dyson-Schwinger equations and N = 4 SYM in Landau gauge

    Energy Technology Data Exchange (ETDEWEB)

    Maas, Axel; Zitz, Stefan [University of Graz, Institute of Physics, NAWI Graz, Graz (Austria)

    2016-03-15

    N = 4 Super Yang-Mills theory is a highly constrained theory, and therefore a valuable tool to test the understanding of less constrained Yang-Mills theories. Our aim is to use it to test our understanding of both the Landau gauge beyond perturbation theory and the truncations of Dyson-Schwinger equations in ordinary Yang-Mills theories. We derive the corresponding equations within the usual one-loop truncation for the propagators after imposing the Landau gauge. We find a conformal solution in this approximation, which surprisingly resembles many aspects of ordinary Yang-Mills theories. We furthermore discuss which role the Gribov-Singer ambiguity in this context could play, should it exist in this theory. (orig.)

  13. The Landau-de Gennes theory of nematic liquid crystals: Uniaxiality versus Biaxiality

    KAUST Repository

    Majumdar, Apala

    2011-12-01

    We study small energy solutions within the Landau-de Gennes theory for nematic liquid crystals, subject to Dirichlet boundary conditions. We consider two-dimensional and three-dimensional domains separately. In the two-dimensional case, we establish the equivalence of the Landau-de Gennes and Ginzburg-Landau theory. In the three-dimensional case, we give a new definition of the defect set based on the normalized energy. In the threedimensional uniaxial case, we demonstrate the equivalence between the defect set and the isotropic set and prove the C 1,α-convergence of uniaxial small energy solutions to a limiting harmonic map, away from the defect set, for some 0 < a < 1, in the vanishing core limit. Generalizations for biaxial small energy solutions are also discussed, which include physically relevant estimates for the solution and its scalar order parameters. This work is motivated by the study of defects in liquid crystalline systems and their applications.

  14. Exact results for survival probability in the multistate Landau-Zener model

    International Nuclear Information System (INIS)

    Volkov, M V; Ostrovsky, V N

    2004-01-01

    An exact formula is derived for survival probability in the multistate Landau-Zener model in the special case where the initially populated state corresponds to the extremal (maximum or minimum) slope of a linear diabatic potential curve. The formula was originally guessed by S Brundobler and V Elzer (1993 J. Phys. A: Math. Gen. 26 1211) based on numerical calculations. It is a simple generalization of the expression for the probability of diabatic passage in the famous two-state Landau-Zener model. Our result is obtained via analysis and summation of the entire perturbation theory series

  15. Integrability and structural stability of solutions to the Ginzburg-Landau equation

    Science.gov (United States)

    Keefe, Laurence R.

    1986-01-01

    The integrability of the Ginzburg-Landau equation is studied to investigate if the existence of chaotic solutions found numerically could have been predicted a priori. The equation is shown not to possess the Painleveproperty, except for a special case of the coefficients that corresponds to the integrable, nonlinear Schroedinger (NLS) equation. Regarding the Ginzburg-Landau equation as a dissipative perturbation of the NLS, numerical experiments show all but one of a family of two-tori solutions, possessed by the NLS under particular conditions, to disappear under real perturbations to the NLS coefficients of O(10 to the -6th).

  16. Reversible dissipative processes, conformal motions and Landau damping

    International Nuclear Information System (INIS)

    Herrera, L.; Di Prisco, A.; Ibáñez, J.

    2012-01-01

    The existence of a dissipative flux vector is known to be compatible with reversible processes, provided a timelike conformal Killing vector (CKV) χ α =(V α )/T (where V α and T denote the four-velocity and temperature respectively) is admitted by the spacetime. Here we show that if a constitutive transport equation, either within the context of standard irreversible thermodynamics or the causal Israel–Stewart theory, is adopted, then such a compatibility also requires vanishing dissipative fluxes. Therefore, in this later case the vanishing of entropy production generated by the existence of such CKV is not actually associated to an imperfect fluid, but to a non-dissipative one. We discuss also about Landau damping. -- Highlights: ► We review the problem of compatibility of dissipation with reversibility. ► We show that the additional assumption of a transport equation renders such a compatibility trivial. ► We discuss about Landau damping.

  17. Gyro-Landau fluid model of tokamak core fluctuations

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Carreras, B.A.; Dominguez, N.; Hedrick, C.L.; Sidikman, K.L.; Lynch, V.E.; Drake, J.B.; Walker, D.W.

    1992-01-01

    Dissipative trapped electron modes (DTEM) may be one of the causes of deterioration of confinement in tokamak and stellatator plasmas. We have implemented a fluid model to study DTEM turbulence in slab geometry. The electron dynamics include in addition to the adiabatic part, a non-adiabatic piece modeled with an i-delta-type response. The ion dynamics include Landau damping and FLR corrections through Landau fluid approximate techniques and Pade approximants for Γ 0 (b)=I 0 (b)e -b . The model follows from the gyrokinetic equation. Evolution equations, which closely resemble those used in standard reduced MHD, are presented since these are better suited to non-linear calculations. The numerical results of radially resolved calculations will be discussed. A recently developed hybrid model, which consists of a gyrokinetic implementation for the ions using particles and the same description for the electron dynamics as in the fluid model, will also be presented

  18. Reversible dissipative processes, conformal motions and Landau damping

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, L., E-mail: laherrera@cantv.net.ve [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain); Di Prisco, A., E-mail: adiprisc@fisica.ciens.ucv.ve [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain); Ibáñez, J., E-mail: j.ibanez@ehu.es [Departamento de Física Teórica e Historia de la Ciencia, Universidad del País Vasco, Bilbao (Spain)

    2012-02-06

    The existence of a dissipative flux vector is known to be compatible with reversible processes, provided a timelike conformal Killing vector (CKV) χ{sup α}=(V{sup α})/T (where V{sup α} and T denote the four-velocity and temperature respectively) is admitted by the spacetime. Here we show that if a constitutive transport equation, either within the context of standard irreversible thermodynamics or the causal Israel–Stewart theory, is adopted, then such a compatibility also requires vanishing dissipative fluxes. Therefore, in this later case the vanishing of entropy production generated by the existence of such CKV is not actually associated to an imperfect fluid, but to a non-dissipative one. We discuss also about Landau damping. -- Highlights: ► We review the problem of compatibility of dissipation with reversibility. ► We show that the additional assumption of a transport equation renders such a compatibility trivial. ► We discuss about Landau damping.

  19. Estimating the Partition Function Zeros by Using the Wang-Landau Monte Carlo Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Yeon [Korea National University of Transportation, Chungju (Korea, Republic of)

    2017-03-15

    The concept of the partition function zeros is one of the most efficient methods for investigating the phase transitions and the critical phenomena in various physical systems. Estimating the partition function zeros requires information on the density of states Ω(E) as a function of the energy E. Currently, the Wang-Landau Monte Carlo algorithm is one of the best methods for calculating Ω(E). The partition function zeros in the complex temperature plane of the Ising model on an L × L square lattice (L = 10 ∼ 80) with a periodic boundary condition have been estimated by using the Wang-Landau Monte Carlo algorithm. The efficiency of the Wang-Landau Monte Carlo algorithm and the accuracies of the partition function zeros have been evaluated for three different, 5%, 10%, and 20%, flatness criteria for the histogram H(E).

  20. On translational superfluidity and the Landau criterion for Bose gases in the Gross-Pitaevski limit

    International Nuclear Information System (INIS)

    Wreszinski, Walter F

    2008-01-01

    The two-fluid and Landau criteria for superfluidity are compared for trapped Bose gases. While the two-fluid criterion predicts translational superfluidity, it is suggested, on the basis of the homogeneous Gross-Pitaevski limit, that a necessary part of Landau's criterion, adequate for non-translationally invariant systems, does not hold for trapped Bose gases in the GP limit. As a consequence, if the compressibility is detected to be very large (infinite by experimental standards), the two-fluid criterion is seen to be the relevant one in case the system is a translational superfluid, while the Landau criterion is the relevant one if translational superfluidity is absent. (fast track communication)

  1. Infrared exponents and the strong-coupling limit in lattice Landau gauge

    International Nuclear Information System (INIS)

    Sternbeck, Andre; Smekal, Lorenz von

    2010-01-01

    We study the gluon and ghost propagators of lattice Landau gauge in the strong-coupling limit β=0 in pure SU(2) lattice gauge theory to find evidence of the conformal infrared behavior of these propagators as predicted by a variety of functional continuum methods for asymptotically small momenta q 2 QCD 2 . In the strong-coupling limit, this same behavior is obtained for the larger values of a 2 q 2 (in units of the lattice spacing a), where it is otherwise swamped by the gauge-field dynamics. Deviations for a 2 q 2 <1 are well parameterized by a transverse gluon mass ∝1/a. Perhaps unexpectedly, these deviations are thus no finite-volume effect but persist in the infinite-volume limit. They furthermore depend on the definition of gauge fields on the lattice, while the asymptotic conformal behavior does not. We also comment on a misinterpretation of our results by Cucchieri and Mendes (Phys. Rev. D 81:016005, 2010). (orig.)

  2. Exact solutions of generalized Zakharov and Ginzburg-Landau equations

    International Nuclear Information System (INIS)

    Zhang Jinliang; Wang Mingliang; Gao Kequan

    2007-01-01

    By using the homogeneous balance principle, the exact solutions of the generalized Zakharov equations and generalized Ginzburg-Landau equation are obtained with the aid of a set of subsidiary higher-order ordinary differential equations (sub-equations for short)

  3. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    International Nuclear Information System (INIS)

    Cruz, Philip Christopher S.; Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2017-01-01

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly

  4. Energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Philip Christopher S., E-mail: pscruz1@up.edu.ph; Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph

    2017-04-15

    We calculate the energy levels of a quantum particle on a cylindrical surface with non-circular cross-section in uniform electric and magnetic fields. Using separation of variables method and a change of independent variable, we show that the problem can be reduced to a one-dimensional Schrödinger equation for a periodic potential. The effects of varying the shape of the cross-section while keeping the same perimeter and the strengths of the electric and magnetic fields are investigated for elliptical, corrugated, and nearly-rectangular tubes with radial dimensions of the order of a nanometer. The geometric potential has minima at the angular positions where there is a significant amount of curvature. For the elliptical and corrugated tubes, it is shown that as the tube departs from the circular shape of cross-section the double-degeneracy between the energy levels is lifted. For the nearly-rectangular tube, it is shown that energy level crossings occur as the horizontal dimension of the tube is varied while keeping the same perimeter and radius of circular corners. The interplay between the curvature and the strength of the electric and magnetic fields determines the overall behavior of the energy levels. As the strength of the electric field increases, the overall potential gets skewed creating a potential well on the side corresponding to the more negative electric potential. The energy levels of the first few excited states approach more positive values while the ground state energy level approaches a more negative value. For large electric fields, all bound state energy levels tend to more negative values. The contribution of weak magnetic fields to the overall potential behaves in the same way as the electric field contribution but with its sign depending on the direction of the component of the momentum parallel to the cylindrical axis. Large magnetic fields lead to pairing of energy levels reminiscent of 2D Landau levels for the elliptical and nearly

  5. Verifying the Kugo-Ojima Confinement Criterion in Landau Gauge Yang-Mills Theory

    International Nuclear Information System (INIS)

    Watson, Peter; Alkofer, Reinhard

    2001-01-01

    Expanding the Landau gauge gluon and ghost two-point functions in a power series we investigate their infrared behavior. The corresponding powers are constrained through the ghost Dyson-Schwinger equation by exploiting multiplicative renormalizability. Without recourse to any specific truncation we demonstrate that the infrared powers of the gluon and ghost propagators are uniquely related to each other. Constraints for these powers are derived, and the resulting infrared enhancement of the ghost propagator signals that the Kugo-Ojima confinement criterion is fulfilled in Landau gauge Yang-Mills theory

  6. Drift of Spiral Waves in Complex Ginzburg-Landau Equation

    International Nuclear Information System (INIS)

    Yang Junzhong; Zhang Mei

    2006-01-01

    The spontaneous drift of the spiral wave in a finite domain in the complex Ginzburg-Landau equation is investigated numerically. By using the interactions between the spiral wave and its images, we propose a phenomenological theory to explain the observations.

  7. Avoidance of a Landau pole by flat contributions in QED

    Energy Technology Data Exchange (ETDEWEB)

    Klaczynski, Lutz, E-mail: lutz.klaczynski@gmx.de [Department of Physics, Humboldt University Berlin, 12489 Berlin (Germany); Kreimer, Dirk, E-mail: kreimer@mathematik.hu-berlin.de [Alexander von Humboldt Chair in Mathematical Physics, Humboldt University, Berlin 12489 (Germany)

    2014-05-15

    We consider massless Quantum Electrodynamics in the momentum scheme and carry forward an approach based on Dyson–Schwinger equations to approximate both the β-function and the renormalized photon self-energy (Yeats, 2011). Starting from the Callan–Symanzik equation, we derive a renormalization group (RG) recursion identity which implies a non-linear ODE for the anomalous dimension and extract a sufficient but not necessary criterion for the existence of a Landau pole. This criterion implies a necessary condition for QED to have no such pole. Solving the differential equation exactly for a toy model case, we integrate the corresponding RG equation for the running coupling and find that even though the β-function entails a Landau pole it exhibits a flat contribution capable of decreasing its growth, in other cases possibly to the extent that such a pole is avoided altogether. Finally, by applying the recursion identity, we compute the photon propagator and investigate the effect of flat contributions on both spacelike and timelike photons. -- Highlights: •We present an approach to approximate both the β-function and the photon self-energy. •We find a sufficient criterion for the self-energy to entail the existence of a Landau pole. •We study non-perturbative ‘flat’ contributions that emerge within the context of our approach. •We discuss a toy model and how it is affected by flat contributions.

  8. Chiral algebras in Landau-Ginzburg models

    Science.gov (United States)

    Dedushenko, Mykola

    2018-03-01

    Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.

  9. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Science.gov (United States)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-03-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found.

  10. Effective Ginzburg–Landau free energy functional for multi-band isotropic superconductors

    International Nuclear Information System (INIS)

    Grigorishin, Konstantin V.

    2016-01-01

    Highlights: • The intergradient coupling of order parameters in a two-band superconductor plays important role and cannot be neglected. • A two-band superconductor must be characterized with a single coherence length and a single Ginzburg–Landau parameter. • Type-1.5 superconductors are impossible. • The free energy functional for a multi-band superconductor can be reduced to the effective single-band Ginzburg–Landau functional. - Abstract: It has been shown that interband mixing of gradients of two order parameters (drag effect) in an isotropic bulk two-band superconductor plays important role – such a quantity of the intergradients coupling exists that the two-band superconductor is characterized with a single coherence length and a single Ginzburg–Landau (GL) parameter. Other quantities or neglecting of the drag effect lead to existence of two coherence lengths and dynamical instability due to violation of the phase relations between the order parameters. Thus so-called type-1.5 superconductors are impossible. An approximate method for solving of set of GL equations for a multi-band superconductor has been developed: using the result about the drag effect it has been shown that the free-energy functional for a multi-band superconductor can be reduced to the GL functional for an effective single-band superconductor.

  11. Explosions in Landau Vlasov dynamics

    International Nuclear Information System (INIS)

    Suraud, E.; Cussol, D.; Gregoire, C.; Boilley, D.; Pi, M.; Schuck, P.; Remaud, B.; Sebille, F.

    1988-01-01

    A microscopic study of the quasi-fusion/explosion transition is presented in the framework of Landau-Vlasov simulations of intermediate energy heavy-ion collisions (bombarding energies between 10 and 100 MeV/A). A detailed analysis in terms of the Equation of State of the system is performed. In agreement with schematic models we find that the composite nuclear system formed in the collision does explode when it stays long enough in the mechanically unstable region (spinodal region). Quantitative estimates of the explosion threshold are given for central symmetric reactions (Ca+Ca and Ar+Ti). The effect of the nuclear matter compressibility modulus is discussed

  12. Ginzburg–Landau theory of mesoscopic multi-band Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Romeo, F.; De Luca, R., E-mail: rdeluca@unisa.it

    2017-05-15

    Highlights: • We generalize, in the realm of the Ginzburg–Landau theory, the de Gennes matching-matrix method for the interface order parameters to describe the superconducting properties of multi-band mesoscopic Josephson junctions. • The results are in agreement with a microscopic treatment of nanobridge junctions. • Thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions. - Abstract: A Ginzburg–Landau theory for multi-band mesoscopic Josephson junctions has been developed. The theory, obtained by generalizing the de Gennes matching-matrix method for the interface order parameters, allows the study of the phase dynamics of various types of mesoscopic Josephson junctions. As a relevant application, we studied mesoscopic double-band junctions also in the presence of a superconducting nanobridge interstitial layer. The results are in agreement with a microscopic treatment of the same system. Furthermore, thermal stability of the nanobridge junction is discussed in connection with recent experiments on iron-based grain-boundary junctions.

  13. Thermodynamic properties of and Nuclei using modified Ginzburg-Landau theory

    Directory of Open Access Journals (Sweden)

    V Dehghani

    2016-09-01

    Full Text Available In this paper, formulation of Modified Ginsberg – Landau theory of second grade phase transitions has been expressed. Using this theory, termodynamic properties, such as heat capacity, energy, entropy and order parameters ofandnuclei has been investigated. In the heat capacity curve, calculated according to tempreture, a smooth peak is observed which is assumed to be a signature of transition from the paired phase to the normal phase of the nuclei. The same pattern is also observed in the experimental data of the heat capacity of the studied nuclei. Calculations of this model shows that, by increasing tempreture, expectation value of the order parameter tends to zero with smoother slip, comparing with Ginsberg – Landau theory. This indicates  that the pairing effect exists between nucleons even at high temperatures. The experimental data obtained confirms the results of the model qualitatively.

  14. Quantum resonances of Landau damping in the electromagnetic response of metallic nanoslabs.

    Science.gov (United States)

    Castillo-López, S G; Makarov, N M; Pérez-Rodríguez, F

    2018-05-15

    The resonant quantization of Landau damping in far-infrared absorption spectra of metal nano-thin films is predicted within the Kubo formalism. Specifically, it is found that the discretization of the electromagnetic and electron wave numbers inside a metal nanoslab produces quantum nonlocal resonances well-resolved at slab thicknesses smaller than the electromagnetic skin depth. Landau damping manifests itself precisely as such resonances, tracing the spectral curve obtained within the semiclassical Boltzmann approach. For slab thicknesses much greater than the skin depth, the classical regime emerges. Here the results of the quantum model and the Boltzmann approach coincide. Our analytical study is in perfect agreement with corresponding numerical simulations.

  15. Anisotropic harmonic oscillator, non-commutative Landau problem and exotic Newton-Hooke symmetry

    International Nuclear Information System (INIS)

    Alvarez, Pedro D.; Gomis, Joaquim; Kamimura, Kiyoshi; Plyushchay, Mikhail S.

    2008-01-01

    We investigate the planar anisotropic harmonic oscillator with explicit rotational symmetry as a particle model with non-commutative coordinates. It includes the exotic Newton-Hooke particle and the non-commutative Landau problem as special, isotropic and maximally anisotropic, cases. The system is described by the same (2+1)-dimensional exotic Newton-Hooke symmetry as in the isotropic case, and develops three different phases depending on the values of the two central charges. The special cases of the exotic Newton-Hooke particle and non-commutative Landau problem are shown to be characterized by additional, so(3) or so(2,1) Lie symmetry, which reflects their peculiar spectral properties

  16. Spin Singlet Quantum Hall Effect and nonabelian Landau-Ginzburg theory

    International Nuclear Information System (INIS)

    Balatsky, A.

    1991-01-01

    In this paper we present a theory of Singlet Quantum Hall Effect (SQHE). We show that the Halperin-Haldane SQHE wave function can be written in the form of a product of a wave function for charged semions in a magnetic field and a wave function for the Chiral Spin Liquid of neutral spin-1/2 semions. We introduce field-theoretic model in which the electron operators are factorized in terms of charged spinless semions (holons) and neutral spin-1/2 semions (spinons). Broken time reversal symmetry and short ranged spin correlations lead to Su(2) κ=1 Chern-Simons term in Landau-Ginzburg action for SQHE phase. We construct appropriate coherent states for SQHE phase and show the existence of SU(2) valued gauge potential. This potential appears as a result of ''spin rigidity'' of the ground state against any displacements of nodes of wave function from positions of the particles and reflects the nontrivial monodromy in the presence of these displacenmants. We argue that topological structure of Su(2) κ=1 Chern-Simons theory unambiguously dictates semion statistics of spinons. 19 refs

  17. Emergence of liquid crystalline order in the lowest Landau level of a quantum Hall system with internal anisotropy

    Science.gov (United States)

    Ciftja, Orion

    2018-05-01

    It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.

  18. The effect of boundaries on the asymptotic wavenumber of spiral wave solutions of the complex Ginzburg–Landau equation

    KAUST Repository

    Aguareles, M.

    2014-01-01

    In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d

  19. Critical initial-slip scaling for the noisy complex Ginzburg–Landau equation

    International Nuclear Information System (INIS)

    Liu, Weigang; Täuber, Uwe C

    2016-01-01

    We employ the perturbative fieldtheoretic renormalization group method to investigate the universal critical behavior near the continuous non-equilibrium phase transition in the complex Ginzburg–Landau equation with additive white noise. This stochastic partial differential describes a remarkably wide range of physical systems: coupled nonlinear oscillators subject to external noise near a Hopf bifurcation instability; spontaneous structure formation in non-equilibrium systems, e.g., in cyclically competing populations; and driven-dissipative Bose–Einstein condensation, realized in open systems on the interface of quantum optics and many-body physics, such as cold atomic gases and exciton-polaritons in pumped semiconductor quantum wells in optical cavities. Our starting point is a noisy, dissipative Gross–Pitaevski or nonlinear Schrödinger equation, or equivalently purely relaxational kinetics originating from a complex-valued Landau–Ginzburg functional, which generalizes the standard equilibrium model A critical dynamics of a non-conserved complex order parameter field. We study the universal critical behavior of this system in the early stages of its relaxation from a Gaussian-weighted fully randomized initial state. In this critical aging regime, time translation invariance is broken, and the dynamics is characterized by the stationary static and dynamic critical exponents, as well as an independent ‘initial-slip’ exponent. We show that to first order in the dimensional expansion about the upper critical dimension, this initial-slip exponent in the complex Ginzburg–Landau equation is identical to its equilibrium model A counterpart. We furthermore employ the renormalization group flow equations as well as construct a suitable complex spherical model extension to argue that this conclusion likely remains true to all orders in the perturbation expansion. (paper)

  20. Two-dimensional quantisation of the quasi-Landau hydrogenic spectrum

    International Nuclear Information System (INIS)

    Gallas, J.A.C.; O'Connell, R.F.

    1982-01-01

    Based on the two-dimensional WKB model, an equation is derived from which the non-relativistic quasi-Landau energy spectrum of hydrogen-like atoms may be easily obtained. In addition, the solution of radial equations in the WKB approximation and its relation with models recently used to fit experimental data are discussed. (author)

  1. Landau quantized dynamics and spectra for group-VI dichalcogenides, including a model quantum wire

    Science.gov (United States)

    Horing, Norman J. M.

    2017-06-01

    This work is concerned with the derivation of the Green's function for Landau-quantized carriers in the Group-VI dichalcogenides. In the spatially homogeneous case, the Green's function is separated into a Peierls phase factor and a translationally invariant part which is determined in a closed form integral representation involving only elementary functions. The latter is expanded in an eigenfunction series of Laguerre polynomials. These results for the retarded Green's function are presented in both position and momentum representations, and yet another closed form representation is derived in circular coordinates in terms of the Bessel wave function of the second kind (not to be confused with the Bessel function). The case of a quantum wire is also addressed, representing the quantum wire in terms of a model one-dimensional δ (x ) -potential profile. This retarded Green's function for propagation directly along the wire is determined exactly in terms of the corresponding Green's function for the system without the δ (x ) -potential, and the Landau quantized eigenenergy dispersion relation is examined. The thermodynamic Green's function for the dichalcogenide carriers in a normal magnetic field is formulated here in terms of its spectral weight, and its solution is presented in a momentum/integral representation involving only elementary functions, which is subsequently expanded in Laguerre eigenfunctions and presented in both momentum and position representations.

  2. Landau quantized dynamics and spectra for group-VI dichalcogenides, including a model quantum wire

    Directory of Open Access Journals (Sweden)

    Norman J. M. Horing

    2017-06-01

    Full Text Available This work is concerned with the derivation of the Green’s function for Landau-quantized carriers in the Group-VI dichalcogenides. In the spatially homogeneous case, the Green’s function is separated into a Peierls phase factor and a translationally invariant part which is determined in a closed form integral representation involving only elementary functions. The latter is expanded in an eigenfunction series of Laguerre polynomials. These results for the retarded Green’s function are presented in both position and momentum representations, and yet another closed form representation is derived in circular coordinates in terms of the Bessel wave function of the second kind (not to be confused with the Bessel function. The case of a quantum wire is also addressed, representing the quantum wire in terms of a model one-dimensional δ(x-potential profile. This retarded Green’s function for propagation directly along the wire is determined exactly in terms of the corresponding Green’s function for the system without the δ(x-potential, and the Landau quantized eigenenergy dispersion relation is examined. The thermodynamic Green’s function for the dichalcogenide carriers in a normal magnetic field is formulated here in terms of its spectral weight, and its solution is presented in a momentum/integral representation involving only elementary functions, which is subsequently expanded in Laguerre eigenfunctions and presented in both momentum and position representations.

  3. Noise-sustained structure, Intermittency, and the Ginzburg--Landau equation

    International Nuclear Information System (INIS)

    Deissler, R.J.

    1985-01-01

    The time-dependent generalized Ginzburg--Landau equation is an equation that is related to many physical systems. Solutions of this equation in the presence of low-level external noise are studied. Numerical solutions of this equation in the stationary frame of refernce and with nonzero group velocity that is greater than a critical velocity exhibit a selective spatial amplification of noise resulting in spatially growing waves. These waves in turn result in the formation of a dynamic structure. It is found that the microscopic noise plays an importuant role in the macroscopic dynamics of the system. For certain parameter values the system exhibits intermittent turbulent behavior in which the random nature of the external noise plays a crucial role. A mechanism which may be responsible for the intermittent turbulence occurring in some fluid systems is suggested

  4. Landau quantization and spin-momentum locking in topological Kondo insulators

    Directory of Open Access Journals (Sweden)

    P. Schlottmann

    2016-05-01

    Full Text Available SmB6 has been predicted to be a strong topological Kondo insulator and experimentally it has been confirmed that at low temperatures the electrical conductivity only takes place at the surfaces of the crystal. Quantum oscillations and ARPES measurements revealed several Dirac cones on the (001 and (101 surfaces of the crystal. We considered three types of surface Dirac cones with an additional parabolic dispersion and studied their Landau quantization and the expectation value of the spin of the electrons. The Landau quantization is quite similar in all three cases and would give rise to very similar de Haas-van Alphen oscillations. The spin-momentum locking, on the other hand, differs dramatically. Without the additional parabolic dispersion the spins are locked in the plane of the surface. The parabolic dispersion, however, produces a gradual canting of the spins out of the surface plane.

  5. Green's function for electrons in a narrow quantum well in a parallel magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J. Morgenstern; Glasser, M. Lawrence; Dong Bing

    2005-01-01

    Electron dynamics in a narrow quantum well in a parallel magnetic field of arbitrary strength are examined here. We derive an explicit analytical closed-form solution for the Green's function of Landau-quantized electrons in skipping states of motion between the narrow well walls coupled with in-plane translational motion and hybridized with the zero-field lowest subband energy eigenstate. Such Landau-quantized modes are not uniformly spaced

  6. Boundary condition for Ginzburg-Landau theory of superconducting layers

    Czech Academy of Sciences Publication Activity Database

    Koláček, Jan; Lipavský, Pavel; Morawetz, K.; Brandt, E. H.

    2009-01-01

    Roč. 79, č. 17 (2009), 174510/1-174510/6 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0326; GA AV ČR IAA100100712 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  7. Ginzburg-Landau vortices

    CERN Document Server

    Bethuel, Fabrice; Helein, Frederic

    2017-01-01

    This book is concerned with the study in two dimensions of stationary solutions of uɛ of a complex valued Ginzburg-Landau equation involving a small parameter ɛ. Such problems are related to questions occurring in physics, e.g., phase transition phenomena in superconductors and superfluids. The parameter ɛ has a dimension of a length which is usually small.  Thus, it is of great interest to study the asymptotics as ɛ tends to zero. One of the main results asserts that the limit u-star of minimizers uɛ exists. Moreover, u-star is smooth except at a finite number of points called defects or vortices in physics. The number of these defects is exactly the Brouwer degree – or winding number – of the boundary condition. Each singularity has degree one – or as physicists would say, vortices are quantized. The singularities have infinite energy, but after removing the core energy we are lead to a concept of finite renormalized energy.  The location of the singularities is completely determined by minimiz...

  8. Landau-Darrieus instability in an ablation front

    International Nuclear Information System (INIS)

    Piriz, A.R.; Portugues, R.F.

    2003-01-01

    An analytical model that shows the conditions for the existence of the Landau-Darrieus instability of an ablation front is presented. The model seems to agree with recently claimed simulation results [L. Masse et al., Proceedings of the 1st International Conference on Inertial Fusion Sciences and Applications (Elsevier, Paris, 2000), p. 220]. The model shows that the ablation front can be unstable in absence of gravity when the thermal flux is inhibited within the supercritical region of the corona

  9. Topological Landau-Ginzburg theory with a rational potential and the dispersionless KP hierarchy

    International Nuclear Information System (INIS)

    Aoyama, S.; Kodama, Y.

    1996-01-01

    Based on the dispersionless KP (dKP) theory, we study a topological Landau-Ginzburg (LG) theory characterized by a rational potential. Writing the dKP hierarchy in a general form treating all the primaries in an equal basis, we find that the hierarchy naturally includes the dispersionless (continuous) limit of Toda hierarchy and its generalizations having a finite number of primaries. Several flat solutions of the topological LG theory are obtained in this formulation, and are identified with those discussed by Dubrovin. We explicitly construct gravitational descendants for all the primary fields. Giving a residue formula for the 3-point functions of the fields, we show that these 3-point functions satisfy the topological recursion relation. The string equation is obtained as the generalized hodograph solutions of the dKP hierarchy, which show that all the gravitational effects to the constitutive equations (2-point functions) can be renormalized into the coupling constants in the small phase space. (orig.)

  10. Charge qubit coupled to an intense microwave electromagnetic field in a superconducting Nb device: evidence for photon-assisted quasiparticle tunneling.

    Science.gov (United States)

    de Graaf, S E; Leppäkangas, J; Adamyan, A; Danilov, A V; Lindström, T; Fogelström, M; Bauch, T; Johansson, G; Kubatkin, S E

    2013-09-27

    We study a superconducting charge qubit coupled to an intensive electromagnetic field and probe changes in the resonance frequency of the formed dressed states. At large driving strengths, exceeding the qubit energy-level splitting, this reveals the well known Landau-Zener-Stückelberg interference structure of a longitudinally driven two-level system. For even stronger drives, we observe a significant change in the Landau-Zener-Stückelberg pattern and contrast. We attribute this to photon-assisted quasiparticle tunneling in the qubit. This results in the recovery of the qubit parity, eliminating effects of quasiparticle poisoning, and leads to an enhanced interferometric response. The interference pattern becomes robust to quasiparticle poisoning and has a good potential for accurate charge sensing.

  11. Fractional generalization of the Ginzburg–Landau equation: an unconventional approach to critical phenomena in complex media

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2005-01-01

    Equations built on fractional derivatives prove to be a powerful tool in the description of complex systems when the effects of singularity, fractal supports, and long-range dependence play a role. In this Letter, we advocate an application of the fractional derivative formalism to a fairly general...... class of critical phenomena when the organization of the system near the phase transition point is influenced by a competing nonlocal ordering. Fractional modifications of the free energy functional at criticality and of the widely known Ginzburg-Landau equation central to the classical Landau theory...... of second-type phase transitions are discussed in some detail. An implication of the fractional Ginzburg-Landau equation is a renormalization of the transition temperature owing to the nonlocality present. (c) 2005 Elsevier B.V. All rights reserved....

  12. Electric field-induced valley degeneracy lifting in uniaxial strained graphene: evidence from magnetophonon resonance

    OpenAIRE

    Assili, Mohamed; Haddad, Sonia; Kang, Woun

    2015-01-01

    A double peak structure in the magneto-phonon resonance (MPR) spectrum of uniaxial strained graphene, under crossed electric and magnetic fields, is predicted. We focus on the $\\Gamma$ point optical phonon modes coupled to the inter-Landau level transitions $0 \\leftrightarrows \\pm 1$ where MPR is expected to be more pronounced at high magnetic field. We derive the frequency shifts and the broadenings of the longitudinal (LO) and transverse (TO) optical phonon modes taking into account the eff...

  13. Three-dimensional Ginzburg–Landau simulation of a vortex line ...

    Indian Academy of Sciences (India)

    pp. 295–304. Three-dimensional Ginzburg–Landau simulation of a vortex line displaced by a zigzag of pinning spheres. MAURO M DORIA1,∗, ANTONIO R de C ROMAGUERA1 and WELLES A M MORGADO2. 1Instituto de Fısica, Universidade Federal do Rio de Janeiro, C.P. 68528,. 21941-972, Rio de Janeiro RJ, Brazil.

  14. Localization in nonuniform media: Exponential decay of the late-time Ginzburg-Landau impulse response

    International Nuclear Information System (INIS)

    Smith, E.

    1998-01-01

    Instanton methods have been used, in the context of a classical Ginzburg-Landau field theory, to compute the averaged density of states and probability Green close-quote s function for electrons scattered by statistically uniform site energy perturbations. At tree level, all states below some critical energy appear localized, and all states above extended. The same methods are applied here to macroscopically nonuniform systems, for which it is shown that localized and extended states can be coupled through a tunneling barrier created by the instanton background. Both electronic and acoustic systems are considered. An incoherent exponential decay is predicted for the late-time impulse response in both cases, valid for long-wavelength nonuniformity, and scaling relations are derived for the decay time constant as a function of energy or frequency and spatial dimension. The acoustic results are found to lie within a range of scaling relations obtained empirically from measurements of seismic coda, suggesting a connection between the universal properties of localization and the robustness of the observed scaling. The relation of instantons to the acoustic coherent-potential approximation is demonstrated in the recovery of the uniform limit. copyright 1998 The American Physical Society

  15. Criticality and novel quantum liquid phases in Ginzburg-Landau theories with compact and non-compact gauge fields

    Energy Technology Data Exchange (ETDEWEB)

    Smiseth, Jo

    2005-07-01

    The critical properties of three-dimensional U(1)-symmetric lattice gauge theories have been studied. The models apply to various physical systems such as insulating phases of strongly correlated electron systems as well as superconducting and superfluid states of liquid metallic hydrogen under extreme pressures. The thesis contains an introductory part and a collection of research papers of which seven are published works and one is submitted for publication. The outline of this thesis is as follows. In Chapter 2 the theory of phase transitions is discussed with emphasis on continuous phase transitions, critical phenomena and phase transitions in gauge theories. In the next chapter the phases of the abelian Higgs model are presented, and the critical phenomena are discussed. Furthermore, the multicomponent Ginzburg-Landau theory and the applications to liquid metallic hydrogen are presented. Chapter 4 contains an overview of the Monte Carlo integration scheme, including the Metropolis algorithm, error estimates, and re weighting techniques. This chapter is followed by the papers I-VIII. Paper I: Criticality in the (2+1)-Dimensional Compact Higgs Model and Fractionalized Insulators. Paper II: Phase structure of (2+1)-dimensional compact lattice gauge theories and the transition from Mott insulator to fractionalized insulator. Paper III: Compact U(1) gauge theories in 2+1 dimensions and the physics of low dimensional insulating materials. Paper IV: Phase structure of Abelian Chern-Simons gauge theories. Paper V: Critical Properties of the N-Color London Model. Paper VI: Field- and temperature induced topological phase transitions in the three-dimensional N-component London superconductor. Paper VII: Vortex Sublattice Melting in a Two-Component Superconductor. Paper VIII: Observation of a metallic superfluid in a numerical experiment (ml)

  16. GPU-advanced 3D electromagnetic simulations of superconductors in the Ginzburg–Landau formalism

    Energy Technology Data Exchange (ETDEWEB)

    Stošić, Darko; Stošić, Dušan; Ludermir, Teresa [Centro de Informática, Universidade Federal de Pernambuco, Av. Luiz Freire s/n, 50670-901, Recife, PE (Brazil); Stošić, Borko [Departamento de Estatística e Informática, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE (Brazil); Milošević, Milorad V., E-mail: milorad.milosevic@uantwerpen.be [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2016-10-01

    Ginzburg–Landau theory is one of the most powerful phenomenological theories in physics, with particular predictive value in superconductivity. The formalism solves coupled nonlinear differential equations for both the electronic and magnetic responsiveness of a given superconductor to external electromagnetic excitations. With order parameter varying on the short scale of the coherence length, and the magnetic field being long-range, the numerical handling of 3D simulations becomes extremely challenging and time-consuming for realistic samples. Here we show precisely how one can employ graphics-processing units (GPUs) for this type of calculations, and obtain physics answers of interest in a reasonable time-frame – with speedup of over 100× compared to best available CPU implementations of the theory on a 256{sup 3} grid.

  17. Landau-Ginzburg orbifolds and symmetries of K3 CFTs

    Science.gov (United States)

    Cheng, Miranda C. N.; Ferrari, Francesca; Harrison, Sarah M.; Paquette, Natalie M.

    2017-01-01

    Recent developments in the study of the moonshine phenomenon, including umbral and Conway moonshine, suggest that it may play an important role in encoding the action of finite symmetry groups on the BPS spectrum of K3 string theory. To test and clarify these proposed K3-moonshine connections, we study Landau-Ginzburg orbifolds that flow to conformal field theories in the moduli space of K3 sigma models. We compute K3ellipticgeneratwinedbydiscretesymmetriesthataremanifestintheUVdescription, though often inaccessible in the IR. We obtain various twining functions coinciding with moonshine predictions that have not been observed in physical theories before. These include twining functions arising from Mathieu moonshine, other cases of umbral moonshine, and Conway moonshine. For instance, all functions arising from M 11 ⊂ 2 .M 12 moonshine appear as explicit twining genera in the LG models, which moreover admit a uniform description in terms of its natural 12-dimensional representation. Our results provide strong evidence for the relevance of umbral moonshine for K3 symmetries, as well as new hints for its eventual explanation.

  18. Band structure of a three-dimensional topological insulator quantum wire in the presence of a magnetic field.

    Science.gov (United States)

    Liu, Zhe; Jiang, Liwei; Zheng, Yisong

    2016-07-13

    By means of a numerical diagonalization approach, we calculate the electronic structure of a three-dimensional topological insulator (3DTI) quantum wire (QW) in the presence of a magnetic field. The QW can be viewed as a 3DTI film with lateral surfaces, when its rectangular cross section has a large aspect ratio. Our calculation indicates that nonchiral edge states emerge because of the confined states at the lateral surfaces. These states completely cover the valence band region among the Landau levels, which reasonably account for the absence of the [Formula: see text] quantum Hall effect in the relevant experimental works. In an ultrathin 3DTI film, inversion between the electron-type and hole-type bands occurs, which leads to the so-called pseudo-spin Hall effect. In a 3DTI QW with a square cross section, a tilting magnetic field can establish well-defined Landau levels in all four surfaces. In such a case, the quantum Hall edge states are localized at the square corners, characterized by the linearly crossing one-dimensional band profile. And they can be shifted between the adjacent corners by simply rotating the magnetic field.

  19. Manipulation of the spin in single molecule magnets via Landau-Zener transitions

    Science.gov (United States)

    Palii, Andrew; Tsukerblat, Boris; Clemente-Juan, Juan M.; Gaita-Ariño, Alejandro; Coronado, Eugenio

    2011-11-01

    We theoretically investigate the effects of a magnetic pulse on a single-molecule magnet (SMM) initially magnetized by a dc field along the easy axis of magnetization. In the Landau-Zener (LZ) scheme, it is shown that the final spin state is a function of the shape and duration of the pulse, conditioned by the decoherence time of the SMM. In the case of coherent tunneling, the asymmetric pulses are shown to reverse the direction of the magnetization, while the symmetric pulses can only decrease the value of the initial magnetization. It is also demonstrated that the application of an external variable dc field in the hard plane of magnetization provides the possibility to tune the resulting magnetization due to quantum interference effects. The results and the conditions for the observation of the pulse-triggered LZ transitions are illustrated by the application of the proposed scheme to the well-studied single-molecule magnet Fe8. To put the results into perspective, some potential applications of SMMs experiencing pulse-induced LZ transitions, such as switching devices and qubits, are discussed.

  20. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; He, Jianfeng, E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Niemi, Antti J., E-mail: Antti.Niemi@physics.uu.se, E-mail: hjf@bit.edu.cn [School of Physics, Beijing Institute of Technology, Beijing 100081 (China); Department of Physics and Astronomy, Uppsala University, P.O. Box 803, S-75108 Uppsala (Sweden); Laboratoire de Mathematiques et Physique Theorique CNRS UMR 6083, Fédération Denis Poisson, Université de Tours, Parc de Grandmont, F37200 Tours (France)

    2016-07-28

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  1. Conformational landscape of an amyloid intra-cellular domain and Landau-Ginzburg-Wilson paradigm in protein dynamics

    International Nuclear Information System (INIS)

    Dai, Jin; He, Jianfeng; Niemi, Antti J.

    2016-01-01

    The Landau-Ginzburg-Wilson paradigm is proposed as a framework, to investigate the conformational landscape of intrinsically unstructured proteins. A universal Cα-trace Landau free energy is deduced from general symmetry considerations, with the ensuing all-atom structure modeled using publicly available reconstruction programs Pulchra and Scwrl. As an example, the conformational stability of an amyloid precursor protein intra-cellular domain (AICD) is inspected; the reference conformation is the crystallographic structure with code 3DXC in Protein Data Bank (PDB) that describes a heterodimer of AICD and a nuclear multi-domain adaptor protein Fe65. Those conformations of AICD that correspond to local or near-local minima of the Landau free energy are identified. For this, the response of the original 3DXC conformation to variations in the ambient temperature is investigated, using the Glauber algorithm. The conclusion is that in isolation the AICD conformation in 3DXC must be unstable. A family of degenerate conformations that minimise the Landau free energy is identified, and it is proposed that the native state of an isolated AICD is a superposition of these conformations. The results are fully in line with the presumed intrinsically unstructured character of isolated AICD and should provide a basis for a systematic analysis of AICD structure in future NMR experiments.

  2. Bloch electrons in 2D periodic electric and magnetic fields; Bloch-Elektronen in 2D periodischen elektrischen und magnetischen Feldern

    Energy Technology Data Exchange (ETDEWEB)

    Naundorf, B.

    2001-06-01

    The following topics were dealt with: electrons in periodic potentials, Bloch states, Landau states, wave packets, Harper equation, uncoupled Landau band states, matrix elements and matrix equations, periodic electric and magnetic fields (WL)

  3. Data-adaptive harmonic analysis and prediction of sea level change in North Atlantic region

    Science.gov (United States)

    Kondrashov, D. A.; Chekroun, M.

    2017-12-01

    This study aims to characterize North Atlantic sea level variability across the temporal and spatial scales. We apply recently developed data-adaptive Harmonic Decomposition (DAH) and Multilayer Stuart-Landau Models (MSLM) stochastic modeling techniques [Chekroun and Kondrashov, 2017] to monthly 1993-2017 dataset of Combined TOPEX/Poseidon, Jason-1 and Jason-2/OSTM altimetry fields over North Atlantic region. The key numerical feature of the DAH relies on the eigendecomposition of a matrix constructed from time-lagged spatial cross-correlations. In particular, eigenmodes form an orthogonal set of oscillating data-adaptive harmonic modes (DAHMs) that come in pairs and in exact phase quadrature for a given temporal frequency. Furthermore, the pairs of data-adaptive harmonic coefficients (DAHCs), obtained by projecting the dataset onto associated DAHMs, can be very efficiently modeled by a universal parametric family of simple nonlinear stochastic models - coupled Stuart-Landau oscillators stacked per frequency, and synchronized across different frequencies by the stochastic forcing. Despite the short record of altimetry dataset, developed DAH-MSLM model provides for skillful prediction of key dynamical and statistical features of sea level variability. References M. D. Chekroun and D. Kondrashov, Data-adaptive harmonic spectra and multilayer Stuart-Landau models. HAL preprint, 2017, https://hal.archives-ouvertes.fr/hal-01537797

  4. Avaliação audiológica e eletrofisiológica da audição na síndrome de Landau-Kleffner Audiologic and electrophysiologic evaluation in Landau-Kleffner syndrome

    Directory of Open Access Journals (Sweden)

    Carla Gentile Matas

    2007-06-01

    Full Text Available OBJETIVO: Descrever os resultados obtidos nas avaliações audiológica e eletrofisiológica da audição, verificando a ocorrência de alterações auditivas periféricas e/ou centrais, de indivíduos com síndrome de Landau-Kleffner. MÉTODOS: Foram submetidos à avaliação audiológica (inspeção do meato acústico externo, medidas de imitância acústica, audiometrias tonal e vocal e eletrofisiológica da audição (potenciais evocados auditivos de curta, média e longa latência, quatro indivíduos com diagnóstico de síndrome de Landau-Kleffner, na faixa etária de nove a 19 anos, encaminhados ao Laboratório de Investigação Fonoaudiológica em Potenciais Evocados Auditivos do Curso de Fonoaudiologia da Universidade de São Paulo. RESULTADOS: Os resultados mostraram que 100% dos indivíduos apresentaram alteração em pelo menos uma das avaliações realizadas, sendo que houve uma maior ocorrência de alterações no potencial evocado auditivo de média latência (100% dos indivíduos apresentaram alterações. CONCLUSÕES: Observou-se uma grande ocorrência de alterações nos resultados das avaliações audiológicas e eletrofisiológicas da audição em indivíduos com síndrome de Landau-Kleffner. Enfatiza-se a importância da investigação da função auditiva destes indivíduos a fim de verificar possíveis relações entre os déficits da comunicação e alterações auditivas que possam estar presentes nessa população.PURPOSE: To describe the audiological and electrophysiological results of individuals with Landau-Kleffner syndrome, verifying the occurrence of peripheral and/or central auditory disorders. METHODS: Four individuals with Landau-Kleffner syndrome with ages ranging from nine to 19 years old, referred to the Auditory Evoked Potentials Laboratory of the Speech and Language Pathology and Audiology Course of the University of São Paulo, were submitted to audiologic (otoscopy, immitance measurements, pure tone and

  5. Effect of Landau damping on kinetic Alfven and ion-acoustic solitary waves in a magnetized nonthermal plasma with warm ions

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anup; Das, K.P.

    2002-01-01

    The evolution equations describing both kinetic Alfven wave and ion-acoustic wave in a nonthermal magnetized plasma with warm ions including weak nonlinearity and weak dispersion with the effect of Landau damping have been derived. These equations reduce to two coupled equations constituting the KdV-ZK (Korteweg-de Vries-Zakharov-Kuznetsov) equation for both kinetic Alfven wave and ion-acoustic wave, including an extra term accounting for the effect of Landau damping. When the coefficient of the nonlinear term of the evolution equation for ion-acoustic wave vanishes, the nonlinear behavior of ion-acoustic wave, including the effect of Landau damping, is described by two coupled equations constituting the modified KdV-ZK (MKdV-ZK) equation, including an extra term accounting for the effect of Landau damping. It is found that there is no effect of Landau damping on the solitary structures of the kinetic Alfven wave. Both the macroscopic evolution equations for the ion-acoustic wave admits solitary wave solutions, the former having a sech 2 profile and the latter having a sech profile. In either case, it is found that the amplitude of the ion-acoustic solitary wave decreases slowly with time

  6. Dynamical mass generation in QED with weak magnetic fields

    International Nuclear Information System (INIS)

    Ayala, A.; Rojas, E.; Bashir, A.; Raya, A.

    2006-01-01

    We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics in the presence of magnetic fields using Schwinger-Dyson equations. We show that, contrary to the case where the magnetic field is strong, in the weak field limit eB << m(0)2, where m(0) is the value of the dynamically generated mass in the absence of the magnetic field, masses are generated above a critical value of the coupling and that this value is the same as in the case with no magnetic field. We carry out a numerical analysis to study the magnetic field dependence of the mass function above critical coupling and show that in this regime the dynamically generated mass and the chiral condensate for the lowest Landau level increase proportionally to (eB)2

  7. Lower critical field of an anisotropic type-II superconductor

    International Nuclear Information System (INIS)

    Klemm, R.A.; Clem, J.R.

    1980-01-01

    We consider the Ginzburg-Landau free energy of the anisotropic mass form in the presence of a magnetic field of arbitrary fixed direction. It is shown that the free energy may be transformed into the isotropic Ginsburg-Landau form with a kappa that depends upon the direction of the magnetic induction B relative to the crystal lattice. The lower critical field H/sub c/1 is then found for arbitrary direction of B. For highly anisotropic crystals the angular dependence of H/sub c/1 can exhibit a discontinuity or a cusp. The special case of a crystal with uniaxial symmetry is considered in detail

  8. Electron Landau damping of lower hybrid waves from a finite length antenna

    International Nuclear Information System (INIS)

    Brambilla, M.

    1977-01-01

    Launching and propagation of Lower Hybrid Waves to heat large plasmas by Electron Landau Damping is discussed. Conditions on the appropriate frequency and on the antenna location in the plasma density profile are derived

  9. Magnetocaloric properties of Gd in fields up to 14 T

    Energy Technology Data Exchange (ETDEWEB)

    Koshkid' ko, Yu.S. [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Ćwik, J., E-mail: jacek.cwik@ml.pan.wroc.pl [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Ivanova, T.I.; Nikitin, S.A. [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Lomonosov Moscow State University, Faculty of Physics, 119991 Moscow (Russian Federation); Miller, M. [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Rogacki, K. [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Institute of Low Temperatures and Structure Research, PAS, 50-950 Wroclaw (Poland)

    2017-07-01

    Highlights: • MCE of Gd in fields up to 14 T. • Extraction. • MCE described in terms of the Landau theory. - Abstract: The magnetocaloric effect (MCE) of polycrystalline gadolinium was studied in high steady magnetic fields up to 14 T by direct measurements of the adiabatic temperature change (ΔT) using an “extraction method”. Large MCE was observed at the ferromagnetic phase transition resulting in ΔT of 19.5 K at a field change of 14 T. The direct measurements of MCE were performed using the measuring system designed and constructed by the authors. It was shown that near the Curie temperature, the magnetic field dependence of the adiabatic temperature change is far from saturation even in a 14 T field and is adequately described by the thermodynamic Landau theory for magnetic second-order phase transitions.

  10. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint

    DEFF Research Database (Denmark)

    Kachmar, Ayman

    2010-01-01

    This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied ...

  11. Oscillating Sign of Drag in High Landau Levels

    International Nuclear Information System (INIS)

    von Oppen, Felix; Simon, Steven H.; Stern, Ady

    2001-01-01

    Motivated by experiments, we study the sign of the Coulomb drag voltage in a double layer system in a strong magnetic field. We show that the commonly used Fermi golden rule approach implicitly assumes a linear dependence of intralayer conductivity on density, and is thus inadequate in strong magnetic fields. Going beyond this approach, we show that the drag voltage commonly changes sign with density difference between the layers. We find that, in the quantum Hall regime, the Hall and longitudinal drag resistivities may be comparable. Our results are also relevant for pumping and acoustoelectric experiments

  12. Landau fluid models of collisionless magnetohydrodynamics

    International Nuclear Information System (INIS)

    Snyder, P.B.; Hammett, G.W.; Dorland, W.

    1997-01-01

    A closed set of fluid moment equations including models of kinetic Landau damping is developed which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model is fully electromagnetic and describes the dynamics of both compressional and shear Alfven waves, as well as ion acoustic waves. The model allows for separate parallel and perpendicular pressures p parallel and p perpendicular , and, unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3 + 1 moment model and a more accurate 4 + 2 moment model are developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas

  13. Induced scattering due to nonlinear Landau and cyclotron damping of electromagnetic and electrostatic waves in a magnetized plasma

    International Nuclear Information System (INIS)

    Sugaya, Reiji

    1989-01-01

    General expressions of the matrix elements for nonlinear wave-particle scattering (nonlinear Landau and cyclotron damping) of electromagnetic and electrostatic waves in a homogeneous magnetized plasma are derived from the Vlasov-Maxwell equations. The kinetic wave equations obtained for electromagnetic waves are expressed by four-order tensors in the rotating and cartesian coordinates. No restrictions are imposed on the propagation angle to a uniform magnetic field, the Larmor radius, the frequencies, or the wave numbers. By electrostatic approximation of the dielectric tensor and the matrix elements the kinetic wave equations can be applied to the case in which two scattering waves are electrostatic or they are partially electrostatic. Further, the matrix elements in the limit of parallel or perpendicular propagation to the magnetic field are given. (author)

  14. Self-consistent Ginzburg-Landau theory for transport currents in superconductors

    DEFF Research Database (Denmark)

    Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig

    2012-01-01

    We elaborate on boundary conditions for Ginzburg-Landau (GL) theory in the case of external currents. We implement a self-consistent theory within the finite element method (FEM) and present numerical results for a two-dimensional rectangular geometry. We emphasize that our approach can in princi...... in principle also be used for general geometries in three-dimensional superconductors....

  15. MD 2722: Investigation of Landau damping by means of BTF measurements

    CERN Document Server

    Tambasco, Claudia; Barranco Garcia, Javier; Boccardi, Andrea; Buffat, Xavier; Bruce, Roderik; Gasior, Marek; Hostettler, Michi; Lefevre, Thibaut; Levens, Tom; Louro Alves, Diogo Miguel; Metral, Elias; Pieloni, Tatiana; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2018-01-01

    Stability diagrams quantify the LHC stability thresholds due to the beam coupling impedance. Beam Transfer Function (BTF) measurements are a direct measurements of the stability diagram and therefore of the Landau damping of proton beams. Some coherent instabilities at the LHC are still not fully understood, especially when in the presence of beam-beam long range interactions at the end of the betatron squeeze. The beam-beam excited resonances can cause diffusive mechanisms and particle distribution changes that can lead to a different stability w.r.t. expectations for a Gaussian particle distribution. To investigate limitations of the models, a BTF system has been installed in the LHC in the 2015 in order to measure the Landau damping. During past MDs several configurations have been investigated: tune shifts and tune spread of the beams have been measured as a function of the octupole currents, tunes and beam-beam long range interactions. Some measurements artifacts were observed and mitigated, however the...

  16. Tilted magnetic field quantum magnetotransport in the double quantum well with a sizable bulk g-factor: InxGa1-xAs/GaAs

    NARCIS (Netherlands)

    Yakunin, M.V.; Galistu, G.; de Visser, A.

    2008-01-01

    Rich patterns of transformations in the structure of quantum Hall (QH) effect and magnetoresistivity under tilted magnetic fields were obtained in the InxGa1-xAs/GaAs double quantum well at mK temperatures. Local features correspond to the calculated intersections of Landau levels from different

  17. ABOUT SOME APPROXIMATIONS TO THE CLOSED SET OF NOT TRIVIAL SOLUTIONS OF THE EQUATIONS OF GINZBURG - LANDAU

    Directory of Open Access Journals (Sweden)

    A. A. Fonarev

    2014-01-01

    Full Text Available Possibility of use of a projective iterative method for search of approximations to the closed set of not trivial generalised solutions of a boundary value problem for Ginzburg - Landau's equations of the phenomenological theory of superconduction is investigated. The projective iterative method combines a projective method and iterative process. The generalised solutions of a boundary value problem for Ginzburg - Landau's equations are critical points of a functional of a superconductor free energy.

  18. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams

    Science.gov (United States)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-05-01

    A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.

  19. Magnetization plateaus of the frustrated Ising Shastry–Sutherland system: Wang–Landau simulation

    International Nuclear Information System (INIS)

    Lin, W.S.; Yang, T.H.; Wang, Y.; Qin, M.H.; Liu, J.-M.; Ren, Zhifeng

    2014-01-01

    The Wang–Landau algorithm is used to study the magnetic properties of the Ising model on the Shastry–Sutherland lattice in order to understand the interesting magnetization plateaus observed in TmB 4 . The simulated results demonstrate that the equilibrium state of the model produces only the 1/3 and 1/2 magnetization plateaus at low temperatures even when the random-exchange term or the long-range interactions are taken into account. This confirms our earlier conclusion (Huang et al., 2013) [20] that those fractional plateaus observed in experiments may be due to the magnetization dynamics. - Highlights: • The magnetic behaviors of TmB 4 are investigated using the Wang–Landau method. • The equilibrium state only produces the 1/3 and 1/2 magnetization plateaus. • Those fractional plateaus must arise from the non-equilibrium magnetization

  20. Magnetization plateaus of the frustrated Ising Shastry–Sutherland system: Wang–Landau simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.S.; Yang, T.H.; Wang, Y. [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Qin, M.H., E-mail: qinmh@scnu.edu.cn [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Department of Physics and TcSUH, University of Houston, Houston, TX 77204 (United States); Liu, J.-M. [Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Ren, Zhifeng, E-mail: zren@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, TX 77204 (United States)

    2014-07-04

    The Wang–Landau algorithm is used to study the magnetic properties of the Ising model on the Shastry–Sutherland lattice in order to understand the interesting magnetization plateaus observed in TmB{sub 4}. The simulated results demonstrate that the equilibrium state of the model produces only the 1/3 and 1/2 magnetization plateaus at low temperatures even when the random-exchange term or the long-range interactions are taken into account. This confirms our earlier conclusion (Huang et al., 2013) [20] that those fractional plateaus observed in experiments may be due to the magnetization dynamics. - Highlights: • The magnetic behaviors of TmB{sub 4} are investigated using the Wang–Landau method. • The equilibrium state only produces the 1/3 and 1/2 magnetization plateaus. • Those fractional plateaus must arise from the non-equilibrium magnetization.

  1. Landau-Ginzburg orbifolds and symmetries of K3 CFTs

    International Nuclear Information System (INIS)

    Cheng, Miranda C. N.; Ferrari, Francesca; Harrison, Sarah M.; Paquette, Natalie M.

    2017-01-01

    Recent developments in the study of the moonshine phenomenon, including umbral and Conway moonshine, suggest that it may play an important role in encoding the action of finite symmetry groups on the BPS spectrum of K 3 string theory. To test and clarify these proposed K 3 -moonshine connections, we study Landau-Ginzburg orbifolds that flow to conformal field theories in the moduli space of K 3 sigma models. We compute K 3 elliptic genera twined by discrete symmetries that are manifest in the UV description, though often inaccessible in the IR. We obtain various twining functions coinciding with moonshine predictions that have not been observed in physical theories before. These include twining functions arising from Mathieu moonshine, other cases of umbral moonshine, and Conway moonshine. For instance, all functions arising from M 11 c 2.M 12 moonshine appear as explicit twining genera in the LG models, which moreover admit a uniform description in terms of its natural 12-dimensional representation. Finally, our results provide strong evidence for the relevance of umbral moonshine for K 3 symmetries, as well as new hints for its eventual explanation.

  2. Level playing field with political tact

    International Nuclear Information System (INIS)

    Onderstal, S.; Appelman, M.

    2004-01-01

    Businesses, interest groups and policy administrators plead for a level playing field. However, those administrators interpret the level playing field notion in different ways and thus create confusion. In this article the level playing field is explained and a framework discussed by means of which the government can study policy problems in which the level playing field is of importance [nl

  3. Surface Acoustic Analog of Bloch Oscillations, Wannier-Stark Ladders and Landau-Zener Tunneling

    Science.gov (United States)

    de Lima, M. M.; Kosevich, Yu. A.; Santos, P. V.; Cantarero, A.

    2011-12-01

    In this contribution, we discuss the recent experimental demonstration of Wannier-Stark ladders, Bloch Oscillations and Landau Zener tunneling in a solid by means of surface acoustic waves propagating through perturbed grating structures.

  4. Haldane model under nonuniform strain

    Science.gov (United States)

    Ho, Yen-Hung; Castro, Eduardo V.; Cazalilla, Miguel A.

    2017-10-01

    We study the Haldane model under strain using a tight-binding approach, and compare the obtained results with the continuum-limit approximation. As in graphene, nonuniform strain leads to a time-reversal preserving pseudomagnetic field that induces (pseudo-)Landau levels. Unlike a real magnetic field, strain lifts the degeneracy of the zeroth pseudo-Landau levels at different valleys. Moreover, for the zigzag edge under uniaxial strain, strain removes the degeneracy within the pseudo-Landau levels by inducing a tilt in their energy dispersion. The latter arises from next-to-leading order corrections to the continuum-limit Hamiltonian, which are absent for a real magnetic field. We show that, for the lowest pseudo-Landau levels in the Haldane model, the dominant contribution to the tilt is different from graphene. In addition, although strain does not strongly modify the dispersion of the edge states, their interplay with the pseudo-Landau levels is different for the armchair and zigzag ribbons. Finally, we study the effect of strain in the band structure of the Haldane model at the critical point of the topological transition, thus shedding light on the interplay between nontrivial topology and strain in quantum anomalous Hall systems.

  5. The Simplest Quantum Model Supporting the Kibble-Zurek Mechanism of Topological Defect Production: Landau-Zener Transitions from a New Perspective

    International Nuclear Information System (INIS)

    Damski, Bogdan

    2005-01-01

    It can be shown that the dynamics of the Landau-Zener model can be accurately described in terms of the Kibble-Zurek theory of the topological defect production in nonequilibrium phase transitions. The simplest quantum model exhibiting the Kibble-Zurek mechanism is presented. A new intuitive description of Landau-Zener dynamics is found

  6. Effects on a Landau-type system for a neutral particle with no permanent electric dipole moment subject to the Kratzer potential in a rotating frame.

    Science.gov (United States)

    Oliveira, Abinael B; Bakke, Knut

    2016-06-01

    The behaviour of a neutral particle (atom, molecule) with an induced electric dipole moment in a region with a uniform effective magnetic field under the influence of the Kratzer potential (Kratzer 1920 Z. Phys. 3 , 289-307. (doi:10.1007/BF01327754)), and rotating effects is analysed. It is shown that the degeneracy of the Landau-type levels is broken and the angular frequency of the system acquires a new contribution that stems from the rotation effects. Moreover, in the search for bound state solutions, it is shown that the possible values of this angular frequency of the system are determined by the quantum numbers associated with the radial modes and the angular momentum, the angular velocity of the rotating frame and by the parameters associated with the Kratzer potential.

  7. Low-frequency Landau-Zener-Stuckelberg interference in dissipative superconducting qubits

    International Nuclear Information System (INIS)

    Du-lingjie; Lan- Dong; Yu-Yang

    2013-01-01

    Landau-Zener-Stuckelberg (LZS) interference of continuously driven superconducting qubits is studied. Going beyond the second order perturbation expansion, we find a time dependent stationary population evolution as well as unsymmetrical microwave driven Landau-Zener transitions, resulting from the nonresonant terms which are neglected in rotating-wave approximation. For the low-frequency driving, the qubit population at equilibrium is a periodical function of time, owing to the contribution of the nonresonant terms. In order to obtain the average population, it is found that the average approximation based on the perturbation approach can be applied to the low-frequency region. For the extremely low frequency which is much smaller than the decoherence rate, we develop noncoherence approximation by dividing the evolution into discrete time steps during which the coherence is lost totally. These approximations present comprehensive analytical descriptions of LZS interference in most of parameter space of frequency and decoherence rate, agreeing well with those of the numerical simulations and providing a simple but integrated understanding to system dynamics. The application of our models to microwave cooling can obtain the minimal frequency to realize effective microwave cooling.

  8. Periods for Calabi-Yau and Landau-Ginzburg vacua

    CERN Document Server

    Berglund, P; De la Ossa, X C; Font, A; Hübsch, T; Jancic, D; Quevedo, Fernando; Berglund, Per; Candelas, Philip; Ossa, Xenia de la; Font, Anamaria; Hubsch, Tristan; Jancic, Dubravka; Quevedo, Fernando

    1994-01-01

    The complete structure of the moduli space of \\cys\\ and the associated Landau-Ginzburg theories, and hence also of the corresponding low-energy effective theory that results from (2,2) superstring compactification, may be determined in terms of certain holomorphic functions called periods. These periods are shown to be readily calculable for a great many such models. We illustrate this by computing the periods explicitly for a number of classes of \\cys. We also point out that it is possible to read off from the periods certain important information relating to the mirror manifolds.

  9. Fluid moments of the nonlinear Landau collision operator

    Energy Technology Data Exchange (ETDEWEB)

    Hirvijoki, E.; Pfefferlé, D. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Lingam, M.; Bhattacharjee, A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Comisso, L. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States)

    2016-08-15

    An important problem in plasma physics is the lack of an accurate and complete description of Coulomb collisions in associated fluid models. To shed light on the problem, this Letter introduces an integral identity involving the multivariate Hermite tensor polynomials and presents a method for computing exact expressions for the fluid moments of the nonlinear Landau collision operator. The proposed methodology provides a systematic and rigorous means of extending the validity of fluid models that have an underlying inverse-square force particle dynamics to arbitrary collisionality and flow.

  10. About Ginzburg-Landau, and a bit on others

    International Nuclear Information System (INIS)

    Maksimov, Evgenii G

    2011-01-01

    This note is a brief history of how the theory of Ginzburg and Landau came to be. Early publications on the macroscopic theory of superconductivity are reviewed in detail. Discussions that the two co-authors had with their colleagues and between themselves are described. The 1952 review by V L Ginzburg is discussed, in which a number of well-defined requirements on the yet-to-be-developed microscopic theory of superconductivity were formulated, constituting what J Bardeen called the 'Ginzburg energy gap model'. (from the history of physics)

  11. Magnetic oscillations and quasiparticle band structure in the mixed state of type-II superconductors

    International Nuclear Information System (INIS)

    Norman, M.R.; MacDonald, A.H.; Akera, H.

    1995-01-01

    We consider magnetic oscillations due to Landau quantization in the mixed state of type-II superconductors. Our work is based on a previously developed formalism which allows the mean-field gap equations of the Abrikosov state to be conveniently solved in a Landau-level representation. We find that the quasiparticle band structure changes qualitatively when the pairing self-energy becomes comparable to the Landau-level separation. For small pairing self-energies, Landau-level mixing due to the superconducting order is weak and magnetic oscillations survive in the superconducting state although they are damped. We find that the width of the quasiparticle Landau levels in this regime varies approximately as Δ 0 n μ -1/4 where Δ 0 is proportional to the magnitude of the order parameter and n μ is the Landau-level index at the Fermi energy. For larger pairing self-energies, the lowest energy quasiparticle bands occur in pairs which are nearly equally spaced from each other and evolve with weakening magnetic field toward the bound states of an isolated vortex core. These bands have a weak magnetic field dependence and magnetic oscillations vanish rapidly in this regime. We discuss recent observations of the de Haas--van Alphen effect in the mixed state of several type-II superconductors in light of our results

  12. Nucleation of the lamellar phase from the disordered phase of the renormalized Landau-Brazovskii model

    Science.gov (United States)

    Carilli, Michael F.; Delaney, Kris T.; Fredrickson, Glenn H.

    2018-02-01

    Using the zero-temperature string method, we investigate nucleation of a stable lamellar phase from a metastable disordered phase of the renormalized Landau-Brazovskii model at parameters explicitly connected to those of an experimentally accessible diblock copolymer melt. We find anisotropic critical nuclei in qualitative agreement with previous experimental and analytic predictions; we also find good quantitative agreement with the predictions of a single-mode analysis. We conduct a thorough search for critical nuclei containing various predicted and experimentally observed defect structures. The predictions of the renormalized model are assessed by simulating the bare Landau-Brazovskii model with fluctuations. We find that the renormalized model makes reasonable predictions for several important quantities, including the order-disorder transition (ODT). However, the critical nucleus size depends sharply on proximity to the ODT, so even small errors in the ODT predicted by the renormalized model lead to large errors in the predicted critical nucleus size. We conclude that the renormalized model is a poor tool to study nucleation in the fluctuating Landau-Brazovskii model, and recommend that future studies work with the fluctuating bare model directly, using well-chosen collective variables to investigate kinetic pathways in the disorder → lamellar transition.

  13. Lattice-induced double-valley degeneracy lifting in graphene by a magnetic field.

    Science.gov (United States)

    Luk'yanchuk, Igor A; Bratkovsky, Alexander M

    2008-05-02

    We show that the recently discovered double-valley splitting of the Landau levels in the quantum Hall effect in graphene can be explained as the perturbative orbital interaction of intravalley and intervalley microscopic orbital currents with a magnetic field. This effect is facilitated by the translationally noninvariant terms that correspond to graphene's crystallographic honeycomb symmetry but do not exist in the relativistic theory of massless Dirac fermions in quantum electrodynamics. We discuss recent data in view of these findings.

  14. Measurability of quantum fields and the energy-time uncertainty relation

    International Nuclear Information System (INIS)

    Mensky, Mikhail B

    2011-01-01

    Quantum restrictions on the measurability of an electromagnetic field strength and their relevance to the energy-time uncertainty relation are considered. The minimum errors in measuring electromagnetic field strengths, as they were estimated by the author (1988) in the framework of the phenomenological method of restricted path integral (RPI), are compared with the analogous estimates found by Landau and Peierls (1931) and by Bohr and Rosenfeld (1933) with the help of certain measurement setups. RPI-based restrictions, including those of Landau and Peierls as a special case, hold for any measuring schemes meeting the strict definition of measurement. Their fundamental nature is confirmed by the fact that their associated field detectability condition has the form of the energy-time uncertainty relation. The weaker restrictions suggested by Bohr and Rosenfeld rely on an extended definition of measurement. The energy-time uncertainty relation, which is the condition for the electromagnetic field to be detectable, is applied to the analysis of how the near-field scanning microscope works. (methodological notes)

  15. Moving boundary - Oxygen diffusion. Two algorithms using Landau transformation

    International Nuclear Information System (INIS)

    Moyano, E.A.

    1991-01-01

    A description is made of two algorithms which solve a mathematical model destinated for the study of one-dimensional problems with moving boundaries and implicit boundary conditions. The Landau transformation is used in both methods for each temporal level so as to work all through with the same amount of nodes. Thus, it is necessary to deal with a partial differential equation whose diffusive and convective terms are accompanied by variable coefficients. The partial differential equation is made discrete implicitly, using the Laasonen scheme -which is always stable- instead of the Crank-Nicholson scheme, as performed by Ferris and Hill (5), in the fixed time passing method. The second method employs the tridiagonal algorithm. The first algorithm uses fixed time passing and iterates with variable interface positions, that is to say, it varies δs until it satisfies the boundary condition. The mathematical model describes oxygen diffusion in live tissues. Its numerical solution is obtained by finite differences. An important application of this method could be the estimation of the radiation dose in cancerous tumor treatment. (Author) [es

  16. Exact solutions of the one-dimensional generalized modified complex Ginzburg-Landau equation

    International Nuclear Information System (INIS)

    Yomba, Emmanuel; Kofane, Timoleon Crepin

    2003-01-01

    The one-dimensional (1D) generalized modified complex Ginzburg-Landau (MCGL) equation for the traveling wave systems is analytically studied. Exact solutions of this equation are obtained using a method which combines the Painleve test for integrability in the formalism of Weiss-Tabor-Carnevale and Hirota technique of bilinearization. We show that pulses, fronts, periodic unbounded waves, sources, sinks and solution as collision between two fronts are the important coherent structures that organize much of the dynamical properties of these traveling wave systems. The degeneracies of the 1D generalized MCGL equation are examined as well as several of their solutions. These degeneracies include two important equations: the 1D generalized modified Schroedinger equation and the 1D generalized real modified Ginzburg-Landau equation. We obtain that the one parameter family of traveling localized source solutions called 'Nozaki-Bekki holes' become a subfamily of the dark soliton solutions in the 1D generalized modified Schroedinger limit

  17. N=2 superconformal models, Landau-Ginsburg Hamiltonians and the ε expansion

    International Nuclear Information System (INIS)

    Howe, P.S.; West, P.C.

    1989-01-01

    The anomalous dimensions of a class of operators, operator product expansions and the central change, c, are calculated in a family of N=2 supersymmetric two-dimensional Landau-Ginsburg models. The results allow the identification of these theories with N=2 minimal superconformal models. A key role is placed by the N=2 non-renormalization theorem. (orig.)

  18. Definite evidence of the Landau-Zener transition in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von; Voit, H.

    1986-05-01

    It is shown that the Landau-Zener transition mechanism due to the formation of molecular orbitals of the active neutron exists in the inelastic scattering 13 C( 12 C, 12 C) 13 C* (3.086 MeV, 1/2 + ). The evidence stems from characteristic changes of the angular distributions observed as function of the incident energy. (author)

  19. Oscillatory magneto-convection under magnetic field modulation

    OpenAIRE

    Kiran, Palle; Bhadauria, B.S.; Narasimhulu, Y.

    2017-01-01

    In this paper we investigate an oscillatory mode of nonlinear magneto-convection under time dependant magnetic field. The time dependant magnetic field consists steady and oscillatory parts. The oscillatory part of the imposed magnetic field is assumed to be of third order. An externally imposed vertical magnetic field in an electrically conducting horizontal fluid layer is considered. The finite amplitude analysis is discussed while perturbing the system. The complex Ginzburg-Landau model is...

  20. Modeling of superconductors based on the timedependent Ginsburg-Landau equations

    Science.gov (United States)

    Grishakov, K. S.; Degtyarenko, P. N.; Degtyarenko, N. N.; Elesin, V. F.; Kruglov, V. S.

    2009-11-01

    Results of modeling of superconductor magnetization process based on a numerical solution of the timedependent Ginsburg-Landau equations are presented. Methods of grid approximation of the equations and method of finite elements are used. Two-dimensional patterns of changes in the order parameter and supercurrent distribution in superconductors are calculated and visualized. The main results are in agreement with the well-known representations for type I and II superconductors.

  1. Potential scattering in the presence of a static magnetic field and a radiation field of arbitrary polarization

    Science.gov (United States)

    Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.

    1982-05-01

    Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.

  2. Two-Dimensional Dirac Fermions in a Topological Insulator: Transport in the Quantum Limit

    Energy Technology Data Exchange (ETDEWEB)

    Analytis, J.G.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; McDonald, R.D.; /Los Alamos; Riggs, S.C.; /Natl. High Mag. Field Lab.; Chu, J.-H.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.; Boebinger, G.S.; /Natl. High Mag. Field Lab.; Fisher, I.R.; /SIMES, Stanford /SLAC /Stanford U., Geballe Lab /Stanford U., Appl. Phys. Dept.

    2011-08-12

    Pulsed magnetic fields of up to 55T are used to investigate the transport properties of the topological insulator Bi{sub 2}Se{sub 3} in the extreme quantum limit. For samples with a bulk carrier density of n = 2.9 x 10{sup 16} cm{sup -3}, the lowest Landau level of the bulk 3D Fermi surface is reached by a field of 4T. For fields well beyond this limit, Shubnikov-de Haas oscillations arising from quantization of the 2D surface state are observed, with the {nu} = 1 Landau level attained by a field of {approx} 35T. These measurements reveal the presence of additional oscillations which occur at fields corresponding to simple rational fractions of the integer Landau indices.

  3. Geometry of (0,2) Landau-Ginzburg orbifolds

    International Nuclear Information System (INIS)

    Kawai, Toshiya; Mohri, Kenji

    1994-01-01

    Several aspects of (0,2) Landau-Ginzburg orbifolds are investigated. Especially the elliptic genera are computed in general and, for a class of models recently invented by Distler and Kachru, they are compared with the ones from (0,2) sigma models. Our formalism gives an easy way to calculate the generation numbers for lots of Distler-Kachru models even if they are based on singular Calabi-Yau spaces. We also make some general remarks on the Born-Oppenheimer calculation of the ground states elucidating its mathematical meaning in the untwisted sector. For Distler-Kachru models based on non-singular Calabi-Yau spaces we show that there exist ''residue'' type formulas of the elliptic genera as well. ((orig.))

  4. Landau quantization effects on hole-acoustic instability in semiconductor plasmas

    Science.gov (United States)

    Sumera, P.; Rasheed, A.; Jamil, M.; Siddique, M.; Areeb, F.

    2017-12-01

    The growth rate of the hole acoustic waves (HAWs) exciting in magnetized semiconductor quantum plasma pumped by the electron beam has been investigated. The instability of the waves contains quantum effects including the exchange and correlation potential, Bohm potential, Fermi-degenerate pressure, and the magnetic quantization of semiconductor plasma species. The effects of various plasma parameters, which include relative concentration of plasma particles, beam electron temperature, beam speed, plasma temperature (temperature of electrons/holes), and Landau electron orbital magnetic quantization parameter η, on the growth rate of HAWs, have been discussed. The numerical study of our model of acoustic waves has been applied, as an example, to the GaAs semiconductor exposed to electron beam in the magnetic field environment. An increment in either the concentration of the semiconductor electrons or the speed of beam electrons, in the presence of magnetic quantization of fermion orbital motion, enhances remarkably the growth rate of the HAWs. Although the growth rate of the waves reduces with a rise in the thermal temperature of plasma species, at a particular temperature, we receive a higher instability due to the contribution of magnetic quantization of fermions to it.

  5. Superconducting niobium in high rf magnetic fields

    International Nuclear Information System (INIS)

    Mueller, G.

    1988-01-01

    The benefit of superconducting cavities for accelerator applications depends on the field and Q/sub 0/ levels which can be achieved reliably in mass producible multicell accelerating structures. The presently observed field and Q/sub 0/ limitations are caused by anomalous loss mechanisms which are not correlated with the intrinsic properties of the pure superconductor but rather due to defects or contaminants on the superconducting surface. The ultimate performance levels of clean superconducting cavities built from pure Nb will be given by the rf critical field and the surface resistance of the superconductor. In the first part of this paper a short survey is given of the maximum surface magnetic fields achieved in single-cell cavities. The results of model calculations for the thermal breakdown induced by very small defects and for the transition to the defect free case is discussed in part 2. In the last chapter, a discussion is given for the rf critical field of Nb on the basis of the Ginzburg-Landau Theory. It is shown that not only purity but also the homogeneity of the material should become important for the performance of superconducting Nb cavities at field levels beyond 100mT. Measurement results of the upper critical field for different grades of commercially available Nb sheet materials are given. 58 references, 20 figures, 1 table

  6. Quantum Hall conductivity in a Landau type model with a realistic geometry

    International Nuclear Information System (INIS)

    Chandelier, F.; Georgelin, Y.; Masson, T.; Wallet, J.-C.

    2003-01-01

    In this paper, we revisit some quantum mechanical aspects related to the quantum Hall effect. We consider a Landau type model, paying a special attention to the experimental and geometrical features of quantum Hall experiments. The resulting formalism is then used to compute explicitly the Hall conductivity from a Kubo formula

  7. Evidence for the existence of Gribov copies in Landau gauge lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Marinari, E.; Ricci, R. (Rome-2 Univ. (Italy). Dipt. di Fisica INFN, Rome (Italy)); Parrinello, C. (New York Univ., NY (USA). Physics Dept.)

    1991-09-16

    We unambiguously show the existence of Gribov copies in a pure SU(3) gauge lattice model, with Wilson action. We show that the usual steepest-descent algorithms used for implementing the lattice Landau gauge lead to ambiguities, which are related to the existence of Gribov copies in the model. (orig.).

  8. Slowing hot-carrier relaxation in graphene using a magnetic field

    Science.gov (United States)

    Plochocka, P.; Kossacki, P.; Golnik, A.; Kazimierczuk, T.; Berger, C.; de Heer, W. A.; Potemski, M.

    2009-12-01

    A degenerate pump-probe technique is used to investigate the nonequilibrium carrier dynamics in multilayer graphene. Two distinctly different dynamics of the carrier relaxation are observed. A fast relaxation (˜50fs) of the carriers after the initial effect of phase-space filling followed by a slower relaxation (˜4ps) due to thermalization. Both relaxation processes are less efficient when a magnetic field is applied at low temperatures which is attributed to the suppression of the electron-electron Auger scattering due to the nonequidistant Landau-level spacing of the Dirac fermions in graphene.

  9. Variational principles for Ginzburg-Landau equation by He's semi-inverse method

    International Nuclear Information System (INIS)

    Liu, W.Y.; Yu, Y.J.; Chen, L.D.

    2007-01-01

    Via the semi-inverse method of establishing variational principles proposed by He, a generalized variational principle is established for Ginzburg-Landau equation. The present theory provides a quite straightforward tool to the search for various variational principles for physical problems. This paper aims at providing a more complete theoretical basis for applications using finite element and other direct variational methods

  10. Wigner functions for fermions in strong magnetic fields

    Science.gov (United States)

    Sheng, Xin-li; Rischke, Dirk H.; Vasak, David; Wang, Qun

    2018-02-01

    We compute the covariant Wigner function for spin-(1/2) fermions in an arbitrarily strong magnetic field by exactly solving the Dirac equation at non-zero fermion-number and chiral-charge densities. The Landau energy levels as well as a set of orthonormal eigenfunctions are found as solutions of the Dirac equation. With these orthonormal eigenfunctions we construct the fermion field operators and the corresponding Wigner-function operator. The Wigner function is obtained by taking the ensemble average of the Wigner-function operator in global thermodynamical equilibrium, i.e., at constant temperature T and non-zero fermion-number and chiral-charge chemical potentials μ and μ_5, respectively. Extracting the vector and axial-vector components of the Wigner function, we reproduce the currents of the chiral magnetic and separation effect in an arbitrarily strong magnetic field.

  11. Landau-Kleffner Syndrome: An Exploration of Parent Experience of the Diagnostic Process

    Science.gov (United States)

    Lemard-Reid, Daunette

    2014-01-01

    Landau-Kleffner syndrome (LKS) is a rare childhood disorder that is often misdiagnosed as autism or childhood psychosis because of overlapping symptom presentation. Favorable prognoses in LKS depend on early diagnosis and treatment. While much is known about the clinical basis for LKS diagnosis, little is known about parents' lived experience with…

  12. Effects of the quark field on the ghost propagator of lattice Landau gauge QCD

    International Nuclear Information System (INIS)

    Furui, Sadataka; Nakajima, Hideo

    2006-01-01

    Infrared features of the ghost propagator of color-diagonal and color antisymmetric ghost propagator of quenched SU(2) and quenched SU(3) are compared with those of unquenched Kogut-Susskind fermion SU(3) lattice Landau gauge. We compare (i) the fluctuation of the ghost propagator (ii) the ghost condensate parameter v of the local composite operator (LCO) approach, and (iii) the Binder cumulant of color antisymmetric ghost propagator between quenched and unquenched configurations. The color-diagonal SU(3) ghost dressing function of unquenched configurations has weaker singularity than the quenched configurations. In both cases fluctuations become large in q c configuration samples is ∼0.002-0.04 GeV 2 while that of the SU(2) parallel tempering samples is consistent with 0. The Binder cumulant defined as U(q)=1-(1/3)( 4 >/( 2 >) 2 ), where φ-vector(q) is the color antisymmetric ghost propagator measured by the sample average of gauge fixed configurations via parallel tempering method, becomes ∼4/9 in all the momentum region. The Binder cumulant of the color antisymmetric ghost propagator of quenched SU(2) can be explained by the 3D Gaussian distribution, but that of the unquenched MILC c deviates slightly from that of the eight-dimensional Gaussian distribution. The stronger singularity and large fluctuation in the quenched configuration could be the cause of the deviation of the Kugo-Ojima confinement parameter c from 1, and the presence of ordering in the ghost propagator of unquenched configurations makes it closer to 1

  13. A Study of the Nonlinear Landau Damping in the Fourier Transformed VelocitySpace

    Czech Academy of Sciences Publication Activity Database

    Sedláček, Zdeněk

    2002-01-01

    Roč. 34, 1-2 (2002), s. 63-87 ISSN 0041-1450 Institutional research plan: CEZ:AV0Z2043910 Keywords : Landau damping * Van Kampen-Case eigenmodes * BGK modes * free streaming Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.453, year: 2002

  14. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...... is depressed to zero....

  15. Mixing of charged and neutral Bose condensates at nonzero temperature and magnetic field

    Directory of Open Access Journals (Sweden)

    Haber Alexander

    2017-01-01

    Full Text Available It is expected that in the interior of compact stars a proton superconductor coexists with and couples to a neutron superfluid. Starting from a field-theoretical model for two complex scalar fields – one of which is electrically charged – we derive a Ginzburg-Landau potential which includes entrainment between the two fluids and temperature effects from thermal excitations of the two scalar fields and the gauge field. The Ginzburg-Landau description is then used for an analysis of the phase structure in the presence of an external magnetic field. In particular, we study the effect of the superfluid on the flux tube phase by computing the various critical magnetic fields and deriving an approximation for the flux tube interaction. As a result, we point out differences to the naive expectations from an isolated superconductor, for instance the existence of a first-order flux tube onset, resulting in a more complicated phase structure in the region between type-I and type-II superconductivity.

  16. Multiple Walkers in the Wang-Landau Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G

    2005-12-28

    The mean cost for converging an estimated density of states using the Wang-Landau algorithm is measured for the Ising and Heisenberg models. The cost increases in a power-law fashion with the number of spins, with an exponent near 3 for one-dimensional models, and closer to 2.4 for two-dimensional models. The effect of multiple, simultaneous walkers on the cost is also measured. For the one-dimensional Ising model the cost can increase with the number of walkers for large systems. For both the Ising and Heisenberg models in two-dimensions, no adverse impact on the cost is observed. Thus multiple walkers is a strategy that should scale well in a parallel computing environment for many models of magnetic materials.

  17. Derivation of Ginzburg-Landau theory for a one-dimensional system with contact interaction

    DEFF Research Database (Denmark)

    Frank, Rupert; Hanizl, Christian; Seiringer, Robert

    2013-01-01

    In a recent paper we give the first rigorous derivation of the celebrated Ginzburg-Landau (GL) theory, starting from the microscopic Bardeen-Cooper-Schrieffer (BCS) model. Here we present our results in the simplified case of a one-dimensional system of particles interacting via a delta-potential....

  18. Direct path from microscopic mechanics to Debye shielding, Landau damping and wave-particle interaction

    International Nuclear Information System (INIS)

    Escande, D F; Elskens, Yves; Doveil, F

    2015-01-01

    The derivation of Debye shielding and Landau damping from the N-body description of plasmas is performed directly by using Newton’s second law for the N-body system. This is done in a few steps with elementary calculations using standard tools of calculus and no probabilistic setting. Unexpectedly, Debye shielding is encountered together with Landau damping. This approach is shown to be justified in the one-dimensional case when the number of particles in a Debye sphere becomes large. The theory is extended to accommodate a correct description of trapping and chaos due to Langmuir waves. On top of their well-known production of collisional transport, the repulsive deflections of electrons are shown to produce shielding, in such a way that each particle is shielded by all other ones, while keeping in uninterrupted motion. (paper)

  19. Landau damping of dust acoustic waves in the presence of hybrid nonthermal nonextensive electrons

    Science.gov (United States)

    El-Taibany, W. F.; Zedan, N. A.; Taha, R. M.

    2018-06-01

    Based on the kinetic theory, Landau damping of dust acoustic waves (DAWs) propagating in a dusty plasma composed of hybrid nonthermal nonextensive distributed electrons, Maxwellian distributed ions and negatively charged dust grains is investigated using Vlasov-Poisson's equations. The characteristics of the DAWs Landau damping are discussed. It is found that the wave frequency increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, q (α ). It is recognized that α plays a significant role in observing damping or growing DAW oscillations. For small values of α , damping modes have been observed until reaching a certain value of α at which ω i vanishes, then a growing mode appears in the case of superextensive electrons. However, only damping DAW modes are observed in case of subextensive electrons. The present study is useful in the space situations where such distribution exists.

  20. The damping of spin motions in ultrathin films: Is the Landau-Lifschitz-Gilbert phenomenology applicable?

    International Nuclear Information System (INIS)

    Mills, D.L.; Arias, Rodrigo

    2006-01-01

    The Landau-Lifschitz-Gilbert (LLG) equation is used widely in device design to describe spin motions in magnetic nanoscale structures. The damping term in this equation plays an essential role in the description of the magnetization dynamics. The form of this term is simple and appealing, but it is derived through use of elementary phenomenological considerations. An important question is whether or not it provides a proper description of the damping of the magnetization in real materials. Recently, it was predicted that a mechanism called two magnon damping should contribute importantly to linewidths and consequently spin damping in ultrathin ferromagnetic films. This process yields ferromagnetic resonance (FMR) linewidths whose frequency dependence is incompatible with the linear variation expected from the Landau-Lifschitz equation. This prediction has now been confirmed experimentally. Furthermore, subsequent experimental and theoretical studies have demonstrated that the damping rate depends strongly on wave vector as well. It is thus clear that for many samples, the LLG equation fails to account for the systematics of the damping of the magnetization in ultrathin ferromagnets, at the linear response level. The paper will review the recent literature on this topic relevant to this issue. One must then inquire into the nature of a proper phenomenology to describe these materials. At the linear response level, the theory of the two magnon mechanism is sufficiently complete that one can describe the response of these systems without resort to LLG phenomenology. However, currently there is very great interest in the large amplitude response of the magnetization in magnetic nanostructures. In the view of the authors, it is difficult to envision a generally applicable extension of linear response theory into the large amplitude regime

  1. Gradient corrections to the time-dependent Ginzburg-Landau eqzation for anisotropic perturbations of quasiparticles

    Czech Academy of Sciences Publication Activity Database

    Lin, P.-J.; Lipavský, Pavel

    2008-01-01

    Roč. 77, č. 14 (2008), 144505/1-144505/16 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : non-equilibrium superconductivity * Ginzburg-Landau theory Subject RIV: BE - Theoretical Physics Impact factor: 3.322, year: 2008

  2. Landau fluid equations for electromagnetic and electrostatic fluctuations

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.

    1992-01-01

    Closure relations are developed to allow approximate treatment of Landau damping and growth using fluid equations for both electrostatic and electromagnetic modes. The coefficients in these closure relations are related to approximations of the plasma dispersion function by ratios of polynomials. Thirteen different numerical sets of coefficients are given and explicitly related to previous fits to the plasma dispersion function. The application of the techniques presented in this paper is illustrated with the specific example of resistive g modes. Comparisons of full kinetic and approximate results are made for the solutions to the dispersion relation, radially resolved modes in sheared magnetic geometry, and the plasma dispersion function itself

  3. Combined study of the gluon and ghost condensates μ2> and abccbcc> in Euclidean SU(2) Yang-Mills theory in the Landau gauge

    International Nuclear Information System (INIS)

    Capri, M.A.L.; Lemes, V.E.R.; Sobreiro, R.F.; Sorella, S.P.; Dudal, D.; Verschelde, H.; Gracey, J.A.

    2006-01-01

    The ghost condensate abc c b c c > is considered together with the gluon condensate μ 2 > in SU(2) Euclidean Yang-Mills theories quantized in the Landau gauge. The vacuum polarization ceases to be transverse due to the nonvanishing condensate abc c b c c >. The gluon propagator itself remains transverse. By polarization effects, this ghost condensate induces then a splitting in the gluon mass parameter, which is dynamically generated through μ 2 >. The obtained effective masses are real when μ 2 > is included in the analysis. In the absence of μ 2 >, the already known result that the ghost condensate induces effective tachyonic masses is recovered. At the one-loop level, we find that the effective diagonal mass becomes smaller than the off-diagonal one. This might serve as an indication for some kind of Abelian dominance in the Landau gauge, similar to what happens in the maximal Abelian gauge

  4. Dynamics of perturbed wavetrain solutions to the Ginzburg-Landau equation

    International Nuclear Information System (INIS)

    Keefe, L.R.

    1984-01-01

    The bifurcation structure of even, spatially periodic solutions to the time-dependent Ginzburg-Landau equation is investigated analytically and numerically. A rich variety of behavior, including limit cycles, two-tori, period-doubling sequences, and strange attractors are found to exist in the phase space of the solutions constructed from spatial Fourier modes. Beginning with unstable perturbations to the spatially homogeneous Stokes solution, changes in solution behavior are examined as the perturbing wavenumber q is varied in the range 0.6 to 1.3. Solution bifurcations as q changes are often found to be associated with symmetry making or breaking changes in the structure of attractors in phase space. Two distinct mirror image attractors are found to coexist for many values of q. Chaotic motion is found for two ranges of q Lyapunov exponents of the solutions and the Lyapunov dimension of the corresponding attractors are calculated for the larger of these regions. Poincare sections of the attractors within this chaotic range are consistent with the dimension calculation and also reveal a bifurcation structure within the chaos which broadly resembles that found in one-dimensional quadratic maps. The integrability of the Ginzburg-Landau equation is also examined. It is demonstrated that the equation does not possess the Painleve property, except for a special case of the coefficients which corresponds to the integrable non-linear Schroedinger (NLS) equation

  5. Thermal coupling effect on the vortex dynamics of superconducting thin films: time-dependent Ginzburg–Landau simulations

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2018-05-01

    In this paper, vortex dynamics of superconducting thin films are numerically investigated by the generalized time-dependent Ginzburg–Landau (TDGL) theory. Interactions between vortex motion and the motion induced energy dissipation is considered by solving the coupled TDGL equation and the heat diffusion equation. It is found that thermal coupling has significant effects on the vortex dynamics of superconducting thin films. Branching in the vortex penetration path originates from the coupling between vortex motion and the motion induced energy dissipation. In addition, the environment temperature, the magnetic field ramp rate and the geometry of the superconducting film also greatly influence the vortex dynamic behaviors. Our results provide new insights into the dynamics of superconducting vortices, and give a mesoscopic understanding on the channeling and branching of vortex penetration paths during flux avalanches.

  6. Episodic epileptic verbal auditory agnosia in Landau Kleffner syndrome treated with combination diazepam and corticosteroids.

    Science.gov (United States)

    Devinsky, Orrin; Goldberg, Rina; Miles, Daniel; Bojko, Aviva; Riviello, James

    2014-10-01

    We report 2 pediatric patients who presented initially with seizures followed by subacute language regression characterized by a verbal auditory agnosia. These previously normal children had no evidence of expressive aphasia during their symptomatic periods. Further, in both cases, auditory agnosia was associated with sleep-activated electroencephalographic (EEG) epileptiform activity, consistent with Landau-Kleffner syndrome. However, both cases are unique since the episodic auditory agnosia and sleep-activated EEG epileptiform activity rapidly responded to combination therapy with pulse benzodiazepine and corticosteroids. Further, in each case, recurrences were characterized by similar symptoms, EEG findings, and beneficial responses to the pulse benzodiazepine and corticosteroid therapy. These observations suggest that pulse combination high-dose corticosteroid and benzodiazepine therapy may be especially effective in Landau-Kleffner syndrome. © The Author(s) 2014.

  7. Boundary conditions in Ginsburg Landau theory and critical temperature of high-T superconductors

    Science.gov (United States)

    Lykov, A. N.

    2008-06-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature ( T) of high- T superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T of cuprate superconductors.

  8. Advances in the simulation of toroidal gyro Landau fluid model turbulence

    International Nuclear Information System (INIS)

    Waltz, R.E.; Kerbel, G.D.; Milovich, J.; Hammett, G.W.

    1994-12-01

    The gyro-Landau fluid (GLF) model equations for toroidal geometry have been recently applied to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning mode representation (BMR). The present paper extends this work by treating some unresolved issues conceming ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the radial direction long time radial correlation lengths are short and comparable to poloidal lengths. Although transport at vanishing shear is not particularly large, transport at reverse global shear, is significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of local shear and average favorable curvature. Transport is suppressed when critical ExB rotational shear is comparable to the maximum linear growth rate with only a weak dependence on magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the paper deals with advances in the development of finite beta GLF models with trapped electron and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons

  9. Strongly enhanced flow effect from Landau-Vlasov versus Vlasov-Uehling-Uhlenbeck approach

    International Nuclear Information System (INIS)

    Gregoire, C.; Remaud, B.; Sebille, F.; Schuck, P.

    1988-01-01

    The simulation of the collision integral in the Landau-Vlasov approach for heavy ion collisions is examined. It turns out that quantities like the nucleon mean free path can be compared with parallel ensemble models. Convergency of results with time step and sampling is clearly established. Quadratic quantities, like the internal pressure, are found to be strongly underestimated in parallel ensemble models

  10. Improved ring potential of QED at finite temperature and in the presence of weak and strong magnetic fields

    International Nuclear Information System (INIS)

    Sadooghi, N.; Anaraki, K. Sohrabi

    2008-01-01

    Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.

  11. Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn4 single-molecule magnets

    Science.gov (United States)

    Wernsdorfer, W.; Bhaduri, S.; Vinslava, A.; Christou, G.

    2005-12-01

    A Mn4 single-molecule magnet (SMM), with a well-isolated spin ground state of S=9/2 , is used as a model system to study Landau-Zener (LZ) tunneling in the presence of weak intermolecular dipolar and exchange interactions. The anisotropy constants D and B are measured with minor hysteresis loops. A transverse field is used to tune the tunnel splitting over a large range. Using the LZ and inverse LZ method, it is shown that these interactions play an important role in the tunnel rates. Three regions are identified: (i) at small transverse fields, tunneling is dominated by single tunnel transitions, (ii) at intermediate transverse fields, the measured tunnel rates are governed by reshuffling of internal fields, and (iii) at larger transverse fields, the magnetization reversal starts to be influenced by the direct relaxation process, and many-body tunnel events may occur. The hole digging method is used to study the next-nearest-neighbor interactions. At small external fields, it is shown that magnetic ordering occurs which does not quench tunneling. An applied transverse field can increase the ordering rate. Spin-spin cross-relaxations, mediated by dipolar and weak exchange interactions, are proposed to explain additional quantum steps.

  12. Shallow acceptors in Ge/GeSi heterostructures with quantum wells in magnetic field

    International Nuclear Information System (INIS)

    Aleshkin, V.Ya.; Antonov, A.V.; Veksler, D.B.; Gavrilenko, V.I.; Erofeeva, I.V.; Ikonnikov, A.V.; Kozlov, D.V.; Spirin, K.E.; Kuznetsov, O.A.

    2005-01-01

    One investigated both theoretically and experimentally into shallow acceptors in Ge/GeSi heterostructures with quantum wells (QW) in a magnetic field. It is shown that alongside with lines of cyclotron resonance in magnetoabsorption spectra one observes transitions from the ground state of acceptor to the excited ones associated with the Landau levels from the first and the second subbands of dimensional quantization, and resonance caused by ionization of A + -centres. To describe impurity transitions in Ge/GeSi heterostructures with QW in a magnetic field and to interpret the experiment results in detail one uses numerical method of calculation based on expansion of wave function of acceptor in terms of basis of wave functions of holes in QW in the absence of magnetic field [ru

  13. Magnetic field mediated conductance oscillation in graphene p–n junctions

    Science.gov (United States)

    Cheng, Shu-Guang

    2018-04-01

    The electronic transport of graphene p–n junctions under perpendicular magnetic field is investigated in theory. Under low magnetic field, the transport is determined by the resonant tunneling of Landau levels and conductance versus magnetic field shows a Shubnikov–de Haas oscillation. At higher magnetic field, the p–n junction subjected to the quasi-classical regime and the formation of snake states results in periodical backscattering and transmission as magnetic field varies. The conductance oscillation pattern is mediated both by magnetic field and the carrier concentration on bipolar regions. For medium magnetic field between above two regimes, the combined contributions of resonant tunneling, snake states oscillation and Aharanov–Bohm interference induce irregular oscillation of conductance. At very high magnetic field, the system is subjected to quantum Hall regime. Under disorder, the quantum tunneling at low magnetic field is slightly affected and the oscillation of snake states at higher magnetic field is suppressed. In the quantum Hall regime, the conductance is a constant as predicted by the mixture rule.

  14. Influence of external magnetic field, finite-size effects and chemical potential on the phase transition of a complex scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)

    2017-10-15

    A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)

  15. The infrared behaviour of the running coupling in Landau gauge QCD

    International Nuclear Information System (INIS)

    Alkofer, R.; Fischer, C.S.; Smekal, L. von.

    2002-01-01

    Approximate solutions for the gluon and ghost propagators as well as the running coupling in Landau gauge Yang-Mills theories are presented. These propagators obtained from the corresponding Dyson-Schwinger equations are in remarkable agreement with those of recent lattice calculations. The resulting running coupling possesses an infrared fixed point, α s (0) = 8.92/N for all gauge SU(N). Above one GeV the running coupling rapidly approaches its perturbative form (Authors)

  16. Boundary conditions in Ginsburg-Landau theory and critical temperature of high-Tc superconductors

    International Nuclear Information System (INIS)

    Lykov, A.N.

    2008-01-01

    New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature (T c ) of high-T c superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T c of cuprate superconductors

  17. The U(1) Higgs model in an external electromagnetic field

    International Nuclear Information System (INIS)

    Damgaard, P.H.; Heller, U.M.

    1988-01-01

    An external electromagnetic field is coupled to the lattice-regularized U(1) Higgs model. We study the phase diagram of this model by both analytical and numerical techniques for different values of the external field strength tensor. The results are compared with expectations based on the analogy with superconducting systems, as described by the phenomenological Ginzburg-Landau theory. (orig.)

  18. Dromion-like structures and stability analysis in the variable coefficients complex Ginzburg–Landau equation

    International Nuclear Information System (INIS)

    Wong, Pring; Pang, Li-Hui; Huang, Long-Gang; Li, Yan-Qing; Lei, Ming; Liu, Wen-Jun

    2015-01-01

    The study of the complex Ginzburg–Landau equation, which can describe the fiber laser system, is of significance for ultra-fast laser. In this paper, dromion-like structures for the complex Ginzburg–Landau equation are considered due to their abundant nonlinear dynamics. Via the modified Hirota method and simplified assumption, the analytic dromion-like solution is obtained. The partial asymmetry of structure is particularly discussed, which arises from asymmetry of nonlinear and dispersion terms. Furthermore, the stability of dromion-like structures is analyzed. Oscillation structure emerges to exhibit strong interference when the dispersion loss is perturbed. Through the appropriate modulation of modified exponent parameter, the oscillation structure is transformed into two dromion-like structures. It indicates that the dromion-like structure is unstable, and the coherence intensity is affected by the modified exponent parameter. Results in this paper may be useful in accounting for some nonlinear phenomena in fiber laser systems, and understanding the essential role of modified Hirota method

  19. Wang-Landau Reaction Ensemble Method: Simulation of Weak Polyelectrolytes and General Acid-Base Reactions.

    Science.gov (United States)

    Landsgesell, Jonas; Holm, Christian; Smiatek, Jens

    2017-02-14

    We present a novel method for the study of weak polyelectrolytes and general acid-base reactions in molecular dynamics and Monte Carlo simulations. The approach combines the advantages of the reaction ensemble and the Wang-Landau sampling method. Deprotonation and protonation reactions are simulated explicitly with the help of the reaction ensemble method, while the accurate sampling of the corresponding phase space is achieved by the Wang-Landau approach. The combination of both techniques provides a sufficient statistical accuracy such that meaningful estimates for the density of states and the partition sum can be obtained. With regard to these estimates, several thermodynamic observables like the heat capacity or reaction free energies can be calculated. We demonstrate that the computation times for the calculation of titration curves with a high statistical accuracy can be significantly decreased when compared to the original reaction ensemble method. The applicability of our approach is validated by the study of weak polyelectrolytes and their thermodynamic properties.

  20. Pattern selection and spatio-temporal transition to chaos in Ginzburg-Landau equation

    Energy Technology Data Exchange (ETDEWEB)

    Nozaki, K; Bekki, N

    1983-07-01

    It is shown that a modulationally unstable pattern is selected and propagates into an initially unstable motionless state in the 1-D generalized Ginzburg-Landau equation. A further spatio-temporal transition occurs with a sharp interface from the selected unstable pattern to a stabilized pattern or a chaotic state. The distinct transition makes a coherent structure to coexist with a chaotic state. 12 refs., 4 figs.

  1. Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents

    International Nuclear Information System (INIS)

    Rubinstein, J.

    1996-01-01

    Our objective is to explain the phenomenon of permanent currents within the context of the Ginzburg-Landau model for superconductors. Using variational techniques we make a connection between the formation of permanent currents and the topology of the superconducting sample. (orig.)

  2. Transversal expansion study in the Landau hydrodynamic

    International Nuclear Information System (INIS)

    Pottag, F.W.

    1984-01-01

    The system of equations in the frame of Landau's hydrodynamical model for multiparticle production at high energies is studied. Taking as a first approximation the one-dimensional exact due to Khalatnikov, and a special set of curvilinear coordinates, the radial part is separated from the longitudinal one in the equations of motion, and a system of partial differential equations (non-linear, hyperbolic) is obtained for the radial part. These equations are solved numerically by the method of caracteristics. The hydrodynamical variables are obtained over all the three-dimensional-flow region as well as its variation with the mass of the initially expanding system. Both, the transverse rapidity distribution of the fluid and the inclusive particle distribution at 90 0 in the center of mass system, are calculated. The last one is compared with recent experimental data. (author) [pt

  3. Spectrum of the linearized operator for the Ginzburg-Landau equation

    Directory of Open Access Journals (Sweden)

    Tai-Chia Lin

    2000-06-01

    Full Text Available We study the spectrum of the linearized operator for the Ginzburg-Landau equation about a symmetric vortex solution with degree one. We show that the smallest eigenvalue of the linearized operator has multiplicity two, and then we describe its behavior as a small parameter approaches zero. We also find a positive lower bound for all the other eigenvalues, and find estimates of the first eigenfunction. Then using these results, we give partial results on the dynamics of vortices in the nonlinear heat and Schrodinger equations.

  4. Sum rules for nuclear excitations with the Skyrme-Landau interaction

    International Nuclear Information System (INIS)

    Liu Kehfei; Luo Hongde; Ma Zhongyu; Feng Man; Shen Qingbiao

    1991-01-01

    The energy-weighted sum rules for electric, magnetic, Fermi and Gamow-Teller transitions with the Skyrme-Landau interaction are derived from the double commutators and numerically calculated in a HF + RPA formalism. As a numerical check of the Thouless theorem, our self-consistent calculations show that the calculated RPA strengths exhaust more than 85% of the sum rules in most cases. The well known non-energy-weighted sum rules for Fermi and Gamow-Teller transitions are also checked numerically. The sum rules are exhausted by more than 94% in these cases. (orig.)

  5. Study of the heavy ions (Au+Au at 150 AMeV) collisions with the FOPI detector. Comparison with the Landau-Vlasov model; Etude des collisions d`ions lourds AU+AU a 150 A.MeV avec le detecteur FOPI. Comparaison avec le modele de Landau-Vlasov

    Energy Technology Data Exchange (ETDEWEB)

    Boussange, S

    1995-09-15

    In this thesis, heavy ions (Au+Au) collisions experiments are made at 150 AMeV.In the first part, a general study of the nuclear matter equation is presented. Then the used Landau-Vlasov theoretical model is describe. The third part presents the FOPI experience and the details of how to obtain this theoretical predictions (filter, cuts, corrections, possible centrality selections).At the end, experimental results and comparisons with the Landau-Vlasov model are presented. (TEC). 105 refs., 96 figs., 14 tabs.

  6. High-magnetic field atomic physics

    International Nuclear Information System (INIS)

    Gay, J.C.

    1984-01-01

    This chapter discusses both the traditional developments of Zeeman techniques at strong fields and the fundamental concepts of diamagnetism. Topics considered include historical aspects, the production of high fields, the atom in a magnetic field (Hamiltonian and symmetries, the various magnetic regimes in atomic spectra), applications of the Zeeman effect at strong B fields, the Landau regime for loosely bound particles, theoretical concepts of atomic diamagnetism, and the ultra-high-field regime and quantum electrodynamics. It is concluded that the wide implications of the problem of the strongly magnetized hydrogen atom in various domains of physics and its conceptual importance concerning theoretical methods of classical and quantum mechanics justify the experimental and theoretical efforts in atomic physics

  7. Regular and chaotic motion of two dimensional electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Bar-Lev, Oded; Levit, Shimon.

    1992-05-01

    For two dimensional system of electrons in a strong magnetic field a standard approximation is the projection on a single Landau level. The resulting Hamiltonian is commonly treated semiclassically. An important element in applying the semiclassical approximation is the integrability of the corresponding classical system. We discuss the relevant integrability conditions and give a simple example of a non-integrable system-two interacting electrons in the presence of two impurities-which exhibits a coexistence of regular and chaotic classical motions. Since the inverse of the magnetic field plays the role of the Planck constant in these problems, one has the opportunity to control the 'closeness' of chaotic physical systems to the classical limit. (author)

  8. Ginsburg-Landau equation around the superconductor-insulator transition

    International Nuclear Information System (INIS)

    Ng, T.K.

    1991-01-01

    Based on the scaling theory of localization, we construct a Ginsburg-Landau (GL) equation for superconductors in an arbitrary strength of disordered potential. Using this GL equation, we reexamine the criteria for the superconductor-insulator transition and find that the transition to a localized superconductor can happen on both sides of the (normal) metal-insulator transition, in contrast to a previous prediction by Ma and Lee [Phys. Rev. B 32, 5658 (1985)] that the transition can only be on the insulator side. Furthermore, by comparing our theory with a recent scaling theory of dirty bosons by Fisher et al. [Phys. Rev. Lett. 64, 587 (1990)], we conclude that nontrivial crossover behavior in transport properties may occur in the vicinity of the superconductor-insulator transition

  9. Molecular orientational re-ordering and the transformation of a Landau second order phase transition to first order in a nematic liquid crystal

    International Nuclear Information System (INIS)

    Ponce, T.C.

    1988-08-01

    We consider the nature of the nematic to isotropic phase transition in terms of the molecular orientational re-ordering, expressed by the variation of the order parameter, s, in the light of Landau's theory of second order phase transition. Then, we show how the de Gennes modification to the Landau thermodynamic potential converts the transition to first order which is in better agreement with the experimental observations. (author). 9 refs, 2 figs, 1 tab

  10. Bound states for neutral particles in a rotating frame in the cosmic string spacetime

    International Nuclear Information System (INIS)

    Bakke, Knut; Furtado, C.

    2010-01-01

    We study the noninertial effects of rotating frames on the Landau quantization for neutral particles with a permanent magnetic dipole moment in the presence of a linear topological defect. We build a rotating frame where the field configuration acts on the dipole moment of the neutral particle without any torque, which agrees with the Landau quantization established previously. We will show that the noninertial effects modify the cyclotron frequency obtained in the absence of rotation, but they do not break the infinity degeneracy of the Landau levels. However, the presence of the topological defect modifies the cyclotron frequency and breaks the degeneracy of the Landau levels.

  11. Electrons in a strong magnetic field

    International Nuclear Information System (INIS)

    Itzykson, C.

    1985-05-01

    We first describe the average one-particle spectrum in the presence of a strong magnetic field together with random impurities for a Gaussian distribution, and generalized using a supersymmetric method. We then study the effect of Coulomb interactions on an electron gas in a strong field, within the approximation of a projection on the lowest Landau level. At maximal density (or filling fraction ν equal to unity) the quantum mechanical problem is equivalent to a soluble classical model for a two-dimensional plasma. As ν decreases, more states come into play. Laughlin has guessed the structure of the ground state and its low lying excitations for certain rational values of the filling fraction. A complete proof is however missing, nor is it clear what happens as ν becomes so small that a ''crystalline'' structure becomes favoured. Our presentation shows a link with functions occurring in combinatorics and analytic number theory, which seems not to have been fully exploited

  12. The dispersion-managed Ginzburg–Landau equation and its application to femtosecond lasers

    International Nuclear Information System (INIS)

    Biondini, Gino

    2008-01-01

    The complex Ginzburg–Landau equation has been used extensively to describe various nonequilibrium phenomena. In the context of lasers, it models the dynamics by averaging over the effects that take place inside the cavity. Pulses produced by Ti : sapphire femtosecond lasers, however, undergo significant changes in different parts of the cavity during each round-trip. The dynamics of such pulses is therefore not adequately described by an average model that does not take such changes into account. The purpose of this work is severalfold. We introduce the dispersion-managed Ginzburg–Landau equation (DMGLE) as an average model that describes the long-term dynamics of systems characterized by rapid variations of dispersion, nonlinearity and gain in a general setting, and we study the properties of the equation. We then explain how in particular the DMGLE arises for Ti : sapphire femtosecond lasers and we characterize its solutions. In particular, we show that, for moderate values of the gain/loss parameters, the solutions of the DMGLE are well approximated by those of the dispersion-managed nonlinear Schrödinger equation (DMNLSE), and the main effect of gain and loss dynamics is simply to select one among the one-parameter family of solutions of the DMNLSE

  13. Solutions of the two-level problem in terms of biconfluent Heun functions

    Energy Technology Data Exchange (ETDEWEB)

    Ishkhanyan, Artur [Engineering Center of Armenian National Academy of Sciences, Ashtarak (Armenia)]. E-mail: artur@ec.sci.am; Suominen, Kalle-Antti [Helsinki Institute of Physics, Helsinki (Finland); Department of Applied Physics, University of Turku, Turku (Finland)

    2001-08-17

    Five four-parametric classes of quantum mechanical two-level models permitting solutions in terms of the biconfluent Heun function are derived. Three of these classes are generalizations of the well known classes of Landau-Zener, Nikitin and Crothers. It is shown that two other classes describe super- and sublinear and essentially nonlinear level crossings, as well as processes with three crossing points. In particular, these classes include two-level models where the field amplitude is constant and the detuning varies as {delta}{sub 0}t+{delta}{sub 2}t{sup 3} or {approx}t{sup 1/3}. For the essentially nonlinear cubic-crossing model, {delta}{sub t}{approx}{delta}{sub 2}t{sup 3}, the general solution of the two-level problem is shown to be expressed as series of confluent hypergeometric functions. (author)

  14. Superconductor in a weak static gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)

    2017-08-15

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)

  15. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.

    2012-12-06

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  16. Quantum capacitance in topological insulators under strain in a tilted magnetic field

    KAUST Repository

    Tahir, M.; Schwingenschlö gl, Udo

    2012-01-01

    Topological insulators exhibit unique properties due to surface states of massless Dirac fermions with conserved time reversal symmetry. We consider the quantum capacitance under strain in an external tilted magnetic field and demonstrate a minimum at the charge neutrality point due to splitting of the zeroth Landau level. We also find beating in the Shubnikov de Haas oscillations due to strain, which originate from the topological helical states. Varying the tilting angle from perpendicular to parallel washes out these oscillations with a strain induced gap at the charge neutrality point. Our results explain recent quantum capacitance and transport experiments.

  17. Landau-Placzek ratio for heat density dynamics and its application to heat capacity of liquids.

    Science.gov (United States)

    Bryk, Taras; Ruocco, Giancarlo; Scopigno, Tullio

    2013-01-21

    Exact relation for contributions to heat capacity of liquids is obtained from hydrodynamic theory. It is shown from analysis of the long-wavelength limit of heat density autocorrelation functions that the heat capacity of simple liquids is represented as a sum of two contributions due to "phonon-like" collective excitations and heat relaxation. The ratio of both contributions being the analogy of Landau-Placzek ratio for heat processes depends on the specific heats ratio. The theory of heat density autocorrelation functions in liquids is verified by computer simulations. Molecular dynamics simulations for six liquids having the ratio of specific heats γ in the range 1.1-2.3, were used for evaluation of the heat density autocorrelation functions and predicted Landau-Placzek ratio for heat processes. The dependence of contributions from collective excitations and heat relaxation process to specific heat on γ is shown to be in excellent agreement with the theory.

  18. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  19. All-atom simulation study of protein PTH(1-34) by using the Wang-Landau sampling method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Yeon [Korea National University of Transportation, Chungju (Korea, Republic of); Kwak, Woo-Seop [Chosun University, Gwangju (Korea, Republic of)

    2014-12-15

    We perform simulations of the N-terminal 34-residue protein fragment PTH(1-34), consisting of 581 atoms, of the 84-residue human parathyroid hormone by using the all-atom ECEPP/3 force field and the Wang-Landau sampling method. Through a massive high-performance computation, the density of states and the partition function Z(T), as a continuous function of T, are obtained for PTH(1-34). From the continuous partition function Z(T), the partition function zeros of PTH(1-34) are evaluated for the first time. From both the specific heat and the partition function zeros, two characteristic transition temperatures are obtained for the all-atom protein PTH(1-34). The higher transition temperature T{sub 1} and the lower transition temperature T{sub 2} of PTH(1-34) can be interpreted as the collapse temperature T{sub θ} and the folding temperature T{sub f} , respectively.

  20. The influence of the Rashba spin-orbit coupling on the two-dimensional magnetoexcitons

    International Nuclear Information System (INIS)

    Hakioglu, T; Liberman, M A; Moskalenko, S A; Podlesny, I V

    2011-01-01

    The influence of the Rashba spin-orbit coupling (RSOC) on the two-dimensional (2D) electrons and holes in a strong perpendicular magnetic field leads to different results for the Landau quantization in different spin projections. In the Landau gauge the unidimensional wave vector describing the free motion in one in-plane direction is the same for both spin projections, whereas the numbers of Landau quantization levels are different. For an electron in an s-type conduction band they differ by one, as was established earlier by Rashba (1960 Fiz. Tverd. Tela 2 1224), whereas for heavy holes in a p-type valence band influenced by the 2D symmetry of the layer they differ by three. The shifts and the rearrangements of the 2D hole Landau quantization levels on the energy scale are much larger in comparison with the case of conduction electron Landau levels. This is due to the strong influence of the magnetic field on the RSOC parameter. At sufficiently large values of this parameter the shifts and rearrangements are comparable with the hole cyclotron energy. There are two lowest spin-split Landau levels for electrons as well as four lowest ones for holes in the case of small RSOC parameters. They give rise to eight lowest energy bands of the 2D magnetoexcitons, as well as of the band-to-band quantum transitions. It is shown that three of them are dipole-active, three are quadrupole-active and two are forbidden. The optical orientation under the influence of circularly polarized light leads to optical alignment of the magnetoexcitons with different orbital momentum projections in the direction of the external magnetic field. (paper)

  1. Ginzburg-Landau equations for a d-wave superconductor with applications to vortex structure and surface problems

    International Nuclear Information System (INIS)

    Xu, J.; Ren, Y.; Ting, C.S.

    1995-01-01

    The properties of a d x 2 -y 2 -wave superconductor in an external magnetic field are investigated on the basis of Gorkov's theory of weakly coupled superconductors. The Ginzburg-Landau (GL) equations, which govern the spatial variations of the order parameter and the supercurrent, are microscopically derived. The single vortex structure and surface problems in such a superconductor are studied using these equations. It is shown that the d-wave vortex structure is very different from the conventional s-wave vortex: the s-wave and d-wave components, with the opposite winding numbers, are found to coexist in the region near the vortex core. The supercurrent and local magnetic field around the vortex are calculated. Far away from the vortex core, both of them exhibit a fourfold symmetry, in contrast to an s-wave superconductor. The surface problem in a d-wave superconductor is also studied by solving the GL equations. The total order parameter near the surface is always a real combination of s- and d-wave components, which means that the proximity effect cannot induce a time-reversal symmetry-breaking state at the surface

  2. Electron collisions in the trapped gyro-Landau fluid transport model

    International Nuclear Information System (INIS)

    Staebler, G. M.; Kinsey, J. E.

    2010-01-01

    Accurately modeling electron collisions in the trapped gyro-Landau fluid (TGLF) equations has been a major challenge. Insights gained from numerically solving the gyrokinetic equation have lead to a significant improvement of the low order TGLF model. The theoretical motivation and verification of this model with the velocity-space gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] will be presented. The improvement in the fidelity of TGLF to GYRO is shown to also lead to better prediction of experimental temperature profiles by TGLF for a dedicated collision frequency scan.

  3. Landau-Devonshire Parameters for the Tunable Paraelectric Material BaTi.9(Sc,Ta).05O3

    National Research Council Canada - National Science Library

    Miller, Virginia; Crowne, Frank

    2008-01-01

    ...).05O3 are used to deduce the thermodynamic Landau-Devonshire parameters of the material, which are found to differ strongly from those of the parent material BaTiO3, despite the small amount of added Sc and Ta...

  4. In memory of Alois Apfelbeck: An Interconnection between Cayley-Eisenstein-Pólya and Landau Probability Distributions

    Directory of Open Access Journals (Sweden)

    Vladimír Vojta

    2013-01-01

    Full Text Available The interconnection between the Cayley-Eisenstein-Pólya distribution and the Landau distribution is studied, and possibly new transform pairs for the Laplace and Mellin transform and integral expressions for the Lambert W function have been found.

  5. Elastic gauge fields and Hall viscosity of Dirac magnons

    Science.gov (United States)

    Ferreiros, Yago; Vozmediano, María A. H.

    2018-02-01

    We analyze the coupling of elastic lattice deformations to the magnon degrees of freedom of magnon Dirac materials. For a honeycomb ferromagnet we find that, as happens in the case of graphene, elastic gauge fields appear coupled to the magnon pseudospinors. For deformations that induce constant pseudomagnetic fields, the spectrum around the Dirac nodes splits into pseudo-Landau levels. We show that when a Dzyaloshinskii-Moriya interaction is considered, a topological gap opens in the system and a Chern-Simons effective action for the elastic degrees of freedom is generated. Such a term encodes a phonon Hall viscosity response, entirely generated by quantum fluctuations of magnons living in the vicinity of the Dirac points. The magnon Hall viscosity vanishes at zero temperature, and grows as temperature is raised and the states around the Dirac points are increasingly populated.

  6. Construction of the dual Ginzburg-Landau theory from the lattice QCD

    International Nuclear Information System (INIS)

    Suganuma, H.; Amemiya, K.; Ichie, H.; Koma, Y.

    2002-01-01

    We roughly review the QCD physics and then introduce recent topics on the confinement physics. In the maximally abelian (MA) gauge, the low-energy QCD is abelianized owing to the effective off-diagonal gluon mass M off ≅ 1.2 GeV induced by the MA gauge fixing. We demonstrate the construction of the dual Ginzburg-Landau (DGL) theory from the low-energy QCD in the MA gauge in terms of the lattice QCD evidences on infrared abelian dominance and infrared monopole condensation. (author)

  7. Negative quantum capacitance induced by midgap states in single-layer graphene.

    Science.gov (United States)

    Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning

    2013-01-01

    We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.

  8. The finite dimensional behaviour of the global attractors for the generalized Landau-Lifshitz equation on compact manifolds

    International Nuclear Information System (INIS)

    Guo Boling

    1994-01-01

    We prove the existence of the global attractors for the generalized Landau-Lifshitz equation on compact manifold M, and give the upper and lower estimates of their Hausdorff and fractal dimensions. (author). 18 refs

  9. Asymptotic Bethe ansatz S-matrix and Landau-Lifshitz-type effective 2d actions

    International Nuclear Information System (INIS)

    Roiban, R; Tirziu, A; Tseytlin, A A

    2006-01-01

    Motivated by the desire to relate Bethe ansatz equations for anomalous dimensions found on the gauge-theory side of the AdS/CFT correspondence to superstring theory on AdS 5 x S 5 we explore a connection between the asymptotic S-matrix that enters the Bethe ansatz and an effective two-dimensional quantum field theory. The latter generalizes the standard 'non-relativistic' Landau-Lifshitz (LL) model describing low-energy modes of ferromagnetic Heisenberg spin chain and should be related to a limit of superstring effective action. We find the exact form of the quartic interaction terms in the generalized LL-type action whose quantum S-matrix matches the low-energy limit of the asymptotic S-matrix of the spin chain of Beisert, Dippel and Staudacher (BDS). This generalizes to all orders in the 't Hooft coupling λ an earlier computation of Klose and Zarembo of the S-matrix of the standard LL model. We also consider a generalization to the case when the spin-chain S-matrix contains an extra 'string' phase and determine the exact form of the LL 4-vertex corresponding to the low-energy limit of the ansatz of Arutyunov, Frolov and Staudacher (AFS). We explain the relation between the resulting 'non-relativistic' non-local action and the second-derivative string sigma model. We comment on modifications introduced by strong-coupling corrections to the AFS phase. We mostly discuss the SU(2) sector but also present generalizations to the SL(2) and SU(1|1) sectors, confirming universality of the dressing phase contribution by matching the low-energy limit of the AFS-type spin-chain S-matrix with tree-level string-theory S-matrix

  10. Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials

    Science.gov (United States)

    Cameron, Stephen; Silvestre, Luis; Snelson, Stanley

    2018-05-01

    We establish a priori upper bounds for solutions to the spatially inhomogeneous Landau equation in the case of moderately soft potentials, with arbitrary initial data, under the assumption that mass, energy and entropy densities stay under control. Our pointwise estimates decay polynomially in the velocity variable. We also show that if the initial data satisfies a Gaussian upper bound, this bound is propagated for all positive times.

  11. Analysis of different responses of ion and electron in six-field two-fluid ELM simulations

    Science.gov (United States)

    Ma, Chenhao; Xu, Xueqiao

    2013-10-01

    We report simulation results of a Landau-Fluid (GLF) extension of the BOUT++ six-field two-fluid Braginskii model which contributes to increasing the physics understanding of ELMs. Landau-Fluid closure can fill the gap for parallel dynamics between hot, collisionless pedestal region and cold, collisional SOL region in H-mode plasmas. Our goal is extending the classical parallel heat flux with Landau-Fluid closures and making comparisons with other closure models. Our simulations show that for weakly collisional pedestal plasmas, the calculated growth rate with Landau-Fluid closure introduces more effective damping on the peeling-ballooning modes than that with the classical thermal diffusivity. Further nonlinear simulation shows that ELM size with Landau-Fluid Closure is smaller than that with classical thermal diffusivity. We find an ELM crash has two phases: fast initial crash of ion temperature perturbation on the Alfven time scale and slow turbulence spreading. Turbulence transport phase is a slow encroachment of electron temperature perturbation due to the ELM event into pedestal region which is due to a positive phase shift around π / 2 between electron temperature and potential on pedestal region while ion temperature is in-phase with potential. This work was performed under the auspices of the U.S. DoE by LLNL under Contract DE-AC52-07NA27344 and also supported by the China Scholarship Committee under contract N0.2011601099.

  12. Finite field-dependent symmetries in perturbative quantum gravity

    International Nuclear Information System (INIS)

    Upadhyay, Sudhaker

    2014-01-01

    In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation. -- Highlights: •The perturbative quantum gravity is treated as gauge theory. •BRST and anti-BRST transformations are developed in linear and non-linear gauges. •BRST transformation is generalized by making it finite and field dependent. •Connection between linear and non-linear gauges is established. •Using BV formulation the results are established at quantum level also

  13. Unifying treatment of nonequilibrium and unstable dynamics of cold bosonic atom system with time-dependent order parameter in Thermo Field Dynamics

    International Nuclear Information System (INIS)

    Nakamura, Y.; Yamanaka, Y.

    2011-01-01

    Research highlights: → Cold atoms with time-dependent condensate in nonequilibrium Thermo Field Dynamics. → Coupled equations which describe the temporal evolution of the system are derived. → They are not the naive assemblages of presumable equations, but the self-consistently ones. → Valid even for systems with Landau or dynamical instability, and describing decays. → Transport equation has new collision term that is important in Landau instability. - Abstract: The coupled equations which describe the temporal evolution of the Bose-Einstein condensed system are derived in the framework of nonequilibrium Thermo Field Dynamics. The key element is that they are not the naive assemblages of assumed equations, but are the self-consistent ones derived by appropriate renormalization conditions. While the order parameter is time-dependent, an explicit quasiparticle picture is constructed by a time-dependent expansion. Our formulation is valid even for the system with a unstable condensate, and describes the condensate decay caused by the Landau instability as well as by the dynamical one.

  14. Magnetoband structures of AB-stacked zigzag nanographite ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.P.; Chiu, C.W.; Shyu, F.L.; Chen, R.B.; Lin, M.F

    2002-12-30

    Magnetoband structures of AB-stacked zigzag nanographite ribbons are studied by the tight-binding model. The magnetic field changes band width, energy space, and energy dispersions (the produce of Landau subbands and Landau levels). It causes many zero energy points. Such points and corresponding localized states are studied in detail. There are certain important differences between localized states and edge states. Oscillation period of Landau subbands are determined by these points. The interribbon interactions also affect magnetoband structures, such as energy dispersions, band width, oscillation period of Landau subbands, and flux dependence of Hofstadter butterflies.

  15. Dirac mechanics and Landau two-fluid model in /sup 4/HeII

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Gomez, J [Instituto Universitario Pedagogico de Caracas (Venezuela). Dept. de Matematica y Fisica

    1980-07-01

    This paper is devoted to the development of the Dirac formalism for singular systems when applied to the Landau two-fluid model in superfluid helium. Notably, the Hamiltonian density is weakly zero (in the sense of Dirac). We obtain the physical and gauge variables and show that all the constraints are of first class and hence that the Dirac bracket coincides with the Poisson bracket. The quantization of this system is left for a future paper.

  16. Temperature and magnetic field effect on oscillations observed in GaInNAs/GaAs multiple quantum wells structures

    International Nuclear Information System (INIS)

    Khalil, H.M.; Mazzucato, S.; Ardali, S.; Celik, O.; Mutlu, S.; Royall, B.; Tiras, E.; Balkan, N.; Puustinen, J.; Korpijärvi, V.-M.; Guina, M.

    2012-01-01

    Highlights: ► We studied p-i-n GaInNAs MQW devices as function of temperature and magnetic field. ► Observed oscillations in the sample current–voltage curves at low temperature. ► Shift in oscillation position with magnetic field described by Landau level split. ► Resonant tunnelling and thermionic emission used to describe oscillations. - Abstract: The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current–voltage I–V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I–V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission. Magnetic fields up to B = 11 T were applied parallel to the planes of the QWs. A small voltage shift in the position of the oscillations was observed, proportional to the magnetic field intensity and dependent upon the temperature. Calculation of the Landau level energy separation (16 meV) agrees with the observed experimental data. Magneto-tunnelling spectroscopy probes in detail the nature of band- or impurity-like states responsible for resonances in first and second subbands, observing the I–V plot in dark condition and under illumination. The field-dependence of the amplitude of the oscillation peaks in I–V has the characteristic form of a quantum mechanical admixing effect. This enhancement is also probably due to the hole recombination with majority electrons tunnelling in the N-related states of the quantum wells.

  17. Temperature and magnetic field effect on oscillations observed in GaInNAs/GaAs multiple quantum wells structures

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, H.M., E-mail: hkhalia@essex.ac.uk [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Mazzucato, S. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Ardali, S.; Celik, O.; Mutlu, S. [Anadolu University, Faculty of Science, Department of Physics, Yunus Emre Campus 26470, Eskisehir (Turkey); Royall, B. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Tiras, E. [Anadolu University, Faculty of Science, Department of Physics, Yunus Emre Campus 26470, Eskisehir (Turkey); Balkan, N. [School of Computer Science and Electronic Engineering, University of Essex, CO4 3SQ, Colchester (United Kingdom); Puustinen, J.; Korpijaervi, V.-M.; Guina, M. [Optoelectronics Research Centre, Tampere University of Technology, Korkeakoulunkatu 10, FI-33720 Tampere (Finland)

    2012-06-05

    Highlights: Black-Right-Pointing-Pointer We studied p-i-n GaInNAs MQW devices as function of temperature and magnetic field. Black-Right-Pointing-Pointer Observed oscillations in the sample current-voltage curves at low temperature. Black-Right-Pointing-Pointer Shift in oscillation position with magnetic field described by Landau level split. Black-Right-Pointing-Pointer Resonant tunnelling and thermionic emission used to describe oscillations. - Abstract: The photoconductivity of p-i-n GaInNAs/GaAs multiple quantum well (MQW) mesa structures is investigated. When illuminated with photons at energy greater than the GaAs bandgap, a number of oscillations are observed in the current-voltage I-V characteristics. The amplitude and position of the oscillations is shown to depend upon the temperature, as well as upon the exciting wavelength and intensity. Due to the absence of the oscillations in the dark I-V and at temperatures above T = 200 K, we explain them in terms of photogenerated electrons escaping from quantum wells via tunnelling or thermionic emission. Magnetic fields up to B = 11 T were applied parallel to the planes of the QWs. A small voltage shift in the position of the oscillations was observed, proportional to the magnetic field intensity and dependent upon the temperature. Calculation of the Landau level energy separation (16 meV) agrees with the observed experimental data. Magneto-tunnelling spectroscopy probes in detail the nature of band- or impurity-like states responsible for resonances in first and second subbands, observing the I-V plot in dark condition and under illumination. The field-dependence of the amplitude of the oscillation peaks in I-V has the characteristic form of a quantum mechanical admixing effect. This enhancement is also probably due to the hole recombination with majority electrons tunnelling in the N-related states of the quantum wells.

  18. Instability of quark matter core in a compact newborn neutron star ...

    Indian Academy of Sciences (India)

    with moderately strong magnetic field strength, which populates only the electron's Landau levels, then in the β-equilibrium condition, the quark core is energetically much more unstable than the neutron matter of identical physical condition. Keywords. Landau diamagnetism; quark matter; quark star. PACS Nos 26.60.

  19. Novel topological effects in dense QCD in a magnetic field

    Science.gov (United States)

    Ferrer, E. J.; de la Incera, V.

    2018-06-01

    We study the electromagnetic properties of dense QCD in the so-called Magnetic Dual Chiral Density Wave phase. This inhomogeneous phase exhibits a nontrivial topology that comes from the fermion sector due to the asymmetry of the lowest Landau level modes. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFμνF˜μν, with a dynamic axion field θ given by the phase of the Dual Chiral Density Wave condensate. The coupling of the axion with the electromagnetic field leads to several macroscopic effects that include, among others, an anomalous, nondissipative Hall current, an anomalous electric charge, magnetoelectricity, and the formation of a hybridized propagating mode known as an axion polariton. Connection to topological insulators and Weyls semimetals, as well as possible implications for heavy-ion collisions and neutron stars are all highlighted.

  20. Landau Damping of Beam Instabilities by Electron Lenses

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V. [Fermilab; Alexahin, Yuri; Burov, A. [Fermilab; Valishev, A. [Fermilab

    2017-06-26

    Modern and future particle accelerators employ increasingly higher intensity and brighter beams of charged particles and become operationally limited by coherent beam instabilities. Usual methods to control the instabilities, such as octupole magnets, beam feedback dampers and use of chromatic effects, become less effective and insufficient. We show that, in contrast, Lorentz forces of a low-energy, a magnetically stabilized electron beam, or "electron lens", easily introduces transverse nonlinear focusing sufficient for Landau damping of transverse beam instabilities in accelerators. It is also important that, unlike other nonlinear elements, the electron lens provides the frequency spread mainly at the beam core, thus allowing much higher frequency spread without lifetime degradation. For the parameters of the Future Circular Collider, a single conventional electron lens a few meters long would provide stabilization superior to tens of thousands of superconducting octupole magnets.

  1. Berry phases for Landau Hamiltonians on deformed tori

    Science.gov (United States)

    Lévay, Péter

    1995-06-01

    Parametrized families of Landau Hamiltonians are introduced, where the parameter space is the Teichmüller space (topologically the complex upper half plane) corresponding to deformations of tori. The underlying SO(2,1) symmetry of the families enables an explicit calculation of the Berry phases picked up by the eigenstates when the torus is slowly deformed. It is also shown that apart from these phases that are local in origin, there are global non-Abelian ones too, related to the hidden discrete symmetry group Γϑ (the theta group, which is a subgroup of the modular group) of the families. The induced Riemannian structure on the parameter space is the usual Poincare metric on the upper half plane of constant negative curvature. Due to the discrete symmetry Γϑ the geodesic motion restricted to the fundamental domain of this group is chaotic.

  2. Energie du type Ginzburg-Landau avec un terme de chevillage

    OpenAIRE

    AMARI, Nassima

    2010-01-01

    L’objectif de ce travail est l’étude d’un modèle bidimensionnel de Ginzburg-Landau avec un problème de l’ancrage (pinning) des vortex. La principale difficulté en réitérant l’approche faite par F. Béthuel, H. Brézis et F. Hélein, résulte du fait que la construction de mauvais disques ne soit pas évidente. Pour surmonter cette difficulté,on remplace le minimiseur u epsilon par v epsilon U epsilon. Cette substitution nous conduit à l'étude d'une énergie classique (qui correspond à p=1). ...

  3. Effect of elastic compliances and higher order Landau coefficients on the phase diagram of single domain epitaxial Pb(Zr,TiO3 (PZT thin films

    Directory of Open Access Journals (Sweden)

    M. Mtebwa

    2014-12-01

    Full Text Available We report the qualitative study of the influence of both elastic compliances and higher order terms of Landau free energy potential on the phase diagram of Pb(Zr0.5Ti0.5O3 thin films by using a single domain Landau theory. Although the impact of elastic compliances and higher order terms of the Landau free energy potential on the phase diagram of ferroelectric thin films are known, the sensitivity of the phase diagram of PZT thin film on these parameters have not been reported. It is demonstrated that, while values of elastic compliances affect the positions of the phase boundaries including phase transition temperature of the cubic phase; higher order terms can potentially introduce an a1a2-phase previously predicted in PbTiO3 phase diagram.

  4. Running coupling from gluon and ghost propagators in the Landau gauge: Yang-Mills theories with adjoint fermions

    Science.gov (United States)

    Bergner, Georg; Piemonte, Stefano

    2018-04-01

    Non-Abelian gauge theories with fermions transforming in the adjoint representation of the gauge group (AdjQCD) are a fundamental ingredient of many models that describe the physics beyond the Standard Model. Two relevant examples are N =1 supersymmetric Yang-Mills (SYM) theory and minimal walking technicolor, which are gauge theories coupled to one adjoint Majorana and two adjoint Dirac fermions, respectively. While confinement is a property of N =1 SYM, minimal walking technicolor is expected to be infrared conformal. We study the propagators of ghost and gluon fields in the Landau gauge to compute the running coupling in the MiniMom scheme. We analyze several different ensembles of lattice Monte Carlo simulations for the SU(2) adjoint QCD with Nf=1 /2 ,1 ,3 /2 , and 2 Dirac fermions. We show how the running of the coupling changes as the number of interacting fermions is increased towards the conformal window.

  5. On the Aharonov-Casher system and the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring

    International Nuclear Information System (INIS)

    Bakke, K.; Furtado, C.

    2012-01-01

    We study the quantum dynamics of a neutral particle in the Aharonov-Casher system and in the Landau-Aharonov-Casher system confined to a two-dimensional quantum ring, a quantum dot, and a quantum anti-dot potentials described by the Tan-Inkson model [W.-C. Tan and J. C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)]. We show, in the Aharonov-Casher system, that bound states can be achieved when the neutral particle is confined to the two-dimensional quantum ring and the quantum dot and discuss the appearance of persistent currents. In the Landau-Aharonov-Casher system, we show that bound states can be achieved when the neutral particle is confined to the quantum anti-dot, quantum dot, and the two-dimensional quantum ring, but there are no persistent currents.

  6. Critical opalescence in fluids: 1.5-Scattering effects and the Landau-Placzek ratio

    OpenAIRE

    Sushko, M. Ya.

    2010-01-01

    We adduce new arguments for the significance of so-called 1.5- (or sesquialteral) molecular light scattering in one-component fluids. For this purpose, we analyze its effect on the Landau-Placzek ratio for the critical opalescence spectrum. The results obtained are used to reveal experimental data which can be interpreted as evidence for its existence and to evaluate both the relative magnitude and the sign of the 1.5-scattering contribution.

  7. Coulomb Impurity Problem of Graphene in Strong Coupling Regime in Magnetic Fields.

    Science.gov (United States)

    Kim, S C; Yang, S-R Eric

    2015-10-01

    We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.

  8. Landau-Kleffner Syndrome, Electrical Status Epilepticus in Slow Wave Sleep, and Language Regression in Children

    Science.gov (United States)

    McVicar, Kathryn A.; Shinnar, Shlomo

    2004-01-01

    The Landau-Kleffner syndrome (LKS) and electrical status epilepticus in slow wave sleep (ESES) are rare childhood-onset epileptic encephalopathies in which loss of language skills occurs in the context of an epileptiform EEG activated in sleep. Although in LKS the loss of function is limited to language, in ESES there is a wider spectrum of…

  9. Strong-coupling study of the Gribov ambiguity in lattice Landau gauge

    International Nuclear Information System (INIS)

    Maas, Axel; Pawlowski, Jan M.; Spielmann, Daniel; Sternbeck, Andre; Smekal, Lorenz von

    2010-01-01

    We study the strong-coupling limit β=0 of lattice SU(2) Landau gauge Yang-Mills theory. In this limit the lattice spacing is infinite, and thus all momenta in physical units are infinitesimally small. Hence, the infrared behavior can be assessed at sufficiently large lattice momenta. Our results show that at the lattice volumes used here, the Gribov ambiguity has an enormous effect on the ghost propagator in all dimensions. This underlines the severity of the Gribov problem and calls for refined studies also at finite β. In turn, the gluon propagator only mildly depends on the Gribov ambiguity. (orig.)

  10. Infrared Behavior of Gluon and Ghost Propagators in Landau Gauge QCD

    International Nuclear Information System (INIS)

    von Smekal, L.; Hauck, A.; Alkofer, R.

    1997-01-01

    A truncation scheme for the Dyson-Schwinger equations of Euclidean QCD in Landau gauge is presented. It implements the Slavnov-Taylor identities for the three-gluon and ghost-gluon vertices, whereas irreducible four-gluon couplings as well as the gluon-ghost and ghost-ghost scattering kernels are neglected. The infrared behavior of gluon and ghost propagators is obtained analytically: The gluon propagator vanishes for small momenta, whereas the ghost propagator diverges strongly. The numerical solutions are compared with recent lattice results. The running coupling approaches a fixed point, α c ≅9.5 , in the infrared. copyright 1997 The American Physical Society

  11. Magneto-transport studies of InAs/GaSb short period superlattices

    International Nuclear Information System (INIS)

    Broadley, Victoria Jane

    2002-01-01

    This thesis studies the transport properties of short period semiconducting InAs/GaSb superlattices in the presence of strong electric and magnetic fields applied parallel to the growth axis. Electrical transport parallel to the growth axis occurs through the superlattice miniband, which have widths varying from three to 30meV. Resonant scattering between confined Landau levels and Stark levels is observed at low temperatures (4.2K). In addition LO-phonon assisted scattering between Landau levels is observed in both type-I GaAs/AIAs and type-ll inAs/GaSb superlattices, which are enhanced in the type-ll system due to the strong interband coupling. K·p band structure calculations show that the interband coupling causes the superlattice miniband energy dispersion to be strongly dependent on the in-plane wavevector and the applied magnetic field. For large applied electric fields, where the miniband is split into discrete Stark levels, strong stark-cyclotron resonance (SCR) features are observed, which occur when the Landau level separation equals to the stark level separation. These resonances are enhanced when compared to SCR in type-I superlattices due to the suppression of miniband conduction in higher lying Landau levels. At low electric fields electrical transport through the superlattice miniband yields characteristic miniband transport features, which are modelled using the Esaki-Tsu miniband transport model. Strong electron - LO-phonon scattering is also observed in InAs/GaSb superlattices, where we report the first observation of miniband transport assisted via the emission of LO-phonons between stark levels in adjacent wells. Below 50K thermally activated behaviour is reported and at high magnetic fields (in the quantum limit) complete localisation of carriers is observed. In this regime LO-phonon delocalised transport in also observed. (author)

  12. The mass limit of white dwarfs with strong magnetic fields in general relativity

    International Nuclear Information System (INIS)

    Wen De-Hua; Liu He-Lei; Zhang Xiang-Dong

    2014-01-01

    Recently, U. Das and B. Mukhopadhyay proposed that the Chandrasekhar limit of a white dwarf could reach a new high level (2.58M⊙) if a superstrong magnetic field were considered (Das U and Mukhopadhyay B 2013 Phys. Rev. Lett. 110 071102), where the structure of the strongly magnetized white dwarf (SMWD) is calculated in the framework of Newtonian theory (NT). As the SMWD has a far smaller size, in contrast with the usual expectation, we found that there is an obvious general relativistic effect (GRE) in the SMWD. For example, for the SMWD with a one Landau level system, the super-Chandrasekhar mass limit in general relativity (GR) is approximately 16.5% lower than that in NT. More interestingly, the maximal mass of the white dwarf will be first increased when the magnetic field strength keeps on increasing and reaches the maximal value M = 2.48M⊙ with B D = 391.5. Then if we further increase the magnetic fields, surprisingly, the maximal mass of the white dwarf will decrease when one takes the GRE into account. (geophysics, astronomy, and astrophysics)

  13. Electric field effect on the critical current of SNS-contact

    International Nuclear Information System (INIS)

    Rakhmanov, A.L.; Rozhkov, A.V.

    1995-01-01

    Electric field effect on the SNS-contact critical current is investigated in the Ginzburg-Landau theory approximation. It is shown that the electric field may cause a notable increase of the contact critical current especially if the sample temperature is close to the temperature of a superconducting transition of T sc normal layer. Electric field effect is increased with the reduction of film thickness, but it can strong enough for thick films as well at temperature close to T sc . 11 refs.; 4 figs

  14. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Broderick, A.; Prakash, M.; Lattimer, J. M.

    2000-01-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10 14 G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10 18 G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society

  15. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, A; Prakash, M; Lattimer, J M

    2000-07-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10{sup 14} G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10{sup 18} G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society.

  16. The issue of gauge choice in the Landau problem and the physics of canonical and mechanical orbital angular momenta

    Science.gov (United States)

    Wakamatsu, M.; Kitadono, Y.; Zhang, P.-M.

    2018-05-01

    One intriguing issue in the nucleon spin decomposition problem is the existence of two types of decompositions, which are representably characterized by two different orbital angular momenta (OAMs) of quarks. The one is the mechanical OAM, while the other is the so-called gauge-invariant canonical (g.i.c.) OAM, the concept of which was introduced by Chen et al. An especially delicate quantity is the g.i.c. OAM, which must be distinguished from the ordinary (gauge-variant) canonical OAM. We find that, owing to its analytically solvable nature, the famous Landau problem offers an ideal tool to understand the difference and the physical meaning of the above three OAMs, i.e. the standard canonical OAM, g.i.c. OAM, and the mechanical OAM. We analyze these three OAMs in two different formulations of the Landau problem, first in the standard (gauge-fixed) formulation and second in the gauge-invariant (but path-dependent) formulation of DeWitt. Especially interesting is the latter formalism. It is shown that the choice of path has an intimate connection with the choice of gauge, but they are not necessarily equivalent. Then, we answer the question about what is the consequence of a particular choice of path in DeWitt's formalism. This analysis also clarifies the implication of the gauge symmetry hidden in the concept of g.i.c. OAM. Finally, we show that the finding above offers a clear understanding about the uniqueness or non-uniqueness problem of the nucleon spin decomposition, which arises from the arbitrariness in the definition of the so-called physical component of the gauge field.

  17. First-principles-based Landau-Devonshire potential for BiFeO.sub.3./sub.

    Czech Academy of Sciences Publication Activity Database

    Márton, Pavel; Klíč, Antonín; Pasciak, Marek; Hlinka, Jiří

    2017-01-01

    Roč. 96, č. 17 (2017), s. 1-5, č. článku 174110. ISSN 2469-9950 R&D Projects: GA ČR GA15-04121S Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378271 Keywords : Landau-Devonshire potential * first-principles calculations * BiFeO3 * Energy-sampling technique Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  18. MD 2197: Experimental studies of Landau damping by means of Beam Transfer Function measurements in the presence of beam-beam interactions and diffusive mechanisms

    CERN Document Server

    Tambasco, Claudia; Barranco Garcia, Javier; Boccardi, Andrea; Buffat, Xavier; Bruce, Roderik; Gasior, Marek; Hostettler, Michi; Lefevre, Thibaut; Louro Alves, Diogo Miguel; Metral, Elias; Persson, Tobias Hakan Bjorn; Pieloni, Tatiana; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; CERN. Geneva. ATS Department

    2018-01-01

    Beam Transfer Function (BTF) measurements are direct measurement of the stability diagrams that define the stability threshold of coherent beam instabilities driven by the impedance. At the LHC, some coherent instabilities at flat top energy are still not fully understood and the BTF measurements provide a method to experimentally probe the Landau damping of the proton beams. The BTF response is sensitive to the particle distribution changes and contain information about the transverse tune spread in the beams. The BTF system has been installed in the LHC in the 2015 in order to investigate the Landau damping at different stages of the operational cycle, machine configurations (different octupole currents, crossing angles, tunes etc...) and in presence of beam-beam excited resonances that may provoke diffusion mechanisms with a consequence change of Landau damping. Past MDs showed some difficulties for the reconstruction of the stability diagram from BTF measurements and several improvements on the BTF sy...

  19. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2006-04-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as "wormholes" and "warp drives". However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg-Landau (GL scalar fields associated with superconductor junctions isinvestigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energyfluctuations, cosmological scalar (i.e., Higgs fields, and gravity.

  20. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara

    2016-01-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  1. Anisotropy in wavelet-based phase field models

    KAUST Repository

    Korzec, Maciek

    2016-04-01

    When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.

  2. Gravitational Field Shielding by Scalar Field and Type II Superconductors

    Directory of Open Access Journals (Sweden)

    Zhang B. J.

    2013-01-01

    Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.

  3. De Haas-van Alphen effect of a two-dimensional ultracold atomic gas

    Science.gov (United States)

    Farias, B.; Furtado, C.

    2016-01-01

    In this paper, we show how the ultracold atom analogue of the two-dimensional de Haas-van Alphen effect in electronic condensed matter systems can be induced by optical fields in a neutral atomic system. The interaction between the suitable spatially varying laser fields and tripod-type trapped atoms generates a synthetic magnetic field which leads the particles to organize themselves in Landau levels. Initially, with the atomic gas in a regime of lowest Landau level, we display the oscillatory behaviour of the atomic energy and its derivative with respect to the effective magnetic field (B) as a function of 1/B. Furthermore, we estimate the area of the Fermi circle of the two-dimensional atomic gas.

  4. El síndrome de Landau-Kleffner: Presentación de dos casos Landau-Kleffner's syndrome: Reports of two cases

    Directory of Open Access Journals (Sweden)

    Albia J. Pozo Alonso

    2005-06-01

    Full Text Available Se presentan dos niños que reúnen los criterios clínicos y electroencefalográficos del síndrome de Landau-Kleffner. En uno de los pacientes las dificultades para comprender el lenguaje y para la expresión oral espontánea comenzaron a manifestarse a los 6 años, y en el otro caso a los 6 años y 9 meses. Uno de los niños no ha presentado crisis epilépticas hasta el momento actual. En este paciente la tomografía computadorizada por emisión de positrón único (SPECT cerebral mostró una ligera hipoperfusión temporoparietal posterior bilateral. En el niño que presenta crisis epilépticas; éstas se iniciaron a la edad de 2 años y 6 meses y eran focales simples motoras que se generalizaron secundariamente. Desde hace un año no presenta crisis. Desde el punto de vista clínico y electroencefalográfico, ambos pacientes tuvieron una respuesta favorable al tratamiento con prednisona. En un niño, aunque ha mejorado, persisten las dificultades para la comprensión y la expresión orales. Se concluye que son muy importantes para el diagnóstico de este síndrome la existencia de una afasia adquirida y las descargas observadas en el electroencefalogramaTwo children with the clinical and electroencephalographic criteria of Landau-Kleffner's syndrome are presented. In one of the patients, the difficulties for understanding the language and for the spontaneous oral expression started at 6 years old. In the other case, they were manifested at 6 years and 9 months old. One of the children has not had epileptic seizures so far. In this patient, the single positron emission computerized tomography (brain SPECT showed a mild bilateral posterior temporoparietal hypoperfusion. The epileptic seizures in the other child started when he was 2 years and 6 months old and were focal , simple, motor and secondarily generalized. He has not had seizures for a year. Both patients had a favorable response to prednisone from the clinical and

  5. Atomically-resolved mapping of polarization and electric fields across ferroelectric-oxide interfaces by Z-contrast imaging

    Science.gov (United States)

    Borisevich, Albina; Chang, Hye Jung; Kalinin, Sergei; Morozovska, Anna; Chu, Ying-Hao; Yu, Pu; Ramesh, Ramamoorthy; Pennycook, Stephen

    2011-03-01

    Polarization, electric field, charge and potential across ferroelectric-oxide interfaces are obtained from direct atomic position mapping by aberration corrected scanning transmission electron microscopy combined with Ginsburg-Landau-Devonshire theory. We compare two antiparallel polarization orientations, which allows separation of the polarization and intrinsic interface charge contributions. Using the Born effective charges, the complete interface electrostatics is obtained in real space, providing an alternative method to holography. The results provide new microscopic insight into the thermodynamics of polarization distribution at the atomic level. Research is sponsored by the of Materials Sciences and Engineering Division, U.S. DOE.

  6. Effective field theory of an anomalous Hall metal from interband quantum fluctuations

    Science.gov (United States)

    Chua, Victor; Assawasunthonnet, Wathid; Fradkin, Eduardo

    2017-07-01

    We construct an effective field theory, a two-dimensional two-component metallic system described by a model with two Fermi surfaces ("pockets"). This model describes a translationally invariant metallic system with two types of fermions, each with its own Fermi surface, with forward scattering interactions. This model, in addition to the O (2 ) rotational invariance, has a U (1 )×U (1 ) symmetry of separate charge conservation for each Fermi surface. For sufficiently attractive interactions in the d -wave (quadrupolar) channel, this model has an interesting phase diagram that includes a spontaneously generated anomalous Hall metal phase. We derive the Landau-Ginzburg effective action of quadrupolar order parameter fields which enjoys an O (2 )×U (1 ) global symmetry associated to spatial isotropy and the internal U (1 ) relative phase symmetries, respectively. We show that the order parameter theory is dynamically local with a dynamical scaling of z =2 and perform a one-loop renormalization group analysis of the Landau-Ginzburg theory. The electronic liquid crystal phases that result from spontaneous symmetry breaking are studied and we show the presence of Landau damped Nambu-Goldstone modes at low momenta that is a signature of non-Fermi-liquid behavior. Electromagnetic linear response is also analyzed in both the normal and symmetry broken phases from the point of view of the order parameter theory. The nature of the coupling of electromagnetism to the order parameter fields in the normal phase is non-minimal and decidedly contains a precursor to the anomalous Hall response in the form of a order-parameter-dependent Chern-Simons term in the effective action.

  7. The half-filled Landau level: The case for Dirac composite fermions

    Science.gov (United States)

    Geraedts, Scott D.; Zaletel, Michael P.; Mong, Roger S. K.; Metlitski, Max A.; Vishwanath, Ashvin; Motrunich, Olexei I.

    2016-04-01

    In a two-dimensional electron gas under a strong magnetic field, correlations generate emergent excitations distinct from electrons. It has been predicted that “composite fermions”—bound states of an electron with two magnetic flux quanta—can experience zero net magnetic field and form a Fermi sea. Using infinite-cylinder density matrix renormalization group numerical simulations, we verify the existence of this exotic Fermi sea, but find that the phase exhibits particle-hole symmetry. This is self-consistent only if composite fermions are massless Dirac particles, similar to the surface of a topological insulator. Exploiting this analogy, we observe the suppression of 2kF backscattering, a characteristic of Dirac particles. Thus, the phenomenology of Dirac fermions is also relevant to two-dimensional electron gases in the quantum Hall regime.

  8. High critical magnetic field superconductor La3S4

    International Nuclear Information System (INIS)

    Westerholt, K.; Bach, H.; Wendemuth, R.; Methfessel, S.

    1979-01-01

    A report is presented on electrical conductivity, specific heat and magnetization measurements on La 3 S 4 single crystals. The results show that La 3 S 4 is a strong coupling superconductor with a BCS coherence length of 132 A. This extremely low value makes La 3 S 4 an intrinsic high critical magnetic field superconductor with a Landau-Ginsburg parameter of 20. For the temperature gradient of the upper critical magnetic field at the transition temperature values are found up to 35 kG/K. (author)

  9. Non-equilibrium mean-field theories on scale-free networks

    International Nuclear Information System (INIS)

    Caccioli, Fabio; Dall'Asta, Luca

    2009-01-01

    Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks

  10. Light-field-driven currents in graphene

    Science.gov (United States)

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter

    2017-10-01

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in

  11. Exotic Material as Interactions Between Scalar Fields

    Directory of Open Access Journals (Sweden)

    Robertson G. A.

    2015-10-01

    Full Text Available Many theoretical papers refer to the need to create exotic materials with average negative energies for the formation of space propulsion anomalies such as “wormholes” and “warp drives”. However, little hope is given for the existence of such material to resolve its creation for such use. From the standpoint that non-minimally coupled scalar fields to gravity appear to be the current direction mathematically. It is proposed that exotic material is really scalar field interactions. Within this paper the Ginzburg- Landau (GL scalar fields associated with superconductor junctions is investigated as a source for negative vacuum energy fluctuations, which could be used to study the interactions among energy fluctuations, cosmological scalar (i. e., Higgs fields, and gravity.

  12. Singularity theory and N = 2 superconformal field theories

    International Nuclear Information System (INIS)

    Warner, N.P.

    1989-01-01

    The N = 2 superconformal field theories that appear at the fixed points of the renormalization group flows of Landau-Ginsburg models are discussed. Some of the techniques of singularity theory are employed to deduce properties of these superconformal theories. These ideas are then used to deduce the relationship between Calabi-Yau compactifications and tensored discrete series models. The chiral rings of general N = 2 superconformal theories are also described. 14 refs

  13. Inhomogeneous ordered states and translational nature of the gauge group in the Landau continuum theory: II. Applications of the general theory

    International Nuclear Information System (INIS)

    Braginsky, A. Ya.

    2007-01-01

    A group theory approach to description of phase transitions to an inhomogeneous ordered state, proposed in the preceding paper, is applied to two problems. First, a theory of the state of a liquid-crystalline smectic type-A phase under the action of uniaxial pressure is developed. Second, a model of strengthening in quasicrystals is constructed. According to the proposed approach, the so-called elastic dislocations always appear during the phase transitions in an inhomogeneous deformed state in addition to static dislocations, which are caused by peculiarities of the crystal growth or by other features in the prehistory of a sample. The density of static dislocations weakly depends on the external factors, whereas the density of elastic dislocations depends on the state. An analogy between the proposed theory of the inhomogeneous ordered state and the quantum-field theory of interaction between material fields is considered. On this basis, the phenomenological Ginzburg-Landau equation for the superconducting state is derived using the principle of locality of the transformation properties of the superconducting order parameter with respect to temporal translations

  14. The effect of boundaries on the asymptotic wavenumber of spiral wave solutions of the complex Ginzburg–Landau equation

    KAUST Repository

    Aguareles, M.

    2014-06-01

    In this paper we consider an oscillatory medium whose dynamics are modeled by the complex Ginzburg-Landau equation. In particular, we focus on n-armed spiral wave solutions of the complex Ginzburg-Landau equation in a disk of radius d with homogeneous Neumann boundary conditions. It is well-known that such solutions exist for small enough values of the twist parameter q and large enough values of d. We investigate the effect of boundaries on the rotational frequency of the spirals, which is an unknown of the problem uniquely determined by the parameters d and q. We show that there is a threshold in the parameter space where the effect of the boundary on the rotational frequency switches from being algebraic to exponentially weak. We use the method of matched asymptotic expansions to obtain explicit expressions for the asymptotic wavenumber as a function of the twist parameter and the domain size for small values of q. © 2014 Elsevier B.V. All rights reserved.

  15. Field limit and nano-scale surface topography of superconducting radio-frequency cavity made of extreme type II superconductor

    OpenAIRE

    Kubo, Takayuki

    2014-01-01

    The field limit of superconducting radio-frequency cavity made of type II superconductor with a large Ginzburg-Landau parameter is studied with taking effects of nano-scale surface topography into account. If the surface is ideally flat, the field limit is imposed by the superheating field. On the surface of cavity, however, nano-defects almost continuously distribute and suppress the superheating field everywhere. The field limit is imposed by an effective superheating field given by the pro...

  16. Martensitic phase transformations in Ni–Ti-based shape memory alloys: The Landau theory

    International Nuclear Information System (INIS)

    Shchyglo, Oleg; Salman, Umut; Finel, Alphonse

    2012-01-01

    We present a simple Landau free energy functional for cubic-to-orthorhombic and cubic-to-monoclinic martensitic phase transformations. The functional is derived following group–subgroup relations between different martensitic phases – tetragonal, trigonal, orthorhombic and monoclinic – in order to fully capture the symmetry properties of the free energy of the austenite and martensite phases. The derived free energy functional is fitted to the elastic and thermodynamic properties of NiTi and NiTiCu shape memory alloys which exhibit cubic-to-monoclinic and cubic-to-orthorhombic martensitic phase transformations, respectively.

  17. Martensitic transformations in Ni-Mn-Ga system affected by external fields

    International Nuclear Information System (INIS)

    Chernenko, V.; Babii, O.; L'vov, V.; McCormick, P.G.

    2000-01-01

    The influence of hydrostatic pressure, uniaxial stress and magnetic field on the martensitic transformation temperatures for the ferromagnetic single crystalline Ni-Mn-Ga alloys is studied. It is shown that the experimental results are satisfactorily described by the Landau theory. Ni-Mn-Ga L2 1 -type ordered alloys exhibit a number of the first order and weak first order structural transformations in a ferromagnetic or paramagnetic parent phase depending on the alloy composition and being either thermally or stress activated. Most of these phase transformations are of the martensitic type, i.e., they are accompanied by the spontaneous elastic strains forming a multicomponent order parameter in the Landau expansion for the Gibbs potential. In this work we analyze the influence of the external fields (mechanical and magnetic) on the martensitic transformation (MT) from cubic parent phase (P) to five-layered martensitic one (5M-martensite) usually exhibited by the ferromagnetic ordered Ni-Mn-Ga alloys. In accordance with, we treat the 5M-martensite as a twinned tetragonal phase and, so, describe the experimental results in the framework of the theory of cubic-tetragonal MT. The original experimental data of high magnetic field influence on MT in near stoichiometric Ni 2 MnGa compound are presented to compare with the theoretical estimations. (orig.)

  18. Magnetoplasmons in gapped graphene in a periodically modulated magnetic field

    KAUST Repository

    Tahir, Muhammad

    2016-01-08

    Motivated by recent experiments on long-lived magnetoplasmons in the presence of a perpendicular magnetic field, we investigate the dynamical dielectric response function of graphene in contact with a substrate using the random phase approximation. We add a periodically modulated magnetic field within the graphene plane and address both the inter and intra Landau band magnetoplasmons. Verification of the predicted magnetic modulation effects is possible by experiments analogous to those for the zero gap limit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA.

  19. Magnetic field effects on the quantum wire energy spectrum and Green's function

    International Nuclear Information System (INIS)

    Morgenstern Horing, Norman J.

    2010-01-01

    We analyze the energy spectrum and propagation of electrons in a quantum wire on a 2D host medium in a normal magnetic field, representing the wire by a 1D Dirac delta function potential which would support just a single subband state in the absence of the magnetic field. The associated Schroedinger Green's function for the quantum wire is derived in closed form in terms of known functions and the Landau quantized subband energy spectrum is examined.

  20. Zero field Quantum Hall Effect in QED3

    International Nuclear Information System (INIS)

    Raya, K; Sánchez-Madrigal, S; Raya, A

    2013-01-01

    We study analytic structure of the fermion propagator in the Quantum Electrodynamics in 2+1 dimensions (QED3) in the Landau gauge, both in perturbation theory and nonperturbatively, by solving the corresponding Schwinger-Dyson equation in rainbow approximation. In the chiral limit, we found many nodal solutions, which could be interpreted as vacuum excitations. Armed with these solutions, we use the Kubo formula and calculate the filling factor for the zero field Quantum Hall Effect

  1. Geometrical phases from global gauge invariance of nonlinear classical field theories

    International Nuclear Information System (INIS)

    Garrison, J.C.; Chiao, R.Y.

    1988-01-01

    We show that the geometrical phases recently discovered in quantum mechanics also occur naturally in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a Lagrangean with is invariant under gauge transformations of the first kind. Some examples are the paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics

  2. Application of the Landau-Zener-Stückelberg-Majorana dynamics to the electrically driven flip of a hole spin

    Science.gov (United States)

    Pasek, W. J.; Maialle, M. Z.; Degani, M. H.

    2018-03-01

    An idea of employing the Landau-Zener-Stückelberg-Majorana dynamics to flip a spin of a single ground state hole is introduced and explored by a time-dependent simulation. This configuration interaction study considers a hole confined in a quantum molecule formed in an InSb 〈111 〉 quantum wire by application of an electrostatic potential. An up-down spin-mixing avoided crossing is formed by nonaxial terms in the Kohn-Luttinger Hamiltonian and the Dresselhaus spin-orbit one. Manipulation of the system is possible by the dynamic change of an external vertical electric field, which enables the consecutive driving of the hole through two anticrossings. Moreover, a simple model of the power-law-type noise that impedes precise electric control of the system is included in the form of random telegraph noise to estimate the limitations of the working conditions. We show that in principle the process is possible, but it requires precise control of the parameters of the driving impulse.

  3. Differentiated-effect shims for medium field levels and saturation

    International Nuclear Information System (INIS)

    Richie, A.

    1976-01-01

    The arrangement of shims on the upstream and downstream ends of magnets may be based on the independent effects of variations in the geometric length and degree of saturation at the edges of the poles. This technique can be used to match the bending strength of an accelerator's magnets at two field levels (medium fields and maximum fields) and thus save special procedures (mixing the laminations, local compensation for errors by arranging the magnets in the appropriate order) and special devices (for instance, correcting dipoles) solely for correcting bending strengths at low field levels. (Auth.)

  4. Theoretical physics. Field theory

    International Nuclear Information System (INIS)

    Landau, L.; Lifchitz, E.

    2004-01-01

    This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)

  5. Magnetization reversal in ferromagnetic film through solitons by electromagnetic field

    International Nuclear Information System (INIS)

    Veerakumar, V.; Daniel, M.

    2001-07-01

    We study the reversal of magnetization in an isotopic ferromagnetic film free from charges by exposing it to a circularly polarized electromagnetic (EM) field. The magnetization excitations are obtained in the form of line and lump solitons of the completely integrable modified KP-II equation which is derived using a reductive perturbation method from the set of coupled Landau-Lifschitz and Maxwell equations. It is observed that when the polarization of the EM-field is reversed followed by a rotation, for every (π)/2-degrees, the magnetization is reversed. (author)

  6. Magnetic Scaling in Superconductors

    International Nuclear Information System (INIS)

    Lawrie, I.D.

    1997-01-01

    The Ginzburg-Landau-Wilson superconductor in a magnetic field B is considered in the approximation that magnetic-field fluctuations are neglected. A formulation of perturbation theory is presented in which multiloop calculations fully retaining all Landau levels are tractable. A 2-loop calculation shows that, near the zero-field critical point, the singular part of the free energy scales as F sing ∼ |t| 2-α F(B|t| -2ν ), where ν is the coherence-length exponent emdash a result which has hitherto been assumed on purely dimensional grounds. copyright 1997 The American Physical Society

  7. Quantum magnetotransport properties of ultrathin topological insulator films

    KAUST Repository

    Tahir, M.

    2013-01-30

    We study the quantum magnetotransport in ultrathin topological insulator films in an external magnetic field considering hybridization between the upper and lower surfaces of the film. We investigate the two possible mechanisms for splitting of Landau levels, Zeeman and hybridization effects, and show that their interplay leads to minima in the collisional and Hall conductivities with a metal-to-insulator phase transition at the charge neutrality point. Hall plateaus arise at unusual multiples of e2/h . Evidence of a quantum phase transition for the zeroth and splitting of the higher Landau levels is found from the temperature and magnetic field dependences of the transport.

  8. Quantum magnetotransport properties of ultrathin topological insulator films

    KAUST Repository

    Tahir, M.; Sabeeh, K.; Schwingenschlö gl, Udo

    2013-01-01

    We study the quantum magnetotransport in ultrathin topological insulator films in an external magnetic field considering hybridization between the upper and lower surfaces of the film. We investigate the two possible mechanisms for splitting of Landau levels, Zeeman and hybridization effects, and show that their interplay leads to minima in the collisional and Hall conductivities with a metal-to-insulator phase transition at the charge neutrality point. Hall plateaus arise at unusual multiples of e2/h . Evidence of a quantum phase transition for the zeroth and splitting of the higher Landau levels is found from the temperature and magnetic field dependences of the transport.

  9. Revivals, classical periodicity, and zitterbewegung of electron currents in monolayer graphene

    International Nuclear Information System (INIS)

    Romera, E.; Santos, F. de los

    2009-01-01

    Revivals of electric current in graphene in the presence of an external magnetic field are described. It is shown that when the electrons are prepared in the form of wave packets assuming a Gaussian population of only positive (or negative) energy Landau levels, the presence of the magnetic field induce revivals of the electron currents, besides the classical cyclotron motion. When the population comprises both positive and negative energy Landau levels, revivals of the electric current manifest simultaneously with zitterbewegung and the classical cyclotron motion. We relate the temporal scales of these three effects and discuss to what extent these results hold for real graphene samples.

  10. A Hamiltonian five-field gyrofluid model

    Energy Technology Data Exchange (ETDEWEB)

    Keramidas Charidakos, I.; Waelbroeck, F. L.; Morrison, P. J. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, TX 78712 (United States)

    2015-11-15

    A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of the electron and ion gyro-center densities, the parallel component of the ion and electron velocities, and the ion temperature. The quasineutrality property and Ampère's law determine, respectively, the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated with five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models.

  11. Green's functions for a graphene sheet and quantum dot in a normal magnetic field

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern; Liu, S Y

    2009-01-01

    This paper is concerned with the derivation of the retarded Green's function for a two-dimensional graphene layer in a perpendicular magnetic field in two explicit, analytic forms, which we employ in obtaining a closed-form solution for the Green's function of a tightly confined magnetized graphene quantum dot. The dot is represented by a δ (2) (r)-potential well and the system is subject to Landau quantization in the normal magnetic field

  12. Fokker-Planck equation in the presence of a uniform magnetic field

    International Nuclear Information System (INIS)

    Dong, Chao; Zhang, Wenlu; Li, Ding

    2016-01-01

    The Fokker-Planck equation in the presence of a uniform magnetic field is derived which has the same form as the case of no magnetic field but with different Fokker-Planck coefficients. The coefficients are calculated explicitly within the binary collision model, which are free from infinite sums of Bessel functions. They can be used to investigate relaxation and transport phenomena conveniently. The kinetic equation is also manipulated into the Landau form from which it is straightforward to compare with previous results and prove the conservation laws.

  13. Fokker-Planck equation in the presence of a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chao, E-mail: chaodong@iphy.ac.cn [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Zhang, Wenlu [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Ding, E-mail: dli@ustc.edu.cn [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2016-08-15

    The Fokker-Planck equation in the presence of a uniform magnetic field is derived which has the same form as the case of no magnetic field but with different Fokker-Planck coefficients. The coefficients are calculated explicitly within the binary collision model, which are free from infinite sums of Bessel functions. They can be used to investigate relaxation and transport phenomena conveniently. The kinetic equation is also manipulated into the Landau form from which it is straightforward to compare with previous results and prove the conservation laws.

  14. Evaluating 239Pu levels using field detectors

    International Nuclear Information System (INIS)

    Wahl, L.E.; Smith, W.J. II; Martin, B.

    1996-01-01

    At Los Alamos National Laboratory, cleanup was planned at three septic tanks where surface soil in the outfall drainage areas was found to be contaminated with 239 Pu. To meet budget and deadline constraints, a technique was developed that used field instruments to verify 239 Pu soil contamination at levels less than 2.8 Bq g -1 , the established cleanup level. The drainage areas were surveyed using a low-energy gamma probe to identify likely areas of 239 Pu contamination. Between 40 and 135 0.1-min gamma radiation measurements were obtained from each drainage area. From these data, locations were identified for subsequent screening for alpha radioactivity. Soil samples from between 11 and 18 locations at each drainage area were placed in petri dishes, dried, and counted for 10 minutes using an alpha probe. Alpha counts were then related to 239 Pu concentrations using a curve developed from local soils containing known concentrations of 239 Pu. Up to six soil samples from each drainage area, representing a range of alpha radioactivity levels, were sent for laboratory analysis of isotopic plutonium to confirm field measurement results. Analytical and field results correlated well at all but one outfall area. At this area, field measurements predicted more 239 Pu than was measured in the laboratory, indicating the presence of another alpha-emitting radionuclide that might have been missed if only laboratory analyses for plutonium had been used. This technique, which combined a large number of gamma radioactivity measurements, a moderate number of alpha radioactivity measurements, and a few isotopic plutonium measurements, allowed quick and inexpensive comparison of 239 Pu with the cleanup level

  15. A stochastic phase-field model determined from molecular dynamics

    KAUST Repository

    von Schwerin, Erik

    2010-03-17

    The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.

  16. A stochastic phase-field model determined from molecular dynamics

    KAUST Repository

    von Schwerin, Erik; Szepessy, Anders

    2010-01-01

    The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.

  17. Diagnosing collisionless energy transfer using field-particle correlations: Vlasov-Poisson plasmas

    Science.gov (United States)

    Howes, Gregory G.; Klein, Kristopher G.; Li, Tak Chu

    2017-02-01

    Turbulence plays a key role in the conversion of the energy of large-scale fields and flows to plasma heat, impacting the macroscopic evolution of the heliosphere and other astrophysical plasma systems. Although we have long been able to make direct spacecraft measurements of all aspects of the electromagnetic field and plasma fluctuations in near-Earth space, our understanding of the physical mechanisms responsible for the damping of the turbulent fluctuations in heliospheric plasmas remains incomplete. Here we propose an innovative field-particle correlation technique that can be used to measure directly the secular energy transfer from fields to particles associated with collisionless damping of the turbulent fluctuations. Furthermore, this novel procedure yields information about the collisionless energy transfer as a function of particle velocity, providing vital new information that can help to identify the dominant collisionless mechanism governing the damping of the turbulent fluctuations. Kinetic plasma theory is used to devise the appropriate correlation to diagnose Landau damping, and the field-particle correlation technique is thoroughly illustrated using the simplified case of the Landau damping of Langmuir waves in a 1D-1V (one dimension in physical space and one dimension in velocity space) Vlasov-Poisson plasma. Generalizations necessary to apply the field-particle correlation technique to diagnose the collisionless damping of turbulent fluctuations in the solar wind are discussed, highlighting several caveats. This novel field-particle correlation technique is intended to be used as a primary analysis tool for measurements from current, upcoming and proposed spacecraft missions that are focused on the kinetic microphysics of weakly collisional heliospheric plasmas, including the Magnetospheric Multiscale (MMS), Solar Probe Plus, Solar Orbiter and Turbulence Heating ObserveR (THOR) missions.

  18. Multiphonon generation during photodissociation of slow Landau-Pekar polarons

    International Nuclear Information System (INIS)

    Myasnikov, E. N.; Myasnikova, A. E.; Mastropas, Z. P.

    2006-01-01

    The spectra of the low-temperature photodissociation (photoionization) of Landau-Pekar polarons are calculated using the theory of quantum-coherent states and a new method of variation with respect to the parameters of phonon vacuum deformation. It is shown that the final polaron states upon photodissociation may have different numbers of phonons produced in a single dissociation event and different momenta of charge carriers. The spectrum of optical absorption related to the photodissociation of polarons exhibits a superposition of bands corresponding to various numbers of phonons formed as a result of dissociation of a single polaron. Due to a large width of the energy region corresponding to the final states of charge carriers, the halfwidth of each band is on the order of the energy of polaron coupling and is much greater than the phonon energy. For this reason, the individual phonon bands exhibit strong overlap. The very broad and, probably, structureless band formed as a result of the superposition of all these components begins at an energy equal to the sum of the polaron coupling energy (E p ) and the phonon energy. This band has a maximum at a frequency of about 5.6E p /ℎ and a halfwidth on the order of 5.6E p /ℎ at a unit effective mass (m* = m e ) of band electrons. For an effective charge carrier mass within m* = (1-3)m e , the energy of the polaron band maximum can be estimated as 5E p with an error of about 10%, and the halfwidth falls within 3.4E p 1/2 p . The multiphonon character of this band is related to a decay of the phonon condensate after the escape of charge carrier from a polaron. Such polarons are likely to be observed in the spectra of complex metal oxides, including high-temperature superconductors. Examples of such polaron bands in the reported absorption and photoconductivity spectra of nonstoichiometric cuprates, manganites, nickelates, and titanates are presented. A theory of the formation of Landau-Pekar polarons with the

  19. Algebraic characterization of vector supersymmetry in topological field theories

    International Nuclear Information System (INIS)

    Vilar, L.C.Q.; Ventura, O.S.; Sasaki, C.A.G.; Sorella, S.P.

    1997-01-01

    An algebraic cohomological characterization of a class of linearly broken Ward identities is provided. The examples of the topological vector supersymmetry and of the Landau ghost equation are discussed in detail. The existence of such a linearly broken Ward identities turns out to be related to BRST exact anti-field dependent cocycles with negative ghost number, according to the cohomological reformulation of the Noether theorem given by M. Henneaux et al. (author)

  20. Canonical quantum theory of gravitational field with higher derivatives

    International Nuclear Information System (INIS)

    Kawasaki, Shoichiro; Kimura, Tadahiko; Kitago, Koichi.

    1981-01-01

    A renormalizable gravitational theory with higher derivatives is canonically quantized in the Landau gauge. Field equations and various equal-time commutation relations are explicitly given. The main results obtained in this work are 1) the equal-time commutation relations involving b sub(μ) exhibit the tensor-like behaviour and 2) the theory has the 16-dimensional Poincare-like superalgebra. These results are just the same as those discovered by Nakanishi in the Einstein case. (author)