The geomagnetic field gradient tensor
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Olsen, Nils
2012-01-01
We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...
Estimation of the magnetic field gradient tensor using the Swarm constellation
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils
2014-01-01
For the first time, part of the magnetic field gradient tensor is estimated in space by the Swarm mission. We investigate the possibility of a more complete estimation of the gradient tensor exploiting the Swarm constellation. The East-West gradients can be approximated by observations from...... deviations compared to conventional vector observations at almost all latitudes. Analytical and numerical analysis of the spectral properties of the gradient tensor shows that specific combinations of the East-West and North-South gradients have almost identical signal content to the radial gradient...
International Nuclear Information System (INIS)
Bull, James N.; Fitchett, Christopher M.; Tennant, W. Craighead
2010-01-01
This paper reports the determination of the electric-field-gradient and mean-squared-displacement tensors in 57 Fe symmetry-related sites of 1-bar Laue class in monoclinic FeCl 2 .4H 2 O at room temperature by single-crystal Mössbauer spectroscopy. Contrary to all previous work, the mean-squared-displacement matrix (tensor), , is not constrained to be isotropic resulting in the determination of physically meaningful estimates of microscopic (local) electric-field gradient (efg) and tensors. As a consequence of anisotropy in the tensor the absorber recoilless fractions are also anisotropic. As expected of a low-symmetry site, Laue class 1-bar in this case, no two principal axes of the efg and tensors are coaxial, within the combined errors in the two. Further, no principal direction of the efg tensor seems related to bond directions in the unit cell. Within error, and in agreement with an earlier study of sodium nitroprusside, it appears that the tensor principal directions lie close to the crystallographic axes suggesting that they are determined by long wavelength (phonon) vibrations in the crystal rather than by approximate local symmetry about the 57 Fe nucleus. Concurrent with the Mössbauer measurements, we determined as part of a new X-ray structural determination, precise atomic displacement parameters (ADPs) leading to an alternative determination of the matrix (tensor). The average of the eigenvalues of the Mössbauer-determined exceeds that of the average of the X-ray-determined eigenvalues by a factor of around 2.2. Assuming isotropic absorber recoilless fractions leads to substantially the same (macroscopic) efg tensor as had been determined in earlier work. Taking 1/3 x the trace of the anisotropic absorber recoilless fractions leads to an isotropic value of 0.304 in good agreement with earlier single crystal studies where isotropy was assumed.
International Nuclear Information System (INIS)
Aghazadeh, Mustafa; Mirzaei, Mahmoud
2008-01-01
Hydrogen bond (HB) interactions are studied in the real crystalline structure of sulfamerazine by density functional theory (DFT) calculations of the electric field gradient (EFG) tensors at the sites of O-17, N-14, and H-2 nuclei. One-molecule (single) and four-molecule (cluster) models of sulfamerazine are created by available crystal coordinates and the EFG tensors are calculated in both models to indicate the influence of HB interactions on the tensors. Directly relate to the experiments, the calculated EFG tensors are converted to the experimentally measurable nuclear quadrupole resonance (NQR) parameters, quadrupole coupling constant (qcc) and asymmetry parameter (η Q ). The evaluated NQR parameters reveal that due to contribution of the target molecule to N-H...N and N-H...O types of HB interactions, the EFG tensors at the sites of various nuclei are influenced from single model to the target molecule in cluster. Additionally, O2, N4, and H2 nuclei of the target molecule are significantly influenced by HB interactions, consequently, they have the major contributions to HB interactions in cluster model of sulfamerazine. The calculations are performed employing B3LYP method and 6-311++G** basis set using GAUSSIAN 98 suite of program
Tensor gauge condition and tensor field decomposition
Zhu, Ben-Chao; Chen, Xiang-Song
2015-10-01
We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.
Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng
2015-09-01
The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.
Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel
2015-01-01
As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)). Copyright © 2015 Elsevier Inc. All rights reserved.
Confinement through tensor gauge fields
International Nuclear Information System (INIS)
Salam, A.; Strathdee, J.
1977-12-01
Using the 0(3,2)-symmetric de Sitter solution of Einstein's equation describing a strongly interacting tensor field it is shown that hadronic bags confining quarks can be represented as de Sitter ''micro-universes'' with radii given 1/R 2 =lambdak 2 /6. Here k 2 and lambda are the strong coupling and the ''cosmological'' constant which apear in the Einstein equation used. Surprisingly the energy spectrum for the two-body hadronic states is the same as that for a harmonic oscillator potential, though the wave functions are completely different. The Einstein equation can be extended to include colour for the tensor fields
Gradients estimation from random points with volumetric tensor in turbulence
Watanabe, Tomoaki; Nagata, Koji
2017-12-01
We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.
Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method
Sun, Yong; Meng, Zhaohai; Li, Fengting
2018-03-01
Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.
Antisymmetric tensor generalizations of affine vector fields.
Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro
2016-02-01
Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.
The Topology of Symmetric Tensor Fields
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
Seamless warping of diffusion tensor fields
DEFF Research Database (Denmark)
Xu, Dongrong; Hao, Xuejun; Bansal, Ravi
2008-01-01
To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot...... transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...
Abelian gauge theories with tensor gauge fields
International Nuclear Information System (INIS)
Kapuscik, E.
1984-01-01
Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)
Automated gravity gradient tensor inversion for underwater object detection
International Nuclear Information System (INIS)
Wu, Lin; Tian, Jinwen
2010-01-01
Underwater abnormal object detection is a current need for the navigation security of autonomous underwater vehicles (AUVs). In this paper, an automated gravity gradient tensor inversion algorithm is proposed for the purpose of passive underwater object detection. Full-tensor gravity gradient anomalies induced by an object in the partial area can be measured with the technique of gravity gradiometry on an AUV. Then the automated algorithm utilizes the anomalies, using the inverse method to estimate the mass and barycentre location of the arbitrary-shaped object. A few tests on simple synthetic models will be illustrated, in order to evaluate the feasibility and accuracy of the new algorithm. Moreover, the method is applied to a complicated model of an abnormal object with gradiometer and AUV noise, and interference from a neighbouring illusive smaller object. In all cases tested, the estimated mass and barycentre location parameters are found to be in good agreement with the actual values
Conformal field theories and tensor categories. Proceedings
Energy Technology Data Exchange (ETDEWEB)
Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics
2014-08-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Conformal field theories and tensor categories. Proceedings
International Nuclear Information System (INIS)
Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph
2014-01-01
First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.
Aspects of the Antisymmetric Tensor Field
Lahiri, Amitabha
1991-02-01
With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.
International Nuclear Information System (INIS)
Miksche, G.
1982-01-01
The quadrupole coupling constant |e 2 qQ/n| if 23 Na has been determined by measuring single crystals of Na 2 S.9H 2 O at room temperature. A value of 687.5 +- 1.2 kHz was found. The asymmetry parameter eta = (qsub(x'x') - qsub(y'y')) / qsub(z'z') of the efg-tensor is zero, there is axial symmetry. The principle axis of the efg-tensor runs parallel to the main crystallographic axis c, the value of the main component of the efg-tensor in c-direction is 171.875 +- 0.6 kHz. The longitudinal relaxation time T 1 has been evaluated as 1.8 s. On this account, the mean distance between two Na-atoms has been determined by measuring the splitting of the central line due to dipole-dipole interaction. The Na-Na distance was found with 0.36 +- 0.007 nm. This value is in good agreement with results from neutron diffraction studies. It was not possible to determine direction and length of hydrogen bonds by NMR-results. A method of growing single crystals of Na 2 S.9H 2 O of demanded size and purity has been described. Constructional details and technical data of a self-made wideline-NMR-spectrometer are added in an appendix. (Author)
(Ln-bar, g)-spaces. Special tensor fields
International Nuclear Information System (INIS)
Manoff, S.; Dimitrov, B.
1998-01-01
The Kronecker tensor field, the contraction tensor field, as well as the multi-Kronecker and multi-contraction tensor fields are determined and the action of the covariant differential operator, the Lie differential operator, the curvature operator, and the deviation operator on these tensor fields is established. The commutation relations between the operators Sym and Asym and the covariant and Lie differential operators are considered acting on symmetric and antisymmetric tensor fields over (L n bar, g)-spaces
The Scalar, Vector and Tensor Fields in Theory of Elasticity and Plasticity
Directory of Open Access Journals (Sweden)
František FOJTÍK
2014-06-01
Full Text Available This article is devoted to an analysis of scalar, vector and tensor fields, which occur in the loaded and deformed bodies. The aim of this article is to clarify and simplify the creation of an understandable idea of some elementary concepts and quantities in field theories, such as, for example equiscalar levels, scalar field gradient, Hamilton operator, divergence, rotation and gradient of vector or tensor and others. Applications of those mathematical terms are shown in simple elasticity and plasticity tasks. We hope that content of our article might help technicians to make their studies of necessary mathematical chapters of vector and tensor analysis and field theories easier.
Visualization and processing of tensor fields
Weickert, Joachim
2007-01-01
Presents information on the visualization and processing of tensor fields. This book serves as an overview for the inquiring scientist, as a basic foundation for developers and practitioners, and as a textbook for specialized classes and seminars for graduate and doctoral students.
From stochastic completion fields to tensor voting
Almsick, van M.A.; Duits, R.; Franken, E.M.; Haar Romenij, ter B.M.; Olsen, O.F.; Florack, L.M.J.; Kuijper, A.
2005-01-01
Several image processing algorithms imitate the lateral interaction of neurons in the visual striate cortex V1 to account for the correlations along contours and lines. Here we focus on two methodologies: tensor voting by Guy and Medioni, and stochastic completion fields by Mumford, Williams and
Relativistic particles with spin and antisymmetric tensor fields
International Nuclear Information System (INIS)
Sandoval Junior, L.
1990-09-01
A study is made on antisymmetric tensor fields particularly on second order tensor field as far as his equivalence to other fields and quantization through the path integral are concerned. Also, a particle model is studied which has been recently proposed and reveals to be equivalent to antisymmetric tensor fields of any order. (L.C.J.A.)
International Nuclear Information System (INIS)
Kaschner, R.; Graefenstein, J.; Ziesche, P.
1988-12-01
From the local momentum balance using density functional theory an expression for the local quantum-mechanical stress tensor (or stress field) σ(r) of non-relativistic Coulomb systems is found out within the Thomas-Fermi approximation and its generalizations including gradient expansion method. As an illustration the stress field σ(r) is calculated for the jellium model of the interface K-Cs, containing especially the adhesive force between the two half-space jellia. (author). 23 refs, 1 fig
Electric field gradients in metals
International Nuclear Information System (INIS)
Schatz, G.
1979-01-01
A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)
Inversion of gravity gradient tensor data: does it provide better resolution?
Paoletti, V.; Fedi, M.; Italiano, F.; Florio, G.; Ialongo, S.
2016-04-01
The gravity gradient tensor (GGT) has been increasingly used in practical applications, but the advantages and the disadvantages of the analysis of GGT components versus the analysis of the vertical component of the gravity field are still debated. We analyse the performance of joint inversion of GGT components versus separate inversion of the gravity field alone, or of one tensor component. We perform our analysis by inspection of the Picard Plot, a Singular Value Decomposition tool, and analyse both synthetic data and gradiometer measurements carried out at the Vredefort structure, South Africa. We show that the main factors controlling the reliability of the inversion are algebraic ambiguity (the difference between the number of unknowns and the number of available data points) and signal-to-noise ratio. Provided that algebraic ambiguity is kept low and the noise level is small enough so that a sufficient number of SVD components can be included in the regularized solution, we find that: (i) the choice of tensor components involved in the inversion is not crucial to the overall reliability of the reconstructions; (ii) GGT inversion can yield the same resolution as inversion with a denser distribution of gravity data points, but with the advantage of using fewer measurement stations.
A Gradient Based Iterative Solutions for Sylvester Tensor Equations
Directory of Open Access Journals (Sweden)
Zhen Chen
2013-01-01
proposed by Ding and Chen, 2005, and by using tensor arithmetic concepts, an iterative algorithm and its modification are established to solve the Sylvester tensor equation. Convergence analysis indicates that the iterative solutions always converge to the exact solution for arbitrary initial value. Finally, some examples are provided to show that the proposed algorithms are effective.
Hoefnagels, Friso W. A.; de Witt Hamer, Philip C.; Pouwels, Petra J. W.; Barkhof, Frederik; Vandertop, W. Peter
2017-01-01
To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with
Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.
Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene
2016-03-01
Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.
The Topology of Three-Dimensional Symmetric Tensor Fields
Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus
1994-01-01
We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.
Glyph-Based Comparative Visualization for Diffusion Tensor Fields.
Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna
2016-01-01
Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.
Energy-momentum tensor of the electromagnetic field
International Nuclear Information System (INIS)
Horndeski, G.W.; Wainwright, J.
1977-01-01
In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources
Eigenvector of gravity gradient tensor for estimating fault dips considering fault type
Kusumoto, Shigekazu
2017-12-01
The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.
Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang
2018-03-01
During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained
Energy-momentum tensor in the quantum field theory
International Nuclear Information System (INIS)
Azakov, S.I.
1977-01-01
An energy-momentum tensor in the scalar field theory is built. The tensor must satisfy the finiteness requirement of the Green function. The Green functions can always be made finite by renormalizations in the S-matrix by introducing counter terms into the Hamiltonian (or Lagrangian) of the interaction. Such a renormalization leads to divergencies in the Green functions. Elimination of these divergencies requires the introduction of new counter terms, which must be taken into account in the energy-momentum tensor
Renormalization of nonabelian gauge theories with tensor matter fields
International Nuclear Information System (INIS)
Lemes, Vitor; Renan, Ricardo; Sorella, Silvio Paolo
1996-03-01
The renormalizability of a nonabelian model describing the coupling between antisymmetric second rank tensor matter fields and Yang-Mills gauge fields is discussed within the BRS algebraic framework. (author). 12 refs
Deng, Guoqing; Yao, Aiguo
2017-04-01
Horizontal directional drilling (HDD) technology has been widely used in Civil Engineering. The dynamic position of the drill bit during construction is one of significant facts determining the accuracy of the trajectory of HDD. A new method now has been proposed to detecting the position of drill bit by measuring the magnetic gradient tensor of the ground solenoid magnetic beacon. Compared with traditional HDD positioning technologies, this new model is much easier to apply with lower request for construction sites and higher positioning efficiency. A direct current (DC) solenoid as a magnetic dipole is placed on ground near the drill bit, and related sensors array which contains four Micro-electromechanical Systems (MEMS ) tri-axial magnetometers, one MEMS tri-axial accelerometer and one MEMS tri-axial gyroscope is set up for measuring the magnetic gradient tensor of the magnetic dipole. The related HDD positioning model has been established and simulation experiments have been carried out to verify the feasibility and reliability of the proposed method. The experiments show that this method has good positioning accuracy in horizontal and vertical direction, and totally avoid the impact of the environmental magnetic field. It can be found that the posture of the magnetic beacon will impact the remote positioning precision within valid positioning range, and the positioning accuracy is higher with longer baseline for limited space in drilling tools. The results prove that the relative error can be limited in 2% by adjusting position of the magnetic beacon, the layers of the enameled coil, the sensitive of magnetometers and the baseline distance. Conclusion can be made that this new method can be applied in HDD positioning with better effect and wider application range than traditional method.
On energy-momentum tensors of gravitational field
International Nuclear Information System (INIS)
Nikishov, A.I.
2001-01-01
The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru
Pajevic, Sinisa; Aldroubi, Akram; Basser, Peter J
2002-01-01
The effective diffusion tensor of water, D, measured by diffusion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-averaged sample of an underlying macroscopic effective diffusion tensor field, D(x). Within fibrous tissues this field is presumed to be continuous and smooth at a gross anatomical length scale. Here a new, general mathematical framework is proposed that uses measured DT-MRI data to produce a continuous approximation to D(x). One essential finding is that the continuous tensor field representation can be constructed by repeatedly performing one-dimensional B-spline transforms of the DT-MRI data. The fidelity and noise-immunity of this approximation are tested using a set of synthetically generated tensor fields to which background noise is added via Monte Carlo methods. Generally, these tensor field templates are reproduced faithfully except at boundaries where diffusion properties change discontinuously or where the tensor field is not microscopically homogeneous. Away from such regions, the tensor field approximation does not introduce bias in useful DT-MRI parameters, such as Trace(D(x)). It also facilitates the calculation of several new parameters, particularly differential quantities obtained from the tensor of spatial gradients of D(x). As an example, we show that they can identify tissue boundaries across which diffusion properties change rapidly using in vivo human brain data. One important application of this methodology is to improve the reliability and robustness of DT-MRI fiber tractography.
Effective field theory approaches for tensor potentials
Energy Technology Data Exchange (ETDEWEB)
Jansen, Maximilian
2016-11-14
Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev
Four dimensional sigma model coupled to the metric tensor field
International Nuclear Information System (INIS)
Ghika, G.; Visinescu, M.
1980-02-01
We discuss the four dimensional nonlinear sigma model with an internal O(n) invariance coupled to the metric tensor field satisfying Einstein equations. We derive a bound on the coupling constant between the sigma field and the metric tensor using the theory of harmonic maps. A special attention is paid to Einstein spaces and some new explicit solutions of the model are constructed. (author)
Energy-momentum tensor in quantum field theory
International Nuclear Information System (INIS)
Fujikawa, K.
1981-01-01
The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat--space-time limit, all the Ward-Takahashi identities associated with space-time transformations including the global dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories. The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization-group b function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise
On the axial anomalies in external tensor fields
International Nuclear Information System (INIS)
Khudaverdyan, O.M.; Mkrtchyan, R.L.; Zurabyan, L.A.
1985-01-01
Computation of the axial anomaly for Dirac fermions in external tensor fields is studied. The sequence of the supersymmetric one-dimensional models is presented. Their supercharges are equal, after quantization, to Dirac operators in external tensor fields, and the density of Witten's partition function gives the anomaly. It is shown that action in the corresponding path integral differs from the classical one. Gaussian approximation gives the anomaly only in the case of third-rank tensor with zero exterior derivative and in that case anomaly is calculated in all dimensions. The interpretation of that field as the torsion of gravitational field and also connection with the results of Witten and Alvarez-Gaume and Atiyah-Singer index theorem are discussed
Numerical evaluation of the tensor bispectrum in two field inflation
Energy Technology Data Exchange (ETDEWEB)
Raveendran, Rathul Nath [The Institute of Mathematical Sciences, HBNI, CIT Campus, Chennai, 600113 India (India); Sriramkumar, L., E-mail: rathulnr@imsc.res.in, E-mail: sriram@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai, 600036 India (India)
2017-07-01
We evaluate the dimensionless non-Gaussianity parameter h {sub NL}, that characterizes the amplitude of the tensor bispectrum, numerically for a class of two field inflationary models such as double inflation, hybrid inflation and aligned natural inflation. We compare the numerical results with the slow roll results which can be obtained analytically. In the context of double inflation, we also investigate the effects on h {sub NL} due to curved trajectories in the field space. We explicitly examine the validity of the consistency relation governing the tensor bispectrum in the squeezed limit. Lastly, we discuss the contribution to h {sub NL} due to the epoch of preheating in two field models.
Numerical evaluation of the tensor bispectrum in two field inflation
International Nuclear Information System (INIS)
Raveendran, Rathul Nath; Sriramkumar, L.
2017-01-01
We evaluate the dimensionless non-Gaussianity parameter h NL , that characterizes the amplitude of the tensor bispectrum, numerically for a class of two field inflationary models such as double inflation, hybrid inflation and aligned natural inflation. We compare the numerical results with the slow roll results which can be obtained analytically. In the context of double inflation, we also investigate the effects on h NL due to curved trajectories in the field space. We explicitly examine the validity of the consistency relation governing the tensor bispectrum in the squeezed limit. Lastly, we discuss the contribution to h NL due to the epoch of preheating in two field models.
Tensor fields on orbits of quantum states and applications
Energy Technology Data Exchange (ETDEWEB)
Volkert, Georg Friedrich
2010-07-19
On classical Lie groups, which act by means of a unitary representation on finite dimensional Hilbert spaces H, we identify two classes of tensor field constructions. First, as pull-back tensor fields of order two from modified Hermitian tensor fields, constructed on Hilbert spaces by means of the property of having the vertical distributions of the C{sub 0}-principal bundle H{sub 0} {yields} P(H) over the projective Hilbert space P(H) in the kernel. And second, directly constructed on the Lie group, as left-invariant representation-dependent operator-valued tensor fields (LIROVTs) of arbitrary order being evaluated on a quantum state. Within the NP-hard problem of deciding whether a given state in a n-level bi-partite quantum system is entangled or separable (Gurvits, 2003), we show that both tensor field constructions admit a geometric approach to this problem, which evades the traditional ambiguity on defining metrical structures on the convex set of mixed states. In particular by considering manifolds associated to orbits passing through a selected state when acted upon by the local unitary group U(n) x U(n) of Schmidt coefficient decomposition inducing transformations, we find the following results: In the case of pure states we show that Schmidt-equivalence classes which are Lagrangian submanifolds define maximal entangled states. This implies a stronger statement as the one proposed by Bengtsson (2007). Moreover, Riemannian pull-back tensor fields split on orbits of separable states and provide a quantitative characterization of entanglement which recover the entanglement measure proposed by Schlienz and Mahler (1995). In the case of mixed states we highlight a relation between LIROVTs of order two and a class of computable separability criteria based on the Bloch-representation (de Vicente, 2007). (orig.)
Tensor fields on orbits of quantum states and applications
International Nuclear Information System (INIS)
Volkert, Georg Friedrich
2010-01-01
On classical Lie groups, which act by means of a unitary representation on finite dimensional Hilbert spaces H, we identify two classes of tensor field constructions. First, as pull-back tensor fields of order two from modified Hermitian tensor fields, constructed on Hilbert spaces by means of the property of having the vertical distributions of the C 0 -principal bundle H 0 → P(H) over the projective Hilbert space P(H) in the kernel. And second, directly constructed on the Lie group, as left-invariant representation-dependent operator-valued tensor fields (LIROVTs) of arbitrary order being evaluated on a quantum state. Within the NP-hard problem of deciding whether a given state in a n-level bi-partite quantum system is entangled or separable (Gurvits, 2003), we show that both tensor field constructions admit a geometric approach to this problem, which evades the traditional ambiguity on defining metrical structures on the convex set of mixed states. In particular by considering manifolds associated to orbits passing through a selected state when acted upon by the local unitary group U(n) x U(n) of Schmidt coefficient decomposition inducing transformations, we find the following results: In the case of pure states we show that Schmidt-equivalence classes which are Lagrangian submanifolds define maximal entangled states. This implies a stronger statement as the one proposed by Bengtsson (2007). Moreover, Riemannian pull-back tensor fields split on orbits of separable states and provide a quantitative characterization of entanglement which recover the entanglement measure proposed by Schlienz and Mahler (1995). In the case of mixed states we highlight a relation between LIROVTs of order two and a class of computable separability criteria based on the Bloch-representation (de Vicente, 2007). (orig.)
On the generally invariant Lagrangians for the metric field and other tensor fields
International Nuclear Information System (INIS)
Novotny, J.
1978-01-01
The Krupka and Trautman method for the description of all generally invariant functions of the components of geometrical object fields is applied to the invariants of second degree of the metrical field and other tensor fields. The complete system of differential identities fulfilled by the invariants mentioned is found and it is proved that these invariants depend on the tensor quantities only. (author)
Energy-momentum tensor in quantum field theory
International Nuclear Information System (INIS)
Fujikawa, Kazuo.
1980-12-01
The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)
Tensor Fields for Use in Fractional-Order Viscoelasticity
Freed, Alan D.; Diethelm, Kai
2003-01-01
To be able to construct viscoelastic material models from fractional0order differentegral equations that are applicable for 3D finite-strain analysis requires definitions for fractional derivatives and integrals for symmetric tensor fields, like stress and strain. We define these fields in the body manifold. We then map them ito spatial fields expressed in terms of an Eulerian or Lagrangian reference frame where most analysts prefer to solve boundary problems.
Leone, Frank A., Jr.
2015-01-01
A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.
Detection of ferromagnetic target based on mobile magnetic gradient tensor system
Energy Technology Data Exchange (ETDEWEB)
Gang, Y.I.N., E-mail: gang.gang88@163.com; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren
2016-03-15
Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source–sensor displacement vector. Secondly, unit source–sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source–sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source–sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source–sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method. - Highlights: • Ferromagnetic target detection method is proposed based on rotational invariants • Intermediate eigenvector is perpendicular to magnetic moment and displacement vector • Angle between magnetic moment and displacement vector is a rotational invariant • Magnetic moment and displacement vector are derived based on invariants of two points.
Torsion tensor and covector in a unified field theory
International Nuclear Information System (INIS)
Chernikov, N.A.
1976-01-01
The Einstein unified field theory is used to solve a tensor equation to provide the unambiguous definition of affine connectedness. In the process of solving the Einstein equation limitations imposed by symmetry on the tensor and the torsion covector as well as on affine connectedness are elucidated. It is demonstrated that in a symmetric case the connectedness is unambiguously determined by the Einstein equation. By means of the Riemann geometry a formula for the torsion covector is derived. The equivalence of Einstein equations to those of the nonlinear Born-Infeld electrodynamics is proved
Full Tensor Gradient of Simulated Gravity Data for Prospect Scale Delineation
Directory of Open Access Journals (Sweden)
Hendra Grandis
2014-07-01
Full Text Available Gravity gradiometry measurement allows imaging of anomalous sources in more detail than conventional gravity data. The availability of this new technique is limited to airborne gravity surveys using very specific instrumentation. In principle, the gravity gradients can be calculated from the vertical component of the gravity commonly measured in a ground-based gravity survey. We present a calculation of the full tensor gradient (FTG of the gravity employing the Fourier transformation. The calculation was applied to synthetic data associated with a simple block model and also with a more realistic model. The latter corresponds to a 3D model in which a thin coal layer is embedded in a sedimentary environment. Our results show the utility of the FTG of the gravity for prospect scale delineation.
Dilaton and second-rank tensor fields as supersymmetric compensators
International Nuclear Information System (INIS)
Nishino, Hitoshi; Rajpoot, Subhash
2007-01-01
We formulate a supersymmetric theory in which both a dilaton and a second-rank tensor play roles of compensators. The basic off-shell multiplets are a linear multiplet (B μν ,χ,φ) and a vector multiplet (A μ ,λ;C μνρ ), where φ and B μν are, respectively, a dilaton and a second-rank tensor. The third-rank tensor C μνρ in the vector multiplet is ''dual'' to the conventional D field with 0 on-shell or 1 off-shell degree of freedom. The dilaton φ is absorbed into one longitudinal component of A μ , making it massive. Initially, B μν has 1 on-shell or 3 off-shell degrees of freedom, but it is absorbed into the longitudinal components of C μνρ . Eventually, C μνρ with 0 on-shell or 1 off-shell degree of freedom acquires in total 1 on-shell or 4 off-shell degrees of freedom, turning into a propagating massive field. These basic multiplets are also coupled to chiral multiplets and a supersymmetric Dirac-Born-Infeld action. Some of these results are also reformulated in superspace. The proposed mechanism may well provide a solution to the long-standing puzzle of massless dilatons and second-rank tensors in supersymmetric models inspired by string theory
Multiscale analysis of the invariants of the velocity gradient tensor in isotropic turbulence
Danish, Mohammad; Meneveau, Charles
2018-04-01
Knowledge of local flow-topology, the patterns of streamlines around a moving fluid element as described by the velocity-gradient tensor, is useful for developing insights into turbulence processes, such as energy cascade, material element deformation, or scalar mixing. Much has been learned in the recent past about flow topology at the smallest (viscous) scales of turbulence. However, less is known at larger scales, for instance, at the inertial scales of turbulence. In this work, we present a detailed study on the scale dependence of various quantities of interest, such as the population fraction of different types of flow-topologies, the joint probability distribution of the second and third invariants of the velocity gradient tensor, and the geometrical alignment of vorticity with strain-rate eigenvectors. We perform the analysis on a simulation dataset of isotropic turbulence at Reλ=433 . While quantities appear close to scale invariant in the inertial range, we observe a "bump" in several quantities at length scales between the inertial and viscous ranges. For instance, the population fraction of unstable node-saddle-saddle flow topology shows an increase when reducing the scale from the inertial entering the viscous range. A similar bump is observed for the vorticity-strain-rate alignment. In order to document possible dynamical causes for the different trends in the viscous and inertial ranges, we examine the probability fluxes appearing in the Fokker-Plank equation governing the velocity gradient invariants. Specifically, we aim to understand whether the differences observed between the viscous and inertial range statistics are due to effects caused by pressure, subgrid-scale, or viscous stresses or various combinations of these terms. To decompose the flow into small and large scales, we mainly use a spectrally compact non-negative filter with good spatial localization properties (Eyink-Aluie filter). The analysis shows that when going from the inertial
Vertical gradients of sunspot magnetic fields
Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.
1983-01-01
The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.
Measurement of gradient magnetic field temporal characteristics
International Nuclear Information System (INIS)
Bartusek, K.; Jflek, B.
1994-01-01
We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters
General projective relativity and the vector-tensor gravitational field
International Nuclear Information System (INIS)
Arcidiacono, G.
1986-01-01
In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation
Energy momentum tensor in theories with scalar field
International Nuclear Information System (INIS)
Joglekar, S.D.
1992-01-01
The renormalization of energy momentum tensor in theories with scalar fields and two coupling constants is considered. The need for addition of an improvement term is shown. Two possible forms for the improvement term are: (i) One in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities), (ii) One in which the improvement coefficient is a finite quantity, i.e. finite function of the renormalized quantities are considered. Four possible model of such theories are (i) Scalar Q.E.D. (ii) Non-Abelian theory with scalars, (iii) Yukawa theory, (iv) A model with two scalars. In all these theories a negative conclusion is established: neither forms for the improvement terms lead to a finite energy momentum tensor. Physically this means that when interaction with external gravity is incorporated in such a model, additional experimental input in the form of root mean square mass radius must be given to specify the theory completely, and the flat space parameters are insufficient. (author). 12 refs
Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients
Sánchez, S. F.; Sánchez-Menguiano, L.
2017-07-01
We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.
A Review of Tensors and Tensor Signal Processing
Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.
Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.
Analytical gradients for tensor hyper-contracted MP2 and SOS-MP2 on graphical processing units
Song, Chenchen; Martínez, Todd J.
2017-10-01
Analytic energy gradients for tensor hyper-contraction (THC) are derived and implemented for second-order Møller-Plesset perturbation theory (MP2), with and without the scaled-opposite-spin (SOS)-MP2 approximation. By exploiting the THC factorization, the formal scaling of MP2 and SOS-MP2 gradient calculations with respect to system size is reduced to quartic and cubic, respectively. An efficient implementation has been developed that utilizes both graphics processing units and sparse tensor techniques exploiting spatial sparsity of the atomic orbitals. THC-MP2 has been applied to both geometry optimization and ab initio molecular dynamics (AIMD) simulations. The resulting energy conservation in micro-canonical AIMD demonstrates that the implementation provides accurate nuclear gradients with respect to the THC-MP2 potential energy surfaces.
Magnetic field of longitudinal gradient bend
Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas
2018-06-01
The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.
Non-Abelian tensor gauge fields and higher-spin extension of standard model
International Nuclear Information System (INIS)
Savvidy, G.
2006-01-01
We suggest an extension of the gauge principle which includes non-Abelian tensor gauge fields. The invariant Lagrangian is quadratic in the field strength tensors and describes interaction of charged tensor gauge bosons of arbitrary large integer spin 1,2,l. Non-Abelian tensor gauge fields can be viewed as a unique gauge field with values in the infinite-dimensional current algebra associated with compact Lie group. The full Lagrangian exhibits also enhanced local gauge invariance with double number of gauge parameters which allows to eliminate all negative norm states of the nonsymmetric second-rank tensor gauge field, which describes therefore two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ''axion'' The geometrical interpretation of the enhanced gauge symmetry with double number of gauge parameters is not yet known. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Hoefnagels, Friso W A; de Witt Hamer, Philip C; Pouwels, Petra J W; Barkhof, Frederik; Vandertop, W Peter
2017-09-01
To explore quantitatively and qualitatively how the number of gradient directions (NGD) and spatial resolution (SR) affect diffusion tensor imaging (DTI) tractography in patients planned for brain tumor surgery, using routine clinical magnetic resonance imaging protocols. Of 67 patients with intracerebral lesions who had 2 different DTI scans, 3 DTI series were reconstructed to compare the effects of NGD and SR. Tractographies for 4 clinically relevant tracts (corticospinal tract, superior longitudinal fasciculus, optic radiation, and inferior fronto-occipital fasciculus) were constructed with a probabilistic tracking algorithm and automated region of interest placement and compared for 3 quantitative measurements: tract volume, median fiber density, and mean fractional anisotropy, using linear mixed-effects models. The mean tractography volume and intersubject reliability were visually compared across scanning protocols, to assess the clinical relevance of the quantitative differences. Both NGD and SR significantly influenced tract volume, median fiber density, and mean fractional anisotropy, but not to the same extent. In particular, higher NGD increased tract volume and median fiber density. More importantly, these effects further increased when tracts were affected by disease. The effects were tract specific, but not dependent on threshold. The superior longitudinal fasciculus and inferior fronto-occipital fasciculus showed the most significant differences. Qualitative assessment showed larger tract volumes given a fixed confidence level, and better intersubject reliability for the higher NGD protocol. SR in the range we considered seemed less relevant than NGD. This study indicates that, under time constraints of clinical imaging, a higher number of diffusion gradients is more important than spatial resolution for superior DTI probabilistic tractography in patients undergoing brain tumor surgery. Copyright © 2017 Elsevier Inc. All rights reserved.
Erratum to Surface‐wave green’s tensors in the near field
Haney, Matthew M.; Hisashi Nakahara,
2016-01-01
Haney and Nakahara (2014) derived expressions for surface‐wave Green’s tensors that included near‐field behavior. Building on the result for a force source, Haney and Nakahara (2014) further derived expressions for a general point moment tensor source using the exact Green’s tensors. However, it has come to our attention that, although the Green’s tensors were correct, the resulting expressions for a general point moment tensor source were missing some terms. In this erratum, we provide updated expressions with these missing terms. The inclusion of the missing terms changes the example given in Haney and Nakahara (2014).
A Third-Rank Tensor Field Based on a U(1) Gauge Theory in Loop Space
Shinichi, DEGUCHI; Tadahito, NAKAJIMA; Department of Physics and Atomic Energy Research Institute College of Science and Technology; Department of Physics and Atomic Energy Research Institute College of Science and Technology
1995-01-01
We derive the Stueckelberg formalism extended to a third-rank tensor field from a U(1) gauge theory in loop space, the space of all loops in space-time. The third-rank tensor field is regarded as a constrained U(1) gauge field on the loop space.
Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields
van de Gronde, Jasper; Roerdink, Jos B. T. M.
2014-01-01
Rotation invariance is an important property for operators on tensor fields, but up to now, most methods for morphology on tensor fields had to either sacrifice rotation invariance, or do without the foundation of mathematical morphology: a lattice structure. Recently, we proposed a framework for
Kiehn, R. M.
1976-01-01
With respect to irreversible, non-homeomorphic maps, contravariant and covariant tensor fields have distinctly natural covariance and transformational behavior. For thermodynamic processes which are non-adiabatic, the fact that the process cannot be represented by a homeomorphic map emphasizes the logical arrow of time, an idea which encompasses a principle of retrodictive determinism for covariant tensor fields.
Gonçalves, J N; Correia, J G; Butz, T; Picozzi, S; Fenta, A S; Amaral, V S
2012-01-01
The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO$_{3}$, KNbO$_{3}$, PbTiO$_{3}$ and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their relation with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study the ferroelectric order when standard techniques to measure polarization are not easily applied.
Flavour fields in steady state: stress tensor and free energy
International Nuclear Information System (INIS)
Banerjee, Avik; Kundu, Arnab; Kundu, Sandipan
2016-01-01
The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane is embedded in AdS d+1 -background, for d=2,4, and is related to conformal anomaly. For the special case of d=2, the universal factor has a striking resemblance to the well-known heat current formula in (1+1)-dimensional conformal field theory in steady-state, which endows a plausible physical interpretation to it. Interestingly, we observe a vanishing conformal anomaly in d=6.
Gauge theories of Yang-Mills vector fields coupled to antisymmetric tensor fields
International Nuclear Information System (INIS)
Anco, Stephen C.
2003-01-01
A non-Abelian class of massless/massive nonlinear gauge theories of Yang-Mills vector potentials coupled to Freedman-Townsend antisymmetric tensor potentials is constructed in four space-time dimensions. These theories involve an extended Freedman-Townsend-type coupling between the vector and tensor fields, and a Chern-Simons mass term with the addition of a Higgs-type coupling of the tensor fields to the vector fields in the massive case. Geometrical, field theoretic, and algebraic aspects of the theories are discussed in detail. In particular, the geometrical structure mixes and unifies features of Yang-Mills theory and Freedman-Townsend theory formulated in terms of Lie algebra valued curvatures and connections associated to the fields and nonlinear field strengths. The theories arise from a general determination of all possible geometrical nonlinear deformations of linear Abelian gauge theory for one-form fields and two-form fields with an Abelian Chern-Simons mass term in four dimensions. For this type of deformation (with typical assumptions on the allowed form considered for terms in the gauge symmetries and field equations), an explicit classification of deformation terms at first-order is obtained, and uniqueness of deformation terms at all higher orders is proven. This leads to a uniqueness result for the non-Abelian class of theories constructed here
On the energy-momentum tensors for field theories in spaces with affine connection and metric
International Nuclear Information System (INIS)
Manoff, S.
1991-01-01
Generalized covariant Bianchi type identities are obtained and investigated for Lagrangian densities, depending on co- and contravariant tensor fields and their first and second covariant derivatives in spaces with affine connection and metric (L n -space). The notions of canonical, generalized canonical, symmetric and variational energy-momentum tensor are introduced and necessary and sufficient conditions for the existence of the symmetric energy-momentum tensor as a local conserved quantity are obtained. 19 refs.; 1 tab
Extended pure Yang-Mills gauge theories with scalar and tensor gauge fields
International Nuclear Information System (INIS)
Gabrielli, E.
1991-01-01
The usual abelian gauge theory is extended to an interacting Yang-Mills-like theory containing vector, scalar and tensor gauge fields. These gauge fields are seen as components along the Clifford algebra basis of a gauge vector-spinorial field. Scalar fields φ naturally coupled to vector and tensor fields have been found, leading to a natural φ 4 coupling in the lagrangian. The full expression of the lagrangian for the euclidean version of the theory is given. (orig.)
Anti-symmetric rank-two tensor matter field on superspace for NT=2
International Nuclear Information System (INIS)
Spalenza, Wesley; Ney, Wander G.; Helayel-Neto, J.A.
2004-01-01
In this work, we discuss the interaction between anti-symmetric rank-two tensor matter and topological Yang-Mills fields. The matter field considered here is the rank-2 Avdeev-Chizhov tensor matter field in a suitably extended N T =2 SUSY. We start off from the N T =2, D=4 superspace formulation and we go over to Riemannian manifolds. The matter field is coupled to the topological Yang-Mills field. We show that both actions are obtained as Q-exact forms, which allows us to express the energy-momentum tensor as Q-exact observables
Migration transformation of two-dimensional magnetic vector and tensor fields
DEFF Research Database (Denmark)
Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn
2012-01-01
We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...
Stress-energy tensors for vector fields outside a static black hole
International Nuclear Information System (INIS)
Barrios, F.A.; Vaz, C.
1989-01-01
We obtain new, approximate stress-energy tensors to describe gauge fields in the neighborhood of a Schwarzschild black hole. We assume that the coefficient of ∇ 2 R in the trace anomaly is correctly given by ζ-function regularization. Our approximation differs from that of Page and of Brown and Ottewill and relies upon a new, improved ansatz for the form of the stress-energy tensor in the ultrastatic optical metric of the black hole. The Israel-Hartle-Hawking thermal tensor is constructed to be regular on the horizon and possess the correct asymptotic behavior. Our approximation of Unruh's tensor is likewise constructed to be regular on the future horizon and exhibit a luminosity which agrees with Page's numerically obtained value. Geometric expressions for the approximate tensors are given, and the approximate energy density of the thermal tensor on the horizon is compared with recent numerical estimates
The Simon and Simon-Mars tensors for stationary Einstein-Maxwell fields
International Nuclear Information System (INIS)
Bini, Donato; Cherubini, Christian; Jantzen, Robert T; Miniutti, Giovanni
2004-01-01
Modulo conventional scale factors, the Simon and Simon-Mars tensors are defined for stationary vacuum spacetimes so that their equality follows from the Bianchi identities of the second kind. In the nonvacuum case one can absorb additional source terms into a redefinition of the Simon tensor so that this equality is maintained. Among the electrovacuum class of solutions of the Einstein-Maxwell equations, the expression for the Simon tensor in the Kerr-Newman-Taub-NUT spacetime in terms of the Ernst potential is formally the same as in the vacuum case (modulo a scale factor), and its vanishing guarantees the simultaneous alignment of the principal null directions of the Weyl tensor, the Papapetrou field associated with the timelike Killing vector field, the electromagnetic field of the spacetime and even the Killing-Yano tensor
Energy-momentum tensor of the gravitational field for material spheres
International Nuclear Information System (INIS)
Sokolov, S.N.
1990-01-01
Density of the energy-momentum tensor of a gravitational field which can be defined in the general relativity theory with the help of ideas of the relativistic gravitational theory is found for the case of material spheres. A relationship of this quantity with the Riemann tensor R αβγδ is discussed
Group field theory and tensor networks: towards a Ryu–Takayanagi formula in full quantum gravity
Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi
2018-06-01
We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the Rényi entropy of such states and recover the Ryu–Takayanagi formula, in two different cases corresponding to two different truncations/approximations, suggested by the established correspondence.
Energy-momentum tensor of intermediate vector bosons in an external electromagnetic field
International Nuclear Information System (INIS)
Mostepanenko, V.M.; Sokolov, I.Yu.
1988-01-01
Expressions are obtained for the canonical and metric energy-momentum tensors of the vector field of intermediate bosons in an external electromagnetic field. It is shown that in the case of a gyromagnetic ratio not equal to unity the energy-momentum tensor cannot be symmetrized on its indices, and an additional term proportional to the anomalous magnetic moment appears in the conservation laws. A modification of the canonical formalism for scalar and vector fields in an external field is proposed in accordance with which the Hamiltonian density is equal to the 00 component of the energy-momentum tensor. An expression for the energy-momentum tensor of a closed system containing a gauge field of intermediate bosons and an electromagnetic field is obtained
Tensor categories and the mathematics of rational and logarithmic conformal field theory
International Nuclear Information System (INIS)
Huang, Yi-Zhi; Lepowsky, James
2013-01-01
We review the construction of braided tensor categories and modular tensor categories from representations of vertex operator algebras, which correspond to chiral algebras in physics. The extensive and general theory underlying this construction also establishes the operator product expansion for intertwining operators, which correspond to chiral vertex operators, and more generally, it establishes the logarithmic operator product expansion for logarithmic intertwining operators. We review the main ideas in the construction of the tensor product bifunctors and the associativity isomorphisms. For rational and logarithmic conformal field theories, we review the precise results that yield braided tensor categories, and in the rational case, modular tensor categories as well. In the case of rational conformal field theory, we also briefly discuss the construction of the modular tensor categories for the Wess–Zumino–Novikov–Witten models and, especially, a recent discovery concerning the proof of the fundamental rigidity property of the modular tensor categories for this important special case. In the case of logarithmic conformal field theory, we mention suitable categories of modules for the triplet W-algebras as an example of the applications of our general construction of the braided tensor category structure. (review)
International Nuclear Information System (INIS)
Pumir, Alain; Naso, Aurore
2010-01-01
A proper description of the velocity gradient tensor is crucial for understanding the dynamics of turbulent flows, in particular the energy transfer from large to small scales. Insight into the statistical properties of the velocity gradient tensor and into its coarse-grained generalization can be obtained with the help of a stochastic 'tetrad model' that describes the coarse-grained velocity gradient tensor based on the evolution of four points. Although the solution of the stochastic model can be formally expressed in terms of path integrals, its numerical determination in terms of the Monte-Carlo method is very challenging, as very few configurations contribute effectively to the statistical weight. Here, we discuss a strategy that allows us to solve the tetrad model numerically. The algorithm is based on the importance sampling method, which consists here of identifying and sampling preferentially the configurations that are likely to correspond to a large statistical weight, and selectively rejecting configurations with a small statistical weight. The algorithm leads to an efficient numerical determination of the solutions of the model and allows us to determine their qualitative behavior as a function of scale. We find that the moments of order n≤4 of the solutions of the model scale with the coarse-graining scale and that the scaling exponents are very close to the predictions of the Kolmogorov theory. The model qualitatively reproduces quite well the statistics concerning the local structure of the flow. However, we find that the model generally tends to predict an excess of strain compared to vorticity. Thus, our results show that while some physical aspects are not fully captured by the model, our approach leads to a very good description of several important qualitative properties of real turbulent flows.
Dynamic pulsed-field-gradient NMR
Sørland, Geir Humborstad
2014-01-01
Dealing with the basics, theory and applications of dynamic pulsed-field-gradient NMR NMR (PFG NMR), this book describes the essential theory behind diffusion in heterogeneous media that can be combined with NMR measurements to extract important information of the system being investigated. This information could be the surface to volume ratio, droplet size distribution in emulsions, brine profiles, fat content in food stuff, permeability/connectivity in porous materials and medical applications currently being developed. Besides theory and applications it will provide the readers with background knowledge on the experimental set-ups, and most important, deal with the pitfalls that are numerously present in work with PFG-NMR. How to analyze the NMR data and some important basic knowledge on the hardware will be explained, too.
Fibre bundles associated with fields of geometric objects and a structure tensor
International Nuclear Information System (INIS)
Konderak, J.
1987-08-01
A construction of a k th structure tensor of a field of geometric objects is presented here (k is a non-negative integer). For a given field σ we construct a vector bundle H k,2 (σ). The k th structure tensor is defined as a section of H k,2 (σ) generated by the torsion of σ. It is then shown that vanishing of the k th structure tensor is a necessary and sufficient condition for the field to be (k + 1)-flat. (author). 16 refs
arXiv Tensor to scalar ratio from single field magnetogenesis
Giovannini, Massimo
2017-08-10
The tensor to scalar ratio is affected by the evolution of the large-scale gauge fields potentially amplified during an inflationary stage of expansion. After deriving the exact evolution equations for the scalar and tensor modes of the geometry in the presence of dynamical gauge fields, it is shown that the tensor to scalar ratio is bounded from below by the dominance of the adiabatic contribution and it cannot be smaller than one thousands whenever the magnetogenesis is driven by a single inflaton field.
Divergence theorem for symmetric (0,2)-tensor fields on a semi-Riemannian manifold with boundary
International Nuclear Information System (INIS)
Ezin, J.P.; Mouhamadou Hassirou; Tossa, J.
2005-08-01
We prove in this paper a divergence theorem for symmetric (0,2)-tensors on a semi-Riemannian manifold with boundary. As a consequence we establish the complete divergence theorem on a semi-Riemannian manifold with any kinds of smooth boundaries. This result contains the previous attempts to write this theorem on a semi-Riemannian manifold as Unal results. A vanishing theorem for gradient timelike Killing vector fields on Einstein semi-Riemannian manifolds is obtained. As a tool, an induced volume form is defined for a degenerate boundary by using a star like operator that we define on degenerate submanifolds. (author)
Zhang, Yi; Wu, Yulong; Yan, Jianguo; Wang, Haoran; Rodriguez, J. Alexis P.; Qiu, Yue
2018-04-01
In this paper, we propose an inverse method for full gravity gradient tensor data in the spherical coordinate system. As opposed to the traditional gravity inversion in the Cartesian coordinate system, our proposed method takes the curvature of the Earth, the Moon, or other planets into account, using tesseroid bodies to produce gravity gradient effects in forward modeling. We used both synthetic and observed datasets to test the stability and validity of the proposed method. Our results using synthetic gravity data show that our new method predicts the depth of the density anomalous body efficiently and accurately. Using observed gravity data for the Mare Smythii area on the moon, the density distribution of the crust in this area reveals its geological structure. These results validate the proposed method and potential application for large area data inversion of planetary geological structures.[Figure not available: see fulltext.
Curvature tensors and unified field equations on SEX/sub n/
International Nuclear Information System (INIS)
Chung, K.T.; Lee, I.L.
1988-01-01
We study the curvature tensors and field equations in the n-dimensional SE manifold SEX/sub n/. We obtain several basic properties of the vectors S/subλ/ and U/sub λ/ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEX/sub n/ an done of its particular solutions is constructed and displayed
New topological invariants for non-abelian antisymmetric tensor fields from extended BRS algebra
International Nuclear Information System (INIS)
Boukraa, S.; Maillet, J.M.; Nijhoff, F.
1988-09-01
Extended non-linear BRS and Gauge transformations containing Lie algebra cocycles, and acting on non-abelian antisymmetric tensor fields are constructed in the context of free differential algebras. New topological invariants are given in this framework. 6 refs
Tao, Shengzhen; Weavers, Paul T; Trzasko, Joshua D; Shu, Yunhong; Huston, John; Lee, Seung-Kyun; Frigo, Louis M; Bernstein, Matt A
2017-06-01
To develop a gradient pre-emphasis scheme that prospectively counteracts the effects of the first-order concomitant fields for any arbitrary gradient waveform played on asymmetric gradient systems, and to demonstrate the effectiveness of this approach using a real-time implementation on a compact gradient system. After reviewing the first-order concomitant fields that are present on asymmetric gradients, we developed a generalized gradient pre-emphasis model assuming arbitrary gradient waveforms to counteract their effects. A numerically straightforward, easily implemented approximate solution to this pre-emphasis problem was derived that was compatible with the current hardware infrastructure of conventional MRI scanners for eddy current compensation. The proposed method was implemented on the gradient driver subsystem, and its real-time use was tested using a series of phantom and in vivo data acquired from two-dimensional Cartesian phase-difference, echo-planar imaging, and spiral acquisitions. The phantom and in vivo results demonstrated that unless accounted for, first-order concomitant fields introduce considerable phase estimation error into the measured data and result in images with spatially dependent blurring/distortion. The resulting artifacts were effectively prevented using the proposed gradient pre-emphasis. We have developed an efficient and effective gradient pre-emphasis framework to counteract the effects of first-order concomitant fields of asymmetric gradient systems. Magn Reson Med 77:2250-2262, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Electron Gas Dynamic Conductivity Tensor on the Nanotube Surface in Magnetic Field
Directory of Open Access Journals (Sweden)
A. M. Ermolaev
2011-01-01
Full Text Available Kubo formula was derived for the electron gas conductivity tensor on the nanotube surface in longitudinal magnetic field considering spatial and time dispersion. Components of the degenerate and nondegenerate electron gas conductivity tensor were calculated. The study has showed that under high electron density, the conductivity undergoes oscillations of de Haas-van Alphen and Aharonov-Bohm types with the density of electrons and magnetic field changes.
Conservation laws and stress-energy-momentum tensors for systems with background fields
Energy Technology Data Exchange (ETDEWEB)
Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de [Institute for Theoretical Physics, University of Cologne, 50923 Koeln (Germany); Tucker, Robin W., E-mail: r.tucker@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)
2012-10-15
This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics in media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.
Evaluation of the Field Gradient Lattice Detector
AUTHOR|(CDS)2072983
A novel Micro Pattern Gas Detector, named the Field Gradient Lattice Detector, has been implemented using technologies available to CERN’s Printed Circuit Workshop. Numerous prototypes based on various materials were constructed in different geometries and their gain performance has been studied using 55Fe and 109Cd X-ray sources in Argon-CO2 gas mixtures. Two axis (2D) prototype structures have been shown to provide stable gains of around 1000 while a 3D design, based on the same polyimide foils used in other MPGD elements, holds a gain of 5000 for 8.9 keV X-rays even at high rates of 22 kHz/mm2. At a gain of 3100, the device has been tested up to 1 MHz/mm2 and shows no signs of degradation in performance. The energy resolution of the 3D-in-polyimide is modest, around 40% for 5.9 keV X-rays and 30% if the source is collimated indicating a variation in gain over the 3x3 cm2 active area. Having the most promise for future applications, the 3D-in-polyimide design has been selected for testing with a custom-bu...
Tolman temperature gradients in a gravitational field
Santiago, Jessica; Visser, Matt
2018-01-01
Tolman's relation for the temperature gradient in an equilibrium self-gravitating general relativistic fluid is broadly accepted within the general relativity community. However, the concept of temperature gradients in thermal equilibrium continues to cause confusion in other branches of physics, since it contradicts naive versions of the laws of classical thermodynamics. In this paper we discuss the crucial role of the universality of free fall, and how thermodynamics emphasises the great di...
Stability of Gradient Field Corrections for Quantitative Diffusion MRI
Rogers, Baxter P.; Blaber, Justin; Welch, E. Brian; Ding, Zhaohua; Anderson, Adam W.; Landman, Bennett A.
2017-01-01
In magnetic resonance diffusion imaging, gradient nonlinearity causes significant bias in the estimation of quantitative diffusion parameters such as diffusivity, anisotropy, and diffusion direction in areas away from the magnet isocenter. This bias can be substantially reduced if the scanner- and coil-specific gradient field nonlinearities are known. Using a set of field map calibration scans on a large (29 cm diameter) phantom combined with a solid harmonic approximation of the gradient fie...
Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory
International Nuclear Information System (INIS)
Pons, Josep M.
2011-01-01
In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.
International Nuclear Information System (INIS)
Effenberger, F.; Fichtner, H.; Scherer, K.; Barra, S.; Kleimann, J.; Strauss, R. D.
2012-01-01
The spatial diffusion of cosmic rays in turbulent magnetic fields can, in the most general case, be fully anisotropic, i.e., one has to distinguish three diffusion axes in a local, field-aligned frame. We reexamine the transformation for the diffusion tensor from this local to a global frame, in which the Parker transport equation for energetic particles is usually formulated and solved. Particularly, we generalize the transformation formulae to allow for an explicit choice of two principal local perpendicular diffusion axes. This generalization includes the 'traditional' diffusion tensor in the special case of isotropic perpendicular diffusion. For the local frame, we describe the motivation for the choice of the Frenet-Serret trihedron, which is related to the intrinsic magnetic field geometry. We directly compare the old and the new tensor elements for two heliospheric magnetic field configurations, namely the hybrid Fisk and Parker fields. Subsequently, we examine the significance of the different formulations for the diffusion tensor in a standard three-dimensional model for the modulation of galactic protons. For this, we utilize a numerical code to evaluate a system of stochastic differential equations equivalent to the Parker transport equation and present the resulting modulated spectra. The computed differential fluxes based on the new tensor formulation deviate from those obtained with the 'traditional' one (only valid for isotropic perpendicular diffusion) by up to 60% for energies below a few hundred MeV depending on heliocentric distance.
Electric field gradients in Hg compounds
DEFF Research Database (Denmark)
Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.
2012-01-01
&H functional performs best at both 4-component and ZORA levels. We furthermore observe that changes in the largest component of the diagonalised EFG tensor, Vzz, of linear HgCl2 show a slightly stronger dependence than the r-3 scaling upon bond length r(Hg-Cl) alterations. The 4-component/BH&H Vzz value of -9.......26 a.u. for a bent HgCl2 (¿ Cl-Hg-Cl = 120¿) is close to -9.60 a.u. obtained for the linear HgCl2 structure. Thus a point charge model for EFG calculations completely fails in this case. By means of a projection analysis of molecular orbital (MO) contributions to Vzz in terms of the atomic constituents...
International Nuclear Information System (INIS)
Barut, A.O.; Cruz, M.G.
1992-08-01
We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs
Study of the tensor correlation in oxygen isotopes using mean-field-type and shell model methods
International Nuclear Information System (INIS)
Sugimoto, Satoru
2007-01-01
The tensor force plays important roles in nuclear structure. Recently, we have developed a mean-field-type model which can treat the two-particle-two-hole correlation induced by the tensor force. We applied the model to sub-closed-shell oxygen isotopes and found that an sizable attractive energy comes from the tensor force. We also studied the tensor correlation in 16O using a shell model including two-particle-two-hole configurations. In this case, quite a large attractive energy is obtained for the correlation energy from the tensor force
Modified weak energy condition for the energy momentum tensor in quantum field theory
International Nuclear Information System (INIS)
Latorre, J.
1998-01-01
The weak energy condition is known to fail in general when applied to expectation values of the energy momentum tensor in flat space quantum field theory. It is shown how the usual counter arguments against its validity are no longer applicable if the states vertical stroke ψ right angle for which the expectation value is considered are restricted to a suitably defined subspace. A possible natural restriction on vertical stroke ψ right angle is suggested and illustrated by two quantum mechanical examples based on a simple perturbed harmonic oscillator Hamiltonian. The proposed alternative quantum weak energy condition is applied to states formed by the action of the scalar, vector and the energy momentum tensor operators on the vacuum. We assume conformal invariance in order to determine almost uniquely three-point functions involving the energy momentum tensor in terms of a few parameters. The positivity conditions lead to non-trivial inequalities for these parameters. They are satisfied in free field theories, except in one case for dimensions close to two. Further restrictions on vertical stroke ψ right angle are suggested which remove this problem. The inequalities which follow from considering the state formed by applying the energy momentum tensor to the vacuum are shown to imply that the coefficient of the topological term in the expectation value of the trace of the energy momentum tensor in an arbitrary curved space background is positive, in accord with calculations in free field theories. (orig.)
Hamiltonian quantization of self-dual tensor fields and a bosonic Nielsen-Ninomiya theorem
International Nuclear Information System (INIS)
Tang Waikeung
1989-01-01
The quantization of self-dual tensor fields is carried out following the procedure of Batalin and Fradkin. The (anti) self-duality constraints (either fermionic or bosonic) in the action leads to the gravitational anomaly. In the process of gauge fixing, the impossibility of the co-existence of a positive hamiltonian and covariant action is shown. A version of the Nielsen-Ninomiya theorem applies to self-dual tensor fields viz. the lattice version of the theory shows species doubling with zero net chirality. (orig.)
Ding, Zi'ang
2016-01-01
Both vector and tensor fields are important mathematical tools used to describe the physics of many phenomena in science and engineering. Effective vector and tensor field visualization techniques are therefore needed to interpret and analyze the corresponding data and achieve new insight into the considered problem. This dissertation is concerned with the extraction of important structural properties from vector and tensor datasets. Specifically, we present a unified approach for the charact...
Energy-momentum tensor for a Casimir apparatus in a weak gravitational field
International Nuclear Information System (INIS)
Bimonte, Giuseppe; Calloni, Enrico; Esposito, Giampiero; Rosa, Luigi
2006-01-01
The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane-parallel conducting plates is derived. We use Fermi coordinates and work to first order in the constant acceleration parameter. A perturbative expansion, to this order, of the Green functions involved and of the energy-momentum tensor is derived by means of the covariant geodesic point-splitting procedure. In correspondence to the Green functions satisfying mixed and gauge-invariant boundary conditions, and Ward identities, the energy-momentum tensor is covariantly conserved and satisfies the expected relation between gauge-breaking and ghost parts, while a new simple formula for the trace anomaly is obtained to first order in the constant acceleration. A more systematic derivation is therefore obtained of the theoretical prediction according to which the Casimir device in a weak gravitational field will experience a tiny push in the upwards direction
Global correlation imaging of magnetic total field gradients
International Nuclear Information System (INIS)
Guo, Lianghui; Meng, Xiaohong; Shi, Lei
2012-01-01
Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)
International Nuclear Information System (INIS)
Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin; Yu, Tong Gang
2015-01-01
To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.
Energy Technology Data Exchange (ETDEWEB)
Yao, Xu Fang; Liang, Bie Bei; Xia, Tian; Huang, Qin Ming; Zhuang, Song Lin [School of Optical-Electrical and Computer Engineering, Shanghai Medical Instrument College, University of Shanghai for Science and Technology, Shanghai (China); Yu, Tong Gang [Dept. of Radiology, Huashan Hospital, Fudan University, Shanghai (China)
2015-04-15
To assess the effects of varying the number of diffusion gradient directions (NDGDs) on diffusion tensor fiber tracking (FT) in human brain white matter using tract characteristics. Twelve normal volunteers underwent diffusion tensor imaging (DTI) scanning with NDGDs of 6, 11, 15, 21, and 31 orientations. Three fiber tract groups, including the splenium of the corpus callosum (CC), the entire CC, and the full brain tract, were reconstructed by deterministic DTI-FT. Tract architecture was first qualitatively evaluated by visual observation. Six quantitative tract characteristics, including the number of fibers (NF), average length (AL), fractional anisotropy (FA), relative anisotropy (RA), mean diffusivity (MD), and volume ratio (VR) were measured for the splenium of the CC at the tract branch level, for the entire CC at tract level, and for the full brain tract at the whole brain level. Visual results and those of NF, AL, FA, RA, MD, and VR were compared among the five different NDGDs. The DTI-FT with NDGD of 11, 15, 21, and 31 orientations gave better tracking results compared with NDGD of 6 after the visual evaluation. NF, FA, RA, MD, and VR values with NDGD of six were significantly greater (smallest p = 0.001 to largest p = 0.042) than those with four other NDGDs (11, 15, 21, or 31 orientations), whereas AL measured with NDGD of six was significantly smaller (smallest p = 0.001 to largest p = 0.041) than with four other NDGDs (11, 15, 21, or 31 orientations). No significant differences were observed in the results among the four NDGD groups of 11, 15, 21, and 31 directions (smallest p = 0.059 to largest p = 1.000). The main fiber tracts were detected with NDGD of six orientations; however, the use of larger NDGD (> or = 11 orientations) could provide improved tract characteristics at the expense of longer scanning time.
ion in crossed gradient electric and magnetic fields
Indian Academy of Sciences (India)
Photodetachment cross-section for variousexternal fields and the laser polarization are calculated and displayed. A comparison with the photodetachment cross-section in crossed uniform electric and magnetic fields or in a single gradient electric field has been made.The agreement of our results with the above two special ...
Bergan, Andrew C.; Leone, Frank A., Jr.
2016-01-01
A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.
Anti-symmetric rank-two tensor matter field on superspace for N{sub T}=2
Energy Technology Data Exchange (ETDEWEB)
Spalenza, Wesley; Ney, Wander G; Helayel-Neto, J A
2004-05-06
In this work, we discuss the interaction between anti-symmetric rank-two tensor matter and topological Yang-Mills fields. The matter field considered here is the rank-2 Avdeev-Chizhov tensor matter field in a suitably extended N{sub T}=2 SUSY. We start off from the N{sub T}=2, D=4 superspace formulation and we go over to Riemannian manifolds. The matter field is coupled to the topological Yang-Mills field. We show that both actions are obtained as Q-exact forms, which allows us to express the energy-momentum tensor as Q-exact observables.
Large tensor mode, field range bound and consistency in generalized G-inflation
International Nuclear Information System (INIS)
Kunimitsu, Taro; Suyama, Teruaki; Watanabe, Yuki; Yokoyama, Jun'ichi
2015-01-01
We systematically show that in potential driven generalized G-inflation models, quantum corrections coming from new physics at the strong coupling scale can be avoided, while producing observable tensor modes. The effective action can be approximated by the tree level action, and as a result, these models are internally consistent, despite the fact that we introduced new mass scales below the energy scale of inflation. Although observable tensor modes are produced with sub-strong coupling scale field excursions, this is not an evasion of the Lyth bound, since the models include higher-derivative non-canonical kinetic terms, and effective rescaling of the field would result in super-Planckian field excursions. We argue that the enhanced kinetic term of the inflaton screens the interactions with other fields, keeping the system weakly coupled during inflation
Large tensor mode, field range bound and consistency in generalized G-inflation
Energy Technology Data Exchange (ETDEWEB)
Kunimitsu, Taro; Suyama, Teruaki; Watanabe, Yuki; Yokoyama, Jun' ichi, E-mail: kunimitsu@resceu.s.u-tokyo.ac.jp, E-mail: suyama@resceu.s.u-tokyo.ac.jp, E-mail: watanabe@resceu.s.u-tokyo.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp [Research Center for the Early Universe, Graduate School of Science, The University of Tokyo, Tokyo 113-0033 (Japan)
2015-08-01
We systematically show that in potential driven generalized G-inflation models, quantum corrections coming from new physics at the strong coupling scale can be avoided, while producing observable tensor modes. The effective action can be approximated by the tree level action, and as a result, these models are internally consistent, despite the fact that we introduced new mass scales below the energy scale of inflation. Although observable tensor modes are produced with sub-strong coupling scale field excursions, this is not an evasion of the Lyth bound, since the models include higher-derivative non-canonical kinetic terms, and effective rescaling of the field would result in super-Planckian field excursions. We argue that the enhanced kinetic term of the inflaton screens the interactions with other fields, keeping the system weakly coupled during inflation.
Gradients of electric fields and effective charges in alkali metal permanganates on NMR data
International Nuclear Information System (INIS)
Tarasov, V.P.; Kirakosyan, G.A.; Meladze, M.A.; German, K.Eh.
1993-01-01
Pulse method of 55 Mn, 39 K, 87 Rb, 133 Cs NMR in 7.04 T field was used to study polycrystal permanganates of alkali metals KMnO 4 , RbMnO 4 , CsMnO 4 in 100-440 K range. Qaudrupole bond constants, parameters of tensor asymmetry of electric field gradient (EFG) and isotropic values of chemical shifts were determined in result of analysis of resonance line shape. Cation positions in RbMnO 4 and CsMnO 4 are characterized by two nonequivalent states with 1:1 occupation. Effective charges on oxygen and manganese atoms were calculated in the framework of point charge model, using structural data and experimental EFG values on cation nuclei
Larmor labeling by time-gradient magnetic fields
International Nuclear Information System (INIS)
Ioffe, Alexander; Bodnarchuk, Victor; Bussmann, Klaus; Mueller, Robert
2007-01-01
The Larmor labeling of neutrons, due to the Larmor precession of neutron spin in a magnetic field, opens the unique possibility for the development of neutron spin-echo (NSE) based on neutron scattering techniques, featuring an extremely high energy (momentum) resolution. Here, we present the experimental proof of a new method of the Larmor labeling using time-gradient magnetic fields
A note on tensor fields in Hilbert spaces
Directory of Open Access Journals (Sweden)
LEONARDO BILIOTTI
2002-06-01
Full Text Available We discuss and extend to infinite dimensional Hilbert spaces a well-known tensoriality criterion for linear endomorphisms of the space of smooth vector fields in n.Discutimos e estendemos para espaços de Hilbert um critério de tensorialidade para endomorfismos do espaço dos campos vetoriais em Rpot(n.
International Nuclear Information System (INIS)
Beleggia, M.; Graef, M. de
2003-01-01
A method is presented to compute the demagnetization tensor field for uniformly magnetized particles of arbitrary shape. By means of a Fourier space approach it is possible to compute analytically the Fourier representation of the demagnetization tensor field for a given shape. Then, specifying the direction of the uniform magnetization, the demagnetizing field and the magnetostatic energy associated with the particle can be evaluated. In some particular cases, the real space representation is computable analytically. In general, a numerical inverse fast Fourier transform is required to perform the inversion. As an example, the demagnetization tensor field for the tetrahedron will be given
On scalar and vector fields coupled to the energy-momentum tensor
Jiménez, Jose Beltrán; Cembranos, Jose A. R.; Sánchez Velázquez, Jose M.
2018-05-01
We consider theories for scalar and vector fields coupled to the energy-momentum tensor. Since these fields also carry a non-trivial energy-momentum tensor, the coupling prescription generates self-interactions. In analogy with gravity theories, we build the action by means of an iterative process that leads to an infinite series, which can be resumed as the solution of a set of differential equations. We show that, in some particular cases, the equations become algebraic and that is also possible to find solutions in the form of polynomials. We briefly review the case of the scalar field that has already been studied in the literature and extend the analysis to the case of derivative (disformal) couplings. We then explore theories with vector fields, distinguishing between gauge-and non-gauge-invariant couplings. Interactions with matter are also considered, taking a scalar field as a proxy for the matter sector. We also discuss the ambiguity introduced by superpotential (boundary) terms in the definition of the energy-momentum tensor and use them to show that it is also possible to generate Galileon-like interactions with this procedure. We finally use collider and astrophysical observations to set constraints on the dimensionful coupling which characterises the phenomenology of these models.
International Nuclear Information System (INIS)
Vigdorchik, N.E.
1978-01-01
The voltage tensor expression is obtained for plasma placed in a HF electromagnetic and constant electric fields. The kinetic equations with allowance for collisions are initial. Weakly ionized and completely ionized plasmas are considered. The voltage tensor for completely ionized plasma differs essentially from that for transparent media
Electric field gradient in FeTiO3 by nuclear magnetic resonance and ab initio calculations.
Procházka, V; Stěpánková, H; Chlan, V; Tuček, J; Cuda, J; Kouřil, K; Filip, J; Zbořil, R
2011-05-25
Temperature dependence of nuclear magnetic resonance (NMR) spectra of (47)Ti and (49)Ti in polycrystalline ilmenite FeTiO(3) was measured in the range from 5 to 300 K under an external magnetic field of 9.401 T. NMR spectra collected between 300 and 77 K exhibit a resolved quadrupole splitting. The electric field gradient (EFG) tensor was evaluated for Ti nuclei and the ratio of (47)Ti and (49)Ti nuclear quadrupole moments was refined during the fitting procedure. Below 77 K, the fine structure of quadrupole splitting disappears due to the enormous increase of anisotropy. As a counterpart, ab initio calculations were performed using full potential augmented plane waves + local orbitals. The calculated EFG tensors for Ti and Fe were compared to the experimental ones evaluated from NMR and the Mössbauer spectroscopy experiments.
Stern-Gerlach effect without magnetic-field gradient
International Nuclear Information System (INIS)
Zimmer, O.; Felber, J.; Schaerpf, O.
2001-01-01
The Stern-Gerlach effect is the well-known spin-dependent splitting of a neutral particle beam by a magnetic-field gradient. Guided by the pseudomagnetic analogy, we performed a similar experiment where no magnetic-field gradient is involved. The effect is due to the spin-dependence of neutron scattering from polarised nuclei, i.e. caused by the strong interaction between neutrons and nuclei. The beam splitting is proportional to the nuclear polarisation and to the spin-dependent part of the neutron scattering length. Thus it can be used to measure one of both quantities. (orig.)
Gaussian mixtures on tensor fields for segmentation: applications to medical imaging.
de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos
2011-01-01
In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results. Copyright © 2010 Elsevier Ltd. All rights reserved.
A pseudospectral matrix method for time-dependent tensor fields on a spherical shell
International Nuclear Information System (INIS)
Brügmann, Bernd
2013-01-01
We construct a pseudospectral method for the solution of time-dependent, non-linear partial differential equations on a three-dimensional spherical shell. The problem we address is the treatment of tensor fields on the sphere. As a test case we consider the evolution of a single black hole in numerical general relativity. A natural strategy would be the expansion in tensor spherical harmonics in spherical coordinates. Instead, we consider the simpler and potentially more efficient possibility of a double Fourier expansion on the sphere for tensors in Cartesian coordinates. As usual for the double Fourier method, we employ a filter to address time-step limitations and certain stability issues. We find that a tensor filter based on spin-weighted spherical harmonics is successful, while two simplified, non-spin-weighted filters do not lead to stable evolutions. The derivatives and the filter are implemented by matrix multiplication for efficiency. A key technical point is the construction of a matrix multiplication method for the spin-weighted spherical harmonic filter. As example for the efficient parallelization of the double Fourier, spin-weighted filter method we discuss an implementation on a GPU, which achieves a speed-up of up to a factor of 20 compared to a single core CPU implementation
Notes on Translational and Rotational Properties of Tensor Fields in Relativistic Quantum Mechanics
Dvoeglazov, V. V.
Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Furthermore, several authors recently claimed existence of the helicity=0 fundamental field. We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for this venture is the old papers of Ogievetskiĭ and Polubarinov, Hayashi, and Kalb and Ramond. Ogievetskiĭ and Polubarinov proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. It appears to be possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Next, we proceed to derive equations for the symmetric tensor of the second rank on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor of the fourth rank is used. Due to serious problems with the interpretation of the results obtained on using the standard procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent with the general relativity. Thus, in fact we deduced the gravitational field equations from relativistic quantum mechanics. The relations of this theory with the scalar-tensor theories of gravitation and f(R) are discussed. Particular attention has been paid to the correct definitions of the energy-momentum tensor and other Nöther currents in the electromagnetic theory, the relativistic theory of gravitation, the general relativity, and their generalizations. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph, and we conclude that they can probably be seen in experiments in the next few years.
Diffusion with finite-helicity field tensor: A mechanism of generating heterogeneity
Sato, N.; Yoshida, Z.
2018-02-01
Topological constraints on a dynamical system often manifest themselves as breaking of the Hamiltonian structure; well-known examples are nonholonomic constraints on Lagrangian mechanics. The statistical mechanics under such topological constraints is the subject of this study. Conventional arguments based on phase spaces, Jacobi identity, invariant measure, or the H theorem are no longer applicable since all these notions stem from the symplectic geometry underlying canonical Hamiltonian systems. Remembering that Hamiltonian systems are endowed with field tensors (canonical 2-forms) that have zero helicity, our mission is to extend the scope toward the class of systems governed by finite-helicity field tensors. Here, we introduce a class of field tensors that are characterized by Beltrami vectors. We prove an H theorem for this Beltrami class. The most general class of energy-conserving systems are non-Beltrami, for which we identify the "field charge" that prevents the entropy to maximize, resulting in creation of heterogeneous distributions. The essence of the theory can be delineated by classifying three-dimensional dynamics. We then generalize to arbitrary (finite) dimensions.
The total energy-momentum tensor for electromagnetic fields in a dielectric
Crenshaw, Michael E.
2017-08-01
Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density
2PI effective action for the SYK model and tensor field theories
Benedetti, Dario; Gurau, Razvan
2018-05-01
We discuss the two-particle irreducible (2PI) effective action for the SYK model and for tensor field theories. For the SYK model the 2PI effective action reproduces the bilocal reformulation of the model without using replicas. In general tensor field theories the 2PI formalism is the only way to obtain a bilocal reformulation of the theory, and as such is a precious instrument for the identification of soft modes and for possible holographic interpretations. We compute the 2PI action for several models, and push it up to fourth order in the 1 /N expansion for the model proposed by Witten in [1], uncovering a one-loop structure in terms of an auxiliary bilocal action.
From the Berlin "Entwurf" Field Equations to the Einstein Tensor III: March 1916
Weinstein, Galina
2012-01-01
I discuss Albert Einstein's 1916 General Theory of Relativity. I show that in Einstein's 1916 review paper, "the Foundation of the General Theory of Relativity", he derived his November 25, 1915 field equations with an additional term on the right hand side involving the trace of the energy-momentum tensor (he posed the condition square root -g=1) using the equations he presented on November 4, 1915. Series of papers: Final paper.
Electric-field gradients at Ta donor impurities in Cr2O3(Ta) semiconductor
International Nuclear Information System (INIS)
Darriba, G.N.; Errico, L.A.; Munoz, E.L; Richard, D.; Eversheim, P.D.; Renteria, M.
2009-01-01
We report perturbed-angular-correlation (PAC) experiments on 181 Hf(→ 181 Ta)-implanted corundum Cr 2 O 3 powder samples in order to determine the magnitude and symmetry of the electric-field gradient (EFG) tensor at Ta donor impurity sites of this semiconductor. These results are analyzed in the framework of ab initio full-potential augmented-plane wave plus local orbitals (FP-APW+lo) calculations. The results are also compared with EFG results coming from PAC experiments in isomorphous α-Al 2 O 3 and α-Fe 2 O 3 doped with 111 In→ 111 Cd and 181 Hf→ 181 Ta tracers. This combined analysis enables us to quantify the magnitude of the lattice relaxations induced by the presence of the impurity and to determine the charge state of the impurity donor level introduced by Ta in the band gap of the semiconductor.
Magnetic field gradients and their uses in the study of the earth's magnetic field
Harrison, C. G. A.; Southam, J. R.
1991-01-01
Magnetic field gradients are discussed from the standpoint of their usefulness in modeling crustal magnetizations. The fact that gradients enhance shorter wavelength features helps reduce both the core signal and the signal from external fields in comparison with the crustal signal. If the gradient device can be oriented, then directions of lineation can be determined from single profiles, and anomalies caused by unlineated sources can be identified.
Incompressible Steady Flow with Tensor Conductivity Leaving a Transverse Magnetic Field
International Nuclear Information System (INIS)
Witalis, E.A.
1965-12-01
The straight channel flow of an inviscid, incompressible fluid with tensor conductivity is considered when the flow leaves a region of constant transverse magnetic field. The channel walls are taken to be insulating, and an eddy current system arises. This is investigated by the method of magnetic field analysis as given by Witalis. The spatial distribution of magnetic field and ohmic power loss, both parallel and transverse to the flow, are given as functions of the Hall parameter with consideration also to the magnetic Reynolds number of the fluid. MHD power generator aspects of this problem and the results are discussed
Incompressible Steady Flow with Tensor Conductivity Leaving a Transverse Magnetic Field
Energy Technology Data Exchange (ETDEWEB)
Witalis, E A
1965-12-15
The straight channel flow of an inviscid, incompressible fluid with tensor conductivity is considered when the flow leaves a region of constant transverse magnetic field. The channel walls are taken to be insulating, and an eddy current system arises. This is investigated by the method of magnetic field analysis as given by Witalis. The spatial distribution of magnetic field and ohmic power loss, both parallel and transverse to the flow, are given as functions of the Hall parameter with consideration also to the magnetic Reynolds number of the fluid. MHD power generator aspects of this problem and the results are discussed.
Control of colloids with gravity, temperature gradients, and electric fields
Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M
2003-01-01
We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.
Control of colloids with gravity, temperature gradients, and electric fields
Energy Technology Data Exchange (ETDEWEB)
Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)
2003-01-15
We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.
Directory of Open Access Journals (Sweden)
Richard Lewerissa
2017-12-01
Full Text Available In early 2017, the geothermal system in the Suli and Tulehu areas of Ambon (Indonesia was investigated using a gravity gradient tensor and analytic signal. The gravity gradient tensor and analytic signal were obtained through forward modeling based on a rectangular prism. It was applied to complete Bouguer anomaly data over the study area by using Fast Fourier Transform (FFT. The analysis was conducted to enhance the geological structure like faults as a pathway of geothermal fluid circulation that is not visible on the surface because it is covered by sediment. The complete Bouguer anomaly ranges of 93 mGal up to 105 mGal decrease from the southwest in Suli to the northeast in Tulehu. A high gravity anomaly indicates a strong magmatic intrusion below the Suli region. The gravity anomalies decrease occurs in the Eriwakang mountain and most of Tulehu, and it is associated with a coral limestone. The lower gravity anomalies are located in the north to the northeast part of Tulehu are associated with alluvium. The residual anomaly shows that the drill well TLU-01 and geothermal manifestations along with the Banda, and Banda-Hatuasa faults are associated with lowest gravity anomaly (negative zone. The gravity gradient tensor simulation and an analytic signal of Suli and Tulehu give more detailed information about the geological features. The gzz component allows accurate description of the shape structures, especially the Banda fault associated with a zero value. This result will be useful as a geophysical constraint to subsurface modeling according to gravity gradient inversion over the area.
Energy momentum tensor and marginal deformations in open string field theory
International Nuclear Information System (INIS)
Sen, Ashoke
2004-01-01
Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)
International Nuclear Information System (INIS)
Stachel, J.
1977-01-01
A first-order Lagrangian is given, from which follow the definitions of the fully covariant form of the Riemann tensor Rsub(μνkappalambda) in terms of the affine connection and metric; the definition of the affine connection in terms of the metric; the Einstein field equations; and the definition of a set of gravitational 'superpotentials' closely connected with the Komar conservation laws (Phys. Rev.; 113:934 (1959)). Substitution of the definition of the affine connection into this Lagrangian results in a second-order Lagrangian, from which follow the definition of the fully covariant Riemann tensor in terms of the metric, the Einstein equations, and the definition of the gravitational 'superpotentials'. (author)
Wu, Bofeng; Huang, Chao-Guang
2018-04-01
The 1 /r expansion in the distance to the source is applied to the linearized f (R ) gravity, and its multipole expansion in the radiation field with irreducible Cartesian tensors is presented. Then, the energy, momentum, and angular momentum in the gravitational waves are provided for linearized f (R ) gravity. All of these results have two parts, which are associated with the tensor part and the scalar part in the multipole expansion of linearized f (R ) gravity, respectively. The former is the same as that in General Relativity, and the latter, as the correction to the result in General Relativity, is caused by the massive scalar degree of freedom and plays an important role in distinguishing General Relativity and f (R ) gravity.
Vacuum stress tensor of a scalar field in a rectangular waveguide
International Nuclear Information System (INIS)
Rodrigues, R.B.; Svaiter, N.F.; Paola, R.D.M. de
2001-11-01
Using the heat Kernel method and the analytical continuation of the zeta function, we calculate the canonical and improved vacuum stress tensors, {T μν (vector x)} and {Θ μν (vector x)}, associated with a massless scalar field confined in the interior of an infinity long rectangular waveguide. The local depence of the renormalized energy for two special configurations when the total energy is positive and negative are presented using {T 00 (vector x)} and {Θ 00 (vector x)}. From the stress tensors we obtain the local casimir forces in all walls by introducing a particular external configuration. It is hown that this external configuration cannot give account of the edge divergences of the local forces. The local form of the forces is obtained for three special configurations. (author)
Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields
Energy Technology Data Exchange (ETDEWEB)
Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 North Charter Street, Madison, WI 53706-1507 (United States)
2017-06-10
On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.
Synchrotron Intensity Gradients as Tracers of Interstellar Magnetic Fields
International Nuclear Information System (INIS)
Lazarian, A.; Yuen, Ka Ho; Lee, Hyeseung; Cho, J.
2017-01-01
On the basis of the modern understanding of MHD turbulence, we propose a new way of using synchrotron radiation: using synchrotron intensity gradients (SIGs) for tracing astrophysical magnetic fields. We successfully test the new technique using synthetic data obtained with 3D MHD simulations and provide the demonstration of the practical utility of the technique by comparing the directions of magnetic fields that are obtained with PLANCK synchrotron intensity data to the directions obtained with PLANCK synchrotron polarization data. We demonstrate that the SIGs can reliably trace magnetic fields in the presence of noise and can provide detailed maps of magnetic field directions. We also show that the SIGs are relatively robust for tracing magnetic fields while the low spatial frequencies of the synchrotron image are removed. This makes the SIGs applicable to the tracing of magnetic fields using interferometric data with single-dish measurement absent. We discuss the synergy of using the SIGs together with synchrotron polarization in order to find the actual direction of the magnetic fields and quantify the effects of Faraday rotation as well as with other ways of studying astrophysical magnetic fields. We test our method in the presence of noise and the resolution effects. We stress the complementary nature of the studies using the SIG technique and those employing the recently introduced velocity gradient techniques that trace magnetic fields using spectroscopic data.
Quantum fields interacting with colliding plane waves: the stress-energy tensor and backreaction
International Nuclear Information System (INIS)
Dorca, M.; Verdaguer, E.
1997-01-01
Following a previous work on the quantization of a massless scalar field in a space-time representing the head on collision of two plane waves which focus into a Killing-Cauchy horizon, we compute the renormalized expectation value of the stress-energy tensor of the quantum field near that horizon in the physical state which corresponds to the Minkowski vacuum before the collision of the waves. It is found that for minimally coupled and conformally coupled scalar fields the respective stress-energy tensors are unbounded in the horizon. The specific form of the divergences suggests that when the semiclassical Einstein equations describing the backreaction of the quantum fields on the space-time geometry are taken into account, the horizon will acquire a curvature singularity. Thus the Killing-Cauchy horizon which is known to be unstable under ''generic'' classical perturbations is also unstable by vacuum polarization. The calculation is done following the point-splitting regularization technique. The dynamical colliding wave space-time has four quite distinct space-time regions, namely, one flat region, two single plane wave regions, and one interaction region. Exact mode solutions of the quantum field equation cannot be found exactly, but the blueshift suffered by the initial modes in the plane wave and interaction regions makes the use of the WKB expansion a suitable method of solution. To ensure the correct regularization of the stress-energy tensor, the initial flat modes propagated into the interaction region must be given to a rather high adiabatic order of approximation. (orig.)
TensorLy: Tensor Learning in Python
Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja
2016-01-01
Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning.
Temperature dependency of silicon structures for magnetic field gradient sensing
Dabsch, Alexander; Rosenberg, Christoph; Stifter, Michael; Keplinger, Franz
2018-02-01
This work describes the temperature dependence of two sensors for magnetic field gradient sensors and demonstrates a structure to compensate for the drift of resonance frequency over a wide temperature range. The temperature effect of the sensing element is based on internal stresses induced by the thermal expansion of material, therefore FEM is used to determine the change of the eigenvalues of the sensing structure. The experimental setup utilizes a Helmholtz coil system to generate the magnetic field and to excite the MEMS structure with Lorentz forces. The MEMS structure is placed on a plate heated with resistors and cooled by a Peltier element to control the plate temperature. In the second part, we describe how one can exploit temperature sensitivity for temperature measurements and we show the opportunity to include the temperature effect to increase the sensitivity of single-crystal silicon made flux density gradient sensors.
Photon polarization tensor in the light front field theory at zero and finite temperatures
International Nuclear Information System (INIS)
Silva, Charles da Rocha; Perez, Silvana; Strauss, Stefan
2012-01-01
Full text: In recent years, light front quantized field theories have been successfully generalized to finite temperature. The light front frame was introduced by Dirac , and the quantization of field theories on the null-plane has found applications in many branches of physics. In order to obtain the thermal contribution, we consider the hard thermal loop approximation. This technique was developed by Braaten and Pisarski for the thermal quantum field theory at equal times and is particularly useful to extract the leading thermal contributions to the amplitudes in perturbative quantum field theories. In this work, we consider the light front quantum electrodynamics in (3+1) dimensions and evaluate the photon polarization tensor at one loop for both zero and finite temperatures. In the first case, we apply the dimensional regularization method to extract the finite contribution and find the transverse structure for the amplitude in terms of the light front coordinates. The result agrees with one-loop covariant calculation. For the thermal corrections, we generalize the hard thermal loop approximation to the light front and calculate the dominant temperature contribution to the polarization tensor, consistent with the Ward identity. In both zero as well as finite temperature calculations, we use the oblique light front coordinates. (author)
Tao, Chenyang; Nichols, Thomas E; Hua, Xue; Ching, Christopher R K; Rolls, Edmund T; Thompson, Paul M; Feng, Jianfeng
2017-01-01
We propose a generalized reduced rank latent factor regression model (GRRLF) for the analysis of tensor field responses and high dimensional covariates. The model is motivated by the need from imaging-genetic studies to identify genetic variants that are associated with brain imaging phenotypes, often in the form of high dimensional tensor fields. GRRLF identifies from the structure in the data the effective dimensionality of the data, and then jointly performs dimension reduction of the covariates, dynamic identification of latent factors, and nonparametric estimation of both covariate and latent response fields. After accounting for the latent and covariate effects, GRLLF performs a nonparametric test on the remaining factor of interest. GRRLF provides a better factorization of the signals compared with common solutions, and is less susceptible to overfitting because it exploits the effective dimensionality. The generality and the flexibility of GRRLF also allow various statistical models to be handled in a unified framework and solutions can be efficiently computed. Within the field of neuroimaging, it improves the sensitivity for weak signals and is a promising alternative to existing approaches. The operation of the framework is demonstrated with both synthetic datasets and a real-world neuroimaging example in which the effects of a set of genes on the structure of the brain at the voxel level were measured, and the results compared favorably with those from existing approaches. Copyright © 2016. Published by Elsevier Inc.
International Nuclear Information System (INIS)
Barber, D.P.
2015-10-01
I extend and update earlier work, summarised in an earlier paper (D.P. Barber, M. Voigt, AIP Conference Proceedings 1149 (28)), whereby the invariant polarisation-tensor field (ITF) for deuterons in storage rings was introduced to complement the invariant spin field (ISF). Taken together, the ITF and the ISF provide a definition of the equilibrium spin density-matrix field which, in turn, offers a clean framework for describing equilibrium spin-1 ensembles in storage rings. I show how to construct the ITF by stroboscopic averaging, I give examples, I discuss adiabatic invariance and I introduce a formalism for describing the effect of noise and damping.
Bischoff, Marcel; Longo, Roberto; Rehren, Karl-Henning
2015-01-01
C* tensor categories are a point of contact where Operator Algebras and Quantum Field Theory meet. They are the underlying unifying concept for homomorphisms of (properly infinite) von Neumann algebras and representations of quantum observables. The present introductory text reviews the basic notions and their cross-relations in different contexts. The focus is on Q-systems that serve as complete invariants, both for subfactors and for extensions of quantum field theory models. It proceeds with various operations on Q-systems (several decompositions, the mirror Q-system, braided product, centre and full centre of Q-systems) some of which are defined only in the presence of a braiding. The last chapter gives a brief exposition of the relevance of the mathematical structures presented in the main body for applications in Quantum Field Theory (in particular two-dimensional Conformal Field Theory, also with boundaries or defects).
Energy-momentum tensor in thermal strong-field QED with unstable vacuum
Energy Technology Data Exchange (ETDEWEB)
Gavrilov, S P [Department of General and Experimental Physics, Herzen State Pedagogical University of Russia, Moyka emb. 48, 191186 St Petersburg (Russian Federation); Gitman, D M [Instituto de Fisica, Universidade de Sao Paulo, CP 66318, CEP 05315-970 Sao Paulo, SP (Brazil)], E-mail: gavrilovsergeyp@yahoo.com, E-mail: gitman@dfn.if.usp.br
2008-04-25
The mean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions (similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established.
Energy-momentum tensor in thermal strong-field QED with unstable vacuum
International Nuclear Information System (INIS)
Gavrilov, S P; Gitman, D M
2008-01-01
The mean value of the one-loop energy-momentum tensor in thermal QED with an electric-like background that creates particles from vacuum is calculated. The problem is essentially different from calculations of effective actions (similar to the action of Heisenberg-Euler) in backgrounds that respect the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and the duration over which one can neglect the back-reaction of created particles are established
Berry phase of primordial scalar and tensor perturbations in single-field inflationary models
Balajany, Hamideh; Mehrafarin, Mohammad
2018-06-01
In the framework of the single-field slow-roll inflation, we derive the Hamiltonian of the linear primordial scalar and tensor perturbations in the form of time-dependent harmonic oscillator Hamiltonians. We find the invariant operators of the resulting Hamiltonians and use their eigenstates to calculate the adiabatic Berry phase for sub-horizon modes in terms of the Lewis-Riesenfeld phase. We conclude by discussing the discrepancy in the results of Pal et al. (2013) [21] for these Berry phases, which is resolved to yield agreement with our results.
Precise measurements and shimming of magnetic field gradients in the low field regime
Energy Technology Data Exchange (ETDEWEB)
Allmendinger, Fabian; Schmidt, Ulrich [Physikalisches Institut, Universitaet Heidelberg (Germany); Grasdijk, Olivier; Jungmann, Klaus; Willmann, Lorenz [University of Groningen (Netherlands); Heil, Werner; Karpuk, Sergei; Repetto, Maricel; Sobolev, Yuri; Zimmer, Stefan [Institut fuer Physik, Universitaet Mainz (Germany); Krause, Hans-Joachim; Offenhaeuser, Andreas [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); Collaboration: MIXed-Collaboration
2016-07-01
For many experiments at the precision frontier of fundamental physics, the accurate measurement and knowledge of magnetic field gradients in particular in the low field regime (<μT) is a necessity: On the one hand, in the search for an Electric Dipole Moment (EDM) of free neutrons or atoms, field gradients contribute to geometric-phase-induced false EDM signals for particles in traps. On the other hand, clock comparison experiments like the {sup 3}He/{sup 129}Xe spin clock experiment suffer from gradients, since the coherent T{sub 2}*-time of free spin precession, and thus the measurement sensitivity, scales ∝ ∇ vector B{sup -2}. Here we report on a new and very effective method, to shim and to measure tiny magnetic field gradients in the range of pT/cm by using effective T{sub 2}*-measurement sequences in varying the currents of trim coils of known geometry.
International Nuclear Information System (INIS)
Beig, Robert; Krammer, Werner
2004-01-01
For a conformally flat 3-space, we derive a family of linear second-order partial differential operators which sends vectors into trace-free, symmetric 2-tensors. These maps, which are parametrized by conformal Killing vectors on the 3-space, are such that the divergence of the resulting tensor field depends only on the divergence of the original vector field. In particular, these maps send source-free electric fields into TT tensors. Moreover, if the original vector field is the Coulomb field on R 3 {0}, the resulting tensor fields on R 3 {0} are nothing but the family of TT tensors originally written by Bowen and York
Hess, Siegfried
2015-01-01
This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics, at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to tensors of any rank, at graduate level. Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...
Vertical orbit excursion fixed field alternating gradient accelerators
Directory of Open Access Journals (Sweden)
Stephen Brooks
2013-08-01
Full Text Available Fixed field alternating gradient (FFAG accelerators with vertical orbit excursion (VFFAGs provide a promising alternative design for rings with fixed-field superconducting magnets. They have a vertical magnetic field component that increases with height in the vertical aperture, yielding a skew quadrupole focusing structure. Scaling-type VFFAGs are found with fixed tunes and no intrinsic limitation on momentum range. This paper presents the first multiparticle tracking of such machines. Proton driver rings to accelerate the 800 MeV beam from the ISIS synchrotron are presented, in terms of both magnet field geometry and longitudinal behavior during acceleration with space charge. The 12 GeV ring produces an output power of at least 2.18 MW. Possible applications of VFFAGs to waste transmutation, hadron therapy, and energy-recovery electron accelerators are also discussed.
Antisymmetric tensor Zp gauge symmetries in field theory and string theory
International Nuclear Information System (INIS)
Berasaluce-González, Mikel; Ramírez, Guillermo; Uranga, Angel M.
2014-01-01
We consider discrete gauge symmetries in D dimensions arising as remnants of broken continuous gauge symmetries carried by general antisymmetric tensor fields, rather than by standard 1-forms. The lagrangian for such a general Z p gauge theory can be described in terms of a r-form gauge field made massive by a (r−1)-form, or other dual realizations, that we also discuss. The theory contains charged topological defects of different dimensionalities, generalizing the familiar charged particles and strings in D=4. We describe realizations in string theory compactifications with torsion cycles, or with background field strength fluxes. We also provide examples of non-abelian discrete groups, for which the group elements are associated with charged objects of different dimensionality
Tensor algebra over Hilbert space: Field theory in classical phase space
International Nuclear Information System (INIS)
Matos Neto, A.; Vianna, J.D.M.
1984-01-01
It is shown using tensor algebras, namely Symmetric and Grassmann algebras over Hilbert Space that it is possible to introduce field operators, associated to the Liouville equation of classical statistical mechanics, which are characterized by commutation (for Symmetric) and anticommutation (for Grassmann) rules. The procedure here presented shows by construction that many-particle classical systems admit an algebraic structure similar to that of quantum field theory. It is considered explicitly the case of n-particle systems interacting with an external potential. A new derivation of Schoenberg's result about the equivalence between his field theory in classical phase space and the usual classical statistical mechanics is obtained as a consequence of the algebraic structure of the theory as introduced by our method. (Author) [pt
The stress energy tensor of a locally supersymmetric quantum field on a curved spacetime
International Nuclear Information System (INIS)
Koehler, M.
1995-04-01
For an analogon of the free Wess-Zumino model on Ricci flat spacetimes, the relation between a conserved 'supercurrent' and the point-separated improved energy momentum tensor is investigated and a similar relation as on Minkowski space is established. The expectation value of the latter in any globally Hadamard product state is found to be a priori finite in the coincidence limit if the theory is massive. On arbitrary globally hyperbolic spacetimes the 'supercurrent' is shown to be a well defined operator valued distribution on the GNS Hilbertspace of any globally Hadamard product state. Viewed as a new field, all n-point distributions exist, giving a new example for a Wightman field on that manifold. Moreover, it is shown that this field satisfies a new wave front set spectrum condition in a nontrivial way. (orig.)
International Nuclear Information System (INIS)
Buchner, Abel-John; Kitsios, Vassili; Atkinson, Callum; Soria, Julio; Lozano-Durán, Adrián
2016-01-01
Previous works have shown that momentum transfer in the wall–normal direction within turbulent wall–bounded flows occurs primarily within coherent structures defined by regions of intense Reynolds stress [1]. Such structures may be classified into wall–attached and wall–detached structures with the latter being typically weak, small–scale, and isotropically oriented, while the former are larger and carry most of the Reynolds stresses. The mean velocity fluctuation within each structure may also be used to separate structures by their dynamic properties. This study aims to extract information regarding the scales, kinematics and dynamics of these structures within the topological framework of the invariants of the velocity gradient tensor (VGT). The local topological characteristics of these intense Reynolds stress structures are compared to the topological characteristics of vortex clusters defined by the discriminant of the velocity gradient tensor. The alignment of vorticity with the principal strain directions within these structures is also determined, and the implications of these findings are discussed. (paper)
International Nuclear Information System (INIS)
Joglekar, S.D.; Misra, A.
1989-01-01
In this paper, we generalize our earlier discussion of renormalization of the energy-momentum tensor in scalar QED to that in non-Abelian gauge theories involving scalar fields. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/)
International Nuclear Information System (INIS)
Ikhdair, Sameer M.; Hamzavi, Majid
2013-01-01
Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r −2 . Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated. (general)
Study of the characteristics of crust stress field in East China by inversion of stress tensor
International Nuclear Information System (INIS)
Huilan, Z.; Rugang, D.
1991-12-01
This paper combines the search procedure with the optimization procedure to inverse the average stress tensor, and applies this method to study the crustal stress field using data of the solution of P wave first motion. By dealing with the data of Haicheng, Tangshan, Xingtai, Anyang, Liyang, Taiwan, Fujian and Guangdong areas, we obtain the characteristics of crust stress field of East China. The directions of the principal pressure stress always possess a small dip angle, but the azimuths vary from NEE (in north part of East China) to SEE (in the south part). This frame probably is related to the push-extrusive effects of the northwestern Pacific plate from NEE and the Philippine plate from SEE. (author). 5 refs, 8 figs, 4 tabs
Limkumnerd, Surachate; Sethna, James P.
We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose
Dudarev, S. L.; Ma, Pui-Wai
2018-03-01
Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a orientation of the defect.
Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI
Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.
2015-01-01
Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085
Currents and the energy-momentum tensor in classical field theory: a fresh look at an old problem
International Nuclear Information System (INIS)
Forger, Michael; Roemer, Hartmann
2004-01-01
We give a comprehensive review of various methods to define currents and the energy-momentum tensor in classical field theory, with emphasis on a geometric point of view. The necessity of 'improving' the expressions provided by the canonical Noether procedure is addressed and given an adequate geometric framework. The main new ingredient is the explicit formulation of a principle of 'ultralocality' with respect to the symmetry generators, which is shown to fix the ambiguity inherent in the procedure of improvement and guide it towards a unique answer: when combined with the appropriate splitting of the fields into sectors, it leads to the well-known expressions for the current as the variational derivative of the matter field Lagrangian with respect to the gauge field and for the energy-momentum tensor as the variational derivative of the matter field Lagrangian with respect to the metric tensor. In the second case, the procedure is shown to work even when the matter field Lagrangian depends explicitly on the curvature, thus establishing the correct relation between scale invariance, in the form of local Weyl invariance 'on shell', and tracelessness of the energy-momentum tensor, required for a consistent definition of the concept of a conformal field theory
Bossa, Matías Nicolás; Zacur, Ernesto; Olmos, Salvador
2009-01-01
Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations between a customized template and observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerrequisite. Further statistical analysis of the spatial transformations is used to highlight some useful information, such as local statistical differences among populations. With the new advent of recent and powerful non-rigid registration algorithms based on the large deformation paradigm, TBM is being increasingly used. In this work we evaluate the statistical power of TBM using stationary velocity field diffeomorphic registration in a large population of subjects from Alzheimer's Disease Neuroimaging Initiative project. The proposed methodology provided atrophy maps with very detailed anatomical resolution and with a high significance compared with results published recently on the same data set.
Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor
International Nuclear Information System (INIS)
Kholmetskii, A L; Missevitch, O V; Yarman, T
2011-01-01
We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j·E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.
Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor
Energy Technology Data Exchange (ETDEWEB)
Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)
2011-05-01
We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.
International Nuclear Information System (INIS)
Hansen, Tobias
2015-07-01
This thesis covers two main topics: the tensorial structure of quantum field theory correlators in general spacetime dimensions and a method for computing string theory scattering amplitudes directly in target space. In the first part tensor structures in generic bosonic CFT correlators and scattering amplitudes are studied. To this end arbitrary irreducible tensor representations of SO(d) (traceless mixed-symmetry tensors) are encoded in group invariant polynomials, by contracting with sets of commuting and anticommuting polarization vectors which implement the index symmetries of the tensors. The tensor structures appearing in CFT d correlators can then be inferred by studying these polynomials in a d + 2 dimensional embedding space. It is shown with an example how these correlators can be used to compute general conformal blocks describing the exchange of mixed-symmetry tensors in four-point functions, which are crucial for advancing the conformal bootstrap program to correlators of operators with spin. Bosonic string theory lends itself as an ideal example for applying the same methods to scattering amplitudes, due to its particle spectrum of arbitrary mixed-symmetry tensors. This allows in principle the definition of on-shell recursion relations for string theory amplitudes. A further chapter introduces a different target space definition of string scattering amplitudes. As in the case of on-shell recursion relations, the amplitudes are expressed in terms of their residues via BCFW shifts. The new idea here is that the residues are determined by use of the monodromy relations for open string theory, avoiding the infinite sums over the spectrum arising in on-shell recursion relations. Several checks of the method are presented, including a derivation of the Koba-Nielsen amplitude in the bosonic string. It is argued that this method provides a target space definition of the complete S-matrix of string theory at tree-level in a at background in terms of a small
Electric-field gradient characterization at 181Ta impurities in sapphire single crystals
International Nuclear Information System (INIS)
Renteria, M.; Darriba, G.N.; Errico, L.A.; Munoz, E.L.; Eversheim, P.D.
2005-01-01
We report Perturbed-Angular-Correlation (PAC) experiments on corundum Al 2 O 3 single crystals implanted with 181 Hf/ 181 Ta ions at the ISKP at Bonn and measured at La Plata with high efficiency and time-resolution. The magnitude, asymmetry, and orientation (with respect to the crystalline axes) of the electric-field gradient (EFG) tensor were determined measuring the spin-rotation curves as a function of different orientations of the single crystals relative to the detector system. These results are analyzed in the framework of point-charge model and ab initio Full-Potential Linearized-Augmented Plane Wave calculations, and compared with EFG results coming from PAC experiments with 111 In/ 111 Cd impurities. This combined study enables the determination of lattice relaxations induced by the presence of the impurity and the state of charge of a deep impurity donor level in the band gap of the semiconductor. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Electric-field gradient characterization at {sup 181}Ta impurities in sapphire single crystals
Energy Technology Data Exchange (ETDEWEB)
Renteria, M.; Darriba, G.N.; Errico, L.A.; Munoz, E.L. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Eversheim, P.D. [Helmholtz-Institut fuer Strahlen-und Kernphysik (ISKP), Universitaet Bonn, Nussallee 14-16, 53115 Bonn (Germany)
2005-07-01
We report Perturbed-Angular-Correlation (PAC) experiments on corundum Al{sub 2}O{sub 3} single crystals implanted with {sup 181}Hf/{sup 181}Ta ions at the ISKP at Bonn and measured at La Plata with high efficiency and time-resolution. The magnitude, asymmetry, and orientation (with respect to the crystalline axes) of the electric-field gradient (EFG) tensor were determined measuring the spin-rotation curves as a function of different orientations of the single crystals relative to the detector system. These results are analyzed in the framework of point-charge model and ab initio Full-Potential Linearized-Augmented Plane Wave calculations, and compared with EFG results coming from PAC experiments with {sup 111}In/{sup 111}Cd impurities. This combined study enables the determination of lattice relaxations induced by the presence of the impurity and the state of charge of a deep impurity donor level in the band gap of the semiconductor. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Sohnius, M.; West, P.
1982-01-01
The tensor calculus for the new alternative minimal auxiliary field formulation of N = 1 supergravity is given. It is used to construct the couplings of this formulation of supergravity to matter. These couplings are found to be different, in several respects to those of the old minimal formulation of N = 1 supergravity. (orig.)
Electromagnetic Field Theory in (N+1)-Space-Time : AModern Time-Domain Tensor/Array Introduction
De Hoop, A.T.
2012-01-01
In this paper, a modern time-domain introduction is presented for electromagnetic field theory in (N+1)-spacetime. It uses a consistent tensor/array notation that accommodates the description of electromagnetic phenomena in N-dimensional space (plus time), a requirement that turns up in present-day
International Nuclear Information System (INIS)
Choudhury, Sayantan
2015-01-01
In this paper my prime objective is to explain the generation of large tensor-to-scalar ratio from the single field sub-Planckian inflationary paradigm within Randall–Sundrum (RS) single braneworld scenario in a model independent fashion. By explicit computation I have shown that the effective field theory prescription of brane inflation within RS single brane setup is consistent with sub-Planckian excursion of the inflaton field, which will further generate large value of tensor-to-scalar ratio, provided the energy density for inflaton degrees of freedom is high enough compared to the brane tension in high energy regime. Finally, I have mentioned the stringent theoretical constraint on positive brane tension, cut-off of the quantum gravity scale and bulk cosmological constant to get sub-Planckian field excursion along with large tensor-to-scalar ratio as recently observed by BICEP2 or at least generates the tensor-to-scalar ratio consistent with the upper bound of Planck (2013 and 2015) data and Planck+BICEP2+Keck Array joint constraint
TensorLy: Tensor Learning in Python
Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja
2016-01-01
Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone of machine learning and data analysis, tensor methods have been gaining increasing traction. However, software support for tensor operations is not on the same footing. In order to bridge this gap, we have developed \\emph{TensorLy}, a high-level API for tensor methods and deep tensorized neural networks in Python. TensorLy aims to follow the same standards adopted by the main projects of the Python scie...
The Schouten tensor as a connection in the unfolding of 3D conformal higher-spin fields
Energy Technology Data Exchange (ETDEWEB)
Basile, Thomas [Group of Mechanics and Gravitation, Physique théorique et mathématique,University of Mons - UMONS,20 Place du Parc, 7000 Mons (Belgium); Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche du CNRS,Fédération de Recherche Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Bonezzi, Roberto; Boulanger, Nicolas [Group of Mechanics and Gravitation, Physique théorique et mathématique,University of Mons - UMONS,20 Place du Parc, 7000 Mons (Belgium)
2017-04-11
A first-order differential equation is provided for a one-form, spin-s connection valued in the two-row, width-(s−1) Young tableau of GL(5). The connection is glued to a zero-form identified with the spin-s Cotton tensor. The usual zero-Cotton equation for a symmetric, conformal spin-s tensor gauge field in 3D is the flatness condition for the sum of the GL(5) spin-s and background connections. This presentation of the equations allows to reformulate in a compact way the cohomological problem studied in https://arxiv.org/abs/1511.07389, featuring the spin-s Schouten tensor. We provide full computational details for spin 3 and 4 and present the general spin-s case in a compact way.
Homogeneous collapsing star: Tensor and vector harmonics for matter and field asymmetries
International Nuclear Information System (INIS)
Gerlach, U.H.; Sengupta, U.K.
1978-01-01
For the space-time of the interior of a homogeneous collapsing star complete sets of orthogonal vector and tensor harmonics are presented. Their relationship to the set of vector and tensor harmonics for a generic spherically symmetric space-time is exhibited
Anderson, David; Yunes, Nicolás
2017-09-01
Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.
Directory of Open Access Journals (Sweden)
Hans-Peter Müller
Full Text Available INTRODUCTION: In-vivo high resolution diffusion tensor imaging (DTI of the mouse brain is often limited by the low signal to noise ratio (SNR resulting from the required small voxel sizes. Recently, cryogenically cooled resonators (CCR have demonstrated significant increase of the effective SNR. It is the objective of this study to enable fast DTI of the mouse brain. In this context, CCRs appear attractive for SNR improvement. METHODS: Three mice underwent a DTI examination at 156²×250 µm³ spatial resolution with a CCR at ultrahigh field (11.7T. Diffusion images were acquired along 30 gradient directions plus 5 references without diffusion encoding, resulting in a total acquisition time of 35 minutes. For comparison, mice additionally underwent a standardized 110 minutes acquisition protocol published earlier. Fractional anisotropy (FA and fiber tracking (FT results including quantitative tractwise fractional anisotropy statistics (TFAS were qualitatively and quantitatively compared. RESULTS: Qualitative and quantitative assessment of the calculated fractional anisotropy maps and fibre tracking results showed coinciding outcome comparing 35 minute scans to the standardized 110 minute scan. Coefficients of variation for ROI-based FA-comparison as well as for TFAS revealed comparable results for the different scanning protocols. CONCLUSION: Mouse DTI at 11.7 T was performed with an acquisition time of approximately 30 minutes, which is considered feasible for cohort studies. The rapid acquisition protocol reveals reliable and reproducible FA-values and FT reconstructions, thus allowing an experimental setup for in-vivo large scale whole brain murine DTI cohort studies.
Adiabatic theory in regions of strong field gradients. [in magnetosphere
Whipple, E. C.; Northrop, T. G.; Birmingham, T. J.
1986-01-01
The theory for the generalized first invariant for adiabatic motion of charged particles in regions where there are large gradients in magnetic or electric fields is developed. The general condition for an invariant to exist in such regions is that the potential well in which the particle oscillates change its shape slowly as the particle drifts. It is shown how the Kruskal (1962) procedure can be applied to obtain expressions for the invariant and for drift velocities that are asymptotic in a smallness parameter epsilon. The procedure is illustrated by obtaining the invariant and drift velocities for particles traversing a perpendicular shock, and the generalized invariant is compared with the magnetic moment, and the drift orbits with the actual orbits, for a particular case. In contrast to the magnetic moment, the generalized first invariant is better for large gyroradii (large kinetic energies) than for small gyroradii. Expressions for the invariant when an electrostatic potential jump is imposed across the perpendicular shock, and when the particle traverses a rotational shear layer with a small normal component of the magnetic field are given.
Higher groupoid bundles, higher spaces, and self-dual tensor field equations
Energy Technology Data Exchange (ETDEWEB)
Jurco, Branislav [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague (Czech Republic); Saemann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh (United Kingdom); Wolf, Martin [Department of Mathematics, University of Surrey, Guildford (United Kingdom)
2016-08-15
We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of (∞, 1)-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to L{sub ∞}-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Higher groupoid bundles, higher spaces, and self-dual tensor field equations
International Nuclear Information System (INIS)
Jurco, Branislav; Saemann, Christian; Wolf, Martin
2016-01-01
We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of (∞, 1)-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to L ∞ -algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Kushch, Volodymyr I.; Sevostianov, Igor; Giraud, Albert
2017-11-01
An accurate semi-analytical solution of the conductivity problem for a composite with anisotropic matrix and arbitrarily oriented anisotropic ellipsoidal inhomogeneities has been obtained. The developed approach combines the superposition principle with the multipole expansion of perturbation fields of inhomogeneities in terms of ellipsoidal harmonics and reduces the boundary value problem to an infinite system of linear algebraic equations for the induced multipole moments of inhomogeneities. A complete full-field solution is obtained for the multi-particle models comprising inhomogeneities of diverse shape, size, orientation and properties which enables an adequate account for the microstructure parameters. The solution is valid for the general-type anisotropy of constituents and arbitrary orientation of the orthotropy axes. The effective conductivity tensor of the particulate composite with anisotropic constituents is evaluated in the framework of the generalized Maxwell homogenization scheme. Application of the developed method to composites with imperfect ellipsoidal interfaces is straightforward. Their incorporation yields probably the most general model of a composite that may be considered in the framework of analytical approach.
Energy Technology Data Exchange (ETDEWEB)
Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2009-03-15
We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)
International Nuclear Information System (INIS)
Dappiagi, Claudio; Hack, Thomas-Paul; Pinamonti, Nicola
2009-03-01
We discuss from scratch the classical structure of Dirac spinors on an arbitrary globally hyperbolic, Lorentzian spacetime, their formulation as a locally covariant quantum field theory, and the associated notion of a Hadamard state. Eventually, we develop the notion of Wick polynomials for spinor fields, and we employ the latter to construct a covariantly conserved stress-energy tensor suited for back-reaction computations. We explicitly calculate its trace anomaly in particular. (orig.)
Electric-field gradients at Ta impurities in Sc{sub 2}O{sub 3} semiconductor
Energy Technology Data Exchange (ETDEWEB)
Richard, Diego, E-mail: richard@fisica.unlp.edu.ar [Departamento de Fisica e Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina. (Argentina); Munoz, Emiliano L. [Departamento de Fisica e Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina. (Argentina); Errico, Leonardo A. [Departamento de Fisica e Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina. (Argentina); Universidad Nacional del Noroeste Bonaerense (UNNOBA), Monteagudo 2772, 2700 Pergamino, Argentina. (Argentina); Renteria, Mario [Departamento de Fisica e Instituto de Fisica La Plata (IFLP, CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina. (Argentina)
2012-08-15
In this work we present an ab initio study of Ta-doped Sc{sub 2}O{sub 3} semiconductor. Calculations were performed at dilute Ta impurities located at both cationic sites of the host structure, using the Augmented Plane Wave plus Local Orbitals (APW+lo) method. The structural atomic relaxations and the electric-field gradients (EFG) were studied for different charge states of the cell in order to simulate different ionization states of the double-donor Ta impurity. From the results for the EFG tensor at Ta impurity sites and the comparison with experimental results obtained using the Time-Differential {gamma}-{gamma} Perturbed-Angular-Correlations technique we could determined the structural distortions induced by the Ta impurity and the electronic structure of the doped-semiconductor.
Non-ionic contributions to the electric-field gradient at 111Cd/181Ta impurities in bixbyites
International Nuclear Information System (INIS)
Renteria, Mario; Freitag, Kristian; Errico, Leonardo A.
1999-01-01
The electric-field-gradient (EFG) tensor at both cation sites of the bixbyite structure in 181 Hf-implanted Lu- and Sm-sesquioxides was determined by the PAC technique. The cumulated EFG data at Ta-impurity sites in binary oxides enable us to discuss the 'universal' character of the empirical correlation between local and ionic contributions to the EFG in these systems. An EFG factorization in terms of the electronic characteristics of the probe and the geometry of the cation coordination is proposed, which explains the experimental EFG results at Ta/Cd impurity sites in bixbyites and agrees with a simplified decomposition of the EFG valence contribution coming from ab-initio calculations
MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI.
Chen, Qin; Lui, Su; Li, Chun-Xiao; Jiang, Li-Jun; Ou-Yang, Luo; Tang, He-Han; Shang, Hui-Fang; Huang, Xiao-Qi; Gong, Qi-Yong; Zhou, Dong
2008-07-01
Our aim is to use the high field MR scanner (3T) to verify whether diffusion tensor imaging (DTI) could help in locating the epileptogenic zone in patients with MRI-negative refractory partial epilepsy. Fifteen patients with refractory partial epilepsy who had normal conventional MRI, and 40 healthy volunteers were recruited for the study. DTI was performed on a 3T MR scanner, individual maps of mean diffusivity (MD) and fractional anisotropy (FA) were calculated, and Voxel-Based Analysis (VBA) was performed for individual comparison between patients and controls. Voxel-based analysis revealed significant MD increase in variant regions in 13 patients. The electroclinical seizure localization was concurred to seven patients. No patient exhibited regions of significant decreased MD. Regions of significant reduced FA were observed in five patients, with two of these concurring with electroclinical seizure localization. Two patients had regions of significant increase in FA, which were distinct from electroclinical seizure localization. Our study's results revealed that DTI is a responsive neuroradiologic technique that provides information about the epileptogenic areas in patients with MRI-negative refractory partial epilepsy. This technique may also helpful in pre-surgical evaluation.
Bossa, Matias; Zacur, Ernesto; Olmos, Salvador
2010-07-01
Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations mapping a customized template with the observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerequisite for both template estimation and image warping. Subsequent statistical analysis on the spatial transformations is performed to highlight voxel-wise differences. Most of previous TBM studies did not explore the influence of the registration parameters, such as the parameters defining the deformation and the regularization models. In this work performance evaluation of TBM using stationary velocity field (SVF) diffeomorphic registration was performed in a subset of subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) study. A wide range of values of the registration parameters that define the transformation smoothness and the balance between image matching and regularization were explored in the evaluation. The proposed methodology provided brain atrophy maps with very detailed anatomical resolution and with a high significance level compared with results recently published on the same data set using a non-linear elastic registration method. Copyright (c) 2010 Elsevier Inc. All rights reserved.
On the large N limit, Wilson Loops, Confinement and Composite Antisymmetric Tensor Field theories
Castro, C
2004-01-01
A novel approach to evaluate the Wilson loops asociated with a $ SU ( \\infty )$ gauge theory in terms of pure string degrees of freedom is presented. It is based on the Guendelman-Nissimov-Pacheva formulation of composite antisymmetric tensor field theories of area (volume ) preserving diffeomorphisms which admit $p$-brane solutions and which provide a $new$ route to scale symmetry breaking and confinement in Yang-Mills theory. The quantum effects are discussed and we evaluate the vacuum expectation values (vev) of the Wilson loops in the large $N$ limit of the $quenched$ reduced $SU(N)$ Yang-Mills theory in terms of a path integral involving pure string degrees of freedom. The $quenched$ approximation is necessary to avoid a crumpling of the string world-sheet giving rise to very large Hausdorff dimensions as pointed out by Olesen. The approach is also consistent with the recent results based on the AdS/CFT correspondence and dual QCD models (dual Higgs model with dual Dirac strings ). More general Loop wav...
International Nuclear Information System (INIS)
Bardet, Rene; Consoli, Terenzio; Geller, Richard
1964-09-01
In the first part of the paper, the theory of the physical mechanism of ion dragging by accelerated electrons due to the superimposition of the gradient of a electromagnetic field and the gradient of a static magnetic field, is described. The resulting trajectory of the electrons is a helicoid and one shows the variations of the diameter and the path of the spirals along the axis as a function of the difference between the gyrofrequency and the applied R.F. frequency. The ion acceleration is due to an electron space charge effect. The grouping of the equations of the electronic and ionic fluid motions leads to the introduction of a tensor mass: along the x and y direction the transverse motion of the fluid is controlled by the relativistic mass of electrons whereas along the z direction the axial motion is determined by the ionic mass. Then we deduce physical consequences of the theoretical study and give three experimental evidences. The second part of the paper is devoted to the experimental device called Pleiade which allowed us to verify some of the theoretical predictions. Pleiade produces a D.C. operating plasma beam in which the electrons exhibit radially oriented energies whereas the ionic energy is mainly axial. The experimental results indicate that the energy of the particles is in the keV range. In the third part we deal with the reflecting properties of the device. We show that the R.F. static magnetic field gradients are not only capable of accelerating a Plasma beam along the axially decreasing magnetic field, but are also capable of stopping and reflecting such a beam when the latter is moving along an axially increasing magnetic field. We describe finally a plasma accumulation experiment in which two symmetric structures form simultaneously an accelerator and a 'dynamic mirror' for the particles. Evidence of accumulation is given. (authors) [fr
Tensor spherical harmonics and tensor multipoles. II. Minkowski space
International Nuclear Information System (INIS)
Daumens, M.; Minnaert, P.
1976-01-01
The bases of tensor spherical harmonics and of tensor multipoles discussed in the preceding paper are generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multipoles of the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for application to the gravitational radiation
Structure of the Einstein tensor for class-1 embedded space time
Energy Technology Data Exchange (ETDEWEB)
Krause, J [Universidad Central de Venezuela, Caracas
1976-04-11
Continuing previous work, some features of the flat embedding theory of class-1 curved space-time are further discussed. In the two-metric formalism provided by the embedding approach the Gauss tensor obtains as the flat-covariant gradient of a fundamental vector potential. The Einstein tensor is then examined in terms of the Gauss tensor. It is proved that the Einstein tensor is divergence free in flat space-time, i.e. a true Lorentz-covariant conservation law for the Einstein tensor is shown to hold. The form of the Einstein tensor in flat space-time also appears as a canonical energy-momentum tensor of the vector potential. The corresponding Lagrangian density, however, does not provide us with a set of field equations for the fundamental vector potential; indeed, the Euler-Lagrange ''equations'' collapse to a useless identity, while the Lagrangian density has the form of a flat divergence.
Chen, Y.; Huang, L.
2017-12-01
Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.
Photodetachment of negative ion in a gradient electric field near a metal surface
International Nuclear Information System (INIS)
Liu Tian-Qi; Wang De-Hua; Han Cai; Liu Jiang; Liang Dong-Qi; Xie Si-Cheng
2012-01-01
Based on closed-orbit theory, the photodetachment of H − in a gradient electric field near a metal surface is studied. It is demonstrated that the gradient electric field has a significant influence on the photodetachment of negative ions near a metal surface. With the increase of the gradient of the electric field, the oscillation in the photodetachment cross section becomes strengthened. Besides, in contrast to the photodetachment of H − near a metal surface in a uniform electric field, the oscillating amplitude and the oscillating region in the cross section of a gradient electric field also become enlarged. Therefore, we can use the gradient electric field to control the photodetachment of negative ions near a metal surface. We hope that our results will be useful for understanding the photodetachment of negative ions in the vicinity of surfaces, cavities, and ion traps. (atomic and molecular physics)
Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki
2014-01-21
A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.
Energy Technology Data Exchange (ETDEWEB)
Vaeliviita, Jussi [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, N-0315 Oslo (Norway); Savelainen, Matti; Talvitie, Marianne; Kurki-Suonio, Hannu; Rusak, Stanislav, E-mail: jussi.valiviita@astro.uio.no [Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FIN-00014 University of Helsinki (Finland)
2012-07-10
We constrain cosmological models where the primordial perturbations have an adiabatic and a (possibly correlated) cold dark matter (CDM) or baryon isocurvature component. We use both a phenomenological approach, where the power spectra of primordial perturbations are parameterized with amplitudes and spectral indices, and a slow-roll two-field inflation approach where slow-roll parameters are used as primary parameters, determining the spectral indices and the tensor-to-scalar ratio. In the phenomenological case, with CMB data, the upper limit to the CDM isocurvature fraction is {alpha} < 6.4% at k = 0.002 Mpc{sup -1} and 15.4% at k = 0.01 Mpc{sup -1}. The non-adiabatic contribution to the CMB temperature variance is -0.030 < {alpha}{sub T} < 0.049 at the 95% confidence level. Including the supernova (SN) (or large-scale structure) data, these limits become {alpha} < 7.0%, 13.7%, and -0.048 < {alpha}{sub T} < 0.042 (or {alpha} < 10.2%, 16.0%, and -0.071 < {alpha}{sub T} < 0.024). The CMB constraint on the tensor-to-scalar ratio, r < 0.26 at k = 0.01 Mpc{sup -1}, is not affected by the non-adiabatic modes. In the slow-roll two-field inflation approach, the spectral indices are constrained close to 1. This leads to tighter limits on the isocurvature fraction; with the CMB data {alpha} < 2.6% at k = 0.01 Mpc{sup -1}, but the constraint on {alpha}{sub T} is not much affected, -0.058 < {alpha}{sub T} < 0.045. Including SN (or LSS) data, these limits become {alpha} < 3.2% and -0.056 < {alpha}{sub T} < 0.030 (or {alpha} < 3.4% and -0.063 < {alpha}{sub T} < -0.008). In addition to the generally correlated models, we study also special cases where the adiabatic and isocurvature modes are uncorrelated or fully (anti)correlated. We calculate Bayesian evidences (model probabilities) in 21 different non-adiabatic cases and compare them to the corresponding adiabatic models, and find that in all cases the data support the pure adiabatic model.
Appleby, Stephen; Chingangbam, Pravabati; Park, Changbom; Hong, Sungwook E.; Kim, Juhan; Ganesan, Vidhya
2018-05-01
We apply the Minkowski tensor statistics to two-dimensional slices of the three-dimensional matter density field. The Minkowski tensors are a set of functions that are sensitive to directionally dependent signals in the data and, furthermore, can be used to quantify the mean shape of density fields. We begin by reviewing the definition of Minkowski tensors and introducing a method of calculating them from a discretely sampled field. Focusing on the statistic {W}21,1—a 2 × 2 matrix—we calculate its value for both the entire excursion set and individual connected regions and holes within the set. To study the morphology of structures within the excursion set, we calculate the eigenvalues λ 1, λ 2 for the matrix {W}21,1 of each distinct connected region and hole and measure their mean shape using the ratio β \\equiv . We compare both {W}21,1 and β for a Gaussian field and a smoothed density field generated from the latest Horizon Run 4 cosmological simulation to study the effect of gravitational collapse on these functions. The global statistic {W}21,1 is essentially independent of gravitational collapse, as the process maintains statistical isotropy. However, β is modified significantly, with overdensities becoming relatively more circular compared to underdensities at low redshifts. When applying the statistics to a redshift-space distorted density field, the matrix {W}21,1 is no longer proportional to the identity matrix, and measurements of its diagonal elements can be used to probe the large-scale velocity field.
International Nuclear Information System (INIS)
Witalis, E.A.
1965-12-01
Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given
Energy Technology Data Exchange (ETDEWEB)
Witalis, E A
1965-12-15
Rigorous derivations are given of the basic equations and methods available for the analysis of transverse MHD flow when Hall currents are not suppressed. The gas flow is taken to be incompressible and viscous with uniform tensor conductivity and arbitrary magnetic Reynold's number. The magnetic field is perpendicular to the flow and has variable strength. Analytical solutions can be obtained either in terms of the induced magnetic field or from two types of electric potential. The relevant set of suitable simplifications, restrictive conditions and boundary value considerations for each method is given.
International Nuclear Information System (INIS)
Antoci, S.; Mihich, L.
1997-01-01
Given the present status of the problem of the electromagnetic energy tensor in matter, there is perhaps use in recalling a forgotten argument given in 1923 by W. Gordon. Let us consider a material medium which is homogeneous and isotropic when observed in its rest frame. For such a medium, Gordon's argument allows to reduce the above-mentioned problem to an analogous one, defined in a general relativistic vacuum. For the latter problem the form of the Lagrangian is known already, hence the determination of the energy tensor is a straightforward matter. One just performs the Hamiltonian derivative of the Lagrangian chosen in this way with respect to the true metric g ik . Abraham's tensor is thus selected as the electromagnetic energy tensor for a medium which is homogeneous and isotropic in its rest frame
Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient
Directory of Open Access Journals (Sweden)
Peng Shang
2012-12-01
Full Text Available The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g, 1 g, 1.56 g and 1.96 g in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.
Evaporation rate of water as a function of a magnetic field and field gradient.
Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng
2012-12-11
The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air.
Evaporation Rate of Water as a Function of a Magnetic Field and Field Gradient
Guo, Yun-Zhu; Yin, Da-Chuan; Cao, Hui-Ling; Shi, Jian-Yu; Zhang, Chen-Yan; Liu, Yong-Ming; Huang, Huan-Huan; Liu, Yue; Wang, Yan; Guo, Wei-Hong; Qian, Ai-Rong; Shang, Peng
2012-01-01
The effect of magnetic fields on water is still a highly controversial topic despite the vast amount of research devoted to this topic in past decades. Enhanced water evaporation in a magnetic field, however, is less disputed. The underlying mechanism for this phenomenon has been investigated in previous studies. In this paper, we present an investigation of the evaporation of water in a large gradient magnetic field. The evaporation of pure water at simulated gravity positions (0 gravity level (ab. g), 1 g, 1.56 g and 1.96 g) in a superconducting magnet was compared with that in the absence of the magnetic field. The results showed that the evaporation of water was indeed faster in the magnetic field than in the absence of the magnetic field. Furthermore, the amount of water evaporation differed depending on the position of the sample within the magnetic field. In particular, the evaporation at 0 g was clearly faster than that at other positions. The results are discussed from the point of view of the evaporation surface area of the water/air interface and the convection induced by the magnetization force due to the difference in the magnetic susceptibility of water vapor and the surrounding air. PMID:23443127
Using axial magnetized permanent rings to build axial gradient magnetic field
International Nuclear Information System (INIS)
Peng Quanling
2003-01-01
Axial field produced by an axially magnetized permanent ring was studied. For two permanent magnet rings, if they are magnetized in the same direction, a nearly uniform axial field can be produced; if they are magnetized in opposite direction, an axial gradient field can be produced in the region between the two permanent rings, with the field strength changing from -B 0 to B 0 . A high gradient axial magnetic field has been built by using two axially magnetized permanent rings, the measured field results agree with the PANDIRA calculation very well. It is desirable that the field gradient can be varied to match various requirements. A method to produce the variable gradient field is presented. Axial gradient field can also be used as a beam focusing facility for linear accelerator if axial periodic field can be produced. Its magnetic field is similar to that of a solenoid, in which, large stray field will leak to the outside environment. A method for shielding the outside stray field is discussed
Mean template for tensor-based morphometry using deformation tensors.
Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M
2007-01-01
Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.
Energy Technology Data Exchange (ETDEWEB)
Xu, Fei [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Huang, Jiahao, E-mail: hjiahao@mail2.sysu.edu.cn [TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University, SYSU Zhuhai Campus, Zhuhai 519082 (China); Liu, Quan [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)
2017-03-03
Highlights: • A scheme for detecting magnetic field gradients via a double-well two-component Bose–Einstein condensate interferometer. • The magnetic field gradient can be extracted by either the spin population or the external state. • Our proposal is potentially sensitive to weak magnetic field inhomogeneity due to its small sensor size. - Abstract: We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose–Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.
Longitudinal wake field for an electron beam accelerated through a ultra-high field gradient
Energy Technology Data Exchange (ETDEWEB)
Geloni, G.; Saldin, E.; Schneidmiller, E.; Yurkov, M.
2006-12-15
Electron accelerators with higher and higher longitudinal field gradients are desirable, as they allow for the production of high energy beams by means of compact and cheap setups. The new laser-plasma acceleration technique appears to constitute the more promising breakthrough in this direction, delivering unprecedent field gradients up to TV/m. In this article we give a quantitative description of the impact of longitudinal wake fields on the electron beam. Our paper is based on the solution of Maxwell's equations for the longitudinal field. Our conclusions are valid when the acceleration distance is much smaller than the the overtaking length, that is the length that electrons travel as a light signal from the tail of the bunch overtakes the head of the bunch. This condition is well verified for laser-plasma devices. We calculate a closed expression for the impedance and the wake function that may be evaluated numerically. It is shown that the rate of energy loss in the bunch due to radiative interaction is equal to the energy emitted through coherent radiation in the far-zone. Furthermore, an expression is found for the asymptotic limit of a large distance of the electron beam from the accelerator compared with the overtaking length. Such expression allows us to calculate analytical solutions for a Gaussian transverse and longitudinal bunch shape. Finally, we study the feasibility of Table-Top Free-Electron Lasers in the Vacuum Ultra-Violet (TT-VUV FEL) and X-ray range (TT-XFEL), respectively based on 100 MeV and 1 GeV laser-plasma accelerator drivers. Numerical estimations presented in this paper indicate that the effects of the time-dependent energy change induced by the longitudinal wake pose a serious threat to the operation of these devices. (orig.)
PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES
Directory of Open Access Journals (Sweden)
N. G. Ptitsyna
2013-01-01
Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.
Energy Technology Data Exchange (ETDEWEB)
Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Guzmán, Orlando [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, DF 09340, México (Mexico); Hernández-Ortiz, Juan P. [Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Pablo, Juan J. de, E-mail: depablo@uchicago.edu [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2015-07-28
A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.
Energy Technology Data Exchange (ETDEWEB)
Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.
2015-07-27
A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.
Oval gradient coils for an open magnetic resonance imaging system with a vertical magnetic field.
Matsuzawa, Koki; Abe, Mitsushi; Kose, Katsumi; Terada, Yasuhiko
2017-05-01
Existing open magnetic resonance imaging (MRI) systems use biplanar gradient coils for the spatial encoding of signals. We propose using novel oval gradient coils for an open vertical-field MRI. We designed oval gradients for a 0.3T open MRI system and showed that such a system could outperform a traditional biplanar gradient system while maintaining adequate gradient homogeneity and subject accessibility. Such oval gradient coils would exhibit high efficiency, low inductance and resistance, and high switching capability. Although the designed oval Y and Z coils showed more heat dissipation and less cooling capability than biplanar coils with the same gap, they showed an efficient heat-dissipation path to the surrounding air, which would alleviate the heat problem. The performance of the designed oval-coil system was demonstrated experimentally by imaging a human hand. Copyright © 2017 Elsevier Inc. All rights reserved.
Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory
Holt, J. W.; Kaiser, N.; Whitehead, T. R.
2018-05-01
We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.
Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy.
Fang, Yurui; Zhang, Zhenglong; Chen, Li; Sun, Mengtao
2015-01-14
Near field gradient effects in high vacuum tip-enhanced Raman spectroscopy (HV-TERS) are a recent developing ultra-sensitive optical and spectral analysis technology on the nanoscale, based on the plasmons and plasmonic gradient enhancement in the near field and under high vacuum. HV-TERS can not only be used to detect ultra-sensitive Raman spectra enhanced by surface plasmon, but also to detect clear molecular IR-active modes enhanced by strongly plasmonic gradient. Furthermore, the molecular overtone modes and combinational modes can also be experimentally measured, where the Fermi resonance and Darling-Dennison resonance were successfully observed in HV-TERS. Theoretical calculations using electromagnetic field theory firmly supported experimental observation. The intensity ratio of the plasmon gradient term over the linear plasmon term can reach values greater than 1. Theoretical calculations also revealed that with the increase in gap distance between tip and substrate, the decrease in the plasmon gradient was more significant than the decrease in plasmon intensity, which is the reason that the gradient Raman can be only observed in the near field. Recent experimental results of near field gradient effects on HV-TERS were summarized, following the section of the theoretical analysis.
Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout
2015-10-01
Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.
Three-dimensional magnetic nanoparticle imaging using small field gradient and multiple pickup coils
Energy Technology Data Exchange (ETDEWEB)
Sasayama, Teruyoshi, E-mail: sasayama@sc.kyushu-u.ac.jp; Tsujita, Yuya; Morishita, Manabu; Muta, Masahiro; Yoshida, Takashi; Enpuku, Keiji
2017-04-01
We propose a magnetic particle imaging (MPI) method based on third harmonic signal detection using a small field gradient and multiple pickup coils. First, we developed a system using two pickup coils and performed three-dimensional detection of two magnetic nanoparticle (MNP) samples, which were spaced 15 mm apart. In the experiments, an excitation field strength of 1.6 mT was used at an operating frequency of 3 kHz. A DC gradient field with a typical value of 0.2 T/m was also used to produce the so-called field-free line. A third harmonic signal generated by the MNP samples was detected using the two pickup coils, and the samples were then mechanically scanned to obtain field maps. The field maps were subsequently analyzed using the nonnegative least squares method to obtain three-dimensional position information for the MNP samples. The results show that the positions of the two MNP samples were estimated with good accuracy, despite the small field gradient used. Further improvement in MPI performance will be achieved by increasing the number of pickup coils used. - Highlights: • 3D magnetic particle imaging system combining field-free line and two pickup coils. • Imaging method based on third harmonic signal detection and small field gradient. • Nonnegative least squares method for 3D magnetic nanoparticle image reconstruction. • High spatial resolution despite use of small field gradient.
Energy Technology Data Exchange (ETDEWEB)
Jasinski, A.; Skorka, T.; Kwiecinski, S. [Institute of Nuclear Physics, Cracow (Poland)
1994-12-31
To obtain three-dimensional images in the computerized tomography a gradient of magnetic field should be generated. In this paper the analytical as well as computerized calculations of magnetic coils for such purposes are presented. 4 refs, 8 figs.
DEFF Research Database (Denmark)
Jespersen, Sune Nørhøj; Lundell, Henrik; Sønderby, Casper Kaae
2013-01-01
Pulsed field gradient diffusion sequences (PFG) with multiple diffusion encoding blocks have been indicated to offer new microstructural tissue information, such as the ability to detect nonspherical compartment shapes in macroscopically isotropic samples, i.e. samples with negligible directional...
Electrical Field Guided Electrospray Deposition for Production of Gradient Particle Patterns.
Yan, Wei-Cheng; Xie, Jingwei; Wang, Chi-Hwa
2018-06-06
Our previous work demonstrated the uniform particle pattern formation on the substrates using electrical field guided electrospray deposition. In this work, we reported for the first time the fabrication of gradient particle patterns on glass slides using an additional point, line, or bar electrode based on our previous electrospray deposition configuration. We also demonstrated that the polydimethylsiloxane (PDMS) coating could result in the formation of uniform particle patterns instead of gradient particle patterns on glass slides using the same experimental setup. Meanwhile, we investigated the effect of experimental configurations on the gradient particle pattern formation by computational simulation. The simulation results are in line with experimental observations. The formation of gradient particle patterns was ascribed to the gradient of electric field and the corresponding focusing effect. Cell patterns can be formed on the particle patterns deposited on PDMS-coated glass slides. The formed particle patterns hold great promise for high-throughput screening of biomaterial-cell interactions and sensing.
Symmetric Tensor Decomposition
DEFF Research Database (Denmark)
Brachat, Jerome; Comon, Pierre; Mourrain, Bernard
2010-01-01
We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....
First-principles calculation of electric field gradients in metals, semiconductors, and insulators
Energy Technology Data Exchange (ETDEWEB)
Zwanziger, J.W. [Dalhousie Univ, Dept Chem, Halifax, NS (Canada); Dalhousie Univ, Inst Res Mat, Halifax, NS (Canada); Torrent, M. [CEA Bruyeres-le-Chatel, Dept Phys Theor and Appl, Bruyeres 91 (France)
2008-07-01
A scheme for computing electric field gradients within the projector augmented wave (PAW) formalism of density functional theory is presented. On the basis of earlier work (M. Profeta, F. Mauri, C.J. Pickard, J. Am. Chem. Soc. 125, 541, 2003) the present implementation handles metallic cases as well as insulators and semiconductors with equal efficiency. Details of the implementation, as well as applications and the discussion of the limitations of the PAW method for computing electric field gradients are presented. (authors)
Spin imaging in solids using synchronously rotating field gradients and samples
International Nuclear Information System (INIS)
Wind, R.A.; Yannoni, C.S.
1983-01-01
A method for spin-imaging in solids using nuclear magnetic resonance (NMR) spectroscopy is described. With this method, the spin density distribution of a two- or three-dimensional object such as a solid can be constructed resulting in an image of the sample. This method lends itself to computer control to map out an image of the object. This spin-imaging method involves the steps of placing a solid sample in the rf coil field and the external magnetic field of an NMR spectrometer. A magnetic field gradient is superimposed across the sample to provide a field gradient which results in a varying DC field that has different values over different parts of the sample. As a result, nuclei in different parts of the sample have different resonant NMR frequencies. The sample is rotated about an axis which makes a particular angle of 54.7 degrees with the static external magnetic field. The magnetic field gradient which has a spatial distribution related to the sample spinning axis is then rotated synchronously with the sample. Data is then collected while performing a solid state NMR line narrowing procedure. The next step is to change the phase relation between the sample rotation and the field gradient rotation. The data is again collected as before while the sample and field gradient are synchronously rotated. The phase relation is changed a number of times and data collected each time. The spin image of the solid sample is then reconstructed from the collected data
Canonical single field slow-roll inflation with a non-monotonic tensor-to-scalar ratio
Energy Technology Data Exchange (ETDEWEB)
Germán, Gabriel [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford, OX1 3NP (United Kingdom); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. postal J-48, CP 72570, Puebla, Pue., México (Mexico); Hidalgo, Juan Carlos [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. postal 48-3, 62251 Cuernavaca, Morelos, México (Mexico); Sussman, Roberto A., E-mail: gabriel@fis.unam.mx, E-mail: aherrera@ifuap.buap.mx, E-mail: hidalgo@fis.unam.mx, E-mail: sussman@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apdo. postal 70-543, 04510 México D. F., México (Mexico)
2016-05-01
We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter ε(φ) and its derivatives ε'(φ) and ε''(φ), thereby extracting general conditions on the tensor-to-scalar ratio r and the running n {sub sk} at φ {sub H} where the perturbations are produced, some 50–60 e -folds before the end of inflation. We find quite generally that for models where ε(φ) develops a maximum, a relatively large r is most likely accompanied by a positive running while a negligible tensor-to-scalar ratio implies negative running. The definitive answer, however, is given in terms of the slow-roll parameter ξ{sub 2}(φ). To accommodate a large tensor-to-scalar ratio that meets the limiting values allowed by the Planck data, we study a non-monotonic ε(φ) decreasing during most part of inflation. Since at φ {sub H} the slow-roll parameter ε(φ) is increasing, we thus require that ε(φ) develops a maximum for φ > φ {sub H} after which ε(φ) decrease to small values where most e -folds are produced. The end of inflation might occur trough a hybrid mechanism and a small field excursion Δφ {sub e} ≡ |φ {sub H} −φ {sub e} | is obtained with a sufficiently thin profile for ε(φ) which, however, should not conflict with the second slow-roll parameter η(φ). As a consequence of this analysis we find bounds for Δφ {sub e} , r {sub H} and for the scalar spectral index n {sub sH} . Finally we provide examples where these considerations are explicitly realised.
Josephson tunnel junctions in a magnetic field gradient
DEFF Research Database (Denmark)
Monaco, R.; Mygind, Jesper; Koshelets, V.P.
2011-01-01
We measured the magnetic field dependence of the critical current of high-quality Nb-based planar Josephson tunnel junctions in the presence of a controllable nonuniform field distribution. We found skewed and slowly changing magnetic diffraction patterns quite dissimilar from the Fraunhofer...
International Nuclear Information System (INIS)
Zhou, J. F.; Shao, C. L.; Gu, B. Q.
2016-01-01
Magnetic particles (MPs) are known to respond to a magnetic field and can be moved by magnetic force, which make them good carriers in bioengineering and pharmaceutical engineering. In this paper, a pose control method for the straight chain composed of MPs is proposed, and the chain with one pose can be moved to another position with another pose using alternately employed uniform and gradient magnetic fields. Based on computer simulations, it is revealed that in the uniform magnetic field, the MPs form a straight chain with the same separation space along the field lines, and once the uniform magnetic field rotates, the chain also rotates with the field. In the gradient magnetic field, the MPs move toward the higher field so that the translation of the chain can be realized. The simulation results indicate that while the uniform magnetic field is rotating, there exists certain hysteresis between the chain and the field, and the chain is not straight anymore. So the uniform magnetic field should rest at the target angle for a period to make the chain fully relax to be straight. For nanoMP, its magnetic moment directly determines the gradient magnetic force which is much smaller than the dipole–dipole force among MPs. Therefore, the translation of the chain is much more time-consuming than rotation. To enlarge the translational velocity, it is suggested to increase the size of MPs or the magnetic field gradient
Jiang, Limei; Xu, Xiaofei; Zhou, Yichun
2016-12-01
With the development of the integrated circuit technology and decreasing of the device size, ferroelectric films used in nano ferroelectric devices become thinner and thinner. Along with the downscaling of the ferroelectric film, there is an increasing influence of two strain gradient related terms. One is the strain gradient elasticity and the other one is flexoelectricity. To investigate the interrelationship between flexoelectricity and strain gradient elasticity and their combined effect on the domain structure in ferroelectric nanofilms, a phase field model of flexoelectricity and strain gradient elasticity on the ferroelectric domain evolution is developed based on Mindlin's theory of strain-gradient elasticity. Weak form is derived and implemented in finite element formulations for numerically solving the model equations. The simulation results show that upper bounds for flexoelectric coefficients can be enhanced by increasing strain gradient elasticity coefficients. While a large flexoelectricity that exceeds the upper bound can induce a transition from a ferroelectric state to a modulated/incommensurate state, a large enough strain gradient elasticity may lead to a conversion from an incommensurate state to a ferroelectric state. Strain gradient elasticity and the flexoelectricity have entirely opposite effects on polarization. The observed interrelationship between the strain gradient elasticity and flexoelectricity is rationalized by an analytical solution of the proposed theoretical model. The model proposed in this paper could help us understand the mechanism of phenomena observed in ferroelectric nanofilms under complex electromechanical loads and provide some guides on the practical application of ferroelectric nanofilms.
Exterior domain problems and decomposition of tensor fields in weighted Sobolev spaces
Schwarz, Günter
1996-01-01
The Hodge decompOsition is a useful tool for tensor analysis on compact manifolds with boundary. This paper aims at generalising the decomposition to exterior domains G ⊂ IR n. Let L 2a Ω k(G) be the space weighted square integrable differential forms with weight function (1 + |χ|²)a, let d a be the weighted perturbation of the exterior derivative and δ a its adjoint. Then L 2a Ω k(G) splits into the orthogonal sum of the subspaces of the d a-exact forms with vanishi...
Communication: Control of chemical reactions using electric field gradients
Energy Technology Data Exchange (ETDEWEB)
Deshmukh, Shivaraj D.; Tsori, Yoav, E-mail: tsori@bgu.ac.il [Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)
2016-05-21
We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.
Communication: Control of chemical reactions using electric field gradients.
Deshmukh, Shivaraj D; Tsori, Yoav
2016-05-21
We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.
Effect of magnetic field gradient on power absorption in compact microwave plasma sources
International Nuclear Information System (INIS)
Dey, Indranuj; Shamim, Md.; Bhattacharjee, Sudeep
2006-01-01
We study the effect of the change in magnetic field gradient at the electron cyclotron resonance (ECR) point, on the generated plasma for two different cylindrical minimum B-field configurations, viz. the hexapole and the octupole. The plasma parameters such as the electron and ion density, electron temperature including the wave field characteristics (B-field and E-field) in the plasma will be measured and compared for the two configurations. (author)
Susceptibility tensor imaging (STI) of the brain.
Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu
2017-04-01
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Susceptibility Tensor Imaging (STI) of the Brain
Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu
2016-01-01
Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169
Hiramatsu, Y.; Matsumoto, N.; Sawada, A.
2016-12-01
We analyze gravity anomalies in the focal area of the 2016 Kumamoto earthquake, evaluate the continuity, segmentation and faulting type of the active fault zones, and discuss relationships between those features and the aftershock distribution. We compile the gravity data published by the Gravity Research Group in Southwest Japan (2001), the Geographical Survey Institute (2006), Yamamoto et al. (2011), Honda et al. (2012), and the Geological Survey of Japan, AIST (2013). We apply terrain corrections with 10 m DEM and a low-pass filter, then remove a linear trend to obtain Bouguer anomalies. We calculate the first horizontal derivative (HD), the first vertical derivative (VD), the normalized total horizontal derivative (TDX) (Cooper and Cowan, 2006), the dimensionality index (Di) (Beki and Pedersen, 2010), and dip angle (β) (Beki, 2013) from a gravity gradient tensor. The HD, VD and TDX show the existence of the continuous fault structure along the Futagawa fault zone, extending from the Uto peninsula to the Beppu Bay except Mt. Aso area. Aftershocks are distributed along this structural boundary from the confluence of the Futagawa and the Hinagu fault zones to the east end of the Aso volcano. The distribution of dip angle β along the Futagawa fault zone implies a normal faulting, which corresponds to the coseismic faulting estimated geologically and geomorphologically. We observe the S-shaped distribution of the Bouguer anomalies around the southern part of the Hinagu segment, indicating a right lateral faulting. The VD and TDX support the existence of the fault structure along the segment but it is not so clear. We can recognize no clear structural boundaries along the Takano-Shirahata segment. TDX implies the existence of a structural boundary with a NW-SE trend around the boundary between the Hinagu and Takano-Shirahata segments. The Di shows that this boundary has a 3D-like structure rather than a 2D-like one, suggesting the discontinuity of 2D-like fault
Tensor surgery and tensor rank
M. Christandl (Matthias); J. Zuiddam (Jeroen)
2018-01-01
textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new vertices
Tensor surgery and tensor rank
M. Christandl (Matthias); J. Zuiddam (Jeroen)
2016-01-01
textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new
Goora, Frédéric G; Colpitts, Bruce G; Balcom, Bruce J
2014-01-01
The time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality. This paper outlines a method that utilizes the magnetic field gradient waveform monitor method to directly measure the temporal evolution of the magnetic field gradient from a step-like input function and extracts the system impulse response. With the basic assumption that the gradient system is sufficiently linear and time invariant to permit system theory analysis, the impulse response is used to determine a pre-equalized (optimized) input waveform that provides a desired gradient response at the output of the system. An algorithm has been developed that calculates a pre-equalized waveform that may be accurately reproduced by the amplifier (is physically realizable) and accounts for system limitations including system bandwidth, amplifier slew rate capabilities, and noise inherent in the initial measurement. Significant improvements in magnetic field gradient waveform fidelity after pre-equalization have been realized and are summarized. Copyright © 2013 Elsevier Inc. All rights reserved.
Mode I and mixed mode crack-tip fields in strain gradient plasticity
DEFF Research Database (Denmark)
Goutianos, Stergios
2011-01-01
Strain gradients develop near the crack-tip of Mode I or mixed mode cracks. A finite strain version of the phenomenological strain gradient plasticity theory of Fleck–Hutchinson (2001) is used here to quantify the effect of the material length scales on the crack-tip stress field for a sharp...... stationary crack under Mode I and mixed mode loading. It is found that for material length scales much smaller than the scale of the deformation gradients, the predictions converge to conventional elastic–plastic solutions. For length scales sufficiently large, the predictions converge to elastic solutions....... Thus, the range of length scales over which a strain gradient plasticity model is necessary is identified. The role of each of the three material length scales, incorporated in the multiple length scale theory, in altering the near-tip stress field is systematically studied in order to quantify...
International Nuclear Information System (INIS)
Sheridan, T. E.; Katschke, M. R.; Wells, K. D.
2007-01-01
A method for measuring the time-averaged vertical electric field and its gradient in the plasma sheath using clusters with n=2 or 3 floating microspheres of known mass is described. The particle charge q is found by determining the ratio of the breathing frequency to the center-of-mass frequency for horizontal (in-plane) oscillations. The electric field at the position of the particles is then calculated using the measured charge-to-mass ratio, and the electric-field gradient is determined from the vertical resonance frequency. The Debye length is also found. Experimental results are in agreement with a simple sheath model
Electric-field gradients at Ta donor impurities in Cr{sub 2}O{sub 3}(Ta) semiconductor
Energy Technology Data Exchange (ETDEWEB)
Darriba, G.N. [Departamento de Fisica and IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Errico, L.A. [Departamento de Fisica and IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Universidad Nacional del Noroeste Bonaerense (UNNOBA), Monteagudo 2772, 2700 Pergamino (Argentina); Munoz, E.L; Richard, D. [Departamento de Fisica and IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina); Eversheim, P.D. [Helmholtz-Institut fuer Strahlen-und Kernphysik (H-ISKP), Universitaet Bonn, Nussallee 14-16, 53115 Bonn (Germany); Renteria, M., E-mail: renteria@fisica.unlp.edu.a [Departamento de Fisica and IFLP (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC 67, 1900 La Plata (Argentina)
2009-10-01
We report perturbed-angular-correlation (PAC) experiments on {sup 181}Hf(->{sup 181}Ta)-implanted corundum Cr{sub 2}O{sub 3} powder samples in order to determine the magnitude and symmetry of the electric-field gradient (EFG) tensor at Ta donor impurity sites of this semiconductor. These results are analyzed in the framework of ab initio full-potential augmented-plane wave plus local orbitals (FP-APW+lo) calculations. The results are also compared with EFG results coming from PAC experiments in isomorphous alpha-Al{sub 2}O{sub 3} and alpha-Fe{sub 2}O{sub 3} doped with {sup 111}In->{sup 111}Cd and {sup 181}Hf->{sup 181}Ta tracers. This combined analysis enables us to quantify the magnitude of the lattice relaxations induced by the presence of the impurity and to determine the charge state of the impurity donor level introduced by Ta in the band gap of the semiconductor.
Electric-field gradients at 181Ta impurity sites in Ho2O3 and Eu2O3 bixbyites
International Nuclear Information System (INIS)
Errico, Leonardo A.; Renteria, Mario; Bibiloni, Anibal G.; Freitag, Kristian
2007-01-01
The time-differential γ-γ perturbed-angular-correlation (PAC) technique with ion-implanted 181 Hf tracers has been applied to study the hyperfine interactions of 181 Ta impurities in the cubic bixbyite structure of Ho 2 O 3 and Eu 2 O 3 . The PAC experiments were performed in air in the temperature range 300-1373 K (in the case of Ho 2 O 3 ) and 77-1273 K (in the case of Eu 2 O 3 ). For both oxides, two electric-quadrupole interactions were found and attributed to the electric-field gradients (EFGs) acting on 181 Ta probes substitutionally located at the two free-of-defects nonequivalent cation sites of the bixbyite structure. In the case of Ho 2 O 3 , two additional interactions were found in the temperature range 300-573 K. These results, as well as previous characterizations of the EFG at 181 Ta sites in bixbyites, were compared to those obtained in experiments using 111 Cd as probe, and to point-charge model calculations. Very recent ab initio predictions for the EFG tensor at impurities sites in binary oxides are also discussed. All these results enable us to discuss the validity of the widely used ionic model to describe the EFG in these highly ionic compounds
International Nuclear Information System (INIS)
Renteria, M.; Requejo, F.G.; Bibiloni, A.G.; Pasquevich, A.F.; Shitu, J.; Freitag, K.
1997-01-01
We studied the hyperfine interactions of 181 Ta in In 2 O 3 by means of perturbed-angular-correlation (PAC) measurements. We prepared thin films of indium sesquioxide with different degrees of initial amorphism and implanted them with 181 Hf. Chemically prepared indium-sesquioxide powder samples were also made starting from neutron-irradiated HfCl 4 , which provides the 181 Hf PAC probes. PAC experiments were performed on each sample at room temperature, after each step of annealing programs at increasing temperatures up to the full crystallization of the samples. The results indicate that the PAC probe occupies preferentially the axially symmetric cation site. Point-charge-model calculations were performed. The calculated asymmetry parameters η were compared with those obtained in 181 Hf PAC experiments performed also on other binary oxides, showing that the symmetry of the electric-field-gradient (EFG) tensor at 181 Ta cation sites in binary oxides is mainly determined by the nearest-neighbor oxygen-ion distribution around the probe. Comparisons of the experimental results in bixbyites obtained for both PAC probes, 111 Cd and 181 Ta, show that the local EFG in bixbyites, are strongly dependent on the geometry of the sites and the electronic configuration of the probes. copyright 1997 The American Physical Society
Diffusion tensor image registration using hybrid connectivity and tensor features.
Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang
2014-07-01
Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
K. Bartušek
2003-01-01
Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.
The photospheric vector magnetic field of a sunspot and its vertical gradient
Hagyard, M. J.; West, E. A.; Tandberg-Hanssen, E.; Smith, J. E.; Henze, W., Jr.; Beckers, J. M.; Bruner, E. C.; Hyder, C. L.; Gurman, J. B.; Shine, R. A.
1981-01-01
The results of direct comparisons of photospheric and transition region line-of-sight field observations of sunspots using the SMM UV spectrometer and polarimeter are reported. The analysis accompanying the data is concentrated on demonstrating that the sunspot concentrated magnetic field extends into the transition region. An observation of a sunspot on Oct. 23, 1980 at the S 18 E 03 location is used as an example. Maximum field strengths ranged from 2030-2240 gauss for large and small umbrae viewed and inclination of the field to the line-of-sight was determined for the photosphere and transition region. The distribution of the magnetic field over the sunspot and variation of the line-of-sight gradient are discussed, as are the magnitudes and gradients of the photospheric field across the penumbral-photospheric boundaries.
International Nuclear Information System (INIS)
Campus, P.; Cespuglio, G.
1994-04-01
When studying seismicity in volcanic areas it is appropriate to treat the seismic source in a form a priori not restricted to a double couple, since its mechanism may reflect not only small scale tectonics but also fluid dynamics. The monitoring of fluid dynamics can be therefore attempted from the retrieval of the rupture processes. It is not possible to use standard methods, based on the distribution of polarities of first arrivals to determine the non double-couple components of the seismic source. The new method presented here is based on the wave form inversion of the dominant part of the seismograms, where the signal to noise ratio is very large and allows the inversion of the full seismic moment tensor. The results of a pilot study in the Phlegraean Fields (South Italy) are presented. 13 refs, 10 figs, 4 tabs
Estimation of geothermal gradients from single temperature log-field cases
International Nuclear Information System (INIS)
Kutasov, I M; Eppelbaum, L V
2009-01-01
A geothermal gradient is one of the most frequently used parameters in logging geophysics. However, the drilling process greatly disturbs the temperature of the formations around the wellbore. For this reason, in order to determine with the required accuracy the formation temperatures and geothermal gradients, a certain length of shut-in time is required. It was shown earlier (Kutasov 1968 Freiberger Forshungshefte C 238 55–61, 1987 Geothermics 16 467–72) that at least two transient temperature surveys are needed to determine the geothermal gradient with adequate accuracy. However, in many cases only one temperature log is conducted in a shut-in borehole. For these cases, we propose an approximate method for the estimation of the geothermal gradient. The utilization of this method is demonstrated on four field examples
Measurement of asymmetric optical pumping of ions accelerating in a magnetic-field gradient
International Nuclear Information System (INIS)
Sun Xuan; Scime, Earl; Miah, Mahmood; Cohen, Samuel; Skiff, Frederick
2004-01-01
We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic-field gradient. The signature is a difference in the laser-induced-fluorescence emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities
Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient
Energy Technology Data Exchange (ETDEWEB)
Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff
2004-10-28
We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities.
Measurement of Asymmetric Optical Pumping of Ions Accelerating in a Magnetic-field Gradient
International Nuclear Information System (INIS)
Xuan Sun; Earl Scime; Mahmood Miah; Samuel Cohen; Frederick Skiff
2004-01-01
We report observations of asymmetric optical pumping of argon ions accelerating in a magnetic field gradient. The signature is a difference in the laser-induced-fluorescence (LIF) emission amplitude from a pair of Zeeman-split states. A model that reproduces the dependence of the asymmetry on magnetic-field and ion-velocity gradients is described. With the model, the fluorescence intensity ratio provides a new method of measuring ion collisionality. This phenomenon has implications for interpreting stellar plasma spectroscopy data which often exhibit unequal Zeeman state intensities
International Nuclear Information System (INIS)
Chu, T.K.
1987-12-01
The interplay of electron cross-field thermal conduction and the reconnection of magnetic field lines around an m = 1 magnetic island prior to a sawtooth crash can generate a large pressure gradient in a boundary layer adjacent to the reconnecting surface, leading to an enhanced gradient of poloidal beta to satisfy the threshold condition for ideal MHD modes. This narrow boundary layer and the short onset time of a sawtooth crash can be supported by fine-grained turbulent processes in a tokamak plasma. 11 refs
DEFF Research Database (Denmark)
Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib
2017-01-01
PURPOSE: In 3D gradient echo magnetic resonance imaging (MRI), strong field gradients B0macro are visually observed at air/tissue interfaces. At low spatial resolution in particular, the respective field gradients lead to an apparent increase in intravoxel dephasing, and subsequently, to signal...... loss or inaccurate R2* estimates. If the strong field gradients are measured, their influence can be removed by postprocessing. METHODS: Conventional corrections usually assume a linear phase evolution with time. For high macroscopic gradient inhomogeneities near the edge of the brain...
Feasibility of Imaging Tissue Electrical Conductivity by Switching Field Gradients with MRI.
Gibbs, Eric; Liu, Chunlei
2015-12-01
Tissue conductivity is a biophysical marker of tissue structure and physiology. Present methods of measuring tissue conductivity are limited. Electrical impedance tomography, and magnetic resonance electrical impedance tomography rely on passing external current through the object being imaged, which prevents its use in most human imaging. Recently, the RF field used for MR excitation has been used to non-invasively measure tissue conductivity. This technique is promising, but conductivity at higher frequencies is less sensitive to tissue structure. Measuring tissue conductivity non-invasively at low frequencies remains elusive. It has been proposed that eddy currents generated during the rise and decay of gradient pulses could act as a current source to map low-frequency conductivity. This work centers on a gradient echo pulse sequence that uses large gradients prior to excitation to create eddy currents. The electric and magnetic fields during a gradient pulse are simulated by a finite-difference time-domain simulation. The sequence is also tested with a phantom and an animal MRI scanner equipped with gradients of high gradient strengths and slew rate. The simulation demonstrates that eddy currents in materials with conductivity similar to biological tissue decay with a half-life on the order of nanoseconds and any eddy currents generated prior to excitation decay completely before influencing the RF signal. Gradient-induced eddy currents can influence phase accumulation after excitation but the effect is too small to image. The animal scanner images show no measurable phase accumulation. Measuring low-frequency conductivity by gradient-induced eddy currents is presently unfeasible.
González, Lina M; Ruder, Warren C; Mitchell, Aaron P; Messner, William C; LeDuc, Philip R
2015-06-01
Many motile unicellular organisms have evolved specialized behaviors for detecting and responding to environmental cues such as chemical gradients (chemotaxis) and oxygen gradients (aerotaxis). Magnetotaxis is found in magnetotactic bacteria and it is defined as the passive alignment of these cells to the geomagnetic field along with active swimming. Herein we show that Magnetospirillum magneticum (AMB-1) show a unique set of responses that indicates they sense and respond not only to the direction of magnetic fields by aligning and swimming, but also to changes in the magnetic field or magnetic field gradients. We present data showing that AMB-1 cells exhibit sudden motility reversals when we impose them to local magnetic field gradients. Our system employs permalloy (Ni(80)Fe(20)) islands to curve and diverge the magnetic field lines emanating from our custom-designed Helmholtz coils in the vicinity of the islands (creating a drop in the field across the islands). The three distinct movements we have observed as they approach the permalloy islands are: unidirectional, single reverse and double reverse. Our findings indicate that these reverse movements occur in response to magnetic field gradients. In addition, using a permanent magnet we found further evidence that supports this claim. Motile AMB-1 cells swim away from the north and south poles of a permanent magnet when the magnet is positioned less than ∼30 mm from the droplet of cells. All together, these results indicate previously unknown response capabilities arising from the magnetic sensing systems of AMB-1 cells. These responses could enable them to cope with magnetic disturbances that could in turn potentially inhibit their efficient search for nutrients.
Validation of buoyancy driven spectral tensor model using HATS data
DEFF Research Database (Denmark)
Chougule, A.; Mann, Jakob; Kelly, Mark C.
2016-01-01
We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper....... The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model...
Directory of Open Access Journals (Sweden)
Yao Huang
2015-01-01
Full Text Available Light scattering material with gradient refractive index was prepared under the electrical field by taking methyl methacrylate (MMA monomer as the matrix with the addition of a little preheated styrene (ST and peroxidation benzoin formyl (BPO. The material obtained under electrical field presented different transmittance and molecular weight at different parts of the cylindrical sample along the axis of the direction of electric field which led to the layering phenomenon and gradient refractive index. The disparity of molecular weight between different layers can be as much as 230 thousand. There were several peaks in the figure of GPC test of the sample under electric field. This proved that there were polymers with different molecular weights in the sample. Therefore, it can be concluded that electrical field has a significant effect on polymerization.
International Nuclear Information System (INIS)
Chen, A P; Zhukova, V; Zhukov, A; Dominguez, L; Chizhik, A; Blanco, J M; Gonzalez, J
2004-01-01
The influence of an ac magnetic field and the induced magnetic anisotropy (by field annealing and torsion annealing) on the magnetoimpedance (MI) tensor in an amorphous wire has been analysed. The experimental measurements were carried out in an amorphous wire of composition (Co 0.94 Fe 0.06 ) 72.5 Si 12.5 B 15 , with a negative, nearly zero magnetostriction constant, excited either by an ac circular, h φ , or an axial, h z , magnetic field created by an ac electric current passing along the wire or through an exciting coil mounted on the wire, respectively. The ac current amplitude was changed from 7.5 to 40 mA and the current frequency f was varied from 1.5 to 20 MHz. The induced magnetic anisotropies modify the MI response drastically. The field annealed sample shows a unique peak of the MI effect, while the torsion annealed sample presents an asymmetric giant magnetoimpedance ratio associated with the induced magnetic anisotropy which provokes such thermal treatments
Techniques for Ultra-high Magnetic Field Gradient NMR Diffusion Measurements
Sigmund, Eric E.; Mitrovic, Vesna F.; Calder, Edward S.; Will Thomas, G.; Halperin, William P.; Reyes, Arneil P.; Kuhns, Philip L.; Moulton, William G.
2001-03-01
We report on development and application of techniques for ultraslow diffusion coefficient measurements through nuclear magnetic resonance (NMR) in high magnetic field gradients. We have performed NMR experiments in a steady fringe field gradient of 175 T/m from a 23 T resistive Bitter magnet, as well as in a gradient of 42 T/m from an 8 T superconducting magnet. New techniques to provide optimum sensitivity in these experiments are described. To eliminate parasitic effects of the temporal instability of the resistive magnet, we have introduced a passive filter: a highly conductive cryogen-cooled inductive shield. We show experimental demonstration of such a shield’s effect on NMR performed in the Bitter magnet. For enhanced efficiency, we have employed “frequency jumping” in our spectrometer system. Application of these methods has made possible measurements of diffusion coefficients as low as 10-10 cm^2/s, probing motion on a 250 nm length scale.
Duijnhoven, van F.G.H.; Bastiaansen, C.W.M.
1999-01-01
A new method is presented to generate and to fixate compositional gradients in blends of two miscible and amorphous polymers. A compositional gradient is introduced into a solution of a polymer in a monomer by use of a centrifugal field, and this gradient is subsequently fixated by polymerization of
Energy Technology Data Exchange (ETDEWEB)
Renteria, Mario [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina); Freitag, Kristian [Universitaet Bonn, Institut fuer Strahlen- und Kernphysik (ISKP) (Germany); Errico, Leonardo A. [Universidad Nacional de La Plata, Departamento de Fisica, Facultad de Ciencias Exactas (Argentina)
1999-09-15
The electric-field-gradient (EFG) tensor at both cation sites of the bixbyite structure in {sup 181}Hf-implanted Lu- and Sm-sesquioxides was determined by the PAC technique. The cumulated EFG data at Ta-impurity sites in binary oxides enable us to discuss the 'universal' character of the empirical correlation between local and ionic contributions to the EFG in these systems. An EFG factorization in terms of the electronic characteristics of the probe and the geometry of the cation coordination is proposed, which explains the experimental EFG results at Ta/Cd impurity sites in bixbyites and agrees with a simplified decomposition of the EFG valence contribution coming from ab-initio calculations.
An optimized target-field method for MRI transverse biplanar gradient coil design
International Nuclear Information System (INIS)
Zhang, Rui; Xu, Jing; Huang, Kefu; Zhang, Jue; Fang, Jing; Fu, Youyi; Li, Yangjing
2011-01-01
Gradient coils are essential components of magnetic resonance imaging (MRI) systems. In this paper, we present an optimized target-field method for designing a transverse biplanar gradient coil with high linearity, low inductance and small resistance, which can well satisfy the requirements of permanent-magnet MRI systems. In this new method, the current density is expressed by trigonometric basis functions with unknown coefficients in polar coordinates. Following the standard procedures, we construct an objective function with respect to the total square errors of the magnetic field at all target-field points with the penalty items associated with the stored magnetic energy and the dissipated power. By adjusting the two penalty factors and minimizing the objective function, the appropriate coefficients of the current density are determined. Applying the stream function method to the current density, the specific winding patterns on the planes can be obtained. A novel biplanar gradient coil has been designed using this method to operate in a permanent-magnet MRI system. In order to verify the validity of the proposed approach, the gradient magnetic field generated by the resulted current density has been calculated via the Biot–Savart law. The results have demonstrated the effectiveness and advantage of this proposed method
Ab-initio calculations of electric field gradient in Ru compounds and ...
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 2. A b − i n i t i o calculations of electric field gradient in Ru compounds and their implication on the nuclear quadrupole moments of 99 Ru and 101 Ru. S N MISHRA. Research Article Volume 89 Issue 2 August 2017 Article ID 22 ...
Kenjeres, S.; Zinsmeester, R.; Pyrda, L.; Fornalik-Wajs, E.; Szmyd, J.
2015-01-01
We present combined experimental and numerical studies of the heat transfer of paramagnetic or diamagnetic fluid inside a differentially heated cubical enclosure subjected to the magnetic field gradients of different strength and orientation. In contrast to the previously reported studies in
Effects of high-gradient magnetic fields on living cell machinery
Czech Academy of Sciences Publication Activity Database
Zablotskyy, V.; Lunov, O.; Kubinová, Šárka; Polyakova, T.; Syková, Eva; Dejneka, A.
2016-01-01
Roč. 49, č. 2016 (2016), s. 493003 ISSN 0022-3727 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : living cell * magnetic gradient force * cell mechanics * stem cell * magnetic field Subject RIV: FP - Other Medical Disciplines Impact factor: 2.588, year: 2016
Static high-gradient magnetic fields affect the functionality of monocytic cells
Czech Academy of Sciences Publication Activity Database
Syrovets, T.; Schmidt, Z.; Buechele, B.; Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Dempsey, N.; Simmet, T.
2014-01-01
Roč. 28, č. 1 (2014), s. 1-2 ISSN 0892-6638 Institutional support: RVO:68378271 Keywords : static high-gradient * magnet ic fields * affect the functionality * monocytic cells Subject RIV: BM - Solid Matter Physics ; Magnet ism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.)
Pilling evaluation of patterned fabrics based on a gradient field method
Czech Academy of Sciences Publication Activity Database
Techniková, L.; Tunák, M.; Janáček, Jiří
2016-01-01
Roč. 41, č. 1 (2016), s. 97-101 ISSN 0971-0426 Institutional support: RVO:67985823 Keywords : 3D surface reconstruction * fabric pilling * gradient field method * patterned fabric * pills detection Subject RIV: JS - Reliability ; Quality Management, Testing Impact factor: 0.430, year: 2016
How a high-gradient magnetic field could affect cell life
Czech Academy of Sciences Publication Activity Database
Zablotskyy, Vitaliy A.; Polyakova, Tetyana; Lunov, Oleg; Dejneka, Alexandr
2016-01-01
Roč. 6, Nov (2016), 1-12, č. článku 37407. ISSN 2045-2322 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : high-gradient magnetic field * cell Subject RIV: BO - Biophysics Impact factor: 4.259, year: 2016
Ab-initio calculations of electric field gradient in Ru compounds and ...
Indian Academy of Sciences (India)
S N Mishra
2017-07-11
Jul 11, 2017 ... with calculated electric field gradient (EFG) for a large number of Ru-based compounds. The ab-initio ... zz assumed to stem from geometric arrangement of ... tant nuclear probes for the measurements of quadrupole ... with the unit cell including the nucleus and no restriction is put on ..... The effect of on-site ...
Tensors and their applications
Islam, Nazrul
2006-01-01
About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplines of science and engineering, in a lucid manner. The text has been explained section wise, every concept has been narrated in the form of definition, examples and questions related to the concept taught. The overall package of the book is highly useful and interesting for the people associated with the field. Contents: Preliminaries Tensor Algebra Metric Tensor and Riemannian Metric Christoffel`s Symbols and Covariant Differentiation Riemann-Christoffel Tensor The e-Systems and the Generalized Krönecker Deltas Geometry Analytical Mechanics Curvature of a Curve, Geodesic Parallelism of Vectors Ricci`s Coefficients of Rotation and Congruence Hyper Surfaces
The Effect of a Spiral Gradient Magnetic Field on the Ionic Conductivity of Water
Czech Academy of Sciences Publication Activity Database
Bartušek, Karel; Marcon, P.; Fiala, P.; Máca, J.; Dohnal, P.
2017-01-01
Roč. 9, č. 9 (2017), s. 1-8, č. článku 664. ISSN 2073-4441 R&D Projects: GA ČR(CZ) GA17-00607S Institutional support: RVO:68081731 Keywords : gradient field * demineralized water * conductivity * ionic conductivity * magnetic field Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.832, year: 2016
The Pioneer 9 electric field experiment. III - Radial gradients and storm observations.
Scarf, F. L.; Green, I. M.; Burgess, J. S.
1973-01-01
We present a detailed analysis of the Pioneer 9 VLF electric field observations for 20 selected storm periods covering a heliocentric range extending from 0.754 AU to 0.99 AU. Although data from only two low frequency channels are available, the results of the present study tend to confirm the preliminary speculation by Scarf and Siscoe (1971) that the turbulent E-field spectrum in the disturbed solar wind has a significant radial gradient.
Origin and orientation of electric field gradient in ordered FeNi
International Nuclear Information System (INIS)
Guenzburger, D.J.R.; Ellis, D.E.
1987-01-01
The electronic structure of tetrataenite, the ordered phase of Fe Ni, has been studied in the molecular cluster approximation using local density theory. Clusters containing 13 and 19 atoms were embedded in the fcc host lattice and spin-unrestricted potentials were iterated to self-consistency. Local moments, magnetic hyperfine fields and electric field gradients (EFG) at the iron sites were determined for comparison with experiment. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)
2017-03-13
The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.
Tensor voting for robust color edge detection
Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec
2014-01-01
The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...
Measurement of magnetic field gradients using Raman spectroscopy in a fountain
Srinivasan, Arvind; Zimmermann, Matthias; Efremov, Maxim A.; Davis, Jon P.; Narducci, Frank A.
2017-02-01
In many experiments involving cold atoms, it is crucial to know the strength of the magnetic field and/or the magnetic field gradient at the precise location of a measurement. While auxiliary sensors can provide some of this information, the sensors are usually not perfectly co-located with the atoms and so can only provide an approximation to the magnetic field strength. In this article, we describe a technique to measure the magnetic field, based on Raman spectroscopy, using the same atomic fountain source that will be used in future magnetically sensitive measurements.
Analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field method
Directory of Open Access Journals (Sweden)
N.Yoshida
2007-09-01
Full Text Available An analytical free energy gradient for the molecular Ornstein-Zernike self-consistent-field (MOZ-SCF method is presented. MOZ-SCF theory is one of the theories to considering the solvent effects on the solute electronic structure in solution. [Yoshida N. et al., J. Chem. Phys., 2000, 113, 4974] Molecular geometries of water, formaldehyde, acetonitrile and acetone in water are optimized by analytical energy gradient formula. The results are compared with those from the polarizable continuum model (PCM, the reference interaction site model (RISM-SCF and the three dimensional (3D RISM-SCF.
Uranium isotope separation by magnetic field gradient and visible light acting in a liquid medium
International Nuclear Information System (INIS)
Borges, O.N.
1985-01-01
The literature shows that excited uranyl can assume the ''singlet'' and ''triplet'' states, with different magnetic properties. In an aqueous medium, without organic complexity (to hamper dismutation), the action of light reduces uranyl to U(V), which is a radical -ion that can assume the ''doublet'' and ''quartet'' states, also with different magnetic properties. Due to the different constants of velocity of uranium 235 and 238 in the reduction of excited uranyl and in the oxidation of U(V) to UO 2 2+ , there is the probability of forming an isotopic gradient, in the aqueous solution, subjected to a magnetic field gradient, with consequent appropriate extraction. 6 refs
Self-diffusion measurements in heterogeneous systems using NMR pulsed field gradient technique
International Nuclear Information System (INIS)
Heink, W.; Kaerger, J.; Walter, A.
1978-01-01
The experimental pecularities of the NMR pulsed field gradient technique are critical surveyed in its application to zeolite adsorbate adsorbent systems. After a presentation of the different transport parameters accessible by this technique, the consequences of the existence of inner field gradients being inherent to heterogeneous systems are analyzed. Experimental conditions and consequences of an application of pulsed field gradients of high intensity which are necessary for the measurement of small intracrystalline self-diffusion coefficients, are discussed. Gradient pulses of 0.15 Tcm -1 with pulse widths of 2 ms maximum and relative deviations of less than 0.01 per mille can be realized. Since for a number of adsorbate adsorbent systems a distinct dependence of the intracrystalline self-diffusion coeffcients on adsorbate concentration is observed, determination of zeolite pore fiiling factor is of considerable importance for the interpretation of the diffusivities obtained. It is demonstrated that also this information can be obtained by NMR technique in a straightforward way with a mean error of less than 5 to 10 %. Applying this new method and using an optimum experimental device as described, pore filling factor dependences of the self-diffusion coefficients of alkanes in NaX zeolites can be followed over more than two orders of magnitude. (author)
Plocková, J; Chmelík, J
2001-05-25
Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.
Energy Technology Data Exchange (ETDEWEB)
Kaennaelae, Sami; Toivo, Tim; Jokela, Kari [STUK-Radiation and Nuclear Safety Authority, PO Box 14, 00881 Helsinki (Finland); Alanko, Tommi [Finnish Institute of Occupational Health, New Technologies and Risks, Topeliuksenkatu 41a A, 00250 Helsinki (Finland)], E-mail: sami.kannala@stuk.fi
2009-04-07
Recent advances in magnetic resonance imaging (MRI) have increased occupational exposure to magnetic fields. In this study, we examined the assessment of occupational exposure to gradient magnetic fields and time-varying magnetic fields generated by motion in non-homogeneous static magnetic fields of MRI scanners. These magnetic field components can be measured simultaneously with an induction coil setup that detects the time rate of change of magnetic flux density (dB/dt). The setup developed was used to measure the field components around two MRI units (1 T open and 3 T conventional). The measured values can be compared with dB/dt reference levels derived from magnetic flux density reference levels given by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). The measured motion-induced dB/dt values were above the dB/dt reference levels for both MRI units. The measured values for the gradient fields (echo planar imaging (EPI) and fast field echo (FFE) sequences) also exceeded the dB/dt reference levels in positions where the medical staff may have access during interventional procedures. The highest motion-induced dB/dt values were 0.7 T s{sup -1} for the 1 T scanner and 3 T s{sup -1} for the 3 T scanner when only the static field was present. Even higher values (6.5 T s{sup -1}) were measured for simultaneous exposure to motion-induced and gradient fields in the vicinity of the 3 T scanner.
Image reconstruction in k-space from MR data encoded with ambiguous gradient fields.
Schultz, Gerrit; Gallichan, Daniel; Weber, Hans; Witschey, Walter R T; Honal, Matthias; Hennig, Jürgen; Zaitsev, Maxim
2015-02-01
In this work, the limits of image reconstruction in k-space are explored when non-bijective gradient fields are used for spatial encoding. The image space analogy between parallel imaging and imaging with non-bijective encoding fields is partially broken in k-space. As a consequence, it is hypothesized and proven that ambiguities can only be resolved partially in k-space, and not completely as is the case in image space. Image-space and k-space based reconstruction algorithms for multi-channel radiofrequency data acquisitions are programmed and tested using numerical simulations as well as in vivo measurement data. The hypothesis is verified based on an analysis of reconstructed images. It is found that non-bijective gradient fields have the effect that densely sampled autocalibration data, used for k-space reconstruction, provide less information than a separate scan of the receiver coil sensitivity maps, used for image space reconstruction. Consequently, in k-space only the undersampling artifact can be unfolded, whereas in image space, it is also possible to resolve aliasing that is caused by the non-bijectivity of the gradient fields. For standard imaging, reconstruction in image space and in k-space is nearly equivalent, whereas there is a fundamental difference with practical consequences for the selection of image reconstruction algorithms when non-bijective encoding fields are involved. © 2014 Wiley Periodicals, Inc.
Effects of high-gradient magnetic fields on living cell machinery
International Nuclear Information System (INIS)
Zablotskii, V; Lunov, O; Kubinova, S; Polyakova, T; Dejneka, A; Sykova, E
2016-01-01
A general interest in biomagnetic effects is related to fundamental studies of the influence of magnetic fields on living objects on the cellular and whole organism levels. Emerging technologies offer new directions for the use of high-gradient magnetic fields to control cell machinery and to understand the intracellular biological processes of the emerging field of nanomedicine. In this review we aim at highlighting recent advances made in identifying fundamental mechanisms by which magnetic gradient forces act on cell fate specification and cell differentiation. The review also provides an analysis of the currently available magnetic systems capable of generating magnetic fields with spatial gradients of up to 10 MT m −1 , with the focus on their suitability for use in cell therapy. Relationships between experimental factors and underlying biophysical mechanisms and assumptions that would ultimately lead to a deeper understanding of cell machinery and the development of more predictive models for the evaluation of the effects of magnetic fields on cells, tissue and organisms are comprehensively discussed. (topical review)
Contribution of Field Strength Gradients to the Net Vertical Current of Active Regions
Vemareddy, P.
2017-12-01
We examined the contribution of field strength gradients for the degree of net vertical current (NVC) neutralization in active regions (ARs). We used photospheric vector magnetic field observations of AR 11158 obtained by Helioseismic and Magnetic Imager on board SDO and Hinode. The vertical component of the electric current is decomposed into twist and shear terms. The NVC exhibits systematic evolution owing to the presence of the sheared polarity inversion line between rotating and shearing magnetic regions. We found that the sign of shear current distribution is opposite in dominant pixels (60%–65%) to that of twist current distribution, and its time profile bears no systematic trend. This result indicates that the gradient of magnetic field strength contributes to an opposite signed, though smaller in magnitude, current to that contributed by the magnetic field direction in the vertical component of the current. Consequently, the net value of the shear current is negative in both polarity regions, which when added to the net twist current reduces the direct current value in the north (B z > 0) polarity, resulting in a higher degree of NVC neutralization. We conjecture that the observed opposite signs of shear and twist currents are an indication, according to Parker, that the direct volume currents of flux tubes are canceled by their return currents, which are contributed by field strength gradients. Furthermore, with the increase of spatial resolution, we found higher values of twist, shear current distributions. However, the resolution effect is more useful in resolving the field strength gradients, and therefore suggests more contribution from shear current for the degree of NVC neutralization.
Gurau, Razvan
2017-01-01
Written by the creator of the modern theory of random tensors, this book is the first self-contained introductory text to this rapidly developing theory. Starting from notions familiar to the average researcher or PhD student in mathematical or theoretical physics, the book presents in detail the theory and its applications to physics. The recent detections of the Higgs boson at the LHC and gravitational waves at LIGO mark new milestones in Physics confirming long standing predictions of Quantum Field Theory and General Relativity. These two experimental results only reinforce today the need to find an underlying common framework of the two: the elusive theory of Quantum Gravity. Over the past thirty years, several alternatives have been proposed as theories of Quantum Gravity, chief among them String Theory. While these theories are yet to be tested experimentally, key lessons have already been learned. Whatever the theory of Quantum Gravity may be, it must incorporate random geometry in one form or another....
Charged tensor matter fields and Lorentz symmetry violation via spontaneous symmetry breaking
International Nuclear Information System (INIS)
Colatto, L.P.; Penna, A.L.A.; Santos, W.C.
2003-10-01
We consider a model with a charged vector field along with a Cremmer-Scherk-Kalb-Ramond (CSKR) matter field coupled to a U(1) gauge potential. We obtain a natural Lorentz symmetry violation due to the local U(1) spontaneous symmetry breaking mechanism triggered by the imaginary part of the vector matter. The choice of the unitary gauge leads to the decoupling of the gauge-Kr sector from the Higgs-Kr sector. The excitation spectrum is carefully analyzed and the physical modes are identified. We propose an identification of the neutral massive spin-1 Higgs-like field with the massive Z' boson of the so-called mirror matter models. (author)
Weyl tensors for asymmetric complex curvatures
International Nuclear Information System (INIS)
Oliveira, C.G.
Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
The 'gravitating' tensor in the dualistic theory
International Nuclear Information System (INIS)
Mahanta, M.N.
1989-01-01
The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented
Magnetic field gradients inferred from multi-point measurements of Cluster FGM and EDI
Teubenbacher, Robert; Nakamura, Rumi; Giner, Lukas; Plaschke, Ferdinand; Baumjohann, Wolfgang; Magnes, Werner; Eichelberger, Hans; Steller, Manfred; Torbert, Roy
2013-04-01
We use Cluster data from fluxgate magnetometer (FGM) and electron drift instrument (EDI) to determine the magnetic field gradients in the near-Earth magnetotail. Here we use the magnetic field data from FGM measurements as well as the gyro-time data of electrons determined from the time of flight measurements of EDI. The results are compared with the values estimated from empirical magnetic field models for different magnetospheric conditions. We also estimated the spin axis offset of FGM based on comparison between EDI and FGM data and discuss the possible effect in determining the current sheet characteristics.
Generalized dielectric permittivity tensor
International Nuclear Information System (INIS)
Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.
1986-01-01
The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form
A new deteriorated energy-momentum tensor
International Nuclear Information System (INIS)
Duff, M.J.
1982-01-01
The stress-tensor of a scalar field theory is not unique because of the possibility of adding an 'improvement term'. In supersymmetric field theories the stress-tensor will appear in a super-current multiplet along with the sypersymmetry current. The general question of the supercurrent multiplet for arbitrary deteriorated stress tensors and their relationship to supercurrent multiplets for models with gauge antisymmetric tensors is answered for various models of N = 1, 2 and 4 supersymmetry. (U.K.)
Development of the Tensoral Computer Language
Ferziger, Joel; Dresselhaus, Eliot
1996-01-01
The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.
Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion
Lindsey, Nathaniel J.; Kaven, Joern; Davatzes, Nicholas C.; Newman, Gregory A.
2017-01-01
Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2–5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.
A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields
Domokos, Gábor; Holmes, Philip; Lángi, Zsolt
2016-12-01
Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.
ptchg: A FORTRAN program for point-charge calculations of electric field gradients (EFGs)
Spearing, Dane R.
1994-05-01
ptchg, a FORTRAN program, has been developed to calculate electric field gradients (EFG) around an atomic site in crystalline solids using the point-charge direct-lattice summation method. It uses output from the crystal structure generation program Atoms as its input. As an application of ptchg, a point-charge calculation of the EFG quadrupolar parameters around the oxygen site in SiO 2 cristobalite is demonstrated. Although point-charge calculations of electric field gradients generally are limited to ionic compounds, the computed quadrupolar parameters around the oxygen site in SiO 2 cristobalite, a highly covalent material, are in good agreement with the experimentally determined values from nuclear magnetic resonance (NMR) spectroscopy.
How a High-Gradient Magnetic Field Could Affect Cell Life
Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr
2016-01-01
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate. PMID:27857227
How a High-Gradient Magnetic Field Could Affect Cell Life
Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr
2016-11-01
The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.
Czech Academy of Sciences Publication Activity Database
Plocková, Jana; Chmelík, Josef
2001-01-01
Roč. 918, č. 2 (2001), s. 361-370 ISSN 0021-9673 R&D Projects: GA AV ČR IAA4031805 Institutional research plan: CEZ:AV0Z4031919 Keywords : field-flow fractionation * field programming * flow-rate gradients Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.793, year: 2001
International Nuclear Information System (INIS)
Rebreyend, D.; Pignol, G.; Baeßler, S.; Nesvizhevsky, V. V.; Protasov, K.; Voronin, A.
2014-01-01
Gravitational resonance spectroscopy consists in measuring the energy spectrum of bouncing ultracold neutrons above a mirror by inducing resonant transitions between different discrete quantum levels. We discuss how to induce the resonances with a flow through arrangement in the GRANIT spectrometer, excited by an oscillating magnetic field gradient. The spectroscopy could be realized in two distinct modes (so called DC and AC) using the same device to produce the magnetic excitation. We present calculations demonstrating the feasibility of the newly proposed AC mode
Shear flow effect on ion temperature gradient vortices in plasmas with sheared magnetic field
DEFF Research Database (Denmark)
Chakrabarti, N.; Juul Rasmussen, J.
1999-01-01
The effect of velocity shear on ion temperature gradient (ITG) driven vortices in a nonuniform plasma in a curved, sheared magnetic field is investigated. In absence of parallel ion dynamics, vortex solutions for the ITG mode are studied analytically. It is shown that under certain conditions...... and ultimately lead to a dominating monopolar form. The effects of magnetic shear indicate it may destroy these structures. (C) 1999 American Institute of Physics....
Effects of high-gradient magnetic fields on living cell machinery
Czech Academy of Sciences Publication Activity Database
Zablotskyy, Vitaliy A.; Lunov, Oleg; Kubinová, Šárka; Polyakova, Tetyana; Syková, E.; Dejneka, Alexandr
2016-01-01
Roč. 49, č. 49 (2016), s. 1-23, č. článku 493003. ISSN 0022-3727 R&D Projects: GA MŠk LO1409 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568 Institutional support: RVO:68378271 Keywords : living cell * magnetic gradient force * cell mechanics * stem cell * magnetic field Subject RIV: BO - Biophysics Impact factor: 2.588, year: 2016
Czech Academy of Sciences Publication Activity Database
Kortunov, P.; Vasenkov, S.; Kärger, J.; Fé Elía, M.; Perez, M.; Stöcker, M.; Papadopoulos, G. K.; Theodorou, D.; Drescher, B.; McElhiney, G.; Bernauer, B.; Krystl, V.; Kočiřík, Milan; Zikánová, Arlette; Jirglová, Hana; Berger, C.; Gläser, R.; Weitkamp, J.; Hansen, E. W.
2005-01-01
Roč. 23, č. 2 (2005), s. 233-237 ISSN 0730-725X Grant - others:TROCAT project - European Community(DE) G5RD-CT-2001-00520 Institutional research plan: CEZ:AV0Z40400503 Keywords : pulsed-field gradient * nuclear magnetic resonance * fluid catalytic cracking catalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.361, year: 2005
Energy Technology Data Exchange (ETDEWEB)
Benelmekki, M., E-mail: benelmekki@fisica.uminho.p [Centro de Fisica, Universidade do Minho, Braga (Portugal); Montras, A. [Sepmag Tecnologies, Parc Tecnologic del Valles, Barcelona (Spain); Martins, A.J.; Coutinho, P.J.G. [Centro de Fisica, Universidade do Minho, Braga (Portugal); Martinez, Ll.M. [Sepmag Technologies, Atlanta, GA (United States)
2011-08-15
Magnetic separation of organic compounds, proteins, nucleic acids and other biomolecules, and cells from complex reaction mixtures is becoming the most suitable solution for large production in bioindustrial purification and extraction processes. Optimal magnetic properties can be achieved by the use of metals. However, they are extremely sensitive to oxidation and degradation under atmospheric conditions. In this work Ni nanoparticles are synthesised by conventional solution reduction process with the addition of a non-ionic surfactant as a surface agent. The nanoparticles were surfacted in citric acid and then coated with silica to form single core Ni nanobeads. A magnetophoresis study at different magnetic field gradients and at the different steps of synthesis route was performed using Horizontal Low Gradient Magnetic Field (HLGMF) systems. The reversible aggregation times are reduced to a few seconds, allowing a very fast separation process. - Research highlights: Monodispersed single core Ni-silica core-shell structures were prepared. Control of Ni nanoparticles size was achieved using a non-ionic surfactant. Magnetophoresis at different magnetic field gradients was monitored. Magnetophoresis at different steps of synthesis route was performed. Attractive magnetic interactions overcome electrostatic repulsions.
Tensor calculus for physics a concise guide
Neuenschwander, Dwight E
2015-01-01
Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism...
Method of formation of a high gradient magnetic field and the device for division of substances
International Nuclear Information System (INIS)
Il'yashenko, E. I.; Glebov, V. A.; Skeltorp, A. T.
2005-01-01
Full text: The method and the device [1] are intended for use as a high-sensitivity magnetic separator for different types of paramagnetic substances and materials from diamagnetic ones, for division of paramagnetic substances and materials on the magnitudes of their paramagnetic susceptibility, for division of diamagnetic substances and materials on magnitudes of their diamagnetic susceptibility. Scopes: to produce pure and super pure substances and materials in electronics, metallurgy and chemistry, separation of biological objects (red blood cells, magnetic bacteria, etc.) in biology and medicine, water treatment removing heavy metals and organic impurities, etc. The main condition for magnetic separation is the magnetic force which acts on a particle of the substance and which is proportional to the magnetic susceptibility of the substance, magnetic induction B and gradient ∇B of the applied magnetic field. Therefore, to increase the sensitivity and selectivity of magnetic separation it will be required to use the largest possible values of the magnetic induction and the gradient of a magnetic field, or their product - B∇B. The device declared in the present work includes the magnetic system such as the open domain structure, consisting of permanent magnets with magnetic anisotropy much greater than the induction of a material of magnets. However, the declared device differs from the open domain structure in that [1]: *the surface of the neighbor poles of magnets is covered with a mask made from sheets of adjustable thickness of a soft magnetic material; *the soft magnetic material of the mask is selected on the basis of the magnitudes of the induction of saturation and magnetic permeability for achievement of the required magnitude of the induction and gradient of the magnetic field; *between the sheets of the mask there is an adjustable gap located symmetrically relative to the junction line of the magnets; *the size and the form of the gap between the
Fixed field alternating gradient accelerator with small orbit shift and tune excursion
Directory of Open Access Journals (Sweden)
Suzanne L. Sheehy
2010-04-01
Full Text Available A new design principle of a nonscaling fixed field alternating gradient accelerator is proposed. It is based on optics that produce approximate scaling properties. A large field index k is chosen to squeeze the orbit shift as much as possible by setting the betatron oscillation frequency in the second stability region of Hill’s equation. Then, the lattice magnets and their alignment are simplified. To simplify the magnets, we expand the field profile of r^{k} into multipoles and keep only a few lower order terms. A rectangular-shaped magnet is assumed with lines of constant field parallel to the magnet axis. The lattice employs a triplet of rectangular magnets for focusing, which are parallel to one another to simplify alignment. These simplifications along with fringe fields introduce finite chromaticity and the fixed field alternating gradient accelerator is no longer a scaling one. However, the tune excursion of the whole ring can be within half an integer and we avoid the crossing of strong resonances.
Small-scale gradients of charged particles in the heliospheric magnetic field
International Nuclear Information System (INIS)
Guo, Fan; Giacalone, Joe
2014-01-01
Using numerical simulations of charged-particles propagating in the heliospheric magnetic field, we study small-scale gradients, or 'dropouts,' in the intensity of solar energetic particles seen at 1 AU. We use two turbulence models, the foot-point random motion model and the two-component model, to generate fluctuating magnetic fields similar to spacecraft observations at 1 AU. The turbulence models include a Kolmogorov-like magnetic field power spectrum containing a broad range of spatial scales from those that lead to large-scale field-line random walk to small scales leading to resonant pitch-angle scattering of energetic particles. We release energetic protons (20 keV-10 MeV) from a spatially compact and instantaneous source. The trajectories of energetic charged particles in turbulent magnetic fields are numerically integrated. Spacecraft observations are mimicked by collecting particles in small windows when they pass the windows at a distance of 1 AU. We show that small-scale gradients in the intensity of energetic particles and velocity dispersions observed by spacecraft can be reproduced using the foot-point random motion model. However, no dropouts are seen in simulations using the two-component magnetic turbulence model. We also show that particle scattering in the solar wind magnetic field needs to be infrequent for intensity dropouts to form.
The tensor distribution function.
Leow, A D; Zhu, S; Zhan, L; McMahon, K; de Zubicaray, G I; Meredith, M; Wright, M J; Toga, A W; Thompson, P M
2009-01-01
Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.
Kinscher, J.; Krüger, F.; Woith, H.; Lühr, B. G.; Hintersberger, E.; Irmak, T. S.; Baris, S.
2013-11-01
The Armutlu peninsula, located in the eastern Marmara Sea, coincides with the western end of the rupture of the 17 August 1999, İzmit MW 7.6 earthquake which is the penultimate event of an apparently westward migrating series of strong and disastrous earthquakes along the NAFZ during the past century. We present new seismotectonic data of this key region in order to evaluate previous seismotectonic models and their implications for seismic hazard assessment in the eastern Marmara Sea. Long term kinematics were investigated by performing paleo strain reconstruction from geological field investigations by morphotectonic and kinematic analysis of exposed brittle faults. Short term kinematics were investigated by inverting for the moment tensor of 13 small to moderate recent earthquakes using surface wave amplitude spectra. Our results confirm previous models interpreting the eastern Marmara Sea Region as an active transtensional pull-apart environment associated with significant NNE-SSW extension and vertical displacement. At the northern peninsula, long term deformation pattern did not change significantly since Pliocene times contradicting regional tectonic models which postulate a newly formed single dextral strike slip fault in the Marmara Sea Region. This area is interpreted as a horsetail splay fault structure associated with a major normal fault segment that we call the Waterfall Fault. Apart from the Waterfall Fault, the stress strain relation appears complex associated with a complicated internal fault geometry, strain partitioning, and reactivation of pre-existing plane structures. At the southern peninsula, recent deformation indicates active pull-apart tectonics constituted by NE-SW trending dextral strike slip faults. Earthquakes generated by stress release along large rupture zones seem to be less probable at the northern, but more probable at the southern peninsula. Additionally, regional seismicity appears predominantly driven by plate boundary
International Nuclear Information System (INIS)
Guseinov, I I
2004-01-01
The new central and noncentral potential functions (CPFs and NCPFs) of a molecule depending on the coordinates of the nuclei are introduced. Using complete orthonormal sets of Ψ α -exponential-type orbitals (Ψ α -ETOs) introduced by the author, the series expansion formulae for the multicentre electronic attraction (EA), electric field (EF) and electric field gradient (EFG) integrals over Slater-type orbitals (STOs) in terms of CPFs and NCPFs are derived. The relationships obtained are valid for the arbitrary location, quantum numbers and screening constants of STOs
Measurement of time dependent fields in high gradient superconducting quadrupoles for the Tevatron
International Nuclear Information System (INIS)
Lamm, M.J.; Coulter, K.; Gourlay, S.; Jaffery, T.S.
1990-10-01
Magnetic field measurements have been performed on prototype and production magnets from two high gradient superconducting quadrupoles designs. One design is a double shell quadrupole with 36 strand Rutherford cable. The other design is a single shell quadrupole with 5 individually monolithic strands connected in series. These magnets have similar bore diameters and cable dimensions. However, there are significant differences between the two designs, as well as differences between prototype and production magnets within each design, with regard to Cu to superconductor ratio, filament diameter and filament spacing to strand diameter. The time dependence of fixed currents of the measured magnetic fields is discussed. 9 refs., 6 figs., 1 tab
International Nuclear Information System (INIS)
Danilov, G.S.
1995-01-01
It is shown that, in the theory of free noncritical strings, there are no modular-invariant partition functions on surfaces of higher genus. This is due to the fact that the vacuum expectation value of the stress-energy tensor is singular in the fundamental region on the complex plane in which Riemann surfaces are mapped. The above singularity is associated with a nonzero vacuum expectation value of the 2D-gravity field. 15 refs
International Nuclear Information System (INIS)
Gunell, H.; Loefgren, T.
1997-02-01
In the electron beam-plasma interaction at an electric double layer the beam density is much higher than in the classical beam-plasma experiments. The wave propagation takes place along the density gradient, that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp 'spike' with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward travelling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. 9 refs
Electric field spikes formed by electron beam endash plasma interaction in plasma density gradients
International Nuclear Information System (INIS)
Gunell, H.; Loefgren, T.
1997-01-01
In the electron beam endash plasma interaction at an electric double layer the beam density is much higher than in the classical beam endash plasma experiments. The wave propagation takes place along the density gradient that is present at the high potential side of the double layer. Such a case is studied experimentally by injecting the electron beam from a plane cathode, without any grids suppressing the gradient, and by particle simulations. The high frequency field concentrates in a sharp open-quotes spikeclose quotes with a half width of the order of one wavelength. The spike is found to be a standing wave surrounded by regions dominated by propagating waves. It forms at a position where its frequency is close to the local plasma frequency. The spike forms also when the electric field is well below the threshold for modulational instability, and long before a density cavity is formed in the simulations. Particle simulations reveal that, at the spike, there is a backward traveling wave that, when it is strongly damped, accelerates electrons back towards the cathode. In a simulation of a homogeneous plasma without the density gradient no spike is seen, and the wave is purely travelling instead of standing. copyright 1997 American Institute of Physics
Universal field matching in craniospinal irradiation by a background-dose gradient-optimized method.
Traneus, Erik; Bizzocchi, Nicola; Fellin, Francesco; Rombi, Barbara; Farace, Paolo
2018-01-01
The gradient-optimized methods are overcoming the traditional feathering methods to plan field junctions in craniospinal irradiation. In this note, a new gradient-optimized technique, based on the use of a background dose, is described. Treatment planning was performed by RayStation (RaySearch Laboratories, Stockholm, Sweden) on the CT scans of a pediatric patient. Both proton (by pencil beam scanning) and photon (by volumetric modulated arc therapy) treatments were planned with three isocenters. An 'in silico' ideal background dose was created first to cover the upper-spinal target and to produce a perfect dose gradient along the upper and lower junction regions. Using it as background, the cranial and the lower-spinal beams were planned by inverse optimization to obtain dose coverage of their relevant targets and of the junction volumes. Finally, the upper-spinal beam was inversely planned after removal of the background dose and with the previously optimized beams switched on. In both proton and photon plans, the optimized cranial and the lower-spinal beams produced a perfect linear gradient in the junction regions, complementary to that produced by the optimized upper-spinal beam. The final dose distributions showed a homogeneous coverage of the targets. Our simple technique allowed to obtain high-quality gradients in the junction region. Such technique universally works for photons as well as protons and could be applicable to the TPSs that allow to manage a background dose. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Interplay between temperature gradients field and C - E transformation in solidifying rolls
Directory of Open Access Journals (Sweden)
W. Wołczyński
2009-07-01
Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions
Directory of Open Access Journals (Sweden)
Kang Ma
2017-01-01
Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.
Phase-field simulations of pore migration and morphology change in thermal gradients
Energy Technology Data Exchange (ETDEWEB)
Vance, Ian W.; Millett, Paul C., E-mail: pmillett@uark.edu
2017-07-15
Here we present a phase-field simulation model that captures the thermal-gradient-driven migration of pores in oxide fuel associated with fuel restructuring. The model utilizes a Cahn-Hilliard equation supplemented with an advection term to describe the vapor transport of fuel material through the pore interior due to gradients in vapor pressure. Simulations demonstrate that the model not only predicts pore migration towards the centerline of the fuel, but also a concurrent change in pore shape during migration from an initially isotropic morphology to either a lenticular morphology or a prolate morphology depending on the vapor transport conditions. This model is a necessary first step to conducting accurate simulations of the microscopic changes that occur during the complicated process of oxide fuel restructuring.
Sedimentation and aggregation of magnetite nanoparticles in water by a gradient magnetic field
International Nuclear Information System (INIS)
Medvedeva, I.; Bakhteeva, Yu.; Zhakov, S.; Revvo, A.; Byzov, I.; Uimin, M.; Yermakov, A.; Mysik, A.
2013-01-01
Magnetite (γ-Fe 3 O 4 ) nanoparticles are promising effective sorbents for water cleaning of heavy metal, radionuclides, organic and biological materials. A good sorption capacity can be achieved due to their high specific surface area. Application of gradient magnetic fields helps to separate the magnetic nanoparticles from the water suspension, which is rather hard to do using the conventional mechanical filtration and sedimentation methods without coagulants. The sedimentation dynamics of magnetite nanoparticles with sizes of 10–20 nm in aqueous media in the presence of a gradient magnetic field was studied by optical and NMR relaxometry methods. The gradient magnetic field was produced by a series of strip permanent magnets with B ≤ 0.5 T, dB/dz ≤ 0.13 T/cm and in some cases enhanced by a steel grid with sharp edges (dB/dz ≤ 5 T/cm). Dynamic Light Scattering in the water suspension with different nanoparticle concentrations (c 0 = 0.1–1 g/l) revealed the characteristic features in the aggregate formation, which is reflected in the sedimentation behavior. The sedimentation rate of the nanoparticles in water and in magnetic fields is higher for less concentrated suspensions (c 0 = 0.1 g/l) than for more concentrated ones (c 0 = 1 g/l), which might be connected with the formation of a gel structures due to a strong magnetic attraction between ferromagnetic nanoparticles. In 180 min this resulted in the reduction of the iron concentration in water down to 0.4 mg/l, which is close to hygienic and environmental norms for drinking water and fishery
Optimal Weighting of Multi-Spacecraft Data to Estimate Gradients of Physical Fields
Chanteur, G. M.; Le Contel, O.; Sahraoui, F.; Retino, A.; Mirioni, L.
2016-12-01
Multi-spacecraft missions like the ESA mission CLUSTER and the NASA mission MMS are essential to improve our understanding of physical processes in space plasmas. Several methods were designed in the 90's during the preparation phase of the CLUSTER mission to estimate gradients of physical fields from simultaneous multi-points measurements [1, 2]. Both CLUSTER and MMS involve four spacecraft with identical full scientific payloads including various sensors of electromagnetic fields and different type of particle detectors. In the standard methods described in [1, 2], which are presently in use, data from the four spacecraft have identical weights and the estimated gradients are most reliable when the tetrahedron formed by the four spacecraft is regular. There are three types of errors affecting the estimated gradients (see chapter 14 in [1]) : i) truncature errors are due to local non-linearity of spatial variations, ii) physical errors are due to instruments, and iii) geometrical errors are due to uncertainties on the positions of the spacecraft. An assessment of truncature errors for a given observation requires a theoretical model of the measured field. Instrumental errors can easily be taken into account for a given geometry of the cluster but are usually less than the geometrical errors which diverge quite fast when the tetrahedron flattens, a circumstance occurring twice per orbit of the cluster. Hence reliable gradients can be estimated only on part of the orbit. Reciprocal vectors of the tetrahedron were presented in chapter 4 of [1], they have the advantage over other methods to treat the four spacecraft symmetrically and to allow a theoretical analysis of the errors (see chapters 4 of [1] and 4 of [2]). We will present Generalized Reciprocal Vectors for weighted data and an optimization procedure to improve the reliability of the estimated gradients when the tetrahedron is not regular. A brief example using CLUSTER or MMS data will be given. This approach
Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed
2018-04-01
The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic
Field gradient calculation of HTS double-pancake coils considering the slanted turns and the splice
Energy Technology Data Exchange (ETDEWEB)
Baek, Geon Woo; Kim, Jin Sub; Song, Seung Hyun; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Lee, Woo Seung [JH ENGINEERING CO., LTD., Gunpo (Korea, Republic of); Lee, On You [Korea National University of Transportation, Chungju (Korea, Republic of)
2017-03-15
To obtain Nuclear Magnetic Resonance (NMR) measurement of membrane protein, an NMR magnet is required to generate high intensity, homogeneity, and stability of field. A High-Temperature Superconducting (HTS) magnet is a promising alternative to a conventional Low-Temperature Superconducting (LTS) NMR magnet for high field, current density, and stability margin. Conventionally, an HTS coil has been wound by several winding techniques such as Single-Pancake (SP), Double-Pancake (DP), and layer-wound. The DP winding technique has been frequently used for a large magnet because long HTS wire is generally difficult to manufacture, and maintenance of magnet is convenient. However, magnetic field generated by the slanted turns and the splice leads to field inhomogeneity in Diameter of Spherical Volume (DSV). The field inhomogeneity degrades performance of NMR spectrometer and thus effect of the slanted turns and the splice should be analyzed. In this paper, field gradient of HTS double-pancake coils considering the slanted turns and the splice was calculated using Biot-Savart law and numerical integration. The calculation results showed that magnetic field produced by the slanted turns and the splice caused significant inhomogeneity of field.
Lamarche, Leslie J.; Makarevich, Roman A.
2017-03-01
We present observations of plasma density gradients, electric fields, and small-scale plasma irregularities near a polar cap patch made by the Super Dual Auroral Radar Network radar at Rankin Inlet (RKN) and the northern face of Resolute Bay Incoherent Scatter Radar (RISR-N). RKN echo power and occurrence are analyzed in the context of gradient-drift instability (GDI) theory, with a particular focus on the previously uninvestigated 2-D dependencies on wave propagation, electric field, and gradient vectors, with the latter two quantities evaluated directly from RISR-N measurements. It is shown that higher gradient and electric field components along the wave vector generally lead to the higher observed echo occurrence, which is consistent with the expected higher GDI growth rate, but the relationship with echo power is far less straightforward. The RKN echo power increases monotonically as the predicted linear growth rate approaches zero from negative values but does not continue this trend into positive growth rate values, in contrast with GDI predictions. The observed greater consistency of echo occurrence with GDI predictions suggests that GDI operating in the linear regime can control basic plasma structuring, but measured echo strength may be affected by other processes and factors, such as multistep or nonlinear processes or a shear-driven instability.
Spherical Tensor Calculus for Local Adaptive Filtering
Reisert, Marco; Burkhardt, Hans
In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.
Nayak, Avinash; Taira, Taka'aki; Dreger, Douglas S.; Gritto, Roland
2018-04-01
We retrieve empirical Green's functions in the frequency range (˜0.2-0.9 Hz) for interstation distances ranging from ˜1 to ˜30 km (˜0.22 to ˜6.5 times the wavelength) at The Geysers geothermal field, Northern California, from coherency of ambient seismic noise being recorded by a variety of sensors (broad-band, short-period surface and borehole sensors, and one accelerometer). The applied methodology preserves the intercomponent relative amplitudes of the nine-component Green's tensor that allows us to directly compare noise-derived Green's functions (NGFs) with normalized displacement waveforms of complete single-force synthetic Green's functions (SGFs) computed with various 1-D and 3-D velocity models using the frequency-wavenumber integration method and a 3-D finite-difference wave propagation method, respectively. These comparisons provide an effective means of evaluating the suitability of different velocity models to different regions of The Geysers, and assessing the quality of the sensors and the NGFs. In the T-Tangential, R-Radial, Z-Vertical reference frame, the TT, RR, RZ, ZR and ZZ components (first component: force direction, second component: response direction) of NGFs show clear surface waves and even body-wave phases for many station pairs. They are also broadly consistent in phase and intercomponent relative amplitudes with SGFs for the known local seismic velocity structure that was derived primarily from body-wave traveltime tomography, even at interstation distances less than one wavelength. We also find anomalous large amplitudes in TR, TZ, RT and ZT components of NGFs at small interstation distances (≲4 km) that can be attributed to ˜10°-30° sensor misalignments at many stations inferred from analysis of longer period teleseismic waveforms. After correcting for sensor misalignments, significant residual amplitudes in these components for some longer interstation distance (≳8 km) paths are better reproduced by the 3-D velocity
Temperature dependence of the electric field gradient in AgPd and AgPt alloys
International Nuclear Information System (INIS)
Krolas, K.
1977-07-01
The measurements of temperature dependence of the electric field gradient (EFG) on 111 Cd nuclei in AgPd and AgPt alloys were performed using the time dependent perturbed angular correlation method. The EFG caused by impurities distributed in further coordination shells decrease stronaer with increasing temperature than the EFG due to single impurity being the nearest neighbour of the probe atom. These results were explained assuming different modes of thermal vibrations of single impurity atoms and impurity complexes in silver host lattice. (author)
Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator
Johnstone, Carol J [Warrenville, IL
2011-02-01
A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.
Electric field gradient calculation at atomic site of In implanted ZnO samples
International Nuclear Information System (INIS)
Abreu, Y.; Cruz, C. M.; Leyva, A.; Pinnera; Van Espen, P.; Perez, C.
2011-01-01
The electric field gradient (EFG) calculated for 111 In→ 111 Cd implanted ZnO samples is reported. The study was made for ideal hexagonal ZnO structures and super-cells considering the In implantation environment at the cation site using the 'WIEN2k' code within the GGA(+U) approximation. The obtained EFG values are in good agreement with the experimental reports for ideal ZnO and 111 In→ 111 Cd implanted structures; measured by perturbed angular correlation (PAC) and Moessbauer spectroscopy. The attribution of substitutional incorporation of 111 In at the ZnO cation site after annealing was confirmed. (Author)
Electronic structure and electric fields gradients of crystalline Sn(II) and Sn(IV) compounds
International Nuclear Information System (INIS)
Terra, J.; Guenzburger, D.
1991-01-01
The electronic structures of clusters representing crystalline compounds of Sn(II) and Sn(IV) were investigated, employing the first-principles Discrete Variational method and Local Density theory. Densities of states and related parameters were obtained and compared with experimental measurements and with results from band structure calculations. Effects of cluster size and of cluster truncated bonds are discussed. Electric field gradients at the Sn nucleus were calculated; results are analysed in terms of charge distribution and chemical bonding in the crystals. (author)
International Nuclear Information System (INIS)
Latham, Michael P.; Hanson, Paul; Brown, Darin J.; Pardi, Arthur
2008-01-01
Residual dipolar couplings (RDCs) complement standard NOE distance and J-coupling torsion angle data to improve the local and global structure of biomolecules in solution. One powerful application of RDCs is for domain orientation studies, which are especially valuable for structural studies of nucleic acids, where the local structure of a double helix is readily modeled and the orientations of the helical domains can then be determined from RDC data. However, RDCs obtained from only one alignment media generally result in degenerate solutions for the orientation of multiple domains. In protein systems, different alignment media are typically used to eliminate this orientational degeneracy, where the combination of RDCs from two (or more) independent alignment tensors can be used to overcome this degeneracy. It is demonstrated here for native E. coli tRNA Val that many of the commonly used liquid crystalline alignment media result in very similar alignment tensors, which do not eliminate the 4-fold degeneracy for orienting the two helical domains in tRNA. The intrinsic magnetic susceptibility anisotropy (MSA) of the nucleobases in tRNA Val was also used to obtain RDCs for magnetic alignment at 800 and 900 MHz. While these RDCs yield a different alignment tensor, the specific orientation of this tensor combined with the high rhombicity for the tensors in the liquid crystalline media only eliminates two of the four degenerate orientations for tRNA Val . Simulations are used to show that, in optimal cases, the combination of RDCs obtained from liquid crystalline medium and MSA-induced alignment can be used to obtain a unique orientation for the two helical domains in tRNA Val
Primordial vorticity and gradient expansion
Giovannini, Massimo
2012-01-01
The evolution equations of the vorticities of the electrons, ions and photons in a pre-decoupling plasma are derived, in a fully inhomogeneous geometry, by combining the general relativistic gradient expansion and the drift approximation within the Adler-Misner-Deser decomposition. The vorticity transfer between the different species is discussed in this novel framework and a set of general conservation laws, connecting the vorticities of the three-component plasma with the magnetic field intensity, is derived. After demonstrating that a source of large-scale vorticity resides in the spatial gradients of the geometry and of the electromagnetic sources, the total vorticity is estimated to lowest order in the spatial gradients and by enforcing the validity of the momentum constraint. By acknowledging the current bounds on the tensor to scalar ratio in the (minimal) tensor extension of the $\\Lambda$CDM paradigm the maximal comoving magnetic field induced by the total vorticity turns out to be, at most, of the or...
Projection and nested force-gradient methods for quantum field theories
Energy Technology Data Exchange (ETDEWEB)
Shcherbakov, Dmitry
2017-07-26
For the Hybrid Monte Carlo algorithm (HMC), often used to study the fundamental quantum field theory of quarks and gluons, quantum chromodynamics (QCD), on the lattice, one is interested in efficient numerical time integration schemes which preserve geometric properties of the flow and are optimal in terms of computational costs per trajectory for a given acceptance rate. High order numerical methods allow the use of larger step sizes, but demand a larger computational effort per step; low order schemes do not require such large computational costs per step, but need more steps per trajectory. So there is a need to balance these opposing effects. In this work we introduce novel geometric numerical time integrators, namely, projection and nested force-gradient methods in order to improve the efficiency of the HMC algorithm in application to the problems of quantum field theories.
Electric field gradient and electronic structure of linear-bonded halide compounds
International Nuclear Information System (INIS)
Ellis, D.E.; Guenzburger, D.J.R.; Jansen, H.B.
1983-01-01
The importance of covalent metal-ligand interactions in determining hyperfine fields and energy-level structure of MX 2 linear-bonded halide compounds has been studied, using the self-consistent local density molecular orbital approach. Results for FeCl 2 , FeBr 2 and EuCl 2 obtained using the Discrete Variational Method with numerical basis sets are presented. The high spin configuration for the iron compounds, first predicted by Berkowitz, et al., is verified; a successful comparison with gas phase photoelectron spectra is made. Variation of the predicted electric field gradient with bond length R is found to be rapid; the need for an EXAFS measurement of R for the matrix isolated species and experimental determination of the spin of the EFG is seen to be crucial for more accurate determinations of the sub(57) Fe quadrupole moment. (Author) [pt
Wide-field schematic eye models with gradient-index lens.
Goncharov, Alexander V; Dainty, Chris
2007-08-01
We propose a wide-field schematic eye model, which provides a more realistic description of the optical system of the eye in relation to its anatomical structure. The wide-field model incorporates a gradient-index (GRIN) lens, which enables it to fulfill properties of two well-known schematic eye models, namely, Navarro's model for off-axis aberrations and Thibos's chromatic on-axis model (the Indiana eye). These two models are based on extensive experimental data, which makes the derived wide-field eye model also consistent with that data. A mathematical method to construct a GRIN lens with its iso-indicial contours following the optical surfaces of given asphericity is presented. The efficiency of the method is demonstrated with three variants related to different age groups. The role of the GRIN structure in relation to the lens paradox is analyzed. The wide-field model with a GRIN lens can be used as a starting design for the eye inverse problem, i.e., reconstructing the optical structure of the eye from off-axis wavefront measurements. Anatomically more accurate age-dependent optical models of the eye could ultimately help an optical designer to improve wide-field retinal imaging.
Geometric decomposition of the conformation tensor in viscoelastic turbulence
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
Energy Technology Data Exchange (ETDEWEB)
Im, Sang Hyuk; Lee, Su Jin [Kyung Hee University, Yongin (Korea, Republic of); Suh, Duck Jong; Park, O Ok [Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kwon, Moo Hyun [Woosuk University, Wanju (Korea, Republic of)
2015-07-15
We investigated whether a graded-index profile, specified by the polymer compositional gradient, could be formed using shear-induced polymer migration phenomenon in a polymer solution. For the presented model system, we generated a shear flow by rotating a glass rod at the center of a polystyrene/methylmethacrylate (PS/MMA) solution and measured the degree of polymer migration by the shear flow field by examining the concentration of polymer solution along the radial direction from the rotating axis to the periphery. Through model experiments, we formed a compositional gradient and controlled its profile in the solution by varying the concentration of polymer solution, molecular weight of polymer, and shear rate. Finally, we solidified the gradient profiles by the polymerization of the PS/MMA solution and confirmed that the gradient profiles were maintained with a compositional gradient twice larger than the mother PS/MMA solution.
The Physical Interpretation of the Lanczos Tensor
Roberts, Mark D.
1999-01-01
The field equations of general relativity can be written as first order differential equations in the Weyl tensor, the Weyl tensor in turn can be written as a first order differential equation in a three index tensor called the Lanczos tensor. The Lanczos tensor plays a similar role in general relativity to that of the vector potential in electro-magnetic theory. The Aharonov-Bohm effect shows that when quantum mechanics is applied to electro-magnetic theory the vector potential is dynamicall...
International Nuclear Information System (INIS)
Alsing, Paul M; McDonald, Jonathan R; Miller, Warner A
2011-01-01
The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area-an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.
Alsing, Paul M.; McDonald, Jonathan R.; Miller, Warner A.
2011-08-01
The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincarè conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area—an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.
Energy Technology Data Exchange (ETDEWEB)
Dhavalikar, Rohan [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611 (United States)
2016-12-01
Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI. - Highlights: • SAR predictions based on a field-dependent magnetization relaxation model.
Delay Kalman Filter to Estimate the Attitude of a Mobile Object with Indoor Magnetic Field Gradients
Directory of Open Access Journals (Sweden)
Christophe Combettes
2016-05-01
Full Text Available More and more services are based on knowing the location of pedestrians equipped with connected objects (smartphones, smartwatches, etc.. One part of the location estimation process is attitude estimation. Many algorithms have been proposed but they principally target open space areas where the local magnetic field equals the Earth’s field. Unfortunately, this approach is impossible indoors, where the use of magnetometer arrays or magnetic field gradients has been proposed. However, current approaches omit the impact of past state estimates on the current orientation estimate, especially when a reference field is computed over a sliding window. A novel Delay Kalman filter is proposed in this paper to integrate this time correlation: the Delay MAGYQ. Experimental assessment, conducted in a motion lab with a handheld inertial and magnetic mobile unit, shows that the novel filter better estimates the Euler angles of the handheld device with an 11.7° mean error on the yaw angle as compared to 16.4° with a common Additive Extended Kalman filter.
MR-based field-of-view extension in MR/PET: B0 homogenization using gradient enhancement (HUGE).
Blumhagen, Jan O; Ladebeck, Ralf; Fenchel, Matthias; Scheffler, Klaus
2013-10-01
In whole-body MR/PET, the human attenuation correction can be based on the MR data. However, an MR-based field-of-view (FoV) is limited due to physical restrictions such as B0 inhomogeneities and gradient nonlinearities. Therefore, for large patients, the MR image and the attenuation map might be truncated and the attenuation correction might be biased. The aim of this work is to explore extending the MR FoV through B0 homogenization using gradient enhancement in which an optimal readout gradient field is determined to locally compensate B0 inhomogeneities and gradient nonlinearities. A spin-echo-based sequence was developed that computes an optimal gradient for certain regions of interest, for example, the patient's arms. A significant distortion reduction was achieved outside the normal MR-based FoV. This FoV extension was achieved without any hardware modifications. In-plane distortions in a transaxially extended FoV of up to 600 mm were analyzed in phantom studies. In vivo measurements of the patient's arms lying outside the normal specified FoV were compared with and without the use of B0 homogenization using gradient enhancement. In summary, we designed a sequence that provides data for reducing the image distortions due to B0 inhomogeneities and gradient nonlinearities and used the data to extend the MR FoV. Copyright © 2011 Wiley Periodicals, Inc.
Energy Technology Data Exchange (ETDEWEB)
Kaufmann, Delia
2012-02-03
Strings of laser cooled ions stored in microstructured Paul traps (microtraps) have promising potential for quantum information science. They provide a system which can be screened from a decohering environment, accurately prepared, manipulated and state selectively detected with efficiency close to unity. Magnetic field gradients allow for addressing trapped ions in frequency space. Furthermore, coupling of the ions' motional and spin states and long range spin-spin coupling of the ions' internal states are induced by such a gradient. This method is called Magnetic Gradient Induced Coupling, MAGIC. In this thesis, the design, construction and first characterization of a novel microtrap with an integrated solenoid is reported. The solenoid is designed to create a high magnetic field gradient per dissipated heat. The microtrap consists of three layers stacked onto each other. The outer layers provide a trapping potential, while the inner layer creates the switchable magnetic field gradient. Another specialty of this trap is the 33 pairs of DC-electrodes, allowing to move the ions along the trap axis and to adjust the range and the strength of the ions' spin-spin interactions. The microtrap is fixed on top of a ceramic block that provides the necessary electrical connections via thick film printed wires, a technique adopted in the context of microtraps for the first time, and in addition acts as a vacuum interface. The volume of the vacuum chamber is quite small, allowing for pressures in the low 10{sup -11} mbar range. In this microtrap, {sup 172}Yb{sup +}-ions are trapped, cooled and shuttled over a distance of about 2 mm. Trapped ions are used as magnetic field gradient probes, with a relative magnetic field precision of {delta}B/B{sub 0}=7.10{sup -6}. The addressing of two ions with the MAGIC method in the solenoid's magnetic field gradient is demonstrated.
Orbit and optics distortion in fixed field alternating gradient muon accelerators
Directory of Open Access Journals (Sweden)
Shinji Machida
2007-11-01
Full Text Available In a linear nonscaling fixed field alternating gradient (FFAG accelerator, betatron tunes vary over a wide range and a beam has to cross integer and half-integer tunes several times. Although it is plausible to say that integer and half-integer resonances are not harmful if the crossing speed is fast, no quantitative argument exists. With tracking simulation, we studied orbit and optics distortion due to alignment and magnet errors. It was found that the concept of integer and half-integer resonance crossing is irrelevant to explain beam behavior in a nonscaling FFAG when acceleration is fast and betatron tunes change quickly. In a muon FFAG accelerator, it takes 17 turns for acceleration and the betatron tunes change more than 10, for example. Instead, the orbit and optics distortion is excited by random dipole and quadrupole kicks. The latter causes beam size growth because the beam starts tumbling in phase space, but not necessarily with emittance growth.
Electric Field Gradients at Hf and Fe Sites in Hf2Fe Recalculated
International Nuclear Information System (INIS)
Belosevic-Cavor, J.; Cekic, B.; Novakovic, N.; Koteski, V.; Milosevic, Z.
2004-01-01
The electric field gradients (EFG) of the Hf 2 Fe intermetallic compound were calculated using the full-potential linearized augmented plain-wave (FP-LAPW) method as embodied in the WIEN 97 code. The obtained values are compared with other ab-initio calculations and on a qualitative basis with the previously reported experimental data obtained from TDPAC. The calculated results, -23.1.10 21 V/m 2 and 2.7.10 21 V/m 2 for Hf 48f and Fe 32e position, respectively, are in excellent agreement with experimental data (23.4.10 21 V/m 2 and 2.7.10 21 V/m 2 ), better than those reported in earlier calculations. The calculated EFG for Hf 16c position (4.2.10 21 V/m 2 ) is stronger than the experimental one (1.1.10 21 V/m 2 ).
Gradient field echo imaging and Gd-DTPA for the assessment of renal function in humans
International Nuclear Information System (INIS)
Von Schulthess, G.K.; Kikinis, R.; Durr, R.; Bino, M.; Jager, P.; Kubler, O.
1986-01-01
To evaluate renal parenchymal function, 1.5 T gradient field echo imaging using a sequence of repetitive 10-second scans was performed in apneic patients after injection of Gd-DTPA (0.1 mmol/kg body weight). During the 10-second pauses the patients were allowed to breathe. Angled coronal images (TR=40 msec, TE =20 msec, flip angle = 40 0 ) were obtained in four volunteers and four patients with hydronephrosis. Image quality was excellent, suggesting unprecedented spatial resolution for renal function studies. Initially, cortical perfusion was observed. Then the papilae became isointense; after 70 seconds they became hypointense; and finally the renal pelvic signal dropped. No papillary signal drop was seen in hydronephrosis, as confirmed by region-of-interest analysis. These results strongly suggest that in MR renal ''function'' studies with Gd-DTPA, T1 and T2 paramagnetic effects are operative
Allmendinger, Fabian; Blümler, Peter; Doll, Michael; Grasdijk, Oliver; Heil, Werner; Jungmann, Klaus; Karpuk, Sergej; Krause, Hans-Joachim; Offenhäuser, Andreas; Repetto, Maricel; Schmidt, Ulrich; Sobolev, Yuri; Tullney, Kathlyne; Willmann, Lorenz; Zimmer, Stefan
2017-01-01
We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized He-3 and (12)9Xe atoms in a spherical cell inside a magnetic guiding field
Directory of Open Access Journals (Sweden)
E. Keil
2007-05-01
Full Text Available Nonscaling fixed field alternating gradient (FFAG rings for cancer hadron therapy offer reduced physical aperture and large dynamic aperture as compared to scaling FFAGs. The variation of tune with energy implies the crossing of resonances during acceleration. Our design avoids intrinsic resonances, although imperfection resonances must be crossed. We consider a system of three nonscaling FFAG rings for cancer therapy with 250 MeV protons and 400 MeV/u carbon ions. Hadrons are accelerated in a common radio frequency quadrupole and linear accelerator, and injected into the FFAG rings at v/c=0.1294. H^{+}/C^{6+} ions are accelerated in the two smaller/larger rings to 31 and 250 MeV/68.8 and 400 MeV/u kinetic energy, respectively. The lattices consist of doublet cells with a straight section for rf cavities. The gantry with triplet cells accepts the whole required momentum range at fixed field. This unique design uses either high-temperature superconductors or superconducting magnets reducing gantry magnet size and weight. Elements with a variable field at the beginning and at the end set the extracted beam at the correct position for a range of energies.
Energy Technology Data Exchange (ETDEWEB)
Renteria, M.; Requejo, F.G.; Bibiloni, A.G.; Pasquevich, A.F.; Shitu, J. [Departamento de Fisica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CC N67, 1900 La Plata (Argentina); Freitag, K. [Institut fuer Strahlen- und Kernphysik der Universitaet Bonn, Nussallee 14-16, 5300 Bonn (Germany)
1997-06-01
We studied the hyperfine interactions of {sup 181}Ta in In{sub 2}O{sub 3} by means of perturbed-angular-correlation (PAC) measurements. We prepared thin films of indium sesquioxide with different degrees of initial amorphism and implanted them with {sup 181}Hf. Chemically prepared indium-sesquioxide powder samples were also made starting from neutron-irradiated HfCl{sub 4}, which provides the {sup 181}Hf PAC probes. PAC experiments were performed on each sample at room temperature, after each step of annealing programs at increasing temperatures up to the full crystallization of the samples. The results indicate that the PAC probe occupies preferentially the axially symmetric cation site. Point-charge-model calculations were performed. The calculated asymmetry parameters {eta} were compared with those obtained in {sup 181}Hf PAC experiments performed also on other binary oxides, showing that the symmetry of the electric-field-gradient (EFG) tensor at {sup 181}Ta cation sites in binary oxides is mainly determined by the nearest-neighbor oxygen-ion distribution around the probe. Comparisons of the experimental results in bixbyites obtained for both PAC probes, {sup 111}Cd and {sup 181}Ta, show that the local EFG in bixbyites, are strongly dependent on the geometry of the sites and the electronic configuration of the probes. {copyright} {ital 1997} {ital The American Physical Society}
HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR
Energy Technology Data Exchange (ETDEWEB)
Hirshfield, Jay L
2012-04-12
The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in
The energy–momentum tensor(s in classical gauge theories
Directory of Open Access Journals (Sweden)
Daniel N. Blaschke
2016-11-01
Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.
Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8
International Nuclear Information System (INIS)
Roelof, E.C.; Decker, R.B.; Krimigis, S.M.; Venkatesan, D.; Lazarus, A.J.
1982-01-01
The tandem Earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP-7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Anti-coincidence solid-state detectors on the Voyager 1/2 LECP experiment measure nucleons > or approximately 20 MeV/nuc with large (28 cm 2 ) omnidirectional geometry factors. Anti-coincidence scintillators on the IMP-7/8 CPME with omnidirectional geometry factors comparable to those on Voyager measure nucleons > or approximately 35 MeV/nuc. Because the Voyagers are well-connected via the interplanetary magnetic field (IMF) to the near-Earth vicinity throughout their transit from 1-5 AU (September 1977 - February 1979), we obtained the first direct measurement of field-aligned gradients, i.e., those that do not depend upon ''corotation'' from one spacecraft to another over many days. Another new result is the unambiguous identification of nonuniform latitudinal gradients approximately 2-5% degree -1 in structures lasting 10-30 days. There is additional evidence for somewhat smaller latitudinal gradients, north to south and probably mixed with small field-aligned gradients -1 , which persist for several solar rotations
Galactic cosmic ray gradients, field-aligned and latitudinal, among Voyagers 1/2 and IMP-8
Roelof, E. C.; Decker, R. B.; Krimigis, S. M.; Venkatesan, D.; Lazarus, A. J.
1982-01-01
The present investigation represents a summary of a comprehensive analysis of the same subject conducted by Roelof et al. (1981). It is pointed out that the tandem earth-Jupiter trajectories of the Voyager 1/2 spacecraft, combined with baseline measurements from the earth-orbiting IMP 7/8 spacecraft, provide the first opportunity for unambiguously separating latitude from radial or field-aligned effects in galactic cosmic ray gradients. Attention is given to the method of data analysis, and the separation of field-aligned and latitudinal gradients. It is found that latitudinal gradients approximately equal to or greater than 1 percent per deg in the cosmic ray intensity were a common feature of the interplanetary medium between 1 and 5 AU in 1977-78. Except in the most disturbed periods, cosmic ray intensities are well-ordered in field-aligned structures.
International Nuclear Information System (INIS)
Yoon, Seokchan; Choi, Youngwoon; Park, Sangbum; Ji, Wangxi; Lee, Jai-Hyung; An, Kyungwon
2007-01-01
A quantitative study on characteristics of a magneto-optical trap with a single or a few atoms is presented. A very small number of 85 Rb atoms were trapped in a micron-size magneto-optical trap with a high magnetic-field gradient. In order to find the optimum condition for a single-atom trap, we have investigated how the number of atoms and the size of atomic cloud change as various experimental parameters, such as a magnetic-field gradient and the trapping laser intensity and detuning. The averaged number of atoms was measured very accurately with a calibration procedure based on the single-atom saturation curve of resonance fluorescence. In addition, the number of atoms in a trap could be controlled by suppressing stochastic loading events by means of a real-time active feedback on the magnetic-field gradient
Sun, Qi; Fu, Shujun
2017-09-20
Fringe orientation is an important feature of fringe patterns and has a wide range of applications such as guiding fringe pattern filtering, phase unwrapping, and abstraction. Estimating fringe orientation is a basic task for subsequent processing of fringe patterns. However, various noise, singular and obscure points, and orientation data degeneration lead to inaccurate calculations of fringe orientation. Thus, to deepen the understanding of orientation estimation and to better guide orientation estimation in fringe pattern processing, some advanced gradient-field-based orientation estimation methods are compared and analyzed. At the same time, following the ideas of smoothing regularization and computing of bigger gradient fields, a regularized singular-value decomposition (RSVD) technique is proposed for fringe orientation estimation. To compare the performance of these gradient-field-based methods, quantitative results and visual effect maps of orientation estimation are given on simulated and real fringe patterns that demonstrate that the RSVD produces the best estimation results at a cost of relatively less time.
Tensor Transpose and Its Properties
Pan, Ran
2014-01-01
Tensor transpose is a higher order generalization of matrix transpose. In this paper, we use permutations and symmetry group to define? the tensor transpose. Then we discuss the classification and composition of tensor transposes. Properties of tensor transpose are studied in relation to tensor multiplication, tensor eigenvalues, tensor decompositions and tensor rank.
Optimal path-finding through mental exploration based on neural energy field gradients.
Wang, Yihong; Wang, Rubin; Zhu, Yating
2017-02-01
Rodent animal can accomplish self-locating and path-finding task by forming a cognitive map in the hippocampus representing the environment. In the classical model of the cognitive map, the system (artificial animal) needs large amounts of physical exploration to study spatial environment to solve path-finding problems, which costs too much time and energy. Although Hopfield's mental exploration model makes up for the deficiency mentioned above, the path is still not efficient enough. Moreover, his model mainly focused on the artificial neural network, and clear physiological meanings has not been addressed. In this work, based on the concept of mental exploration, neural energy coding theory has been applied to the novel calculation model to solve the path-finding problem. Energy field is constructed on the basis of the firing power of place cell clusters, and the energy field gradient can be used in mental exploration to solve path-finding problems. The study shows that the new mental exploration model can efficiently find the optimal path, and present the learning process with biophysical meaning as well. We also analyzed the parameters of the model which affect the path efficiency. This new idea verifies the importance of place cell and synapse in spatial memory and proves that energy coding is effective to study cognitive activities. This may provide the theoretical basis for the neural dynamics mechanism of spatial memory.
Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas
2014-03-01
The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.
Karoly, Kis; Taylor, Patrick T.; Geza, Wittmann
2014-01-01
We computed magnetic field gradients at satellite altitude, over Europe with emphasis on the Kursk Magnetic Anomaly (KMA). They were calculated using the CHAMP satellite total magnetic anomalies. Our computations were done to determine how the magnetic anomaly data from the new ESA/Swarm satellites could be utilized to determine the structure of the magnetization of the Earths crust, especially in the region of the KMA. Since the ten years of 2 CHAMP data could be used to simulate the Swarm data. An initial East magnetic anomaly gradient map of Europe was computed and subsequently the North, East and Vertical magnetic gradients for the KMA region were calculated. The vertical gradient of the KMA was determined using Hilbert transforms. Inversion of the total KMA was derived using Simplex and Simulated Annealing algorithms. Our resulting inversion depth model is a horizontal quadrangle with upper 300-329 km and lower 331-339 km boundaries.
Colored Tensor Models - a Review
Directory of Open Access Journals (Sweden)
Razvan Gurau
2012-04-01
Full Text Available Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions, non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.
江原, 幸雄
2009-01-01
Shallow ground temperatures such as 1m depth temperature have been measured to delineate thermal anomalies of geothermal fields and also to estimate heat discharge rates from geothermal fields. As a result, a close linear relation between 1m depth temperature and average geothermal gradient at 75cm depth has been recognized in many geothermal fields and was used to estimate conductive heat discharge rates. However, such a linear relation may show that the shallow thermal regime in geothermal ...
Miehe, C; Teichtmeister, S; Aldakheel, F
2016-04-28
This work outlines a novel variational-based theory for the phase-field modelling of ductile fracture in elastic-plastic solids undergoing large strains. The phase-field approach regularizes sharp crack surfaces within a pure continuum setting by a specific gradient damage modelling. It is linked to a formulation of gradient plasticity at finite strains. The framework includes two independent length scales which regularize both the plastic response as well as the crack discontinuities. This ensures that the damage zones of ductile fracture are inside of plastic zones, and guarantees on the computational side a mesh objectivity in post-critical ranges. © 2016 The Author(s).
Gravitational Metric Tensor Exterior to Rotating Homogeneous ...
African Journals Online (AJOL)
The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...
Czech Academy of Sciences Publication Activity Database
Plocková, Jana; Chmelík, Josef
2006-01-01
Roč. 1118, č. 2 (2006), s. 253-260 ISSN 0021-9673 R&D Projects: GA MZe QD1005 Institutional research plan: CEZ:AV0Z40310501 Keywords : gravitational field flow fractionation * focusing elution mode * carrier liquid density Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.554, year: 2006
Energy Technology Data Exchange (ETDEWEB)
Lin, H; Kirk, M; Zhai, H; Ding, X; Liu, H; Hill-Kayser, C; Lustig, R; Tochner, Z; Deville, C; Vapiwala, N; McDonough, J; Both, S [University Pennsylvania, Philadelphia, PA (United States)
2014-06-01
Purpose: To propose the gradient optimization(GO) approach in planning for matching proton PBS fields and present two commonly used applications in our institution. Methods: GO is employed for PBS field matching in the scenarios that when the size of the target is beyond the field size limit of the beam delivery system or matching is required for beams from different angles to either improve the sparing of important organs or to pass through a short and simple beam path. Overlap is designed between adjacent fields and in the overlapped junction, the dose was optimized such that it gradually decreases in one field and the decrease is compensated by increase from another field. Clinical applications of this approach on craniospinal irradiation(CSI) and whole pelvis treatment were presented. Mathematical model was developed to study the relationships between dose errors, setup errors and junction lengths. Results: Uniform and conformal dose coverage to the entire target volumes was achieved for both applications using GO approach. For CSI, the gradient matching (6.7cm junction) between fields overcame the complexity of planning associated with feathering match lines. A slow dose gradient in the junction area significantly reduced the sensitivity of the treatment to setup errors. For whole pelvis, gradient matching (4cm junction) between posterior fields for superior target and bilateral fields for inferior target provided dose sparing to organs such as bowel, bladder and rectum. For a setup error of 3 mm in longitudinal direction from one field, mathematical model predicted dose errors of 10%, 6% and 4.3% for junction length of 3, 5 and 7cm. Conclusion: This GO approach improves the quality of the PBS treatment plan with matching fields while maintaining the safety of treatment delivery relative to potential misalignments.
International Nuclear Information System (INIS)
Lin, H; Kirk, M; Zhai, H; Ding, X; Liu, H; Hill-Kayser, C; Lustig, R; Tochner, Z; Deville, C; Vapiwala, N; McDonough, J; Both, S
2014-01-01
Purpose: To propose the gradient optimization(GO) approach in planning for matching proton PBS fields and present two commonly used applications in our institution. Methods: GO is employed for PBS field matching in the scenarios that when the size of the target is beyond the field size limit of the beam delivery system or matching is required for beams from different angles to either improve the sparing of important organs or to pass through a short and simple beam path. Overlap is designed between adjacent fields and in the overlapped junction, the dose was optimized such that it gradually decreases in one field and the decrease is compensated by increase from another field. Clinical applications of this approach on craniospinal irradiation(CSI) and whole pelvis treatment were presented. Mathematical model was developed to study the relationships between dose errors, setup errors and junction lengths. Results: Uniform and conformal dose coverage to the entire target volumes was achieved for both applications using GO approach. For CSI, the gradient matching (6.7cm junction) between fields overcame the complexity of planning associated with feathering match lines. A slow dose gradient in the junction area significantly reduced the sensitivity of the treatment to setup errors. For whole pelvis, gradient matching (4cm junction) between posterior fields for superior target and bilateral fields for inferior target provided dose sparing to organs such as bowel, bladder and rectum. For a setup error of 3 mm in longitudinal direction from one field, mathematical model predicted dose errors of 10%, 6% and 4.3% for junction length of 3, 5 and 7cm. Conclusion: This GO approach improves the quality of the PBS treatment plan with matching fields while maintaining the safety of treatment delivery relative to potential misalignments
Cao, Quanliang; Li, Zhenhao; Wang, Zhen; Qi, Fan; Han, Xiaotao
2018-05-01
How to prevent particle aggregation in the magnetic separation process is of great importance for high-purity separation, while it is a challenging issue in practice. In this work, we report a novel method to solve this problem for improving the selectivity of size-based separation by use of a gradient alternating magnetic field. The specially designed magnetic field is capable of dynamically adjusting the magnetic field direction without changing the direction of magnetic gradient force acting on the particles. Using direct numerical simulations, we show that particles within a certain center-to-center distance are inseparable under a gradient static magnetic field since they are easy aggregated and then start moving together. By contrast, it has been demonstrated that alternating repulsive and attractive interaction forces between particles can be generated to avoid the formation of aggregations when the alternating gradient magnetic field with a given alternating frequency is applied, enabling these particles to be continuously separated based on size-dependent properties. The proposed magnetic separation method and simulation results have the significance for fundamental understanding of particle dynamic behavior and improving the separation efficiency.
International Nuclear Information System (INIS)
Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.
2015-01-01
This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performing microcanonical excited state molecular dynamics with p-nitroaniline
Some calculated contributions to the electric field gradient in nontransition metals
International Nuclear Information System (INIS)
Lodge, K.W.
1978-01-01
The electric field gradient (EFG) at a nucleus in the metals Be, Mg, Zn, Cd, In and Ga (both alpha and beta forms) has been calculated. Model potential theory has been used to represent the conduction electron distribution external to the ion core at whose nucleus the EFG is calculated. For the metals Be and Mg the local conduction electron effects have been obtained by orthogonalising the model wavefunctions to the occupied core states. The effect of the nuclear electric quadrupole moment (EQM) perturbing the conduction electrons has also been considered and the effect of self-consistently obtaining conduction electron and distorted core electron states has been discussed. The conduction electrons external to the core are found to produce an EFG which partly screens the ionic contribution. A large contribution is obtained from the orthogonalisation terms, substantially improving the agreement with experiment for Mg. The effect of including the nuclear EQM perturbation of the conduction electrons is found to be of the order of 10% of the calculated total EFG for Be and Mg. (author)
Fixed Field Alternating Gradient (FFAG)accelerators and their medical application in proton therapy
International Nuclear Information System (INIS)
Fourrier, J.
2008-10-01
Radiotherapy uses particle beams to irradiate and kill cancer tumors while sparing healthy tissues. Bragg peak shape of the proton energy loss in matter allows a ballistic improvement of the dose deposition compared with X rays. Thus, the irradiated volume can be precisely adjusted to the tumour. This thesis, in the frame of the RACCAM project, aims to the study and the design of a proton therapy installation based on a fixed field alternating gradient (FFAG) accelerator in order to build a spiral sector FFAG magnet for validation. First, we present proton therapy to define medical specifications leading to the technical specifications of a proton therapy installation. Secondly, we introduce FFAG accelerators through their past and on-going projects which are on their way around the world before developing the beam dynamic theories in the case of invariant focusing optics (scaling FFAG). We describe modelling and simulation tools developed to study the dynamics in a spiral scaling FFAG accelerator. Then we explain the spiral optic parameter search which has leaded to the construction of a magnet prototype. Finally, we describe the RACCAM project proton therapy installation starting from the injector cyclotron and ending with the extraction system. (author)
Electric field gradients at 181Ta sites in HfOx
International Nuclear Information System (INIS)
Darriba, G.N.; Rodriguez, A.M.; Saitovitch, H.; Silva, P.R.J.; Pasquevich, A.F.
2007-01-01
In the present work we report preliminary results about the possibility to study properties of the order-disorder transition in HfO x solid solutions via the determination of the electric field gradient (EFG) at 181 Ta radioactive probes. Oxygen solution into the metal was achieved by arc melting stoichiometric amounts of metallic Hf and HfO 2 under argon atmosphere. Samples of HfO x with x=0.1 and 0.2 were prepared. Two types of samples were used for the perturbed angular correlation (PAC) experiments by doping alternatively with 181 Ta, by neutron irradiation, the metallic Hf or the hafnium oxide. The PAC results on both samples were identical, with disappearing hyperfine signals of the metal and the oxide, showing a complete diffusion of the probes independent of the way of doping. The PAC signal of the HfO x solid solution consisted in a wide distribution of EFGs due to the oxygen disorder. This scheme held even after long thermal treatments at high temperature (several days at 1273K). Annealing treatments at moderate temperature (600K) were also made. In these cases the samples were cooling at a very low rate. These results, together with those obtained by measuring samples below and above the order temperature are reported
3D reconstruction of tensors and vectors
International Nuclear Information System (INIS)
Defrise, Michel; Gullberg, Grant T.
2005-01-01
Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields
DEFF Research Database (Denmark)
Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.
2012-01-01
We investigate the magnitude and interplay of relativistic and electron correlation effects on the electric field gradient (EFG) at the position of Hg in linear and bent HgL2 (L=CH3, Cl, Br, I) and trigonal planar [HgCl3]- complexes using four-component relativistic Dirac-Coulomb (DC) and non...
Jiang, Yuan; Wang, Jin-Liang; Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng
2016-01-01
We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the
Chen, Jing; Mao, Li-Juan; Feng, Xiao-Xiao; Zhang, Chu-Long; Lin, Fu-Cheng
2016-01-01
We surveyed the Trichoderma (Hypocreales, Ascomycota) biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn), 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates), T. asperellum (425), T. hamatum (397), T. virens (340), T. koningiopsis (248), T. brevicompactum (73), T. atroviride (73), T. fertile (26), T. longibrachiatum (22), T. pleuroticola (16), T. erinaceum (16), T. oblongisporum (2), T. polysporum (2), T. spirale (2), T. capillare (2), T. velutinum (2), and T. saturnisporum (1). T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y) values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14) and the highest Shannon–Wiener diversity index of Trichoderma haplotypes (1.46). We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area) had more T. hamatum than Shandong Province (the northernmost province), not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the
Directory of Open Access Journals (Sweden)
Yuan Jiang
Full Text Available We surveyed the Trichoderma (Hypocreales, Ascomycota biodiversity in agricultural fields in four major agricultural provinces of East China. Trichoderma strains were identified based on molecular approaches and morphological characteristics. In three sampled seasons (spring, summer and autumn, 2078 strains were isolated and identified to 17 known species: T. harzianum (429 isolates, T. asperellum (425, T. hamatum (397, T. virens (340, T. koningiopsis (248, T. brevicompactum (73, T. atroviride (73, T. fertile (26, T. longibrachiatum (22, T. pleuroticola (16, T. erinaceum (16, T. oblongisporum (2, T. polysporum (2, T. spirale (2, T. capillare (2, T. velutinum (2, and T. saturnisporum (1. T. harzianum, T. asperellum, T. hamatum, and T. virens were identified as the dominant species with dominance (Y values of 0.057, 0.052, 0.048, and 0.039, respectively. The species amount, isolate numbers and the dominant species of Trichoderma varied between provinces. Zhejiang Province has shown the highest diversity, which was reflected in the highest species amount (14 and the highest Shannon-Wiener diversity index of Trichoderma haplotypes (1.46. We observed that relative frequencies of T. hamatum and T. koningiopsis under rice soil were higher than those under wheat and maize soil, indicating the preference of Trichoderma to different crops. Remarkable seasonal variation was shown, with summer exhibiting the highest biodiversity of the studied seasons. These results show that Trichoderma biodiversity in agricultural fields varies by region, crop, and season. Zhejiang Province (the southernmost province in the investigated area had more T. hamatum than Shandong Province (the northernmost province, not only in isolate amounts but also in haplotype amounts. Furthermore, at haplotype level, only T. hamatum showed a gradient distribution from south to north in correspondence analysis among the four dominant species. The above results would contribute to the
A high-resolution EPR-CT microscope using cavity-resonators equipped with small field gradient coils
International Nuclear Information System (INIS)
Miki, T.; Murata, T.; Kumai, H.; Yamashiro, A.
1996-01-01
Cylindrical cavity resonators equipped with field gradient coils were developed for two-dimensional EPR-CT microscope systems. The field gradient coils lie in four (or six) thin metal tubes placed along the direction of the microwave magnetic field in the cavity to minimize impact on the resonator's quality factor. Two pairs of the tubes carry a 100 kHz current for magnetic field modulation. This cavity has high spin-detection sensitivity and can provide EPR images with submillimeter resolution. In order to reconstruct better images from fewer projections, we used an algebraic reconstruction technique (ART) for the two-dimensional image reconstruction. The ART method may be suitable for not only spectral-spatial two-dimensional EPR imaging, but also spatio-temporal EPR imaging in dynamic spin systems. (author)
Tensor rank is not multiplicative under the tensor product
DEFF Research Database (Denmark)
Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen
2018-01-01
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection b...
Tensor rank is not multiplicative under the tensor product
M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)
2018-01-01
textabstractThe tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the
Tensor rank is not multiplicative under the tensor product
M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)
2017-01-01
textabstractThe tensor rank of a tensor is the smallest number r such that the tensor can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor (not to be confused with the "tensor Kronecker product" used in
Sundström, Henrik; Mild, Kjell Hansson; Wilén, Jonna
2015-02-01
Knowledge of patient exposure during magnetic resonance imaging (MRI) procedures is limited, and the need for such knowledge has been demonstrated in recent in vitro and in vivo studies of the genotoxic effects of MRI. This study focuses on the dB/dt of the switched gradient field (SGF) and its geometric distribution. These values were characterized by measuring the peak dB/dt generated by a programmed gradient current of alternating triangles inside a 1.5T MR scanner. The maximum dB/dt exposure to the gradient field was 6-14 T/s, and this occurred at the edges of the field of view (FOV) 20-25 cm from the isocenter in the longitudinal direction. The dB/dt exposure dropped off to roughly half the maximum (3-7 T/s) at the edge of the bore. It was found that the dB/dt of the SGF was distorted by a 200 kHz ripple arising from the amplifier. The ripple is small in terms of B-field, but the high frequency content contributes to a peak dB/dt up to 18 times larger than that predicted by the slew rate (4 T/s m) and the distance from the isocenter. Measurements on a 3 T MRI scanner, however, revealed a much smaller filtered ripple of 100 kHz in dB/dt. These findings suggest that the gradient current to each coil together with information on the geometrical distribution of the gradient field and ripple effects could be used to assess the SGF exposure within an MRI bore. © 2014 Wiley Periodicals, Inc.
International Nuclear Information System (INIS)
Huisman, Thierry A.G.M.; Loenneker, Thomas; Barta, Gerd; Bellemann, Matthias E.; Hennig, Juergen; Fischer, Joachim E.; Il'yasov, Kamil A.
2006-01-01
The objectives were to study the ''impact'' of the magnetic field strength on diffusion tensor imaging (DTI) metrics and also to determine whether magnetic-field-related differences in T2-relaxation times of brain tissue influence DTI measurements. DTI was performed on 12 healthy volunteers at 1.5 and 3.0 Tesla (within 2 h) using identical DTI scan parameters. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were measured at multiple gray and white matter locations. ADC and FA values were compared and analyzed for statistically significant differences. In addition, DTI measurements were performed at different echo times (TE) for both field strengths. ADC values for gray and white matter were statistically significantly lower at 3.0 Tesla compared with 1.5 Tesla (% change between -1.94% and -9.79%). FA values were statistically significantly higher at 3.0 Tesla compared with 1.5 Tesla (% change between +4.04 and 11.15%). ADC and FA values are not significantly different for TE=91 ms and TE=125 ms. Thus, ADC and FA values vary with the used field strength. Comparative clinical studies using ADC or FA values should consequently compare ADC or FA results with normative ADC or FA values that have been determined for the field strength used. (orig.)
Wang, Y; Yin, D C; Liu, Y M; Shi, J Z; Lu, H M; Shi, Z H; Qian, A R; Shang, P
2011-03-01
A high-field superconducting magnet can provide both high-magnetic fields and large-field gradients, which can be used as a special environment for research or practical applications in materials processing, life science studies, physical and chemical reactions, etc. To make full use of a superconducting magnet, shared instruments (the operating platform, sample holders, temperature controller, and observation system) must be prepared as prerequisites. This paper introduces the design of a set of sample holders and a temperature controller in detail with an emphasis on validating the performance of the force and temperature sensors in the high-magnetic field.
Directory of Open Access Journals (Sweden)
Lijing Shao
2017-10-01
Full Text Available Pulsar timing and laser-interferometer gravitational-wave (GW detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF, which predicts nonperturbative scalarization phenomena for neutron stars (NSs. First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical scalarization sets in during the early (or late stages of a binary NS (BNS evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.
Bayesian regularization of diffusion tensor images
DEFF Research Database (Denmark)
Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif
2007-01-01
Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...
The effects of noise over the complete space of diffusion tensor shape.
Gahm, Jin Kyu; Kindlmann, Gordon; Ennis, Daniel B
2014-01-01
Diffusion tensor magnetic resonance imaging (DT-MRI) is a technique used to quantify the microstructural organization of biological tissues. Multiple images are necessary to reconstruct the tensor data and each acquisition is subject to complex thermal noise. As such, measures of tensor invariants, which characterize components of tensor shape, derived from the tensor data will be biased from their true values. Previous work has examined this bias, but over a narrow range of tensor shape. Herein, we define the mathematics for constructing a tensor from tensor invariants, which permits an intuitive and principled means for building tensors with a complete range of tensor shape and salient microstructural properties. Thereafter, we use this development to evaluate by simulation the effects of noise on characterizing tensor shape over the complete space of tensor shape for three encoding schemes with different SNR and gradient directions. We also define a new framework for determining the distribution of the true values of tensor invariants given their measures, which provides guidance about the confidence the observer should have in the measures. Finally, we present the statistics of tensor invariant estimates over the complete space of tensor shape to demonstrate how the noise sensitivity of tensor invariants varies across the space of tensor shape as well as how the imaging protocol impacts measures of tensor invariants. Copyright © 2013 Elsevier B.V. All rights reserved.
Characteristics of magnetic resonance imaging with partial flip angle and gradient field echo
International Nuclear Information System (INIS)
Hamada, Tatsumi; Uto, Tatsurou; Okafuji, Tatsumasa; Ookusa, Akihiko; Oonishi, Takuya; Mabuchi, Nobuhisa; Fujii, Kouichi; Yoshioka, Hiroyasu; Ishida, Osamu
1988-01-01
Characteristics of a magnetic resonance (MR) imaging pulse sequence with short repetition time (Tr), short echo time (Te), partial flip angle and gradient field echo, at 0.5 T, were studied. A series of sagittal images of the cerebrospinal region was obtained with varied Tr, Te and flip angle, signal intensities were measured by means of a region of interest (ROI) function, and optimal parameters to achieve maximum tissue contrast were found. Of the parameters flip angle had the greatest effect on tissue contrast. Flip angles less than 20 or more than 60 degrees were necessary to discriminate between spinal cord and cerebrospinal fluid. So called MR myelography was obtained with the flip angle of 15 degrees. Opposed and inphase images were obtained at the Te levels of 21 and 28 ms, respectively. Likewise, a series of transverse images of the abdomen with short Tr, short Te and varied flip angles was obtained in a breath-holding interval, and signal intensities of ROIs were measured. Maximum intensities of the liver, the spleen and perirenal fat were obtained at the flip angles of 40, 30 and 60 degrees, respectively. Although maximum intensity was found at the flip angle of 30 degrees for both of the renal cortex and medulla, the maximum contrast between the two tissues was obtained at the flip angles of 50-60 degrees. The image contrast obtained by these pulse sequences was also theoretically predictable, and so it is thought possible that flip angle, Tr and Te are manipulated to yield a desired contrast. (author)
Zakharov, A. V.; Maslennikov, P. V.
2018-05-01
We have considered a homogeneously oriented liquid crystal (HOLC) microvolume, confined between two infinitely long horizontal coaxial cylinders subjected to both a temperature gradient ∇T and a radially applied electric field E . We have investigated dynamic field pumping, i.e. studied the interactions between director, velocity, electric fields, as well as a radially applied temperature gradient, where the inner cylinder is kept at a lower temperature than the outer one. In order to elucidate the role of ∇T and E in producing hydrodynamic flow, we have carried out a numerical study of a system of hydrodynamic equations including director reorientation, fluid flow, and temperature redistribution across the HOLC cavity. Calculations show that, under the effect of the named perturbations and at high curvature of the inner cylinder, the HOLC microvolume settles down to a nonstandard pumping regime with maximum flow in the vicinity of the cooler inner cylinder.
Radiative corrections in a vector-tensor model
International Nuclear Information System (INIS)
Chishtie, F.; Gagne-Portelance, M.; Hanif, T.; Homayouni, S.; McKeon, D.G.C.
2006-01-01
In a recently proposed model in which a vector non-Abelian gauge field interacts with an antisymmetric tensor field, it has been shown that the tensor field possesses no physical degrees of freedom. This formal demonstration is tested by computing the one-loop contributions of the tensor field to the self-energy of the vector field. It is shown that despite the large number of Feynman diagrams in which the tensor field contributes, the sum of these diagrams vanishes, confirming that it is not physical. Furthermore, if the tensor field were to couple with a spinor field, it is shown at one-loop order that the spinor self-energy is not renormalizable, and hence this coupling must be excluded. In principle though, this tensor field does couple to the gravitational field
Bashir, Adil; Gropler, Robert; Ackerman, Joseph
2015-01-01
Purpose Absolute concentrations of high-energy phosphorus (31P) metabolites in liver provide more important insight into physiologic status of liver disease compared to resonance integral ratios. A simple method for measuring absolute concentrations of 31P metabolites in human liver is described. The approach uses surface spoiling inhomogeneous magnetic field gradient to select signal from liver tissue. The technique avoids issues caused by respiratory motion, chemical shift dispersion associated with linear magnetic field gradients, and increased tissue heat deposition due to radiofrequency absorption, especially at high field strength. Methods A method to localize signal from liver was demonstrated using superficial and highly non-uniform magnetic field gradients, which eliminate signal(s) from surface tissue(s) located between the liver and RF coil. A double standard method was implemented to determine absolute 31P metabolite concentrations in vivo. 8 healthy individuals were examined in a 3 T MR scanner. Results Concentrations of metabolites measured in eight healthy individuals are: γ-adenosine triphosphate (ATP) = 2.44 ± 0.21 (mean ± sd) mmol/l of wet tissue volume, α-ATP = 3.2 ± 0.63 mmol/l, β-ATP = 2.98 ± 0.45 mmol/l, inorganic phosphates (Pi) = 1.87 ± 0.25 mmol/l, phosphodiesters (PDE) = 10.62 ± 2.20 mmol/l and phosphomonoesters (PME) = 2.12 ± 0.51 mmol/l. All are in good agreement with literature values. Conclusions The technique offers robust and fast means to localize signal from liver tissue, allows absolute metabolite concentration determination, and avoids problems associated with constant field gradient (linear field variation) localization methods. PMID:26633549
(Ln-bar, g)-spaces. Ordinary and tensor differentials
International Nuclear Information System (INIS)
Manoff, S.; Dimitrov, B.
1998-01-01
Different types of differentials as special cases of differential operators acting on tensor fields over (L n bar, g)-spaces are considered. The ordinary differential, the covariant differential as a special case of the covariant differential operator, and the Lie differential as a special case of the Lie differential operator are investigated. The tensor differential and its special types (Covariant tensor differential, and Lie tensor differential) are determined and their properties are discussed. Covariant symmetric and antisymmetric (external) tensor differentials, Lie symmetric, and Lie antisymmetric (external) tensor differentials are determined and considered over (L n bar, g)-spaces
International Nuclear Information System (INIS)
Sen, P.N.; Andre, A.; Axelrod, S.
1999-01-01
We study the influence of restriction on Carr - Purcell - Meiboom - Gill spin echoes response of magnetization of spins diffusing in a bounded region in the presence of a constant magnetic field gradient. Depending on three main length scales: L S pore size, L G dephasing length and L D diffusion length during half-echo time, three main regimes of decay have been identified: free, localization and motionally averaging regime. In localization regime, the decay exponent depends on a fractional power (2/3) of the gradient, denoting a strong breakdown of the second cumulant or the Gaussian phase approximation (GPA). In the other two regimes, the exponent depends on the gradient squared, and the GPA holds. We find that the transition from the localization to the motionally averaging regime happens when the magnetic field gradients approach special values, corresponding to branch points of the eigenvalues. Transition from one regime to another as a function of echo number for a certain range of parameters is discussed. In this transition region, the signal shows large oscillations with echo number. For large n, asymptotic behavior sets in as a function of n for the decay exponent per echo. This is true for all values of the parameters L S , L G , and L D . copyright 1999 American Institute of Physics
Ormondt, van D.; Andriessen, J.; Dam, J.A.M.; Ast, van M.A.; Hartog, den H.W.; Bijvank, E.J.
1979-01-01
The electric field gradients (EFG) Vzz and Vxx-Vyy at the nucleus of 157Gd3+ have been determined, using ENDOR, for CaF2:Gd3+M+(M+=Li,K+) and SrCl2:Gd3+Na+. The results are compared with the electronic zero-field splitting parameters of Gd3+, B20 and B22 for the same sites. A simple relation between
König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen
2013-03-19
To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.
Directory of Open Access Journals (Sweden)
Cordula V Mora
Full Text Available It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a "virtual magnetic map" during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.
Tensor rank is not multiplicative under the tensor product
Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen
2017-01-01
The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specif...
Ye, Qian; Lin, Haoze
2017-07-01
Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space, if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function.
International Nuclear Information System (INIS)
Ye, Qian; Lin, Haoze
2017-01-01
Though extensively used in calculating optical force and torque acting on a material object illuminated by laser, the Maxwell stress tensor (MST) method follows the electromagnetic linear and angular momentum balance that is usually derived in most textbooks for a continuous volume charge distribution in free space , if not resorting to the application of Noether’s theorem in electrodynamics. To cast the conservation laws into a physically appealing form involving the current densities of linear and angular momentum, on which the MST method is based, the divergence theorem is employed to transform a volume integral into a surface integral. When a material object of finite volume is put into the field, it brings about a discontinuity of field across its surface, due to the presence of induced surface charge and surface current. Ambiguity arises among students in whether the divergence theorem can still be directly used without any justification. By taking into account the effect of the induced surface charge and current, we present a simple pedagogical derivation for the MST method for calculating the optical force and torque on an object immersed in monochromatic optical field, without resorting to Noether’s theorem. Although the results turn out to be identical to those given in the standard textbooks, our derivation avoids the direct use of the divergence theorem on a discontinuous function. (paper)
International Nuclear Information System (INIS)
Mitamura, Yoshinori; Okamoto, Eiji
2015-01-01
This study was carried out to clarify the effect of a high gradient magnetic field on pressure characteristics of blood in a hollow fiber membrane oxygenator in a solenoid coil by means of numerical analysis. Deoxygenated erythrocytes are paramagnetic, and oxygenated erythrocytes are diamagnetic. Blood changes its magnetic susceptibility depending on whether it is carrying oxygen or not. Motion of blood was analyzed by solving the continuous equation and the Navier–Stokes equation. It was confirmed that oxygenation of deoxygenated blood in the downstream side of the applied magnetic field was effective for pressure rise in a non-uniform magnetic field. The pressure rise was enhanced greatly by an increase in magnetic field intensity. The results suggest that a membrane oxygenator works as an actuator and there is a possibility of self-circulation of blood through an oxygenator in a non-uniform magnetic field. - Highlights: • Effects of a gradient magnetic field on erythrocytes in an oxygenator were analyzed. • Blood changes magnetic susceptibility depending on if it is carrying oxygen or not. • Oxygenation of deoxygenated blood is effective for pressure rise in a magnetic field. • A membrane oxygenator works as an actuator. • There is a possibility of self-circulation of blood through an oxygenator
Energy Technology Data Exchange (ETDEWEB)
Mitamura, Yoshinori, E-mail: ymitamura@par.odn.ne.jp; Okamoto, Eiji, E-mail: okamoto@tspirit.tokai-u.jp
2015-04-15
This study was carried out to clarify the effect of a high gradient magnetic field on pressure characteristics of blood in a hollow fiber membrane oxygenator in a solenoid coil by means of numerical analysis. Deoxygenated erythrocytes are paramagnetic, and oxygenated erythrocytes are diamagnetic. Blood changes its magnetic susceptibility depending on whether it is carrying oxygen or not. Motion of blood was analyzed by solving the continuous equation and the Navier–Stokes equation. It was confirmed that oxygenation of deoxygenated blood in the downstream side of the applied magnetic field was effective for pressure rise in a non-uniform magnetic field. The pressure rise was enhanced greatly by an increase in magnetic field intensity. The results suggest that a membrane oxygenator works as an actuator and there is a possibility of self-circulation of blood through an oxygenator in a non-uniform magnetic field. - Highlights: • Effects of a gradient magnetic field on erythrocytes in an oxygenator were analyzed. • Blood changes magnetic susceptibility depending on if it is carrying oxygen or not. • Oxygenation of deoxygenated blood is effective for pressure rise in a magnetic field. • A membrane oxygenator works as an actuator. • There is a possibility of self-circulation of blood through an oxygenator.
Nogueira d'Eurydice, Marcel; Galvosas, Petrik
2014-11-01
Single-sided NMR systems are becoming a relevant tool in industry and laboratory environments due to their low cost, low maintenance and capacity to evaluate quantity and quality of hydrogen based materials. The performance of such devices has improved significantly over the last decade, providing increased field homogeneity, field strength and even controlled static field gradients. For a class of these devices, the configuration of the permanent magnets provides a linear variation of the magnetic field and can be used in diffusion measurements. However, magnet design depends directly on its application and, according to the purpose, the field homogeneity may significantly be compromised. This may prevent the determination of diffusion properties of fluids based on the natural inhomogeneity of the field using known techniques. This work introduces a new approach that extends the applicability of diffusion-editing CPMG experiments to NMR devices with highly inhomogeneous magnetic fields, which do not vary linearly in space. Herein, we propose a method to determine a custom diffusion kernel based on the gradient distribution, which can be seen as a signature of each NMR device. This new diffusion kernel is then utilised in the 2D inverse Laplace transform (2D ILT) in order to determine diffusion-relaxation correlation maps of homogeneous multi-phasic fluids. The experiments were performed using NMR MObile Lateral Explore (MOLE), which is a single-sided NMR device designed to maximise the volume at the sweet spot with enhanced depth penetration. Copyright © 2014 Elsevier Inc. All rights reserved.
Weyl curvature tensor in static spherical sources
International Nuclear Information System (INIS)
Ponce de Leon, J.
1988-01-01
The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed
Spectral Tensor-Train Decomposition
DEFF Research Database (Denmark)
Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.
2016-01-01
The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....
Ultrastructure of pea and cress root statocytes exposed to high gradient magnetic field
Belyavskaya, N. A.; Chernishov, V. I.; Polishchuk, O. V.; Kondrachuk, A. V.
As it was demonstrated by Kuznetsov & Hasenstein (1996) the high gradient magnetic field (HGMF) can produce a ponderomotive force that results in displacements of amyloplasts and causes the root response similar to the graviresponse. It was suggested that the HGMF could allow to imitate the effects of gravity in microgravity and/or change them in laboratory conditions correspondingly, as well as to study statolith-related processes in graviperception. Therefore, the correlation between the direction of the ponderomotive force resulting in statolith displacements and the direction of the HGMF-induced plant curvature can be the serious argument to support this suggestion and needs the detailed ultrastructural analysis. Seeds of dicotyledon Pisum sativum L. cv. Damir-2 and monocotyledon Lepidium sativum L. cv. P896 were soaked and grown in a vertical position on moist filter paper in chambers at room temperature. Tips of primary roots of vertical control, gravistimulated and exposed to HGMF seedlings were fixed for electron microscopy using conventional techniques. At ultrastructural level, we observed no significant changes in the volume of the individual statocytes or amyloplasts, relative volumes of cellular organelles (except vacuoles), number of amyloplasts per statocyte or surface area of endoplasmic reticulum. No consistent contacts between amyloplasts and any cellular structures, including plasma membrane, were revealed at any stage of magneto- and gravistimulation. By 5 min after onset of magnetostimulation, amyloplasts were located along cell wall distant from magnets. In HGMF, the locations of amyloplasts in columella cells were similar to those in horizontally-oriented roots up to 1 h stimulation. In the latter case, there were sometimes cytoplasmic spherical bodies with a dense vesicle-rich cytoplasm in pea statocytes, which were absent in seedlings exposed to HGMF. In cress root statocytes, both gravi- and magnetostimulation were found to cause the
Tensor structure for Nori motives
Barbieri-Viale, Luca; Huber, Annette; Prest, Mike
2018-01-01
We construct a tensor product on Freyd's universal abelian category attached to an additive tensor category or a tensor quiver and establish a universal property. This is used to give an alternative construction for the tensor product on Nori motives.
Tensor eigenvalues and their applications
Qi, Liqun; Chen, Yannan
2018-01-01
This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.
Energy Technology Data Exchange (ETDEWEB)
Hohmann, Manuel [Physikalisches Institut, Universitaet Tartu (Estonia)
2016-07-01
Tensor harmonics are a useful mathematical tool for finding solutions to differential equations which transform under a particular representation of the rotation group SO(3). In order to make use of this tool also in the setting of Finsler geometry, where the objects of relevance are d-tensors instead of tensors, we construct a set of d-tensor harmonics for both SO(3) and SO(4) symmetries and show how these can be used for calculations in Finsler geometry and gravity.
Chen, Weitian; Sica, Christopher T; Meyer, Craig H
2008-11-01
Off-resonance effects can cause image blurring in spiral scanning and various forms of image degradation in other MRI methods. Off-resonance effects can be caused by both B0 inhomogeneity and concomitant gradient fields. Previously developed off-resonance correction methods focus on the correction of a single source of off-resonance. This work introduces a computationally efficient method of correcting for B0 inhomogeneity and concomitant gradients simultaneously. The method is a fast alternative to conjugate phase reconstruction, with the off-resonance phase term approximated by Chebyshev polynomials. The proposed algorithm is well suited for semiautomatic off-resonance correction, which works well even with an inaccurate or low-resolution field map. The proposed algorithm is demonstrated using phantom and in vivo data sets acquired by spiral scanning. Semiautomatic off-resonance correction alone is shown to provide a moderate amount of correction for concomitant gradient field effects, in addition to B0 imhomogeneity effects. However, better correction is provided by the proposed combined method. The best results were produced using the semiautomatic version of the proposed combined method.
Sirlin, Samuel W.
1993-01-01
Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.
Kelbert, Anna; Balch, Christopher C.; Pulkkinen, Antti; Egbert, Gary D.; Love, Jeffrey J.; Rigler, E. Joshua; Fujii, Ikuko
2017-07-01
Geoelectric fields at the Earth's surface caused by magnetic storms constitute a hazard to the operation of electric power grids and related infrastructure. The ability to estimate these geoelectric fields in close to real time and provide local predictions would better equip the industry to mitigate negative impacts on their operations. Here we report progress toward this goal: development of robust algorithms that convolve a magnetic storm time series with a frequency domain impedance for a realistic three-dimensional (3-D) Earth, to estimate the local, storm time geoelectric field. Both frequency domain and time domain approaches are presented and validated against storm time geoelectric field data measured in Japan. The methods are then compared in the context of a real-time application.
Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan
2011-02-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.
Low Multilinear Rank Approximation of Tensors and Application in Missing Traffic Data
Directory of Open Access Journals (Sweden)
Huachun Tan
2014-02-01
Full Text Available The problem of missing data in multiway arrays (i.e., tensors is common in many fields such as bibliographic data analysis, image processing, and computer vision. We consider the problems of approximating a tensor by another tensor with low multilinear rank in the presence of missing data and possibly reconstructing it (i.e., tensor completion. In this paper, we propose a weighted Tucker model which models only the known elements for capturing the latent structure of the data and reconstructing the missing elements. To treat the nonuniqueness of the proposed weighted Tucker model, a novel gradient descent algorithm based on a Grassmann manifold, which is termed Tucker weighted optimization (Tucker-Wopt, is proposed for guaranteeing the global convergence to a local minimum of the problem. Based on extensive experiments, Tucker-Wopt is shown to successfully reconstruct tensors with noise and up to 95% missing data. Furthermore, the experiments on traffic flow volume data demonstrate the usefulness of our algorithm on real-world application.
International Nuclear Information System (INIS)
Nogueira, S.R.; Vugman, N.V.; Guenzburger, D.
1988-01-01
Semi-empirical Molecular Orbital calculations were performed for the paramagnetic complex ions [Ir(CN) 5 ] 3- , [Ir(CN) 5 Cl] 4- and [Ir(CN) 4 Cl 2 ] 4- . Energy levels schemes and Mulliken-type populations were obtained. The distribution of the unpaired spin over the atoms in the complexes was derived, and compared to data obtained from Electron Paramagnetic Resonance spectra with the aid of a Ligand Field model. The electric field gradients at the Ir nucleus were calculated and compared to experiment. The results are discussed in terms of the chemical bonds formed by Ir and the ligands. (author) [pt
Bracken, Robert E.; Brown, Philip J.
2006-01-01
On March 12, 2003, data were gathered at Yuma Proving Grounds, in Arizona, using a Tensor Magnetic Gradiometer System (TMGS). This report shows how these data were processed and explains concepts required for successful TMGS data reduction. Important concepts discussed include extreme attitudinal sensitivity of vector measurements, low attitudinal sensitivity of gradient measurements, leakage of the common-mode field into gradient measurements, consequences of thermal drift, and effects of field curvature. Spatial-data collection procedures and a spin-calibration method are addressed. Discussions of data-reduction procedures include tracking of axial data by mathematically matching transfer functions among the axes, derivation and application of calibration coefficients, calculation of sensor-pair gradients, thermal-drift corrections, and gradient collocation. For presentation, the magnetic tensor at each data station is converted to a scalar quantity, the I2 tensor invariant, which is easily found by calculating the determinant of the tensor. At important processing junctures, the determinants for all stations in the mapped area are shown in shaded relief map-view. Final processed results are compared to a mathematical model to show the validity of the assumptions made during processing and the reasonableness of the ultimate answer obtained.
Calibrating a tensor magnetic gradiometer using spin data
Bracken, Robert E.; Smith, David V.; Brown, Philip J.
2005-01-01
Scalar magnetic data are often acquired to discern characteristics of geologic source materials and buried objects. It is evident that a great deal can be done with scalar data, but there are significant advantages to direct measurement of the magnetic gradient tensor in applications with nearby sources, such as unexploded ordnance (UXO). To explore these advantages, we adapted a prototype tensor magnetic gradiometer system (TMGS) and successfully implemented a data-reduction procedure. One of several critical reduction issues is the precise determination of a large group of calibration coefficients for the sensors and sensor array. To resolve these coefficients, we devised a spin calibration method, after similar methods of calibrating space-based magnetometers (Snare, 2001). The spin calibration procedure consists of three parts: (1) collecting data by slowly revolving the sensor array in the Earth?s magnetic field, (2) deriving a comprehensive set of coefficients from the spin data, and (3) applying the coefficients to the survey data. To show that the TMGS functions as a tensor gradiometer, we conducted an experimental survey that verified that the reduction procedure was effective (Bracken and Brown, in press). Therefore, because it was an integral part of the reduction, it can be concluded that the spin calibration was correctly formulated with acceptably small errors.
Massless and massive quanta resulting from a mediumlike metric tensor
International Nuclear Information System (INIS)
Soln, J.
1985-01-01
A simple model of the ''primordial'' scalar field theory is presented in which the metric tensor is a generalization of the metric tensor from electrodynamics in a medium. The radiation signal corresponding to the scalar field propagates with a velocity that is generally less than c. This signal can be associated simultaneously with imaginary and real effective (momentum-dependent) masses. The requirement that the imaginary effective mass vanishes, which we take to be the prerequisite for the vacuumlike signal propagation, leads to the ''spontaneous'' splitting of the metric tensor into two distinct metric tensors: one metric tensor gives rise to masslesslike radiation and the other to a massive particle. (author)
International Nuclear Information System (INIS)
Fang Jian-Cheng; Wang Tao; Li Yang; Cai Hong-Wei; Zhang Hong
2015-01-01
A method of measuring in-situ magnetic field gradient is proposed in this paper. The magnetic shield is widely used in the atomic magnetometer. However, there is magnetic field gradient in the magnetic shield, which would lead to additional gradient broadening. It is impossible to use an ex-situ magnetometer to measure magnetic field gradient in the region of a cell, whose length of side is several centimeters. The method demonstrated in this paper can realize the in-situ measurement of the magnetic field gradient inside the cell, which is significant for the spin relaxation study. The magnetic field gradients along the longitudinal axis of the magnetic shield are measured by a spin-exchange relaxation-free (SERF) magnetometer by adding a magnetic field modulation in the probe beam’s direction. The transmissivity of the cell for the probe beam is always inhomogeneous along the pump beam direction, and the method proposed in this paper is independent of the intensity of the probe beam, which means that the method is independent of the cell’s transmissivity. This feature makes the method more practical experimentally. Moreover, the AC-Stark shift can seriously degrade and affect the precision of the magnetic field gradient measurement. The AC-Stark shift is suppressed by locking the pump beam to the resonance of potassium’s D1 line. Furthermore, the residual magnetic fields are measured with σ + - and σ – -polarized pump beams, which can further suppress the effect of the AC-Stark shift. The method of measuring in-situ magnetic field gradient has achieved a magnetic field gradient precision of better than 30 pT/mm. (paper)
Energy Technology Data Exchange (ETDEWEB)
Afonso Rodriguez, Veronica
2015-11-25
This thesis describes the development of a novel superconducting transversal gradient undulator (TGU) designed to form a compact, highly brilliant laser-wakefield accelerator (LWFA) driven radiation source. A TGU in combination with a dispersive beam transport line can be employed to produce undulator radiation with natural bandwidth despite the large energy spread of the LWFA. This thesis documents the construction, first tests and characterization of the full-scale TGU.
Wang, Qingdong; Li, Yuzhi; Ma, Qingyu; Guo, Gepu; Tu, Juan; Zhang, Dong
2018-01-01
In order to improve the capability of particle trapping close to the source plane, theoretical and experimental studies on near-field multiple traps of paraxial acoustic vortices (AVs) with a strengthened acoustic gradient force (AGF) generated by a sector transducer array were conducted. By applying the integration of point source radiation, numerical simulations for the acoustic fields generated by the sector transducer array were conducted and compared with those produced by the circular transducer array. It was proved that strengthened AGFs of near-field multiple AVs with higher peak pressures and smaller vortex radii could be produced by the sector transducer array with a small topological charge. The axial distributions of the equivalent potential gradient indicated that the AGFs of paraxial AVs in the near field were much higher than those in the far field, and the distances at the near-field vortex antinodes were also proved to be the ideal trapping positions with relatively higher AGFs. With the established 8-channel AV generation system, theoretical studies were also verified by the experimental measurements of pressure and phase for AVs with various topological charges. The formation of near-field multiple paraxial AVs was verified by the cross-sectional circular pressure distributions with perfect phase spirals around central pressure nulls, and was also proved by the vortex nodes and antinodes along the center axis. The favorable results demonstrated the feasibility of generating near-field multiple traps of paraxial AVs with strengthened AGF using the sector transducer array, and suggested the potential applications of close-range particle trapping in biomedical engineering.
DEFF Research Database (Denmark)
Nevald, Rolf; Hansen, P. E.
1978-01-01
The fluorine and lithium NMR line shifts have been followed in temperature from 300 to 1.3 K and in fields up to 40 kG for LiTbF4 and LiHoF4. The Tb3+ and Ho3+ ionic moments cause these shifts. The Li shifts are dominated by dipole interactions, whereas the F shifts also have transferred hyperfine...... contributions of comparable sizes. The transferred hyperfine interactions turn out to be almost isotropic and exhibiting no temperature or field dependence. In LiHoF4 the line shifts are detectable within the entire temperature range. In LiTbF4 the fluorine and lithium lines broaden to such an extent...
International Nuclear Information System (INIS)
Blum, A.S.; Mancebo, L.
1976-01-01
Direct energy converters for use on controlled fusion reactors utilize electrodes operated at elevated voltages and temperatures. The insulating elements that position these electrodes must support large voltages and under some circumstances large thermal gradients. It is shown that even modest thermal gradients can cause major alterations of the electric-field distribution within the insulating element
Universal formula for the energy–momentum tensor via a flow equation in the Gross–Neveu model
International Nuclear Information System (INIS)
Suzuki, Hiroshi
2015-01-01
For the fermion field in the two-dimensional Gross–Neveu model, we introduce a flow equation that allows a simple 1/N expansion. By employing the 1/N expansion, we examine the validity of a universal formula for the energy–momentum tensor which is based on the small flow-time expansion. We confirm that the formula reproduces a correct normalization and the conservation law of the energy–momentum tensor by computing the translation Ward–Takahashi relation in the leading non-trivial order in the 1/N expansion. Also, we confirm that the expectation value at finite temperature correctly reproduces thermodynamic quantities. These observations support the validity of a similar construction of the energy–momentum tensor via the gradient/Wilson flow in lattice gauge theory
Algebraic and computational aspects of real tensor ranks
Sakata, Toshio; Miyazaki, Mitsuhiro
2016-01-01
This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...
Detection of antisymmetric tensor contribution to the magnetic screening of 13C nuclei
International Nuclear Information System (INIS)
Kuhn, W.
1983-01-01
In the present thesis for the first time a practicable way for the detection of antisymmetric contributions to the tensor of the magnetic screening of atomic nuclei is indicated. The detection is based on the relaxation efficiency of the antisymmetric screening. The measurements were performed on the 13 C nuclei of phthalic acid anhydride. Measured were the spin-lattice relaxation times of all 13 C nuclei of the molecule at field strengths between 4.69 T and 11.74 T, this corresponds to 1 H resonance frequencies in the range from 200 MHz to 500 MHz. From this the interaction-specific relaxation rates could be determined without problems. The space-group of the crystal and the molecule geometry were determined by X-ray structure analysis. For the accurate determination of the hydrogen position on a deuterated monocrystal by means of deuterium nuclear resonance measurements the electric field gradient tensors were measured and from the orientation of the main axes of these tensors the bonding angles calculated. On a monocrystal enriched in the C(7) respectively C(8) position with 13 C the symmetric part of the tensor of the magnetic screening of these two nuclei was measured. With these values and the relaxation rates of the 13 C nuclei by an iterative procedure from the equations for the theoretical relaxation rates of all 13 C nuclei of the molecule the main values of the rotation-diffusion tensor could be determined. On the base of the plane molecule geometry from this the tensor element sigmasub(xz)sup(A) could be explicety detected according to an amount of 11.7 ppm. (orig.) [de
International Nuclear Information System (INIS)
Friedt, J.M.
1976-01-01
The change in the hyperfine line intensities is discussed for various Moessbauer transitions in cases involving axial vibrational lattice anisotropy and axial electric field gradient at the resonant nucleus. The change in the relative intensities of the spectral components has been calculed numerically for the different types of Moessbauer transitions. Polynomial expansions are given to describe the functional dependence of the relative intensities on the magnitude of the vibration anisotropy. They may be used to extract the relevant parameters from experimental data without requiring the numerical integrations implied in the description of the Goldanskii-Karyagin effect [fr
International Nuclear Information System (INIS)
Lyubutin, I.S.; Terziev, V.G.; Gor'kov, V.P.
1989-01-01
The point charge model is used to calculate the lattice sums and determine the electrical field gradients (EFG) as well as the asymmetry parameters η for all cation sites of the rhombic and tetragonal phases of the superconductor YBa 2 Cu 3 O x . The cases of copper of different valency at the Cu 1 sites are considered separately and EFG and η values are calculated in the vicinity of local defects caused by differences in the number and ordering of the oxygen vacancies at the Cu1 sites
Categorical Tensor Network States
Directory of Open Access Journals (Sweden)
Jacob D. Biamonte
2011-12-01
Full Text Available We examine the use of string diagrams and the mathematics of category theory in the description of quantum states by tensor networks. This approach lead to a unification of several ideas, as well as several results and methods that have not previously appeared in either side of the literature. Our approach enabled the development of a tensor network framework allowing a solution to the quantum decomposition problem which has several appealing features. Specifically, given an n-body quantum state |ψ〉, we present a new and general method to factor |ψ〉 into a tensor network of clearly defined building blocks. We use the solution to expose a previously unknown and large class of quantum states which we prove can be sampled efficiently and exactly. This general framework of categorical tensor network states, where a combination of generic and algebraically defined tensors appear, enhances the theory of tensor network states.
Spectral edge: gradient-preserving spectral mapping for image fusion.
Connah, David; Drew, Mark S; Finlayson, Graham D
2015-12-01
This paper describes a novel approach to image fusion for color display. Our goal is to generate an output image whose gradient matches that of the input as closely as possible. We achieve this using a constrained contrast mapping paradigm in the gradient domain, where the structure tensor of a high-dimensional gradient representation is mapped exactly to that of a low-dimensional gradient field which is then reintegrated to form an output. Constraints on output colors are provided by an initial RGB rendering. Initially, we motivate our solution with a simple "ansatz" (educated guess) for projecting higher-D contrast onto color gradients, which we expand to a more rigorous theorem to incorporate color constraints. The solution to these constrained optimizations is closed-form, allowing for simple and hence fast and efficient algorithms. The approach can map any N-D image data to any M-D output and can be used in a variety of applications using the same basic algorithm. In this paper, we focus on the problem of mapping N-D inputs to 3D color outputs. We present results in five applications: hyperspectral remote sensing, fusion of color and near-infrared or clear-filter images, multilighting imaging, dark flash, and color visualization of magnetic resonance imaging diffusion-tensor imaging.
di Lauro, C.
2018-03-01
Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.
Gauge theories, duality relations and the tensor hierarchy
Bergshoeff, Eric A.; Hartong, Jelle; Hohm, Olaf; Huebscher, Mechthild; Ortin, Tomas; Hübscher, Mechthild
We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of
Cartesian tensors an introduction
Temple, G
2004-01-01
This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of t
Comment on 'Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source
International Nuclear Information System (INIS)
Raitses, Y.; Smirnov A.; Fisch, N.J.
2008-01-01
It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al
Giant enhancement in the ferroelectric field effect using a polarization gradient
Energy Technology Data Exchange (ETDEWEB)
Gu, Zongquan [Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Islam, Mohammad A. [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, State University of New York at Oswego, Oswego, New York 13126 (United States); Spanier, Jonathan E., E-mail: spanier@drexel.edu [Department of Electrical and Computer Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104 (United States)
2015-10-19
Coupling of switchable ferroelectric polarization with the carrier transport in an adjacent semiconductor enables a robust, non-volatile manipulation of the conductance in a host of low-dimensional systems, including the two-dimensional electron liquid that forms at the LaAlO{sub 3} (LAO)-SrTiO{sub 3} (STO) interface. However, strength of the gate-channel coupling is relatively weak, limited in part by the electrostatic potential difference across a ferroelectric gate. Here, through application of phenomenological Landau-Ginzburg-Devonshire theory and self-consistent Poisson-Schrödinger model calculations, we show how compositional grading of PbZr{sub 1−x}Ti{sub x}O{sub 3} ferroelectric gates enables a more than twenty-five-fold increase in the LAO/STO channel conductance on/off ratios. Incorporation of polarization gradients in ferroelectric gates can enable breakthrough performance of ferroelectric non-volatile memories.
a tensor theory of gravitation in a curved metric on a flat background
International Nuclear Information System (INIS)
Drummond, J.E.
1979-01-01
A theory of gravity is proposed using a tensor potential for the field on a flat metric. This potential cannot be isolated by local observations, but some details can be deduced from measurements at a distance. The requirement that the field equations for the tensor potential shall be deducible from an action integral, that the action and field equations are gauge invariant, and, conversely, that the Lagrangian in the action integral can be integrated from the field equations leads to Einstein's field equations. The requirement that the field energy-momentum tensor exists leads to a constraint on the tensor potential. If the constraint is a differential gauge condition, then it can only be the Hilbert condition giving a unique background tensor, metric tensor and tensor potential. For a continuous field inside a solid sphere the metric must be homogeneous in the spatial coordinates, and the associated field energy-momentum tensor has properties consistent with Newtonian dynamics. (author)
Extended vector-tensor theories
Energy Technology Data Exchange (ETDEWEB)
Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)
2017-01-01
Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.
Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M
2008-01-01
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.
Adler, Stephen L.
2017-07-01
We continue our study of Coleman-Weinberg symmetry breaking induced by a third rank antisymmetric tensor scalar, in the context of the SU(8) model (Adler 2014 Int. J. Mod. Phys. A 29 1450130) we proposed earlier. We focus in this paper on qualitative features that will determine whether the model can make contact with the observed particle spectrum. We discuss the mechanism for giving the spin \\frac{3}{2} field a mass by the BEH mechanism, and analyze the remaining massless spin \\frac{1}{2} fermions, the global chiral symmetries, and the running couplings after symmetry breaking. We note that the smallest gluon mass matrix eigenvalue has an eigenvector suggestive of U(1) B-L , and conjecture that the theory runs to an infrared fixed point at which there is a massless gluon with 3 to -1 ratios in generator components. Assuming this, we discuss a mechanism for making contact with the standard model, based on a conjectured asymmetric breaking of Sp(4) to SU(2) subgroups, one of which is the electroweak SU(2), and the other of which is a ‘technicolor’ group that binds the original SU(8) model fermions, which play the role of ‘preons’, into composites. Quarks can emerge as 5 preon composites and leptons as 3 preon composites, with consequent stability of the proton against decay to a single lepton plus a meson. A composite Higgs boson can emerge as a two preon composite. Since anomaly matching for the relevant conserved global symmetry current is not obeyed by three fermion families, emergence of three composite families requires formation of a Goldstone boson with quantum numbers matching this current, which can be a light dark matter candidate.
International Nuclear Information System (INIS)
Wang Hua; Liu Feng; Crozier, Stuart; Xia Ling
2008-01-01
This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.
Wang, Hua; Liu, Feng; Xia, Ling; Crozier, Stuart
2008-11-21
This paper presents a stabilized Bi-conjugate gradient algorithm (BiCGstab) that can significantly improve the performance of the impedance method, which has been widely applied to model low-frequency field induction phenomena in voxel phantoms. The improved impedance method offers remarkable computational advantages in terms of convergence performance and memory consumption over the conventional, successive over-relaxation (SOR)-based algorithm. The scheme has been validated against other numerical/analytical solutions on a lossy, multilayered sphere phantom excited by an ideal coil loop. To demonstrate the computational performance and application capability of the developed algorithm, the induced fields inside a human phantom due to a low-frequency hyperthermia device is evaluated. The simulation results show the numerical accuracy and superior performance of the method.
International Nuclear Information System (INIS)
Wang, J.J.H.; Dubberley, J.R.
1989-01-01
Electromagnetic (EM) fields in a three-dimensional, arbitrarily shaped heterogeneous dielectric or biological body illuminated by a plane wave are computed by an iterative conjugate gradient method. The method is a generalized method of moments applied to the volume integral equation. Because no matrix is explicitly involved or stored, the present iterative method is capable of computing EM fields in objects an order of magnitude larger than those that can be handled by the conventional method of moments. Excellent numerical convergence is achieved. Perfect convergence to the result of the conventional moment method using the same basis and weighted with delta functions is consistently achieved in all the cases computed, indicating that these two algorithms (direct and interactive) are equivalent
International Nuclear Information System (INIS)
Wong, Basil T.; Francoeur, Mathieu; Bong, Victor N.-S.; Mengüç, M. Pinar
2014-01-01
Near-field thermal radiative exchange between two objects is typically more effective than the far-field thermal radiative exchange as the heat flux can increase up to several orders higher in magnitudes due to tunneling of evanescent waves. Such an interesting phenomenon has started to gain its popularity in nanotechnology, especially in nano-gap thermophotovoltaic systems and near-field radiative cooling of micro-/nano-devices. Here, we explored the existence of thermal gradient within an n-doped silicon thin film when it is subjected to intensive near-field thermal radiative heating. The near-field radiative power density deposited within the film is calculated using the Maxwell equations combined with fluctuational electrodynamics. A phonon Monte Carlo simulation is then used to assess the temperature gradient by treating the near-field radiative power density as the heat source. Results indicated that it is improbable to have temperature gradient with the near-field radiative heating as a continuous source unless the source comprises of ultra-short radiative pulses with a strong power density. - Highlights: • This study investigates temperature distribution in an n-doped silicon thin film. • Near-field radiative heating is treated as a volumetric phenomenon. • The temperature gradient is computed using phonon MC simulation. • Temperature of thin film can be approximated as uniform for radiation calculations. • If heat source is a pulsed radiation, a temperature gradient can be established
International Nuclear Information System (INIS)
Witte, K.; Bodnar, W.; Schell, N.; Lang, H.; Burkel, E.
2014-01-01
A functional gradient material with eleven layers composed of a dental ceramics and titanium was successfully consolidated using field assisted sintering technique in a two-step sintering process. High energy X-ray diffraction studies on the gradient were performed at High Energy Material Science beamline at Desy in Hamburg. Phase composition, crystal unit edges and lattice mismatch along the gradient were determined applying Rietveld refinement procedure. Phase analysis revealed that the main crystalline phase present in the gradient is α-Ti. Crystallinity increases stepwisely along the gradient with a decreasing increment between every next layer, following rather the weight fraction of titanium. The crystal unit edge a of titanium remains approximately constant with a value of 2.9686(1) Å, while c is reduced with increasing amount of titanium. In the layer with pure titanium the crystal unit edge c is constant with a value of 4.7174(2) Å. The lattice mismatch leading to an internal stress was calculated over the whole gradient. It was found that the maximal internal stress in titanium embedded in the studied gradient is significantly smaller than its yield strength, which implies that the structure of titanium along the whole gradient is mechanically stable. - Highlights: • High energy XRD studies of dental ceramics–Ti gradient material consolidated by FAST. • Phase composition, crystallinity and lattice parameters are determined. • Crystallinity increases stepwisely along the gradient following weight fraction of Ti. • Lattice mismatch leading to internal stress is calculated over the whole gradient. • Internal stress in α-Ti embedded in the gradient is smaller than its yield strength
National Research Council Canada - National Science Library
Bliss, D. F; Holmes, A. M; Wang, X; Ma, N; Iseler, G. W
2005-01-01
...) method utilizing a submerged heater. Electromagnetic stirring can be induced in the gallium-antimonide melt just above the crystal growth interface by applying a weak radial electric current in the melt together with a weak axial magnetic field...
International Nuclear Information System (INIS)
Recoskie, Bryan J; Chronik, Blaine A; Scholl, Timothy J
2009-01-01
Peripheral nerve stimulation (PNS) resulting from electric fields induced from the rapidly changing magnetic fields of gradient coils is a concern in MRI. Nerves exposed to either electric fields or changing magnetic fields would be expected to display consistent threshold characteristics, motivating the direct application of electric field exposure criteria from the literature to guide the development of gradient magnetic field exposure criteria for MRI. The consistency of electric and magnetic field exposures was tested by comparing chronaxie times for electric and magnetic PNS curves for 22 healthy human subjects. Electric and magnetic stimulation thresholds were measured for exposure of the forearm using both surface electrodes and a figure-eight magnetic coil, respectively. The average chronaxie times for the electric and magnetic field conditions were 109 ± 11 μs and 651 ± 53 μs (±SE), respectively. We do not propose that these results call into question the basic mechanism, namely that rapidly switched gradient magnetic fields induce electric fields in human tissues, resulting in PNS. However, this result does motivate us to suggest that special care must be taken when using electric field exposure data from the literature to set gradient coil PNS safety standards in MRI.
A device for regulating the field generated by a superconducting winding or the gradient of same
International Nuclear Information System (INIS)
Duret, Denis; Dunand, J.-J.
1974-01-01
Description is given of a stabilizing device which does not require the use of a specific solvent. Changes occurring in the field generated by the main winding and the correcting winding are transmitted by a superconducting unit to a quantum superconducting interferometer. An impedance measurement provides an error-signal, the latter being integrated for feeding the correcting winding. A form of embodiment relates to the regulation of a modulated field. This can be applied to nuclear magnetic resonance spectrometers [fr
Malyarenko, Dariya I; Ross, Brian D; Chenevert, Thomas L
2014-03-01
Gradient nonlinearity of MRI systems leads to spatially dependent b-values and consequently high non-uniformity errors (10-20%) in apparent diffusion coefficient (ADC) measurements over clinically relevant field-of-views. This work seeks practical correction procedure that effectively reduces observed ADC bias for media of arbitrary anisotropy in the fewest measurements. All-inclusive bias analysis considers spatial and time-domain cross-terms for diffusion and imaging gradients. The proposed correction is based on rotation of the gradient nonlinearity tensor into the diffusion gradient frame where spatial bias of b-matrix can be approximated by its Euclidean norm. Correction efficiency of the proposed procedure is numerically evaluated for a range of model diffusion tensor anisotropies and orientations. Spatial dependence of nonlinearity correction terms accounts for the bulk (75-95%) of ADC bias for FA = 0.3-0.9. Residual ADC non-uniformity errors are amplified for anisotropic diffusion. This approximation obviates need for full diffusion tensor measurement and diagonalization to derive a corrected ADC. Practical scenarios are outlined for implementation of the correction on clinical MRI systems. The proposed simplified correction algorithm appears sufficient to control ADC non-uniformity errors in clinical studies using three orthogonal diffusion measurements. The most efficient reduction of ADC bias for anisotropic medium is achieved with non-lab-based diffusion gradients. Copyright © 2013 Wiley Periodicals, Inc.
Near-field radiative heat transfer under temperature gradients and conductive transfer
Energy Technology Data Exchange (ETDEWEB)
Jin, Weiliang; Rodriguez, Alejandro W. [Princeton Univ., NJ (United States). Dept. of Electrical Engineering; Messina, Riccardo [CNRS-Univ. de Montpellier (France). Lab. Charles Coulomb
2017-05-01
We describe a recently developed formulation of coupled conductive and radiative heat transfer (RHT) between objects separated by nanometric, vacuum gaps. Our results rely on analytical formulas of RHT between planar slabs (based on the scattering-matrix method) as well as a general formulation of RHT between arbitrarily shaped bodies (based on the fluctuating-volume current method), which fully captures the existence of temperature inhomogeneities. In particular, the impact of RHT on conduction, and vice versa, is obtained via self-consistent solutions of the Fourier heat equation and Maxwell's equations. We show that in materials with low thermal conductivities (e.g. zinc oxides and glasses), the interplay of conduction and RHT can strongly modify heat exchange, exemplified for instance by the presence of large temperature gradients and saturating flux rates at short (nanometric) distances. More generally, we show that the ability to tailor the temperature distribution of an object can modify the behaviour of RHT with respect to gap separations, e.g. qualitatively changing the asymptotic scaling at short separations from quadratic to linear or logarithmic. Our results could be relevant to the interpretation of both past and future experimental measurements of RHT at nanometric distances.
International Nuclear Information System (INIS)
Wit, B. de; Rocek, M.
1982-01-01
We construct a conformally invariant theory of the N = 1 supersymmetric tensor gauge multiplet and discuss the situation in N = 2. We show that our results give rise to the recently proposed variant of Poincare supergravity, and provide the complete tensor calculus for the theory. Finally, we argue that this theory cannot be quantized sensibly. (orig.)
Time integration of tensor trains
Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart
2014-01-01
A robust and efficient time integrator for dynamical tensor approximation in the tensor train or matrix product state format is presented. The method is based on splitting the projector onto the tangent space of the tensor manifold. The algorithm can be used for updating time-dependent tensors in the given data-sparse tensor train / matrix product state format and for computing an approximate solution to high-dimensional tensor differential equations within this data-sparse format. The formul...
Lepore, Natasha; Brun, Caroline; Chou, Yi-Yu; Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Luders, Eileen; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.
2008-01-01
This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor...
MR Measurement Technique of Rapidly Switched Gradient Magnetic Fields in MR Tomography
Czech Academy of Sciences Publication Activity Database
Bartušek, Karel; Gescheidtová, E.
2005-01-01
Roč. 29, č. 4 (2005), s. 675-686 ISSN 0937-9347 Institutional research plan: CEZ:AV0Z20650511 Keywords : MR tomography * gradiernt magnet ic field * IF method * IFSE method * IFSES method * spin echo Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 0.743, year: 2005
Scalar-tensor linear inflation
Energy Technology Data Exchange (ETDEWEB)
Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)
2017-04-01
We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.
Kim, Joo-Hyun; Han, Singu; Jeong, Heejeong; Jang, Hayeong; Baek, Seolhee; Hu, Junbeom; Lee, Myungkyun; Choi, Byungwoo; Lee, Hwa Sung
2017-03-22
A thermal gradient distribution was applied to a substrate during the growth of a vacuum-deposited n-type organic semiconductor (OSC) film prepared from N,N'-bis(2-ethylhexyl)-1,7-dicyanoperylene-3,4:9,10-bis(dicarboxyimide) (PDI-CN2), and the electrical performances of the films deployed in organic field-effect transistors (OFETs) were characterized. The temperature gradient at the surface was controlled by tilting the substrate, which varied the temperature one-dimensionally between the heated bottom substrate and the cooled upper substrate. The vacuum-deposited OSC molecules diffused and rearranged on the surface according to the substrate temperature gradient, producing directional crystalline and grain structures in the PDI-CN2 film. The morphological and crystalline structures of the PDI-CN2 thin films grown under a vertical temperature gradient were dramatically enhanced, comparing with the structures obtained from either uniformly heated films or films prepared under a horizontally applied temperature gradient. The field effect mobilities of the PDI-CN2-FETs prepared using the vertically applied temperature gradient were as high as 0.59 cm 2 V -1 s -1 , more than a factor of 2 higher than the mobility of 0.25 cm 2 V -1 s -1 submitted to conventional thermal annealing and the mobility of 0.29 cm 2 V -1 s -1 from the horizontally applied temperature gradient.
Particle-Based Microfluidic Device for Providing High Magnetic Field Gradients
Lin, Adam Y. (Inventor); Wong, Tak S. (Inventor)
2013-01-01
A microfluidic device for manipulating particles in a fluid has a device body that defines a main channel therein, in which the main channel has an inlet and an outlet. The device body further defines a particulate diverting channel therein, the particulate diverting channel being in fluid connection with the main channel between the inlet and the outlet of the main channel and having a particulate outlet. The microfluidic device also has a plurality of microparticles arranged proximate or in the main channel between the inlet of the main channel and the fluid connection of the particulate diverting channel to the main channel. The plurality of microparticles each comprises a material in a composition thereof having a magnetic susceptibility suitable to cause concentration of magnetic field lines of an applied magnetic field while in operation. A microfluidic particle-manipulation system has a microfluidic particle-manipulation device and a magnet disposed proximate the microfluidic particle-manipulation device.
Couplings of self-dual tensor multiplet in six dimensions
Bergshoeff, E.; Sezgin, E.; Sokatchev, E.
1996-01-01
The (1, 0) supersymmetry in six dimensions admits a tensor multiplet which contains a second-rank antisymmetric tensor field with a self-dual field strength and a dilaton. We describe the fully supersymmetric coupling of this multiplet to a Yangâ€“Mills multiplet, in the absence of supergravity. The
Energy-momentum tensor correlation function in Nf = 2 + 1 full QCD at finite temperature
Taniguchi, Yusuke; Ejiri, Shinji; Kanaya, Kazuyuki; Kitazawa, Masakiyo; Suzuki, Asobu; Suzuki, Hiroshi; Umeda, Takashi
2018-03-01
We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in Nf = 2 + 1 full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conservation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturba-tively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing = 0:07 fm. In this paper the temperature is limited to a single value T ≃ 232 MeV. The u, d quark mass is rather heavy with mπ=mρ ≃ 0:63 while the s quark mass is set to approximately its physical value.
Energy-momentum tensor correlation function in Nf = 2 + 1 full QCD at finite temperature
Directory of Open Access Journals (Sweden)
Taniguchi Yusuke
2018-01-01
Full Text Available We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in Nf = 2 + 1 full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conservation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturba-tively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing = 0:07 fm. In this paper the temperature is limited to a single value T ≃ 232 MeV. The u, d quark mass is rather heavy with mπ=mρ ≃ 0:63 while the s quark mass is set to approximately its physical value.
International Nuclear Information System (INIS)
Tygier, S.; Appleby, R.B.; Garland, J.M.; Hock, K.; Owen, H.; Kelliher, D.J.; Sheehy, S.L.
2015-01-01
We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi
Energy Technology Data Exchange (ETDEWEB)
Tygier, S., E-mail: sam.tygier@hep.manchester.ac.uk [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Appleby, R.B., E-mail: robert.appleby@manchester.ac.uk [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Garland, J.M. [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Hock, K. [University of Liverpool (United Kingdom); Owen, H. [Cockcroft Accelerator Group, The University of Manchester (United Kingdom); Kelliher, D.J.; Sheehy, S.L. [STFC Rutherford Appleton Laboratory (United Kingdom)
2015-03-01
We present PyZgoubi, a framework that has been developed based on the tracking engine Zgoubi to model, optimise and visualise the dynamics in particle accelerators, especially fixed-field alternating-gradient (FFAG) accelerators. We show that PyZgoubi abstracts Zgoubi by wrapping it in an easy-to-use Python framework in order to allow simple construction, parameterisation, visualisation and optimisation of FFAG accelerator lattices. Its object oriented design gives it the flexibility and extensibility required for current novel FFAG design. We apply PyZgoubi to two example FFAGs; this includes determining the dynamic aperture of the PAMELA medical FFAG in the presence of magnet misalignments, and illustrating how PyZgoubi may be used to optimise FFAGs. We also discuss a robust definition of dynamic aperture in an FFAG and show its implementation in PyZgoubi.
Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators
Energy Technology Data Exchange (ETDEWEB)
Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-03-02
In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.
Energy Technology Data Exchange (ETDEWEB)
Errico, Leonardo A. [Departamento de Fisica-IFLP(CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Renteria, Mario [Departamento de Fisica-IFLP(CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina)]. E-mail: renteria@fisica.unlp.edu.ar; Bibiloni, Anibal G. [Departamento de Fisica-CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Freitag, Kristian [Helmholtz-Institut fuer Strahlen-und Kernphysik (H-ISKP) der Universitaet Bonn, Nussallee 14-16, D 53115 Bonn (Germany)
2007-02-01
The time-differential {gamma}-{gamma} perturbed-angular-correlation (PAC) technique with ion-implanted {sup 181}Hf tracers has been applied to study the hyperfine interactions of {sup 181}Ta impurities in the cubic bixbyite structure of Ho{sub 2}O{sub 3} and Eu{sub 2}O{sub 3}. The PAC experiments were performed in air in the temperature range 300-1373 K (in the case of Ho{sub 2}O{sub 3}) and 77-1273 K (in the case of Eu{sub 2}O{sub 3}). For both oxides, two electric-quadrupole interactions were found and attributed to the electric-field gradients (EFGs) acting on {sup 181}Ta probes substitutionally located at the two free-of-defects nonequivalent cation sites of the bixbyite structure. In the case of Ho{sub 2}O{sub 3}, two additional interactions were found in the temperature range 300-573 K. These results, as well as previous characterizations of the EFG at {sup 181}Ta sites in bixbyites, were compared to those obtained in experiments using {sup 111}Cd as probe, and to point-charge model calculations. Very recent ab initio predictions for the EFG tensor at impurities sites in binary oxides are also discussed. All these results enable us to discuss the validity of the widely used ionic model to describe the EFG in these highly ionic compounds.
Particles Sorting in Micro Channel Using Designed Micro Electromagnets of Magnetic Field Gradient
International Nuclear Information System (INIS)
Chung, Yung-Chiang; Wu, Chen-Ming; Lin, Shih-Hao
2016-01-01
In this study, microelectromagnet, microchannel, syringe pump, and controlling devices were integrated to form a particle sorting system. A simple, two-dimensional, relatively quick fabricating and easily operating microelectromagnet was designed. Polystyrene particles and magnetic beads were pumped into the microchannel with the syringe pump, and it was observed that the magnetic beads were attracted to one of two outlets by the microelectromagnet, which features a gradually changing magnetic field. The polystyrene particles would move to another outlet because of different-width micro channel, and it completed the separation of the particles. Based on experimental results, the magnetic flux density of the microelectromagnet was 2.3 Gauss for a 12.5-μm average distance between electrodes at 1.0-μm increments, and the magnetic force was 0.22 pN for 2.8-μm magnetic beads. The separating rate was greater for larger distance increment and smaller average distance between the electrodes. The separating rate of the magnetic beads increased as the electric current increased and flow velocity decreased. When the flow velocity was 0.333 μm/s and electric current was 1 A, the separating rate was 90%. The separating rate of the polystyrene particles increased as the flow velocity increased and was 85% when the flow velocity was 0.6 μm/s. These results demonstrate that this particle sorting system has potential applications in bio-molecular studies. - Highlights: • We proposed a method for separating polystyrene particles and magnetic beads by the different-width outlets and microelectromagnet with gradually changing magnetic field, which is simple, two-dimensional and easily operating. • The separating rate was greater for larger distance increment and smaller average distance between the electrodes. • The separating rate of the magnetic beads increased as the electric current increased and flow velocity decreased, and the maximum value is 90%.
FLAPW Study of the EFG Tensor at Cd Impurities in In2O3
International Nuclear Information System (INIS)
Errico, L. A.; Renteria, M.; Fabricius, G.; Darriba, G. N.
2004-01-01
We report an ab initio study of the electric-field gradient tensor (EFG) at Cd impurities located at both nonequivalent cationic sites in the semiconductor In 2 O 3 . Calculations were performed with the FLAPW method that allows us to treat the electronic structure of the doped system and the atomic relaxations introduced by the impurities in the host in a fully self-consistent way. From our results for the EFG (in excellent agreement with the experiments), it is clear that the problem of the EFG at Cd impurities in In 2 O 3 cannot be described by the point-charge model and antishielding factors.
Diffusion tensor MR microscopy of tissues with low diffusional anisotropy.
Bajd, Franci; Mattea, Carlos; Stapf, Siegfried; Sersa, Igor
2016-06-01
Diffusion tensor imaging exploits preferential diffusional motion of water molecules residing within tissue compartments for assessment of tissue structural anisotropy. However, instrumentation and post-processing errors play an important role in determination of diffusion tensor elements. In the study, several experimental factors affecting accuracy of diffusion tensor determination were analyzed. Effects of signal-to-noise ratio and configuration of the applied diffusion-sensitizing gradients on fractional anisotropy bias were analyzed by means of numerical simulations. In addition, diffusion tensor magnetic resonance microscopy experiments were performed on a tap water phantom and bovine articular cartilage-on-bone samples to verify the simulation results. In both, the simulations and the experiments, the multivariate linear regression of the diffusion-tensor analysis yielded overestimated fractional anisotropy with low SNRs and with low numbers of applied diffusion-sensitizing gradients. An increase of the apparent fractional anisotropy due to unfavorable experimental conditions can be overcome by applying a larger number of diffusion sensitizing gradients with small values of the condition number of the transformation matrix. This is in particular relevant in magnetic resonance microscopy, where imaging gradients are high and the signal-to-noise ratio is low.
ERL with non-scaling fixed field alternating gradient lattice for eRHIC
Energy Technology Data Exchange (ETDEWEB)
Trbojevic, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Brooks, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hao, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Litvinenko, V. N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ptitsyn, V. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roser, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thieberger, P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Tsoupas, N. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2015-05-03
The proposed eRHIC electron-hadron collider uses a "non-scaling FFAG" (NS-FFAG) lattice to recirculate 16 turns of different energy through just two beam lines located in the RHIC tunnel. This paper presents lattices for these two FFAGs that are optimized for low magnet field and to minimize total synchrotron radiation across the energy range. The higher number of recirculations in the FFAG allows a shorter linac (1.322GeV) to be used, drastically reducing cost, while still achieving a 21.2 GeV maximum energy to collide with one of the existing RHIC hadron rings at up to 250GeV. eRHIC uses many cost-saving measures in addition to the FFAG: the linac operates in energy recovery mode, so the beams also decelerate via the same FFAG loops and energy is recovered from the interacted beam. All magnets will be constructed from NdFeB permanent magnet material, meaning chillers and large magnet power supplies are not needed. This paper also describes a small prototype ERL-FFAG accelerator that will test all of these technologies in combination to reduce technical risk for eRHIC.
A gradient stable scheme for a phase field model for the moving contact line problem
Gao, Min
2012-02-01
In this paper, an efficient numerical scheme is designed for a phase field model for the moving contact line problem, which consists of a coupled system of the Cahn-Hilliard and Navier-Stokes equations with the generalized Navier boundary condition [1,2,4]. The nonlinear version of the scheme is semi-implicit in time and is based on a convex splitting of the Cahn-Hilliard free energy (including the boundary energy) together with a projection method for the Navier-Stokes equations. We show, under certain conditions, the scheme has the total energy decaying property and is unconditionally stable. The linearized scheme is easy to implement and introduces only mild CFL time constraint. Numerical tests are carried out to verify the accuracy and stability of the scheme. The behavior of the solution near the contact line is examined. It is verified that, when the interface intersects with the boundary, the consistent splitting scheme [21,22] for the Navier Stokes equations has the better accuracy for pressure. © 2011 Elsevier Inc.
International Nuclear Information System (INIS)
Scheunert, M.
1982-10-01
We develop a graded tensor calculus corresponding to arbitrary Abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced and some of their basic properties are described. (orig.)
Measuring Nematic Susceptibilities from the Elastoresistivity Tensor
Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian
The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.
Gauge theories, duality relations and the tensor hierarchy
International Nuclear Information System (INIS)
Bergshoeff, Eric A.; Hohm, Olaf; Hartong, Jelle; Huebscher, Mechthild; OrtIn, Tomas
2009-01-01
We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 ≤ p ≤ D, which realize an off-shell algebra of bosonic gauge transformations. We show how these tensor hierarchies can be put on-shell by introducing a set of duality relations, thereby introducing additional scalars and a metric tensor. These so-called duality hierarchies encode the equations of motion of the bosonic part of the most general gauged supergravity theories in those dimensions, including the (projected) scalar equations of motion. We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of the same fields in the tensor hierarchy.
Energy Technology Data Exchange (ETDEWEB)
Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)
2015-07-01
Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were
Airborne full tensor magnetic gradiometry surveys in the Thuringian basin, Germany
Queitsch, M.; Schiffler, M.; Goepel, A.; Stolz, R.; Meyer, M.; Meyer, H.; Kukowski, N.
2013-12-01
In this contribution we introduce a newly developed fully operational full tensor magnetic gradiometer (FTMG) instrument based on Superconducting Quantum Interference Devices (SQUIDs) and show example data acquired in 2012 within the framework of the INFLUINS (Integrated Fluid Dynamics in Sedimentary basins) project. This multidisciplinary project aims for a better understanding of movements and interaction between shallow and deep fluids in the Thuringian Basin in the center of Germany. In contrast to mapping total magnetic field intensity (TMI) in conventional airborne magnetic surveys for industrial exploration of mineral deposits and sedimentary basins, our instrument measures all components of the magnetic field gradient tensor using highly sensitive SQUID gradiometers. This significantly constrains the solutions of the inverse problem. Furthermore, information on the ratio between induced and remanent magnetization is obtained. Special care has been taken to reduce motion noise while acquiring data in airborne operation. Therefore, the sensors are mounted in a nonmagnetic and aerodynamically shaped bird made of fiberglas with a high drag tail which stabilizes the bird even at low velocities. The system is towed by a helicopter and kept at 30m above ground during data acquisition. Additionally, the system in the bird incorporates an inertial unit for geo-referencing and enhanced motion noise compensation, a radar altimeter for topographic correction and a GPS system for high precision positioning. Advanced data processing techniques using reference magnetometer and inertial unit data result in a very low system noise of less than 60 pT/m peak to peak in airborne operation. To show the performance of the system we present example results from survey areas within the Thuringian basin and along its bordering highlands. The mapped gradient tensor components show a high correlation to existing geologic maps. Furthermore, the measured gradient components indicate
Visualizing Tensor Normal Distributions at Multiple Levels of Detail.
Abbasloo, Amin; Wiens, Vitalis; Hermann, Max; Schultz, Thomas
2016-01-01
Despite the widely recognized importance of symmetric second order tensor fields in medicine and engineering, the visualization of data uncertainty in tensor fields is still in its infancy. A recently proposed tensorial normal distribution, involving a fourth order covariance tensor, provides a mathematical description of how different aspects of the tensor field, such as trace, anisotropy, or orientation, vary and covary at each point. However, this wealth of information is far too rich for a human analyst to take in at a single glance, and no suitable visualization tools are available. We propose a novel approach that facilitates visual analysis of tensor covariance at multiple levels of detail. We start with a visual abstraction that uses slice views and direct volume rendering to indicate large-scale changes in the covariance structure, and locations with high overall variance. We then provide tools for interactive exploration, making it possible to drill down into different types of variability, such as in shape or orientation. Finally, we allow the analyst to focus on specific locations of the field, and provide tensor glyph animations and overlays that intuitively depict confidence intervals at those points. Our system is demonstrated by investigating the effects of measurement noise on diffusion tensor MRI, and by analyzing two ensembles of stress tensor fields from solid mechanics.
Directory of Open Access Journals (Sweden)
Herranz Raul
2012-02-01
Full Text Available Abstract Background Many biological systems respond to the presence or absence of gravity. Since experiments performed in space are expensive and can only be undertaken infrequently, Earth-based simulation techniques are used to investigate the biological response to weightlessness. A high gradient magnetic field can be used to levitate a biological organism so that its net weight is zero. Results We have used a superconducting magnet to assess the effect of diamagnetic levitation on the fruit fly D. melanogaster in levitation experiments that proceeded for up to 22 consecutive days. We have compared the results with those of similar experiments performed in another paradigm for microgravity simulation, the Random Positioning Machine (RPM. We observed a delay in the development of the fruit flies from embryo to adult. Microarray analysis indicated changes in overall gene expression of imagoes that developed from larvae under diamagnetic levitation, and also under simulated hypergravity conditions. Significant changes were observed in the expression of immune-, stress-, and temperature-response genes. For example, several heat shock proteins were affected. We also found that a strong magnetic field, of 16.5 Tesla, had a significant effect on the expression of these genes, independent of the effects associated with magnetically-induced levitation and hypergravity. Conclusions Diamagnetic levitation can be used to simulate an altered effective gravity environment in which gene expression is tuned differentially in diverse Drosophila melanogaster populations including those of different age and gender. Exposure to the magnetic field per se induced similar, but weaker, changes in gene expression.
Tensor spaces and exterior algebra
Yokonuma, Takeo
1992-01-01
This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.
Ozarslan, Evren; Shemesh, Noam; Basser, Peter J
2009-03-14
Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov's results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.
Özarslan, Evren; Shemesh, Noam; Basser, Peter J.
2009-03-01
Based on a description introduced by Robertson, Grebenkov recently introduced a powerful formalism to represent the diffusion-attenuated NMR signal for simple pore geometries such as slabs, cylinders, and spheres analytically. In this work, we extend this multiple correlation function formalism by allowing for possible variations in the direction of the magnetic field gradient waveform. This extension is necessary, for example, to incorporate the effects of imaging gradients in diffusion-weighted NMR imaging scans and in characterizing anisotropy at different length scales via double pulsed field gradient (PFG) experiments. In cylindrical and spherical pores, respectively, two- and three-dimensional vector operators are employed whose form is deduced from Grebenkov's results via elementary operator algebra for the case of cylinders and the Wigner-Eckart theorem for the case of spheres. The theory was validated by comparison with known findings and with experimental double-PFG data obtained from water-filled microcapillaries.
On the energy-momentum tensor in Moyal space
International Nuclear Information System (INIS)
Balasin, Herbert; Schweda, Manfred; Blaschke, Daniel N.; Gieres, Francois
2015-01-01
We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)
A tensor approach to the estimation of hydraulic conductivities in ...
African Journals Online (AJOL)
Based on the field measurements of the physical properties of fractured rocks, the anisotropic properties of hydraulic conductivity (HC) of the fractured rock aquifer can be assessed and presented using a tensor approach called hydraulic conductivity tensor. Three types of HC values, namely point value, axial value and flow ...
Tensor Excitations in Nambu - Jona-Lasinio Model
Chizhov, M V
1996-01-01
It is shown that in the one-flavour NJL model the vector and axial-vector quasiparticles described by the antisymmetric tensor field are generated. These excitations have tensor interactions with quarks in contrast to usual vector ones. Phenomenological applications are discussed.
Energy momentum tensor in local causal perturbation theory
International Nuclear Information System (INIS)
Prange, D.
2001-01-01
We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)
(2, 0) tensor multiplets and conformal supergravity in D = 6
Bergshoeff, Eric; Sezgin, Ergin; Proeyen, Antoine Van
1999-01-01
We construct the supercurrent multiplet that contains the energyâ€“momentum tensor of the (2, 0) tensor multiplet. By coupling this multiplet of currents to the fields of conformal supergravity, we first construct the linearized superconformal transformations rules of the (2, 0) Weyl multiplet.
Off-shell N = 2 tensor supermultiplets
International Nuclear Information System (INIS)
Wit, Bernard de; Saueressig, Frank
2006-01-01
A multiplet calculus is presented for an arbitrary number n of N = 2 tensor supermultiplets. For rigid supersymmetry the known couplings are reproduced. In the superconformal case the target spaces parametrized by the scalar fields are cones over (3n-1)-dimensional spaces encoded in homogeneous SU(2) invariant potentials, subject to certain constraints. The coupling to conformal supergravity enables the derivation of a large class of supergravity Lagrangians with vector and tensor multiplets and hypermultiplets. Dualizing the tensor fields into scalars leads to hypermultiplets with hyperkaehler or quaternion-Kaehler target spaces with at least n abelian isometries. It is demonstrated how to use the calculus for the construction of Lagrangians containing higher-derivative couplings of tensor multiplets. For the application of the c-map between vector and tensor supermultiplets to Lagrangians with higher-order derivatives, an off-shell version of this map is proposed. Various other implications of the results are discussed. As an example an elegant derivation of the classification of 4-dimensional quaternion-Kaehler manifolds with two commuting isometries is given
Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow
Alam, Meheboob; Saha, Saikat
2014-11-01
The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.
Tensor analysis for physicists
Schouten, J A
1989-01-01
This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory. The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapte...
Diffusion tensor imaging using multiple coils for mouse brain connectomics.
Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G
2018-04-19
The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity
Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration
Becattini, F.; Grossi, E.
2015-08-01
We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.
Karl, Stephan; Woodward, Robert C.; Davis, Timothy M. E.; St. Pierre, Tim G.
2010-12-01
Plasmodium falciparum is the most dangerous of the human malaria parasite species and accounts for millions of clinical episodes of malaria each year in tropical countries. The pathogenicity of Plasmodium falciparum is a result of its ability to infect erythrocytes where it multiplies asexually over 48 h or develops into sexual forms known as gametocytes. If sufficient male and female gametocytes are taken up by a mosquito vector, it becomes infectious. Therefore, the presence and density of gametocytes in human blood is an important indicator of human-to-mosquito transmission of malaria. Recently, we have shown that high field gradient magnetic fractionation improves gametocyte detection in human blood samples. Here we present two important new developments. Firstly we introduce a quantitative approach to replace the previous qualitative method and, secondly, we describe a novel method that enables cost-effective production of the magnetic fractionation equipment required to carry out gametocyte quantification. We show that our custom-made magnetic fractionation equipment can deliver results with similar sensitivity and convenience but for a small fraction of the cost.
Energy Technology Data Exchange (ETDEWEB)
Lungu, Mihail, E-mail: lmihai@physics.uvt.ro; Neculae, Adrian; Lungu, Antoanetta [West University of Timisoara, Faculty of Physics (Romania)
2015-12-15
This paper investigates the possibility to use positive dielectrophoresis (pDEP) for selective trapping of nanoparticle dispersed in flue gas in a vertical pDEP-based microfluidic system. The experimental gradient field electrodes device contains as main part a vertical deposition plate with parallel planar electrodes in single connection on an insulating substrate, parallel to the reference electrode—a dielectric plate with a metalized side. The performances of the device were described and analyzed by numerical simulations and experimental tests in terms of two new specific parameters, called Retention rate and Filtration, related to the trapping of nanoparticles in suspension inside the device and the consequent purification of flue gas. It is outlined, both numerically and experimentally, that the concentration of particles trapped inside the device decreases as they are moving away from the inlet zone. The experimental results also highlight the nanoparticle size distribution of the particles collected from the deposition plate, using a nanoparticle tracking analysis method, and their selective capture on the deposition plate, depending on the amplitude and shape of the applied voltage, in a good agreement with the numerical simulations results.
Buljubasich, L.; Blümich, B.; Stapf, S.
2011-09-01
An important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles. Determining mass flow in the vicinity of a pellet thus represents a parameter for quantifying the reaction efficiency and its dependence on time or external reaction conditions. Field gradient Nuclear Magnetic Resonance (NMR) methods are suggested as a tool for providing parameters sensitive to this mass flow in a contact-free and non-invasive way. For the example of bubble-forming hydrogen peroxide decomposition in an alumina pellet, the dependence of the mean-squared displacement of fluid molecules on spatial direction, observation time and reaction time is presented, and multi-pulse techniques are employed in order to separate molecular displacements from coherent and incoherent motion on the timescale of the experiment. The reaction progress is followed until the complete decomposition of H 2O 2.
Majewski, M.; Desjardina, R.; Rochette, P.; Pattey, E.; Selber, J.; Glotfelty, D.
1993-01-01
The field experiment reported here applied the relaxed eddy accumulation (REA) technique to the measurement of triallate (TA) and trifluralin (TF) volatilization from fallow soil. A critical analysis of the REA system used in this experiment is done, and the fluxes are compared to those obtained by the aerodynamic-gradient (AG) technique. The measured cumulative volatilization losses, corrected for the effective upwind source area (footprint), for the AG system were higher than with the REA system. The differences between the methods over the first 5 days of the experiment were 27 and 13% for TA and TF, respectively. A mass balance based on the amount of parent compounds volatilized from soil during the first 5 days of the experiment showed a 110 and 70% and a 79 and 61% accountability for triallate and trifluralin by the AG and REA methods, respectively. These results also show that the non-footprint-corrected AG flux values underestimated the volatilization flux by approximately 16%. The footprint correction model used in this experiment does not presently have the capability of accounting for changes in atmospheric stability. However, these values still provide an indication of the most likely upwind area affecting the evaporative flux estimations. The soil half-lives for triallate and trifluralin were 9.8 and 7.0 days, respectively. ?? 1992 American Chemical Society.
Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV
DEFF Research Database (Denmark)
Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel
2005-01-01
A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbule...
Arts, M.S.J.; Schill, R.O.; Knigge, T.; Eckwert, H.; Kammenga, J.E.; Köhler, H.R.
2004-01-01
Heat shock proteins (hsps) are potential biomarkers for monitoring environmental pollution. In this study, the use of hsps as biomarkers in field bioassays was evaluated in terrestrial invertebrates exposed to a metal gradient near Avonmouth, UK. We investigated the hsp70 response in resident and
Tensor algebra and tensor analysis for engineers with applications to continuum mechanics
Itskov, Mikhail
2015-01-01
This is the fourth and revised edition of a well-received book that aims at bridging the gap between the engineering course of tensor algebra on the one side and the mathematical course of classical linear algebra on the other side. In accordance with the contemporary way of scientific publications, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this monograph addresses graduate students as well as scientists working in this field. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.
Energy Technology Data Exchange (ETDEWEB)
Barrera, M. T., E-mail: mariate9590@gmail.com; Barros, H.; Pino, F.; Sajo-Bohus, L. [Universidad Simón Bolívar, Nuclear Physics Laboratory, Sartenejas, Caracas (Venezuela, Bolivarian Republic of); Dávila, J. [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)
2015-07-23
LINAC VARIAN 2100 is where energetic electrons produce Bremsstrahlung radiation, with energies above the nucleon binding energy (E≈5.5MeV). This radiation induce (γ,n) and (e,e’n) reactions mainly in the natural tungsten target material (its total photoneutron cross section is about 4000 mb in a energy range from 9-17 MeV). These reactions may occur also in other components of the system (e.g. multi leaf collimator). During radiation treatment the human body may receive an additional dose inside and outside the treated volume produced by the mentioned nuclear reactions. We measured the neutron density at the treatment table using nuclear track detectors (PADC-NTD). These covered by a boron-converter are employed, including a cadmium filter, to determine the ratio between two groups of neutron energy, i.e. thermal and epithermal. The PADC-NTD detectors were exposed to the radiation field at the iso-center during regular operation of the accelerator. Neutron are determined indirectly by the converting reaction {sup 10}B(n,α){sup 7}Li the emerging charged particle leave their kinetic energy in the PADC forming a latent nuclear track, enlarged by chemical etching (6N, NaOH, 70°C). Track density provides information on the neutron density through calibration coefficient (∼1.6 10{sup 4} neutrons /track) obtained by a californium source. We report the estimation of the thermal and epithermal neutron field and its gradient for photoneutrons produced in radiotherapy treatments with 18 MV linear accelerators. It was obsered that photoneutron production have higher rate at the iso-center.
Killing tensors and conformal Killing tensors from conformal Killing vectors
International Nuclear Information System (INIS)
Rani, Raffaele; Edgar, S Brian; Barnes, Alan
2003-01-01
Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
Tensor network state correspondence and holography
Singh, Sukhwinder
2018-01-01
In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.
Tensors in image processing and computer vision
De Luis García, Rodrigo; Tao, Dacheng; Li, Xuelong
2009-01-01
Tensor signal processing is an emerging field with important applications to computer vision and image processing. This book presents the developments in this branch of signal processing, offering research and discussions by experts in the area. It is suitable for advanced students working in the area of computer vision and image processing.