WorldWideScience

Sample records for field induced structural

  1. Interfacial patterns in magnetorheological fluids: Azimuthal field-induced structures.

    Science.gov (United States)

    Dias, Eduardo O; Lira, Sérgio A; Miranda, José A

    2015-08-01

    Despite their practical and academic relevance, studies of interfacial pattern formation in confined magnetorheological (MR) fluids have been largely overlooked in the literature. In this work, we present a contribution to this soft matter research topic and investigate the emergence of interfacial instabilities when an inviscid, initially circular bubble of a Newtonian fluid is surrounded by a MR fluid in a Hele-Shaw cell apparatus. An externally applied, in-plane azimuthal magnetic field produced by a current-carrying wire induces interfacial disturbances at the two-fluid interface, and pattern-forming structures arise. Linear stability analysis, weakly nonlinear theory, and a vortex sheet approach are used to access early linear and intermediate nonlinear time regimes, as well as to determine stationary interfacial shapes at fully nonlinear stages.

  2. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring.

    Science.gov (United States)

    Ouyang, J; Perrie, W; Allegre, O J; Heil, T; Jin, Y; Fearon, E; Eckford, D; Edwardson, S P; Dearden, G

    2015-05-18

    Precise tailoring of optical vector beams is demonstrated, shaping their focal electric fields and used to create complex laser micro-patterning on a metal surface. A Spatial Light Modulator (SLM) and a micro-structured S-waveplate were integrated with a picosecond laser system and employed to structure the vector fields into radial and azimuthal polarizations with and without a vortex phase wavefront as well as superposition states. Imprinting Laser Induced Periodic Surface Structures (LIPSS) elucidates the detailed vector fields around the focal region. In addition to clear azimuthal and radial plasmon surface structures, unique, variable logarithmic spiral micro-structures with a pitch Λ ∼1μm, not observed previously, were imprinted on the surface, confirming unambiguously the complex 2D focal electric fields. We show clearly also how the Orbital Angular Momentum(OAM) associated with a helical wavefront induces rotation of vector fields along the optic axis of a focusing lens and confirmed by the observed surface micro-structures.

  3. Variations in soil microbial community structure induced by the conversion from paddy fields to upland fields

    Science.gov (United States)

    Dai, X.

    2015-12-01

    Land-use conversion is an important factor influencing the carbon and nitrogen gas exchange between land and atmosphere, and soil microorganisms is main driver of soil carbon and nitrogen gas production. Understanding the effect of land-use conversion on soil microbial communities and its influencing factor is important for greenhouse gas emission reduction and soil organic carbon and nitrogen sequestration and stability. The influence of land use conversion on soil process was undergoing a dynamic change, but little research has been done to understand the effect on soil microbial communities during the initial years after land conversion. In the study, the influences of land-use conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems on soil physical and chemical properties, and microbial community structure was studied after two years of the conversion in southern China. The results showed that land use conversion significantly changed soil properties, microbial communities and biomass. Soil pH significantly decreased by 0.50 and 0.52 after conversion to MM and SP, respectively. Soil TN and NH4-N also significantly decreased by 9%-15% and 60% after conversion to upland fields, respectively. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly. The ng g-1 soil concentration of monounsaturated chain PLFAs 16:1ω7c and 18:1ω9t were significantly higher at paddy fields than at upland fields. No significant differences in soil properties, microbial communities and biomass were found between conversed MM and SP. Our results indicated that land use conversion, not crop type conversed had a significant effects on soil properties and microbial communities at the initial of land conversion. And soil pH was the key factor regulating the variations in soil microbial community structure after land use conversion from paddy to upland fields.

  4. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  5. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    Science.gov (United States)

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  6. Particle roughness in magnetorheology: effect on the strength of the field-induced structures

    International Nuclear Information System (INIS)

    Vereda, F; Segovia-Gutiérrez, J P; De Vicente, J; Hidalgo-Alvarez, R

    2015-01-01

    We report a study on the effect of particle roughness on the strength of the field-induced structures of magnetorheological (MR) fluids in the quasi-static regime. We prepared one set of MR fluids with carbonyl iron particles and another set with magnetite particles, and in both sets we had particles with different degrees of surface roughness. Small amplitude oscillatory shear (SAOS) magnetosweeps and steady shear (SS) tests were carried out on the suspensions to measure their elastic modulus (G′) and static yield stress (τ static ). Results for both the iron and the magnetite sets of suspensions were consistent: for the MR fluids prepared with rougher particles, G′ increased at smaller fields and τ static was ca. 20% larger than for the suspensions prepared with relatively smooth particles. In addition to the experimental study, we carried out finite element method calculations to assess the effect of particle roughness on the magnetic interaction between particles. These calculations showed that roughness can facilitate the magnetization of the particles, thus increasing the magnetic energy of the system for a given field, but that this effect depends on the concrete morphology of the surface. For our real systems, no major differences were observed between the magnetization cycles of the MR fluids prepared with particles with different degree of roughness, which implied that the effect of roughness on the measured G′ and τ static was due mainly to friction between the solid surfaces of adjacent particles. (paper)

  7. An Approach to Model Earth Conductivity Structures with Lateral Changes for Calculating Induced Currents and Geoelectric Fields during Geomagnetic Disturbances

    Directory of Open Access Journals (Sweden)

    Bo Dong

    2015-01-01

    Full Text Available During geomagnetic disturbances, the telluric currents which are driven by the induced electric fields will flow in conductive Earth. An approach to model the Earth conductivity structures with lateral conductivity changes for calculating geoelectric fields is presented in this paper. Numerical results, which are obtained by the Finite Element Method (FEM with a planar grid in two-dimensional modelling and a solid grid in three-dimensional modelling, are compared, and the flow of induced telluric currents in different conductivity regions is demonstrated. Then a three-dimensional conductivity structure is modelled and the induced currents in different depths and the geoelectric field at the Earth’s surface are shown. The geovoltages by integrating the geoelectric field along specific paths can be obtained, which are very important regarding calculations of geomagnetically induced currents (GIC in ground-based technical networks, such as power systems.

  8. Influence of viscosity of the medium on the disposition of carbon nanotubes anisotropic structures formation induced by electric field

    International Nuclear Information System (INIS)

    Yakovenko, O.S.; Matsuj, L.Yu.; Zhuravkov, O.V.; Vovchenko, L.D.

    2014-01-01

    To obtain carbon nanotubes (CNT)-polymer composites with anisotropic physical properties an electric field application can be used. This investigation considers factors of CNT anisotropic distribution formation induced by electric field and consideration is supported with experimental results where some factors were varied. In the article an influence of magnitude and type of electric field and time of processing by electric field on CNT anisotropic structures formation in polymer mediums of different viscosities (oil, epoxy resins) is investigated. The aim of this work was to examine the CNT structuration process induced by electric field in viscous mediums and to find out the most optimal conditions of preparation of polymer/carbon composite materials (CM) with specified distribution of carbon filler induced by electric field. Scoping on polymer/carbon CM structuration was conducted by optical microscopy method. It was found that the main factors during CNT network formation are the type and viscosity of polymer binder and applied electric field parameters. It was observed that for high viscous polymer CNT network formation is unfeasible even at high applied electric field strength. But also for low viscous medium at relatively low electric field strength the CNT network formation is complicated too. And it was seen from optical observation that a type of the polymer variation causes different response of network form under the same experimental conditions. These distinctions are considered in the article

  9. Temperature- and field-induced structural transitions in magnetic colloidal clusters

    Science.gov (United States)

    Hernández-Rojas, J.; Calvo, F.

    2018-02-01

    Magnetic colloidal clusters can form chain, ring, and more compact structures depending on their size. In the present investigation we examine the combined effects of temperature and external magnetic field on these configurations by means of extensive Monte Carlo simulations and a dedicated analysis based on inherent structures. Various thermodynamical, geometric, and magnetic properties are calculated and altogether provide evidence for possibly multiple structural transitions at low external magnetic field. Temperature effects are found to overcome the ordering effect of the external field, the melted stated being associated with low magnetization and a greater compactness. Tentative phase diagrams are proposed for selected sizes.

  10. Field-induced structures and rheology of a magnetorheological suspension confined between two walls

    International Nuclear Information System (INIS)

    Carletto, P; Bossis, G

    2003-01-01

    We have determined experimentally the parameters characterizing the structures formed in a magnetic colloidal suspension subjected to a unidirectional magnetic field and a rotating field for different cell thicknesses. In this latter case one observes the formation of a periodic structure in parallel sheets situated in the plane of rotation of the field. A theoretical model based on minimization of the energy allows one to find quantitatively the observations obtained in a unidirectional field. On the other hand, in a rotating field, the agreement is quantitative only if we take the surface energy as an adjustable parameter. We explain this fact on the basis of the existence of a substructure made of discs of particles. In a second part we show the influence of the structures on the rheological properties of the suspension by measuring the shear moduli for different kinds of structure. We find that for the same magnetic field, the shear moduli depend strongly on the structure and can be quite well predicted by a mean field theory; also the critical shear strain is determined and is in agreement with the model. Finally we show that, in a regime with a unidirectional oscillating field without shear flow, a new phenomenon appears if the confining walls are not parallel. In this case we observe the formation of anisotropic aggregates which undergo a collective chaotic rotation around the axis of the aggregates

  11. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  12. Light-induced space-charge fields for the structuration of dielectric materials

    International Nuclear Information System (INIS)

    Eggert, H.A.

    2006-11-01

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  13. Current bistability in a weakly coupled multi-quantum well structure: a magnetic field induced 'memory effect'

    International Nuclear Information System (INIS)

    Feu, W H M; Villas-Boas, J M; Cury, L A; Guimaraes, P S S; Vieira, G S; Tanaka, R Y; Passaro, A; Pires, M P; Landi, S M; Souza, P L

    2009-01-01

    A study of magnetotunnelling in weakly coupled multi-quantum wells reveals a new phenomenon which constitutes a kind of memory effect in the sense that the electrical resistance of the sample after application of the magnetic field is different from before and contains the information that a magnetic field was applied previously. The change in the electric field domain configuration triggered by the magnetic field was compared for two samples, one strictly periodic and another with a thicker quantum well inserted into the periodic structure. For applied biases at which two electric field domains are present in the sample, as the magnetic field is increased a succession of discontinuous reductions in the electrical resistance is observed due to the magnetic field-induced rearrangement of the electric field domains, i.e. the domain boundary jumps from well to well as the magnetic field is changed. The memory effect is revealed for the aperiodic structure as the electric field domain configuration triggered by the magnetic field remains stable after the field is reduced back to zero. This effect is related to the multi-stability in the current-voltage characteristics observed in some weakly coupled multi-quantum well structures.

  14. Direct characterization of ultraviolet-light-induced refractive index structures by scanning near-field optical microscopy

    DEFF Research Database (Denmark)

    Svalgaard, Mikael; Madsen, S.; Hvam, Jørn Märcher

    1998-01-01

    We have applied a reflection scanning near-field optical microscope to directly probe ultraviolet (UV)-light-induced refractive index structures in planar glass samples. This technique permits direct comparison between topography and refractive index changes (10(-5)-10(-3)) with submicrometer...

  15. A multi-layer bioinspired design with evolution of shish-kebab structures induced by controlled periodical shear field

    Directory of Open Access Journals (Sweden)

    J. Zhang

    2013-04-01

    Full Text Available The crystallization of polymers, caused by flow fields in the melt, has been the subject of extensive studies for many years. In this study, we use periodical shear to induce polypropylene to form multi-layer structure, which is usually observed in plants. Two interesting points were found: firstly, the quest of mimicking natural structures was achieved by controlled periodical shear field; secondly, the evolution from nano to shish-kebab-like cylindrite structure was obtained in the multi-layer structure, which can be clarified by nuclei competition model. This study can be used to better understand the shear-induced crystallization of polymer. Here our intention is to place this new observation on the map, leaving a fuller presentation and discussion of the work to a future publication.

  16. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    Science.gov (United States)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  17. Induced superconductivity in Nb/InAs-hybrid structures in parallel and perpendicular magnetic fields

    International Nuclear Information System (INIS)

    Rohlfing, Franziska

    2007-07-01

    The thesis in hand investigates experimentally Josephson contacts based on Nb/InAs-hybrid structures. The experiments discussed here were done on samples of different width of the Josephson contacts (between 500 nm and 2000 nm). They were realized by means of different methods of the semiconductor technology. The length of the Josephson contacts was about 600 nm and, as superconducting material, niobium was used. Both critical current and characteristics in the resistive regime (excess-current and multiple Andreev reflection) are studied as a function of temperature and external magnetic fields. Measurements in perpendicular and parallel magnetic fields with respect to the plain of the two-dimensional electron gas, are presented. The Andreev reflection amplitude determining the supercurrent is calculated by means of the Greens functions of the two-dimensional electron gas beneath the superconductors which is modified by the proximity effect. From the fit to the data with this model, the transparency of the boundary between the superconductor and the two-dimensional electron gas can be estimated to be about 0.1. The transparency of the point contacts in the two-dimensional electrons gas can be determined independently from the Josephson junction width dependence of the normal resistance (T=10 K). This transparency amounts to about 0.8 in the examined samples. The measurements of the critical current in a magnetic field perpendicular to the two-dimensional electron gas show a Fraunhofer pattern. In order to study the transition from perpendicular orientation into parallel orientation, measurements of the critical current as a function of the magnetic field were done for different angles. In the resistive regime, the excess current measurements in the magnetic field show a very interesting behaviour: In parallel magnetic fields, the excess current becomes zero at about 2.5 T. In perpendicular magnetic field however, the excess current is strongly suppressed below 30 m

  18. Effect of magnetic field on ablatively driven Richtmyer-Meshkov instability induced by interfacial nonlinear structure

    International Nuclear Information System (INIS)

    Labakanta Mandal; Banerjee, R.; Roy, S.; Khan, M.; Gupta, M.R.

    2010-01-01

    Complete text of publication follows. In an Inertial Confinement Fusion (ICF) situation, laser driven ablation front of an imploding capsule is subjected to the fluid instabilities like Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instability. In this case dense core is compressed and accelerated by low density ablating plasma. During this process laser driven shocks interact the interface and hence it becomes unstable due to the formation of nonlinear structure like bubble and spike. The nonlinear structure is called bubble if the lighter fluid pushes inside the heavier fluid and spike, if opposite takes place. R-M instability causes non-uniform compression of ICF fuel pellets and needs to be mitigated. Scientists and researchers are much more interested on RM instability both from theoretical and experimental points of view. In this article, we have presented the analytical expression for the growth rate and velocity for the nonlinear structures due to the effect of magnetic field of fluid using potential flow model. The magnetic field is assumed to be parallel to the plane of two fluid interfaces. If the magnetic field is restricted only to either side of interface the R-M instability can be stabilized or destabilized depending on whether the magnetic pressure on the interface opposes the instability driving shock pressure or acts in the same direction. An interesting result is that if both the fluids are magnetized, interface as well as velocity of bubble and spike will show oscillating stabilization and R-M instability is mitigated. All analytical results are also supported by numerical results. Numerically it is seen that magnetic field above certain minimum value reduces the instability for compression the target in ICF.

  19. Structure and flow-induced variability of the subtidal salinity field in northern San Francisco Bay

    Science.gov (United States)

    Monismith, Stephen G.; Kimmerer, W.; Burau, J.R.; Stacey, M.T.

    2002-01-01

    The structure of the salinity field in northern San Francisco Bay and how it is affected by freshwater flow are discussed. Two datasets are examined: the first is 23 years of daily salinity data taken by the U.S. Bureau of Reclamation along the axis of northern San Francisco Bay: the second is a set of salinity transects taken by the U.S. Geological Survey between 1988 and 1993. Central to this paper is a measure of salinity intrusion. X2: the distance from the Golden Gate Bridge to where the bottom salinity is 2 psu. Using X2 to scale distance, the authors find that for most flow conditions, the mean salinity distribution of the estuary is nearly self-similar with a salinity gradient in the center 70% of the region between the Golden Gate and X2 that is proportional to X2-1. Analysis of covariability of Q and X2 showed a characteristics timescale of adjustment of the salinity field of approximately 2 weeks. The steady-state response deduced from the X2 time series implies that X2 is proportional to riverflow to the 1/7 power. This relation, which differs from the standard 1/3 power dependence that is derived theoretically assuming constant exchange coefficients, shows that the upstream salt flux associated with gravitational circulation is more sensitive to the longitudinal salinity gradient than theory supposes. This is attributed to the strengthening of stratification caused by the stronger longitudinal salinity gradient that accompanies larger river flows.

  20. Dynamics of plasmonic field polarization induced by quantum coherence in quantum dot-metallic nanoshell structures.

    Science.gov (United States)

    Sadeghi, S M

    2014-09-01

    When a hybrid system consisting of a semiconductor quantum dot and a metallic nanoparticle interacts with a laser field, the plasmonic field of the metallic nanoparticle can be normalized by the quantum coherence generated in the quantum dot. In this Letter, we study the states of polarization of such a coherent-plasmonic field and demonstrate how these states can reveal unique aspects of the collective molecular properties of the hybrid system formed via coherent exciton-plasmon coupling. We show that transition between the molecular states of this system can lead to ultrafast polarization dynamics, including sudden reversal of the sense of variations of the plasmonic field and formation of circular and elliptical polarization.

  1. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    Science.gov (United States)

    Asoka-Kumar, P.; Leung, T. C.; Lynn, K. G.; Nielsen, B.; Forcier, M. P.; Weinberg, Z. A.; Rubloff, G. W.

    1992-06-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions.

  2. Positron annihilation studies in the field induced depletion regions of metal-oxide-semiconductor structures

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.; Leung, T.C.; Lynn, K.G.; Nielsen, B.; Forcier, M.P.; Weinberg, Z.A.; Rubloff, G.W.

    1992-01-01

    The centroid shifts of positron annihilation spectra are reported from the depletion regions of metal-oxide-semiconductor (MOS) capacitors at room temperature and at 35 K. The centroid shift measurement can be explained using the variation of the electric field strength and depletion layer thickness as a function of the applied gate bias. An estimate for the relevant MOS quantities is obtained by fitting the centroid shift versus beam energy data with a steady-state diffusion-annihilation equation and a derivative-gaussian positron implantation profile. Inadequacy of the present analysis scheme is evident from the derived quantities and alternate methods are required for better predictions

  3. Light-induced space-charge fields for the structuration of dielectric materials; Lichtinduzierte Raumladungsfelder zur Strukturierung dielektrischer Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, H A

    2006-11-15

    Light-induced space-charge fields in lithium-niobate crystals are used for patterning of dielectric materials. This includes tailored ferroelectric domains in the bulk of the crystal, different sorts of micro and nanoparticles on a crystal surface, as well as poling of electrooptic chromophores. A stochastical model is introduced, which can describe the spatial inhomogeneous domain inversion. (orig.)

  4. Electronic structure of UN based on specific heat and field-induced transitions up to 65 T

    Czech Academy of Sciences Publication Activity Database

    Troć, R.; Samsel-Czekała, M.; Pikul, A.; Andreev, Alexander V.; Gorbunov, Denis; Skourski, Y.; Sznajd, J.

    2016-01-01

    Roč. 94, č. 22 (2016), 1-14, č. článku 224415. ISSN 2469-9950 R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : uranium mononitride * antiferromagnetism * field-induced transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  5. Carrier relaxation in (In,Ga)As quantum dots with magnetic field-induced anharmonic level structure

    Energy Technology Data Exchange (ETDEWEB)

    Kurtze, H.; Bayer, M. [Experimentelle Physik 2, TU Dortmund, D-44221 Dortmund (Germany)

    2016-07-04

    Sophisticated models have been worked out to explain the fast relaxation of carriers into quantum dot ground states after non-resonant excitation, overcoming the originally proposed phonon bottleneck. We apply a magnetic field along the quantum dot heterostructure growth direction to transform the confined level structure, which can be approximated by a Fock–Darwin spectrum, from a nearly equidistant level spacing at zero field to strong anharmonicity in finite fields. This changeover leaves the ground state carrier population rise time unchanged suggesting that fast relaxation is maintained upon considerable changes of the level spacing. This corroborates recent models explaining the relaxation by polaron formation in combination with quantum kinetic effects.

  6. Field-induced non-collinear magnetic structures in amorphous Co80-xDy xB20 alloys

    International Nuclear Information System (INIS)

    Annouar, F.; Roky, K.; Lassri, H.; Elmoussaoui, A.; Driouch, L.; Ayadi, M.; Omri, M.; Krishnan, R.

    2005-01-01

    Amorphous Co 80-x Dy x B 20 alloys have been prepared by melt spinning technique and their magnetic properties have been studied. The mean field theory has been used to explain the temperature dependence of the magnetization. High-field magnetization studies performed at 4.2 K in magnetic fields up to 38 T have revealed, for samples with stoichiometry close to that of a compensated ferrimagnet, a magnetic behavior that is characteristic of a non-collinear magnetic structure of the Dy and Co sublattices. From the non-collinear regime the exchange interactions between the Co and Dy magnetic sublattices and the magnetic anisotropy constants have been evaluated

  7. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  8. Visualization of induced electric fields

    NARCIS (Netherlands)

    Deursen, van A.P.J.

    2005-01-01

    A cylindrical electrolytic tank between a set of Helmholtz coils provides a classroom demonstration of induced, nonconservative electric fields. The field strength is measured by a sensor consisting of a pair of tiny spheres immersed in the liquid. The sensor signal depends on position, frequency,

  9. Characterizing the Potential for Injection-Induced Fault Reactivation Through Subsurface Structural Mapping and Stress Field Analysis, Wellington Field, Sumner County, Kansas

    Science.gov (United States)

    Schwab, Drew R.; Bidgoli, Tandis S.; Taylor, Michael H.

    2017-12-01

    Kansas, like other parts of the central U.S., has experienced a recent increase in seismicity. Correlation of these events with brine disposal operations suggests pore fluid pressure increases are reactivating preexisting faults, but rigorous evaluation at injection sites is lacking. Here we determine the suitability of CO2 injection into the Cambrian-Ordovician Arbuckle Group for long-term storage and into a Mississippian reservoir for enhanced oil recovery in Wellington Field, Sumner County, Kansas. To determine the potential for injection-induced earthquakes, we map subsurface faults and estimate in situ stresses, perform slip and dilation tendency analyses to identify well-oriented faults relative to the estimated stress field, and determine the pressure changes required to induce slip at reservoir and basement depths. Three-dimensional seismic reflection data reveal 12 near-vertical faults, mostly striking NNE, consistent with nodal planes from moment tensor solutions from recent earthquakes in the region. Most of the faults cut both reservoirs and several clearly penetrate the Precambrian basement. Drilling-induced fractures (N = 40) identified from image logs and inversion of earthquake moment tensor solutions (N = 65) indicate that the maximum horizontal stress is approximately EW. Slip tendency analysis indicates that faults striking <020° are stable under current reservoir conditions, whereas faults striking 020°-049° may be prone to reactivation with increasing pore fluid pressure. Although the proposed injection volume (40,000 t) is unlikely to reactive faults at reservoir depths, high-rate injection operations could reach pressures beyond the critical threshold for slip within the basement, as demonstrated by the large number of injection-induced earthquakes west of the study area.

  10. Resonant alteration of propagation in guiding structures with complex Robin parameter and its magnetic-field-induced restoration

    International Nuclear Information System (INIS)

    Olendski, O.

    2011-01-01

    Highlights: → Solutions of the wave equation are analyzed for the confined circular geometry with complex Robin boundary conditions. → Sharp extremum is found in the energy dependence on the imaginary part of the extrapolation length. → Nonzero real part of the Robin length or/and magnetic field wipe out the resonance. - Abstract: Solutions of the scalar Helmholtz wave equation are derived for the analysis of the transport and thermodynamic properties of the two-dimensional disk and three-dimensional infinitely long straight wire in the external uniform longitudinal magnetic field B under the assumption that the Robin boundary condition contains extrapolation length Λ with nonzero imaginary part Λ i . As a result of this complexity, the self-adjointness of the Hamiltonian is lost, its eigenvalues E become complex too and the discrete bound states of the disk characteristic for the real Λ turn into the corresponding quasibound states with their lifetime defined by the eigenenergies imaginary parts E i . Accordingly, the longitudinal flux undergoes an alteration as it flows along the wire with its attenuation/amplification being E i -dependent too. It is shown that, for zero magnetic field, the component E i as a function of the Robin imaginary part exhibits a pronounced sharp extremum with its magnitude being the largest for the zero real part Λ r of the extrapolation length. Increasing magnitude of Λ r quenches the E i - Λ i resonance and at very large Λ r the eigenenergies E approach the asymptotic real values independent of Λ i . The extremum is also wiped out by the magnetic field when, for the large B, the energies tend to the Landau levels. Mathematical and physical interpretations of the obtained results are provided; in particular, it is shown that the finite lifetime of the disk quasibound states stems from the Λ i -induced currents flowing through the sample boundary. Possible experimental tests of the calculated effect are discussed; namely

  11. Secondary structure changes induced by pulsed electric field affect antioxidant activity of pentapeptides from pine nut (Pinus koraiensis) protein.

    Science.gov (United States)

    Liang, Rong; Cheng, Sheng; Wang, Xiuying

    2018-07-15

    We used a pulsed electric field (PEF) to treat four pentapeptides with similar amino acid sequences (KCHKP, KCHQP, QCHKP, and QCHQP). We then evaluated antioxidant activity of the pentapeptides according to ferric reducing antioxidant power (FRAP) and hydroxyl radical scavenging capacity. Structures of the peptides were determined by high performance liquid chromatography (HPLC), mid-infrared (MIR), circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR). The results indicated that antioxidant activities of KCHQP and QCHKP were increased by PEF, whereas those of KCHKP and QCHQP were reduced. The basic structures and functional groups of peptides were unaffected. PEF treatment reduced the α-helix contents of KCHQP and QCHKP, but increased those of KCHKP and QCHQP. Moreover, the chemical shifts at 14.46 ppm, 8.22 ppm, 7.87 ppm, 7.24 ppm, and 6.13 ppm attributable to hydrogen atoms of QCHKP shifted to the right, but the active hydrogens of QCHQP were not affected by PEF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Magnetic field induced dynamical chaos.

    Science.gov (United States)

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  13. Field Investigation of Surface Deformation Induced by the 2016 Meinong Earthquake and its Implications to Regional Geological Structures

    Science.gov (United States)

    Yi, De-Cheng; Chuang, Ray Y.; Lin, Ching-Weei

    2017-04-01

    We demonstrate mapping results of a newly-identified active folding-associated fault in southwestern Taiwan, which was triggered by the distant ML 6.6 Meinong earthquake in 2016. The 14.6-km-deep main shock occurred in Meinong at 3:57 (GMT +08) on February 6th while a series of 21-27 km deep aftershocks were induced after 160 seconds in Guanmiao, where is 25km NW away from the epicenter of the main shock. The focal mechanism of the Meinong main shock shows a westward oblique thrust with the fault plane of 275°/42°/17° (strike/dip/rake) but Guanmiao aftershocks show the N-S striking eastward normal movement. The study area locates at an on-going fold-and-thrust belt close to the deformation front of Taiwan orogeny with high rates of convergence, uplift and erosion. The geology of SW Taiwan is characterized by the 3-km-thick mudstones with high fluid pressure underlying the loose sedimentary rocks forming mud diapirs or mud-core anticlines. The significance of the Meinong earthquake is (1) aftershocks are far away from the main shock, and (2) the surface cracks partially distributed systematically along lineaments observed from InSAR, which has never been recognized as geological structures before. This study aims to establish possible kinematic processes of shallow deformation induced by the Meinong earthquake. We mapped surface cracks around the lineaments by using hand-held GPS and measured surface cracks by the compass and vernier. Among 249 kinematic data measured from 244 observed surface cracks and ruptures, the type of deformation was mostly identified as dilation or lateral translation and only 4 data were compressional deformation. The overall surface displacement moved to the northwest and west, consistent with the regional coseismic movement. The opening of the surface cracks range from 0.5 to 105 mm and 85% of them are less than 10 mm. Preseismic deformed features such as failure of the retaining wall were also observed along the western and eastern

  14. Electric field dependent structural and vibrational properties of the Si(100)-H(2 x 1) surface and its implications for STM induced hydrogen desorption

    DEFF Research Database (Denmark)

    Stokbro, Kurt

    1999-01-01

    We report a first principles study of the structure and the vibrational properties of the Si(100)-H(2 x 1) surface in an electric field. The calculated vibrational parameters are used to model the vibrational modes in the presence of the electric field corresponding to a realistic scanning...

  15. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  16. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  17. Field enhancement induced laser ablation

    DEFF Research Database (Denmark)

    Fiutowski, Jacek; Maibohm, Christian; Kjelstrup-Hansen, Jakob

    Sub-diffraction spatially resolved, quantitative mapping of strongly localized field intensity enhancement on gold nanostructures via laser ablation of polymer thin films is reported. Illumination using a femtosecond laser scanning microscope excites surface plasmons in the nanostructures....... The accompanying field enhancement substantially lowers the ablation threshold of the polymer film and thus creates local ablation spots and corresponding topographic modifications of the polymer film. Such modifications are quantified straightforwardly via scanning electron and atomic force microscopy. Thickness...

  18. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Martin, James E.; Venturini, Eugene; Odinek, Judy; Anderson, Robert A.

    2000-01-01

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  19. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  20. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  1. Induced superconductivity in Nb/InAs-hybrid structures in parallel and perpendicular magnetic fields; Induzierte Supraleitung in Nb/InAs-Hybridstrukturen in parallelen und senkrechten Magnetfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Franziska

    2007-07-15

    The thesis in hand investigates experimentally Josephson contacts based on Nb/InAs-hybrid structures. The experiments discussed here were done on samples of different width of the Josephson contacts (between 500 nm and 2000 nm). They were realized by means of different methods of the semiconductor technology. The length of the Josephson contacts was about 600 nm and, as superconducting material, niobium was used. Both critical current and characteristics in the resistive regime (excess-current and multiple Andreev reflection) are studied as a function of temperature and external magnetic fields. Measurements in perpendicular and parallel magnetic fields with respect to the plain of the two-dimensional electron gas, are presented. The Andreev reflection amplitude determining the supercurrent is calculated by means of the Greens functions of the two-dimensional electron gas beneath the superconductors which is modified by the proximity effect. From the fit to the data with this model, the transparency of the boundary between the superconductor and the two-dimensional electron gas can be estimated to be about 0.1. The transparency of the point contacts in the two-dimensional electrons gas can be determined independently from the Josephson junction width dependence of the normal resistance (T=10 K). This transparency amounts to about 0.8 in the examined samples. The measurements of the critical current in a magnetic field perpendicular to the two-dimensional electron gas show a Fraunhofer pattern. In order to study the transition from perpendicular orientation into parallel orientation, measurements of the critical current as a function of the magnetic field were done for different angles. In the resistive regime, the excess current measurements in the magnetic field show a very interesting behaviour: In parallel magnetic fields, the excess current becomes zero at about 2.5 T. In perpendicular magnetic field however, the excess current is strongly suppressed below 30 m

  2. Electrically induced magnetic fields; a consistent approach

    Science.gov (United States)

    Batell, Brian; Ferstl, Andrew

    2003-09-01

    Electromagnetic radiation exists because changing magnetic fields induce changing electric fields and vice versa. This fact often appears inconsistent with the way some physics textbooks solve particular problems using Faraday's law. These types of problems often ask students to find the induced electric field given a current that does not vary linearly with time. A typical example involves a long solenoid carrying a sinusoidal current. This problem is usually solved as an example or assigned as a homework exercise. The solution offered by many textbooks uses the approximation that the induced, changing electric field produces a negligible magnetic field, which is only valid at low frequencies. If this approximation is not explicitly acknowledged, then the solution appears inconsistent with the description of electromagnetic radiation. In other cases, when the problem is solved without this approximation, the electric and magnetic fields are derived from the vector potential. We present a detailed calculation of the electric and magnetic fields inside and outside the long solenoid without using the vector potential. We then offer a comparison of our solution and a solution given in an introductory textbook.

  3. Composition dependence of electric-field-induced structure of Bi{sub 1/2}(Na{sub 1−x}K{sub x}){sub 1/2}TiO{sub 3} lead-free piezoelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khansur, Neamul H. [School of Materials Science and Engineering, UNSW Australia, 2052 Sydney (Australia); Department of Materials Science, University of Erlangen-Nürnberg, Erlangen 91058 (Germany); Benton, Rachel [Department of Chemical and Biomolecular Engineering, North Carolina State University, North Carolina 27695 (United States); Dinh, Thi Hinh; Lee, Jae-Shin [School of Materials Science and Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, North Carolina 27695 (United States); Daniels, John E. [School of Materials Science and Engineering, UNSW Australia, 2052 Sydney (Australia)

    2016-06-21

    Microscopic origins of the electric-field-induced strain for three compositions of Bi{sub 1/2}(Na{sub 1−x}K{sub x}){sub 1/2}TiO{sub 3} (x = 0.14, 0.18, and 0.22) (BNKT100x) ceramics have been compared using in situ high-energy (87.12 keV) X-ray diffraction. In the as-processed state, average crystallographic structure of BNKT14 and BNKT18 were found to be of rhombohedral symmetry, while BNKT22 was tetragonal. Diffraction data collected under electric field showed that both the BNKT14 and BNKT18 exhibit induced lattice strain and non-180° ferroelectric domain switching without any apparent phase transformation. The BNKT22 composition, in addition to the lattice strain and domain switching, showed an electric-field-induced transformation from a tetragonal to mixed tetragonal-rhombohedral state. Despite the difference in the origin of microscopic strain responses in these compositions, the measured macroscopic poling strains of 0.46% (BNKT14), 0.43% (BNKT18), and 0.44% (BNKT22) are similar. In addition, the application of a second poling field of opposite polarity to the first increased the magnitude of non-180° ferroelectric domain texture. This was suggested to be related to the existence of an asymmetric internal bias field.

  4. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    International Nuclear Information System (INIS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-01-01

    Highlights: • Zeeman effect shifts superconducting gaps of sub-band system, towards pair-breaking. • Higher-level sub-bands become normal-state-like electronic states by magnetic fields. • Magnetic field dependence of zero-energy DOS reflects multi-gap superconductivity. - Abstract: We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  5. Considerations on field problem structure

    International Nuclear Information System (INIS)

    Pavelescu, M.

    1977-01-01

    A survey of the three field problem types known today: equilibrium, eigen value and propagation problems is presented. The place occupied by neutron field in the nuclear reactor systems both statics and dynamics is shown. The special class of approximate solution method concerning the solving of field and boundary equations is analysed. The residual and variational method and the finite element method which presents a special interest are examined as well. (author)

  6. Coulomb blockade induced by magnetic field

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-01-01

    In this paper, the authors found that a Coulomb blockade can be induced by magnetic field. The authors illustrated this effect on the example of a ring consisting of two and many Josephson junctions. For the ring with two junctions we present an exact solution. The transition into Coulomb blockade state on a ring transforms into a linear array of Josephson junctions, although in latter case the effect of magnetic field disappears. In the state of Coulomb blockade the magnetization may be both diamagnetic and paramagnetic. The Coulomb blockade may also be removed by external magnetic field

  7. Induced forces in the gravitational field

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    In this paper the expression for the magnitude of the so-called induced force, acting on a mass particle, is deduced. The origin of this force is causally connected to the increase of the rest mass of the particle in the gravitational field. (orig.)

  8. Magnetic field aberration induced by cycle stress

    International Nuclear Information System (INIS)

    Yang En; Li Luming; Chen Xing

    2007-01-01

    Magneto-mechanical effect has been causing people's growing interest because of its relevance to several technology problems. One of them is the variation of surface magnetic field induced by stress concentration under the geomagnetic field. It can be used as an innovative, simple and convenient potential NDE method, called as magnetic memory method. However, whether and how this can be used as a quantitative measurement method, is still a virginal research field where nobody sets foot in. In this paper, circle tensile stress within the elastic region was applied to ferromagnetic sample under geomagnetic field. Experiment results on the relation between surface magnetic field and elastic stress were presented, and a simple model was derived. Simulation of the model was reconciled with the experimental results. This can be of great importance for it provides a brighter future for the promising Magnetic Memory NDE method-the potential possibility of quantitative measurement

  9. Structural and biochemical changes induced by pulsed electric field treatments on Cabernet Sauvignon grape berry skins: impact on cell wall total tannins and polysaccharides.

    Science.gov (United States)

    Cholet, Céline; Delsart, Cristèle; Petrel, Mélina; Gontier, Etienne; Grimi, Nabil; L'hyvernay, Annie; Ghidossi, Remy; Vorobiev, Eugène; Mietton-Peuchot, Martine; Gény, Laurence

    2014-04-02

    Pulsed electric field (PEF) treatment is an emerging technology that is arousing increasing interest in vinification processes for its ability to enhance polyphenol extraction performance. The aim of this study was to investigate the effects of PEF treatment on grape skin histocytological structures and on the organization of skin cell wall polysaccharides and tannins, which, until now, have been little investigated. This study relates to the effects of two PEF treatments on harvested Cabernet Sauvignon berries: PEF1 (medium strength (4 kV/cm); short duration (1 ms)) and PEF2 (low intensity (0.7 kV/cm); longer duration (200 ms)). Histocytological observations and the study of levels of polysaccharidic fractions and total amounts of tannins allowed differentiation between the two treatments. Whereas PEF1 had little effect on the polyphenol structure and pectic fraction, PEF2 profoundly modified the organization of skin cell walls. Depending on the PEF parameters, cell wall structure was differently affected, providing variable performance in terms of polyphenol extraction and wine quality.

  10. Magnetostriction of field-structured magnetoelastomers.

    Energy Technology Data Exchange (ETDEWEB)

    Gulley, Gerald L. (Dominican University, River Forest, IL); Read, Douglas H.; Martin, James Ellis; Huber, Dale L.; Anderson, Robert Alan; Frankamp, Benjamin L.

    2005-12-01

    Field-structured magnetic particle composites are an important new class of materials that have great potential as both sensors and actuators. These materials are synthesized by suspending magnetic particles in a polymeric resin and subjecting these to magnetic fields while the resin polymerizes. If a simple uniaxial magnetic field is used, the particles will form chains, yielding composites whose magnetic susceptibility is enhanced along a single direction. A biaxial magnetic field, comprised of two orthogonal ac fields, forms particle sheets, yielding composites whose magnetic susceptibility is enhanced along two principal directions. A balanced triaxial magnetic field can be used to enhance the susceptibility in all directions, and biased heterodyned triaxial magnetic fields are especially effective for producing composites with a greatly enhanced susceptibility along a single axis. Magnetostriction is quadratic in the susceptibility, so increasing the composite susceptibility is important to developing actuators that function well at modest fields. To investigate magnetostriction in these field-structured composites we have constructed a sensitive, constant-stress apparatus capable of 1 ppm strain resolution. The sample geometry is designed to minimize demagnetizing field effects. With this apparatus we have demonstrated field-structured composites with nearly 10,000 ppm strain.

  11. Field emission from finite barrier quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Biswas Sett, Shubhasree, E-mail: shubhasree24@gmail.com [The Institution of Engineers - India, 8, Gokhale Road, Kolkata 700 020 (India); Bose, Chayanika, E-mail: chayanikab@ieee.org [Electronics and Telecommunication Engg. Dept., Jadavpur University, Kolkata 700 032 (India)

    2014-10-01

    We study field emission from various finite barrier quasi-low dimensional structures, taking image force into account. To proceed, we first formulate an expression for field emission current density from a quantum dot. Transverse dimensions of the dot are then increased in turn, to obtain current densities respectively from quantum wire and quantum well with infinite potential energy barriers. To find out field emission from finite barrier structures, the above analysis is followed with a correction in the energy eigen values. In course, variations of field emission current density with strength of the applied electric field and structure dimensions are computed considering n-GaAs and n-GaAs/Al{sub x}Ga{sub 1−x}As as the semiconductor materials. In each case, the current density is found to increase exponentially with the applied field, while it oscillates with structure dimensions. The magnitude of the emission current is less when the image force is not considered, but retains the similar field dependence. In all cases, the field emission from infinite barrier structures exceeds those from respective finite barrier ones.

  12. Surface modifications by field induced diffusion.

    Directory of Open Access Journals (Sweden)

    Martin Olsen

    Full Text Available By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages.

  13. Field-induced stacking transition of biofunctionalized trilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Masato Nakano, C. [Flintridge Preparatory School, La Canada, California 91011 (United States); Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao [Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, Texas 77710 (United States)

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  14. Fluxon induced resistance and field emission

    CERN Document Server

    Calatroni, Sergio; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2000-01-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, precursor of electron emission, is observed here for the first time in a study using radiofrequency cavities operated at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect.

  15. Ultraviolet light induced refractive index structures in germanosilica

    DEFF Research Database (Denmark)

    Svalgaard, Mikael

    1997-01-01

    The focus of the research presented in this ph.d. thesis is refractive index structures photoinduced in germanonsilica waveguides with ultra-violet (UV) radiation. The physical mechanisms involved in photosensitivity and applications of a wide range of UV induced refractive index structures in both...... application of a scanning near-field optical microscope to obtain high resolution images of UV induced refractive index structures and by monitoring the dynamics of UV induced index changes and luminescence. During part of my ph.d. project I have worked at the National Institute of Standards and Technolgy...

  16. Field distribution analysis in deflecting structures

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V.V. [Joint Inst. for Nuclear Research, Moscow (Russian Federation)

    2013-02-15

    Deflecting structures are used now manly for bunch rotation in emittance exchange concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a transformation of a particles distribution in the six dimensional phase space. Together with the expected transformations, deflecting structures introduce distortions due to particularities - aberrations - in the deflecting field distribution. The distributions of deflecting fields are considered with respect to non linear additions, which provide emittance deteriorations during a transformation. The deflecting field is treated as combination of hybrid waves HE{sub 1} and HM{sub 1}. The criteria for selection and formation of deflecting structures with minimized level of aberrations are formulated and applied to known structures. Results of the study are confirmed by comparison with results of numerical simulations.

  17. Field distribution analysis in deflecting structures

    International Nuclear Information System (INIS)

    Paramonov, V.V.

    2013-02-01

    Deflecting structures are used now manly for bunch rotation in emittance exchange concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a transformation of a particles distribution in the six dimensional phase space. Together with the expected transformations, deflecting structures introduce distortions due to particularities - aberrations - in the deflecting field distribution. The distributions of deflecting fields are considered with respect to non linear additions, which provide emittance deteriorations during a transformation. The deflecting field is treated as combination of hybrid waves HE 1 and HM 1 . The criteria for selection and formation of deflecting structures with minimized level of aberrations are formulated and applied to known structures. Results of the study are confirmed by comparison with results of numerical simulations.

  18. Light-induced gauge fields for ultracold atoms

    Science.gov (United States)

    Goldman, N.; Juzeliūnas, G.; Öhberg, P.; Spielman, I. B.

    2014-12-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms.

  19. Light-induced gauge fields for ultracold atoms

    International Nuclear Information System (INIS)

    Goldman, N; Juzeliūnas, G; Öhberg, P; Spielman, I B

    2014-01-01

    Gauge fields are central in our modern understanding of physics at all scales. At the highest energy scales known, the microscopic universe is governed by particles interacting with each other through the exchange of gauge bosons. At the largest length scales, our Universe is ruled by gravity, whose gauge structure suggests the existence of a particle—the graviton—that mediates the gravitational force. At the mesoscopic scale, solid-state systems are subjected to gauge fields of different nature: materials can be immersed in external electromagnetic fields, but they can also feature emerging gauge fields in their low-energy description. In this review, we focus on another kind of gauge field: those engineered in systems of ultracold neutral atoms. In these setups, atoms are suitably coupled to laser fields that generate effective gauge potentials in their description. Neutral atoms ‘feeling’ laser-induced gauge potentials can potentially mimic the behavior of an electron gas subjected to a magnetic field, but also, the interaction of elementary particles with non-Abelian gauge fields. Here, we review different realized and proposed techniques for creating gauge potentials—both Abelian and non-Abelian—in atomic systems and discuss their implication in the context of quantum simulation. While most of these setups concern the realization of background and classical gauge potentials, we conclude with more exotic proposals where these synthetic fields might be made dynamical, in view of simulating interacting gauge theories with cold atoms. (review article)

  20. The induced electric field distribution in the solar atmosphere

    International Nuclear Information System (INIS)

    Chen Rong; Yang Zhi-Liang; Deng Yuan-Yong

    2013-01-01

    A method of calculating the induced electric field is presented. The induced electric field in the solar atmosphere is derived by the time variation of the magnetic field when the accumulation of charged particles is neglected. In order to derive the spatial distribution of the magnetic field, several extrapolation methods are introduced. With observational data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory taken on 2010 May 20, we extrapolate the magnetic field from the photosphere to the upper atmosphere. By calculating the time variation of the magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 10 2 V cm −1 and the average electric field has a maximum point at the layer 360 km above the photosphere. The Monte Carlo method is used to compute the triple integration of the induced electric field.

  1. Gauge field vacuum structure in geometrical aspect

    International Nuclear Information System (INIS)

    Konopleva, N.P.

    2003-01-01

    Vacuum conception is one of the main conceptions of quantum field theory. Its meaning in classical field theory is also very profound. In this case the vacuum conception is closely connected with ideas of the space-time geometry. The global and local geometrical space-time conceptions lead to different vacuum definitions and therefore to different ways of physical theory construction. Some aspects of the gauge field vacuum structure are analyzed. It is shown that in the gauge field theory the vacuum Einstein equation solutions describe the relativistic vacuum as common vacuum of all gauge fields and its sources. Instantons (both usual and hyperbolical) are regarded as nongravitating matter, because they have zero energy-momentum tensors and correspond to vacuum Einstein equations

  2. Jovian cloud structure and velocity fields

    International Nuclear Information System (INIS)

    Mitchell, J.L.; Terrile, R.J.; Collins, S.A.; Smith, B.A.; Muller, J.P.; Ingersoll, A.P.; Hunt, G.E.; Beebe, R.F.

    1979-01-01

    A regional comparison of the cloud structures and velocity fields (meridional as well as zonal velocities) in the jovian atmosphere (scales > 200 km) as observed by the Voyager 1 imaging system is given. It is shown that although both hemispheres of Jupiter show similar patterns of diminishing and alternating eastward and westward jets as one progresses polewards, there is a pronounced asymmetry in the structural appearance of the two hemispheres. (UK)

  3. Shapes of isolated domains and field induced evolution of regular and random 2D domain structures in LiNbO3 and LiTaO3

    International Nuclear Information System (INIS)

    Chernykh, A.; Shur, V.; Nikolaeva, E.; Shishkin, E.; Shur, A.; Terabe, K.; Kurimura, S.; Kitamura, K.; Gallo, K.

    2005-01-01

    The variety of the shapes of isolated domains, revealed in congruent and stoichiometric LiTaO 3 and LiNbO 3 by chemical etching and visualized by optical and scanning probe microscopy, was obtained by computer simulation. The kinetic nature of the domain shape was clearly demonstrated. The kinetics of domain structure with the dominance of the growth of the steps formed at the domain walls as a result of domain merging was investigated experimentally in slightly distorted artificial regular two-dimensional (2D) hexagonal domain structure and random natural one. The artificial structure has been realized in congruent LiNbO 3 by 2D electrode pattern produced by photolithography. The polarization reversal in congruent LiTaO 3 was investigated as an example of natural domain growth limited by merging. The switching process defined by domain merging was studied by computer simulation. The crucial dependence of the switching kinetics on the nuclei concentration has been revealed

  4. Simulation study of dynamo structure in reversed field pinch

    International Nuclear Information System (INIS)

    Nagata, A.; Sato, K.I.; Ashida, H.; Amano, T.

    1992-10-01

    The dynamo structure in the reversed field pinch (RFP) is studied through the nonlinear dynamics of single-helicity mode. Simulation is concentrated upon the physical structure of nonlinear interactions of the plasma flow and magnetic fluctuation. The result indicates that when the initial equilibrium profile is deformed by resistive diffusion, the radial flow is driven near the core of the plasma. As this flow forms a vortex structure and magnetic fluctuation grows radially, the dynamo electric field is spirally induced just inside the reversal surface and then the toroidal flux is increased. This dynamo electric field correlates to nonlinear evolution of the kinetic energy of m=1 mode, and the increase of the toroidal flux is originated in the growth process of the magnetic energy of this mode. Consequently, the RFP configuration can be sustained by the single-helicity evolution of m=1 mode alone, and the electric field induced by the interactions of the toroidal velocity and the radial magnetic field is the most dominant source on the dynamo action. (author)

  5. Temperature dependency of silicon structures for magnetic field gradient sensing

    Science.gov (United States)

    Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz

    2018-02-01

    This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.

  6. Field-induced transitions in DySb

    International Nuclear Information System (INIS)

    Brun, T.O.; Lander, G.H.; Korty, F.W.; Kouvel, J.S.

    1974-01-01

    The NaCl-structured compound DySb, which in zero field transforms abruptly at T/sub N/ approximately 9.5 0 K to a Type-II antiferromagnetic (A) state with a nearly tetragonal lattice distortion, was previously found to exhibit rapid field-induced changes in magnetization at 1.5 0 K. The field-induced transitions in a DySb crystal have been studied by neutron diffraction and magnetization measurements in fields up to approximately 60 kOe applied parallel to each of the principal axes. In the broken bracket 100 broken bracket case, the transition from the A to an intermediate ferrimagnetic (Q) state is first-order at 4.2 0 K (critical field H/sub c/ approximately 21 kOe) but is continuous from approximately 6 0 K up to T/sub N/: as H/sub c/ → 0. The Q-to-paramagnetic (P) transition is rapid but continuous at 4.2 0 K (H/sub c/ approximately 40 kOe) and becomes broad as T/sub N/ is approached. In the broken bracket 110 broken bracket case the A-to-Q transition remains essentially first-order from 4.2 0 K (H/sub c/ approximately 15 kOe) up to T/sub N/; above T/sub N/ rapid P-to-Q transitions occur at very high fields. The magnetic structure of the Q state is found to be that of HoP. (U.S.)

  7. Austerity and geometric structure of field theories

    International Nuclear Information System (INIS)

    Kheyfets, A.

    1986-01-01

    The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories

  8. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: charles.moy@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ranzi, Gianluca [ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Petersen, Timothy C. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia)

    2011-05-15

    One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation. -- Research highlights: {yields} We use electrostatic principles and finite element to model field-induced stresses. {yields} We study two-dimensional idealized needle-shaped field emitters. {yields} Stress distribution of hyperbolic, parabolic and sphere-on-orthogonal-cone tips mapped. {yields} Electron tomography to obtain the morphology of three-dimensional aluminium tips. {yields} Studies of the morphology of the porous tip demonstrate a fragile specimen.

  9. Particle versus field structure in conformal quantum field theories

    International Nuclear Information System (INIS)

    Schroer, Bert

    2000-06-01

    I show that a particle structure in conformal field theory is incompatible with interactions. As a substitute one has particle-like excitations whose interpolating fields have in addition to their canonical dimension an anomalous contribution. The spectra of anomalous dimension is given in terms of the Lorentz invariant quadratic invariant (compact mass operator) of a conformal generator R μ with pure discrete spectrum. The perturbative reading of R o as a Hamiltonian in its own right, associated with an action in a functional integral setting naturally leads to the Ad S formulation. The formal service role of Ad S in order to access C QFT by a standard perturbative formalism (without being forced to understand first massive theories and then taking their scale-invariant limit) vastly increases the realm of conventionally accessible 4-dim. C QFT beyond those for which one had to use Lagrangians with supersymmetry in order to have a vanishing Beta-function. (author)

  10. The vector structure of active magnetic fields

    Science.gov (United States)

    Parker, E. N.

    1985-01-01

    Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.

  11. Development of the field of structural physiology

    Science.gov (United States)

    FUJIYOSHI, Yoshinori

    2015-01-01

    Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835

  12. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  13. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  14. COMPASS magnetic field coils and structure systems

    International Nuclear Information System (INIS)

    Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.

    1987-01-01

    COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings

  15. Field-Induced Rheology in Uniaxial and Biaxial Fields

    International Nuclear Information System (INIS)

    MARTIN, JAMES E.

    1999-01-01

    Steady and oscillatory shear 3-D simulations of electro- and magnetorheology in uniaxial and biaxial fields are presented, and compared to the predictions of the chain model. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed in steady shear, and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. In a biaxial field, an opposite trend is seen, where Brownian motion decreases the stress most significantly at higher Mason numbers. to account for the uniaxial steady shear data they propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect. In oscillatory shear, a striped phase again appears in uniaxial field, at strain amplitudes greater than(approx) 0.15, and the presence of a shear slip zone creates strong stress nonlinearities at low strain amplitudes. In a biaxial field, a shear slip zone is not created, and so the stress nonlinearities develop only at expected strain amplitudes. The nonlinear dynamics of these systems is shown to be in good agreement with the Kinetic Chain Model

  16. Resistive field structures for semiconductor devices and uses therof

    Science.gov (United States)

    Marinella, Matthew; DasGupta, Sandeepan; Kaplar, Robert; Baca, Albert G.

    2017-09-12

    The present disclosure relates to resistive field structures that provide improved electric field profiles when used with a semiconductor device. In particular, the resistive field structures provide a uniform electric field profile, thereby enhancing breakdown voltage and improving reliability. In example, the structure is a field cage that is configured to be resistive, in which the potential changes significantly over the distance of the cage. In another example, the structure is a resistive field plate. Using these resistive field structures, the characteristics of the electric field profile can be independently modulated from the physical parameters of the semiconductor device. Additional methods and architectures are described herein.

  17. UV-induced structural changes in chromatin

    International Nuclear Information System (INIS)

    Lang, H.; Zimmer, C.; Vengerov, Yu.Yu.

    1985-01-01

    UV-induced structural alterations of chromatin were studied by means of CD, electron microscopic, and gel electrophoretic measurements. The results indicate that chromatin undergoes serious structural changes after irradiation even at very low fluences. In the low fluence range the structural transitions from the higher ordered chromatin structure to the unfolded state occur without detectable changes in the content of histone H1 and of the core histones. Histone H1 disappears only at fluences above 10 kJ/m 2 . Furthermore, DNA in chromatin is much more sensitive against UV-irradiation and shows a higher degree of strand scission relative to free DNA. While fragmentation in free DNA occurs at fluences above 15 kJ/m 2 , it occurs even at 5.5 kJ/m 2 in the case of chromatin. The biological meaning of the observed UV-induced structural alterations of chromatin is discussed. (author)

  18. Structural alloys for high field superconducting magnets

    International Nuclear Information System (INIS)

    Morris, J.W. Jr.

    1985-08-01

    Research toward structural alloys for use in high field superconducting magnets is international in scope, and has three principal objectives: the selection or development of suitable structural alloys for the magnet support structure, the identification of mechanical phenomena and failure modes that may influence service behavior, and the design of suitable testing procedures to provide engineering design data. This paper reviews recent progress toward the first two of these objectives. The structural alloy needs depend on the magnet design and superconductor type and differ between magnets that use monolithic and those that employ force-cooled or ICCS conductors. In the former case the central requirement is for high strength, high toughness, weldable alloys that are used in thick sections for the magnet case. In the latter case the need is for high strength, high toughness alloys that are used in thin welded sections for the conductor conduit. There is productive current research on both alloy types. The service behavior of these alloys is influenced by mechanical phenomena that are peculiar to the magnet environment, including cryogenic fatigue, magnetic effects, and cryogenic creep. The design of appropriate mechanical tests is complicated by the need for testing at 4 0 K and by rate effects associated with adiabatic heating during the tests. 46 refs

  19. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2014-01-01

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  20. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  1. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  2. Structures of water molecules in carbon nanotubes under electric fields

    International Nuclear Information System (INIS)

    Winarto,; Takaiwa, Daisuke; Yamamoto, Eiji; Yasuoka, Kenji

    2015-01-01

    Carbon nanotubes (CNTs) are promising for water transport through membranes and for use as nano-pumps. The development of CNT-based nanofluidic devices, however, requires a better understanding of the properties of water molecules in CNTs because they can be very different from those in the bulk. Using all-atom molecular dynamics simulations, we investigate the effect of axial electric fields on the structure of water molecules in CNTs having diameters ranging from (7,7) to (10,10). The water dipole moments were aligned parallel to the electric field, which increases the density of water inside the CNTs and forms ordered ice-like structures. The electric field induces the transition from liquid to ice nanotubes in a wide range of CNT diameters. Moreover, we found an increase in the lifetime of hydrogen bonds for water structures in the CNTs. Fast librational motion breaks some hydrogen bonds, but the molecular pairs do not separate and the hydrogen bonds reform. Thus, hydrogen bonds maintain the water structure in the CNTs, and the water molecules move collectively, decreasing the axial diffusion coefficient and permeation rate

  3. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  4. Structural Design Optimization On Thermally Induced Vibration

    International Nuclear Information System (INIS)

    Gu, Yuanxian; Chen, Biaosong; Zhang, Hongwu; Zhao, Guozhong

    2002-01-01

    The numerical method of design optimization for structural thermally induced vibration is originally studied in this paper and implemented in application software JIFEX. The direct and adjoint methods of sensitivity analysis for thermal induced vibration coupled with both linear and nonlinear transient heat conduction is firstly proposed. Based on the finite element method, the structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat structural linear dynamics is treated simultaneously with coupled linear and nonlinear transient heat conduction. In the thermal analysis model, the nonlinear heat conduction considered is result from the radiation and temperature-dependent materials. The sensitivity analysis of transient linear and nonlinear heat conduction is performed with the precise time integration method. And then, the sensitivity analysis of structural transient dynamics is performed by the Newmark method. Both the direct method and the adjoint method are employed to derive the sensitivity equations of thermal vibration, and there are two adjoint vectors of structure and heat conduction respectively. The coupling effect of heat conduction on thermal vibration in the sensitivity analysis is particularly investigated. With coupling sensitivity analysis, the optimization model is constructed and solved by the sequential linear programming or sequential quadratic programming algorithm. The methods proposed have been implemented in the application software JIFEX of structural design optimization, and numerical examples are given to illustrate the methods and usage of structural design optimization on thermally induced vibration

  5. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  6. Method of using triaxial magnetic fields for making particle structures

    Science.gov (United States)

    Martin, James E.; Anderson, Robert A.; Williamson, Rodney L.

    2005-01-18

    A method of producing three-dimensional particle structures with enhanced magnetic susceptibility in three dimensions by applying a triaxial energetic field to a magnetic particle suspension and subsequently stabilizing said particle structure. Combinations of direct current and alternating current fields in three dimensions produce particle gel structures, honeycomb structures, and foam-like structures.

  7. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days later, arterial rings were set up for isometric tension ...

  8. Modulational instability for an induced field in the far-wake region of a space vehicle

    International Nuclear Information System (INIS)

    Liao Jingjing; Deng Qian; Qu Wen

    2012-01-01

    The behavior of the induced field and the generation of density cavitons in the far-wake region (|k 0 | → 0) of a space vehicle can be described by a set of nonlinear coupling equations. Modulational instability of the induced field is investigated on the basis of the nonlinear equations. The results show that the induced field is modulationally unstable and will collapse into spatial localized structures; meanwhile, density cavitons will be generated. The characteristic scale and the maximum growth rate of the induced field depend not only on the angle between the amplitude of pump waves E 0 and the perturbation wave vector k, but also on the energy density of pump waves |E 0 | 2 . (paper)

  9. Flow-Induced Vibration of Circular Cylindrical Structures

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shoei-Sheng [Argonne National Lab. (ANL), Argonne, IL (United States). Components Technology Division

    1985-06-01

    Flow-induced vibration is a term to denote those phenomena associated with the response of structures placed in or conveying fluid flow. More specifically, the terra covers those cases in which an interaction develops between fluid-dynamic forces and the inertia, damping or elastic forces in the structures. The study of these phenomena draws on three disciplines: (1) structural mechanics, (2) mechanical vibration, and (3) fluid dynamics. The vibration of circular cylinders subject to flow has been known to man since ancient times; the vibration of a wire at its natural frequency in response to vortex shedding was known in ancient Greece as aeolian tones. But systematic studies of the problem were not made until a century ago when Strouhal established the relationship between vortex shedding frequency and flow velocity for a given cylinder diameter. The early research in this area has beer summarized by Zdravkovich (1985) and Goldstein (1965). Flow-induced structural vibration has been experienced in numerous fields, including the aerospace industry, power generation/transmission (turbine blades, heat exchanger tubes, nuclear reactor components), civil engineering (bridges, building, smoke stacks), and undersea technology. The problems have usually been encountered or created accidentally through improper design. In most cases, a structural or mechanical component, designed to meet specific objectives, develops problems when the undesired effects of flow field have not been accounted for in the design. When a flow-induced vibration problem is noted in the design stage, the engineer has different options to eliminate the detrimental vibration. Unfortunately, in many situations, the problems occur after the components are already in operation; the "fix" usually is very costly. Flow-induced vibration comprises complex and diverse phenomena; subcritical vibration of nuclear fuel assemblies, galloping of transmission lines, flutter of pipes conveying fluid, and whirling

  10. Theory of field induced incommensurability: CsFeCl3

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1986-01-01

    Using correlation theory for the singlet-doublet magnet CsFeCl3 in a magnetic field, a field induced incommensurate ordering along K-M is predicted without invoking dipolar effects. A fully self-consistent RPA theory gives Hc=44 kG in agreement with experiments at T=1.3K. Correlation and dipolar...

  11. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  12. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    Science.gov (United States)

    Vaidya, S. J.; Sharma, D. K.; Shaikh, A. M.; Chandorkar, A. N.

    2002-09-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co 60 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radiation performance of pyrogenic field oxides with respect to positive charge build up as well as interface state generation. Pyrogenic oxide nitrided in N 2O is found to be the best oxynitride as damage due to neutrons is the least.

  13. Electromagnetically induced transparency with quantized fields in optocavity mechanics

    International Nuclear Information System (INIS)

    Huang Sumei; Agarwal, G. S.

    2011-01-01

    We report electromagnetically induced transparency (EIT) using quantized fields in optomechanical systems. The weak probe field is a narrowband squeezed field. We present a homodyne detection of EIT in the output quantum field. We find that the EIT dip exists even though the photon number in the squeezed vacuum is at the single-photon level. The EIT with quantized fields can be seen even at temperatures on the order of 100 mK, thus paving the way for using optomechanical systems as memory elements.

  14. Imaging of artificially induced vortex structures

    International Nuclear Information System (INIS)

    Fasano, Yanina; Menghini, M.; Cruz, F. de la

    2004-01-01

    The combination of engineered pinning potentials in superconducting crystals, the detection of the liquid-solid vortex transition and the observation of the vortex structure with single vortex sensitivity allow the microscopic analysis of the response of 3D elastic systems to the presence of these potentials. In this work we review recent results obtained by a combination of those techniques studying different vortex structure induced transformations. On the one hand, we have visualized the transformation, along the vortex direction, of a bulk vortex single crystal with hexagonal symmetry into another crystal with square symmetry induced by an engineered Fe-dot lattice deposited on a surface of the vortex single crystal. On the other hand, we found an infrequent first-order phase transition where a vortex liquid under the presence of a random correlated potential (columnar defects) transforms into a vortex solid with no change of topological order

  15. A Study of Thermocurrent Induced Magnetic Fields in ILC Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Anthony C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, Victoria [Univ. of Wisconsin, Madison, WI (United States)

    2014-03-31

    The case of axisymmetric ILC-type cavities with titanium helium vessels is investigated. A first-order estimate for magnetic field within the SRF current layer is presented. The induced magnetic field is found to be not more than 1.4x10-8 Tesla = 0.14 milligauss for the case of axial symmetry. Magnetic fields due to symmetry breaking effects are discussed.

  16. Radiation-induced structural changes, (2)

    International Nuclear Information System (INIS)

    Ogasawara, M.; Matsuyama, T.

    1992-11-01

    This seminar is aimed at understanding both the physical and chemical aspects of the structural changes of materials induced by photons or ionizing radiation. The seminar was held on December 19th, 1991 and from February 13 to 14th, 1992 in this institute. The most active areas of the material science, in addition to the previous subjects, such as organic superconductors, silicon-based polymers, and fullerenes were included in this seminar. (J.P.N.)

  17. Vacuum magnetic field structure of compact torii

    International Nuclear Information System (INIS)

    Sobehart, J.R.

    1990-01-01

    A new class of axisymmetric vacuum field solutions of the Grad--Shafranov equation, which is suitable for describing the field external to a compact torus equilibrium, is presented. In particular, solutions that match straight field lines at infinity are studied

  18. Electric-field Induced Microdynamics of Charged Rods

    Directory of Open Access Journals (Sweden)

    Kyongok eKang

    2014-12-01

    Full Text Available Electric-field induced phase/state transitions are observed in AC electric fields with small amplitudes and low frequencies in suspensions of charged fibrous viruses (fd, which are model systems for highly charged rod-like colloids. Texture- and particle-dynamics in these field-induced states, and on crossing transition lines, are explored by image time-correlation and dynamic light scattering, respectively. At relatively low frequencies, starting from a system within the isotropic-nematic coexistence region, a transition from a nematic to a chiral nematic is observed, as well as a dynamical state where nematic domains melt and reform. These transitions are preliminary due to field-induced dissociation/association of condensed ions. At higher frequencies a uniform state is formed that is stabilized by hydrodynamic interactions through field-induced electro-osmotic flow where the rods align along the field direction. There is a point in the field-amplitude versus frequency plane where various transition lines meet. This point can be identified as a non-equilibrium critical point, in the sense that a length scale and a time scale diverge on approach of that point. The microscopic dynamics exhibits discontinuities on crossing transition lines that were identified independently by means of image and signal correlation spectroscopy.

  19. Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study

    International Nuclear Information System (INIS)

    Chen, C.-W.; Lee, M.-H.; Clark, S.J.

    2004-01-01

    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/A. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field

  20. Flow-induced structure in colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Vermant, J [Department of Chemical Engineering, K U Leuven, W de Croylaan 46, B-3001 Leuven (Belgium); Solomon, M J [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2005-02-02

    We review the sequences of structural states that can be induced in colloidal suspensions by the application of flow. Structure formation during flow is strongly affected by the delicate balance among interparticle forces, Brownian motion and hydrodynamic interactions. The resulting non-equilibrium microstructure is in turn a principal determinant of the suspension rheology. Colloidal suspensions with near hard-sphere interactions develop an anisotropic, amorphous structure at low dimensionless shear rates. At high rates, clustering due to strong hydrodynamic forces leads to shear thickening rheology. Application of steady-shear flow to suspensions with repulsive interactions induces a rich sequence of transitions to one-, two-and three-dimensional order. Oscillatory-shear flow generates metastable ordering in suspensions with equilibrium liquid structure. On the other hand, short-range attractive interactions can lead to a fluid-to-gel transition under quiescent suspensions. Application of flow leads to orientation, breakup, densification and spatial reorganization of aggregates. Using a non-Newtonian suspending medium leads to additional possibilities for organization. We examine the extent to which theory and simulation have yielded mechanistic understanding of the microstructural transitions that have been observed. (topical review)

  1. Investigations on magnetic field induced optical transparency in magnetic nanofluids

    Science.gov (United States)

    Mohapatra, Dillip Kumar; Philip, John

    2018-02-01

    We study the magnetic field induced optical transparency and its origin in magnetic nanoemulsion of droplets of average size ∼200 nm containing superparamagnetic iron oxide nanoparticles. Beyond a certain volume fraction (Φ > 0.0021) of magnetic nanoemulsion and a critical magnetic field (Hc1), the transmitted light intensity increases drastically and reaches a maximum at another critical magnetic field (Hc2), beyond which the transmitted light intensity decreases and reaches a plateau. Interestingly, the transmitted light intensity at Hc2 is found to increase linearly with Φ and the critical magnetic fields Hc1 and Hc2 follow power law decay with Φ (i.e. Hc ∼ Φ-x), with exponents 0.48 and 0.27, respectively. The light intensity recovers to its initial value when the magnetic field is switched off, indicating the perfect reversibility of the field induced transparency process. The observed straight line scattered patterns above Hc2, on a screen placed perpendicular to the incident beam, confirms the formation of rod like anisotropic nanostructures perpendicular to the direction of light propagation. The magneto-optical measurements in the emulsion confirm that the observed field induced transparency in magnetic emulsions for Φ > 0.0021 is due to the optical birefringence caused by the rod like nanostructures. The reduced birefringence is found to be proportional to the square of the applied magnetic field. This finding offers several possibilities in using magnetic nanofluids in tunable optical devices.

  2. Electric field with bipolar structure during magnetic reconnection without a guide field

    Science.gov (United States)

    Guo, Jun

    2014-05-01

    We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron's time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.

  3. Electric field induced instabilities in free emulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Tchoukov, P.; Dabros, T. [Natural Resources Canada, Devon, AB (Canada); Mostowfi, F. [Schlumberger DBR Technology Center, Edmonton, AB (Canada); Panchev, N. [Champion Technologies Inc., Houston, TX (United States); Czarnecki, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2009-07-01

    This presentation reported on a study that investigated the mechanism of electric field-induced breakdown of free emulsion films. Instability patterns were observed on the plane of a water-oil-water film following electric polarization. The length-scales of the instabilities were measured by analyzing images immediately after applying the electric field. Linear stability analysis was used to calculate the theoretical dominant wavelengths. The calculated values were found to be in good agreement with measured values. The films were formed in a thin film apparatus modified so that the oil film separated 2 aqueous phase compartments, each in contact with a platinum electrode. This enabled the measurement of disjoining pressure while applying the electric field to the film. It was concluded that breakdown of thin films induced by electric field has many applications, including electrostatic de-emulsification/desalination of crude oil and emulsion stability measurements. It was concluded that electroporation and dielectric breakdown may be responsible for electric field-induced breakdown. This study also presented evidence of an increase in electric field-induced instabilities in emulsion films resulting in rupture. tabs., figs.

  4. Molecular structure and motion in zero field magnetic resonance

    International Nuclear Information System (INIS)

    Jarvie, T.P.

    1989-10-01

    Zero field magnetic resonance is well suited for the determination of molecular structure and the study of motion in disordered materials. Experiments performed in zero applied magnetic field avoid the anisotropic broadening in high field nuclear magnetic resonance (NMR) experiments. As a result, molecular structure and subtle effects of motion are more readily observed

  5. Hubble induced mass after inflation in spectator field models

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Tomohiro [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Harigaya, Keisuke, E-mail: tomofuji@stanford.edu, E-mail: keisukeh@icrr.u-tokyo.ac.jp [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-12-01

    Spectator field models such as the curvaton scenario and the modulated reheating are attractive scenarios for the generation of the cosmic curvature perturbation, as the constraints on inflation models are relaxed. In this paper, we discuss the effect of Hubble induced masses on the dynamics of spectator fields after inflation. We pay particular attention to the Hubble induced mass by the kinetic energy of an oscillating inflaton, which is generically unsuppressed but often overlooked. In the curvaton scenario, the Hubble induced mass relaxes the constraint on the property of the inflaton and the curvaton, such as the reheating temperature and the inflation scale. We comment on the implication of our discussion for baryogenesis in the curvaton scenario. In the modulated reheating, the predictions of models e.g. the non-gaussianity can be considerably altered. Furthermore, we propose a new model of the modulated reheating utilizing the Hubble induced mass which realizes a wide range of the local non-gaussianity parameter.

  6. Conformal transformation and symplectic structure of self-dual fields

    International Nuclear Information System (INIS)

    Yang Kongqing; Luo Yan

    1996-01-01

    Considered two dimensional self-dual fields, the symplectic structure on the space of solutions is given. It is shown that this structure is Poincare invariant. The Lagrangian of two dimensional self-dual field is invariant under infinite one component conformal group, then this symplectic structure is also invariant under this conformal group. The conserved currents in geometrical formalism are also obtained

  7. A study on some optical illusions based upon the theory of inducing field.

    Science.gov (United States)

    Ge, Sheng; Saito, Takashi; Wu, Jing-Long; Iramina, K

    2006-01-01

    The study of optical illusion is an important method to elucidate the mechanism of visual perception. However, many details about the cause of optical illusions are still unclear. In this research, based on the characteristic of the physiological structure of the retina, we proposed an on-center receptive field model of the retina. Using this model, we simulated the distributions of the inducing field of some visual stimulus. Comparing to the past studies' results, the validity of the proposed model was proofed. Furthermore, we simulated the distributions of the inducing field of some typical illusions. The simulation results can explain these illusion phenomenon rationally. Therefore, it suggested that some of illusions are probably engendered by the distributions of the inducing field in the retina which generated by the illusions stimuli. The practicality of the proposed model was also verified.

  8. Inducing Lift on Spherical Particles by Traveling Magnetic Fields

    Science.gov (United States)

    Mazuruk, Konstantin; Grugel, Richard N.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity induced sedimentation of suspensions is a serious drawback to many materials and biotechnology processes, a factor that can, in principle, be overcome by utilizing an opposing Lorentz body force. In this work we demonstrate the utility of employing a traveling magnetic field (TMF) to induce a lifting force on particles dispersed in the fluid. Theoretically, a model has been developed to ascertain the net force, induced by TMF, acting on a spherical body as a function of the fluid medium's electrical conductivity and other parameters. Experimentally, the model is compared to optical observations of particle motion in the presence of TMF.

  9. Field-induced resistance switching at metal/perovskite manganese oxide interface

    International Nuclear Information System (INIS)

    Ohkubo, I.; Tsubouchi, K.; Harada, T.; Kumigashira, H.; Itaka, K.; Matsumoto, Y.; Ohnishi, T.; Lippmaa, M.; Koinuma, H.; Oshima, M.

    2008-01-01

    Planar type metal/insulator/metal structures composed of an epitaxial perovskite manganese oxide layer and various metal electrodes were prepared for electric-field-induced resistance switching. Only the electrode pairs including Al show good resistance switching and the switching ratio reaches its maximum of 1000. This resistance switching occurs around the interface between Al electrodes and epitaxial perovskite manganese oxide thin films

  10. Mean field approach to nuclear structure

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Tennessee Univ., Knoxville, TN

    1993-01-01

    Several examples of mean-field calculations, relevant to the recent and planned low-spin experimental works, are presented. The perspectives for future studies (mainly related to spectroscopy of exotic nuclei) are reviewd

  11. Induced magnetic-field effects in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Cohen, R.H.; Rognlien, T.D.

    1995-01-01

    In inductive plasma sources, the rapid spatial decay of the electric field arising from the skin effect produces a large radio frequency (RF) magnetic field via Faraday's law. We previously determined that this magnetic field leads to a reduction of the electron density in the skin region, as well as a reduction in the collisionless heating rate. The electron deficit leads to the formation of an electrostatic potential which pulls electrons in to restore quasineutrality. Here we calculate the electron density including both the induced and electrostatic fields. If the wave frequency is not too low, the ions respond only to the averaged fields, and hence the electrostatic field is oscillatory, predominantly at the second harmonic of the applied field. We calculate the potential required to establish a constant electron density, and compare with numerical orbit-code calculations. For times short compared to ion transit times, the quasineutral density is just the initial ion density. For timescales long enough that the ions can relax, the density profile can be found from the solution of fluid equations with an effective (ponderomotive-like) potential added. Although the time-varying electrostatic potential is an extra source of heating, the net effect of the induced magnetic and electrostatic fields through trapping, early turning, and direct heating is a significant reduction in collisionless heating for parameters of interest

  12. High Frequency Electromagnetic Field Induces Lipocalin 2 Expression in

    Directory of Open Access Journals (Sweden)

    Amaneh Mohammadi Roushandeh

    2010-06-01

    Full Text Available Objective(sNeutrophil gelatinase-associated lipocalin (NGAL/Lcn2, comprise a group of small extracellular proteins with a common β-sheet-dominated 3-dimensional structure. In the past, it was assumed that the predominant role of lipocalin was acting as transport proteins. Recently it has been found that oxidative stress induces Lcn2 expression. It has been also proved that electromagnetic field (EMF produces reactive oxygen species (ROS in different tissues. Expression of Lcn2 following exposure to electromagnetic field has been investigated in this study. Materials and MethodsBalb/c mice (8 weeks old were exposed to 3 mT, 50 HZ EMF for 2 months, 4 hr/day. Afterwards, the mice were sacrificed by cervical dislocation and livers were removed. The liver specimens were stained with Haematoxylin- Eosin (H&E and analyzed under an optical microscope. Total RNA was extracted from liver and reverse transcription was performed by SuperScript III reverse transcriptase with 1 µg of total RNA. Assessment of Lcn2 expression was performed by semiquantitative and real time- PCR.ResultsThe light microscopic studies revealed that the number of lymphocyte cells was increased compared to control and dilation of sinosoids was observed in the liver. Lcn2 was up-regulated in the mice exposed to EMF both in mRNA and protein levels.ConclusionTo the extent of our knowledge, this is the first report dealing with up-regulation of Lcn2 in liver after exposure to EMF. The up-regulation might be a compensatory response that involves cell defense pathways and protective effects against ROS. However, further and complementary studies are required in this regards.

  13. Mapping and correcting respiration-induced field changes in the brain using fluorine field probes

    DEFF Research Database (Denmark)

    Andersen, Mads; Madsen, Kristoffer; Hanson, Lars G.

    2014-01-01

    strength values from signal phase by linear fitting. Ahead of imaging, the field probe positions were determined for each subject, by applying known gradients in all three dimensions while measuring with the field probes. Experiments: Measurements were performed in 4 male subjects instructed to hold...... software was updated with f0 and first order shim values, before the acquisition of every volume. Evaluation: To assess whether the dynamic field changes were captured by the field probe data, the field probe fitted fields were subtracted from the scanner B0 maps to model shimming. We then assessed whether......Purpose. Breathing induced dynamic B0 field perturbations in the head can lead to artefacts in ultra-high field MR by causing line broadening in spectroscopy and signal dropout, ghosting, displacement artifacts and blurring in imaging. It has recently been proposed to continuously stabilize...

  14. Synthesis and characterization of CoFe{sub 2}O{sub 4} magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe{sub 2}O{sub 4} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Antonel, P. Soledad [Universidad de Buenos Aires, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE) (Argentina); Oliveira, Cristiano L. P. [Universidade de São Paulo, Grupo de Fluidos Complexos, Instituto de Física (Brazil); Jorge, Guillermo A. [Universidad Nacional de General Sarmiento, Instituto de Ciencias (Argentina); Perez, Oscar E. [Universidad de Buenos Aires, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales (Argentina); Leyva, A. Gabriela, E-mail: leyva@tandar.cnea.gov.ar [Universidad Nacional de San Martín, Grupo de Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (Argentina); Escuela de Ciencia y Tecnología (Argentina); Negri, R. Martín, E-mail: rmn@qi.fcen.uba.ar [Universidad de Buenos Aires, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE) (Argentina)

    2015-07-15

    Magnetic CoFe{sub 2}O{sub 4} nanotubes, nanorods and nanowires were synthesized by the template method. The materials are highly crystalline and formed by compactly packed ceramic particles whose equivalent size diameter depends on the nanostructure type. Nanotubes and nanorods present the remarkable characteristic of having very large coercive fields (1000–1100 Oe) in comparison with nanoparticles of the same crystallite size (400 Oe) while keeping similar saturation magnetization (53–55 emu/g). Nanorods were used as filler material in polydimethylsiloxane elastomer composites, which were structured by curing in the presence of uniform magnetic field, H{sub curing}. In that way the nanorods agglomerate in the cured elastomer, forming needles-like structures (pseudo-chains) oriented in the direction of H{sub curing}. SEM analysis show that pseudo-chains are formed by bunches of nanorods oriented in that direction. At the considered filler concentration (1 % w/w), the structured elastomers conserve the magnetic properties of the fillers, that is, high coercive fields without observing magnetic anisotropy. The elastomer composites present strong elastic anisotropy, with compression constants about ten times larger in the direction parallel to the pseudo-chains than in the perpendicular direction, as determined by compression stress–strain curves. That anisotropic factor is about three-four times higher than that observed when using spherical CoFe{sub 2}O{sub 4} nanoparticles or elongated Ni nanochains. Hence, the use of morphological anisotropic structures (nanorods) results in composites with enhanced elastic anisotropy. It is also remarkable that the large elastic anisotropy was obtained at lower filler concentration compared with the above-mentioned systems (1 % w/w vs. 5–10 % w/w)

  15. Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods

    International Nuclear Information System (INIS)

    Antonel, P. Soledad; Oliveira, Cristiano L. P.; Jorge, Guillermo A.; Perez, Oscar E.; Leyva, A. Gabriela; Negri, R. Martín

    2015-01-01

    Magnetic CoFe 2 O 4 nanotubes, nanorods and nanowires were synthesized by the template method. The materials are highly crystalline and formed by compactly packed ceramic particles whose equivalent size diameter depends on the nanostructure type. Nanotubes and nanorods present the remarkable characteristic of having very large coercive fields (1000–1100 Oe) in comparison with nanoparticles of the same crystallite size (400 Oe) while keeping similar saturation magnetization (53–55 emu/g). Nanorods were used as filler material in polydimethylsiloxane elastomer composites, which were structured by curing in the presence of uniform magnetic field, H curing . In that way the nanorods agglomerate in the cured elastomer, forming needles-like structures (pseudo-chains) oriented in the direction of H curing . SEM analysis show that pseudo-chains are formed by bunches of nanorods oriented in that direction. At the considered filler concentration (1 % w/w), the structured elastomers conserve the magnetic properties of the fillers, that is, high coercive fields without observing magnetic anisotropy. The elastomer composites present strong elastic anisotropy, with compression constants about ten times larger in the direction parallel to the pseudo-chains than in the perpendicular direction, as determined by compression stress–strain curves. That anisotropic factor is about three-four times higher than that observed when using spherical CoFe 2 O 4 nanoparticles or elongated Ni nanochains. Hence, the use of morphological anisotropic structures (nanorods) results in composites with enhanced elastic anisotropy. It is also remarkable that the large elastic anisotropy was obtained at lower filler concentration compared with the above-mentioned systems (1 % w/w vs. 5–10 % w/w)

  16. Structural design of the superconducting toroidal field coils for ITER

    International Nuclear Information System (INIS)

    Wong, F.M.G.; Sborchia, C.; Thome, R.J.; Malkov, A.; Titus, P.H.

    1995-01-01

    Structural design issues and features of the superconducting toroidal field (TF) coils for the International Thermonuclear Experimental Reactor (ITER) will be discussed. Selected analyses of the structural and mechanical behavior of the ITER TF coils will also be presented. (orig.)

  17. Meaning Structures in a Contested Issue Field

    DEFF Research Database (Denmark)

    Meyer, Renate; Höllerer, Markus

    2010-01-01

    When organizational concepts spread beyond national and cultural boundaries, they must pass through powerful filters of local cultural and structural opportunities and constraints in order to mobilize legitimacy. Struggles over their meaning are intensified if they challenge the prevailing order...

  18. Structure of magnetic field in Tokamaks

    International Nuclear Information System (INIS)

    Heller, M.V.A.P.; Caldas, I.L.

    1990-01-01

    Magnetic surfaces, necessary to plasma confinement, can be extinguished by resonant helical perturbations with small intensities due to plasma oscillations or external helical currents. The mapping of magnetic field is obtained intergrating numerically the differential equation of its lines. Criteria which evaluate the chaotic distribution of lines between resonant magnetic islands are presented. (M.C.K.) [pt

  19. Field-induced optically isotropic state in bent core nematic liquid crystals: unambiguous proof of field-induced optical biaxiality

    International Nuclear Information System (INIS)

    Elamain, Omaima; Komitov, Lachezar; Hegde, Gurumurthy; Fodor-Csorba, Katalin

    2013-01-01

    The behaviour of bent core (BC) nematic liquid crystals was investigated under dc applied electric field. The optically isotropic state of a sample containing BC nematic was observed under application of low dc electric fields. The quality of the dark state when the sample was inserted between two crossed polarizers was found to be superb and it did not change when rotating the sample between the polarizers. The coupling between the net molecular dipole moment and the applied dc electric field was considered as the origin of the out-of-plane switching of the BC molecules resulting in switching from the field-off bright state to the field-on dark state. The field-induced optically isotropic state is an unambiguous proof of the field-induced biaxiality in the BC nematic liquid crystal. A simple model explaining the appearance of the isotropic optical state in BC nematics and the switching of the sample slow axis between three mutually orthogonal directions under dc applied electric field is proposed. (paper)

  20. Magnetic field induced incommensurate resonance in cuprate superconductors

    International Nuclear Information System (INIS)

    Zhang Jingge; Cheng Li; Guo Huaiming; Feng Shiping

    2009-01-01

    The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough

  1. Field-induced valence transition in rare-earth system

    International Nuclear Information System (INIS)

    Chattopadhaya, A.; Ghatak, S.K.

    2000-01-01

    The magnetic field-induced valence transition in rare-earth compound has been examined based on a pseudospin S=1 Ising model proposed earlier for valence transition. The model includes finite mixing between two pertinent ionic configurations (magnetic and non-magnetic) separated by an energy gap and with intersite interaction between rare-earth ions. Using the mean field approximation the magnetic behaviour and the critical field (H c ) for transition are obtained as a function of energy gap and temperature. The phase boundary defined in terms of reduced field H c /H co and reduced temperature T/T v (T v being valence transition temperature in absence of field) is nearly independent of energy gap. These results are in qualitative agreement with experimental observation in Yb- and Eu-compounds

  2. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  3. Combined effects of external electric and magnetic fields on electromagnetically induced transparency of a two-dimensional quantum dot

    International Nuclear Information System (INIS)

    Rezaei, Gh.; Shojaeian Kish, S.; Avazpour, A.

    2012-01-01

    In this article effects of external electric and magnetic fields on the electromagnetically induced transparency of a hydrogenic impurity confined in a two-dimensional quantum dot are investigated. To do this the probe absorption, group velocity and refractive index of the medium in the presence of external electric and magnetic fields are discussed. It is found that, electromagnetically induced transparency occurs in the system and its frequency, transparency window and group velocity of the probe field strongly depend on the external fields. In comparison with atomic system, one may control the electromagnetically induced transparency and the group velocity of light in nano structures with the dot size and confinement potential.

  4. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, M., E-mail: rajnak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)

    2017-06-01

    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.

  5. Effects of the magnetic field on the structure of materials

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo

    1984-02-01

    This is a report of the ''Meeting on the effects of a magnetic field on the structure of materials'' held at KEK, Japan. The purpose of the Meeting was to study the diffraction of SR X-ray in a magnetic field. It was found that the effects of a magnetic field have been seen in various substnaces. The effects are due to the Zeeman effect, the Lamor diamagnetism, the Landau diamagnetism, the Meissner effect and the polarization effect. The topics discussed at the Meeting were the structure study of biological specimens by field orientation, the study of cell structure by field orientation, the phase transition under a strong pulse field, the behavior of high molecular liquid crystal in a magnetic field, the change of the f-electron density of the Tb 3+ ions in Tb IG in a magnetic field at low temperature, an electromagnet loaded on a goniometer and an in-situ observation system for the structure of magnetic domain, the control of structural phase transition by a magnetic field, the use of synchrotron orbit radiation for the structural analysis of random systems, and the field effect on chemical reactions. (Kato, T.)

  6. Influence of magnetic fields on structural martensitic transitions

    Energy Technology Data Exchange (ETDEWEB)

    Lashley, J C [Los Alamos National Laboratory; Cooley, J C [Los Alamos National Laboratory; Smith, J L [Los Alamos National Laboratory; Fisher, R A [NON LANL; Modic, K A [Los Alamos National Laboratory; Yang, X- D [TEMPLE UNIV; Riseborough, P S [TEMPLE UNIV.; Opeil, C P [BOSTON COLLEGE; Finlayson, T R [UNIV OF MELBOURNE; Goddard, P A [UNIV OF OXFORD; Silhanek, A V [INPAC

    2009-01-01

    We show evidence that a structural martensitic transition is related to significant changes in the electronic structure, as revealed in thermodynamic measurements made in high-magnetic fields. The magnetic field dependence is considered unusual as many influential investigations of martensitic transitions have emphasized that the structural transitions are primarily lattice dynamical and are driven by the entropy due to the phonons. We provide a theoretical framework which can be used to describe the effect of magnetic field on the lattice dynamics in which the field dependence originates from the dielectric constant.

  7. Hamiltonian structure of gravitational field theory

    International Nuclear Information System (INIS)

    Rayski, J.

    1992-01-01

    Hamiltonian generalizations of Einstein's theory of gravitation introducing a laminar structure of spacetime are discussed. The concepts of general relativity and of quasi-inertial coordinate systems are extended beyond their traditional scope. Not only the metric, but also the coordinate system, if quantized, undergoes quantum fluctuations

  8. Temperature rise and stress induced by microcracks in accelerating structures

    Directory of Open Access Journals (Sweden)

    W. Zhu

    2010-12-01

    Full Text Available The temperature rise and induced stress due to Ohmic heating in the vicinity of microcracks on the walls of high-gradient accelerating structures are considered. The temperature rise and induced stress depend on the orientation of the crack with respect to the rf magnetic field, the shape of the crack, and the power and duration of the rf pulse. Under certain conditions the presence of cracks can double the temperature rise over that of a smooth surface. Stress at the bottom of the cracks can be several times larger than that of the case when there are no cracks. We study these effects both analytically and by computer simulation. It is shown that the stress in cracks is maximal when the crack depth is on the order of the thermal penetration depth.

  9. Computer simulation of induced electric currents and fields in biological bodies by 60 Hz magnetic fields

    International Nuclear Information System (INIS)

    Xi Weiguo; Stuchly, M.A.; Gandhi, O.P.

    1993-01-01

    Possible health effects of human exposure to 60 Hz magnetic fields are a subject of increasing concern. An understanding of the coupling of electromagnetic fields to human body tissues is essential for assessment of their biological effects. A method is presented for the computerized simulation of induced electric currents and fields in bodies of men and rodents from power-line frequency magnetic fields. In the impedance method, the body is represented by a 3 dimensional impedance network. The computational model consists of several tens of thousands of cubic numerical cells and thus represented a realistic shape. The modelling for humans is performed with two models, a heterogeneous model based on cross-section anatomy and a homogeneous one using an average tissue conductivity. A summary of computed results of induced electric currents and fields is presented. It is confirmed that induced currents are lower than endangerous current levels for most environmental exposures. However, the induced current density varies greatly, with the maximum being at least 10 times larger than the average. This difference is likely to be greater when more detailed anatomy and morphology are considered. 15 refs., 2 figs., 1 tab

  10. Radiation-induced structural changes. 3

    International Nuclear Information System (INIS)

    Kondo, Yasuhiro; Matsuyama, Tomochika; Ogasawara, Masaaki

    1993-05-01

    This meeting is the fourth of series meetings on the structural change in materials induced by ionizing radiation. The present meeting was organized to discuss specifically on the x-ray storage phosphors such as BaFBr:Eu 2+ or RbI x Br 1-x :Tl and to get a clear understanding of the present status of the research on the storage mechanisms, nature of the rare earth impurities, and the optical properties of BaFBr. It was also expected that all the participants became aware of unsolved problems in these storage materials and that some of them would start research work on the storage phosphors. Therefore this report was edited mainly to provide basic knowledge correlated with the storage phosphors and related phenomena rather than to report simply on the experimental results. (J.P.N.)

  11. High-field permanent-magnet structures

    International Nuclear Information System (INIS)

    Leupoid, H.A.

    1989-01-01

    This patent describes a permanent magnet structure. It comprises an azimuthally circumscribed section of a hollow hemispherical magnetic flux source, the magnetic orientation in the section with respect to the polar axis being substantially equal to twice the polar angle, a superconducting planar sheet abutting one flat face of the section along a longitudinal meridian, and at least one other planar sheet of selected material abutting another flat face of the section and perpendicular to the first-mentioned sheet

  12. Field- and irradiation-induced phenomena in memristive nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Mikhaylov, A.N.; Gryaznov, E.G.; Belov, A.I.; Korolev, D.S.; Sharapov, A.N.; Guseinov, D.V.; Tetelbaum, D.I.; Tikhov, S.V.; Malekhonova, N.V.; Bobrov, A.I.; Pavlov, D.A.; Gerasimova, S.A.; Kazantsev, V.B.; Agudov, N.V.; Dubkov, A.A. [Lobachevsky University, Nizhny Novgorod (Russian Federation); Rosario, C.M.M.; Sobolev, N.A. [Departamento de Fisica and I3N, Universidade de Aveiro (Portugal); Spagnolo, B. [Dipartimento di Fisica e Chimica, Universita di Palermo, Group of Interdisciplinary Theoretical Physics (Italy); CNISM, Unita di Palermo (Italy)

    2016-12-15

    The breakthrough in electronics and information technology is anticipated by the development of emerging memory and logic devices, artificial neural networks and brain-inspired systems on the basis of memristive nanomaterials represented, in a particular case, by a simple 'metal-insulator-metal' (MIM) thin-film structure. The present article is focused on the comparative analysis of MIM devices based on oxides with dominating ionic (ZrO{sub x}, HfO{sub x}) and covalent (SiO{sub x}, GeO{sub x}) bonding of various composition and geometry deposited by magnetron sputtering. The studied memristive devices demonstrate reproducible change in their resistance (resistive switching - RS) originated from the formation and rupture of conductive pathways (filaments) in oxide films due to the electric-field-driven migration of oxygen vacancies and / or mobile oxygen ions. It is shown that, for both ionic and covalent oxides under study, the RS behaviour depends only weakly on the oxide film composition and thickness, device geometry (down to a device size of about 20 x 20 μm{sup 2}). The devices under study are found to be tolerant to ion irradiation that reproduces the effect of extreme fluences of high-energy protons and fast neutrons. This common behaviour of RS is explained by the localized nature of the redox processes in a nanoscale switching oxide volume. Adaptive (synaptic) change of resistive states of memristive devices is demonstrated under the action of single or repeated electrical pulses, as well as in a simple model of coupled (synchronized) neuron-like generators. It is concluded that the noise-induced phenomena cannot be neglected in the consideration of a memristive device as a nonlinear system. The dynamic response of a memristive device to periodic signals of complex waveform can be predicted and tailored from the viewpoint of stochastic resonance concept. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Field- and irradiation-induced phenomena in memristive nanomaterials

    International Nuclear Information System (INIS)

    Mikhaylov, A.N.; Gryaznov, E.G.; Belov, A.I.; Korolev, D.S.; Sharapov, A.N.; Guseinov, D.V.; Tetelbaum, D.I.; Tikhov, S.V.; Malekhonova, N.V.; Bobrov, A.I.; Pavlov, D.A.; Gerasimova, S.A.; Kazantsev, V.B.; Agudov, N.V.; Dubkov, A.A.; Rosario, C.M.M.; Sobolev, N.A.; Spagnolo, B.

    2016-01-01

    The breakthrough in electronics and information technology is anticipated by the development of emerging memory and logic devices, artificial neural networks and brain-inspired systems on the basis of memristive nanomaterials represented, in a particular case, by a simple 'metal-insulator-metal' (MIM) thin-film structure. The present article is focused on the comparative analysis of MIM devices based on oxides with dominating ionic (ZrO_x, HfO_x) and covalent (SiO_x, GeO_x) bonding of various composition and geometry deposited by magnetron sputtering. The studied memristive devices demonstrate reproducible change in their resistance (resistive switching - RS) originated from the formation and rupture of conductive pathways (filaments) in oxide films due to the electric-field-driven migration of oxygen vacancies and / or mobile oxygen ions. It is shown that, for both ionic and covalent oxides under study, the RS behaviour depends only weakly on the oxide film composition and thickness, device geometry (down to a device size of about 20 x 20 μm"2). The devices under study are found to be tolerant to ion irradiation that reproduces the effect of extreme fluences of high-energy protons and fast neutrons. This common behaviour of RS is explained by the localized nature of the redox processes in a nanoscale switching oxide volume. Adaptive (synaptic) change of resistive states of memristive devices is demonstrated under the action of single or repeated electrical pulses, as well as in a simple model of coupled (synchronized) neuron-like generators. It is concluded that the noise-induced phenomena cannot be neglected in the consideration of a memristive device as a nonlinear system. The dynamic response of a memristive device to periodic signals of complex waveform can be predicted and tailored from the viewpoint of stochastic resonance concept. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný, J.

    2014-10-06

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  15. Relativistic Néel-Order Fields Induced by Electrical Current in Antiferromagnets

    KAUST Repository

    Železný , J.; Gao, H.; Vý borný , K.; Zemen, J.; Mašek, J.; Manchon, Aurelien; Wunderlich, J.; Sinova, Jairo; Jungwirth, T.

    2014-01-01

    We predict that a lateral electrical current in antiferromagnets can induce nonequilibrium Néel-order fields, i.e., fields whose sign alternates between the spin sublattices, which can trigger ultrafast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intraband and to the intrinsic interband spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we consider bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry modeled by a Rashba spin-orbit coupling. We propose an antiferromagnetic memory device with electrical writing and reading.

  16. Spin-glass polyamorphism induced by a magnetic field in LaMnO3 single crystal

    Science.gov (United States)

    Eremenko, V. V.; Sirenko, V. A.; Baran, A.; Čižmár, E.; Feher, A.

    2018-05-01

    We present experimental evidence of field-driven transition in spin-glass state, similar to pressure-induced transition between amorphous phases in structural and metallic glasses, attributed to the polyamorphism phenomena. Cusp in temperature dependences of ac magnetic susceptibility of weakly disordered LaMnO3 single crystal is registered below the temperature of magnetic ordering. Frequency dependence of the cusp temperature proves its spin-glass origin. The transition induced by a magnetic field in spin-glass state, is manifested by peculiarity in dependence of cusp temperature on applied magnetic field. Field dependent maximum of heat capacity is observed in the same magnetic field and temperature range.

  17. Quantum field theory and nuclear structure

    International Nuclear Information System (INIS)

    Celenza, L.S.; Goulard, B.; Shakin, C.M.

    1981-01-01

    We discuss recent successful calculations of the properties of nuclear matter within the context of theories exhibiting mass generation through spontaneous symmetry breaking. We start with the sigma model of Gell-Mann and Levy and introduce the nucleon mass (in a vacuum) in the usual manner. We relate the expectation value of the sigma field in a vacuum to a finite value of the scalar density. If the vacuum is now filled with nucleons (nuclear matter) the scalar density is increased and the new value for the nucleon mass must be determined. We exhibit the equation whose solution determines the new mass, and we also define a perturbative scheme for the determination of this mass. This scheme involves an expansion of the various quantities of the theory in terms of matrix elements calculated with positive- and negative-energy spinors parametrized with the vacuum mass. Although the decrease in the mass upon going from vacuum to nuclear matter at the equilibrium density is quite large (approx.400 MeV), we are still able to exhibit a small parameter which allows for a perturbative expansion of the binding energy and other observables. The leading term in such an expansion reproduces the approximation widely used in other calculations of the properties of nuclear matter. The truncation of the expansion at the leading term is inadequate and this fact accounts for the lack of success in previous calculations using the standard formalism. We proceed to make a transformation to the Weinberg Lagrangian retaining the fluctuating parts of the sigma field. We further make a small-oscillation approximation, dropping the nonlinear terms in this Lagrangian

  18. The velocity field induced by a helical vortex tube

    DEFF Research Database (Denmark)

    Fukumoto, Y.; Okulov, Valery

    2005-01-01

    The influence of finite-core thickness on the velocity field around a vortex tube is addressed. An asymptotic expansion of the Biot-Savart law is made to a higher order in a small parameter, the ratio of core radius to curvature radius, which consists of the velocity field due to lines of monopoles...... and dipoles arranged on the centerline of the tube. The former is associated with an infinitely thin core and is featured by the circulation alone. The distribution of vorticity in the core reflects on the strength of dipole. This result is applied to a helical vortex tube, and the induced velocity due...

  19. Instantaneous temperature field measurements using planar laser-induced fluorescence.

    Science.gov (United States)

    Seitzman, J M; Kychakoff, G; Hanson, R K

    1985-09-01

    A single-pulse, laser-induced-fluorescence diagnostic for the measurement of two-dimensional temperature fields in combustion flows is described. The method uses sheet illumination from a tunable laser to excite planar laserinduced fluorescence in a stable tracer molecule, seeded at constant mole fraction into the flow field. The temporal resolution of this technique is determined by the laser pulse length. Experimental results are presented for a rodstabilized, premixed methane-air flame, using the Q(1) (22) line of the nitric oxide A(2) Sigma(+) (v = 0) ? X(2)II((1/2))(v = 0) transition (lambda approximately 225.6 nm).

  20. Floating and flying ferrofluid bridges induced by external magnetic fields

    Science.gov (United States)

    Ma, Rongchao; Zhou, Yixin; Liu, Jing

    2015-04-01

    A ferrofluid is a mixture that exhibits both magnetism and fluidity. This merit enables the ferrofluid to be used in a wide variety of areas. Here we show that a floating ferrofluid bridge can be induced between two separated boards under a balanced external magnetic field generated by two magnets, while a flying ferrofluid bridge can be induced under an unbalanced external magnetic field generated by only one magnet. The mechanisms of the ferrofluid bridges were discussed and the corresponding mathematical equations were also established to describe the interacting magnetic force between the ferro particles inside the ferrofluid. This work answered a basic question that, except for the well-known floating water bridges that are related to electricity, one can also build up a liquid bridge that is related to magnetism.

  1. Multi-phase-field method for surface tension induced elasticity

    Science.gov (United States)

    Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah

    2018-01-01

    A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.

  2. Laser-induced extreme magnetic field in nanorod targets

    Science.gov (United States)

    Lécz, Zsolt; Andreev, Alexander

    2018-03-01

    The application of nano-structured target surfaces in laser-solid interaction has attracted significant attention in the last few years. Their ability to absorb significantly more laser energy promises a possible route for advancing the currently established laser ion acceleration concepts. However, it is crucial to have a better understanding of field evolution and electron dynamics during laser-matter interactions before the employment of such exotic targets. This paper focuses on the magnetic field generation in nano-forest targets consisting of parallel nanorods grown on plane surfaces. A general scaling law for the self-generated quasi-static magnetic field amplitude is given and it is shown that amplitudes up to 1 MT field are achievable with current technology. Analytical results are supported by three-dimensional particle-in-cell simulations. Non-parallel arrangements of nanorods has also been considered which result in the generation of donut-shaped azimuthal magnetic fields in a larger volume.

  3. Effects of Induced Electric Fields on Tissues and Cells

    Science.gov (United States)

    Sequin, Emily Katherine

    Cancer remains a substantial health burden in the United States. Traditional treatments for solid malignancies may include chemotherapy, radiation therapy, targeted therapies, or surgical resection. Improved surgical outcomes coincide with increased information regarding the tumor extent in the operating room. Furthermore, pathological examination and diagnosis is bettered when the pathologist has additional information about lesion locations on the large resected specimens from which they take a small sample for microscopic evaluation. Likewise, cancer metastasis is a leading cause of cancer death. Fully understanding why a particular tumor becomes metastatic as well as the mechanisms of cell migration are critical to both preventing metastasis and treating it. This dissertation utilizes the complex interactions of induced electric fields with tissues and cells to meet two complementary research goals. First, eddy currents are induced in tissues using a coaxial eddy current probe (8mm diameter) in order to distinguish tumor tissue from surrounding normal tissue to address the needs of surgeons performing curative cancer resections. Measurements on animal tissue phantoms characterize the eddy current measurement finding that the effective probing area corresponds to about twice the diameter of the probe and that the specimen temperature must be constant for reliable measurements. Measurements on ten fresh tissue specimens from human patients undergoing surgical resection for liver metastases from colorectal cancer showed that the eddy current measurement technique can be used to differentiate tumors from surrounding liver tissue in a non-destructive, non-invasive manner. Furthermore, the differentiation between the tumor and normal tissues required no use of contrast agents. Statistically significant differences between eddy current measurements in three tissue categories, tumor, normal, and interface, were found across patients using a Tukey's pairwise comparison

  4. Quantum field theory approaches to meson structure

    International Nuclear Information System (INIS)

    Branz, Tanja

    2011-01-01

    Meson spectroscopy became one of the most interesting topics in particle physics in the last ten years. In particular, the discovery of new unexpected states in the charmonium spectrum which cannot be simply explained by the constituent quark model attracted the interest of many theoretical efforts. In the present thesis we discuss different meson structures ranging from light and heavy quark-antiquark states to bound states of hadrons-hadronic molecules. Here we consider the light scalar mesons f 0 (980) and a 0 (980) and the charmonium-like Y(3940), Y(4140) and Z ± (4430) states. In the discussion of the meson properties like mass spectrum, total and partial decay widths and production rates we introduce three different theoretical methods for the treatment and description of hadronic structure. For the study of bound states of mesons we apply a coupled channel approach which allows for the dynamical generation of meson-meson resonances. The decay properties of meson molecules are further on studied within a second model based on effective Lagrangians describing the interaction of the bound state and its constituents. Besides hadronic molecules the effective Lagrangian approach is also used to study the radiative and strong decay properties of ordinary quark-antiquark (q anti q) states. The AdS/QCD model forms the completion of the three theoretical methods introduced in the present thesis. This holographic model provides a completely different ansatz and is based on extra dimensions and string theory. Within this framework we calculate the mass spectrum of light and heavy mesons and their decay constants.

  5. Structure of the urban moisture field

    International Nuclear Information System (INIS)

    Sisterson, D.L.; Dirks, R.A.

    1975-01-01

    In the 26 July 1974 case study in St. Louis as a part of Project METROMEX, aircraft and surface network stations were used to determine specific humidity and potential temperature patterns near the surface and at two levels within the mixing layer. From the data acquired at these three levels, three-dimensional analyses of the moisture fields in the mixing layer were constructed. The mesoscale dry regions observed throughout the mixing layer correspond to the more impervious surfaces of the urban area. From energy budget considerations, latent heat fluxes are small over these impervious surfaces owing to the large runoff of precipitation and the lack of moisture retention capabilities. Hence, urbanization obviously alters the local energy budget. Surface boundary layer conditions are determined by heat and moisture fluxes. A new internal boundary layer within the city is formed after the breakdown of the radiation inversion in order to compensate for the alteration of sensible heat and latent heat energies. Hence, isolated semistagnant urban air is replenished by moisture only as quickly as evapotranspiration from impervious surfaces will allow. The city surface, therefore, is not a sink of moisture, but rather a reduced source relative to rural areas

  6. Motionally-induced electromagnetic fields generated by idealized ocean currents

    Science.gov (United States)

    Tyler, R. H.; Mysak, L. A.

    Using the induction equation, we investigate the generation of electromagnetic fields by the motional electromagnetic induction due to ocean currents. In this paper, solutions are presented for a linear induction equation for the magnetic flux density vector which contains prescribed time-independent ocean current and conductivity fields. Once the magnetic flux density is known, the electric field and electric current density are easily obtained by differentiation. Solutions are given for several examples of idealized flow which include: 1) Vertically and horizontally sheared plane-parallel flow with depth-dependent conductivity; 2) A simple Stommel circulation gyre; and 3) Symmetric gyres. The results indicate that typical ocean current features induce magnetic fields with magnitudes reaching 100's of nT within the water and about 1-10 outside of the water. For the case of a field of gyres, the ocean-induced magnetic fields decay away from the ocean on spatial scales set by the horizontal scale of the ocean feature. At the altitudes of magnetic field satellite surveys, ocean-induced magnetic fields may retain values of a few nT, which are strong enough to be detected. Thus it is concluded that satellite observations of the earth's main magnetic field and, in particular, the observed temporal variations, could be affected by the ocean circulation. Summary and discussion In Section 3, we found exact solutions to the induction equation for idealized flows. The results gave magnitudes of about tens to hundreds of nT for the magnetic fields bH, about 10-5 V/m for the electric fields E, and about 10-5 A/m2 for the electric current density J induced by the ocean currents. These figures are in general agreement with the calculations of Lilley et al. (1993). In Section 4.2 we obtained solutions for the magnetic field above the ocean surface for the case of a Stommel gyre and a field of symmetric gyres. It was found in the last case that ocean gyres with a total transport

  7. Magnetic-field induced semimetal in topological crystalline insulator thin films

    International Nuclear Information System (INIS)

    Ezawa, Motohiko

    2015-01-01

    We investigate electromagnetic properties of a topological crystalline insulator (TCI) thin film under external electromagnetic fields. The TCI thin film is a topological insulator indexed by the mirror-Chern number. It is demonstrated that the gap closes together with the emergence of a pair of gapless cones carrying opposite chirarities by applying in-plane magnetic field. A pair of gapless points have opposite vortex numbers. This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. We thus present an a magnetic-field induced semimetal–semiconductor transition in 2D material. This is a giant-magnetoresistance, where resistivity is controlled by magnetic field. Perpendicular electric field is found to shift the gapless points and also renormalize the Fermi velocity in the direction of the in-plane magnetic field. - Highlights: • The band structure of topological crystalline insulator thin films can be controlled by applying in-plane magnetic field. • At the gap closing magnetic field, a pair of gapless cones carrying opposite chirarities emerge. • A pair of gapless points have opposite vortex numbers. • This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. • A magnetic-field induced semimetal–semiconductor transition occurs in 2D material

  8. Magnetic-field induced semimetal in topological crystalline insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ezawa, Motohiko, E-mail: ezawa@ap.t.u-tokyo.ac.jp

    2015-06-19

    We investigate electromagnetic properties of a topological crystalline insulator (TCI) thin film under external electromagnetic fields. The TCI thin film is a topological insulator indexed by the mirror-Chern number. It is demonstrated that the gap closes together with the emergence of a pair of gapless cones carrying opposite chirarities by applying in-plane magnetic field. A pair of gapless points have opposite vortex numbers. This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. We thus present an a magnetic-field induced semimetal–semiconductor transition in 2D material. This is a giant-magnetoresistance, where resistivity is controlled by magnetic field. Perpendicular electric field is found to shift the gapless points and also renormalize the Fermi velocity in the direction of the in-plane magnetic field. - Highlights: • The band structure of topological crystalline insulator thin films can be controlled by applying in-plane magnetic field. • At the gap closing magnetic field, a pair of gapless cones carrying opposite chirarities emerge. • A pair of gapless points have opposite vortex numbers. • This is a reminiscence of a pair of Weyl cones in 3D Weyl semimetal. • A magnetic-field induced semimetal–semiconductor transition occurs in 2D material.

  9. Measurement of full-field deformation induced by a dc electrical field in organic insulator films

    Directory of Open Access Journals (Sweden)

    Boudou L.

    2010-06-01

    Full Text Available Digital image correlation method (DIC using the correlation coefficient curve-fitting for full-field surface deformation measurements of organic insulator films is investigated in this work. First the validation of the technique was undertaken. The computer-generated speckle images and the measurement of coefficient of thermal expansion (CTE of aluminium are used to evaluate the measurement accuracy of the technique. In a second part the technique is applied to measure the mechanical deformation induced by electrical field application to organic insulators. For that Poly(ethylene naphthalene 2,6-dicarboxylate (PEN thin films were subjected to DC voltage stress and DIC provides the full-field induced deformations of the test films. The obtained results show that the DIC is a practical and robust tool for better comprehension of mechanical behaviour of the organic insulator films under electrical stress.

  10. Coherent structures induced by dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Zhang, Xin; Li, Huaxing; Choi, Kwing So; Song, Longfei

    2017-11-01

    The structures of a flow field induced by a plasma actuator were investigated experimentally in quiescent air using high-speed Particle Image Velocimetry (PIV) technology. The motivation behind was to figure out the flow control mechanism of the plasma technique. A symmetrical Dielectric Barrier Discharge (DBD) plasma actuator was mounted on the suction side of the SC (2)-0714 supercritical airfoil. The results demonstrated that the plasma jet had some coherent structures in the separated shear layer and these structures were linked to a dominant frequency of f0 = 39 Hz when the peak-to-peak voltage of plasma actuator was 9.8 kV. The high speed PIV measurement of the induced airflow suggested that the plasma actuator could excite the flow instabilities which lead to production of the roll-up vortex. Analysis of transient results indicated that the roll-up vortices had the process of formation, movement, merging and breakdown. This could promote the entrainment effect of plasma actuator between the outside airflow and boundary layer flow, which is very important for flow control applications.

  11. Electric-field-induced local structural phenomena in relaxor ferroelectric PbSc0.5Nb0.5O3 near the intermediate temperature T* studied by Raman spectroscopy

    International Nuclear Information System (INIS)

    Steilmann, T; Maier, B J; Bismayer, U; Mihailova, B; Gospodinov, M

    2014-01-01

    Raman spectroscopy at different temperatures and under an external electric field E was applied to PbSc 0.5 Nb 0.5 O 3 single crystals in order to gain further insights into the mesoscopic-scale coupling processes in perovskite-type (ABO 3 ) relaxor ferroelectrics. Parallel and cross-polarized Raman spectra were collected between 800–80 K with E applied along the cubic [1 0 0], [1 1 0] or [1 1 1] crystallographic directions. The analysis was focused on the field-induced changes in the temperature evolution of three low-energy phonon modes: the Pb-localized mode near 50 cm −1 , the Pb-BO 3 translation mode near 150 cm −1 , and the B-cation-localized mode near 250 cm −1 . The results show that competitive ferroelectric (FE) and antiferroelectric (AFE) coupling exists within the system of off-centred Pb 2+ cations, within the system of off-centred B-site cations as well as between off-centred Pb 2+ and B-site cations. The strong AFE-type coupling between Pb 2+ cations along the cubic body diagonal significantly influences the coupling between the B-site cations via the Pb-BO 3 mode and results in AFE-type behaviour of the ‘microscopic’ T* determined from the B-cation-localized mode near 250 cm −1 , which explains the previously reported non-trivial field dependence of the ‘macroscopic’ characteristic temperatures: the temperature of the dielectric-permittivity maximum T m , T*, and the Burns temperature T B . The comparative analysis between PbSc 0.5 Nb 0.5 O 3 and PbSc 0.5 Ta 0.5 O 3 indicates that two major displacive order parameters couple to form a relaxor state in B-site complex perovskites: the FE order associated with polar shifts of B-site cations and the AFE order associated with polar shifts of A-site cations. The latter penetrates through both polar and non-polar regions, but it is highly frustrated due to the high density of translation-symmetry faults in the chemical NaCl-type B-site order. The frustrated AFE order

  12. Organizational Fields and the Structuration Perspective: Analytical Possibilities

    Directory of Open Access Journals (Sweden)

    Clóvis L. Machado-da-Silva

    2006-07-01

    Full Text Available The concept of the organizational field has been greatly dealt with in the literature on institutional theory in recent years. As the concept of field involves a relational and symbolic dimension, we propose that the theory of structuration, based on the logic of recursiveness between agency and structure should be adapted to theunderstanding of the field dynamically. In this way, the objective of this theoretical essay is to deal with the dynamic of the organizational field using structurationist logic, allowing that from this logic we recall both the importance of the practice in the structuration process of the organizational field and the historical and recursive character which may constrain or enable the actions of social actors. To this end, we revise the concept of field in different perspectives of analysis, reflecting on the implication of the theoretical presuppositions of each approach and then discuss in a critical manner the theoretical foundation of the structuration process of organizational fields based on the structurationist approach. We conclude the paper with propositions pertaining to the revision of the concept of field from a multiparadigmatic viewpoint in which structure and agency are recursively implied.

  13. Induced clustering of Escherichia coli by acoustic fields.

    Science.gov (United States)

    Gutiérrez-Ramos, Salomé; Hoyos, Mauricio; Ruiz-Suárez, J C

    2018-03-16

    Brownian or self-propelled particles in aqueous suspensions can be trapped by acoustic fields generated by piezoelectric transducers usually at frequencies in the megahertz. The obtained confinement allows the study of rich collective behaviours like clustering or spreading dynamics in microgravity-like conditions. The acoustic field induces the levitation of self-propelled particles and provides secondary lateral forces to capture them at nodal planes. Here, we give a step forward in the field of confined active matter, reporting levitation experiments of bacterial suspensions of Escherichia coli. Clustering of living bacteria is monitored as a function of time, where different behaviours are clearly distinguished. Upon the removal of the acoustic signal, bacteria rapidly spread, impelled by their own swimming. Nevertheless, long periods of confinement result in irreversible bacteria entanglements that could act as seeds for levitating bacterial aggregates.

  14. Algebraic structure of general electromagnetic fields and energy flow

    International Nuclear Information System (INIS)

    Hacyan, Shahen

    2011-01-01

    Highlights: → Algebraic structure of general electromagnetic fields in stationary spacetime. → Eigenvalues and eigenvectors of the electomagnetic field tensor. → Energy-momentum in terms of eigenvectors and Killing vector. → Explicit form of reference frame with vanishing Poynting vector. → Application of formalism to Bessel beams. - Abstract: The algebraic structures of a general electromagnetic field and its energy-momentum tensor in a stationary space-time are analyzed. The explicit form of the reference frame in which the energy of the field appears at rest is obtained in terms of the eigenvectors of the electromagnetic tensor and the existing Killing vector. The case of a stationary electromagnetic field is also studied and a comparison is made with the standard short-wave approximation. The results can be applied to the general case of a structured light beams, in flat or curved spaces. Bessel beams are worked out as example.

  15. Field-modulation spectroscopy of pentacene thin films using field-effect devices: Reconsideration of the excitonic structure

    Science.gov (United States)

    Haas, Simon; Matsui, Hiroyuki; Hasegawa, Tatsuo

    2010-10-01

    We report pure electric-field effects on the excitonic absorbance of pentacene thin films as measured by unipolar field-effect devices that allowed us to separate the charge accumulation effects. The field-modulated spectra between 1.8 and 2.6 eV can be well fitted with the first derivative curve of Frenkel exciton absorption and its vibronic progression, and at higher energy a field-induced feature appears at around 2.95 eV. The results are in sharp contrast to the electroabsorption spectra reported by Sebastian in previous studies [Chem. Phys. 61, 125 (1981)10.1016/0301-0104(81)85055-0], and leads us to reconsider the excitonic structure including the location of charge-transfer excitons. Nonlinear π -electronic response is discussed based on second-order electro-optic (Kerr) spectra.

  16. Current Induced Seismicity in the Paskov Mine Field

    Czech Academy of Sciences Publication Activity Database

    Holub, Karel; Rušajová, Jana; Holečko, J.

    2013-01-01

    Roč. 10, č. 2 (2013), s. 181-187 ISSN 1214-9705 R&D Projects: GA MŠk LM2010008 Institutional support: RVO:68145535 Keywords : Ostrava-Karviná coal mines * seismic network * induced seismicity * location plot Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.667, year: 2013 http://www.irsm.cas.cz/materialy/acta_content/2013_02/acta_170_07_%20Holub_181-187.pdf

  17. Coherent drift wave structures in sheared magnetic fields

    International Nuclear Information System (INIS)

    Morrison, P.J.; Horton, W.

    1993-01-01

    For the problem of calculating the coherent drift wave structures in sheared magnetic fields, the authors have found it useful to derive the governing nonlinear pde from a variational principle. The variational principle is based on the free energy functional F[var-phi] = ∫ V F(var-phi, ∇ var-phi, x)dx dy. The method is applied to the vortex with speed u derived in Su et al., given by ∇ 2 var-phi = (1 - v d /u) var-phi - S m 2 /u 2 (x - var-phi/u) (x - var-phi/2u) var-phi where space is measured in units of ρ s , var-phi = (eΦ/T e )(L n /ρ s ) and the magnetic shear parameter is S m . While the linearized problem (var-phi much-lt ux) describes the usual shear induced damping, nonlinear solutions with trapped flow (var-phi > ur 0 ) form nonlinear self-bound states, which are maxima of the free energy F. The authors discuss the analytic properties and the numerical procedures for solving these types of nonlinear pde's

  18. Electric-field-induced modification in Curie temperature of Co monolayer on Pt(111)

    Science.gov (United States)

    Nakamura, Kohji; Oba, Mikito; Akiyama, Toru; Ito, Tomonori; Weinert, Michael

    2015-03-01

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Curie temperature for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. An applied E-field modifies the magnon (spin-spiral formation) energies by a few meV, which leads to a modification of the exchange pair interaction parameters within the classical Heisenberg model. With inclusion of the spin-orbit coupling (SOC), the magnetocrystalline anisotropy and the Dzyaloshinskii-Morita interaction are obtained by the second variation SOC method. An E-field-induced modification of the Curie temperature is demonstrated by Monte Carlo simulations, in which a change in the exchange interaction is found to play a key role.

  19. A quantum group structure in integrable conformal field theories

    International Nuclear Information System (INIS)

    Smit, D.J.

    1990-01-01

    We discuss a quantization prescription of the conformal algebras of a class of d=2 conformal field theories which are integrable. We first give a geometrical construction of certain extensions of the classical Virasoro algebra, known as classical W algebras, in which these algebras arise as the Lie algebra of the second Hamiltonian structure of a generalized Korteweg-de Vries hierarchy. This fact implies that the W algebras, obtained as a reduction with respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the intergrability of a Toda field theory. Subsequently we determine the coadjoint operators of the W algebras, and relate these to classical Yang-Baxter matrices. The quantization of these algebras can be carried out using the concept of a so-called quantum group. We derive the condition under which the representations of these quantum groups admit a Hilbert space completion by exploring the relation with the braid group. Then we consider a modification of the Miura transformation which we use to define a quantum W algebra. This leads to an alternative interpretation of the coset construction for Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently we use the connection between the induced braid group representations and the representations of the mapping class group of Riemann surfaces to identify an action of the W algebras on the moduli space of stable curves, and we give the invariants of this action. This provides a generalization of the situation for the Virasoro algebra, where such an invariant is given by the so-called Mumford form which describes the partition function of the bosonic string. (orig.)

  20. Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology

    Energy Technology Data Exchange (ETDEWEB)

    Duplessis, Francis [Physics Department, Arizona State University, Tempe, AZ 85287 (United States); Vachaspati, Tanmay, E-mail: fdupless@asu.edu, E-mail: tvachasp@asu.edu [Maryland Center for Fundamental Physics, University of Maryland, College Park, MD 20742 (United States)

    2017-05-01

    Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.

  1. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    Science.gov (United States)

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  2. High magnetic field induced otolith fusion in the zebrafish larvae.

    Science.gov (United States)

    Pais-Roldán, Patricia; Singh, Ajeet Pratap; Schulz, Hildegard; Yu, Xin

    2016-04-11

    Magnetoreception in animals illustrates the interaction of biological systems with the geomagnetic field (geoMF). However, there are few studies that identified the impact of high magnetic field (MF) exposure from Magnetic Resonance Imaging (MRI) scanners (>100,000 times of geoMF) on specific biological targets. Here, we investigated the effects of a 14 Tesla MRI scanner on zebrafish larvae. All zebrafish larvae aligned parallel to the B0 field, i.e. the static MF, in the MRI scanner. The two otoliths (ear stones) in the otic vesicles of zebrafish larvae older than 24 hours post fertilization (hpf) fused together after the high MF exposure as short as 2 hours, yielding a single-otolith phenotype with aberrant swimming behavior. The otolith fusion was blocked in zebrafish larvae under anesthesia or embedded in agarose. Hair cells may play an important role on the MF-induced otolith fusion. This work provided direct evidence to show that high MF interacts with the otic vesicle of zebrafish larvae and causes otolith fusion in an "all-or-none" manner. The MF-induced otolith fusion may facilitate the searching for MF sensors using genetically amenable vertebrate animal models, such as zebrafish.

  3. Optically induced structural phase transitions in ion Coulomb crystals

    DEFF Research Database (Denmark)

    Horak, Peter; Dantan, Aurelien Romain; Drewsen, Michael

    2012-01-01

    We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures, such as b......We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We demonstrate that transitions between thermally excited crystal structures...

  4. Effect of Contour Shape of Nervous System Electromagnetic Stimulation Coils on the Induced Electrical Field Distribution

    Directory of Open Access Journals (Sweden)

    Daskalov Ivan K

    2002-05-01

    Full Text Available Abstract Background Electromagnetic stimulation of the nervous system has the advantage of reduced discomfort in activating nerves. For brain structures stimulation, it has become a clinically accepted modality. Coil designs usually consider factors such as optimization of induced power, focussing, field shape etc. In this study we are attempting to find the effect of the coil contour shape on the electrical field distribution for magnetic stimulation. Method and results We use the maximum of the induced electric field stimulation in the region of interest as the optimization criterion. This choice required the application of the calculus of variation, with the contour perimeter taken as a pre-set condition. Four types of coils are studied and compared: circular, square, triangular and an 'optimally' shaped contour. The latter yields higher values of the induced electrical field in depths up to about 30 mm, but for depths around 100 mm, the circular shape has a slight advantage. The validity of the model results was checked by experimental measurements in a tank with saline solution, where differences of about 12% were found. In view the accuracy limitations of the computational and measurement methods used, such differences are considered acceptable. Conclusion We applied an optimization approach, using the calculus of variation, which allows to obtain a coil contour shape corresponding to a selected criterion. In this case, the optimal contour showed higher intensities for a longer line along the depth-axis. The method allows modifying the induced field structure and focussing the field to a selected zone or line.

  5. Hints for electric-field compensation in multicell resonant structures

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, P; Parodi, R

    1981-03-31

    We propose a lumped-parameter equivalent circuit for a TM/sub 01/ multicell standing wave accelerating structure with full end cells. By the suggested model we can predict the amount of end cell frequency compensation needed to achieve field flatness in the highest mode of the structure.

  6. Design and Fabrication of the KSTAR Poloidal Field Coil Structure

    International Nuclear Information System (INIS)

    Park, H. K.; Choi, C. H.; Sa, J. W.

    2005-01-01

    The KSTAR magnet system consists of 16 toroidal field(TF) coils. 4 pairs of central solenoid(CS) coils, and 3 pairs of outer poloidal field(PF) coils. The TF coils are encased in a structure to enhance mechanical stability. The CS coil structure is supported on top of the TF coil structure and supplies a vertical compression of 15 MN to prevent lateral movement due to a repulsive force between the CS coils. The PF coil system is vertically symmetry to the machine mid-plane and consists of 6 coils and 80 support structures(i.e, 16 for PF5, 32 for PF6 and 32 fort PF7). All PF coil structures should absorb the thermal contraction difference between TF coil structure and PF coils due to cool down and endure the vertical and radial magnetic forces due to current charging. In order to satisfy these structural requirements. the PF5 coil structure is designed base on hinges and both of PF6 and PF7 coil structures based on flexible plates. The PF coil structures are assembled on the TF coil structure with an individual basement that is welded on the TF coil structure

  7. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  8. Construction of alternative Hamiltonian structures for field equations

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2001-08-10

    We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)

  9. Gauge structure of neutral-vector field theory. [Massive vector fields, massless limits

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Yokoyama, [Hiroshima univ., Takehara (Japan). Research Inst. for Theoretical Physics

    1975-03-01

    General aspects of gauge structure of neutral-vector field theory are investigated from an extended standpoint, where massive vector fields are treated in a form corresponding to the electromagnetic fields in a general gauge formalism reported previously. All results obtained are shown to have unique massless limits. It is shown that a generalized q-number gauge transformation for fields makes the theory invariant in cooperation with a simultaneous transformation for relevant gauge parameters. A method of differentiation with respect to a gauge variable is found to clarify some essential features of the gauge structure. Two possible types of gauge structure also emerge correspondingly to the massless case. A neutral-vector field theory proposed in a preceding paper is included in the present framework as the most preferable case.

  10. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    Science.gov (United States)

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  11. Field-induced negative differential spin lifetime in silicon.

    Science.gov (United States)

    Li, Jing; Qing, Lan; Dery, Hanan; Appelbaum, Ian

    2012-04-13

    We show that the electric-field-induced thermal asymmetry between the electron and lattice systems in pure silicon substantially impacts the identity of the dominant spin relaxation mechanism. Comparison of empirical results from long-distance spin transport devices with detailed Monte Carlo simulations confirms a strong spin depolarization beyond what is expected from the standard Elliott-Yafet theory even at low temperatures. The enhanced spin-flip mechanism is attributed to phonon emission processes during which electrons are scattered between conduction band valleys that reside on different crystal axes. This leads to anomalous behavior, where (beyond a critical field) reduction of the transit time between spin-injector and spin-detector is accompanied by a counterintuitive reduction in spin polarization and an apparent negative spin lifetime.

  12. Rotating magnetic field induced oscillation of magnetic particles for in vivo mechanical destruction of malignant glioma.

    Science.gov (United States)

    Cheng, Yu; Muroski, Megan E; Petit, Dorothée C M C; Mansell, Rhodri; Vemulkar, Tarun; Morshed, Ramin A; Han, Yu; Balyasnikova, Irina V; Horbinski, Craig M; Huang, Xinlei; Zhang, Lingjiao; Cowburn, Russell P; Lesniak, Maciej S

    2016-02-10

    Magnetic particles that can be precisely controlled under a magnetic field and transduce energy from the applied field open the way for innovative cancer treatment. Although these particles represent an area of active development for drug delivery and magnetic hyperthermia, the in vivo anti-tumor effect under a low-frequency magnetic field using magnetic particles has not yet been demonstrated. To-date, induced cancer cell death via the oscillation of nanoparticles under a low-frequency magnetic field has only been observed in vitro. In this report, we demonstrate the successful use of spin-vortex, disk-shaped permalloy magnetic particles in a low-frequency, rotating magnetic field for the in vitro and in vivo destruction of glioma cells. The internalized nanomagnets align themselves to the plane of the rotating magnetic field, creating a strong mechanical force which damages the cancer cell structure inducing programmed cell death. In vivo, the magnetic field treatment successfully reduces brain tumor size and increases the survival rate of mice bearing intracranial glioma xenografts, without adverse side effects. This study demonstrates a novel approach of controlling magnetic particles for treating malignant glioma that should be applicable to treat a wide range of cancers. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Electric field control photo-induced Hall currents in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2008-10-15

    We generate spin-polarized carrier populations in GaAs and low temperature-grown GaAs (LT-GaAs) by circularly polarized optical beams and pull them by external electric fields to create spin-polarized currents. In the presence of the optically generated spin currents, anomalous Hall currents with an enhancement with increasing doping are observed and found to be almost steady in moderate electric fields up to {approx}120 mV {mu}m{sup -1}, indicating that photo-induced spin orientation of electrons is preserved in these systems. However, a field {approx}300 mV {mu}m{sup -1} completely destroys the electron spin polarization due to an increase of the D'yakonov-Perel' spin precession frequency of the hot electrons. This suggests that high field carrier transport conditions might not be suitable for spin-based technology with GaAs and LT-GaAs. It is also demonstrated that the presence of the excess arsenic sites in LT-GaAs might not affect the spin relaxation by Bir-Aronov-Pikus mechanism owing to a large number of electrons in n-doped materials.

  14. Field-induced magnetic phases and electric polarization in LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius; Christensen, Niels Bech; Kenzelmann, M.

    2009-01-01

    Neutron diffraction is used to probe the (H,T) phase diagram of magnetoelectric (ME) LiNiPO4 for magnetic fields along the c axis. At zero field the Ni spins order in two antiferromagnetic phases. One has commensurate (C) structures and general ordering vectors k(C)=(0,0,0); the other one...... is incommensurate (IC) with k(IC)=(0,q,0). At low temperatures the C order collapses above mu H-0=12 T and adopts an IC structure with modulation vector parallel to k(IC). We show that C order is required for the ME effect and establish how electric polarization results from a field-induced reduction in the total...

  15. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    International Nuclear Information System (INIS)

    Huang, Haihong; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-01-01

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H p (y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H p (y), its slope coefficient K S and maximum gradient K max changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H p (y) and its slope coefficient K S increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H p (y) and K S reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H p (y) instead of changing the signal curve′s profile; and the magnitude of H p (y), K S , K max and the change rate of K S increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H p (y) signals. • Magnitude of H p (y), K S and K max increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  16. Magnetic memory signals variation induced by applied magnetic field and static tensile stress in ferromagnetic steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haihong, E-mail: huanghaihong@hfut.edu.cn; Yang, Cheng; Qian, Zhengchun; Han, Gang; Liu, Zhifeng

    2016-10-15

    Stress can induce a spontaneous magnetic field in ferromagnetic steel under the excitation of geomagnetic field. In order to investigate the impact of applied magnetic field and tensile stress on variation of the residual magnetic signals on the surface of ferromagnetic materials, static tensile tests of Q235 structural steel were carried out, with the normal component of the residual magnetic signals, H{sub p}(y), induced by applied magnetic fields with different intensities measured through the tensile tests. The H{sub p}(y), its slope coefficient K{sub S} and maximum gradient K{sub max} changing with the applied magnetic field H and tensile stress were observed. Results show that the magnitude of H{sub p}(y) and its slope coefficient K{sub S} increase linearly with the increase of stress in the elastic deformation stage. Under yield stress, H{sub p}(y) and K{sub S} reach its maximum, and then decrease slightly with further increase of stress. Applied magnetic field affects the magnitude of H{sub p}(y) instead of changing the signal curve′s profile; and the magnitude of H{sub p}(y), K{sub S}, K{sub max} and the change rate of K{sub S} increase with the increase of applied magnetic field. The phenomenon is also discussed from the viewpoint of magnetic charge in ferromagnetic materials. - Highlights: • We investigated how applied magnetic field and tensile stress impact H{sub p}(y) signals. • Magnitude of H{sub p}(y), K{sub S} and K{sub max} increase with the increase of applied magnetic field. • Both applied magnetic field and tensile stress impact material magnetic permeability. • Applied magnetic field can help to evaluate the stress distribution of components.

  17. Electric-field-induced modification in Dzyaloshinskii-Moriya interaction of Co monolayer on Pt(111)

    Science.gov (United States)

    Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori; Ono, Teruo; Weinert, Michael

    Magnetism induced by an external electric field (E-field) has received much attention as a potential approach for controlling magnetism at the nano-scale with the promise of ultra-low energy power consumption. Here, the E-field-induced modification of the Dzyaloshinskii-Moriya interaction (DMI) for a prototypical transition-metal thin layer of a Co monolayer on Pt(111) is investigated by first-principles calculations by using the full-potential linearized augmented plane wave method that treats spin-spiral structures in an E-field. With inclusion of the spin-orbit coupling (SOC) by the second variational method for commensurate spin-spiral structures, the DMI constants were estimated from an asymmetric contribution in the total energy with respect to the spin-spiral wavevector. The results predicted that the DMI is modified by the E-field, but the change is found to be small compared to that in the exchange interaction (a symmetric contribution in the total energy) by a factor of ten.

  18. Auroral electron fluxes induced by static magnetic field aligned electric field and plasma wave turbulence

    International Nuclear Information System (INIS)

    Assis, A.S. de; Silva, C.E. da; Dias Tavares, A. Jr.; Leubner, C.; Kuhn, S.

    2001-07-01

    We have studied the formation of auroral electron fluxes induced by a field aligned dc electric field in the presence of plasma wave turbulence. The effect of the wave spectral shape on the production rate has been considered. This acceleration scheme was modelled by the weak turbulence approach. The electron fluxes for narrow and broad band spectra, in the case of low and high phase velocities, are calculated, and it is found as a general feature, for all modes, that their enhancement is larger the weaker the background electric field, while for its absolute enhancement it is just the opposite. The electron fluxes are enhanced by many orders of magnitude over that without turbulence. It is also shown that the modes enhance the runaway production rate via their Cherenkov dissipation, and that a synergetic effect occurs in the enhancement when more than one mode turbulent is present in the acceleration region. (author)

  19. The structure of magnetic field in the TEXTOR-DED

    International Nuclear Information System (INIS)

    Finken, K.H.; Abdullaev, S.S.; Jakubowski, M.; Lehnen, M.; Nicolai, A.; Spatschek, K.H.

    2005-01-01

    The main component of the Dynamic Ergodic Divertor (DED) consists of a set of coils installed in the TEXTOR tokamak which creates resonant magnetic perturbations, preferentially at the plasma edge. The main purpose of the DED is to study the effect of the magnetic perturbations on the tokamak plasma. In particular, on the transport of the heat and particles to wall, the plasma confinement and rotation. This report is devoted to the systematic theoretical study of magnetic field and its structure in the TEXTOR-DED. It contains the description of the DED coil system in different operational regimes, the magnetic field created by this coil system, the study of formation of chaotic magnetic field lines and the structure of stochastic (ergodic) zone of field lines at the plasma edge and on the divertor plates, determination of field line diffusion coefficients and the Kolmogorov lengths. The modern mapping method for integration of Hamiltonian field line equations is employed for these studies. A description of the numerical Gourdon code to study the ergodic zone of the DED is also given. The experimental observations of the structure magnetic field lines performed recently in the TEXTOR-DED and their comparison with the modelling are also briefly discussed. (orig.)

  20. Studying the universality of field induced tunnel ionization times via high-order harmonic spectroscopy

    International Nuclear Information System (INIS)

    Soifer, H; Bruner, B D; Dudovich, N; Negro, M; Devetta, M; Vozzi, C; Faccialà, D; Silvestri, S de; Stagira, S

    2014-01-01

    High-harmonic generation spectroscopy is a promising tool for resolving electron dynamics and structure in atomic and molecular systems. This scheme, commonly described by the strong field approximation, requires a deep insight into the basic mechanism that leads to the harmonic generation. Recently, we have demonstrated the ability to resolve the first stage of the process—field induced tunnel ionization—by adding a weak perturbation to the strong fundamental field. Here we generalize this approach and show that the assumptions behind the strong field approximation are valid over a wide range of tunnel ionization conditions. Performing a systematic study—modifying the fundamental wavelength, intensity and atomic system—we observed a good agreement with quantum path analysis over a range of Keldysh parameters. The generality of this scheme opens new perspectives in high harmonics spectroscopy, holding the potential of probing large, complex molecular systems. (paper)

  1. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    Science.gov (United States)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  2. Structural stability of interaction networks against negative external fields

    Science.gov (United States)

    Yoon, S.; Goltsev, A. V.; Mendes, J. F. F.

    2018-04-01

    We explore structural stability of weighted and unweighted networks of positively interacting agents against a negative external field. We study how the agents support the activity of each other to confront the negative field, which suppresses the activity of agents and can lead to collapse of the whole network. The competition between the interactions and the field shape the structure of stable states of the system. In unweighted networks (uniform interactions) the stable states have the structure of k -cores of the interaction network. The interplay between the topology and the distribution of weights (heterogeneous interactions) impacts strongly the structural stability against a negative field, especially in the case of fat-tailed distributions of weights. We show that apart from critical slowing down there is also a critical change in the system structure that precedes the network collapse. The change can serve as an early warning of the critical transition. To characterize changes of network structure we develop a method based on statistical analysis of the k -core organization and so-called "corona" clusters belonging to the k -cores.

  3. Coexistence of Cluster Structure and Mean-field-type Structure in Medium-weight Nuclei

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Horiuchi, Hisashi; Kimura, Masaaki

    2006-01-01

    We have studied the coexistence of cluster structure and mean-field-type structure in 20Ne and 40Ca using Antisymmetrized Molecular Dynamics (AMD) + Generator Coordinate Method (GCM). By energy variation with new constraint for clustering, we calculate cluster structure wave function. Superposing cluster structure wave functions and mean-field-type structure wave function, we found that 8Be-12C, α-36Ar and 12C-28Si cluster structure are important components of K π = 0 3 + band of 20Ne, that of normal deformed band of 40Ca and that of super deformed band of 40Ca, respectively

  4. Induced polarization and electromagnetic field surveys of sedimentary uranium deposits

    International Nuclear Information System (INIS)

    Campbell, D.L.; Smith, B.D.

    1985-01-01

    Induced polarization (IP) and electromagnetic (EM) geophysical surveys were made over three areas of sedimentary uranium deposits in the western United States. The EM techniques were sometimes useful for investigating general structural settings, but not for finding uranium deposits per se. IP techniques were useful to help pinpoint zones of disseminated pyrite associated with the uranium deposits. In one case no clear differences were seen between the IP signatures of oxidized and reduced ground. Spectral (multi-frequency) IP showed no particular advantages over conventional IP for exploration applications. A sediment mineralization factor is introduced comparable to the ''metal factor'' used to detect porphyry copper mineralization. (author)

  5. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  6. Distillation and Visualization of Spatiotemporal Structures in Turbulent Flow Fields

    International Nuclear Information System (INIS)

    Hege, Hans-Christian; Hotz, Ingrid; Kasten, Jens

    2011-01-01

    Although turbulence suggests randomness and disorder, organized motions that cause spatiotemporal 'coherent structures' are of particular interest. Revealing such structures in numerically given turbulent or semi-turbulent flows is of interest both for practically working engineers and theoretically oriented physicists. However, as long as there is no common agreement about the mathematical definition of coherent structures, extracting such structures is a vaguely defined task. Instead of searching for a general definition, the data visualization community takes a pragmatic approach and provides various tool chains implemented in flexible software frameworks that allow the user to extract distinct flow field structures. Thus physicists or engineers can select those flow structures which might advance their insight best. We present different approaches to distill important features from turbulent flows and discuss the necessary steps to be taken on the example of Lagrangian coherent structures.

  7. Temperature field simulation of complex structures in fire environment

    International Nuclear Information System (INIS)

    Li Weifen; Hao Zhiming; Li Minghai

    2010-01-01

    In this paper, the typical model of the system of dangerous goods - steel - wood composite structure including components of explosives is used as the research object. Using MARC program, the temperature field of the structure in the fire environment is simulated. Radiation, conduction and convection heat transfer within the gap of the structure are taken into account, contact heat transfer is also considered. The phenomenon of thermal decomposition of wood in high temperature is deal with by equivalent method. The results show that the temperature of the explosives is not high in the fire environment. The timber inside the composite structure has played a very good insulation effect of explosives.

  8. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-11-01

    The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.

  9. Longitudinal- and transverse-wake-field effects in dielectric structures

    International Nuclear Information System (INIS)

    Rosing, M.; Gai, W.

    1990-01-01

    A dielectric-loaded circular waveguide structure is a potential high-gradient linear wake-field accelerator. A complete solution is given for the longitudinal electric and magnetic fields excited by a δ function and a Gaussian charge distribution moving parallel to the guide axis. The fields are then given in the limit of particle velocity equal to the speed of light. Example calculations are given for a structure with inner radius of 2 mm, outer radius of 5 mm, dielectric constant of 3, and total charge of 100 nC. Peak wake fields in excess of 200 MV/m are found. Azimuthal modes 0 and 1 are investigated for the particular interest of acceleration and deflection problems

  10. Methodological approaches in estimating anomalous geochemical field structure

    International Nuclear Information System (INIS)

    Gavrilov, R; Rudmin, M

    2015-01-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas

  11. Combinatorial vector fields and the valley structure of fitness landscapes.

    Science.gov (United States)

    Stadler, Bärbel M R; Stadler, Peter F

    2010-12-01

    Adaptive (downhill) walks are a computationally convenient way of analyzing the geometric structure of fitness landscapes. Their inherently stochastic nature has limited their mathematical analysis, however. Here we develop a framework that interprets adaptive walks as deterministic trajectories in combinatorial vector fields and in return associate these combinatorial vector fields with weights that measure their steepness across the landscape. We show that the combinatorial vector fields and their weights have a product structure that is governed by the neutrality of the landscape. This product structure makes practical computations feasible. The framework presented here also provides an alternative, and mathematically more convenient, way of defining notions of valleys, saddle points, and barriers in landscape. As an application, we propose a refined approximation for transition rates between macrostates that are associated with the valleys of the landscape.

  12. String field theory. Algebraic structure, deformation properties and superstrings

    International Nuclear Information System (INIS)

    Muenster, Korbinian

    2013-01-01

    This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the

  13. Analysis of Lightning-induced Impulse Magnetic Fields in the Building with an Insulated Down Conductor

    Science.gov (United States)

    Du, Patrick Y.; Zhou, Qi-Bin

    This paper presents an analysis of lightning-induced magnetic fields in a building. The building of concern is protected by the lightning protection system with an insulated down conductor. In this paper a system model for metallic structure of the building is constructed first using the circuit approach. The circuit model of the insulated down conductor is discussed extensively, and explicit expressions of the circuit parameters are presented. The system model was verified experimentally in the laboratory. The modeling approach is applied to analyze the impulse magnetic fields in a full-scale building during a direct lightning strike. It is found that the impulse magnetic field is significantly high near the down conductor. The field is attenuated if the down conductor is moved to a column in the building. The field can be reduced further if the down conductor is housed in an earthed metal pipe. Recommendations for protecting critical equipment against lightning-induced magnetic fields are also provided in the paper.

  14. Field angle dependence of voltage-induced ferromagnetic resonance under DC bias voltage

    International Nuclear Information System (INIS)

    Shiota, Yoichi; Miwa, Shinji; Tamaru, Shingo; Nozaki, Takayuki; Kubota, Hitoshi; Fukushima, Akio; Suzuki, Yoshishige; Yuasa, Shinji

    2016-01-01

    We studied the rectification function of microwaves in CoFeB/MgO-based magnetic tunnel junctions using voltage-induced ferromagnetic resonance (FMR). Our findings reveal that the shape of the structure of the spectrum depends on the rotation angle of the external magnetic field, providing clear evidence that FMR dynamics are excited by voltage-induced magnetic anisotropy changes. Further, enhancement of the rectified voltage was demonstrated under a DC bias voltage. In our experiments, the highest microwave detection sensitivity obtained was 350 mV/mW, at an RF frequency of 1.0 GHz and field angle of θ_H=80°, ϕ_H=0°. The experimental results correlated with those obtained via simulation, and the calculated results revealed the magnetization dynamics at the resonance state. - Highlights: • Examined voltage-induced ferromagnetic resonance (FMR) under various field angles. • FMR dynamics are excited by voltage-induced magnetic anisotropy changes. • Microwave detection sensitivity depends on input RF and elevation angle. • Microwave detection sensitivity=350 mV/mW at RF=1.0 GHz, θ_H=80°, ϕ_H=0°.

  15. Field emission properties of an array of pyramidal structures

    Energy Technology Data Exchange (ETDEWEB)

    De Assis, Thiago A [Departamento de QuImica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Borondo, F [Departamento de QuImica, Instituto Mixto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); De Castilho, C M C; Brito Mota, F [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador, BA (Brazil); Benito, R M, E-mail: t.albuquerque@uam.e, E-mail: f.borondo@uam.e, E-mail: caio@ufba.b, E-mail: fbmota@ufba.b, E-mail: rosamaria.benito@upm.e [Grupo de Sistemas Complejos, Departamento de Fisica y Mecanica, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2009-10-07

    The properties and efficiency of the emission current density produced by a metallic array of pyramidal structures are investigated. The theoretical results obtained by numerical integration of the corresponding Laplace equation using a finite differences scheme offer useful information for the optimization of field emission devices based on cathodes with this geometry. Our study shows that the inter-pyramidal distance strongly affects the current density, and even more important for this issue is the protrusion characteristics of these structures. Another relevant, although less important, parameter determining this density is the anode-cathode distance. The effect of the array characteristics on the maximum local electric field intensity is also discussed.

  16. Aerodynamic structures and processes in rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.

    2007-01-01

    . Experimental measurements consisted of surface pressure data statistics used to infer sectional boundary layer state and to quantify normal force levels. Computed predictions included high-resolution boundary layer topologies and detailed above-surface flow field structures. This synergy was exploited...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

  17. Periodical plasma structures controlled by external magnetic field

    Science.gov (United States)

    Schweigert, I. V.; Keidar, M.

    2017-06-01

    The characteristics of two-dimensional periodical structures in a magnetized plasma are studied using kinetic simulations. Ridges (i.e. spikes in electron and ion density) are formed and became more pronounced with an increase of magnetic field incidence angle in the plasma volume in the cylindrical chamber. These ridges are shifted relative to each other, which results in the formation of a two-dimensional double-layer structure. Depending on Larmor radius and Debye length up to 19 potential steps appear across the oblique magnetic field. The electrical current gathered into the channels is associated with the electron and ion density ridges.

  18. Analysis of induced seismicity at The Geysers geothermal field, California

    Science.gov (United States)

    Emolo, A.; Maercklin, N.; Matrullo, E.; Orefice, A.; Amoroso, O.; Convertito, V.; Sharma, N.; Zollo, A.

    2012-12-01

    Fluid injection, steam extraction, and reservoir stimulation in geothermal systems lead to induced seismicity. While in rare cases induced events may be large enough to pose a hazard, on the other hand the microseismicity provides information on the extent and the space-time varying properties of the reservoir. Therefore, microseismic monitoring is important, both for mitigation of unwanted effects of industrial operations and for continuous assessment of reservoir conditions. Here we analyze induced seismicity at The Geysers geothermal field in California, a vapor-dominated field with the top of the main steam reservoir some 1-3 km below the surface. Commercial exploitation began in the 1960s, and the seismicity increased with increasing field development. We focus our analyses on induced seismicity recorded between August 2007 and October 2011. Our calibrated waveform database contains some 15000 events with magnitudes between 1.0 and 4.5 and recorded by the LBNL Geysers/Calpine surface seismic network. We associated all data with events from the NCEDC earthquake catalog and re-picked first arrival times. Using selected events with at least 20 high-quality P-wave picks, we determined a minimum 1-D velocity model using VELEST. A well-constrained P-velocity model shows a sharp velocity increase at 1-2 km depth (from 3 to 5 km/s) and then a gradient-like trend down to about 5 km depth, where velocities reach values of 6-7 km/s. The station corrections show coherent, relatively high, positive travel time delays in the NW zone, thus indicating a strong lateral variation of the P-wave velocities. We determined an average Vp-to-Vs ratio of 1.67, which is consistent with estimates from other authors for the same time period. The events have been relocated in the new model using a non-linear probabilistic methods. The seismicity appears spatially diffused in a 15x10 km2 area elongated in NW-SE direction, and earthquake depths range between 0 and 6 km. As in previous

  19. Computation of wave fields and soil structure interaction

    International Nuclear Information System (INIS)

    Lysmer, J.W.

    1982-01-01

    The basic message of the lecture is that the determination of the temporal and spatial variation of the free-field motions is the most important part of any soil-structure interaction analysis. Any interaction motions may be considered as small aberrations superimposed on the free-field motions. The current definition of the soil-structure interaction problem implies that superposition must be used, directly or indirectly, in any rational method of analysis of this problem. This implies that the use of nonlinear procedures in any part of a soil-structure interaction analysis must be questioned. Currently the most important part of the soil-structure interaction analysis, the free-field problem, cannot be solved by nonlinear methods. Hence, it does not seem reasonable to spend a large effort on trying to obtain nonlinear solutions for the interaction part of the problem. Even if such solutions are obtained they cannot legally be superimposed on the free-field motions to obtain the total motions of the structure. This of course does not preclude the possibility that such an illegal procedure may lead to solutions which are close enough for engineering purposes. However, further research is required to make a decision on this issue

  20. Field reconstruction and estimation of the antenna support structure effect on the measurement uncertainty of the BTS1940 antenna

    DEFF Research Database (Denmark)

    Cappellin, Cecilia; Pivnenko, Sergey

    2014-01-01

    the effect of the support structure on the measured field, by reconstructing the currents induced on the support frame with DIATOOL. The field obtained by filtering these currents is presented. Moreover, the spatial resolution obtained by the 3D reconstruction is discussed and compared with the one obtained...

  1. Structural analysis of TFTR toroidal field coil conceptual design

    International Nuclear Information System (INIS)

    Smith, R.A.

    1975-10-01

    The conceptual design evaluation of the V-shaped toroidal field coils on the Tokamak Fusion Test Reactor has been performed by detailed structural analysis with the finite element method. The innovation provided by this design and verified in this work is the capability to support toroidal field loads while simultaneously performing the function of twist restraint against the device axial torques resulting from the vertical field loads. The evaluations made for the conceptual design provide predictions for coil deflections and stresses. The results are available for the separate effects from toroidal fields, poloidal fields, and the thermal expansion of the coils as well as for the superposition of the primary loads and the primary plus thermal loads

  2. Inhomogeneous field induced magnetoelectric effect in Mott insulators

    Energy Technology Data Exchange (ETDEWEB)

    Boulaevskii, Lev N [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We consider a Mott insulator like HoMnO{sub 3} whose magnetic lattice is geometrically frustrated and comprises a 3D array of triangular layers with magnetic moments ordered in a 120{sup o} structure. We show that the effect of a uniform magnetic field gradient, {gradient}H, is to redistribute the electronic charge of the magnetically ordered phase leading to a unfirom electric field gradient. The resulting voltage difference between the crystal edges is proportional to the square of the crystal thickness, or inter-edge distance, L. It can reach values of several volts for |{gradient}H| {approx} 0.01 T/cm and L {approx_equal} 1mm, as long as the crystal is free of antiferromagnetic domain walls.

  3. Relaxation dispersion in MRI induced by fictitious magnetic fields.

    Science.gov (United States)

    Liimatainen, Timo; Mangia, Silvia; Ling, Wen; Ellermann, Jutta; Sorce, Dennis J; Garwood, Michael; Michaeli, Shalom

    2011-04-01

    A new method entitled Relaxation Along a Fictitious Field (RAFF) was recently introduced for investigating relaxations in rotating frames of rank ≥ 2. RAFF generates a fictitious field (E) by applying frequency-swept pulses with sine and cosine amplitude and frequency modulation operating in a sub-adiabatic regime. In the present work, MRI contrast is created by varying the orientation of E, i.e. the angle ε between E and the z″ axis of the second rotating frame. When ε > 45°, the amplitude of the fictitious field E generated during RAFF is significantly larger than the RF field amplitude used for transmitting the sine/cosine pulses. Relaxation during RAFF was investigated using an invariant-trajectory approach and the Bloch-McConnell formalism. Dipole-dipole interactions between identical (like) spins and anisochronous exchange (e.g., exchange between spins with different chemical shifts) in the fast exchange regime were considered. Experimental verifications were performed in vivo in human and mouse brain. Theoretical and experimental results demonstrated that changes in ε induced a dispersion of the relaxation rate constants. The fastest relaxation was achieved at ε ≈ 56°, where the averaged contributions from transverse components during the pulse are maximal and the contribution from longitudinal components are minimal. RAFF relaxation dispersion was compared with the relaxation dispersion achieved with off-resonance spin lock T(₁ρ) experiments. As compared with the off-resonance spin lock T(₁ρ) method, a slower rotating frame relaxation rate was observed with RAFF, which under certain experimental conditions is desirable. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Torsional structural response from free-field ground motion

    International Nuclear Information System (INIS)

    Lam, P.C.; Scavuzzo, R.J.

    1979-01-01

    Torsional response of structures subjected to the action of both the free-field torsional inputs and external torque is investigated. By expanding the work of Scanlan, both lateral and torsional foundation inputs due to a travelling shear wave are derived from the free-field point motion. These free-field torsional motions are used as the basis of numerical studies. Response for different soil stiffness and structural characteristics are studied, as well as different dynamic models. In one dynamic model the structure is coupled to the soil using a compliance spring matrix and in the second model the structure coupled to an elastic half-space. Results of these two basic models are compared and found to be in good agreement. Finally, torsional structural response caused by torsional inputs is compared with lateral response caused by modified lateral inputs to determine the significance of torsional excitation on the seismic response of building structures. Numerical results show that these torsional seismic loads are as large or larger than those from modified lateral inputs. (orig.)

  5. Wind-Induced Fatigue Analysis of High-Rise Steel Structures Using Equivalent Structural Stress Method

    Directory of Open Access Journals (Sweden)

    Zhao Fang

    2017-01-01

    Full Text Available Welded beam-to-column connections of high-rise steel structures are susceptive to fatigue damage under wind loading. However, most fatigue assessments in the field of civil engineering are mainly based on nominal stress or hot spot stress theories, which has the disadvantage of dependence on the meshing styles and massive curves selected. To address this problem, in this paper, the equivalent structural stress method with advantages of mesh-insensitive quality and capability of unifying different stress-life curves (S-N curves into one is introduced to the wind-induced fatigue assessment of a large-scale complicated high-rise steel structure. The multi-scale finite element model is established and the corresponding wind loading is simulated. Fatigue life assessments using equivalent structural stress method, hot spot stress method and nominal stress method are performed, and the results are verified and comparisons are made. The mesh-insensitive quality is also verified. The results show that the lateral weld toe of the butt weld connecting the beam flange plate and the column is the location where fatigue damage most likely happens. Nominal stress method considers fatigue assessment of welds in a more global way by averaging all the stress on the weld section while in equivalent structural stress method and hot spot method local stress concentration can be taken into account more precisely.

  6. Applying inversion techniques to derive source currents and geoelectric fields for geomagnetically induced current calculations

    Directory of Open Access Journals (Sweden)

    J. S. de Villiers

    2014-10-01

    Full Text Available This research focuses on the inversion of geomagnetic variation field measurement to obtain source currents in the ionosphere. During a geomagnetic disturbance, the ionospheric currents create magnetic field variations that induce geoelectric fields, which drive geomagnetically induced currents (GIC in power systems. These GIC may disturb the operation of power systems and cause damage to grounded power transformers. The geoelectric fields at any location of interest can be determined from the source currents in the ionosphere through a solution of the forward problem. Line currents running east–west along given surface position are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground having the magnetic north and down components, and the electric east component. Ionospheric currents are modelled by inverting Fourier integrals (over the wavenumber of elementary geomagnetic fields using the Levenberg–Marquardt technique. The output parameters of the inversion model are the current strength, height and surface position of the ionospheric current system. A ground conductivity structure with five layers from Quebec, Canada, based on the Layered-Earth model is used to obtain the complex skin depth at a given angular frequency. This paper presents preliminary and inversion results based on these structures and simulated geomagnetic fields. The results show some interesting features in the frequency domain. Model parameters obtained through inversion are within 2% of simulated values. This technique has applications for modelling the currents of electrojets at the equator and auroral regions, as well as currents in the magnetosphere.

  7. Studying the field induced breakup of acoustically levitated drops

    Science.gov (United States)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of

  8. Field investigation of mining-induced seismicity on local geohydrology

    International Nuclear Information System (INIS)

    Hsiung, S.M.; Chowdhury, A.H.; Philip, J.; Blake, W.

    1993-01-01

    Hydraulic response of the rock mass due to earthquakes is one of the concerns in the assessment of the long-term performance of a repository. Studies performed by other researchers indicated no systematic difference between natural earthquakes and mining-induced seismic events. The purpose of this field study at the Lucky Friday Mine is intended to obtain a better understanding regarding the local geohydrologic changes due to mining-induced seismicity and to evaluate analytical methods for simulation of these changes. Three saturated zones with faults and vein features were packed-off along a borehole drilled at approximately 20 degrees downward in a southerly direction from a depth about 1,737 m (5,700 ft) below surface for water pressure monitoring. The response of water pressure change to mine seismicity is found to be more pronounced in Zone 3, which contains the Lucky Friday Main Vein, than Zone 2, with the South Control Fault, and Zone 1, with the associated fractures parallel to the South Control Fault. The maximum observed pressure increase in Zone 3 was about 1.53 x 10 -2 MPa (2.22 psi) due to a seismic event of Richter drops in Zone 1 resulting from a number of seismic events are suspected to be related to slips along the associated fractures of the South Control Fault, or the South Control Fault itself, which initiated the seismic events. Water pressure increase in Zone 3 was found to be a function of event magnitude and distance

  9. A Yang-Mills structure for string field theory

    International Nuclear Information System (INIS)

    Tsousheung Tsun

    1990-01-01

    String theorists believe that one way to achieve a fully quantized theory of string is through string field theory. The other way is to study conformal field theory on Riemann surfaces of different genera, which is the subject of many of the talks at this Conference. In a way, string field theory is the more conservative approach, since it aims just to replace the spacetime points of conventional quantum field theory by string, which are extended objects. However, from this point of view string theory has one rather unsatisfactory aspect, in the sense that although it has been very well developed and minutely studied, we are still rather unclear about its basic structure. We can contrast this to both general relativity, which is based on the geometry of spacetime, and to gauge theory, which is about the structure of various natural bundles over spacetime. And yet string theory is supposed to embody both these two essentially geometric theories. To paraphrase Witten, in string theory we seem to have to work backwards to get at the still unknown basic structure. Some joint work with Chan Hong-Mo is reported in an attempt to gain some understanding in that general direction. It seems that one could in some sense consider string field theory as a generalized Yang-Mills theory. This idea is explored. (author)

  10. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  11. Fine structure of fields in 2D photonic crystal waveguides

    DEFF Research Database (Denmark)

    Lavrinenko, Andrei; Volkov, V. S.; Bozhevolnyi, S. I.

    2006-01-01

    We resolve fine structure of fields in a single-row missing photonic crystal waveguide by finite-difference time-domain modelling and SNOM measurements. Both linear dispersion and slow-light regimes in proximity of the cutoff are addressed in the analysis....

  12. Giant Magnetic Field Enhancement in Hybridized MIM Structures

    KAUST Repository

    Alrasheed, Salma; Di Fabrizio, Enzo M.

    2017-01-01

    We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM

  13. From quantum fields to fractal structures: intermittency in particle physics

    International Nuclear Information System (INIS)

    Peschanski, R.

    1991-01-01

    Some features and theoretical interpretations of the intermittency phenomenon observed in high-energy multi-particle production are recalled. One develops on the various connections found with fractal structuration of fluctuations in turbulence, spin-glass physics and aggregation phenomena described by the non-linear Smoluchowski equation. This may lead to a new approach to quantum field properties

  14. Self-consistent mean-field models for nuclear structure

    International Nuclear Information System (INIS)

    Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard

    2003-01-01

    The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications

  15. Optical properties of a multibarrier structure under intense laser fields

    Science.gov (United States)

    Ospina, D. A.; Akimov, V.; Mora-Ramos, M. E.; Morales, A. L.; Tulupenko, V.; Duque, C. A.

    2015-11-01

    Using the diagonalization method and within the effective mass and parabolic band approximations, the energy spectrum and the wave functions are investigated in biased multibarrier structure taking into account the effects of nonresonant intense laser fields. We calculated the optical properties from the susceptibility using a nonperturbative formalism recently reported. We study the changes in the intersubband optical absorption coefficients and refraction index for several values of the dressing laser parameter and for some specific values of the electric field applied along the growth direction of the heterostructure. It is concluded from our study that the peaks in the optical absorption spectrum have redshifts or blueshifts as a function of the laser parameter and the electric field. These parameters could be suitable tools for tuning the electronic and optical properties of the multibarrier structure.

  16. Effects of ion-neutral chemical reactions on dynamics of lightning-induced electric field

    International Nuclear Information System (INIS)

    Hiraki, Yasutaka

    2009-01-01

    Secondary lightning phenomena in the upper atmosphere called sprites attract interest from the viewpoint of atomic-molecular and plasma physics. Lightning-induced electric field accelerates the ionospheric electrons up to tens of electron-volts, inducing electrical breakdown as well as strong optical emissions, through electron impact ionization of molecules. A large-scale structure of sprites is constructed by collective dynamics of filamentary streamer discharges in a rarified gas, which in turn is controlled by the distribution of the background electric field. In this paper, we firstly reanalyze the relationship between quasi-static field formation and local ion chemistry with first-order perturbation techniques. Secondly, we investigate with a full ion chemical model the effects of electron attachment to oxygen molecules on its density in moderate cases of undervoltage lightning electric fields rather than the cases of intense ionization in streamers. We estimate the minimum values that are provided by the chemical balance with electron detachment from negative ions. We also investigate the recovery timescale of the electron density and find that the scale (≥1 s) is occasionally much larger than the interval of each lightning stroke (∼10 ms). We suggest that the subsequent sprite event as well as the field formation could be well affected by the ghost of the primary event. We discuss further the negative ion chemistry triggered by electron attachment in the nighttime mesosphere.

  17. Phase diagram of structure of radial electric field in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2002-01-01

    A set of transport equations in toroidal helical plasmas is analyzed, including the bifurcation of the radial electric field. Multiple solutions of E r for the ambipolar condition induces domains of different electric polarities. A structure of the domain interface is analyzed and a phase diagram is obtained in the space of the external control parameters. The region of the reduction of the anomalous transport is identified. (author)

  18. Electromagnetically induced transparency resonances inverted in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sargsyan, A.; Sarkisyan, D., E-mail: davsark@yahoo.com, E-mail: david@ipr.sci.am [National Academy of Sciences of Armenia, Institute for Physical Research (Armenia); Pashayan-Leroy, Y.; Leroy, C. [Université de Bourgogne-Dijon, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS (France); Cartaleva, S. [Bulgarian Academy of Sciences, Institute of Electronics (Bulgaria); Wilson-Gordon, A. D. [Bar-Ilan University Ramat Gan, Department of Chemistry (Israel); Auzinsh, M. [University of Latvia, Department of Physics (Latvia)

    2015-12-15

    The phenomenon of electromagnetically induced transparency (EIT) is investigated in a Λ-system of the {sup 87}Rb D{sub 1} line in an external transverse magnetic field. Two spectroscopic cells having strongly different values of the relaxation rates γ{sub rel} are used: an Rb cell with antirelaxation coating (L ∼ 1 cm) and an Rb nanometric- thin cell (nanocell) with a thickness of the atomic vapor column L = 795 nm. For the EIT in the nanocell, we have the usual EIT resonances characterized by a reduction in the absorption (dark resonance (DR)), whereas for the EIT in the Rb cell with an antirelaxation coating, the resonances demonstrate an increase in the absorption (bright resonances (BR)). We suppose that such an unusual behavior of the EIT resonances (i.e., the reversal of the sign from DR to BR) is caused by the influence of an alignment process. The influence of alignment strongly depends on the configuration of the coupling and probe frequencies as well as on the configuration of the magnetic field.

  19. Extreme Value Analysis of Induced Geoelectric Field in South Africa

    Science.gov (United States)

    Lotz, S. I.; Danskin, D. W.

    2017-10-01

    Extreme geomagnetic disturbances occur rarely but can have great impact on technological systems such as power supply networks. Long-term planning for extreme events requires the estimation of event impact for occurrence periods greater than the length of observed data. With this in mind an analysis of extreme geomagnetic events observed in South Africa (middle geomagnetic latitude) is performed over four solar cycles (1974-2015). An algorithm to identify active periods with minimum SYM-H ≤-100 nT is demonstrated. The sum of induced electric field over the course of each event is used to characterize the severity of each active period. It is found that the severity index (accumulated electric field magnitude ΣE) shares a highly linear relationship with accumulated SYM-H over each event. The index ΣE is lognormal distributed, with tail deviating greater than lognormal, confirming heavy-tailed occurrence. A general Pareto distribution is fitted to the tail of the distribution and extrapolated to calculate the return levels of extreme events. Return levels of once in 100 and once in 200 year events are estimated to be 9.4 × 104 mV/km min and 1.09 × 105 mV/km min, respectively. The top three events, in ascending order of severity, are the March 1989 storm, the events of late October 2003, and the April 1994 event—a long interval of coronal-hole driven disturbances, bookended by two intense geomagnetic storms.

  20. Proposal for a magnetic field induced graphene dot

    International Nuclear Information System (INIS)

    Maksym, P A; Roy, M; Craciun, M F; Russo, S; Yamamoto, M; Tarucha, S; Aoki, H

    2010-01-01

    Quantum dots induced by a strong magnetic field applied to a single layer of graphene in the perpendicular direction are investigated. The dot is defined by a model potential which consists of a well of depth ΔV relative to a flat asymptotic part and quantum states formed from the zeroth Landau level are considered. The energy of the dot states cannot be lower than -ΔV relative to the asymptotic potential. Consequently, when ΔV is chosen to be about half of the gap between the zeroth and first Landau levels, the dot states are isolated energetically in the gap between Landau level 0 and Landau level -1. This is confirmed with numerical calculations of the magnetic field dependent energy spectrum and the quantum states. Remarkably, an antidot formed by reversing the sign of ΔV also confines electrons but in the energy region between Landau level 0 and Landau level +1. This unusual behaviour gives an unambiguous signal of the novel physics of graphene quantum dots.

  1. Analysis of Wave Fields induced by Offshore Pile Driving

    Science.gov (United States)

    Ruhnau, M.; Heitmann, K.; Lippert, T.; Lippert, S.; von Estorff, O.

    2015-12-01

    Impact pile driving is the common technique to install foundations for offshore wind turbines. With each hammer strike the steel pile - often exceeding 6 m in diameter and 80 m in length - radiates energy into the surrounding water and soil, until reaching its targeted penetration depth. Several European authorities introduced limitations regarding hydroacoustic emissions during the construction process to protect marine wildlife. Satisfying these regulations made the development and application of sound mitigation systems (e.g. bubble curtains or insulation screens) inevitable, which are commonly installed within the water column surrounding the pile or even the complete construction site. Last years' advances have led to a point, where the seismic energy tunneling the sound mitigation systems through the soil and radiating back towards the water column gains importance, as it confines the maximum achievable sound mitigation. From an engineering point of view, the challenge of deciding on an effective noise mitigation layout arises, which especially requires a good understanding of the soil-dependent wave field. From a geophysical point of view, the pile acts like a very unique line source, generating a characteristic wave field dominated by inclined wave fronts, diving as well as head waves. Monitoring the seismic arrivals while the pile penetration steadily increases enables to perform quasi-vertical seismic profiling. This work is based on datasets that have been collected within the frame of three comprehensive offshore measurement campaigns during pile driving and demonstrates the potential of seismic arrivals induced by pile driving for further soil characterization.

  2. Evaluation of blast-induced vibration effects on structures 1

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Rim; Jeon, Gyu Shick; Lee, Dae Soo; Joo, Kwang Ho; Lee, Woong Keon [Korea Electrotechnology Research Inst., Changwon (Korea, Republic of); Ryu, Chang Ha; Chung, So Keul; Lee, Kyung Won; Shin, Hee Soon; Chun, Sun Woo; Park, Yeon Jun; Synn, Joong Ho; Choi, Byung Hee [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-31

    Due to the difficulties of obtaining construction site for new plants, following ones are inevitably being built in the site adjacent to existing power plants. Therefore considerable thought has been recently given to the dynamic loading generated by blasting works near the plants to maintain the safety of structures and facilities in power plants. Our own standard for safety level of blast vibration is not prepared yet, and foreign standards have been generally employed without theoretical and experimental verification. Safety-related structures of power plants and facilities have to be protected against the effects of possible hazards due to blast vibration. Earthquakes have been considered a major dynamic design loading as a requirement of plant design, but the effects of blast-induced vibration are not. In order to ensure the safety, rational safe criterion should be established and blast design should be satisfy it, which requires the development of a model for prediction of vibration level through more systematic measurement and analysis. The main objectives of the study are : to provide background data for establishing the rational safe vibration limits, to develop models for prediction of blast vibration level, to establish safe blast design criterion, and to accumulate techniques for field measurements, data acquisition and analysis (author). 80 refs., 347 figs.

  3. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    Science.gov (United States)

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  4. Terahertz radiation-induced sub-cycle field electron emission across a split-gap dipole antenna

    International Nuclear Information System (INIS)

    Zhang, Jingdi; Averitt, Richard D.; Zhao, Xiaoguang; Fan, Kebin; Wang, Xiaoning; Zhang, Xin; Zhang, Gu-Feng; Geng, Kun

    2015-01-01

    We use intense terahertz pulses to excite the resonant mode (0.6 THz) of a micro-fabricated dipole antenna with a vacuum gap. The dipole antenna structure enhances the peak amplitude of the in-gap THz electric field by a factor of ∼170. Above an in-gap E-field threshold amplitude of ∼10 MV/cm −1 , THz-induced field electron emission is observed as indicated by the field-induced electric current across the dipole antenna gap. Field emission occurs within a fraction of the driving THz period. Our analysis of the current (I) and incident electric field (E) is in agreement with a Millikan-Lauritsen analysis where log (I) exhibits a linear dependence on 1/E. Numerical estimates indicate that the electrons are accelerated to a value of approximately one tenth of the speed of light

  5. Implications of confining force field structures in hard hadronic processes

    International Nuclear Information System (INIS)

    Bengtsson, H.-U.

    1983-04-01

    This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)

  6. Structural evolution, electrical properties and electric-field-induced changes of (0.8-x)PbTiO{sub 3}-xBiFeO{sub 3}-0.2BaZrO{sub 3} system near the morphotropic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yongxing; Jin, Changqing; Ye, Pin; Xu, Gang [Xi' an Technological University, School of Materials and Chemical Engineering, Xi' an (China); Li, Peng [Northwest Institute For Nonferrous Metal Research, Xi' an (China); Zeng, Yiming [Kunming Institute of Precious Metals, State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Kunming (China)

    2017-04-15

    The crystal structures, piezoelectric property, dielectric transition and electric-field-induced changes in the structures and dielectric constant of (0.8-x)PbTiO{sub 3}-xBiFeO{sub 3}-0.2BaZrO{sub 3} (0.3 ≤ x ≤ 0.4) ceramics near the morphotropic phase boundary have been studied. All the ceramics could be indexed on the base of a tetragonal symmetry. The increasing concentration of BiFeO{sub 3} induces a reduction in the c/a ratio, ranged from 1.022 for x = 0.3 to 1.007 for x = 0.4. Accordingly, the piezoelectric coefficient (d{sub 33}) reaches a maximum value at x = 0.34 (d{sub 33}, 138 pC/N). A relaxor-type dielectric anomaly could be found for all the ceramics. The temperature of the maximum dielectric constant (T{sub m}) at 1 MHz and the degree of the diffuseness for the dielectric anomaly (δ) increase with BiFeO{sub 3} concentration, from 544 and 96 K for x = 0.3 to 574 and 154 K for x = 0.4. After poling, the ceramic for x = 0.34 shows an increase in the c/a ratio and an obvious decrease in the dielectric constant. (orig.)

  7. Electric field-induced valley degeneracy lifting in uniaxial strained graphene: Evidence from magnetophonon resonance

    Science.gov (United States)

    Assili, Mohamed; Haddad, Sonia; Kang, Woun

    2015-03-01

    A double peak structure in the magnetophonon resonance (MPR) spectrum of uniaxial strained graphene, under crossed electric and magnetic fields, is predicted. We focus on the Γ point optical phonon modes coupled to the inter-Landau level transitions 0 ⇆±1 where MPR is expected to be more pronounced at high magnetic field. We derive the frequency shifts and the broadenings of the longitudinal and transverse optical phonon modes taking into account the effect of the strain modified electronic spectrum on the electron-phonon coupling. We show that the MPR line for a given phonon mode acquires a double peak structure originating from the twofold valley degeneracy lifting. The latter is due to the different Landau level spacings in the two Dirac valleys resulting from the simultaneous action of the inplane electric field and the strain-induced Dirac cone tilt. We discuss the role of some key parameters such as disorder, strain, doping, and electric field amplitude on the emergence of the double peak structure.

  8. Structural analyses of ITER toroidal field coils under fault conditions

    International Nuclear Information System (INIS)

    Jong, C.T.J.

    1992-04-01

    ITER (International Thermonuclear Experimental Reactor) is intended to be an experimental thermonuclear tokamak reactor testing the basic physics performance and technologies essential to future fusion reactors. The magnet system of ITER consists essentially of 4 sub-systems, i.e. toroidal field coils (TFCs), poloidal field coils (PFCs), power supplies, and cryogenic supplies. These subsystems do not contain significant radioactivity inventories, but the large energy inventory is a potential accident initiator. The aim of the structural analyses is to prevent accidents from propagating into vacuum vessel, tritium system and cooling system, which all contain significant amounts of radioactivity. As part of design process 3 conditions are defined for PF and TF coils, at which mechanical behaviour has to be analyzed in some detail, viz: normal operating conditions, upset conditions and fault conditions. This paper describes the work carried out by ECN to create a detailed finite element model of 16 TFCs as well as results of some fault condition analyses made with the model. Due to fault conditions, either electrical or mechanical, magnetic loading of TFCs becomes abnormal and further mechanical failure of parts of the overall structure might occur (e.g. failure of coil, gravitational supports, intercoil structure). The analyses performed consist of linear elastic stress analyses and electro-magneto-structural analyses (coupled field analyses). 8 refs.; 5 figs.; 5 tabs

  9. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  10. Transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure

    International Nuclear Information System (INIS)

    Wang Zhigang; Zheng Zhiren; Yu Junhua

    2007-01-01

    The transient gain property of a weak probe field in an asymmetric semiconductor coupled double quantum well structure is reported. The transient process of the system, which is induced by the external coherent coupling field, shows the property of no inverse gain. We find that the transient behavior of the probe field can be tuned by the change of tunneling barrier. Both the amplitude of the transient gain and the frequency of the oscillation can be affected by the lifetime broadening

  11. The local structure of a Liouville vector field

    International Nuclear Information System (INIS)

    Ciriza, E.

    1990-05-01

    In this work we investigate the local structure of a Liouville vector field ξ of a Kaehler manifold (P,Ω) which vanishes on an isotropic submanifold Q of P. Some of the eigenvalues of its linear part at the singular points are zero and the remaining ones are in resonance. We show that there is a C 1 -smooth linearizing conjugation between the Liouville vector field ξ and its linear part. To do this we construct Darboux coordinates adapted to the unstable foliation which is provided by the Centre Manifold Theorem. We then apply recent linearization results due to G. Sell. (author). 11 refs

  12. The fixed point structure of lattice field theories

    International Nuclear Information System (INIS)

    Baier, R.; Reusch, H.J.; Lang, C.B.

    1989-01-01

    Monte-Carlo renormalization group methods allow to analyze lattice regularized quantum field theories. The properties of the quantized field theory in the continuum may be recovered at a critical point of the lattice model. This requires a study of the phase diagram and the renormalization flow structure of the coupling constants. As an example the authors discuss the results of a recent MCRG investigation of the SU(2) adjoint Higgs model, where they find evidence for the existence of a tricritical point at finite values of the inverse gauge coupling β

  13. MAGNETIC FIELD IN ATYPICAL PROMINENCE STRUCTURES: BUBBLE, TORNADO, AND ERUPTION

    Energy Technology Data Exchange (ETDEWEB)

    Levens, P. J.; Labrosse, N. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, F-92195 Meudon (France); López Ariste, A. [IRAP—CNRS UMR 5277, 14, Av. E. Belin, F-31400 Toulouse (France); Dalmasse, K. [CISL/HAO, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Gelly, B., E-mail: p.levens.1@research.gla.ac.uk, E-mail: brigitte.schmieder@obspm.fr [CNRS UMR 3718 THEMIS, La Laguna, Tenerife (Spain)

    2016-08-01

    Spectropolarimetric observations of prominences have been obtained with the THEMIS telescope during four years of coordinated campaigns. Our aim is now to understand the conditions of the cool plasma and magnetism in “atypical” prominences, namely when the measured inclination of the magnetic field departs, to some extent, from the predominantly horizontal field found in “typical” prominences. What is the role of the magnetic field in these prominence types? Are plasma dynamics more important in these cases than the magnetic support? We focus our study on three types of “atypical” prominences (tornadoes, bubbles, and jet-like prominence eruptions) that have all been observed by THEMIS in the He i D{sub 3} line, from which the Stokes parameters can be derived. The magnetic field strength, inclination, and azimuth in each pixel are obtained by using the inversion method of principal component analysis on a model of single scattering in the presence of the Hanle effect. The magnetic field in tornadoes is found to be more or less horizontal, whereas for the eruptive prominence it is mostly vertical. We estimate a tendency toward higher values of magnetic field strength inside the bubbles than outside in the surrounding prominence. In all of the models in our database, only one magnetic field orientation is considered for each pixel. While sufficient for most of the main prominence body, this assumption appears to be oversimplified in atypical prominence structures. We should consider these observations as the result of superposition of multiple magnetic fields, possibly even with a turbulent field component.

  14. Secondary Structure of Rat and Human Amylin across Force Fields.

    Directory of Open Access Journals (Sweden)

    Kyle Quynn Hoffmann

    Full Text Available The aggregation of human amylin has been strongly implicated in the progression of Type II diabetes. This 37-residue peptide forms a variety of secondary structures, including random coils, α-helices, and β-hairpins. The balance between these structures depends on the chemical environment, making amylin an ideal candidate to examine inherent biases in force fields. Rat amylin differs from human amylin by only 6 residues; however, it does not form fibrils. Therefore it provides a useful complement to human amylin in studies of the key events along the aggregation pathway. In this work, the free energy of rat and human amylin was determined as a function of α-helix and β-hairpin content for the Gromos96 53a6, OPLS-AA/L, CHARMM22/CMAP, CHARMM22*, Amberff99sb*-ILDN, and Amberff03w force fields using advanced sampling techniques, specifically bias exchange metadynamics. This work represents a first systematic attempt to evaluate the conformations and the corresponding free energy of a large, clinically relevant disordered peptide in solution across force fields. The NMR chemical shifts of rIAPP were calculated for each of the force fields using their respective free energy maps, allowing us to quantitatively assess their predictions. We show that the predicted distribution of secondary structures is sensitive to the choice of force-field: Gromos53a6 is biased towards β-hairpins, while CHARMM22/CMAP predicts structures that are overly α-helical. OPLS-AA/L favors disordered structures. Amberff99sb*-ILDN, AmberFF03w and CHARMM22* provide the balance between secondary structures that is most consistent with available experimental data. In contrast to previous reports, our findings suggest that the equilibrium conformations of human and rat amylin are remarkably similar, but that subtle differences arise in transient alpha-helical and beta-strand containing structures that the human peptide can more readily adopt. We hypothesize that these transient

  15. Experimental study of induced staggered magnetic fields in dysprosium gallium garnet (DGG)

    International Nuclear Information System (INIS)

    Steiner, M.; Corliss, L.M.; Hastings, J.M.; Blume, M.; Giordano, N.; Wolf, W.P.

    1979-01-01

    Neutron diffraction techniques have been used to study induced staggered magnetic field effects in DGG. The application of a uniform magnetic field at temperatures much greater than the Neel temperature induces a significant amount of antiferromagnetic order. The temperature and field dependences of this effect are in good agreement with recent theoretical predicions

  16. Structure fields in the solidifying cast iron roll

    Directory of Open Access Journals (Sweden)

    W.S. Wołczyński

    2010-01-01

    Full Text Available Some properties of the rolls depend on the ratio of columnar structure area to equiaxed structure area created during roll solidification. The transition is fundamental phenomenon that can be apply to characterize massive cast iron rolls produced by the casting house. As the first step of simulation, a temperature field for solidifying cast iron roll was created. The convection in the liquid is not comprised since in the first approximation, the convection does not influence the studied occurrence of the (columnar to equiaxed grains transition in the roll. The obtained temperature field allows to study the dynamics of its behavior observed in the middle of the mould thickness. This midpoint of the mould thickness was treated as an operating point for the transition. A full accumulation of the heat in the mould was postulated for the transition. Thus, a plateau at the curve was observed at the midpoint. The range of the plateau existence corresponded to the incubation period , that appeared before fully equiaxed grains formation. At the second step of simulation, behavior of the thermal gradients field was studied. Three ranges within the filed were visible: EC→EC→EC→EC→(tTECtt↔RERCtt↔a/ for the formation of columnar structure (the C – zone: ( and 0>>T&0>>=−>−=REREttGttG.The columnar structure formation was significantly slowed down during incubation period. It resulted from a competition between columnar growth and equiaxed growth expected at that period of time. The 0≈=−=RERCttGttG relationship was postulated to correspond well with the critical thermal gradient, known in the Hunt’s theory. A simulation was performed for the cast iron rolls solidifying as if in industrial condition. Since the incubation divides the roll into two zones: C and E; (the first with columnar structure and the second with fully equiaxed structure some experiments dealing with solidification were made on semi-industrial scale.

  17. Investigation of defect-induced abnormal body current in fin field-effect-transistors

    International Nuclear Information System (INIS)

    Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Yang, Ren-Ya; Cheng, Osbert; Huang, Cheng-Tung

    2015-01-01

    This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal

  18. Mean-field theory of nuclear structure and dynamics

    International Nuclear Information System (INIS)

    Negele, J.W.

    1982-01-01

    The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations are discussed and general theoretical formulations are presented which yield time-dependent mean-field equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utilizing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigenstates, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a number of simple, idealized systems are presented to verify the approximations for solvable problems and to elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped collisions, and fission

  19. MAGNETIC FIELD STRUCTURES TRIGGERING SOLAR FLARES AND CORONAL MASS EJECTIONS

    International Nuclear Information System (INIS)

    Kusano, K.; Bamba, Y.; Yamamoto, T. T.; Iida, Y.; Toriumi, S.; Asai, A.

    2012-01-01

    Solar flares and coronal mass ejections, the most catastrophic eruptions in our solar system, have been known to affect terrestrial environments and infrastructure. However, because their triggering mechanism is still not sufficiently understood, our capacity to predict the occurrence of solar eruptions and to forecast space weather is substantially hindered. Even though various models have been proposed to determine the onset of solar eruptions, the types of magnetic structures capable of triggering these eruptions are still unclear. In this study, we solved this problem by systematically surveying the nonlinear dynamics caused by a wide variety of magnetic structures in terms of three-dimensional magnetohydrodynamic simulations. As a result, we determined that two different types of small magnetic structures favor the onset of solar eruptions. These structures, which should appear near the magnetic polarity inversion line (PIL), include magnetic fluxes reversed to the potential component or the nonpotential component of major field on the PIL. In addition, we analyzed two large flares, the X-class flare on 2006 December 13 and the M-class flare on 2011 February 13, using imaging data provided by the Hinode satellite, and we demonstrated that they conform to the simulation predictions. These results suggest that forecasting of solar eruptions is possible with sophisticated observation of a solar magnetic field, although the lead time must be limited by the timescale of changes in the small magnetic structures.

  20. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    Science.gov (United States)

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  1. Flow-induced vibrations of circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.

    1977-06-01

    The problems of flow-induced vibrations of circular cylindrical structures are reviewed. First, the general method of analysis and classification of structural responses are presented. Then, the presentation is broken up along the lines with stationary fluid, parallel flow, and cross flow. Finally, design considerations and future research needs are pointed out. 234 references

  2. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...... by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may...

  3. The integrable structure of nonrational conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, A. [Steklov Mathematics Institute, St. Petersburg (Russian Federation); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-02-15

    Using the example of Liouville theory, we show how the separation into left- and rightmoving degrees of freedom of a nonrational conformal field theory can be made explicit in terms of its integrable structure. The key observation is that there exist separate Baxter Q-operators for left- and right-moving degrees of freedom. Combining a study of the analytic properties of the Q-operators with Sklyanin's Separation of Variables Method leads to a complete characterization of the spectrum. Taking the continuum limit allows us in particular to rederive the Liouville reflection amplitude using only the integrable structure. (orig.)

  4. Investigation on seasonal variation of thermal-induced strain in flexible pavements based on field and laboratory measurements

    Directory of Open Access Journals (Sweden)

    Simita Biswas

    2016-09-01

    Full Text Available Pavement temperature variation has a large influence on the structural response of flexible pavements. Daily and seasonal temperature fluctuation causes expansion and contraction of pavement material, which then leads to the generation of thermal strain. In this study, field observation and laboratory tests were conducted to investigate seasonal variation of thermal-induced strain in flexible pavement. Field observations were conducted at the Integrated Road Research Facility (IRRF’s test road in Edmonton, Alberta, Canada, which is fully equipped with structural and environmental monitoring instruments. The main objective of the field study was to compare the variation of thermal-induced strain in warm and cold seasons. Field results indicated that thermal-induced strain is 1.4–2.0 times greater in cold seasons than in warm seasons following the same pavement temperature variations; however, strain generation rate was greater in warm seasons. Laboratory testing of asphalt slab and cylindrical samples produced comparable ratios. Moreover, field observation and laboratory testing showed a similar trend of temperature and thermal strain variations. Keywords: Thermal-induced strain, Asphalt strain gauge, Field observation, Flexible pavement, Laboratory testing, Seasonal variation

  5. Structures of conserved currents and mass spectra for scalar fields

    International Nuclear Information System (INIS)

    Shintani, Meiun.

    1979-05-01

    Considering the commutators between a scalar field and a conserved current, we shall clarify the connection between the mass spectrum for a scalar field and the structures of a current. For a special form of currents involving c-number functions, non-invariance of the vacuum under the corresponding transformation entails the existence of a massive mode. It is shown that once a type of currents is specified, the pole structures for sub(o) depend only on c-number parts of J sub(μ)(x). We shall show that non-vanishing Goldstone commutator does not automatically imply the degeneracy of the vacuum state, and discuss the applicability of the Goldstone theorem. (author)

  6. The ternary alloy with a structure of Prussian blue analogs in a transverse field

    International Nuclear Information System (INIS)

    Dely, J.; Bobak, A.

    2007-01-01

    The effects of applied transverse field on transition and compensation temperatures of the AB p C 1-p ternary alloy consisting of spins S A =3/2 , S B =2, and S C =5/2 are investigated by the use of a mean-field theory. The structure and the spin values of the model correspond to the Prussian blue analog of the type (Fe p II Mn 1-p II ) 1.5 [Cr III (CN) 6 ].nH 2 O. We find that two or even three compensation points may be induced by a transverse field for the system with appropriate values of the parameters in the model Hamiltonian. In particular, the influence of a transverse field on the compensation point in the ground state is examined

  7. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    Energy Technology Data Exchange (ETDEWEB)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Ogrodnik, Piotr, E-mail: piotrogr@if.pw.edu.pl [AGH University of Science and Technology, Department of Electronics, Al. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Stobiecki, Feliks [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Dijken, Sebastiaan van [NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Barnaś, Józef [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznań (Poland); Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland)

    2016-08-15

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  8. Magnetic field structures in active compact radio sources

    International Nuclear Information System (INIS)

    Jones, T.W.; Rudnick, L.; Fiedler, R.L.; Aller, H.D.; Aller, M.F.; Hodge, P.E.

    1985-01-01

    The analysis of simultaneous multifrequency linear polarimetry data between 1.4 GHz and 90 GHz for about 20 active, compact radio sources at six epochs from 1977 December 10 1980 July is presented. In addition, monthly 8 Ghz polarization data on the same sources were examined. The general polarization characteristics of these sources can be well described in terms of magnetic fields which are largely turbulent and slightly anisotropic. The magnetic field symmetry axes are generally aligned with the source structural axes on the milli-arcsecond scale (OJ 287 is a notable exception.) Monte Carlo calculations indicate that observed polarization variations and in particular rotator polarization events can be produced in this model as a consequence of random walks generated through evolution of the turbulent magnetic field. 43 references

  9. Giant Magnetic Field Enhancement in Hybridized MIM Structures

    KAUST Repository

    Alrasheed, Salma

    2017-10-23

    We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM, at its center, another dielectric material of a high refractive index (HRI). This results in an increase in the magnetic near field enhancement of the magnetic plasmon (MP) resonance by 82% compared with the MIM without the HRI material. We then couple this enhanced MP resonance to a propagating surface plasmon polariton (SPP) to achieve a further enhancement of 438%. The strong coupling between the MP and the SPP is demonstrated by the large anti-crossing in the reflection spectra. The resulting maximum magnetic field enhancement at the gap is ~ |H / Hi|² = 3555.

  10. The ontology of quantum field theory: Structural realism vindicated?

    Science.gov (United States)

    Glick, David

    2016-10-01

    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in science, but debates over its ontology are vexed. Rather than taking a stand on these matters, the structural realist can embrace QFT as an example of just the kind of theory SR should lead us to expect. Yet, it is not clear that QFT meets the structuralist's positive expectation by providing a structure for the world. In particular, the problem of unitarily inequivalent representations threatens to undermine the possibility of QFT providing a unique structure for the world. In response to this problem, I suggest that the structuralist should endorse pluralism about structure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  12. STRUCTURE OF PROMINENCE LEGS: PLASMA AND MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Levens, P. J.; Labrosse, N. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Schmieder, B. [Observatoire de Paris, Meudon, F-92195 (France); Ariste, A. López, E-mail: p.levens.1@research.gla.ac.uk [Institut de Recherche en Astrophysique et Planétologie, Toulouse (France)

    2016-02-10

    We investigate the properties of a “solar tornado” observed on 2014 July 15, and aim to link the behavior of the plasma to the internal magnetic field structure of the associated prominence. We made multi-wavelength observations with high spatial resolution and high cadence using SDO/AIA, the Interface Region Imaging Spectrograph (IRIS) spectrograph, and the Hinode/Solar Optical Telescope (SOT) instrument. Along with spectropolarimetry provided by the Télescope Héliographique pour l’Etude du Magnétisme et des Instabilités Solaires telescope we have coverage of both optically thick emission lines and magnetic field information. AIA reveals that the two legs of the prominence are strongly absorbing structures which look like they are rotating, or oscillating in the plane of the sky. The two prominence legs, which are both very bright in Ca ii (SOT), are not visible in the IRIS Mg ii slit-jaw images. This is explained by the large optical thickness of the structures in Mg ii, which leads to reversed profiles, and hence to lower integrated intensities at these locations than in the surroundings. Using lines formed at temperatures lower than 1 MK, we measure relatively low Doppler shifts on the order of ±10 km s{sup −1} in the tornado-like structure. Between the two legs we see loops in Mg ii, with material flowing from one leg to the other, as well as counterstreaming. It is difficult to interpret our data as showing two rotating, vertical structures that are unrelated to the loops. This kind of “tornado” scenario does not fit with our observations. The magnetic field in the two legs of the prominence is found to be preferentially horizontal.

  13. Fire-induced collapses of steel structures

    DEFF Research Database (Denmark)

    Dondera, Alexandru; Giuliani, Luisa

    Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....

  14. Field theoretic approach to structure formation in an anisotropic medium

    International Nuclear Information System (INIS)

    Joy, Minu; Kuriakose, V.C.

    2003-01-01

    Considering a real scalar field distribution which is assumed to be locally anisotropic and coupled to a Bianchi type-I background spacetime, the energy density and pressure associated with the anisotropic matter field distribution are evaluated. The vanishing of the expectation values of the nondiagonal components of T μν allows us to treat the scalar field in complete analogy with the distribution of fluid. The primeval density perturbations produced by the vacuum fluctuations of the scalar field are considered and the Jeans criterion for structure formation is obtained. The metric and matter field perturbations are considered and it is found that for the present anisotropic case the perturbations of the pressure in the radial and tangential directions are different. The Jeans instability is discussed and the Jeans wave number for the present case is evaluated. It is found that for the anisotropic case the Jeans length depends on the velocity of the fluctuations in the radial and transverse directions and thus on the direction of propagation of the perturbations

  15. Structure and evolution of magnetic fields associated with solar eruptions

    International Nuclear Information System (INIS)

    Wang Haimin; Liu Chang

    2015-01-01

    This paper reviews the studies of solar photospheric magnetic field evolution in active regions and its relationship to solar flares. It is divided into two topics, the magnetic structure and evolution leading to solar eruptions and rapid changes in the photospheric magnetic field associated with eruptions. For the first topic, we describe the magnetic complexity, new flux emergence, flux cancelation, shear motions, sunspot rotation and magnetic helicity injection, which may all contribute to the storage and buildup of energy that trigger solar eruptions. For the second topic, we concentrate on the observations of rapid and irreversible changes of the photospheric magnetic field associated with flares, and the implication on the restructuring of the three-dimensional magnetic field. In particular, we emphasize the recent advances in observations of the photospheric magnetic field, as state-of-the-art observing facilities (such as Hinode and Solar Dynamics Observatory) have become available. The linkages between observations, theories and future prospectives in this research area are also discussed. (invited reviews)

  16. Magnetic field effects on the crust structure of neutron stars

    Science.gov (United States)

    Franzon, B.; Negreiros, R.; Schramm, S.

    2017-12-01

    We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.

  17. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge-based force field.

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-07-01

    Ab initio protein folding is one of the major unsolved problems in computational biology owing to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1-20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 nonhomologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in one-third cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction experiment, QUARK server outperformed the second and third best servers by 18 and 47% based on the cumulative Z-score of global distance test-total scores in the FM category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress toward the solution of the most important problem in the field. Copyright © 2012 Wiley Periodicals, Inc.

  18. Strain-Induced Pseudo--Magnetic Fields in Graphene: MegaGauss in Nanobubbles

    Science.gov (United States)

    Levy, Niv

    2011-03-01

    Recent theoretical proposals suggest that strain can be used to modify graphene electronic states through the creation of a pseudo--magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry (C3v). Scanning tunneling microscopy shows that graphene grown on a platinum (111) surface forms nanobubbles, which are highly strained due to thermal expansion mismatch between the film and the substrate. We find that scanning tunneling spectroscopy measurements of these nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo--magnetic fields greater than 300 Tesla. This demonstration of enormous pseudo--magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called ``strain engineering''. In collaboration with S. A. Burke ,2 , K. L. Meaker 2 , M. Panlasigui 2 , A. Zettl 2,3 , F. Guinea 4 , A. H. Castro Neto 5 and M. F. Crommie 2,3 . 1. Present address: Department of Physics and Astronomy and Department of Chemistry, University of British Columbia, Vancouver, BC V6T 121, Canada. 2. Department of Physics, University of California, Berkeley, CA 94720, USA. 3. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. 4. Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid 28049, Spain. 5. Department of Physics, Boston University, Boston, MA 02215, USA.

  19. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots. (orig.)

  20. Scanning near-field infrared microscopy on semiconductor structures

    International Nuclear Information System (INIS)

    Jacob, Rainer

    2011-01-01

    literature. While the structures of the first system were in the micrometer regime, the capability to probe buried nanostructures is demonstrated at a sample of indium arsenide quantum dots. Those dots are covered by a thick layer of gallium arsenide. For the first time ever, it is shown experimentally that transitions between electron states in single quantum dots can be investigated by near-field microscopy. By monitoring the near-field response of these quantum dots while scanning the wavelength of the incident light beam, it was possible to obtain characteristic near-field signatures of single dots. Near-field contrasts up to 30 % could be measured for resonant excitation of electrons in the conduction band of the indium arsenide dots. (orig.)

  1. Structural and morphological changes in P3HT thin film transistors applying an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Deepak Kumar; Grigorian, Souren; Pietsch, Ullrich [University of Siegen (Germany); Flesch, Heinz; Resel, Roland [University of Siegen (Germany); Graz University of Technology (Austria)

    2010-07-01

    We report on electric field dependent crystalline structure and morphological changes of drop casting and spin coated poly(3-hexylthiophene) (P3HT) thin films. In order to probe the morphological changes induced by an applied electric field the samples were covered with thin source/drain electrodes separated by a small channel of 2 mm width. A series of x-ray reflectivity, X-ray grazing incidence out-of-plane and in-plane scans have been performed as function of the applied electric voltage. The (100) peak shows a decrease in intensity with increase of the applied electric field. This might be caused by Joule heating and the creation of current induced defects in the P3HT film. On other hand the (020) peak intensity shows much stronger changes with applied field. Considering the *-* stacking direction the measured effect can be directly related to a change in the electric transport. The observed changes in structure are reversible and the current-voltage cycle can be repeated several times. For X-ray reflectivity major changes have been found close to critical angle of total external reflection indicating the film becomes less dense and increases in surface roughness with increase of the voltage. This change in surface behaviour could be confirmed by in-situ AFM measurements.

  2. Structural changes induced by electron irradiation

    International Nuclear Information System (INIS)

    Koike, J.; Pedraza, D.F.

    1993-01-01

    Highly oriented pyrolytic graphite was irradiated at room temperature with 300 kV electrons. Transmission electron microscopy and electron energy loss spectroscopy were employed to study the structural changes produced by irradiation. The occurrence of a continuous ring intensity in the selected area diffraction (SAD) pattern obtained on a specimen irradiated with the electron beam parallel to the c-crystallographic axis indicated that microstructural changes had occurred. However, from the SAD pattern obtained for the specimens tilted relative to the irradiation direction, it was found that up to a fluence of 1.1x10 27 e/m 2 graphite remained crystalline. An SAD pattern of a specimen irradiated with the electron beam perpendicular to the c-axis confirmed the persistence of crystalline order. High resolution electron microscopy showed that ordering along the c-axis direction remained. A density reduction of 8.9% due to irradiation was determined from the plasmon frequency shift. A qualitative model is proposed to explain these observations. A new determination of the threshold displacement energy, Ed, of carbon atoms in graphite was done by examining the appearance of a continuous ring in the SAD pattern at various electron energies. A value of 30 eV was obtained whether the incident electron beam was parallel or perpendicular to the c-axis, demonstrating that Ed is independent of the displacement direction

  3. Shear induced structures in crystallizing cocoa butter

    Science.gov (United States)

    Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

    2004-03-01

    Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

  4. Circulating persistent current and induced magnetic field in a fractal network

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Srilekha [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700 064 (India); Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in [Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700 108 (India); Karmakar, S.N. [Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhannagar, Kolkata 700 064 (India)

    2016-04-29

    We present the overall conductance as well as the circulating currents in individual loops of a Sierpinski gasket (SPG) as we apply bias voltage via the side attached electrodes. SPG being a self-similar structure, its manifestation on loop currents and magnetic fields is examined in various generations of this fractal and it has been observed that for a given configuration of the electrodes, the physical quantities exhibit certain regularity as we go from one generation to another. Also a notable feature is the introduction of anisotropy in hopping causes an increase in magnitude of overall transport current. These features are a subject of interest in this article. - Highlights: • Voltage driven circular current is analyzed in a fractal network. • Current induced magnetic field is strong enough to flip a spin. • Anisotropy in hopping enhances overall transport current.

  5. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Mai Lu

    Full Text Available Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8 coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.

  6. Turbulent flow field structure of initially asymmetric jets

    International Nuclear Information System (INIS)

    Kim, Kyung Hoon; Kim, Bong Whan; Kim, Suk Woo

    2000-01-01

    The near field structure of round turbulent jets with initially asymmetric velocity distributions is investigated experimentally. Experiments are carried out using a constant temperature hot-wire anemomentry system to measure streamwise velocity in the jets. The measurements are undertaken across the jet at various streamwise stations in a range starting from the jet exit plane and up to a downstream location of twelve diameters. The experimental results include the distributions of mean and instantaneous velocities, vorticity field, turbulence intensity, and the Reynolds shear stresses. The asymmetry of the jet exit plane was obtained by using circular cross-section pipes with a bend upstream of the exit. Three pipes used here include a straight pipe, and 90 and 160 degree-bend pipes. Therefore, at the upstream of the pipe exit, secondary flow through the bend and mean streamwise velocity distribution could be controlled by changing the curvature of pipes. The jets into the atmosphere have two levels of initial velocity skewness in addition to an axisymmetric jet from a straight pipe. In case of the curved pipe, a six diameterlong straight pipe section follows the bend upstream of the exit. The Reynolds number based on the exit bulk velocity is 13,400. The results indicate that the near field structure is considerably modified by the skewness of an initial mean velocity distribution. As the skewness increases, the decay rate of mean velocity at the centerline also increases

  7. Structural analysis of the NET toroidal field coils and conductor

    International Nuclear Information System (INIS)

    Mitchell, N.; Collier, D.; Gori, R.

    1989-01-01

    The NET toroidal field coils will utilise A15-type superconductor at 4.2 K to generate fields up to 11.5 T. The superconductor strands themselves are sensitive to strain, which causes degradation of their current carrying capacity, and thus the detailed behaviour of the coil conductor must be analysied so that the strian can be minimised. This analysis must include the manufacturing processes of the conductor as well as the normal and abnormal loperational loads. The conductor will be insulated and bonded by glass fibre reinforced epoxy resin, with limited bonding shear strength, and the overall support of the complete coil system must be designed to reduce these shear stresses. The coils will be subjected to pulse loads form the poloidal field coils, and analysis of the slip between the various coil components, such as conductors and the coil case, giving rise to frictional heating and possible loss of superconducting properties is another important factor, which has been investigated by a number of stress analyses. The manufacturing, thermal and normal magnetic loads on the coils and the analysis leading to the proposed structural design are described. In addition to the normal operating conditions, there is a range of abnormal load conditions which could result from electrical or mechanical faults on the coils. The effect of these potential faults has been analysed and the coil design modified to prevent catastrophic structural failure. (author). 13 refs.; 8 figs.; 1 tab

  8. Measurements of Rayleigh-Taylor-Induced Magnetic Fields in the Linear and Non-linear Regimes

    Science.gov (United States)

    Manuel, Mario

    2012-10-01

    Magnetic fields are generated in plasmas by the Biermann-battery, or thermoelectric, source driven by non-collinear temperature and density gradients. The ablation front in laser-irradiated targets is susceptible to Rayleigh-Taylor (RT) growth that produces gradients capable of generating magnetic fields. Measurements of these RT-induced magnetic fields in planar foils have been made using a combination of x-ray and monoenergetic-proton radiography techniques. At a perturbation wavelength of 120 μm, proton radiographs indicate an increase of the magnetic-field strength from ˜1 to ˜10 Tesla during the linear growth phase. A characteristic change in field structure was observed later in time for irradiated foils of different initial surface perturbations. Proton radiographs show a regular cellular configuration initiated at the same time during the drive, independent of the initial foil conditions. This non-linear behavior has been experimentally investigated and the source of these characteristic features will be discussed.

  9. Electromagnetically Induced Transparency and Absorption of A Monochromatic Light Controlled by a Radio Frequency Field

    International Nuclear Information System (INIS)

    Cai Xun-Ming

    2015-01-01

    Electromagnetically induced transparency and absorption of a monochromatic light controlled by a radio frequency field in the cold multi-Zeeman-sublevel atoms are theoretically investigated. These Zeeman sublevels are coupled by a radio frequency (RF) field. Both electromagnetically induced transparency and electromagnetically induced absorption can be obtained by tuning the frequency of RF field for both the linear polarization and elliptical polarization monochromatic lights. When the transfer of coherence via spontaneous emission from the excited state to the ground state is considered, electromagnetically induced absorption can be changed into electromagnetically induced transparency with the change of intensity of radio field. The transparency windows controlled by the RF field can have potential applications in the magnetic-field measurement and quantum information processing. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Radiation-Induced Topological Disorder in Irradiated Network Structures

    International Nuclear Information System (INIS)

    Hobbs, Linn W.

    2002-12-01

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-based techniques, topological modeling, and molecular-dynamics simulations that have proven a rich source of information in the preceding support period. The results from the present support period fall into three task areas. The first comprises enumeration of the rigidity constraints applying to (1) more complex ceramic structures (such as rutile, corundum, spinel and olivine structures) that exhibit multiply polytopic coordination units or multiple modes of connecting such units, (2) elemental solids (such as graphite, silicon and diamond) for which a correct choice of polytope is necessary to achieve correct representation of the constraints, and (3) compounds (such as spinel and silicon carbide) that exhibit chemical disorder on one or several sublattices. With correct identification of the topological constraints, a unique correlation is shown to exist between constraint and amorphizability which demonstrates that amorphization occurs at a critical constraint loss. The second task involves the application of molecular dynamics (MD) methods to topologically-generated models

  11. Field induced spontaneous quasiparticle decay and renormalization of quasiparticle dispersion in a quantum antiferromagnet.

    Science.gov (United States)

    Hong, Tao; Qiu, Y; Matsumoto, M; Tennant, D A; Coester, K; Schmidt, K P; Awwadi, F F; Turnbull, M M; Agrawal, H; Chernyshev, A L

    2017-05-05

    The notion of a quasiparticle, such as a phonon, a roton or a magnon, is used in modern condensed matter physics to describe an elementary collective excitation. The intrinsic zero-temperature magnon damping in quantum spin systems can be driven by the interaction of the one-magnon states and multi-magnon continuum. However, detailed experimental studies on this quantum many-body effect induced by an applied magnetic field are rare. Here we present a high-resolution neutron scattering study in high fields on an S=1/2 antiferromagnet C 9 H 18 N 2 CuBr 4 . Compared with the non-interacting linear spin-wave theory, our results demonstrate a variety of phenomena including field-induced renormalization of one-magnon dispersion, spontaneous magnon decay observed via intrinsic linewidth broadening, unusual non-Lorentzian two-peak structure in the excitation spectra and a dramatic shift of spectral weight from one-magnon state to the two-magnon continuum.

  12. Structured-gate organic field-effect transistors

    International Nuclear Information System (INIS)

    Aljada, Muhsen; Pandey, Ajay K; Velusamy, Marappan; Burn, Paul L; Meredith, Paul; Namdas, Ebinazar B

    2012-01-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO 2 ) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends. (paper)

  13. Structured-gate organic field-effect transistors

    Science.gov (United States)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  14. Filament shape versus coronal potential magnetic field structure

    Science.gov (United States)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  15. Thermal induced structural transformation of bimetallic AuPd nanoparticles

    International Nuclear Information System (INIS)

    Bruma, A; Li, Z Y

    2014-01-01

    High Angle Annular Dark Field Scanning Transmission Electron Microscope (HAADF-STEM) has been employed for the study of thermal effects of structural transformation of AuPd nanoparticles produced by physical vapour deposition. Depending on the duration of annealing at a temperature of 500 K, atomic resolved imaging analysis reveals the formation of various structure morphologies from the ordered L1 2 superlattice to the core-shell structure. The effects of Pd-oxides are also discussed

  16. Photo field emission spectroscopy of the tantalum band structure

    International Nuclear Information System (INIS)

    Kleint, Ch.; Radon, T.

    1978-01-01

    Photo field emission (PFE) currents of clean and barium covered tantalum tips have been measured with single lines of the mercury arc spectrum and phase-sensitive detection. Field strength and work function were determined from Fowler-Nordheim plots of the FE currents. Shoulders in the PFE current-voltage characteristics could be correlated to transitions in the band structure of tantalum according to a recently proposed two-step PFE model. A comparison with the relativistic calculations of Mattheiss and the nonrelativistic bands of Petroff and Viswanathan shows that Mattheiss' bands are more appropriate. Beside direct transitions several nondirect transitions from the different features composing the upper two density of states maxima below the Fermi edge of tantalum have been found. (Auth.)

  17. Magnetic field adjustment structure and method for a tapered wiggler

    Science.gov (United States)

    Halbach, Klaus

    1988-01-01

    An improved method and structure is disclosed for adjusting the magnetic field generated by a group of electromagnet poles spaced along the path of a charged particle beam to compensate for energy losses in the charged particles which comprises providing more than one winding on at least some of the electromagnet poles; connecting one respective winding on each of several consecutive adjacent electromagnet poles to a first power supply, and the other respective winding on the electromagnet pole to a different power supply in staggered order; and independently adjusting one power supply to independently vary the current in one winding on each electromagnet pole in a group whereby the magnetic field strength of each of a group of electromagnet poles may be changed in smaller increments.

  18. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    Science.gov (United States)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  19. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    Science.gov (United States)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  20. Observation of field-induced long-range order in disordered Sr14Cu24O41

    International Nuclear Information System (INIS)

    Ohsugi, S.; Matsumoto, S.; Kitaoka, Y.; Matsuda, M.; Uehara, M.; Nagata, T.; Akimitsu, J.

    2004-01-01

    Field-induced magnetic order in a structural disordered single-crystal Sr 14 Cu 24 O 41 (Sr 14 -B) has been observed in the Cu-nuclear magnetic resonance (NMR) measurements for the ladder sites below 20 K under the magnetic field H∼11 T. For the Zhang Rice (ZR) sites in the chains, the spectrum splits below 20 K due to an appearance of the internal field, whereas that of less disordered Sr 14 -A does not. This gives an evidence of three-dimensional (3D) long-range (LR) ordering in Sr 14 -B below T N ∼20 K under H∼11 T

  1. Shear-induced opening of the coronal magnetic field

    Science.gov (United States)

    Wolfson, Richard

    1995-01-01

    This work describes the evolution of a model solar corona in response to motions of the footpoints of its magnetic field. The mathematics involved is semianalytic, with the only numerical solution being that of an ordinary differential equation. This approach, while lacking the flexibility and physical details of full MHD simulations, allows for very rapid computation along with complete and rigorous exploration of the model's implications. We find that the model coronal field bulges upward, at first slowly and then more dramatically, in response to footpoint displacements. The energy in the field rises monotonically from that of the initial potential state, and the field configuration and energy appraoch asymptotically that of a fully open field. Concurrently, electric currents develop and concentrate into a current sheet as the limiting case of the open field is approached. Examination of the equations shows rigorously that in the asymptotic limit of the fully open field, the current layer becomes a true ideal MHD singularity.

  2. Shear-induced inflation of coronal magnetic fields

    International Nuclear Information System (INIS)

    Klimchuk, J.A.

    1990-01-01

    Using numerical models of force-free magnetic fields, the shearing of footprints in arcade geometries leading to an inflation of the coronal magnetic field was examined. For each of the shear profiles considered, all of the field lines become elevated compared with the potential field. This includes cases where the shear is concentrated well away from the arcade axis, such that B(sub z), the component of field parallel to the axis, increases outward to produce an inward B(sub z) squared/8 pi magnetic pressure gradient force. These results contrast with an earlier claim, shown to be incorrect, that field lines can sometimes become depressed as a result of shear. It is conjectured that an inflation of the entire field will always result from the shearing of simple arcade configurations. These results have implications for prominence formation, the interplanetary magnetic flux, and possibly also coronal holes. 38 refs

  3. Modelling of DC electric fields induced by RF sheath in front of ICRF antenna

    International Nuclear Information System (INIS)

    Faudot, E.; Heuraux, S.; Colas, L.

    2003-01-01

    Reducing the ICRF (ion cyclotron range frequency) antenna-plasma interaction is one of the key points for reaching very long tokamak discharges. One problem which limits such discharges, is the appearance of hot spots on the surface of the antenna: Radio Frequency (RF) sheaths modify the properties of the edge plasma by rectifying the RF potential along open magnetic field lines and can induce hot spots. This paper investigates the corrections to sheath potentials introduced by the interactions between adjacent flux tubes. Our theoretical study started from an oscillating double Langmuir probe model, in which a transverse influx of current was included. This model was confronted with 1D PIC simulations along a magnetic field line, and demonstrated that current exchanges can decrease mean potentials. A 2D electrostatic fluid code was then developed, which couples adjacent flux tubes in a poloidal cross section with collisional conductivity or polarization currents. It showed that transverse currents are able to smooth structures smaller than a characteristic size in the sheath potential maps (results for Tore Supra). These computed rectified potentials can be used to obtain the DC electric fields in front of the antenna. And then, it gives an estimate of the particle drift and the energy flux on the antenna structure, which can explain hot spots. (author)

  4. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    Science.gov (United States)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    We review in this paper main results obtained from electric field (from VLF to HF) measurement campaigns realized by CEA in the framework of the Eurosprite program [Neubert et al., 2005, 2008] from 2003 to 2009 in France in different configurations. Two main topics have been studied: sprite or elve induced phenomena (radiation or perturbation) and wave propagation. Using a network of 4 stations, VLF radiations from sprite have been successfully located at 10 km from the sprite parent lightning, in agreement with possible sprite location, generally displaced from the parent lightning. The MF (300 kHz - 3 MHz) source bursts were identified simultaneously with the occurrence of sprites observed with cameras [Farges et al., 2004; Neubert et al., 2008]. These observations are compared to recent broadband measurements, assumed to be due to relativistic electron beam radiation related to sprites [Fullekrug et al., 2009]. Recently, in 2009, with a new instrumentation, an ELF tail has been clearly measured after the lightning waveform, while sprites were observed at about 500 km from our station. This ELF tail is usually observed at distances higher than thousand km and is associated to sprite generation. This opens the capacity to measure the charge moment of the parent-lightning, using such measurement close to the source. Farges et al. [2007] showed that just after a lightning return stroke, a strong transient attenuation is very frequently observed in the MF waves of radio transmissions. They showed that this perturbation is due to heating of the lower ionosphere by the lightning-induced EMP during few milliseconds. These perturbations are then the MF radio signature of the lightning EMP effects on the lower ionosphere, in the same way as elves correspond to their optical signature. The experiment also provided the electric field waveforms directly associated to elves, while lightning were not detected by Météorage. Many of them present a double peak feature. The

  5. Filamentary structure and magnetic field orientation in Musca

    Science.gov (United States)

    Cox, N. L. J.; Arzoumanian, D.; André, Ph.; Rygl, K. L. J.; Prusti, T.; Men'shchikov, A.; Royer, P.; Kóspál, Á.; Palmeirim, P.; Ribas, A.; Könyves, V.; Bernard, J.-Ph.; Schneider, N.; Bontemps, S.; Merin, B.; Vavrek, R.; Alves de Oliveira, C.; Didelon, P.; Pilbratt, G. L.; Waelkens, C.

    2016-05-01

    Herschel has shown that filamentary structures are ubiquitous in star-forming regions, in particular in nearby molecular clouds associated with Gould's Belt. High dynamic range far-infrared imaging of the Musca cloud with SPIRE and PACS reveals at least two types of filamentary structures: (1) the main ~10-pc scale high column-density linear filament; and (2) low column-density striations in close proximity to the main filament. In addition, we find features with intermediate column densities (hair-like strands) that appear physically connected to the main filament. We present an analysis of this filamentary network traced by Herschel and explore its connection with the local magnetic field. We find that both the faint dust emission striations and the plane-of-the-sky (POS) magnetic field are locally oriented close to perpendicular to the high-density main filament (position angle ~25-35°). The low-density striations and strands are oriented parallel to the POS magnetic field lines, which are derived previously from optical polarization measurements of background stars and more recently from Planck observations of dust polarized emission. The position angles are 97 ± 25°, 105 ± 7°, and 105 ± 5°. From these observations, we propose a scenario in which local interstellar material in this cloud has condensed into a gravitationally-unstable filament (with "supercritical" mass per unit length) that is accreting background matter along field lines through the striations. We also compare the filamentary structure in Musca with what is seen in similar Herschel observations of the Taurus B211/3 filament system and find that there is significantly less substructure in the Musca main filament than in the B211/3 filament. We suggest that the Musca cloud may represent an earlier evolutionary stage in which the main filament has not yet accreted sufficient mass and energy to develop a multiple system of intertwined filamentary components. Herschel is an ESA space

  6. Towards friction control using laser-induced periodic surface structures

    NARCIS (Netherlands)

    Eichstädt, J.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert; Schmidt, M.; Zaeh, M.

    2011-01-01

    This paper aims at contributing to the study of laser-induced periodic surface structures (LIPSS) and the description of their tribological properties in order to facilitate the knowledge for contact mechanical applications. To obtain laser parameters for LIPSS formation, we propose to execute two

  7. Magnetic field structure of experimental high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Deniz, A.V.

    1986-01-01

    The magnetic field structure of several low and high β tokamaks in the Columbia High Beta Tokamak (HBT) was determined by high-impedance internal magnetic probes. From the measurement of the magnetic field, the poloidal flux, toroidal flux, toroidal current, and safety factor are calculated. In addition, the plasma position and cross-sectional shape are determined. The extent of the perturbation of the plasma by the probe was investigated and was found to be acceptably small. The tokamaks have major radii of approx.0.24 m, minor radii of approx.0.05 m, toroidal plasma current densities of approx.10 6 A/m 2 , and line-integrated electron densities of approx.10 20 m -2 . The major difference between the low and high β tokamaks is that the high β tokamak was observed to have an outward shift in major radius of both the magnetic center and peak of the toroidal current density. The magnetic center moves inward in major radius after 20 to 30 μsec, presumably because the plasma maintains major radial equilibrium as its pressure decreases from radiation due to impurity atoms. Both the equilibrium and the production of these tokamaks from a toroidal field stabilized z-pinch are modeled computationally. One tokamak evolves from a state with low β features, through a possibly unstable state, to a state with high β features

  8. On Developing Field-Effect-Tunable Nanofluidic Ion Diodes with Bipolar, Induced-Charge Electrokinetics

    Directory of Open Access Journals (Sweden)

    Ye Tao

    2018-04-01

    Full Text Available We introduce herein the induced-charge electrokinetic phenomenon to nanometer fluidic systems; the design of the nanofluidic ion diode for field-effect ionic current control of the nanometer dimension is developed by enhancing internal ion concentration polarization through electrochemical transport of inhomogeneous inducing-counterions resulting from double gate terminals mounted on top of a thin dielectric layer, which covers the nanochannel connected to microfluidic reservoirs on both sides. A mathematical model based on the fully-coupled Poisson-Nernst-Plank-Navier-Stokes equations is developed to study the feasibility of this structural configuration causing effective ionic current rectification. The effect of various physiochemical and geometrical parameters, such as the native surface charge density on the nanochannel sidewalls, the number of gate electrodes (GE, the gate voltage magnitude, and the solution conductivity, permittivity, and thickness of the dielectric coating, as well as the size and position of the GE pair of opposite gate polarity, on the resulted rectification performance of the presented nanoscale ionic device is numerically analyzed by using a commercial software package, COMSOL Multiphysics (version 5.2. Three types of electrohydrodynamic flow, including electroosmosis of 1st kind, induced-charge electroosmosis, and electroosmosis of 2nd kind that were originated by the Coulomb force within three distinct charge layers coexist in the micro/nanofluidic hybrid network and are shown to simultaneously influence the output current flux in a complex manner. The rectification factor of a contrast between the ‘on’ and ‘off’ working states can even exceed one thousand-fold in the case of choosing a suitable combination of several key parameters. Our demonstration of field-effect-tunable nanofluidic ion diodes of double external gate electrodes proves invaluable for the construction of a flexible electrokinetic platform

  9. Observatory geoelectric fields induced in a two-layer lithosphere during magnetic storms

    Science.gov (United States)

    Love, Jeffrey J.; Swidinsky, Andrei

    2015-01-01

    We report on the development and validation of an algorithm for estimating geoelectric fields induced in the lithosphere beneath an observatory during a magnetic storm. To accommodate induction in three-dimensional lithospheric electrical conductivity, we analyze a simple nine-parameter model: two horizontal layers, each with uniform electrical conductivity properties given by independent distortion tensors. With Laplace transformation of the induction equations into the complex frequency domain, we obtain a transfer function describing induction of observatory geoelectric fields having frequency-dependent polarization. Upon inverse transformation back to the time domain, the convolution of the corresponding impulse-response function with a geomagnetic time series yields an estimated geoelectric time series. We obtain an optimized set of conductivity parameters using 1-s resolution geomagnetic and geoelectric field data collected at the Kakioka, Japan, observatory for five different intense magnetic storms, including the October 2003 Halloween storm; our estimated geoelectric field accounts for 93% of that measured during the Halloween storm. This work demonstrates the need for detailed modeling of the Earth’s lithospheric conductivity structure and the utility of co-located geomagnetic and geoelectric monitoring.

  10. Bifurcated states of the error-field-induced magnetic islands

    International Nuclear Information System (INIS)

    Zheng, L.-J.; Li, B.; Hazeltine, R.D.

    2008-01-01

    We find that the formation of the magnetic islands due to error fields shows bifurcation when neoclassical effects are included. The bifurcation, which follows from including bootstrap current terms in a description of island growth in the presence of error fields, provides a path to avoid the island-width pole in the classical description. The theory offers possible theoretical explanations for the recent DIII-D and JT-60 experimental observations concerning confinement deterioration with increasing error field

  11. Einstein gravity with torsion induced by the scalar field

    Science.gov (United States)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  12. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  13. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  14. Structural effects on fusion reactor blankets due to liquid metals in magnetic fields

    International Nuclear Information System (INIS)

    Lehner, J.R.; Reich, M.; Powell, J.R.

    1976-01-01

    The transient stress distribution caused in the blanket structure when the plasma current suddenly switches off in a time short compared to the L/R decay time of the liquid metal blanket was studied. Poloidal field of the plasma will induce a current to flow in the liquid metal and blanket walls. Since the resistance of the liquid lithium will be much less than that of the metal walls, the current can be considered as flowing around the blanket near the cross section perimeter, but in the lithium

  15. Radio polarization and magnetic field structure in M 101

    Science.gov (United States)

    Berkhuijsen, E. M.; Urbanik, M.; Beck, R.; Han, J. L.

    2016-04-01

    We observed total and polarized radio continuum emission from the spiral galaxy M 101 at λλ 6.2 cm and 11.1 cm with the Effelsberg telescope. The angular resolutions are 2.´ 5 (=5.4 kpc) and 4.´ 4 (=9.5 kpc), respectively. We use these data to study various emission components in M 101 and properties of the magnetic field. Separation of thermal and non-thermal emission shows that the thermal emission is closely correlated with the spiral arms, while the non-thermal emission is more smoothly distributed indicating diffusion of cosmic ray electrons away from their places of origin. The radial distribution of both emissions has a break near R = 16 kpc (=7.´ 4), where it steepens to an exponential scale length of L ≃ 5 kpc, which is about 2.5 times smaller than at Rchange in the structure of M 101 takes place, which also affects the distributions of the strength of the random and ordered magnetic field. Beyond R = 16 kpc the radial scale length of both fields is about 20 kpc, which implies that they decrease to about 0.3 μG at R = 70 kpc, which is the largest optical extent. The equipartition strength of the total field ranges from nearly 10 μG at Rmechanism. We show that energetic events causing H I shells of mean diameter pitch angles that are about 8° larger than those of H I filaments. Based on observations with the 100 m telescope of the MPIfR at Effelsberg.FITS files of the images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A114

  16. Deceleration of arginine kinase refolding by induced helical structures.

    Science.gov (United States)

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  17. Conditional Random Fields for Pattern Recognition Applied to Structured Data

    Directory of Open Access Journals (Sweden)

    Tom Burr

    2015-07-01

    Full Text Available Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building or “natural” (such as a tree. Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X is difficult because features between parts of the model are often correlated. Therefore, conditional random fields (CRFs model structured data using the conditional distribution P(Y|X = x, without specifying a model for P(X, and are well suited for applications with dependent features. This paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches in the output domain. Second, we identify research topics and present numerical examples.

  18. EARTHQUAKE-INDUCED DEFORMATION STRUCTURES AND RELATED TO EARTHQUAKE MAGNITUDES

    Directory of Open Access Journals (Sweden)

    Savaş TOPAL

    2003-02-01

    Full Text Available Earthquake-induced deformation structures which are called seismites may helpful to clasify the paleoseismic history of a location and to estimate the magnitudes of the potention earthquakes in the future. In this paper, seismites were investigated according to the types formed in deep and shallow lake sediments. Seismites are observed forms of sand dikes, introduced and fractured gravels and pillow structures in shallow lakes and pseudonodules, mushroom-like silts protruding laminites, mixed layers, disturbed varved lamination and loop bedding in deep lake sediments. Earthquake-induced deformation structures, by benefiting from previous studies, were ordered according to their formations and earthquake magnitudes. In this order, the lowest eartquake's record is loop bedding and the highest one is introduced and fractured gravels in lacustrine deposits.

  19. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  20. Subquantum nonlocal correlations induced by the background random field

    Energy Technology Data Exchange (ETDEWEB)

    Khrennikov, Andrei, E-mail: Andrei.Khrennikov@lnu.s [International Center for Mathematical Modelling in Physics and Cognitive Sciences, Linnaeus University, Vaexjoe (Sweden); Institute of Information Security, Russian State University for Humanities, Moscow (Russian Federation)

    2011-10-15

    We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).

  1. Subquantum nonlocal correlations induced by the background random field

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2011-01-01

    We developed a purely field model of microphenomena-prequantum classical statistical field theory (PCSFT). This model not only reproduces important probabilistic predictions of quantum mechanics (QM) including correlations for entangled systems, but also gives a possibility to go beyond QM, i.e. to make predictions of phenomena that could be observed at the subquantum level. In this paper, we discuss one such prediction-the existence of nonlocal correlations between prequantum random fields corresponding to all quantum systems. (And by PCSFT, quantum systems are represented by classical Gaussian random fields and quantum observables by quadratic forms of these fields.) The source of these correlations is the common background field. Thus all prequantum random fields are 'entangled', but in the sense of classical signal theory. On the one hand, PCSFT demystifies quantum nonlocality by reducing it to nonlocal classical correlations based on the common random background. On the other hand, it demonstrates total generality of such correlations. They exist even for distinguishable quantum systems in factorizable states (by PCSFT terminology-for Gaussian random fields with covariance operators corresponding to factorizable quantum states).

  2. Λ( t ) cosmology induced by a slowly varying Elko field

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, S.H.; Pinho, A.S.S.; Silva, J.M. Hoff da [Universidade Estadual Paulista (Unesp), Faculdade de Engenharia, Guaratinguetá, Departamento de Física e Química Av. Dr. Ariberto Pereira da Cunha 333, 12516-410—Guaratinguetá, SP (Brazil); Jesus, J.F., E-mail: shpereira@feg.unesp.br, E-mail: alexandre.pinho510@gmail.com, E-mail: hoff@feg.unesp.br, E-mail: jfjesus@itapeva.unesp.br [Universidade Estadual Paulista (Unesp), Campus Experimental de Itapeva, R. Geraldo Alckmin, 519 Itapeva, SP (Brazil)

    2017-01-01

    In this work the exact Friedmann-Robertson-Walker equations for an Elko spinor field coupled to gravity in an Einstein-Cartan framework are presented. The torsion functions coupling the Elko field spin-connection to gravity can be exactly solved and the FRW equations for the system assume a relatively simple form. In the limit of a slowly varying Elko spinor field there is a relevant contribution to the field equations acting exactly as a time varying cosmological model Λ( t )=Λ{sub *}+3β H {sup 2}, where Λ{sub *} and β are constants. Observational data using distance luminosity from magnitudes of supernovae constraint the parameters Ω {sub m} and β, which leads to a lower limit to the Elko mass. Such model mimics, then, the effects of a dark energy fluid, here sourced by the Elko spinor field. The density perturbations in the linear regime were also studied in the pseudo-Newtonian formalism.

  3. Quantum field theory on toroidal topology: Algebraic structure and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  4. Quantum field theory on toroidal topology: Algebraic structure and applications

    International Nuclear Information System (INIS)

    Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.

    2014-01-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then

  5. New parameterization of external and induced fields in geomagnetic field modeling, and a candidate model for IGRF 2005

    DEFF Research Database (Denmark)

    Olsen, Nils; Sabaka, T.J.; Lowes, F.

    2005-01-01

    When deriving spherical harmonic models of the Earth's magnetic field, low-degree external field contributions are traditionally considered by assuming that their expansion coefficient q(1)(0) varies linearly with the D-st-index, while induced contributions are considered assuming a constant ratio...... Q(1) of induced to external coefficients. A value of Q(1) = 0.27 was found from Magsat data and has been used by several authors when deriving recent field models from Orsted and CHAMP data. We describe a new approach that considers external and induced field based on a separation of D-st = E-st + I......-st into external (E-st) and induced (I-st) parts using a 1D model of mantle conductivity. The temporal behavior of q(1)(0) and of the corresponding induced coefficient are parameterized by E-st and I-st, respectively. In addition, we account for baseline-instabilities of D-st by estimating a value of q(1...

  6. Earthquake induced landslide hazard field observatory in the Avcilar peninsula

    Science.gov (United States)

    Bigarre, Pascal; Coccia, Stella; Theoleyre, Fiona; Ergintav, Semih; Özel, Oguz; Yalçinkaya, Esref; Lenti, Luca; Martino, Salvatore; Gamba, Paolo; Zucca, Francesco; Moro, Marco

    2015-04-01

    Earthquake-triggered landslides have an increasing disastrous impact in seismic regions due to the fast growing urbanization and infrastructures. Just considering disasters from the last fifteen years, among which the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2011 Tohoku earthquake, these events generated tens of thousands of coseismic landslides. Those resulted in amazing death toll and considerable damages, affecting the regional landscape including its hydrological main features. Despite a strong impetus in research during past decades, knowledge on those geohazards is still fragmentary, while databases of high quality observational data are lacking. These phenomena call for further collaborative researches aiming eventually to enhance preparedness and crisis management. The MARSITE project gathers research groups in a comprehensive monitoring activity developed in the Sea of Marmara Region, one of the most densely populated parts of Europe and rated at high seismic risk level since the 1999 Izmit and Duzce devastating earthquakes. Besides the seismic threat, landslides in Turkey and in this region constitute an important source of loss. The 6th Work Package of MARSITE project gathers 9 research groups to study earthquake-induced landslides focusing on two sub-regional areas of high interest among which the Cekmece-Avcilar peninsula, located westwards of Istanbul, as a highly urbanized concentrated landslide prone area, showing high susceptibility to both rainfalls while affected by very significant seismic site effects. A multidisciplinary research program based on pre-existing studies has been designed with objectives and tasks linked to constrain and tackle progressively some challenging issues related to data integration, modeling, monitoring and mapping technologies. Since the start of the project, progress has been marked on several important points as follows. The photogeological interpretation and analysis of ENVISAT-ERS DIn

  7. Coupled field induced conversion between destructive and constructive quantum interference

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong

    2016-12-15

    We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.

  8. Scalar field vacuum expectation value induced by gravitational wave background

    Science.gov (United States)

    Jones, Preston; McDougall, Patrick; Ragsdale, Michael; Singleton, Douglas

    2018-06-01

    We show that a massless scalar field in a gravitational wave background can develop a non-zero vacuum expectation value. We draw comparisons to the generation of a non-zero vacuum expectation value for a scalar field in the Higgs mechanism and with the dynamical Casimir vacuum. We propose that this vacuum expectation value, generated by a gravitational wave, can be connected with particle production from gravitational waves and may have consequences for the early Universe where scalar fields are thought to play an important role.

  9. Electromagnetic near-field coupling induced polarization conversion and asymmetric transmission in plasmonic metasurfaces

    Science.gov (United States)

    Peng, Yu-Xiang; Wang, Kai-Jun; He, Meng-Dong; Luo, Jian-Hua; Zhang, Xin-Min; Li, Jian-Bo; Tan, Shi-Hua; Liu, Jian-Qiang; Hu, Wei-Da; Chen, Xiaoshuang

    2018-04-01

    In this paper, we demonstrate the effect of polarization conversion in a plasmonic metasurface structure, in which each unit cell consists of a metal bar and four metal split-ring resonators (SRRs). Such effect is attributed to the fact that the dark plasmon mode of SRRs (bar), which radiates cross-polarized component, is induced by the bright plasmon mode of bar (SRRs) due to the electromagnetic near-field coupling between bar and SRRs. We find that there are two ways to achieve a large cross-polarized component in our proposed metasurface structure. The first way is realized when the dark plasmon mode of bar (SRRs) is in resonance, while at this time the bright plasmon mode of SRRs (bar) is not at resonant state. The second way is realized when the bright plasmon mode of SRRs (bar) is resonantly excited, while the dark plasmon mode of bar (SRRs) is at nonresonant state. It is also found that the linearly polarized light can be rotated by 56.50 after propagation through the metasurface structure. Furthermore, our proposed metasurface structure exhibits an asymmetric transmission for circularly polarized light. Our findings take a further step in developing integrated metasurface-based photonics devices for polarization manipulation and modulation.

  10. Electric fields and currents induced in organs of the human body when exposed to ELF and VLF electromagnetic fields

    Science.gov (United States)

    King, Ronold W. P.; Sandler, Sheldon S.

    1996-09-01

    Formulas for the transverse components of the electric and magnetic fields of the traveling-wave currents of three different types of three-wire, three-phase high-voltage power lines and of a typical VLF transmitter are given. From them, exposure situations for the human body are chosen which permit the analytical determination of the total current induced in that body. With this, the fraction of the total axial current, the axial current density, and the axial electric field in each organ of the body are obtained at any desired cross section. The dimensions and conductivity of these organs must be known. The electric field so obtained is the average macroscopic field in which the cells in each organ are immersed when the whole body is exposed to a known incident field. It corresponds in vivo to the electric field used in vitro to expose cells in tissues.

  11. Flow field induced particle accumulation inside droplets in rectangular channels.

    Science.gov (United States)

    Hein, Michael; Moskopp, Michael; Seemann, Ralf

    2015-07-07

    Particle concentration is a basic operation needed to perform washing steps or to improve subsequent analysis in many (bio)-chemical assays. In this article we present field free, hydrodynamic accumulation of particles and cells in droplets flowing within rectangular micro-channels. Depending on droplet velocity, particles either accumulate at the rear of the droplet or are dispersed over the entire droplet cross-section. We show that the observed particle accumulation behavior can be understood by a coupling of particle sedimentation to the internal flow field of the droplet. The changing accumulation patterns are explained by a qualitative change of the internal flow field. The topological change of the internal flow field, however, is explained by the evolution of the droplet shape with increasing droplet velocity altering the friction with the channel walls. In addition, we demonstrate that accumulated particles can be concentrated, removing excess dispersed phase by splitting the droplet at a simple channel junction.

  12. Backwards time travel induced by combined magnetic and gravitational fields

    International Nuclear Information System (INIS)

    Novello, M.; Svaiter, N.F.; Guimaraes, M.E.X.

    1990-01-01

    We analyse the behaviour of an elementary microscopic particle submitted to combined Magnetic and Gravitational Fields on Goedel's Universe. The exam is made in a local Gaussian system of coordinates. (author)

  13. The effective field theory of cosmological large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M. [Stanford Univ., Stanford, CA (United States); Hertzberg, Mark P. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Senatore, Leonardo [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2012-09-20

    Large scale structure surveys will likely become the next leading cosmological probe. In our universe, matter perturbations are large on short distances and small at long scales, i.e. strongly coupled in the UV and weakly coupled in the IR. To make precise analytical predictions on large scales, we develop an effective field theory formulated in terms of an IR effective fluid characterized by several parameters, such as speed of sound and viscosity. These parameters, determined by the UV physics described by the Boltzmann equation, are measured from N-body simulations. We find that the speed of sound of the effective fluid is c2s ≈ 10–6c2 and that the viscosity contributions are of the same order. The fluid describes all the relevant physics at long scales k and permits a manifestly convergent perturbative expansion in the size of the matter perturbations δ(k) for all the observables. As an example, we calculate the correction to the power spectrum at order δ(k)4. As a result, the predictions of the effective field theory are found to be in much better agreement with observation than standard cosmological perturbation theory, already reaching percent precision at this order up to a relatively short scale k ≃ 0.24h Mpc–1.

  14. Review on structured optical field generated from array beams

    Science.gov (United States)

    Hou, Tianyue; Zhou, Pu; Ma, Yanxing; Zhi, Dong

    2018-03-01

    Structured optical field (SOF), which includes vortex beams, non-diffraction beams, cylindrical vector beams and so on, has been under intensive investigation theoretically and experimentally in recent years. Generally, current research focus on the extraordinary properties (non-diffraction propagation, helical wavefront, rotation of electrical field, et al), which can be widely applied in micro-particle manipulation, super-resolution imaging, free-space communication and so on. There are mainly two technical routes, that is, inner-cavity and outer-cavity (spatial light modulators, diffractive phase holograms, q-plates). To date, most of the SOFs generated from both technical routes involves with single monolithic beam. As a novel technical route, SOF based on array beams has the advantage in more flexible freedom degree and power scaling potential. In this paper, research achievements in SOF generation based on array beams are arranged and discussed in detail. Moreover, experiment of generating exotic beam by array beams is introduced, which illustrates that SOF generated from array beams is theoretically valid and experimentally feasible. SOF generated from array beams is also beneficial for capacity increasing and data receiving for free-space optical communication systems at long distance.

  15. Induced photoassociation in the field of a strong electomagnetic wave

    International Nuclear Information System (INIS)

    Zaretskij, D.F.; Lomonosov, V.V.; Lyul'ka, V.A.

    1979-01-01

    The quantum-mechanical problem of the stimulated transition of a system in the field of a strong electromagnetic wave from the continuous spectrum to a bound state possessing a finite lifetime is considered. The expressions obtained are employed to calculate stimulated production of mesic atoms and mesic molecules (ddμ). It is demonstrated that in an external electromagnetic field the probability for production of this type may considerably increase

  16. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  17. Quantum fields on manifolds: PCT and gravitationally induced thermal states

    International Nuclear Information System (INIS)

    Sewell, G.L.

    1982-01-01

    We formulate an axiomatic scheme, designed to provide a framework for a general, rigorous theory of relativistic quantum fields on a class of manifolds, that includes Kruskal's extension of Schwarzchild space-time, as well as Minkowski space-time. The scheme is an adaptation of Wightman's to this class of manifolds. We infer from it that, given an arbitrary field (in general, interacting) on a manifold X, the restriction of the field to a certain open submanifold X/sup( + ), whose boundaries are event horizons, satisfies the Kubo--Martin--Schwinger (KMS) thermal equilibrium conditions. This amounts to a rigorous, model-independent proof of a generalized Hawking--Unruh effect. Further, in cases where the field enjoys a certain PCT symmetry, the conjugation governing the KMS condition is just the PCT operator. The key to these results is an analogue, that we prove, of the Bisognano--Wichmann theorem [J. Math. Phys. 17, (1976), Theorem 1]. We also construct an alternative scheme by replacing a regularity condition at an event horizon by the assumption that the field in X/sup( + ) is in a ground, rather then a thermal, state. We show that, in this case, the observables in X/sup( + ) are uncorrelated to those in its causal complement, X/sup( - ), and thus that the event horizons act as physical barriers. Finally, we argue that the choice between the two schemes must be dictated by the prevailing conditions governing the state of the field

  18. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field

    Science.gov (United States)

    Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping

    2008-12-01

    The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.

  19. Cold induced peripheral vasodilation at high altitudes- a field study

    NARCIS (Netherlands)

    Daanen, H.A.M.; Ruiten, H.J.A. van

    2000-01-01

    A significant reduction in cold-induced vasodilation (CIVD) is observed at high altitudes. No agreement is found in the literature about acclimatization effects on CIVD. Two studies were performed to investigate the effect of altitude acclimatization on CIVD. In the first study 13 male subjects

  20. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  1. Protein 8-class secondary structure prediction using conditional neural fields.

    Science.gov (United States)

    Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo

    2011-10-01

    Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Field enhancement of multiphoton induced luminescence processes in ZnO nanorods

    Science.gov (United States)

    Hyyti, Janne; Perestjuk, Marko; Mahler, Felix; Grunwald, Rüdiger; Güell, Frank; Gray, Ciarán; McGlynn, Enda; Steinmeyer, Günter

    2018-03-01

    The near-ultraviolet photoluminescence of ZnO nanorods induced by multiphoton absorption of unamplified Ti:sapphire pulses is investigated. Power dependence measurements have been conducted with an adaptation of the ultrashort pulse characterization method of interferometric frequency-resolved optical gating. These measurements enable the separation of second harmonic and photoluminescence bands due to their distinct coherence properties. A detailed analysis yields fractional power dependence exponents in the range of 3-4, indicating the presence of multiple nonlinear processes. The range in measured exponents is attributed to differences in local field enhancement, which is supported by independent photoluminescence and structural measurements. Simulations based on Keldysh theory suggest contributions by three- and four-photon absorption as well as avalanche ionization in agreement with experimental findings.

  3. Reframing measurement for structural health monitoring: a full-field strategy for structural identification

    Science.gov (United States)

    Dizaji, Mehrdad S.; Harris, Devin K.; Alipour, Mohamad; Ozbulut, Osman E.

    2018-03-01

    Structural health monitoring (SHM) describes a decision-making framework that is fundamentally guided by state change detection of structural systems. This framework typically relies on the use of continuous or semi-continuous monitoring of measured response to quantify this state change in structural system behavior, which is often related to the initiation of some form of damage. Measurement approaches used for traditional SHM are numerous, but most are limited to either describing localized or global phenomena, making it challenging to characterize operational structural systems which exhibit both. In addition to these limitations in sensing, SHM has also suffered from the inherent robustness inherent to most full-scale structural systems, making it challenging to identify local damage. These challenges highlight the opportunity for alternative strategies for SHM, strategies that are able to provide data suitable to translate into rich information. This paper describes preliminary results from a refined structural identification (St-ID) approach using fullfield measurements derived from high-speed 3D Digital Image Correlation (HSDIC) to characterize uncertain parameters (i.e. boundary and constitutive properties) of a laboratory scale structural component. The St-ID approach builds from prior work by supplementing full-field deflection and strain response with vibration response derived from HSDIC. Inclusion of the modal characteristics within a hybrid-genetic algorithm optimization scheme allowed for simultaneous integration of mechanical and modal response, thus enabling a more robust St-ID strategy than could be achieved with traditional sensing techniques. The use of full-field data is shown to provide a more comprehensive representation of the global and local behavior, which in turn increases the robustness of the St-Id framework. This work serves as the foundation for a new paradigm in SHM that emphasizes characterizing structural performance using a

  4. Perturbing an electromagnetically induced transparency in a Λ system using a low-frequency driving field. II. Four-level system

    International Nuclear Information System (INIS)

    Wilson, E. A.; Manson, N. B.; Wei, C.

    2005-01-01

    The effect a perturbing field has on an electromagnetically induced transparency within a three-level Λ system is presented. The perturbing field is applied resonant between one of the lower levels of the Λ system and a fourth level. The electromagnetically induced transparency feature is split and this is measured experimentally for both single and bichromatic driving fields. In the single-driving-field case a density matrix treatment is shown to be in reasonable agreement with experiment and in both single and bichromatic cases the structure in the spectrum can be explained using a dressed-state analysis

  5. Controlling molecular condensation/diffusion of copper phthalocyanine by local electric field induced with scanning tunneling microscope tip

    Science.gov (United States)

    Nagaoka, Katsumi; Yaginuma, Shin; Nakayama, Tomonobu

    2018-02-01

    We have discovered the condensation/diffusion phenomena of copper phthalocyanine (CuPc) molecules controlled with a pulsed electric field induced by the scanning tunneling microscope tip. This behavior is not explained by the conventional induced dipole model. In order to understand the mechanism, we have measured the electronic structure of the molecule by tunneling spectroscopy and also performed theoretical calculations on molecular orbitals. These data clearly indicate that the molecule is positively charged owing to charge transfer to the substrate, and that hydrogen bonding exists between CuPc molecules, which makes the molecular island stable.

  6. The Characteristics of Electromagnetic Fields Induced by Different Type Sources

    Science.gov (United States)

    Di, Q.; Fu, C.; Wang, R.; Xu, C.; An, Z.

    2011-12-01

    Controlled source audio-frequence magnetotelluric (CSAMT) method has played an important role in the shallow exploration (less than 1.5km) in the field of resources, environment and engineering geology. In order to prospect the deeper target, one has to increase the strength of the source and offset. However, the exploration is nearly impossible for the heavy larger power transmitting source used in the deeper prospecting and mountain area. So an EM method using a fixed large power source, such as long bipole current source, two perpendicular "L" shape long bipole current source and large radius circle current source, is beginning to take shape. In order to increase the strength of the source, the length of the transmitting bipole in one direction or in perpendicular directions has to be much larger, such as L=100km, or the radius of the circle current source is much larger. The electric field strength are IL2and IL2/4π separately for long bipole source and circle current source with the same wire length. Just considering the effectiveness of source, the strength of the circle current source is larger than that of long bipole source if is large enough. However, the strength of the electromagnetic signal doesn't totally depend on the transmitting source, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source for the long bipole source or the large radius circle current source. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using the integral equation (IE) code developed by our research group for a three layers earth-ionosphere model which consists of ionosphere, atmosphere and earth media. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale source can be ignorable, which means the integral equation

  7. External field-induced chaos in classical and quantum Hamiltonian systems

    International Nuclear Information System (INIS)

    Lin, W.C.

    1986-01-01

    Classical nonlinear nonintegrable systems exhibit dense sets of resonance zones in phase space. Global chaotic motion appears when neighboring resonance zones overlap. The chaotic motion signifies the destruction of a quasi constant of motion. The motion of a particle, trapped in one of the wells of a sinusoidal, potential driven by a monochromatic external field was studied. Global chaotic behavior sets in when the amplitude of the external field reaches a critical value. The particle then escapes the well. The critical values are found to be in good agreement with a resonance overlap criterion rather than a renormalization-group scheme. A similar system was then studied, but with the particle being confined in an infinite square well potential instead. A stochastic layer is found in the low-energy part of the phase space. The resonance zone structure is found to be in excellent agreement with predictions. The critical values for the onset of global chaotic behavior are found to be in excellent agreement with the renormalization group scheme. The quantum version of the second model above was then considered. In a similar fashion, the external field induces quantum resonance zones. The spectral statistics were computed, and a transition of statistics from Poissonian to Wigner-like was found as overlap of quantum resonances occurs. This also signifies the destruction of a quasi-constant of motion

  8. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  9. Laser induced structural transformation in chalcogenide based superlattices

    International Nuclear Information System (INIS)

    Zallo, Eugenio; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella

    2016-01-01

    Superlattices made of alternating layers of nominal GeTe and Sb 2 Te 3 have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  10. Laser induced structural transformation in chalcogenide based superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Zallo, Eugenio, E-mail: zallo@pdi-berlin.de; Wang, Ruining; Bragaglia, Valeria; Calarco, Raffaella [Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2016-05-30

    Superlattices made of alternating layers of nominal GeTe and Sb{sub 2}Te{sub 3} have been studied by micro-Raman spectroscopy. A structural irreversible transformation into ordered GeSbTe alloy is induced by high power laser light exposure. The intensity ratio of anti-Stokes and Stokes scattering under laser illumination gives a maximum average temperature in the sample of 177 °C. The latter is lower than the growth temperature and of 400 °C necessary by annealing to transform the structure in a GeSbTe alloy. The absence of this configuration after in situ annealing even up to 300 °C evidences an electronic excitation induced-transition which brings the system into a different and stable crystalline state.

  11. Mean field strategies induce unrealistic nonlinearities in calcium puffs

    Directory of Open Access Journals (Sweden)

    Guillermo eSolovey

    2011-08-01

    Full Text Available Mean field models are often useful approximations to biological systems, but sometimes, they can yield misleading results. In this work, we compare mean field approaches with stochastic models of intracellular calcium release. In particular, we concentrate on calcium signals generated by the concerted opening of several clustered channels (calcium puffs. To this end we simulate calcium puffs numerically and then try to reproduce features of the resulting calcium distribution using mean field models were all the channels open and close simultaneously. We show that an unrealistic nonlinear relationship between the current and the number of open channels is needed to reproduce the simulated puffs. Furthermore, a single channel current which is five times smaller than the one of the stochastic simulations is also needed. Our study sheds light on the importance of the stochastic kinetics of the calcium release channel activity to estimate the release fluxes.

  12. Field-induced magnetic instability within a superconducting condensate

    DEFF Research Database (Denmark)

    Mazzone, Daniel Gabriel; Raymond, Stephane; Gavilano, Jorge Luis

    2017-01-01

    The application of magnetic fields, chemical substitution, or hydrostatic pressure to strongly correlated electron materials can stabilize electronic phases with different organizational principles. We present evidence for a fieldinduced quantum phase transition, in superconducting Nd0.05Ce0.95Co...... that the magnetic instability is not magnetically driven, and we propose that it is driven by a modification of superconducting condensate at H*.......In5, that separates two antiferromagnetic phases with identical magnetic symmetry. At zero field, we find a spin-density wave that is suppressed at the critical field mu H-0* = 8 T. For H > H*, a spin-density phase emerges and shares many properties with the Q phase in CeCoIn5. These results suggest...

  13. Model of Structural Fragmentation Induced by High Pressure Torsion

    Czech Academy of Sciences Publication Activity Database

    Kratochvíl, J.; Kružík, Martin; Sedláček, R.

    2010-01-01

    Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf

  14. Intermediate size inducer pump - structural analysis and transient deformation studies

    International Nuclear Information System (INIS)

    Cheng, T.K.; Nishizaka, J.N.

    1979-05-01

    This report summarizes the structural and thermal transient deformation analysis of the Intermediate Size Inducer Pump. The analyses were performed in accordance to the requirements of N266ST310001, the specification for the ISIP. Results of stress analysis indicate that the thermal transient stress and strain are within the stress strain limits of RDT standard F9-4 which was used as a guide

  15. Study of radiation induced structural changes in nitrile rubber

    International Nuclear Information System (INIS)

    Cardona, F.; Hill, D.J.T.; Pomery, P.J.; Whittaker, A.K.

    1996-01-01

    Full text: Copolymers of butadiene (BD) and acrylonitrile (AN) (NBR rubber), have become important commercial material. NBR rubbers are part of a larger classification of products often referred to as special-purpose rubbers. Oil resistance is the most important property of nitrile rubbers, and refer to the ability of the vulcanised product to retain its original physical properties such as modulus, tensile strength, abrasion resistance and dimensions, while in contact with oils and fuels. Despite these reported advantages very few studies have been conducted on the radiation yields and structural changes in nitrile rubbers during exposure to high energy radiation. In this study we are investigating the stability against gamma and UV radiation, to different doses in vacuum, of butadiene, acrylonitrile and NBR copolymers with different composition ratio BD/AN. The mechanism of radiation induced structural changes is being investigated using experimental techniques such as ESR, NMR (Solid-state), FT-IR, RAMAN and UV spectroscopy. Also is being investigated the effect of irradiation on the mechanical properties of stressed and unstressed samples by TGA, DSC, DMA, Instron and Creep Test measurements. So far the main effect have been a marked radiation-induced loss of unsaturation in the butadiene units, cis to trans isomerization and formation of crosslink structures (intermolecular and intramolecular). One of the main challenges in the studies of NBR polymers is to observe directly the crosslinks produces by the radiation induced chemical reactions. IR spectroscopy is unsuitable because of the low molar absorbity of the peaks related to intermolecular crosslinking and the overlapping of the peaks (1630-1670 cm-1) related to intramolecular crosslinking (cyclization), with conjugated and nonconjugated (-C=C-; -C=N-) double bonds. A. K. Whittaker has shown that crosslink structures in PBD can be detected and measured directly using solid-state 13 C NMR. This technique

  16. Induced activity in accelerator structures, air and water

    CERN Document Server

    Stevenson, Graham Roger

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport front the activation region to the release point. (18 refs).

  17. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.

    2012-04-17

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  18. Induced activity in accelerator structures, air and water

    International Nuclear Information System (INIS)

    Stevenson, G.R.

    2001-01-01

    A summary is given of several 'rules of thumb' which can be used to predict the formation and decay of radionuclides in the structure of accelerators together with the dose rates from the induced radioactivity. Models are also given for the activation of gases (air of the accelerator vault) and liquids (in particular cooling water), together with their transport from the activation region to the release point. (author)

  19. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  20. Terahertz-field-induced photoluminescence of nanostructured gold films

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Malureanu, Radu; Zalkovskij, Maksim

    2013-01-01

    We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced at the pe......We experimentally demonstrate photoluminescence from nanostructured ultrathin gold films subjected to strong single-cycle terahertz transients with peak electric field over 300 kV/cm. We show that UV-Vis-NIR light is being generated and the efficiency of the process is strongly enhanced...

  1. Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field.

    Science.gov (United States)

    Wang, S; Kang, J; Zhang, X; Guo, Z

    2018-02-01

    The fragmentation of the dendrites of succinonitrile (SCN)-2-wt.% acetone organic transparent alloy caused by ultrasound-induced cavitation bubbles was studied by using ultra-high-speed digital camera with a rate of 40,000fps. Real-time imaging reveals that the vibrating cavitation bubbles can fragment not only secondary arms but also the primary ones under high ultrasound power. The secondary arms always broke at their roots as a result of stress concentration induced by oscillated cavitation bubble and then ripped off from their primary arms. Generally the fragment process takes tens of milliseconds from bending to breaking, while the break always occurs immediately in less than 25μs. Copyright © 2017. Published by Elsevier B.V.

  2. Calculation of induced modes of magnetic field in the geodynamo problem

    International Nuclear Information System (INIS)

    Yokoyama, Yukiko; Yukutake, Takesi

    1989-01-01

    In the dynamo problem, the calculation of induced modes is of vital importance, because the interaction of fluid motions with the magnetic field induces specific types of fields which are, in many cases, different either from the type of velocity field or from the original magnetic field. This special induction relationship, known as 'selection rules', has so far been derived by calculating Adams-Gaunt integrals and Elsasser integrals. In this paper, we calculate the induced modes in a more direct way, expressing the magnetic fields and the velocity in a spherical harmonic series. By linearizing the product terms of spherical harmonic functions, which appear in interaction terms between the velocity and the magnetic field, into a simple spherical harmonic series, we have derived the induced magnetic modes in a simple general form. When the magnetic field and the velocity are expressed by toroidal and poloidal modes, four kinds of interaction are conceivable between the velocity and the magnetic field. By each interaction, two modes, the poloidal and toroidal, are induced, except in the interaction of the toroidal velocity with the toroidal magnetic field, which induces only the toroidal mode. In spite of the diversity of interaction processes, the induced modes have been found to be expressed simply by two types. For a velocity of degree l and order k interacting with a magnetic field of degree n and order m, one type is the mode with degree and order of n+l-2t, |m±k| for an integer t, and the other with n+l-2t-1, |m±k|. (author)

  3. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  4. Cubic to hexagonal phase transition induced by electric field

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Silveira, N.; Nallet, F.; Černoch, Peter; Steinhart, Miloš; Štěpánek, Petr

    2010-01-01

    Roč. 43, č. 9 (2010), s. 4261-4267 ISSN 0024-9297 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : order to order transition (OOT) * electric field * block copolymers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.838, year: 2010

  5. A Hamiltonian structure for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  6. Large-scale, near-Earth, magnetic fields from external sources and the corresponding induced internal field

    Science.gov (United States)

    Langel, R. A.; Estes, R. H.

    1983-01-01

    Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  7. Size distribution and structure of Barchan dune fields

    Directory of Open Access Journals (Sweden)

    O. Durán

    2011-07-01

    Full Text Available Barchans are isolated mobile dunes often organized in large dune fields. Dune fields seem to present a characteristic dune size and spacing, which suggests a cooperative behavior based on dune interaction. In Duran et al. (2009, we propose that the redistribution of sand by collisions between dunes is a key element for the stability and size selection of barchan dune fields. This approach was based on a mean-field model ignoring the spatial distribution of dune fields. Here, we present a simplified dune field model that includes the spatial evolution of individual dunes as well as their interaction through sand exchange and binary collisions. As a result, the dune field evolves towards a steady state that depends on the boundary conditions. Comparing our results with measurements of Moroccan dune fields, we find that the simulated fields have the same dune size distribution as in real fields but fail to reproduce their homogeneity along the wind direction.

  8. Electric Field Induced Strain in Electrostrictive Polymers Under High Hydrostatic Pressure - System Development and Material Characterization

    National Research Council Canada - National Science Library

    Zhang, Q

    2000-01-01

    ... of (i) developing a high performance piezo-bimorph based dilatometer which can be used to characterize the electric field induced strain response in polymer films under high hydrostatic pressure, (ii...

  9. Field emission from optimized structure of carbon nanotube field emitter array

    International Nuclear Information System (INIS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-01-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm"2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  10. Field emission from optimized structure of carbon nanotube field emitter array

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-04-07

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  11. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  12. Demonstration of soft x-ray amplification by optical-field-induced ionization

    International Nuclear Information System (INIS)

    Midorikawa, Katsumi; Nagata, Yutaka; Kubodera, Shoichi; Obara, Minoru; Tashiro, Hideo; Toyoda, Koichi

    1995-01-01

    We have demonstrated the amplification of the 13.5-nm Lyman-α transition in hydrogen-like Li + ions, using a novel optical-field-induced ionization. A small-signal gain coefficient of 20 cm -1 was obtained. The use of preformed Li + plasma as an initial laser medium plays important roles for the production of suitable plasma conditions for an optical-field-induced ionization x-ray laser. (author)

  13. Coloured-noise-induced transitions in nonlinear structures

    International Nuclear Information System (INIS)

    Mankin, R.; Laas, T.; Soika, E.; Sauga, A.; Rekker, A.; Ainsaar, A.; Ugaste, Ue.

    2008-01-01

    In a stochastic framework, macroscopic approaches are sought to describe microscopic interaction between different species. Coloured-noise-induced transitions in stochastic N-species Lotka-Volterra systems are considered analytically as an appropriate model expendable to many natural and nano-technological processes. All the results discussed are computed by means of a dynamical mean-field approximation. It is demonstrated that interplay of coloured noise and interaction intensities of species can generate a variety of cooperation effects, such as discontinuous transitions of the mean population density, noise-induced Hopf bifurcations and relaxation oscillation. The necessary conditions for the cooperation effects are also discussed. Particularly, it is established that, in the case of the Beddington functional response, in certain parameter regions of the model an increase in noise correlation time can cause multiple transitions (more than two) between relaxation oscillatory regimes and equilibrium states. (authors)

  14. Solitons of scalar field with induced nonlinearity and their stability

    International Nuclear Information System (INIS)

    Saha, B.

    1999-09-01

    Exact particle-like static, spherically and/or cylindrically symmetric solutions to the equations of interacting scalar and electromagnetic field system have been obtained. We considered FRW and Goedel universes as external gravitational field with spherical and cylindrical symmetry respectively. Beside the usual solitons some special regular solutions known as droplets, anti-droplets and hats (confined in finite interval and having trivial value beyond it) have been obtained. It has been shown that in FRW space-time equations with different interaction terms may have stable solutions while within the scope of Goedel model only the droplet-like and the hat-like configurations may be stable, providing that they are located in the region where g 00 > 0. (author)

  15. Strain-induced modulation of near-field radiative transfer.

    Science.gov (United States)

    Ghanekar, Alok; Ricci, Matthew; Tian, Yanpei; Gregory, Otto; Zheng, Yi

    2018-06-11

    In this theoretical study, we present a near-field thermal modulator that exhibits change in radiative heat transfer when subjected to mechanical stress/strain. The device has two terminals at different temperatures separated by vacuum: one fixed and one stretchable. The stretchable side contains one-dimensional grating. When subjected to mechanical strain, the effective optical properties of the stretchable side are affected upon deformation of the grating. This results in modulation of surface waves across the interfaces influencing near-field radiative heat transfer. We show that for a separation of 100 nm, it is possible to achieve 25% change in radiative heat transfer for a strain of 10%.

  16. Field avian metapneumovirus evolution avoiding vaccine induced immunity.

    Science.gov (United States)

    Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J

    2010-01-22

    Live avian metapneumovirus (AMPV) vaccines have largely brought turkey rhinotracheitis (TRT) under control in Europe but unexplained outbreaks still occur. Italian AMPV longitudinal farm studies showed that subtype B AMPVs were frequently detected in turkeys some considerable period after subtype B vaccination. Sequencing showed these to be unrelated to the previously applied vaccine. Sequencing of the entire genome of a typical later isolate showed numerous SH and G protein gene differences when compared to both a 1987 Italian field isolate and the vaccine in common use. Experimental challenge of vaccinated birds with recent virus showed that protection was inferior to that seen after challenge with the earlier 1987 isolate. Field virus had changed in key antigenic regions allowing replication and leading to disease in well vaccinated birds.

  17. Cellular structure formed by ion-implantation-induced point defect

    International Nuclear Information System (INIS)

    Nitta, N.; Taniwaki, M.; Hayashi, Y.; Yoshiie, T.

    2006-01-01

    The authors have found that a cellular defect structure is formed on the surface of Sn + ion implanted GaSb at a low temperature and proposed its formation mechanism based on the movement of the induced point defects. This research was carried out in order to examine the validity of the mechanism by clarifying the effect of the mobility of the point defects on the defect formation. The defect structure on the GaSb surfaces implanted at cryogenic temperature and room temperature was investigated by scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (TEM) observation. In the sample implanted at room temperature, the sponge-like structure (a pileup of voids) was formed and the cellular structure, as observed at a low temperature, did not develop. This behavior was explained by the high mobility of the vacancies during implantation at room temperature, and the proposed idea that the defect formation process is dominated by the induced point defects was confirmed

  18. Electric field-induced astrocyte alignment directs neurite outgrowth

    OpenAIRE

    ALEXANDER, JOHN K.; FUSS, BABETTE; COLELLO, RAYMOND J.

    2006-01-01

    The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent t...

  19. Experiments on plasma turbulence induced by strong, steady electric fields

    International Nuclear Information System (INIS)

    Hamberger, S.M.

    1975-01-01

    The author discusses the effect of applying a strong electric field to collisionless plasma. In particular are compared what some ideas and prejudices lead one to expect to happen, what computer simulation experiments tell one ought to happen, and what actually does happen in two laboratory experiments which have been designed to allow the relevant instability and turbulent processes to occur unobstructed and which have been studied in sufficient detail. (Auth.)

  20. Electric field-induced astrocyte alignment directs neurite outgrowth.

    Science.gov (United States)

    Alexander, John K; Fuss, Babette; Colello, Raymond J

    2006-05-01

    The extension and directionality of neurite outgrowth are key to achieving successful target connections during both CNS development and during the re-establishment of connections lost after neural trauma. The degree of axonal elongation depends, in large part, on the spatial arrangement of astrocytic processes rich in growth-promoting proteins. Because astrocytes in culture align their processes on exposure to an electrical field of physiological strength, we sought to determine the extent to which aligned astrocytes affect neurite outgrowth. To this end, dorsal root ganglia cells were seeded onto cultured rat astrocytes that were pre-aligned by exposure to an electric field of physiological strength (500 mV mm(-1)). Using confocal microscopy and digital image analysis, we found that neurite outgrowth at 24 hours and at 48 hours is enhanced significantly and directed consistently along the aligned astrocyte processes. Moreover, this directed neurite outgrowth is maintained when grown on fixed, aligned astrocytes. Collectively, these results indicate that endogenous electric fields present within the developing CNS might act to align astrocyte processes, which can promote and direct neurite growth. Furthermore, these results demonstrate a simple method to produce an aligned cellular substrate, which might be used to direct regenerating neurites.

  1. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanzheng [Iowa State Univ., Ames, IA (United States)

    2014-12-15

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some wellaccepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated.

  2. Electron field emission from sp -induced insulating to metallic ...

    Indian Academy of Sciences (India)

    Administrator

    Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India. MS received 20 ... emissions of amorphous carbon films have been investigated. The observed ... water followed by acetone was positioned at the centre of first zone ..... clusters islands, surface geometry, and internal structures of the films.

  3. Induced WZW-type term in dual field theory

    International Nuclear Information System (INIS)

    Nielsen, N.K.

    1990-01-01

    One-loop quantum equivalence is investigated by proper time regularization for a nonlinear σ-model in two dimensions on a group manifold and its dual theory constructed by Fradkin and Tseytlin. The one-loop effective actions are found to deviate by a finite local counterterm with a structure similar to that of a Wess-Zumino-Witten term

  4. Structural aspects of Lorentz-violating quantum field theory

    Science.gov (United States)

    Cambiaso, M.; Lehnert, R.; Potting, R.

    2018-01-01

    In the last couple of decades the Standard Model Extension has emerged as a fruitful framework to analyze the empirical and theoretical extent of the validity of cornerstones of modern particle physics, namely, of Special Relativity and of the discrete symmetries C, P and T (or some combinations of these). The Standard Model Extension allows to contrast high-precision experimental tests with posited alterations representing minute Lorentz and/or CPT violations. To date no violation of these symmetry principles has been observed in experiments, mostly prompted by the Standard-Model Extension. From the latter, bounds on the extent of departures from Lorentz and CPT symmetries can be obtained with ever increasing accuracy. These analyses have been mostly focused on tree-level processes. In this presentation I would like to comment on structural aspects of perturbative Lorentz violating quantum field theory. I will show that some insight coming from radiative corrections demands a careful reassessment of perturbation theory. Specifically I will argue that both the standard renormalization procedure as well as the Lehmann-Symanzik-Zimmermann reduction formalism need to be adapted given that the asymptotic single-particle states can receive quantum corrections from Lorentz-violating operators that are not present in the original Lagrangian.

  5. Effects of confinement and external fields on structure and transport in colloidal dispersions in reduced dimensionality

    International Nuclear Information System (INIS)

    Wilms, D; Virnau, P; Binder, K; Deutschländer, S; Siems, U; Franzrahe, K; Henseler, P; Keim, P; Schwierz, N; Maret, G; Nielaba, P

    2012-01-01

    In this work, we focus on low-dimensional colloidal model systems, via simulation studies and also some complementary experiments, in order to elucidate the interplay between phase behavior, geometric structures and transport properties. In particular, we try to investigate the (nonlinear!) response of these very soft colloidal systems to various perturbations: uniform and uniaxial pressure, laser fields, shear due to moving boundaries and randomly quenched disorder. We study ordering phenomena on surfaces or in monolayers by Monte Carlo computer simulations of binary hard-disk mixtures, the influence of a substrate being modeled by an external potential. Weak external fields allow a controlled tuning of the miscibility of the mixture. We discuss the laser induced de-mixing for the three different possible couplings to the external potential. The structural behavior of hard spheres interacting with repulsive screened Coulomb or dipolar interaction in 2D and 3D narrow constrictions is investigated using Brownian dynamics simulations. Due to misfits between multiples of the lattice parameter and the channel widths, a variety of ordered and disordered lattice structures have been observed. The resulting local lattice structures and defect probabilities are studied for various cross sections. The influence of a self-organized order within the system is reflected in the velocity of the particles and their diffusive behavior. Additionally, in an experimental system of dipolar colloidal particles confined by gravity on a solid substrate we investigate the effect of pinning on the dynamics of a two-dimensional colloidal liquid. This work contains sections reviewing previous work by the authors as well as new, unpublished results. Among the latter are detailed studies of the phase boundaries of the de-mixing regime in binary systems in external light fields, configurations for shear induced effects at structured walls, studies on the effect of confinement on the structures

  6. Stray-field-induced Faraday contributions in wide-field Kerr microscopy and -magnetometry

    International Nuclear Information System (INIS)

    Markó, D.; Soldatov, I.; Tekielak, M.; Schäfer, R.

    2015-01-01

    The magnetic domain contrast in wide-field Kerr microscopy on bulk specimens can be substantially distorted by non-linear, field-dependent Faraday rotations in the objective lens that are caused by stray-field components emerging from the specimen. These Faraday contributions, which were detected by Kerr-magnetometry on grain-oriented iron–silicon steel samples, are thoroughly elaborated and characterized. They express themselves as a field-dependent gray-scale offset to the domain contrast and in highly distorted surface magnetization curves if optically measured in a wide field Kerr microscope. An experimental method to avoid such distortions is suggested. In the course of these studies, a low-permeability part in the surface magnetization loop of slightly misoriented (110)-surfaces in iron–silicon sheets was discovered that is attributed to demagnetization effects in direction perpendicular to the sheet surface. - Highlights: • Magnetizing a finite sample in a Kerr microscope leads to sample-generated stray-fields. • They cause non-linear, field- and position-dependent Faraday rotations in the objective. • This leads to a modulation of the Kerr contrast and to distorted MOKE loops. • A method to compensate these Faraday rotations is presented

  7. Enhancement of crystallinity and magnetization in Fe3O4 nanoferrites induced by a high synthesized magnetic field

    Science.gov (United States)

    Ma, Xinxiu; Zhang, Zhanxian; Chen, Shijie; Lei, Wei; Xu, Yan; Lin, Jia; Luo, Xiaojing; Liu, Yongsheng

    2018-05-01

    A one-step hydrothermal method in different dc magnetic fields was used to prepare the Fe3O4 nanoparticles. Under the magnetic field, the average particle size decreased from 72.9 to 41.6 nm, meanwhile, the particle crystallinity is greatly improved. The magnetic field enhances its saturation magnetization and coercivity. The high magnetic field induce another magnetic structure. At room temperature, these nanoparticles exhibit superparamagnetism whose critical size (D sp) is about 26 nm. The Verwey transition is observed in the vicinity of 120 K of Fe3O4 nanoparticles. The effective magnetic anisotropy decreases with the increase of the test temperature because of the H c decreased.

  8. Impact induced solitary wave propagation through a woodpile structure

    International Nuclear Information System (INIS)

    Kore, R; Waychal, A; Yadav, P; Shelke, A; Agarwal, S; Sahoo, N; Uddin, Ahsan

    2016-01-01

    In this paper, we investigate solitary wave propagation through a one-dimensional woodpile structure excited by low and high velocity impact. Woodpile structures are a sub-class of granular metamaterial, which supports propagation of nonlinear waves. Hertz contact law governs the behavior of the solitary wave propagation through the granular media. Towards an experimental study, a woodpile structure was fabricated by orthogonally stacking cylindrical rods. A shock tube facility has been developed to launch an impactor on the woodpile structure at a velocity of 30 m s −1 . Embedded granular chain sensors were fabricated to study the behavior of the solitary wave. The impact induced stress wave is studied to investigate solitary wave parameters, i.e. contact force, contact time, and solitary wave velocity. With the aid of the experimental setup, numerical simulations, and a theoretical solution based on the long wavelength approximation, formation of the solitary wave in the woodpile structure is validated to a reasonable degree of accuracy. The nondispersive and compact supported solitary waves traveling at sonic wave velocity offer unique properties that could be leveraged for application in nondestructive testing and structural health monitoring. (paper)

  9. Prediction of Cracking Induced by Indirect Actions in RC Structures

    Science.gov (United States)

    Anerdi, Costanza; Bertagnoli, Gabriele; Gino, Diego; Malavisi, Marzia; Mancini, Giuseppe

    2017-10-01

    Cracking of concrete plays a key role in reinforced concrete (RC) structures design, especially in serviceability conditions. A variety of reasons contribute to develop cracking and its presence in concrete structures is to be considered as almost unavoidable. Therefore, a good control of the phenomenon in order to provide durability is required. Cracking development is due to tensile stresses that arise in concrete structures as a result of the action of direct external loads or restrained endogenous deformations. This paper focuses on cracking induced by indirect actions. In fact, there is very limited literature regarding this particular phenomenon if compared to its high incidence in the construction practice. As a consequence, the correct prediction of the crack opening, width and position when structures are subjected to imposed deformations, such as massive castings or other highly restrained structures, becomes a compelling task, not so much for the structural capacity, as for their durability. However, this is only partially addressed by commonly used design methods, which are usually intended for direct actions. A set of non-linear analysis on simple tie models is performed using the Finite Element Method in order to study the cracking process under imposed deformations. Different concrete grades have been considered and analysed. The results of this study have been compared with the provisions of the most common codes.

  10. Structural properties and digestibility of pulsed electric field treated waxy rice starch.

    Science.gov (United States)

    Zeng, Feng; Gao, Qun-Yu; Han, Zhong; Zeng, Xin-An; Yu, Shu-Juan

    2016-03-01

    Waxy rice starch was subjected to pulsed electric field (PEF) treatment at intensity of 30, 40 and 50kVcm(-1). The impact of PEF treatment on the granular morphology, molecular weight, semi-crystalline structure, thermal properties, and digestibility were investigated. The micrographs suggested that electric energy could act on the granule structure of starch granule, especially at high intensity of 50kVcm(-1). Gelatinization onset temperature, peak temperature, conclusion temperature and enthalpy value of PEF treated starches were lower than that of native starch. The 9nm lamellar peak of PEF treated starches decreased as revealed by small angle X-ray scattering. The relative crystallinity of treated starches decreased as the increase of electric field intensity. Increased rapidly digestible starch level and decreased slowly digestible starch level was found on PEF treated starches. These results would imply that PEF treatment induced structural changes in waxy rice starch significantly affected its digestibility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Competing exchange bias and field-induced ferromagnetism in La-doped BaFe O3

    Science.gov (United States)

    Fita, I.; Wisniewski, A.; Puzniak, R.; Iwanowski, P.; Markovich, V.; Kolesnik, S.; Dabrowski, B.

    2017-04-01

    An exchange bias (EB) effect was observed in mixed valent L axB a1 -xFe O3 (x =0.125 , 0.25, 0.33) perovskites exhibiting the antiferromagnetic (AFM) helical order among F e4 + ions coexisting with the ferromagnetic (FM) cluster phase in the ground state. The L a3 + ions for B a2 + site substitution, associated with increase in number of the AFM coupled F e3 + - F e4 + pairs as well as some F e3 + - F e3 + pairs, leads to strengthening of the AFM phase and consequently to the alteration of the EB characteristics, which depend on level of the La doping x . At low doping x ≤0.25 , an abnormal dependence of the EB field, HEB, on the cooling field, Hcool, was found. The HEB increases rapidly with increasing cooling field at low Hcool, but it falls suddenly at cooling fields higher than 20 kOe, reducing by an order of magnitude at 90 kOe. The suppression of EB is caused by the field-induced increased volume of the FM phase, due to the transformation of the AFM helical spin structure into the FM one. Thus, low-doped L axB a1 -xFe O3 demonstrates a competition of two alternate cooling-field-induced effects, one of which leads to the EB anisotropy and another one to the enhanced ferromagnetism. In contrast, the x =0.33 sample, having a strong AFM constituent, shows no field-induced FM and no drop in the EB field. Accordingly, the HEB vs Hcool dependence was found to be well explained in the framework of a model describing phase-separated AFM-FM systems, namely, the model assuming isolated FM clusters of size ˜4 nm embedded in the AFM matrix.

  12. Visual field tunneling in aviators induced by memory demands.

    Science.gov (United States)

    Williams, L J

    1995-04-01

    Aviators are required rapidly and accurately to process enormous amounts of visual information located foveally and peripherally. The present study, expanding upon an earlier study (Williams, 1988), required young aviators to process within the framework of a single eye fixation a briefly displayed foveally presented memory load while simultaneously trying to identify common peripheral targets presented on the same display at locations up to 4.5 degrees of visual angle from the fixation point. This task, as well as a character classification task (Williams, 1985, 1988), has been shown to be very difficult for nonaviators: It results in a tendency toward tunnel vision. Limited preliminary measurements of peripheral accuracy suggested that aviators might be less susceptible than nonaviators to this visual tunneling. The present study demonstrated moderate susceptibility to cognitively induced tunneling in aviators when the foveal task was sufficiently difficult and reaction time was the principal dependent measure.

  13. On the stochastic structure of globally supersymmetric field theories

    International Nuclear Information System (INIS)

    Flume, R.; Lechtenfeld, O.

    1983-09-01

    We reformulate the bosonic sector of globally supersymmetric field theories through a ''fermionisation'' of bosonic Feynman graphs. The recipe for the fermionisation gives an explicit realisation of the Nicolai map. The graphical rules for supersymmetric Yang-Mills fields in the reformulated version turn out to be simpler than those of ordinary Yang-Mills fields. (orig.)

  14. The rotationally induced quadrupole pair field in the particle-rotor model

    International Nuclear Information System (INIS)

    Almberger, J.

    1980-04-01

    A formalism is developed which makes it possible to consider the influence of the rotationally induced quadrupole pair field and corresponding quasi-particle residual interactions within the particle-rotor model. The Y 21 pair field renormalizes both the Coriolis and the recoil interactions. (Auth.)

  15. The impact of coronal mass ejection on the horizontal geomagnetic fields and the induced geoelectric fields

    Science.gov (United States)

    Falayi, E. O.; Adebesin, B. O.; Bolaji, O. S.

    2018-02-01

    This work investigates the influence of coronal mass ejection (CME) on the time derivatives of horizontal geomagnetic and geoelectric fields, proxy parameters for identifying GICs. 16 events were identified for the year 2003 from the CORONAS-PHOTON spacecraft. Five of the events (May 29, June 9, October 28, October 29, and November 4) were extensively discussed over four magnetic observatories, were analyzed using the time derivatives of the horizontal geomagnetic (dH/dt) and geoelectric (EH) fields obtained from data of the INTERMAGNET network. It was observed that energy distributions of the wavelet power spectrum of the horizontal geoelectric field are noticed at the nighttime on both 29 May and 9 June 2003 across the stations. Daytime and nighttime intensification of energy distribution of the wavelet power spectrum of the horizontal geoelectric field are observed on both 28 and 29 October 2003 due to strong westward electrojet. The 4 November 2003 event depicts daytime amplification of energy distributions of the wavelet power spectrum across the stations. The highest correlation magnitude is obtained in the event of 4 November 2003 between dH/dt and EH relationships during the intense solar flare of class X 17.4. We observed that the correlation magnitude between dH/dt and EH increases with increase in CME activity. We concluded that the response of the surface impedance model for different stations plays a key role in determining the surface electric field strength, due to large electric field changes at different stations.

  16. Electric field-induced magnetoresistance in spin-valve/piezoelectric multiferroic laminates for low-power spintronics

    International Nuclear Information System (INIS)

    Huong Giang, D.T.; Thuc, V.N.; Duc, N.H.

    2012-01-01

    Electric field-induced magnetic anisotropy has been realized in the spin-valve-based {Ni 80 Fe 20 /Cu/Fe 50 Co 50 /IrMn}/piezoelectric multiferroic laminates. In this system, electric-field control of magnetization is accomplished by strain mediated magnetoelectric coupling. Practically, the magnetization in the magnetostrictive FeCo layer of the spin-valve structure rotates under an effective compressive stress caused by the inverse piezoelectric effect in external electrical fields. This phenomenon is evidenced by the magnetization and magnetoresistance changes under the electrical field applied across the piezoelectric layer. The result shows great potential for advanced low-power spintronic devices. - Highlights: ► Investigate electric field-induced magnetic anisotropy in spin-valve/piezoelectric. ► Magnetization, magnetoresistance changes under electric field across piezoelectric. ► Magnetization in magnetostrictive FeCo-layer rotates under a compressive stress. ► This advance shows great implications for low-power electronics and spintronics.

  17. Experimental and numerical analysis for magnetically induced vibrations of conducting structure

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Nakahira, Masataka; Miura, H.; Isono, A.

    1993-01-01

    The coupling effect between the electromagnetic field and mechanical response of a conducting structure is of importance in magnetic fusion devices as tokamak machine. The electromagnetically induced motion of the structure due to the Lorentz force induces additional eddy currents and further modifies the dynamic characteristics of the system. This paper is concerned with numerical modeling of the dynamic field-structure interaction and its verification by experimental tests. Here, a finite element numerical model for mechanical deformation and a wiregrid numerical model for eddy currents are employed for non-ferrous and elastic conductors. A computer code has been developed for 3-D thin shell structure. Experimental tests for the code verification were carried out by using a rectangular thin copper plate. Three kinds of the plate supporting systems, i.e., a cantilever system, a fixed both ends system and a simply supported ends system were investigated. A good agreement between the numerical and experimental results was obtained. Therefore, the computer code developed here is available for analyzing the electromagnetomechanical behavior of the plasma facing components of the tokamak device. (author)

  18. Evidence for a Field-Induced Quantum Spin Liquid in α -RuCl3

    Science.gov (United States)

    Baek, S.-H.; Do, S.-H.; Choi, K.-Y.; Kwon, Y. S.; Wolter, A. U. B.; Nishimoto, S.; van den Brink, Jeroen; Büchner, B.

    2017-07-01

    We report a 35Cl nuclear magnetic resonance study in the honeycomb lattice α -RuCl3 , a material that has been suggested to potentially realize a Kitaev quantum spin liquid (QSL) ground state. Our results provide direct evidence that α -RuCl3 exhibits a magnetic-field-induced QSL. For fields larger than ˜10 T , a spin gap opens up while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching ˜50 K at 15 T, and is nearly isotropic with respect to the field direction. The unusual rapid increase of the spin gap with increasing field and its isotropic nature are incompatible with conventional magnetic ordering and, in particular, exclude that the ground state is a fully polarized ferromagnet. The presence of such a field-induced gapped QSL phase has indeed been predicted in the Kitaev model.

  19. Flow induced vibrational excitation of nuclear reactor structures

    International Nuclear Information System (INIS)

    Gibert, R.J.

    1979-01-01

    The pressure fluctuations generated by disturbed flows, encountered in nuclear reactors induce vibrations in the structures. In order to make forecastings for these vibrational levels, it is necessary to know the characteristics of the random pressure fluctuations induced in the walls by the main flow peculiarities of the circuits. This knowledge is essentially provided by experimentation which shows that most of the energy from these fluctuations is in the low frequency area. It is also necessary to determine the transfer functions of the fluid-structure coupled system. Given the frequency range of the excitations, a calculation of the characteristics of the first eigenmodes is generally sufficient. This calculation is carried out by finite element codes, the modal dampings being assessed separately. In this paper, emphasis is placed mainly on the analysis of the sources of excitation due to flow peculiarities. Some examples will also be given of assessments of vibrations in real structures (pipes, reactor internals, etc.) and of comparisons with the experimental results obtained on models or on a site [fr

  20. Explosion-Induced Implosions of Cylindrical Shell Structures

    Science.gov (United States)

    Ikeda, C. M.; Duncan, J. H.

    2010-11-01

    An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.

  1. Quantifying pulsed electric field-induced membrane nanoporation in single cells.

    Science.gov (United States)

    Moen, Erick K; Ibey, Bennett L; Beier, Hope T; Armani, Andrea M

    2016-11-01

    Plasma membrane disruption can trigger a host of cellular activities. One commonly observed type of disruption is pore formation. Molecular dynamic (MD) simulations of simplified lipid membrane structures predict that controllably disrupting the membrane via nano-scale poration may be possible with nanosecond pulsed electric fields (nsPEF). Until recently, researchers hoping to verify this hypothesis experimentally have been limited to measuring the relatively slow process of fluorescent markers diffusing across the membrane, which is indirect evidence of nanoporation that could be channel-mediated. Leveraging recent advances in nonlinear optical microscopy, we elucidate the role of pulse parameters in nsPEF-induced membrane permeabilization in live cells. Unlike previous techniques, it is able to directly observe loss of membrane order at the onset of the pulse. We also develop a complementary theoretical model that relates increasing membrane permeabilization to membrane pore density. Due to the significantly improved spatial and temporal resolution possible with our imaging method, we are able to directly compare our experimental and theoretical results. Their agreement provides substantial evidence that nanoporation does occur and that its development is dictated by the electric field distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel

    Science.gov (United States)

    Jha, B. K.; Aina, B.

    2017-08-01

    The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.

  3. Induced mutations for disease resistance in wheat and field beans

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.; Kamel, A.H.

    1976-01-01

    Wheat disease in Egypt is reviewed and results of mutation breeding by γ irradiation for disease resistance in wheat and field beans are described. Wheat mutants of the variety Giza 155 resistant to leaf rust, Giza 156 resistant to both leaf and yellow rusts, and Tosson with a reasonable level of combined resistance to the three rusts in addition to mutants of the tetraploid variety Dakar 52 with a good level of stem and yellow rust resistance are required. Their seeds were subjected to 10, 15 and 20 krad. Of 3000-3700 M 2 plants from each variety and dosage, 22 plants from both Giza 155 and Giza 156, although susceptible, showed a lower level of disease development. In 1975, M 3 families of these selected plants and 6000 plants from bulked material were grown from each variety and dosage at two locations. Simultaneously, an additional population consisting of 3000 mutagen-treated seeds was grown to have a reasonable chance of detecting mutants; 2 heads from each plant were harvested. These will be grown next season (1976) to make a population of 25,000-30,000 M 2 plants and screened to composite cultures of specific rusts. Vicia faba seeds of field bean varieties Giza 1, Giza 2 and Rebaya 40, equally susceptible to rust and chocolate spot, were subjected to 3, 5 and 7 krad of 60 Co gamma radiation and 800 M 1 plants were grown in 1972 per variety and dose. Up to this later growing season (M 3 ) no resistance was detected in M 3 plank

  4. Photocurrent, Rectification, and Magnetic Field Symmetry of Induced Current Through Quantum Dots

    DEFF Research Database (Denmark)

    DiCarlo, L.; M. Marcus, C.; Harris jr, J.

    2003-01-01

    We report mesoscopic dc current generation in an open chaotic quantum dot with ac excitation applied to one of the shape-defining gates. For excitation frequencies large compared to the inverse dwell time of electrons in the dot (i.e., GHz), we find mesoscopic fluctuations of induced current...... that are fully asymmetric in the applied perpendicular magnetic field, as predicted by recent theory. Conductance, measured simultaneously, is found to be symmetric in field. In the adiabatic (i.e., MHz) regime, in contrast, the induced current is always symmetric in field, suggesting its origin is mesoscopic...

  5. Triple photonic band-gap structure dynamically induced in the presence of spontaneously generated coherence

    International Nuclear Information System (INIS)

    Gao Jinwei; Bao Qianqian; Wan Rengang; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a cold atomic sample coherently driven into the five-level triple-Λ configuration for attaining a dynamically controlled triple photonic band-gap structure. Our numerical calculations show that three photonic band gaps with homogeneous reflectivities up to 92% can be induced on demand around the probe resonance by a standing-wave driving field in the presence of spontaneously generated coherence. All these photonic band gaps are severely malformed with probe reflectivities declining rapidly to very low values when spontaneously generated coherence is gradually weakened. The triple photonic band-gap structure can also be attained in a five-level chain-Λ system of cold atoms in the absence of spontaneously generated coherence, which however requires two additional traveling-wave fields to couple relevant levels.

  6. Identifying Faults Associated with the 2001 Avoca Induced(?) Seismicity Sequence of Western New York State Using Potential Field Wavelets.

    Science.gov (United States)

    Horowitz, F. G.; Ebinger, C.; Jordan, T. E.

    2017-12-01

    Results from recent DOE and USGS sponsored projects in the (intraplate) northeastern portions of the US and southeastern portions of Canada have identified locations of steeply dipping structures - many previously unknown - from a Poisson wavelet multiscale edge ('worm') analysis of gravity and magnetic fields. The Avoca sequence of induced(?) seismicity in western New York state occurred during January and February of 2001. The Avoca earthquake sequence is associated with industrial hydraulic fracturing activity "related to a proposed natural gas storage facility near Avoca to be constructed by solution mining" (Kim, 2001). The main Avoca event was a felt Mb = 3.2 earthquake on Feb. 3, 2001 recorded by the Lamont Cooperative Seismic Network. Earlier, smaller events were located by the Canadian Geological Survey's seismic network north of the Canadian border - implying that the event locations might be biased because they occurred off the southern edge of the array. Some of these events were also felt locally, according to local newspaper reports. By plotting the location of the seismic events and that of the injection well - reported via it's API number - we find a strong correlation with structures detected via our potential field worms. The injection occurred near a NE-SW striking structure that was not activated. All but one of the earthquakes occurred about 5 km north of the injection well on or nearby to an E-W striking structure that appears to intersect the NE-SW structure. The final, small (MN=2.2) earthquake was located on a different complex structure about 10 km north of the other events. We suggest that potential field methods such as ours might be appropriate to locating structures of concern for induced seismic activity in association with industrial activity. Reference: Kim, W.-Y. (2001). The Lamont cooperative seismic network and the national seismic system: Earthquake hazard studies in the northeastern United States. Tech. Rep. 98-01, Lamont

  7. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid

    International Nuclear Information System (INIS)

    Mekheimer, Kh.S.

    2008-01-01

    We have analyzed the MHD flow of a conducting couple stress fluid in a slit channel with rhythmically contracting walls. In this analysis we are taking into account the induced magnetic field. Analytical expressions for the stream function, the magnetic force function, the axial pressure gradient, the axial induced magnetic field and the distribution of the current density across the channel are obtained using long wavelength approximation. The results for the pressure rise, the frictional force per wave length, the axial induced magnetic field and distribution of the current density across the channel have been computed numerically and the results were studied for various values of the physical parameters of interest, such as the couple stress parameter γ, the Hartmann number M, the magnetic Reynolds number R m and the time averaged mean flow rate θ. Contour plots for the stream and magnetic force functions are obtained and the trapping phenomena for the flow field is discussed

  8. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian, E-mail: n.sun@neu.edu [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Peng, Bin; Liu, Ming, E-mail: mingliu@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Xi' an Jiaotong University, Xi' an 710049 (China); Jiao, Jie; Luo, Haosu [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Budil, David [Department of Chemistry, Northeastern University, Boston, Massachusetts 02115 (United States); Jones, John G.; Howe, Brandon M.; Brown, Gail J. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  9. On the classification of elliptic foliations induced by real quadratic fields with center

    Science.gov (United States)

    Puchuri, Liliana; Bueno, Orestes

    2016-12-01

    Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto.

  10. Light-induced metastable structural changes in hydrogenated amorphous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H. [Univ. of Chicago, IL (United States)

    1996-09-01

    Light-induced defects (LID) in hydrogenated amorphous silicon (a-Si:H) and its alloys limit the ultimate efficiency of solar panels made with these materials. This paper reviews a variety of attempts to find the origin of and to eliminate the processes that give rise to LIDs. These attempts include novel deposition processes and the reduction of impurities. Material improvements achieved over the past decade are associated more with the material`s microstructure than with eliminating LIDs. We conclude that metastable LIDs are a natural by-product of structural changes which are generally associated with non-radiative electron-hole recombination in amorphous semiconductors.

  11. Stochastic field line structures appearing in field line tracing calculations for a helical magnetic limiter on TORE SUPRA

    International Nuclear Information System (INIS)

    Fuchs, G.; Steffen, B.; Blenski, T.; Grosman, A.; Samain, A.

    1985-05-01

    The influence on the structure of the magnetic field of a tokamak produced by small helical currents flowing near the plasma in TORE SUPRA was investigated numerically by drawing Poincare plots. The current in the helical conductors, the pitch of the windings, the rotational transform and the plasma pressure have been varied. The topology of the magnetic field line structure is discussed in some detail and simple examples are given for illustration. (orig.)

  12. Impact of electrical conductivity on acid hydrolysis of guar gum under induced electric field.

    Science.gov (United States)

    Li, Dandan; Zhang, Yao; Yang, Na; Jin, Zhengyu; Xu, Xueming

    2018-09-01

    This study aimed to improve induced electric field (IEF)-assisted hydrolysis of polysaccharide by controlling electrical conductivity. As the conductivity of reaction medium was increased, the energy efficiency of IEF was increased because of deceased impedance, as well as enhanced output voltage and temperature, thus the hydrolysis of guar gum (GG) was accelerated under IEF. Changes in weight-average molecular weight (Mw) suggested that IEF-assisted hydrolysis of GG could be described by the first-order kinetics 1/Mw ∝ kt, with the rate constant (k), varying directly with the medium conductivity. Although IEF-assisted hydrolysis largely disrupted the morphological structure of GG, it had no impact on the chemical structure. In comparison to native GG, the steady shear viscosity of hydrolyzed GG dramatically declined while the thermal stability slightly decreased. This study extended the knowledge of electrical conductivity upon IEF-assisted acid hydrolysis of GG and might contribute to a better utilization of IEF for polysaccharide modification. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bychkov, Igor V. [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kuzmin, Dmitry A., E-mail: kuzminda@csu.ru [Chelyabinsk State University, 129 Br. Kashirinykh Str., Chelyabinsk 454001 (Russian Federation); South Ural State University (National Research University), 76 Lenin Prospekt, Chelyabinsk 454080 (Russian Federation); Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G. [Kotelnikov Institute of Radio-engineering and Electronics of RAS, Mokhovaya Street 11-7, Moscow 125009 (Russian Federation)

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii–Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii–Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications. - Highlights: • Magnetostrictive ultrasound generation by spiral magnets at phase transition (PT) is studied. • Spiral magnets during PT may generate transverse sound with wavelength equal to spiral period. • Amplitude of the sound is strictly depends on the phase transition speed. • Microwave-to-sound transformation in the vicinity of PT is investigated as well.

  14. Fractional-topological-charge-induced vortex birth and splitting of light fields on the submicron scale

    Science.gov (United States)

    Fang, Yiqi; Lu, Qinghong; Wang, Xiaolei; Zhang, Wuhong; Chen, Lixiang

    2017-02-01

    The study of vortex dynamics is of fundamental importance in understanding the structured light's propagation behavior in the realm of singular optics. Here, combining with the large-angle holographic lithography in photoresist, a simple experiment to trace and visualize the vortex birth and splitting of light fields induced by various fractional topological charges is reported. For a topological charge M =1.76 , the recorded microstructures reveal that although it finally leads to the formation of a pair of fork gratings, these two vortices evolve asynchronously. More interestingly, it is observed on the submicron scale that high-order topological charges M =3.48 and 3.52, respectively, give rise to three and four characteristic forks embedded in the samples with one-wavelength resolution of about 450 nm. Numerical simulations based on orbital angular momentum eigenmode decomposition support well the experimental observations. Our method could be applied effectively to study other structured matter waves, such as the electron and neutron beams.

  15. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...

  16. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    International Nuclear Information System (INIS)

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  17. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  18. Modeling Geoelectric Fields and Geomagnetically Induced Currents Around New Zealand to Explore GIC in the South Island's Electrical Transmission Network

    Science.gov (United States)

    Divett, T.; Ingham, M.; Beggan, C. D.; Richardson, G. S.; Rodger, C. J.; Thomson, A. W. P.; Dalzell, M.

    2017-10-01

    Transformers in New Zealand's South Island electrical transmission network have been impacted by geomagnetically induced currents (GIC) during geomagnetic storms. We explore the impact of GIC on this network by developing a thin-sheet conductance (TSC) model for the region, a geoelectric field model, and a GIC network model. (The TSC is composed of a thin-sheet conductance map with underlying layered resistivity structure.) Using modeling approaches that have been successfully used in the United Kingdom and Ireland, we applied a thin-sheet model to calculate the electric field as a function of magnetic field and ground conductance. We developed a TSC model based on magnetotelluric surveys, geology, and bathymetry, modified to account for offshore sediments. Using this representation, the thin sheet model gave good agreement with measured impedance vectors. Driven by a spatially uniform magnetic field variation, the thin-sheet model results in electric fields dominated by the ocean-land boundary with effects due to the deep ocean and steep terrain. There is a strong tendency for the electric field to align northwest-southeast, irrespective of the direction of the magnetic field. Applying this electric field to a GIC network model, we show that modeled GIC are dominated by northwest-southeast transmission lines rather than east-west lines usually assumed to dominate.

  19. Hall magnetohydrodynamics simulations of end-shorting induced rotation in field-reversed configurations

    International Nuclear Information System (INIS)

    Macnab, A. I. D.; Milroy, R. D.; Kim, C. C.; Sovinec, C. R.

    2007-01-01

    End-shorting of the open field lines that surround a field-reversed configuration (FRC) is believed to contribute to its observed rotation. In this study, nonlinear extended magnetohydrodynamics (MHD) simulations were performed that detail the end-shorting process and the resulting spin-up of the FRC. The tangential component of the electric field E T is set to zero at the axial boundaries in an extended MHD model that includes the Hall and ∇P e terms. This shorting of the electric field leads to the generation of toroidal fields on the open field lines, which apply a torque leading to a rotation of the ions on the open field lines. The FRC then gains angular momentum through a viscous transfer from the open field line region. In addition, it is shown that spin-up is still induced when insulating boundaries are assumed

  20. Molecules with an induced dipole moment in a stochastic electric field.

    Science.gov (United States)

    Band, Y B; Ben-Shimol, Y

    2013-10-01

    The mean-field dynamics of a molecule with an induced dipole moment (e.g., a homonuclear diatomic molecule) in a deterministic and a stochastic (fluctuating) electric field is solved to obtain the decoherence properties of the system. The average (over fluctuations) electric dipole moment and average angular momentum as a function of time for a Gaussian white noise electric field are determined via perturbative and nonperturbative solutions in the fluctuating field. In the perturbative solution, the components of the average electric dipole moment and the average angular momentum along the deterministic electric field direction do not decay to zero, despite fluctuations in all three components of the electric field. This is in contrast to the decay of the average over fluctuations of a magnetic moment in a Gaussian white noise magnetic field. In the nonperturbative solution, the component of the average electric dipole moment and the average angular momentum in the deterministic electric field direction also decay to zero.

  1. An investigation into the induced electric fields from transcranial magnetic stimulation

    Science.gov (United States)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  2. Sulfur-induced structural motifs on copper and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Walen, Holly [Iowa State Univ., Ames, IA (United States)

    2016-01-01

    The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence of metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.

  3. Magnetic-field-induced martensitic transformation of off-stoichiometric single-crystal Ni2MnGa

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Yamaguchi, Yasuo; Shishido, Toetsu; Ishii, Yoshinobu; Yamauchi, Hiroki

    2009-01-01

    The effect of a magnetic field on the martensitic transformation of an off-stoichiometric Heusler type Ni 2.16 Mn 0.78 Ga 1.06 single crystal has been revealed by neutron diffraction. The alloy undergoes a martensitic transformation at room temperature, which is nearly coincident with its Curie temperature. Splitting of the cubic (020) peak on the reciprocal lattice cubic c * -plane was traced at 293 K by a triple-axis neutron spectrometer under an increasing magnetic field of up to 10 T. It was found that the magnetic field causes the martensitic transformation from the cubic structure to the orthorhombic structure, which is the same as that caused by decreasing the temperature without a magnetic field. The increase in the magnetic field to 10 T appears to correspond to a decrease in temperature of nearly 12 K, i.e., from 293 to 281 K. The present experiment suggests the possibility of realizing a magnetic-field-induced shape memory alloy. (author)

  4. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-01-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q fi ) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes

  5. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  6. Surface structure of quark stars with magnetic fields

    Indian Academy of Sciences (India)

    We investigate the impact of magnetic fields on the electron distribution of the electrosphere of quark stars. For moderately strong magnetic fields of ∼ 1013 G, quantization effects are generally weak due to the large number density of electrons at surface, but can nevertheless affect the photon emission properties of quark ...

  7. Near-Field Optical Microscopy of Fractal Structures

    DEFF Research Database (Denmark)

    Coello, Victor; Bozhevolnyi, Sergey I.

    1999-01-01

    Using a photon scanning tunnelling microscope combined with a shear-force feedback system, we image both topographical and near-field optical images (at the wavelengths of 633 and 594 nm) of silver colloid fractals. Near-field optical imaging is calibrated with a standing evanescent wave pattern...

  8. Structure from the chaos: magnetic fields of cosmic objects

    Energy Technology Data Exchange (ETDEWEB)

    Krause, F

    1987-01-01

    The study deals with phenomenological and theoretical models in order to explain the existence of cosmic magnetic fields. Following aspects are considered: non-linear recursions, the theory of chaotic motions, turbulence, convection, the turbulent dynamo theory and magnetohydrodynamics. In the frame of these model assumptions it is tried to explain the causes of the solar activity cycle and the geomagnetic field.

  9. Ion-beam induced structure modifications in amorphous germanium

    International Nuclear Information System (INIS)

    Steinbach, Tobias

    2012-01-01

    Object of the present thesis was the systematic study of ion-beam induced structure modifications in amorphous germanium (a-Ge) layers due to low- (LEI) and high-energetic (SHI) ion irradiation. The LEI irradiation of crystalline Ge (c-Ge) effects because the dominating nuclear scattering of the ions on the solid-state atoms the formation of a homogeneous a-Ge Layer. Directly on the surface for fluences of two orders of magnitude above the amorphization fluence the formation of stable cavities independently on the irradiation conditions was observed. For the first time for the ion-beam induced cavity formation respectively for the steady expansion of the porous layer forming with growing fluence a linear dependence on the energy ε n deposed in nuclear processes was detected. Furthermore the formation of buried cavities was observed, which shows a dependence on the type of ions. While in the c-Ge samples in the range of the high electronic energy deposition no radiation defects, cavities, or plastic deformations were observed, the high electronic energy transfer in the 3.1 μm thick pre-amorphized a-Ge surface layers leads to the formation of randomly distributed cavities. Basing on the linear connection between cavity-induced vertical volume expansion and the fluence determined for different energy transfers for the first time a material-specific threshold value of ε e HRF =(10.5±1.0) kev nm -1 was determined, above which the ion-beam induced cavity formation in a-Ge sets on. The anisotropic plastic deformation of th a-Ge layer superposed at inclined SHI irradiation on the cavity formation was very well described by an equation derived from the viscoelastic Maxwell model, but modified under regardment of the experimental results. The positive deformation yields determined thereby exhibit above a threshold value for the ion-beam induced plastic deformation ε e S a =(12±2) keV nm -1 for the first time extracted for a Ge the characteristic linear behaviour of the

  10. On the structure of the tail magnetic field

    International Nuclear Information System (INIS)

    Candidi, M.; Orsini, S.; Stokholm, M.; Elphic, R.C.

    1990-01-01

    The authors present a study comparing the magnetic field configuration in the magnetotail lobes with that in the plasma sheet boundary layer. The results indicate a systematic enhancement of the By component of the plasma sheet boundary layer field over that of the lobe. The value of such enhancement increases with distance from the midnight meridian plane and has the same sense in the northern and southern plasma sheet boundary layer. Such a By enhancement corresponds to a smaller rate of flaring of the magnetic field lines in the lobe with respect to the plasma sheet boundary layer. This observation is interpreted as a signature of field-aligned currents at the boundary. The direction of the field-aligned currents agrees with the nightside region 1 current system, which is the most poleward system in the nightside polar ionosphere at low altitude

  11. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    Science.gov (United States)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  12. Electron mobility variance in the presence of an electric field: Electron-phonon field-induced tunnel scattering

    International Nuclear Information System (INIS)

    Melkonyan, S.V.

    2012-01-01

    The problem of electron mobility variance is discussed. It is established that in equilibrium semiconductors the mobility variance is infinite. It is revealed that the cause of the mobility variance infinity is the threshold of phonon emission. The electron-phonon interaction theory in the presence of an electric field is developed. A new mechanism of electron scattering, called electron-phonon field-induced tunnel (FIT) scattering, is observed. The effect of the electron-phonon FIT scattering is explained in terms of penetration of the electron wave function into the semiconductor band gap in the presence of an electric field. New and more general expressions for the electron-non-polar optical phonon scattering probability and relaxation time are obtained. The results show that FIT transitions have principle meaning for the mobility fluctuation theory: mobility variance becomes finite.

  13. Magnetic field-induced cluster formation and variation of magneto-optical signals in zinc-substituted ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Nair, S.S. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India)]. E-mail: swapna@cusat.ac.in; Rajesh, S. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India); Abraham, V.S. [School of Engineering and Sciences, International University of Bremen, 28759 (Germany); Anantharaman, M.R. [Department of Physics, Cochin University of Science and Technology, Cochin 682 022 (India)]. E-mail: mraiyer@yahoo.com; Nampoori, V.P.N. [International School of Photonics, Cochin University of Science and Technology, Cochin-22 (India)

    2006-10-15

    Fine magnetic particles (size{approx_equal}100 A) belonging to the series Zn {sub x} Fe{sub 1-} {sub x} Fe{sub 2}O{sub 4} were synthesized by cold co-precipitation methods and their structural properties were evaluated using X-ray diffraction. Magnetization studies have been carried out using vibrating sample magnetometry (VSM) showing near-zero loss loop characteristics. Ferrofluids were then prepared employing these fine magnetic powders using oleic acid as surfactant and kerosene as carrier liquid by modifying the usually reported synthesis technique in order to induce anisotropy and enhance the magneto-optical signals. Liquid thin films of these fluids were prepared and field-induced laser transmission through these films was studied. The transmitted light intensity decreases at the centre with applied magnetic field in a linear fashion when subjected to low magnetic fields and saturate at higher fields. This is in accordance with the saturation in cluster formation. The pattern exhibited by these films in the presence of different magnetic fields was observed with the help of a CCD camera and was recorded photographically.

  14. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  15. Evolution of phase structure and giant strain at low driving fields in Bi-based lead-free incipient piezoelectrics

    International Nuclear Information System (INIS)

    Maqbool, Adnan; Hussain, Ali; Malik, Rizwan Ahmed; Rahman, Jamil Ur; Zaman, Arif; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho

    2015-01-01

    Graphical abstract: - Highlights: • Nb-doped BNBT–SZ ceramics were prepared by conventional solid state method. • A giant normalized strain of 825 pm/V at 4 kV/mm was achieved. • A large strain of 0.20% triggered at a relatively low field of 3 kV/mm. • Highest strain obtained in BNT-based ceramics at such a low driving field. • Ferroelectric to ergodic-relaxor phase transition occurred with Nb-doping. - Abstract: Lead-free 0.99[(Bi 0.5 Na 0.5 ) 0.935 Ba 0.065 Ti (1–x) Nb x O 3 ]–0.01SrZrO 3 (BNBTNb100x–SZ, with Nb100x = 0–1) ceramics were prepared by the conventional mixed oxide route. X-ray diffraction and Raman scattering was utilized for the structural evolution of Nb-modified BNBT–SZ ceramics at average and short-scale localized structure. Temperature dependent dielectric properties showed ferroelectric–ergodic relaxor (FE–ER) transition in Nb-modified BNBT–SZ ceramics by producing a significant disruption of the long-range FE order. A giant normalized strain of 825 pm/V at 4 kV/mm was achieved at Nb1.0. Interestingly, at a relatively low applied field of 3 kV/mm, the Nb0.75 sample displayed a large electric field-induced strain (EFIS) response of 0.20%, which is highest value obtained in non-textured lead-free BNT-based ceramics at such low driving field. The structural distortion induced by doping and electric poling is correlated with the dielectric, ferroelectric and EFIS response, and the evolution of giant strain was ascribed to reversible field induced phase transition from ER–FE phase

  16. Fast multigrid-based computation of the induced electric field for transcranial magnetic stimulation

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2012-12-01

    In transcranial magnetic stimulation (TMS), the distribution of the induced electric field, and the affected brain areas, depends on the position of the stimulation coil and the individual geometry of the head and brain. The distribution of the induced electric field in realistic anatomies can be modelled using computational methods. However, existing computational methods for accurately determining the induced electric field in realistic anatomical models have suffered from long computation times, typically in the range of tens of minutes or longer. This paper presents a matrix-free implementation of the finite-element method with a geometric multigrid method that can potentially reduce the computation time to several seconds or less even when using an ordinary computer. The performance of the method is studied by computing the induced electric field in two anatomically realistic models. An idealized two-loop coil is used as the stimulating coil. Multiple computational grid resolutions ranging from 2 to 0.25 mm are used. The results show that, for macroscopic modelling of the electric field in an anatomically realistic model, computational grid resolutions of 1 mm or 2 mm appear to provide good numerical accuracy compared to higher resolutions. The multigrid iteration typically converges in less than ten iterations independent of the grid resolution. Even without parallelization, each iteration takes about 1.0 s or 0.1 s for the 1 and 2 mm resolutions, respectively. This suggests that calculating the electric field with sufficient accuracy in real time is feasible.

  17. Effects of seed magnetic fields on magnetohydrodynamic implosion structure and dynamics

    KAUST Repository

    Mostert, W.; Wheatley, V.; Samtaney, Ravi; Pullin, D. I.

    2014-01-01

    -linearly. We fully characterize these flow structures, examine their axi- and spherisymmetry-breaking behaviour, and provide data on asymmetry evolution for different field strengths and driving pressures for each seed field configuration. We find that out

  18. Vector condensate and AdS soliton instability induced by a magnetic field

    International Nuclear Information System (INIS)

    Cai, Rong-Gen; Li, Li; Li, Li-Fang; Wu, You

    2014-01-01

    We continue to study the holographic p-wave superconductor model in the Einstein-Maxwell-complex vector field theory with a non-minimal coupling between the complex vector field and the Maxwell field. In this paper we work in the AdS soliton background which describes a conformal field theory in the confined phase and focus on the probe approximation. We find that an applied magnetic field can lead to the condensate of the vector field and the AdS soliton instability. As a result, a vortex lattice structure forms in the spatial directions perpendicular to the applied magnetic field. As a comparison, we also discuss the vector condensate in the Einstein-SU(2) Yang-Mills theory and find that in the setup of the present paper, the Einstein-Maxwell-complex vector field model is a generalization of the SU(2) model in the sense that the vector field has a general mass and gyromagnetic ratio

  19. Vacuum structure of the electroweak theory in high magnetic fields

    International Nuclear Information System (INIS)

    Olesen, P.

    1991-05-01

    In the electroweak theory one can reach the unbroken phase SU(2) x U y (1) by pumping enough magnetic energy into the system. The whole energy is then carried by the fields associated with U y (1), whereas the fields corresponding to SU(2) are in a vacuum state. We show that the vacuum is non-trivial in the sense that it consists of a condensate of zero-field twists which arise in a smooth way from a condensate of vortex lines existing in the broken phase. An explicit vacuum solution is constructed in terms of Weierstrass' elliptic function. (orig.)

  20. Effects of internal structure on equilibrium of field-reversed configuration plasma sustained by rotating magnetic field

    International Nuclear Information System (INIS)

    Yambe, Kiyoyuki; Inomoto, Michiaki; Okada, Shigefumi; Kobayashi, Yuka; Asai, Tomohiko

    2008-01-01

    The effects of an internal structure on the equilibrium of a field-reversed configuration (FRC) plasma sustained by rotating magnetic field is investigated by using detailed electrostatic probe measurements in the FRC Injection Experiment apparatus [S. Okada, et al., Nucl. Fusion. 45, 1094 (2005)]. An internal structure installed axially on the geometrical axis, which simulates Ohmic transformer or external toroidal field coils on the FRC device, brings about substantial changes in plasma density profile. The internal structure generates steep density-gradients not only on the inner side but on the outer side of the torus. The radial electric field is observed to sustain the ion thermal pressure-gradient in the FRC without the internal structure; however, the radial electric field is not sufficient to sustain the increased ion thermal pressure-gradient in the FRC with the internal structure. Spontaneously driven azimuthal ion flow will be accountable for the imbalance of the radial pressure which is modified by the internal structure.

  1. Hall field-induced magnetoresistance oscillations of a two-dimensional electron system

    International Nuclear Information System (INIS)

    Kunold, A.; Torres, M.

    2008-01-01

    We develop a model of the nonlinear response to a dc electrical current of a two-dimensional electron system (2DES) placed on a magnetic field. Based on the exact solution to the Schroedinger equation in arbitrarily strong electric and magnetic fields, and separating the relative and guiding center coordinates, a Kubo-like formula for the current is worked out as a response to the impurity scattering. Self-consistent expressions determine the longitudinal and Hall components of the electric field in terms of the dc current. The differential resistivity displays strong Hall field-induced oscillations, in agreement with the main features of the phenomenon observed in recent experiments

  2. Magnetic-field dependence of impurity-induced muon depolarization in noble metals

    International Nuclear Information System (INIS)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Dodds, S.A.; Richards, P.M.; MacLaughlin, D.E.; Boekema, C.

    1983-01-01

    We have measured the magnetic-field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppM), AgGd (340 ppM) and AgEr (300 ppM). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric-field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence

  3. Magnetic field dependence of impurity-induced muon depolarization in noble metals

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, M.E.; Heffner, R.H.; Hutson, R.L.; Leon, M.; Cooke, D.W.; Yaouanc, A. (Los Alamos National Lab., NM (USA)); Dodds, S.A. (Rice Univ., Houston, TX (USA). Dept. of Physics); Richards, P.M. (Sandia National Labs., Albuquerque, NM (USA)); MacLaughlin, D.E. (California Univ., Riverside (USA)); Boekema, C. (Texas Tech Univ., Lubbock (USA))

    1984-01-01

    The authors have measured the magnetic field dependence of the muon depolarization rate up to 5 kOe in AuGd (350 ppm), AgGd (340 ppm) and AgEr (300 ppm). A simple model which includes both dipolar and nearest-neighbor contact interactions between the muon and the magnetic impurity does not fit the data. An axial crystal-field interaction, arising from the electric field gradient induced by the muon at the site of the impurity, is found to dominate the Hamiltonian, and may have a large effect on the field dependence.

  4. Current-induced domain wall motion: Separating spin torque and Oersted-field effects in Co/Pt nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Heinen, Jan; Boulle, Olivier; Rousseau, Kevin; Malinowski, Gregory; Klaeui, Mathias [Universitaet Konstanz, Fachbereich Physik, D-78457 Konstanz (Germany); Swagton, Henk J.; Koopmans, Bert [Eindhoven University of Technology, Department of Applied Physics, MB 5600 (Netherlands); Ulysse, Christian; Faini, Giancarlo [CNRS, Phynano team, Laboratoire de Photonique et de Nanostructures, 91460 Marcoussis (France)

    2010-07-01

    We report on magnetotransport studies on perpendicularly magnetized nanowires with narrow domain wall (DW) structures. Using Co/Pt multilayer nanowires, we have previously shown that Joule heating is concealing most of the current induced domain wall effects, but using a constant sample temperature a large non-adiabacity factor {beta} has been deduced. Here, we carry out experiments for both applied field directions and current polarities, starting from different DW configurations within a Hall cross. We clearly show, using the different symmetries of spin torque and Oersted-field, that the much debated Oersted-field does not contribute to the DW depinning significantly. This allows us to extract the spin torque contribution and the non-adiabacity factor {beta}, which turns out to be in line with previous measurements.

  5. Dynamics and structure of self-generated magnetics fields on solids following high contrast, high intensity laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Graduate School of Engineering, University of Osaka, Suita, Osaka 565-087 (Japan); Chen, S. N.; Fuchs, J., E-mail: julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); Antici, P. [INRS-EMT, 1650 bd L. Boulet, J3X1S2, Varennes, Québec (Canada); Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Böker, J.; Swantusch, M.; Willi, O. [Institut für Laser-und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf (Germany); Borghesi, M. [School of Mathematics and Physics, The Queen' s University, Belfast (United Kingdom); Breil, J.; Feugeas, J. L.; Nicolaï, Ph.; Tikhonchuk, V. T.; D' Humières, E. [CELIA, University of Bordeaux - CNRS - CEA, 33405 Talence (France); Dervieux, V.; Nakatsutsumi, M.; Romagnagni, L. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lancia, L. [Dept. SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 14, 00161 Rome (Italy); Shepherd, R. [LLNL, East Av., Livermore, California 94550 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557-0058 (United States); Starodubtsev, M. [Institute of Applied Physics, 46 Ulyanov Street, 603950 Nizhny Novgorod (Russian Federation); and others

    2015-12-15

    The dynamics of self-generated magnetic B-fields produced following the interaction of a high contrast, high intensity (I > 10{sup 19 }W cm{sup −2}) laser beam with thin (3 μm thick) solid (Al or Au) targets is investigated experimentally and numerically. Two main sources drive the growth of B-fields on the target surfaces. B-fields are first driven by laser-generated hot electron currents that relax over ∼10–20 ps. Over longer timescales, the hydrodynamic expansion of the bulk of the target into vacuum also generates B-field induced by non-collinear gradients of density and temperature. The laser irradiation of the target front side strongly localizes the energy deposition at the target front, in contrast to the target rear side, which is heated by fast electrons over a much larger area. This induces an asymmetry in the hydrodynamic expansion between the front and rear target surfaces, and consequently the associated B-fields are found strongly asymmetric. The sole long-lasting (>30 ps) B-fields are the ones growing on the target front surface, where they remain of extremely high strength (∼8–10 MG). These B-fields have been recently put by us in practical use for focusing laser-accelerated protons [B. Albertazzi et al., Rev. Sci. Instrum. 86, 043502 (2015)]; here we analyze in detail their dynamics and structure.

  6. Functional and structural changes in internal pudendal arteries underlie erectile dysfunction induced by androgen deprivation

    Directory of Open Access Journals (Sweden)

    Rhéure Alves-Lopes

    2017-01-01

    Full Text Available Androgen deficiency is strongly associated with erectile dysfunction (ED. Inadequate penile arterial blood flow is one of the major causes of ED. The blood flow to the corpus cavernosum is mainly derived from the internal pudendal arteries (IPAs; however, no study has evaluated the effects of androgen deprivation on IPA′s function. We hypothesized that castration impairs IPAs reactivity and structure, contributing to ED. In our study, Wistar male rats, 8-week-old, were castrated and studied 30 days after orchiectomy. Functional and structural properties of rat IPAs were determined using wire and pressure myograph systems, respectively. Protein expression was determined by Western blot and immunohistochemistry. Plasma testosterone levels were determined using the IMMULITE 1000 Immunoassay System. Castrated rats exhibited impaired erectile function, represented by decreased intracavernosal pressure/mean arterial pressure ratio. IPAs from castrated rats exhibited decreased phenylephrine- and electrical field stimulation (EFS-induced contraction and decreased acetylcholine- and EFS-induced vasodilatation. IPAs from castrated rats exhibited decreased internal diameter, external diameter, thickness of the arterial wall, and cross-sectional area. Castration decreased nNOS and α-actin expression and increased collagen expression, p38 (Thr180/Tyr182 phosphorylation, as well as caspase 3 cleavage. In conclusion, androgen deficiency is associated with impairment of IPA reactivity and structure and increased apoptosis signaling markers. Our findings suggest that androgen deficiency-induced vascular dysfunction is an event involving hypotrophic vascular remodeling of IPAs.

  7. Experimental diabetes induces structural, inflammatory and vascular changes of Achilles tendons.

    Directory of Open Access Journals (Sweden)

    Rodrigo R de Oliveira

    Full Text Available This study aims to demonstrate how the state of chronic hyperglycemia from experimental Diabetes Mellitus can influence the homeostatic imbalance of tendons and, consequently, lead to the characteristics of tendinopathy. Twenty animals were randomly divided into two experimental groups: control group, consisting of healthy rats and diabetic group constituted by rats induced to Diabetes Mellitus I. After twenty-four days of the induction of Diabetes type I, the Achilles tendon were removed for morphological evaluation, cellularity, number and cross-sectional area of blood vessel, immunohistochemistry for Collagen type I, VEGF and NF-κB nuclear localization sequence (NLS and nitrate and nitrite level. The Achilles tendon thickness (µm/100g of diabetic animals was significantly increased and, similarly, an increase was observed in the density of fibrocytes and mast cells in the tendons of the diabetic group. The average number of blood vessels per field, in peritendinous tissue, was statistically higher in the diabetic group 3.39 (2.98 vessels/field when compared to the control group 0.89 (1.68 vessels/field p = 0.001 and in the intratendinous region, it was observed that blood vessels were extremely rare in the control group 0.035 (0.18 vessels/field and were often present in the tendons of the diabetic group 0.89 (0.99 vessels/field. The immunohistochemistry analysis identified higher density of type 1 collagen and increased expression of VEGF as well as increased immunostaining for NFκB p50 NLS in the nucleus in Achilles tendon of the diabetic group when compared to the control group. Higher levels of nitrite/nitrate were observed in the experimental group induced to diabetes. We conclude that experimental DM induces notable structural, inflammatory and vascular changes in the Achilles tendon which are compatible with the process of chronic tendinopathy.

  8. NUMERICAL SIMULATION OF MAGNETIC FIELD STRUCTURE IN CYLINDRICAL FILM SCREEN

    Directory of Open Access Journals (Sweden)

    G. F. Gromyko

    2016-01-01

    Full Text Available A numerical method for solving the boundary value problem for a nonlinear magnetostatic equation describing the external magnetostatic field penetration through the cylindrical film coating is developed. A mathematical model of the shielding problem based on the use of the boundary conditions of the third kind on the film surface is studied. The nonlinear dependence of the film magnetic permeability on magnetic field conforms with experimental data. The distribution of the magnetic field strength in the film layer and the magnetic permeability of the film material depending on the magnitude of the external magnetic field strength are investigated numerically.

  9. Structural coloration of metallic surfaces with micro/nano-structures induced by elliptical vibration texturing

    Science.gov (United States)

    Yang, Yang; Pan, Yayue; Guo, Ping

    2017-04-01

    Creating orderly periodic micro/nano-structures on metallic surfaces, or structural coloration, for control of surface apparent color and optical reflectivity has been an exciting research topic over the years. The direct applications of structural coloration include color marking, display devices, and invisibility cloak. This paper presents an efficient method to colorize metallic surfaces with periodic micro/nano-gratings using elliptical vibration texturing. When the tool vibration is coupled with a constant cutting velocity, controlled periodic ripples can be generated due to the overlapping tool trajectory. These periodic ripples with a wavelength near visible spectrum can act as micro-gratings to introduce iridescent colors. The proposed technique also provides a flexible method for color marking of metallic surfaces with arbitrary patterns and images by precise control of the spacing distance and orientation of induced micro/nano-ripples. Theoretical analysis and experimental results are given to demonstrate structural coloration of metals by a direct mechanical machining technique.

  10. Theoretical study of structure of electric field in helical toroidal plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.

    2001-06-01

    A set of transport equations is analyzed, including the bifurcation of the electric field. The structure of the electric field is studied by use of the theoretical model for the anomalous transport diffusivities. The steep gradient of the electric field is obtained at the electric domain. The suppression of the anomalous transport diffusivity is studied in the presence of the strong shear of the electric field. The hard transition with the multiple ambipolar solutions is examined in the structure of the radial electric field. The details of the structure of the electric domain interface are investigated. (author)

  11. Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Zhang, Hai-feng; Bian, Bo-rui; Kong, Xiang-kun [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044 (China)

    2015-03-16

    In this paper, we numerically and experimentally demonstrate electromagnetically induced transparency (EIT)-like spectral response with magnetic resonance near field coupling to electric resonance. Six split-ring resonators and a cut wire are chosen as the bright and dark resonator, respectively. An EIT-like transmission peak located between two dips can be observed with incident magnetic field excitation. A large delay bandwidth product (0.39) is obtained, which has potential application in quantum optics and communications. The experimental results are in good agreement with simulated results.

  12. Effects of coil orientation on the electric field induced by TMS over the hand motor area

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2014-01-01

    Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field). (paper)

  13. Platinum-induced structural collapse in layered oxide polycrystalline films

    International Nuclear Information System (INIS)

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2015-01-01

    Effect of a platinum bottom electrode on the SrBi 5 Fe 1−x Co x Ti 4 O 18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO 2 , which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO 2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO 2 , the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties

  14. Refining femtosecond laser induced periodical surface structures with liquid assist

    International Nuclear Information System (INIS)

    Jiao, L.S.; Ng, E.Y.K.; Zheng, H.Y.

    2013-01-01

    Highlights: ► LIPSS on silicon wafer was made in air and in ethanol environment. ► Ethanol environment produce cleaner surface ripples. ► Ethanol environment decrease spatial wavelength of the LIPSS by 30%. ► More number of pulses produce smaller spatial wavelength in air. ► Number of pulses do not influence spatial wavelength in ethanol environment. - Abstract: Laser induced periodic surface structures were generated on silicon wafer using femtosecond laser. The medium used in this study is both air and ethanol. The laser process parameters such as wavelength, number of pulse, laser fluence were kept constant for both the mediums. The focus of the study is to analyze spatial wavelength. When generating surface structures with air as a medium and same process parameter of the laser, spatial wavelength results showed a 30% increase compared to ethanol. The cleanliness of the surface generated using ethanol showed considerably less debris than in air. The results observed from the above investigation showed that the medium plays a predominant role in the generation of surface structures.

  15. Quasi-static electric field in a cylindrical volume conductor induced by external coils.

    Science.gov (United States)

    Esselle, K P; Stuchly, M A

    1994-02-01

    An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.

  16. Strain- and electric field-induced band gap modulation in nitride nanomembranes

    International Nuclear Information System (INIS)

    Amorim, Rodrigo G; Zhong Xiaoliang; Mukhopadhyay, Saikat; Pandey, Ravindra; Rocha, Alexandre R; Karna, Shashi P

    2013-01-01

    The hexagonal nanomembranes of the group III-nitrides are a subject of interest due to their novel technological applications. In this paper, we investigate the strain- and electric field-induced modulation of their band gaps in the framework of density functional theory. For AlN, the field-dependent modulation of the bandgap is found to be significant whereas the strain-induced semiconductor-metal transition is predicted for GaN. A relatively flat conduction band in AlN and GaN nanomembranes leads to an enhancement of their electronic mobility compared to that of their bulk counterparts. (paper)

  17. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Science.gov (United States)

    Noreen, Saima

    2013-01-01

    This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  18. Mixed convection peristaltic flow of third order nanofluid with an induced magnetic field.

    Directory of Open Access Journals (Sweden)

    Saima Noreen

    Full Text Available This research is concerned with the peristaltic flow of third order nanofluid in an asymmetric channel. The governing equations of third order nanofluid are modelled in wave frame of reference. Effect of induced magnetic field is considered. Long wavelength and low Reynolds number situation is tackled. Numerical solutions of the governing problem are computed and analyzed. The effects of Brownian motion and thermophoretic diffusion of nano particles are particularly emphasized. Physical quantities such as velocity, pressure rise, temperature, induced magnetic field and concentration distributions are discussed.

  19. Lateral energy band profile modulation in tunnel field effect transistors based on gate structure engineering

    Directory of Open Access Journals (Sweden)

    Ning Cui

    2012-06-01

    Full Text Available Choosing novel materials and structures is important for enhancing the on-state current in tunnel field-effect transistors (TFETs. In this paper, we reveal that the on-state performance of TFETs is mainly determined by the energy band profile of the channel. According to this interpretation, we present a new concept of energy band profile modulation (BPM achieved with gate structure engineering. It is believed that this approach can be used to suppress the ambipolar effect. Based on this method, a Si TFET device with a symmetrical tri-material-gate (TMG structure is proposed. Two-dimensional numerical simulations demonstrated that the special band profile in this device can boost on-state performance, and it also suppresses the off-state current induced by the ambipolar effect. These unique advantages are maintained over a wide range of gate lengths and supply voltages. The BPM concept can serve as a guideline for improving the performance of nanoscale TFET devices.

  20. Magnetic field dependence of the critical superconducting current induced by the proximity effect in silicon

    International Nuclear Information System (INIS)

    Nishino, T.; Kawabe, U.; Yamada, E.

    1986-01-01

    The magnetic field dependence of the critical superconducting current induced by the proximity effect in heavily-boron-doped Si is studied experimentally. It is found that the critical current flowing through the p-type-Si-coupled junction decreases with increasing applied magnetic field. The critical current can be expressed as the product of three factors: the current induced by de Gennes's proximity effect, the exponential decrease due to pair breaking by the magnetic field, and the usual diffraction-pattern-like dependence on the magnetic field due to the Josephson effect. The second factor depends on the carrier concentration in the semiconductor. The local critical current shows a rapid decrease at the edge of the electrodes

  1. Soap-film flow induced by electric fields in asymmetric frames

    Science.gov (United States)

    Mollaei, S.; Nasiri, M.; Soltanmohammadi, N.; Shirsavar, R.; Ramos, A.; Amjadi, A.

    2018-04-01

    Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study numerically these film flows by employing the model of charge induction in ohmic liquids.

  2. Current densities in a pregnant woman model induced by simultaneous ELF electric and magnetic field exposure

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2008-01-01

    The pregnant woman model SILVY was studied to ascertain to what extent the electric current densities induced by 50 Hz homogeneous electric and magnetic fields increase in the case of simultaneous exposure. By vectorial addition of the electric current densities, it could be shown that under worst case conditions the basic restrictions recommended by ICNIRP (International Commission on Non-Ionizing Radiation Protection) guidelines are exceeded within the central nervous system (CNS) of the mother, whereas in sole field exposure they are not. However, within the foetus the induced current densities do not comply with basic restrictions, either from single reference-level electric fields or from simultaneous exposure to electric and magnetic fields. Basic limits were considerably exceeded

  3. Passing particle toroidal precession induced by electric field in a tokamak

    International Nuclear Information System (INIS)

    Andreev, V. V.; Ilgisonis, V. I.; Sorokina, E. A.

    2013-01-01

    Characteristics of a rotation of passing particles in a tokamak with radial electric field are calculated. The expression for time-averaged toroidal velocity of the passing particle induced by the electric field is derived. The electric-field-induced additive to the toroidal velocity of the passing particle appears to be much smaller than the velocity of the electric drift calculated for the poloidal magnetic field typical for the trapped particle. This quantity can even have the different sign depending on the azimuthal position of the particle starting point. The unified approach for the calculation of the bounce period and of the time-averaged toroidal velocity of both trapped and passing particles in the whole volume of plasma column is presented. The results are obtained analytically and are confirmed by 3D numerical calculations of the trajectories of charged particles

  4. Passing particle toroidal precession induced by electric field in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V. [Peoples' Friendship University of Russia, Ordzhonikidze St. 3, Moscow 117198 (Russian Federation); Ilgisonis, V. I.; Sorokina, E. A. [Peoples' Friendship University of Russia, Ordzhonikidze St. 3, Moscow 117198 (Russian Federation); NRC “Kurchatov Institute”, Kurchatov Sq. 1, Moscow 123182 (Russian Federation)

    2013-12-15

    Characteristics of a rotation of passing particles in a tokamak with radial electric field are calculated. The expression for time-averaged toroidal velocity of the passing particle induced by the electric field is derived. The electric-field-induced additive to the toroidal velocity of the passing particle appears to be much smaller than the velocity of the electric drift calculated for the poloidal magnetic field typical for the trapped particle. This quantity can even have the different sign depending on the azimuthal position of the particle starting point. The unified approach for the calculation of the bounce period and of the time-averaged toroidal velocity of both trapped and passing particles in the whole volume of plasma column is presented. The results are obtained analytically and are confirmed by 3D numerical calculations of the trajectories of charged particles.

  5. Evolution of the magnetic field structure of the Crab pulsar.

    Science.gov (United States)

    Lyne, Andrew; Graham-Smith, Francis; Weltevrede, Patrick; Jordan, Christine; Stappers, Ben; Bassa, Cees; Kramer, Michael

    2013-11-01

    Pulsars are highly magnetized rotating neutron stars and are well known for the stability of their signature pulse shapes, allowing high-precision studies of their rotation. However, during the past 22 years, the radio pulse profile of the Crab pulsar has shown a steady increase in the separation of the main pulse and interpulse components at 0.62° ± 0.03° per century. There are also secular changes in the relative strengths of several components of the profile. The changing component separation indicates that the axis of the dipolar magnetic field, embedded in the neutron star, is moving toward the stellar equator. This evolution of the magnetic field could explain why the pulsar does not spin down as expected from simple braking by a rotating dipolar magnetic field.

  6. Nelson's stochastic quantization of free linearized gravitational field and its Markovian structure

    International Nuclear Information System (INIS)

    Lim, S.C.

    1983-05-01

    It is shown that by applying Nelson's stochastic quantization scheme to free linearized gravitational field tensor one can associate with the resulting stochastic system a stochastic tensor field which coincides with the ''space'' part of the Riemannian tensor in Euclidean space-time. However, such a stochastic field fails to satisfy the Markov property. Instead, it satisfies the reflection positivity. The Markovian structure of the stochastic fields associated with the electromagnetic field is also discussed. (author)

  7. Eigenmode field structure of the fast magnetosonic wave in a Tokamak and loading impedance of coupling structures

    International Nuclear Information System (INIS)

    Adam, J.; Jacquinot, J.

    1977-04-01

    Detailed calculations concerning the field structure and excitation of the fast magnetosonic wave are presented keeping in mind RF heating of a Tokamak near the ion cyclotron harmonic. The new contributions are - a discussion of the cylindrical problem in an inhomogeneous plasma including surface waves and the splitting of the eigenmodes by the poloidal field - a calculation of the field structure in the toroidal cavity resonator and the application to mode tracking - a formulation of the loading impedance of various coupling structures: array of coils in the low frequency limit or transmission lines in the high frequency case

  8. Prediction of fluctuating pressure environments associated with plume-induced separated flow fields

    Science.gov (United States)

    Plotkin, K. J.

    1973-01-01

    The separated flow environment induced by underexpanded rocket plumes during boost phase of rocket vehicles has been investigated. A simple semi-empirical model for predicting the extent of separation was developed. This model offers considerable computational economy as compared to other schemes reported in the literature, and has been shown to be in good agreement with limited flight data. The unsteady pressure field in plume-induced separated regions was investigated. It was found that fluctuations differed from those for a rigid flare only at low frequencies. The major difference between plume-induced separation and flare-induced separation was shown to be an increase in shock oscillation distance for the plume case. The prediction schemes were applied to PRR shuttle launch configuration. It was found that fluctuating pressures from plume-induced separation are not as severe as for other fluctuating environments at the critical flight condition of maximum dynamic pressure.

  9. Molecular-Field Calculation of the Magnetic Structure in Erbium

    DEFF Research Database (Denmark)

    Jensen, J.

    1976-01-01

    A molecular-field calculation of the magnetic configurations in Er is found to reproduce the neutron diffraction results of the three different magnetic phases and to give a reasonable fit to the magnetization data at 4.2K. The two-ion coupling is considered to be described by the inter......-planar coupling parameters deduced from the dispersion of the spin waves in the low temperature conical phases. The four (effective) crystal-field parameters are determined by the fit to the experimental data. Projecting the magnetic moments present in the intermediate phase of Er (18-52.4K) to a common origin...

  10. Magnetic-field induced phase transitions in intermetallic rare-earth ferrimagnets with a compensation point

    Czech Academy of Sciences Publication Activity Database

    Sabdenov, Ch.K.; Davydova, M.D.; Zvezdin, K.A.; Gorbunov, Denis; Tereshina, I. S.; Andreev, Alexander V.; Zvezdin, A. K.

    2017-01-01

    Roč. 43, č. 5 (2017), s. 551-558 ISSN 1063-777X R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : rare-earth intermetallics * phase diagram * field-induced transition * magnetic anisotropy * high magnetic fields Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.804, year: 2016

  11. Unsteady free convection MHD flow between two heated vertical parallel plates in induced magnetic field

    International Nuclear Information System (INIS)

    Chakraborty, S.; Borkakati, A.K.

    1999-01-01

    An unsteady viscous incompressible free convection flow of an electrically conducting fluid between two heated vertical parallel plates is considered in presence of a uniform magnetic field applied transversely to the flow. The approximate analytical solutions for velocity, induced field and temperature distributions are obtained for small and large magnetic Reynolds number. The skin-friction on the two plates are obtained and plotted graphically. The problem is extended for thermometric case. (author)

  12. External field induced switching of tunneling current in the coupled quantum dots

    OpenAIRE

    Mantsevich, V. N.; Maslova, N. S.; Arseyev, P. I.

    2014-01-01

    We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations. It was found that tuning of the external field frequency induces fast multiple tunneling current switching and leads to the negative tunneling conductivity. Special role of multi-electrons states was demonstrated. Moreover we revealed conditions for bistable behavior of the tunneling curre...

  13. Self-organization of porphyrin units induced by magnetic field during sol-gel polymerization.

    Science.gov (United States)

    Lerouge, Frédéric; Cerveau, Geneviève; Corriu, Robert J P; Stern, Christine; Guilard, Roger

    2007-04-21

    The use of a magnetic field as a controlling factor during the hydrolysis-polycondensation of porphyrin precursors substituted by Si(OR)(3) groups, induces a self-organization of porphyrin moieties due to the stacking of these units in the hybrid material and this study also confirms the effect of the magnetic field in the nano- and micrometric organization during the kinetically controlled polycondensation process.

  14. Ionization induced by strong electromagnetic field in low dimensional systems bound by short range forces

    Energy Technology Data Exchange (ETDEWEB)

    Eminov, P.A., E-mail: peminov@mail.ru [Moscow State University of Instrument Engineering and Computer Sciences, 20 Stromynka Street, Moscow 2107996 (Russian Federation); National Research University Higher School of Economics, 3/12 Bolshoy Trekhsvyatskiy pereulok, Moscow 109028 (Russian Federation)

    2013-10-01

    Ionization processes for a two dimensional quantum dot subjected to combined electrostatic and alternating electric fields of the same direction are studied using quantum mechanical methods. We derive analytical equations for the ionization probability in dependence on characteristic parameters of the system for both extreme cases of a constant electric field and of a linearly polarized electromagnetic wave. The ionization probabilities for a superposition of dc and low frequency ac electric fields of the same direction are calculated. The impulse distribution of ionization probability for a system bound by short range forces is found for a superposition of constant and alternating fields. The total probability for this process per unit of time is derived within exponential accuracy. For the first time the influence of alternating electric field on electron tunneling probability induced by an electrostatic field is studied taking into account the pre-exponential term.

  15. Adjustment of Adiabatic Transition Magnetic Field of Solenoid-Induced Helicla Wiggler

    CERN Document Server

    Tsunawaki, Y

    2005-01-01

    We have been constructed a solenoid-induced helical wiggler for a compact free electron maser operated in a usual small laboratory which does not have electric source capacity available enough. It consists of two staggered-iron arrays inserted perpendicularly to each other in a solenoid electromagnet. In order to lead/extract an electron beam into/from the wiggler, adiabatic transition (AT) field is necessary at both ends of the wiggler. In this work the AT field was produced by setting staggered-nickel plates with different thickness in the five periods. The thickness of each nickel plate was decided by the field analysis using the MAGTZ computational code based on a magnetic moment method. Exact thickness was, however, found by the precise measurement of the field distribution with the greatest circumspection to obtain a homogeneous increment of the AT field. The change of AT field distribution was studied by referring to an equivalent electric circuit of the wiggler.

  16. Regional-Scale High-Latitude Extreme Geoelectric Fields Pertaining to Geomagnetically Induced Currents

    Science.gov (United States)

    Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo

    2015-01-01

    Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.

  17. A new structure for a superconducting field effect transistor

    International Nuclear Information System (INIS)

    Tyc, S.; Schuhl, A.

    1992-01-01

    In this paper a new structure is proposed and described which can solve the most severe drawbacks of current architectures for Josephson FETs. Its advantages are discussed, and several realizations are suggested

  18. Monitoring microbial growth and activity using spectral induced polarization and low-field nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Keating, Kristina; Revil, Andre

    2015-04-01

    Microbes and microbial activities in the Earth's subsurface play a significant role in shaping subsurface environments and are involved in environmental applications such as remediation of contaminants in groundwater and oil fields biodegradation. Stimulated microbial growth in such applications could cause wide variety of changes of physical/chemical properties in the subsurface. It is critical to monitor and determine the fate and transportation of microorganisms in the subsurface during such applications. Recent geophysical studies demonstrate the potential of two innovative techniques, spectral induced polarization (SIP) and low-field nuclear magnetic resonance (NMR), for monitoring microbial growth and activities in porous media. The SIP measures complex dielectric properties of porous media at low frequencies of exciting electric field, and NMR studies the porous structure of geologic media and characterizes fluids subsurface. In this laboratory study, we examined both SIP and NMR responses from bacterial growth suspension as well as suspension mixed with silica sands. We focus on the direct contribution of microbes to the SIP and NMR signals in the absence of biofilm formation or biomineralization. We used Zymomonas mobilis and Shewanella oneidensis (MR-1) for SIP and NMR measurements, respectively. The SIP measurements were collected over the frequency range of 0.1 - 1 kHz on Z. mobilis growth suspension and suspension saturated sands at different cell densities. SIP data show two distinct peaks in imaginary conductivity spectra, and both imaginary and real conductivities increased as microbial density increased. NMR data were collected using both CPMG pulse sequence and D-T2 mapping to determine the T2-distribution and diffusion properties on S. oneidensis suspension, pellets (live and dead), and suspension mixed with silica sands. NMR data show a decrease in the T2-distribution in S. oneidensis suspension saturated sands as microbial density increase. A

  19. Blast-induced electromagnetic fields in the brain from bone piezoelectricity.

    Science.gov (United States)

    Lee, Ka Yan Karen; Nyein, Michelle K; Moore, David F; Joannopoulos, J D; Socrate, Simona; Imholt, Timothy; Radovitzky, Raul; Johnson, Steven G

    2011-01-01

    In this paper, we show that bone piezoelectricity-a phenomenon in which bone polarizes electrically in response to an applied mechanical stress and produces a short-range electric field-may be a source of intense blast-induced electric fields in the brain, with magnitudes and timescales comparable to fields with known neurological effects. We compute the induced charge density in the skull from stress data on the skull from a finite-element full-head model simulation of a typical IED-scale blast wave incident on an unhelmeted human head as well as a human head protected by a kevlar helmet, and estimate the resulting electric fields in the brain in both cases to be on the order of 10 V/m in millisecond pulses. These fields are more than 10 times stronger than the IEEE safety guidelines for controlled environments (IEEE Standards Coordinating Committee 28, 2002) and comparable in strength and timescale to fields from repetitive Transcranial Magnetic Stimulation (rTMS) that are designed to induce neurological effects (Wagner et al., 2006a). They can be easily measured by RF antennas, and may provide the means to design a diagnostic tool that records a quantitative measure of the head's exposure to blast insult. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Dielectric-spectroscopy approach to ferrofluid nanoparticle clustering induced by an external electric field.

    Science.gov (United States)

    Rajnak, Michal; Kurimsky, Juraj; Dolnik, Bystrik; Kopcansky, Peter; Tomasovicova, Natalia; Taculescu-Moaca, Elena Alina; Timko, Milan

    2014-09-01

    An experimental study of magnetic colloidal particles cluster formation induced by an external electric field in a ferrofluid based on transformer oil is presented. Using frequency domain isothermal dielectric spectroscopy, we study the influence of a test cell electrode separation distance on a low-frequency relaxation process. We consider the relaxation process to be associated with an electric double layer polarization taking place on the particle surface. It has been found that the relaxation maximum considerably shifts towards lower frequencies when conducting the measurements in the test cells with greater electrode separation distances. As the electric field intensity was always kept at a constant value, we propose that the particle cluster formation induced by the external ac electric field accounts for that phenomenon. The increase in the relaxation time is in accordance with the Schwarz theory of electric double layer polarization. In addition, we analyze the influence of a static electric field generated by dc bias voltage on a similar shift in the relaxation maximum position. The variation of the dc electric field for the hysteresis measurements purpose provides understanding of the development of the particle clusters and their decay. Following our results, we emphasize the utility of dielectric spectroscopy as a simple, complementary method for detection and study of clusters of colloidal particles induced by external electric field.

  1. Force Structure Matters: The US Field Artillery in Operational Art

    Science.gov (United States)

    2015-05-23

    2003 (Fort Sill, OK: US Army Field Artillery Center, 2004), 62-63. 3 Sean Bateman and Steven Hady, “King of Battle Once Again: An Organizational...To What Ends Military Power?” International Security 4, no. 4 (Spring 1980): 3- 35. Bateman , Sean and Steven Hady. “King of Battle Once Again: An

  2. Learning color receptive fields and color differential structure

    NARCIS (Netherlands)

    ter Haar Romenij, B.M.

    2016-01-01

    In this paper we study the role of brain plasticity, and investigate the emergence and self-emergence of receptive fields from scalar and color natural images by principal component analysis of image patches. We describe the classical experiment on localized PCA on center-surround weighted patches

  3. Algebraic structure of cohomological field theory models and equivariant cohomology

    International Nuclear Information System (INIS)

    Stora, R.; Thuillier, F.; Wallet, J.Ch.

    1994-01-01

    The definition of observables within conventional gauge theories is settled by general consensus. Within cohomological theories considered as gauge theories of an exotic type, that question has a much less obvious answer. It is shown here that in most cases these theories are best defined in terms of equivariant cohomologies both at the field level and at the level of observables. (author). 21 refs

  4. Conformal field theory between supersymmetry and indecomposable structures

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, H.

    2006-07-15

    This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z{sub 2} and Z{sub 4} orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z{sub 2} and Z{sub 4} orbifold model as well as the Gepner model (2){sup 4}. We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c{sub p,q} minimal models which generalise the well-known (augmented) c{sub p,1} model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c{sub p,q} models, the augmented c{sub 2,3}=0 model as well as the augmented Yang-Lee model at c{sub 2,5}=-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic

  5. Conformal field theory between supersymmetry and indecomposable structures

    International Nuclear Information System (INIS)

    Eberle, H.

    2006-07-01

    This thesis considers conformal field theory in its supersymmetric extension as well as in its relaxation to logarithmic conformal field theory. This thesis is concerned with the subspace of K3 compactifications which is not well known yet. In particular, we inspect the intersection point of the Z 2 and Z 4 orbifold subvarieties within the K3 moduli space, explicitly identify the two corresponding points on the subvarieties geometrically, and give an explicit isomorphism of the three conformal field theory models located at that point, a specific Z 2 and Z 4 orbifold model as well as the Gepner model (2) 4 . We also prove the orthogonality of the two subvarieties at the intersection point. This is the starting point for the programme to investigate generic points in K3 moduli space. We use the coordinate identification at the intersection point in order to relate the coordinates of both subvarieties and to explicitly calculate a geometric geodesic between the two subvarieties as well as its generator. A generic point in K3 moduli space can be reached by such a geodesic originating at a known model. We also present advances on the conformal field theoretic side of deformations along such a geodesic using conformal deformation theory. Moreover, we regard a relaxation of conformal field theory to logarithmic conformal field theory. In particular, we study general augmented c p,q minimal models which generalise the well-known (augmented) c p,1 model series. We calculate logarithmic nullvectors in both types of models. But most importantly, we investigate the low lying Virasoro representation content and fusion algebra of two general augmented c p,q models, the augmented c 2,3 =0 model as well as the augmented Yang-Lee model at c 2,5 =-22/5. In particular, the true vacuum representation is rather given by a rank 1 indecomposable but not irreducible subrepresentation of a rank 2 representation. We generalise these generic examples to give the representation content and

  6. Effect of top electrode material on radiation-induced degradation of ferroelectric thin film structures

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, Steven J.; Bassiri-Gharb, Nazanin [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Deng, Carmen Z.; Callaway, Connor P. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Paul, McKinley K. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Woodward Academy, College Park, Georgia 30337 (United States); Fisher, Kenzie J. [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Riverwood International Charter School, Atlanta, Georgia 30328 (United States); Guerrier, Jonathon E.; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Rudy, Ryan Q.; Polcawich, Ronald G. [Army Research Laboratory, Adelphi, Maryland 20783 (United States); Glaser, Evan R.; Cress, Cory D. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2016-07-14

    The effects of gamma irradiation on the dielectric and piezoelectric responses of Pb[Zr{sub 0.52}Ti{sub 0.48}]O{sub 3} (PZT) thin film stacks were investigated for structures with conductive oxide (IrO{sub 2}) and metallic (Pt) top electrodes. The samples showed, generally, degradation of various key dielectric, ferroelectric, and electromechanical responses when exposed to 2.5 Mrad (Si) {sup 60}Co gamma radiation. However, the low-field, relative dielectric permittivity, ε{sub r}, remained largely unaffected by irradiation in samples with both types of electrodes. Samples with Pt top electrodes showed substantial degradation of the remanent polarization and overall piezoelectric response, as well as pinching of the polarization hysteresis curves and creation of multiple peaks in the permittivity-electric field curves post irradiation. The samples with oxide electrodes, however, were largely impervious to the same radiation dose, with less than 5% change in any of the functional characteristics. The results suggest a radiation-induced change in the defect population or defect energy in PZT with metallic top electrodes, which substantially affects motion of internal interfaces such as domain walls. Additionally, the differences observed for stacks with different electrode materials implicate the ferroelectric–electrode interface as either the predominant source of radiation-induced effects (Pt electrodes) or the site of healing for radiation-induced defects (IrO{sub 2} electrodes).

  7. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS

    International Nuclear Information System (INIS)

    Reid, Beth A.; Spergel, David N.; Bode, Paul

    2009-01-01

    The nontrivial relationship between observations of galaxy positions in redshift space and the underlying matter field complicates our ability to determine the linear theory power spectrum and extract cosmological information from galaxy surveys. The Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) catalog has the potential to place powerful constraints on cosmological parameters. LRGs are bright, highly biased tracers of large-scale structure. However, because they are highly biased, the nonlinear contribution of satellite galaxies to the galaxy power spectrum is large and fingers-of-God (FOGs) are significant. The combination of these effects leads to a ∼10% correction in the underlying power spectrum at k = 0.1 h Mpc -1 and ∼40% correction at k = 0.2 h Mpc -1 in the LRG P(k) analysis of Tegmark et al., thereby compromising the cosmological constraints when this potentially large correction is left as a free parameter. We propose an alternative approach to recovering the matter field from galaxy observations. Our approach is to use halos rather than galaxies to trace the underlying mass distribution. We identify FOGs and replace each FOG with a single halo object. This removes the nonlinear contribution of satellite galaxies, the one-halo term. We test our method on a large set of high-fidelity mock SDSS LRG catalogs and find that the power spectrum of the reconstructed halo density field deviates from the underlying matter power spectrum at the ≤1% level for k ≤ 0.1 h Mpc -1 and ≤4% at k = 0.2 h Mpc -1 . The reconstructed halo density field also removes the bias in the measurement of the redshift space distortion parameter β induced by the FOG smearing of the linear redshift space distortions.

  8. On the renormalization of the effective field theory of large scale structures

    International Nuclear Information System (INIS)

    Pajer, Enrico; Zaldarriaga, Matias

    2013-01-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P in ∼ k n . After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections

  9. On the renormalization of the effective field theory of large scale structures

    Energy Technology Data Exchange (ETDEWEB)

    Pajer, Enrico [Department of Physics, Princeton University, Princeton, NJ 08544 (United States); Zaldarriaga, Matias, E-mail: enrico.pajer@gmail.com, E-mail: matiasz@ias.edu [Institute for Advanced Study, Princeton, NJ 08544 (United States)

    2013-08-01

    Standard perturbation theory (SPT) for large-scale matter inhomogeneities is unsatisfactory for at least three reasons: there is no clear expansion parameter since the density contrast is not small on all scales; it does not fully account for deviations at large scales from a perfect pressureless fluid induced by short-scale non-linearities; for generic initial conditions, loop corrections are UV-divergent, making predictions cutoff dependent and hence unphysical. The Effective Field Theory of Large Scale Structures successfully addresses all three issues. Here we focus on the third one and show explicitly that the terms induced by integrating out short scales, neglected in SPT, have exactly the right scale dependence to cancel all UV-divergences at one loop, and this should hold at all loops. A particularly clear example is an Einstein deSitter universe with no-scale initial conditions P{sub in} ∼ k{sup n}. After renormalizing the theory, we use self-similarity to derive a very simple result for the final power spectrum for any n, excluding two-loop corrections and higher. We show how the relative importance of different corrections depends on n. For n ∼ −1.5, relevant for our universe, pressure and dissipative corrections are more important than the two-loop corrections.

  10. Induced Electromagnetic Field by Seismic Waves in Stratified Media in Earth's Magnetic Field

    Science.gov (United States)

    Yamazaki, K.

    2017-12-01

    Seismic waves accompany electromagnetic (EM) variations because Earth's crust involves a variety of EM properties such as finite electrical conductivity and ion contents. If we can catch the EM variations just after the earthquake rupture, we will know the occurrence of earthquake before the arrival of seismic waves at observation point. However, quantitative aspects of EM variations arising from seismic waves have not sufficiently understood. Together with observational works, theoretical works have been made to simulate EM variations arising from seismic waves. The generation mechanisms of EM variations include electrokinetic effect (Pride, 1994), motional induction (Gao et al., 2014), piezo-electric effect (Ogawa and Utada, 2000), piezo-magnetic effect (Yamazaki, 2016), etc. It is widely accepted that the electrokinetic effect is the dominant mechanism. Theoretical calculation of EM variations assuming the electrokinetic effect roughly explains the observed EM variations accompanying with earthquake ground motions (e.g. Gao et al. 2016). However, there are a significant disagreement between observed and predicted EM variations. In the present study, I focus on the motional induction mechanism that possibly explain some parts of EM variations accompanying with seismic waves. A theoretical work on EM variations arising from the motional induction has been presented by Gao et al. (2014), but their work assumed uniform full-space medium. In contrast, the present work assumes stratified media which correctly incorporate the effect of the ground surface. I apply a calculating method developed in seismology (e.g. Kennett, 2013) and in EM studies (Haartsen and Pride, 1997), and derive a set of expressions describing the spatial-temporal variations of the EM field after the onset of rupture. The derived formula is used to calculate EM variations for actual earthquakes to compare the theoretical prediction to observed EM variations.

  11. Early-life family structure and microbially induced cancer risk.

    Science.gov (United States)

    Blaser, Martin J; Nomura, Abraham; Lee, James; Stemmerman, Grant N; Perez-Perez, Guillermo I

    2007-01-01

    Cancer may follow exposure to an environmental agent after many decades. The bacterium Helicobacter pylori, known to be acquired early in life, increases risk for gastric adenocarcinoma, but other factors are also important. In this study, we considered whether early-life family structure affects the risk of later developing gastric cancer among H. pylori+ men. We examined a long-term cohort of Japanese-American men followed for 28 y, and performed a nested case-control study among those carrying H. pylori or the subset carrying the most virulent cagA+ H. pylori strains to address whether family structure predicted cancer development. We found that among the men who were H. pylori+ and/or cagA+ (it is possible to be cagA+ and H. pylori- if the H. pylori test is falsely negative), belonging to a large sibship or higher birth order was associated with a significantly increased risk of developing gastric adenocarcinoma late in life. For those with cagA+ strains, the risk of developing gastric cancer was more than twice as high (odds ratio 2.2; 95% confidence interval 1.2-4.0) among those in a sibship of seven or more individuals than in a sibship of between one and three persons. These results provide evidence that early-life social environment plays a significant role in risk of microbially induced malignancies expressing five to eight decades later, and these findings lead to new models to explain these interactions.

  12. Chiral effective-field theory of the nucleon spin structure

    Science.gov (United States)

    Pascalutsa, Vladimir

    2017-01-01

    I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].

  13. High Field Studies for CLIC Accelerating Structures Development

    CERN Document Server

    Profatilova, I

    2017-01-01

    Compact Linear Collider RF structures need to be able to achieve the very high average accelerating gradient of 100 MV/m. One of the main challenges in reaching such high accelerating gradients is to avoid vacuum electrical breakdown within CLIC accelerating structures. Accelerating structure tests are carried out in the klystron-based test stands known as the XBoxes. In order to investigate vacuum breakdown phenomena and its statistical characteristics in a simpler system and get results in a faster way, pulsed dc systems have been developed at CERN. To acquire sufficient breakdown data in a reasonable period of time, high repetition rate pulse generators are used in the systems for breakdown studies, so-called pulsed dc system. This paper describes the pulsed dc systems and the two high repetition rate circuits, which produce high-voltage pulses for it, available at CERN.

  14. The Field of Foucaultian Discourse Analysis: Structures, Developments and Perspectives

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-05-01

    Full Text Available The article outlines the field of FOUCAULTian discourse analysis. The FOUCAULTian concept of discourse is introduced, and methodological positions and methodological developments are sketched. Compared to other qualitative social research approaches, the different researchers and research groups that have adopted the FOUCAULTian concept of discourse are not linked by a fully integrated common research paradigm. However, they share common methodological problems and areas of methodological research resulting from various references to FOUCAULTian positions. In the last decade, different research groups have become aware of these shared commonalities, so that one can speak of an emerging field of FOUCAULTian discourse analysis rather than an emerging paradigm. The article gives insight into the discourse analytic research in selected countries, discusses the internationalisation of FOUCAULTian discourse analysis and highlights current trends and perspectives. URN: urn:nbn:de:0114-fqs0702305

  15. Gravity field and internal structure of Mercury from MESSENGER.

    Science.gov (United States)

    Smith, David E; Zuber, Maria T; Phillips, Roger J; Solomon, Sean C; Hauck, Steven A; Lemoine, Frank G; Mazarico, Erwan; Neumann, Gregory A; Peale, Stanton J; Margot, Jean-Luc; Johnson, Catherine L; Torrence, Mark H; Perry, Mark E; Rowlands, David D; Goossens, Sander; Head, James W; Taylor, Anthony H

    2012-04-13

    Radio tracking of the MESSENGER spacecraft has provided a model of Mercury's gravity field. In the northern hemisphere, several large gravity anomalies, including candidate mass concentrations (mascons), exceed 100 milli-Galileos (mgal). Mercury's northern hemisphere crust is thicker at low latitudes and thinner in the polar region and shows evidence for thinning beneath some impact basins. The low-degree gravity field, combined with planetary spin parameters, yields the moment of inertia C/MR(2) = 0.353 ± 0.017, where M and R are Mercury's mass and radius, and a ratio of the moment of inertia of Mercury's solid outer shell to that of the planet of C(m)/C = 0.452 ± 0.035. A model for Mercury's radial density distribution consistent with these results includes a solid silicate crust and mantle overlying a solid iron-sulfide layer and an iron-rich liquid outer core and perhaps a solid inner core.

  16. Structure of the magnetic field line diversion in Helias configurations

    International Nuclear Information System (INIS)

    Strumberger, E.

    1991-01-01

    The vacuum magnetic field outside the last closed magnetic surface of Helias configurations is investigated with respect to its field line diversion properties. In a Helias configuration with N periods N half-helix like edges run on the toroidally outward side of the plasma boundary and yield the possibility of separatrix formation due to the coincidence of helical edge and x-points between islands. With the choice N=5, and ι=1 at the plasma boundary, there are five magnetic islands outside the last closed magnetic surface. In the case considered, islands are lying in front of the helical edge at the beginning, in the middle and at the end of this edge, while in positions in between x-points are in front of the helical edge. (author) 3 refs., 5 figs

  17. Electric-field-induced monoclinic phase in (Ba,Sr)TiO3 thin film

    International Nuclear Information System (INIS)

    Anokhin, A. S.; Yuzyuk, Yu. I.; Golovko, Yu. I.; Mukhortov, V. M.; El Marssi, M.

    2011-01-01

    We have studied electric-field-induced symmetry lowering in the tetragonal (001)-oriented heteroepitaxial (Ba 0.8 Sr 0.2 )TiO 3 thin film deposited on (001)MgO substrate. Polarized micro-Raman spectra were recorded from the film area in between two planar electrodes deposited on the film surface. Presence of c domains with polarization normal to the substrate was confirmed from polarized Raman study under zero field, while splitting and hardening of the E(TO) soft mode and polarization changes in the Raman spectra suggest monoclinic symmetry under external electric field.

  18. Electric-field-induced magnetic domain writing in a Co wire

    Science.gov (United States)

    Tanaka, Yuki; Hirai, Takamasa; Koyama, Tomohiro; Chiba, Daichi

    2018-05-01

    We have demonstrated that the local magnetization in a Co microwire can be switched by an application of a gate voltage without using any external magnetic fields. The electric-field-induced reversible ferromagnetic phase transition was used to realize this. An internal stray field from a ferromagnetic gate electrode assisted the local domain reversal in the Co wire. This new concept of electrical domain switching may be useful for dramatically reducing the power consumption of writing information in a magnetic racetrack memory, in which a shift of a magnetic domain by electric current is utilized.

  19. AC electric field induced droplet deformation in a microfluidic T-junction.

    Science.gov (United States)

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-02

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal.

  20. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge.

    Science.gov (United States)

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-07-07

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators.

  1. Olfactory Fear Conditioning Induces Field Potential Potentiation in Rat Olfactory Cortex and Amygdala

    Science.gov (United States)

    Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi

    2004-01-01

    The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…

  2. Dispersive FDTD analysis of induced electric field in human models due to electrostatic discharge

    International Nuclear Information System (INIS)

    Hirata, Akimasa; Nagai, Toshihiro; Koyama, Teruyoshi; Hattori, Junya; Chan, Kwok Hung; Kavet, Robert

    2012-01-01

    Contact currents flow from/into a charged human body when touching a grounded conductive object. An electrostatic discharge (ESD) or spark may occur just before contact or upon release. The current may stimulate muscles and peripheral nerves. In order to clarify the difference in the induced electric field between different sized human models, the in-situ electric fields were computed in anatomically based models of adults and a child for a contact current in a human body following ESD. A dispersive finite-difference time-domain method was used, in which biological tissue is assumed to obey a four-pole Debye model. From our computational results, the first peak of the discharge current was almost identical across adult and child models. The decay of the induced current in the child was also faster due mainly to its smaller body capacitance compared to the adult models. The induced electric fields in the forefingers were comparable across different models. However, the electric field induced in the arm of the child model was found to be greater than that in the adult models primarily because of its smaller cross-sectional area. The tendency for greater doses in the child has also been reported for power frequency sinusoidal contact current exposures as reported by other investigators. (paper)

  3. Measurement of 3-Axis Magnetic Fields Induced by Current Wires Using a Smartphone in Magnetostatics Experiments

    Science.gov (United States)

    Setiawan, B.; Septianto, R. D.; Suhendra, D.; Iskandar, F.

    2017-01-01

    This paper describes the use of an inexpensive smartphone's magnetic sensor to measure magnetic field components (B[subscript x], B[subscript y] and B[subscript z]) induced by current wires in magnetostatic experiments. The variable parameters used to measure the magnetic sensor's capabilities were: the geometrical shapes of the wire, current…

  4. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  5. The effect of internal and external fields of view on visually induced motion sickness

    NARCIS (Netherlands)

    Bos, J.E.; Vries, S.C. de; Emmerik, M.L. van; Groen, E.L.

    2010-01-01

    Field of view (FOV) is said to affect visually induced motion sickness. FOV, however, is characterized by an internal setting used by the graphics generator (iFOV) and an external factor determined by screen size and viewing distance (eFOV). We hypothesized that especially the incongruence between

  6. Numerical modeling of large field-induced strains in ferroelastic bodies: a continuum approach

    International Nuclear Information System (INIS)

    Raikher, Yu L; Stolbov, O V

    2008-01-01

    A consistent continuum model of a soft magnetic elastomer (SME) is presented and developed for the case of finite strain. The numeric algorithm enabling one to find the field-induced shape changes of an SME body is described. The reliability of the method is illustrated by several examples revealing specifics of the magnetostriction effect in SME samples of various geometries

  7. NMR at earth's magnetic field using para-hydrogen induced polarization

    NARCIS (Netherlands)

    Hamans, B.C.; Andreychenko, A.; Heerschap, A.; Wijmenga, S.S.; Tessari, M.

    2011-01-01

    A method to achieve NMR of dilute samples in the earth's magnetic field by applying para-hydrogen induced polarization is presented. Maximum achievable polarization enhancements were calculated by numerically simulating the experiment and compared to the experimental results and to the thermal

  8. Vacuum energy induced by an external magnetic field in a curved space

    International Nuclear Information System (INIS)

    Sitenko, Yu.A.; Rakityansky, D.G.

    1998-01-01

    The asymptotic expansion of the product of an operator raised to an arbitrary power and an exponential function of this operator is obtained. With the aid of this expansion, the density of vacuum energy induced by a static external magnetic field of an Abelian or a non-Abelian nature is expressed in terms of the DeWitt-Seeley-Gilkey coefficients

  9. New foundations for applied electromagnetics the spatial structure of fields

    CERN Document Server

    Mikki, Said

    2016-01-01

    This comprehensive new resource focuses on applied electromagnetics and takes readers beyond the conventional theory with the use of contemporary mathematics to improve the practical use of electromagnetics in emerging areas of field communications, wireless power transfer, metamaterials, MIMO and direction-of-arrival systems. The book explores the existing and novel theories and principles of electromagnetics in order to help engineers analyze and design devices for todays applications in wireless power transfers, NFC, and metamaterials.

  10. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei; Zhang, Jianxin [Key Laboratory for Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Mao, Shengcheng [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China); Jiang, Ying [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Shen, Zhenju; Li, Jixue; Zhang, Ze [Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Han, Xiaodong [Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124 (China)

    2015-01-05

    Highlights: • Innovative kink structures generate at the γ/γ′ interfaces in the crept superalloy. • Clusters of heavy elements congregate at the apex of the kinks. • Dislocation core absorbs hexagonal structural high-Z elements. - Abstract: Here, we investigate a new type of kink structure that is found at γ/γ′ interfaces in nickel-based single crystal superalloys. We studied these structures at the atomic and elemental level using aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The core of the dislocation absorbs high-Z elements (i.e., Co and Re) that adopt hexagonal arrangements, and it extrudes elements (i.e., Ni and Al) that adopt face centered cubic (fcc) structures. High-Z elements (i.e., Ta and W) and Cr, which is a low-Z element, are stabilized in body centered cubic (bcc) arrangements; Cr tends to behave like Re. High-Z elements, which migrate and adopt a hexagonal structure, induce kink formation at γ/γ′ interfaces. This process must be analyzed to fully understand the kinetics and dynamics of creep in nickel-based single crystal superalloys.

  11. Friction-induced nano-structural evolution of graphene as a lubrication additive

    Science.gov (United States)

    Zhao, Jun; Mao, Junyuan; Li, Yingru; He, Yongyong; Luo, Jianbin

    2018-03-01

    Graphene has attracted enormous attention in the field of lubrication based on its excellent physical and chemical properties. Although many studies have obtained thermally or chemically- exfoliated graphene and investigated their wide and important application, few studies have reported their physical nano-structural evolution under friction. In this study, we investigated the lubrication properties of graphene additives with different layer numbers and interlayer spacing by exfoliating. The additives with a higher degrees of exfoliation changed to ordering under friction, and had better lubrication properties, while that with a lower degrees exhibited obvious structural defects and high friction. Therefore, the original degrees of exfoliation plays a key role in the structural evolution of graphene and superior lubrication can be achieved through the physical nano-structure changing to ordering, even graphitization. Furthermore, the ordered tribofilm on the frictional interfaces was parallel to the sliding direction, meaning the highly exfoliated graphene indeed reaching slippage between its layers, which wasn't experimentally discovered in previous studies. This work provides a new understanding of the relationship between friction-induced nano-structural evolution and lubrication properties of graphene as a lubrication additive, and has great potential for the structural design of graphene as a lubrication additive.

  12. A 680 V LDMOS on a thin SOI with an improved field oxide structure and dual field plate

    International Nuclear Information System (INIS)

    Wang Zhongjian; Cheng Xinhong; Xia Chao; Xu Dawei; Cao Duo; Song Zhaorui; Yu Yuehui; Shen Dashen

    2012-01-01

    A 680 V LDMOS on a thin SOI with an improved field oxide (FOX) and dual field plate was studied experimentally. The FOX structure was formed by an 'oxidation-etch-oxidation' process, which took much less time to form, and had a low protrusion profile. A polysilicon field plate extended to the FOX and a long metal field plate was used to improve the specific on-resistance. An optimized drift region implant for linear-gradient doping was adopted to achieve a uniform lateral electric field. Using a SimBond SOI wafer with a 1.5 μm top silicon and a 3 μm buried oxide layer, CMOS compatible SOI LDMOS processes are designed and implemented successfully. The off-state breakdown voltage reached 680 V, and the specific on-resistance was 8.2 Ω·mm 2 . (semiconductor devices)

  13. Application of Phase-Field Techniques to Hydraulically- and Deformation-Induced Fracture.

    Energy Technology Data Exchange (ETDEWEB)

    Culp, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schweizer, Laura [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Phase-field techniques provide an alternative approach to fracture problems which mitigate some of the computational expense associated with tracking the crack interface and the coalescence of individual fractures. The technique is extended to apply to hydraulically driven fracture such as would occur during fracking or CO2 sequestration. Additionally, the technique is applied to a stainless steel specimen used in the Sandia Fracture Challenge. It was found that the phase-field model performs very well, at least qualitatively, in both deformation-induced fracture and hydraulically-induced fracture, though spurious hourglassing modes were observed during coupled hydralically-induced fracture. Future work would include performing additional quantitative benchmark tests and updating the model as needed.

  14. Structural Mapping Based on Potential Field and Remote Sensing ...

    Indian Academy of Sciences (India)

    52

    exploration program sponsored by oil industries (Bijendra Singh et al. 2009). G-M surveys revealed ... structural details of the basin architecture in order to comprehend the tectonic development of the basin. In this endeavor, we have utilized ..... increasing frequency (Spector and Grant 1970). In this approach, depth to the ...

  15. Braided structure in 4-dimensional conformal quantum field theory

    International Nuclear Information System (INIS)

    Schroer, Bert

    2001-03-01

    Higher dimensional conformal QFT possesses an intersting braided structure which different from the d=1+1 models, is restricted to the timelike region and therefore easily escapes euclidean action methods. It lies behind the spectrum of anamalous which may be viewed as a kind of substitute for a missing particle interpretation in the presence of interactions. (author)

  16. Prevention of brittle fracture of steel structures by controlling the local stress and strain fields

    Directory of Open Access Journals (Sweden)

    Moyseychik Evgeniy Alekseevich

    Full Text Available In the article the author offers a classification of the methods to increase the cold resistance of steel structural shapes with a focus on the regulation of local fields of internal stresses and strains to prevent brittle fracture of steel structures. The need of a computer thermography is highlighted not only for visualization of temperature fields on the surface, but also to control the fields of residual stresses and strains in a controlled element.

  17. Spin-orbit coupling and applied magnetic field effects on electromagnetically induced transparency of a quantum ring at finite temperature

    Science.gov (United States)

    Zamani, A.; Setareh, F.; Azargoshasb, T.; Niknam, E.

    2018-03-01

    A wide variety of semiconductor nanostructures have been fabricated and studied experimentally and alongside theoretical investigations show the great role they have in new generation opto-electronic devices. However, mathematical modeling provide important information due to their definitive goal of predicting features and understanding of such structures' behavior under different circumstances. Hence, in the current work, the effects of applied magnetic field, temperature and dimensions of the structure on the electromagnetically induced transparency (EIT) of a GaAs quantum ring are studied while both Rashba and Dresselhaus spin-orbit interactions (SOI) are taken into account. The Schrödinger equation is solved in cylindrical coordinate with axial symmetry and in order to study the EIT, the imaginary (absorption) and real (refractive index) parts of susceptibility as well as the group velocity of the probe light pulse are investigated. The absorption and refractive index plots show that, for a specific frequency of probe field the absorption vanishes and refractive index becomes unity (known as EIT) while around such frequency the group index is positive (sub-luminal probe propagation) and for higher and lower frequencies it alters to negative (super-luminal probe propagation). The numerical results reveal that the EIT frequency, transparency window and sub(super)-luminal frequency intervals shift as we change applied magnetic field, temperature and also the structure dimensions.

  18. Review of laser-induced fluorescence methods for measuring rf- and microwave electric fields in discharges

    International Nuclear Information System (INIS)

    Gavrilenko, V.; Oks, E.

    1994-01-01

    Development of methods for measuring rf- or μ-wave electric fields E(t) = E 0 cosωt in discharge plasmas is of a great practical importance. First, these are fields used for producing rf- or μ-wave discharges. Second, the fields E(t) may represent electromagnetic waves penetrating into a plasma from the outside. This paper reviews methods for diagnostics of the fields E(t) in low temperature plasmas based on Laser-Induced Fluorescence (LIF). Compared to emission (passive) methods, LIF-methods have a higher sensitivity as well as higher spatial and temporal resolutions. Underlying physical effects may be highlighted by an example of LIF of hydrogen atoms in a plasma. After a presentation of the underlying physical principles, the review focuses on key experiments where these principles were implemented for measurements of rf- and μ-wave electric fields in various discharges

  19. Field induced magnetic phase transition as a magnon Bose Einstein condensation

    Directory of Open Access Journals (Sweden)

    Teodora Radu et al

    2007-01-01

    Full Text Available We report specific heat, magnetocaloric effect and magnetization measurements on single crystals of the frustrated quasi-2D spin -½ antiferromagnet Cs2CuCl4 in the external magnetic field 0≤B≤12 T along a-axis and in the temperature range 0.03 K≤T≤6 K. Decreasing the applied magnetic field B from high fields leads to the closure of the field induced gap in the magnon spectrum at a critical field Bcsimeq8.44 T and a long-range incommensurate state below Bc. In the vicinity of Bc, the phase transition boundary is well described by the power law TN~(Bc-B1/phi with the measured critical exponent phisimeq1.5. These findings provide experimental evidence that the scaling law of the transition temperature TN can be described by the universality class of 3D Bose–Einstein condensation (BEC of magnons.

  20. Evaluation of the induced electric field and compliance procedure for a wireless power transfer system in an electrical vehicle

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Hirata, Akimasa

    2013-01-01

    In this study, an induced electric field in a human body is evaluated for the magnetic field leaked from a wireless power transfer system for charging an electrical vehicle. The magnetic field from the wireless power transfer system is modelled computationally, and its effectiveness is confirmed by comparison with the field measured in a previous study. The induced electric field in a human standing around the vehicle is smaller than the allowable limit prescribed in international guidelines, although the magnetic field strength in the human body is locally higher than the allowable external field strength. Correlation between the external magnetic field and the induced electric field is confirmed to be reasonable at least in the standing posture, which is the case discussed in the international standard. Based on this finding, we discussed and confirmed the applicability of a three-point magnetic field measurement at heights of 0.5, 1.0, and 1.5 m for safety compliance. (paper)