WorldWideScience

Sample records for field equations

  1. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Generalized equations of gravitational field

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Borisova, L.B.

    1985-01-01

    Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)

  4. Evolution equations for Killing fields

    International Nuclear Information System (INIS)

    Coll, B.

    1977-01-01

    The problem of finding necessary and sufficient conditions on the Cauchy data for Einstein equations which insure the existence of Killing fields in a neighborhood of an initial hypersurface has been considered recently by Berezdivin, Coll, and Moncrief. Nevertheless, it can be shown that the evolution equations obtained in all these cases are of nonstrictly hyperbolic type, and, thus, the Cauchy data must belong to a special class of functions. We prove here that, for the vacuum and Einstein--Maxwell space--times and in a coordinate independent way, one can always choose, as evolution equations for the Killing fields, a strictly hyperbolic system: The above theorems can be thus extended to all Cauchy data for which the Einstein evolution problem has been proved to be well set

  5. Solutions of Einstein's field equations

    Energy Technology Data Exchange (ETDEWEB)

    Tomonaga, Y [Utsunomiya Univ. (Japan). Faculty of Education

    1978-12-01

    In this paper the author investigates the Einstein's field equations of the non-vacuum case and generalizes the solution of Robertson-Walker by the three dimensional Einstein spaces. In Section 2 the author shortly generalizes the dynamic space-time of G. Lemetre and A. Friedmann by a simple transformation.

  6. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  7. Higher order field equations. II

    International Nuclear Information System (INIS)

    Tolhoek, H.A.

    1977-01-01

    In a previous paper wave propagation was studied according to a sixth-order partial differential equation involving a complex mass M. The corresponding Yang-Feldman integral equations (indicated as SM-YF-equations), were formulated using modified Green's functions Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x), which then incorporate the partial differential equation together with certain boundary conditions. In this paper certain limit properties of these modified Green's functions are derived: (a) It is shown that for mod(M)→infinity the Green's functions Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x) approach the Green's functions Δsub(R)(x) and Δsub(A)(x) of the corresponding KG-equation (Klein-Gordon equation). (b) It is further shown that the asymptotic behaviour of Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x) is the same as of Δsub(R)(x) and Δsub(A)(x)-and also the same as for Dsub(R)(x) and Dsub(A)(x) for t→+-infinity;, where Dsub(R) and Dsub(A) are the Green's functions for the KG-equation with mass zero. It is essential to take limits in the sense of distribution theory in both cases (a) and (b). The property (b) indicates that the wave propagation properties of the SM-YF-equations, the KG-equation with finite mass and the KG-equation with mass zero are closely related in an asymptotic sense. (Auth.)

  8. Skew differential fields, differential and difference equations

    NARCIS (Netherlands)

    van der Put, M

    2004-01-01

    The central question is: Let a differential or difference equation over a field K be isomorphic to all its Galois twists w.r.t. the group Gal(K/k). Does the equation descend to k? For a number of categories of equations an answer is given.

  9. Generalization of Einstein's gravitational field equations

    Science.gov (United States)

    Moulin, Frédéric

    2017-12-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory.

  10. Derivation of the Finslerian gauge field equations

    International Nuclear Information System (INIS)

    Asanov, G.S.

    1984-01-01

    As is well known the simplest way of formulating the equations for the Yang-Mills gauge fields consists in taking the Lagrangian to be quadratic in the gauge tensor, whereas the application of such an approach to the gravitational field yields equations which are of essentially more complicated structure than the Einstein equations. On the other hand, in the gravitational field theory the Lagrangian can be constructed to be of forms which may be both quadratic and linear in the curvature tensor, whereas the latter possibility is absent in the current gauge field theories. In previous work it has been shown that the Finslerian structure of the space-time gives rise to certain gauge fields provided that the internal symmetries may be regarded as symmetries of a three-dimensional Riemannian space. Continuing this work we show that appropriate equations for these gauge fields can be formulated in both ways, namely on the basis of the quadratic Lagrangian or, if a relevant generalization of the Palatini method is applied, on the basis of a Lagrangian linear in the gauge field strength tensor. The latter possibility proves to result in equations which are similar to the Einstein equations, a distinction being that the Finslerian Cartan curvature tensor rather then the Riemann curvature tensor enters the equations. (author)

  11. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  12. The circle equation over finite fields

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard

    2017-01-01

    Interesting patterns in the geometry of a plane algebraic curve C can be observed when the defining polynomial equation is solved over the family of finite fields. In this paper, we examine the case of C the classical unit circle defined by the circle equation x2 + y2 = 1. As a main result, we es...

  13. A model unified field equation

    International Nuclear Information System (INIS)

    Perring, J.K.; Skyrme, T.H.R.

    1994-01-01

    The classical solutions of a unified field theory in a two-dimensional space-time are considered. This system, a model of a interacting mesons and baryons, illustrates how the particle can be built from a wave-packet of mesons and how reciprocally the meson appears as a tightly bound combination of particle and antiparticle. (author). 6 refs

  14. String field equation from renormalization group

    International Nuclear Information System (INIS)

    Sakai, Kenji.

    1988-10-01

    We derive an equation of motion for an open bosonic string field which is introduced as a background field in a sigma model. By using the method of Klebanov and Susskind, we obtain the β-function for this background field and investigate its properties. (author)

  15. The electromagnetic field equations for moving media

    International Nuclear Information System (INIS)

    Ivezić, T

    2017-01-01

    In this paper a formulation of the field equation for moving media is developed by the generalization of an axiomatic geometric formulation of the electromagnetism in vacuum (Ivezić T 2005 Found. Phys. Lett. 18 401). First, the field equations with bivectors F ( x ) and ℳ ( x ) are presented and then these equations are written with the 4D vectors E ( x ), B ( x ), P ( x ) and M ( x ). The latter contain both the 4D velocity vector u of a moving medium and the 4D velocity vector v of the observers who measure E and B fields. They do not appear in previous literature. All these equations are also written in the standard basis and compared with Maxwell’s equations with 3D vectors. In this approach the Ampère-Maxwell law and Gauss’s law are inseparably connected in one law and the same happens with Faraday’s law and the law that expresses the absence of magnetic charge. It is shown that Maxwell’s equations with 3D vectors and the field equations with 4D geometric quantities are not equivalent in 4D spacetime (paper)

  16. Gravitational closure of matter field equations

    Science.gov (United States)

    Düll, Maximilian; Schuller, Frederic P.; Stritzelberger, Nadine; Wolz, Florian

    2018-04-01

    The requirement that both the matter and the geometry of a spacetime canonically evolve together, starting and ending on shared Cauchy surfaces and independently of the intermediate foliation, leaves one with little choice for diffeomorphism-invariant gravitational dynamics that can equip the coefficients of a given system of matter field equations with causally compatible canonical dynamics. Concretely, we show how starting from any linear local matter field equations whose principal polynomial satisfies three physicality conditions, one may calculate coefficient functions which then enter an otherwise immutable set of countably many linear homogeneous partial differential equations. Any solution of these so-called gravitational closure equations then provides a Lagrangian density for any type of tensorial geometry that features ultralocally in the initially specified matter Lagrangian density. Thus the given system of matter field equations is indeed closed by the so obtained gravitational equations. In contrast to previous work, we build the theory on a suitable associated bundle encoding the canonical configuration degrees of freedom, which allows one to include necessary constraints on the geometry in practically tractable fashion. By virtue of the presented mechanism, one thus can practically calculate, rather than having to postulate, the gravitational theory that is required by specific matter field dynamics. For the special case of standard model matter one obtains general relativity.

  17. Static Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Das, A.

    1979-01-01

    The static Einstein--Maxwell field equations are investigated in the presence of both electric and magnetic fields. The sources or bodies are assumed to be of finite size and to not affect the connectivity of the associated space. Furthermore, electromagnetic and metric fields are assumed to have reasonable differentiabilities. It is then proved that the electric and magnetic field vectors are constant multiples of one another. Moreover, the static Einstein--Maxwell equations reduce to the static magnetovac case. If, furthermore, the variational derivation of the Einstein--Maxwell equations is assumed, then both the total electric and magnetic charge of each body must vanish. As a physical consequence it is pointed out that if a suspended magnet be electrically charged then it must experience a purely general relativistic torque

  18. Effective field equations for expectation values

    International Nuclear Information System (INIS)

    Jordan, R.D.

    1986-01-01

    We discuss functional methods which allow calculation of expectation values, rather than the usual in-out amplitudes, from a path integral. The technique, based on Schwinger's idea of summing over paths which go from the past to the future and then back to the past, provides effective field equations satisfied by the expectation value of the field. These equations are shown to be real and causal for a general theory up to two-loop order, and unitarity is checked to this order. These methods are applied to a simple quantum-mechanical example to illustrate the differences between the new formalism and the standard theory. When applied to the gravitational field, the new effective field equations should be useful for studies of quantum cosmology

  19. Dirac equation in magnetic-solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Dept. Fisica e Quimica, UNESP, Campus de Guaratingueta (Brazil); Gitman, D.M.; Smirnov, A.A. [Instituto de Fisica, Universidade de Sao Paulo (Brazil)

    2004-07-01

    We consider the Dirac equation in the magnetic-solenoid field (the field of a solenoid and a collinear uniform magnetic field). For the case of Aharonov-Bohm solenoid, we construct self-adjoint extensions of the Dirac Hamiltonian using von Neumann's theory of deficiency indices. We find self-adjoint extensions of the Dirac Hamiltonian and boundary conditions at the AB solenoid. Besides, for the first time, solutions of the Dirac equation in the magnetic-solenoid field with a finite radius solenoid were found. We study the structure of these solutions and their dependence on the behavior of the magnetic field inside the solenoid. Then we exploit the latter solutions to specify boundary conditions for the magnetic-solenoid field with Aharonov-Bohm solenoid. (orig.)

  20. Lagrangian procedures for higher order field equations

    International Nuclear Information System (INIS)

    Bollini, C.G.

    1987-01-01

    A Lagrangian procedure for a pedagogical way is presented for the treatment of higher order field equations. The energy-momentum tensor and the conserved density current are built. In particular the case in which the derivatives appear only in the invariant D'Alembertian operator is discussed. Some examples are discussed. The fields are quantized and the corresponding Hamilonian which is shown not to be positive defructed. Rules are given to write the causal propagators. (author) [pt

  1. Lagrangian procedures for higher order field equations

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1986-01-01

    We present in a pedagogical way a Lagrangian procedure for the treatment of higher order field equations. We build the energy-momentum tensor and the conserved density current. In particular we discuss the case in which the derivatives appear only in the invariant D'Alembertian operator. We discuss some examples. We quantize the fields and construct the corresponding Hamiltonian which is shown not to be positive definite. We give the rules for the causal propagators. (Author) [pt

  2. Conformal anomalies and the Einstein field equations

    Energy Technology Data Exchange (ETDEWEB)

    Godazgar, Hadi [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany); Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany)

    2017-04-28

    We compute corrections to the Einstein field equations which are induced by the anomalous effective actions associated to the type A conformal anomaly, both for the (non-local) Riegert action, as well as for the local action with dilaton. In all cases considered we find that these corrections can be very large.

  3. Multivector field formulation of Hamiltonian field theories: equations and symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Echeverria-Enriquez, A.; Munoz-Lecanda, M.C.; Roman-Roy, N. [Departamento de Matematica Aplicada y Telematica, Edificio C-3, Campus Norte UPC, Barcelona (Spain)

    1999-12-03

    We state the intrinsic form of the Hamiltonian equations of first-order classical field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analysed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between Cartan-Noether symmetries and general symmetries of the system is discussed. Noether's theorem is also stated in this context, both the 'classical' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed. (author)

  4. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  5. On the hyperbolicity of Einstein's and other gauge field equations

    International Nuclear Information System (INIS)

    Friedrich, H.

    1985-01-01

    It is shown that Einstein's vacuum field equations (respectively the conformal vacuum field equations) in a frame formalism imply a symmetric hyperbolic system of ''reduce'' propagation equations for any choice of coordinate system and frame field (and conformal factor). Certain freely specifiable ''gauge source'' functions occurring in the reduced equations reflect the choice of gauge. Together with the initial data they determine the gauge uniquely. Their choice does not affect the isometry class (conformal class) of a solution of an initial value problem. By the same method symmetric hyperbolic propagation equations are obtained from other gauge field equations, irrespective of the gauge. Using the concept of source functions one finds that Einstein's field equation, considered as second order equations for the metric coefficients, are of wave equation type in any coordinate system. (orig.)

  6. A class of exact solutions to the Einstein field equations

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R K

    2012-01-01

    The Einstein-Rosen metric is considered and a class of new exact solutions of the field equations for stationary axisymmetric Einstein-Maxwell fields is obtained. The Lie classical approach is applied to obtain exact solutions. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of Einstein-Maxwell equations. (paper)

  7. Coupled Higgs field equation and Hamiltonian amplitude equation ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 79; Issue 1. Coupled Higgs field equation and ... School of Mathematics and Computer Applications, Thapar University, Patiala 147 004, India; Department of Mathematics, Jaypee University of Information Technology, Waknaghat, Distt. Solan 173 234, India ...

  8. Coupled Higgs field equation and Hamiltonian amplitude equation ...

    Indian Academy of Sciences (India)

    the rational functions are obtained. Keywords. ... differential equations as is evident by the number of research papers, books and a new symbolic software .... Now using (2.11), (2.14) in (2.8) with C1 = 0 and integrating once we get. P. 2 = − β.

  9. Relaxation methods for gauge field equilibrium equations

    International Nuclear Information System (INIS)

    Adler, S.L.; Piran, T.

    1984-01-01

    This article gives a pedagogical introduction to relaxation methods for the numerical solution of elliptic partial differential equations, with particular emphasis on treating nonlinear problems with delta-function source terms and axial symmetry, which arise in the context of effective Lagrangian approximations to the dynamics of quantized gauge fields. The authors present a detailed theoretical analysis of three models which are used as numerical examples: the classical Abelian Higgs model (illustrating charge screening), the semiclassical leading logarithm model (illustrating flux confinement within a free boundary or ''bag''), and the axially symmetric Bogomol'nyi-Prasad-Sommerfield monopoles (illustrating the occurrence of p topological quantum numbers in non-Abelian gauge fields). They then proceed to a self-contained introduction to the theory of relaxation methods and allied iterative numerical methods and to the practical aspects of their implementation, with attention to general issues which arise in the three examples. The authors conclude with a brief discussion of details of the numerical solution of the models, presenting sample numerical results

  10. Equations of motion for a (non-linear) scalar field model as derived from the field equations

    International Nuclear Information System (INIS)

    Kaniel, S.; Itin, Y.

    2006-01-01

    The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. A Hamiltonian structure for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Torres del Castillo, G.F.

    1991-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained (Author)

  12. Nonlinear scalar field equations. Pt. 1

    International Nuclear Information System (INIS)

    Berestycki, H.; Lions, P.L.

    1983-01-01

    This paper as well as a subsequent one is concerned with the existence of nontrivial solutions for some semi-linear elliptic equations in Rsup(N). Such problems are motivated in particular by the search for certain kinds of solitary waves (stationary states) in nonlinear equations of the Klein-Gordon or Schroedinger type. (orig./HSI)

  13. Guiding-center equations for electrons in ultraintense laser fields

    International Nuclear Information System (INIS)

    Moore, J.E.; Fisch, N.J.

    1994-01-01

    The guiding-center equations are derived for electrons in arbitrarily intense laser fields also subject to external fields and ponderomotive forces. Exhibiting the relativistic mass increase of the oscillating electrons, a simple frame-invariant equation is shown to govern the behavior of the electrons for sufficiently weak background fields and ponderomotive forces. The parameter regime for which such a formulation is valid is made precise, and some predictions of the equation are checked by numerical simulation

  14. A Hamiltonian functional for the linearized Einstein vacuum field equations

    International Nuclear Information System (INIS)

    Rosas-RodrIguez, R

    2005-01-01

    By considering the Einstein vacuum field equations linearized about the Minkowski metric, the evolution equations for the gauge-invariant quantities characterizing the gravitational field are written in a Hamiltonian form by using a conserved functional as Hamiltonian; this Hamiltonian is not the analog of the energy of the field. A Poisson bracket between functionals of the field, compatible with the constraints satisfied by the field variables, is obtained. The generator of spatial translations associated with such bracket is also obtained

  15. Equations of motion derived from a generalization of Einstein's equation for the gravitational field

    International Nuclear Information System (INIS)

    Mociutchi, C.

    1980-01-01

    The extended Einstein's equation, combined with a vectorial theory of maxwellian type of the gravitational field, leads to: a) the equation of motion; b) the equation of the trajectory for the static case of spherical symmetry, the test particle having a rest mass other than zero, and c) the propagation of light on null geodesics. All the basic tests of the theory given by Einstein's extended equation. Thus, the new theory of gravitation suggested by us is competitive. (author)

  16. Conformally covariant massless spin-two field equations

    International Nuclear Information System (INIS)

    Drew, M.S.; Gegenberg, J.D.

    1980-01-01

    An explicit proof is constructed to show that the field equations for a symmetric tensor field hsub(ab) describing massless spin-2 particles in Minkowski space-time are not covariant under the 15-parameter group SOsub(4,2); this group is usually associated with conformal transformations on flat space, and here it will be considered as a global gauge group which acts upon matter fields defined on space-time. Notwithstanding the above noncovariance, the equations governing the rank-4 tensor Ssub(abcd) constructed from hsub(ab) are shown to be covariant provided the contraction Ssub(ab) vanishes. Conformal covariance is proved by demonstrating the covariance of the equations for the equivalent 5-component complex field; in fact, covariance is proved for a general field equation applicable to massless particles of any spin >0. It is shown that the noncovariance of the hsub(ab) equations may be ascribed to the fact that the transformation behaviour of hsub(ab) is not the same as that of a field consisting of a gauge only. Since this is in contradistinction to the situation for the electromagnetic-field equations, the vector form of the electromagnetic equations is cast into a form which can be duplicated for the hsub(ab)-field. This procedure results in an alternative, covariant, field equation for hsub(ab). (author)

  17. Ermakov-Pinney equation in scalar field cosmologies

    International Nuclear Information System (INIS)

    Hawkins, Rachael M.; Lidsey, James E.

    2002-01-01

    It is shown that the dynamics of cosmologies sourced by a mixture of perfect fluids and self-interacting scalar fields are described by the nonlinear, Ermakov-Pinney equation. The general solution of this equation can be expressed in terms of particular solutions to a related, linear differential equation. This characteristic is employed to derive exact cosmologies in the inflationary and quintessential scenarios. The relevance of the Ermakov-Pinney equation to the braneworld scenario is discussed

  18. Construction of alternative Hamiltonian structures for field equations

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Mauricio [Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Santiago (Chile); Hojman, Sergio A. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Santiago (Chile); Facultad de Educacion, Universidad Nacional Andres Bello, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2001-08-10

    We use symmetry vectors of nonlinear field equations to build alternative Hamiltonian structures. We construct such structures even for equations which are usually believed to be non-Hamiltonian such as heat, Burger and potential Burger equations. We improve on a previous version of the approach using recursion operators to increase the rank of the Poisson bracket matrices. Cole-Hopf and Miura-type transformations allow the mapping of these structures from one equation to another. (author)

  19. LSZ asymptotic condition and dynamic equations in quantum field theory

    International Nuclear Information System (INIS)

    Arkhipov, A.A.; Savrin, V.I.

    1983-01-01

    Some techniques that may be appropriate for the derivation of dynamic equations in quantum field theory are considered. A new method of deriving equations based on the use of LSZ asymptotic condition is described. It is proved that with the help of this method it becomes possible to obtain equations for wave functions both of scattering and bound states. Work is described in several papers under the dame title. The first paper is devoted to the Bethe-Salpeter equation

  20. Functional equations and Green's functions for augmented scalar fields

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1977-01-01

    Certain noncanonical self-coupled scalar quantum field theories, previously formulated by means of functional integration, are herein recast into the form of functional differential equations for the Green's functional. From these expressions the set of coupled equations relating the Green's functions is obtained. The new equations are compared with those of the conventional formulation, and are proposed as alternatives, especially for nonrenormalizable models when the conventional equations fail

  1. Dyons in presence of gravitation and symmetrized field equations

    International Nuclear Information System (INIS)

    Rawat, A.S.; Negi, O.P.S.

    1999-01-01

    Combined theory of gravitation and electromagnetism associated with particles carrying electric and magnetic charges has been established from an invariant action principle. Corresponding field equations, equation of motion and Einstein Maxwell's equations are obtained in unique and consistent way. It is shown that weak field approximation of slowly moving particle in gravitational field leads the symmetry between electromagnetic and linear gravitational fields. Postulation of the existence of gravimagnetic monopole leads structural symmetry between generalized electromagnetic and gravielectromagnetic fields. Corresponding quantization conditions and angular momentum are also analysed. (author)

  2. Lagrangian vector field and Lagrangian formulation of partial differential equations

    Directory of Open Access Journals (Sweden)

    M.Chen

    2005-01-01

    Full Text Available In this paper we consider the Lagrangian formulation of a system of second order quasilinear partial differential equations. Specifically we construct a Lagrangian vector field such that the flows of the vector field satisfy the original system of partial differential equations.

  3. Generalization of Einstein's gravitational field equations

    International Nuclear Information System (INIS)

    Moulin, Frederic

    2017-01-01

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)

  4. Generalization of Einstein's gravitational field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moulin, Frederic [Ecole Normale Superieure Paris-Saclay, Departement de Physique, Cachan (France)

    2017-12-15

    The Riemann tensor is the cornerstone of general relativity, but as is well known it does not appear explicitly in Einstein's equation of gravitation. This suggests that the latter may not be the most general equation. We propose here for the first time, following a rigorous mathematical treatment based on the variational principle, that there exists a generalized 4-index gravitational field equation containing the Riemann curvature tensor linearly, and thus the Weyl tensor as well. We show that this equation, written in n dimensions, contains the energy-momentum tensor for matter and that of the gravitational field itself. This new 4-index equation remains completely within the framework of general relativity and emerges as a natural generalization of the familiar 2-index Einstein equation. Due to the presence of the Weyl tensor, we show that this equation contains much more information, which fully justifies the use of a fourth-order theory. (orig.)

  5. ODE/IM correspondence and modified affine Toda field equations

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Katsushi; Locke, Christopher

    2014-08-15

    We study the two-dimensional affine Toda field equations for affine Lie algebra g{sup ^} modified by a conformal transformation and the associated linear equations. In the conformal limit, the associated linear problem reduces to a (pseudo-)differential equation. For classical affine Lie algebra g{sup ^}, we obtain a (pseudo-)differential equation corresponding to the Bethe equations for the Langlands dual of the Lie algebra g, which were found by Dorey et al. in study of the ODE/IM correspondence.

  6. Field equations for gravity quadratic in the curvature

    International Nuclear Information System (INIS)

    Rose, B.

    1992-01-01

    Vacuum field equations for gravity are studied having their origin in a Lagrangian quadratic in the curvature. The motivation for this choice of the Lagrangian-namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills type-is criticized, especially the implied view of connections as gauge potentials with no dynamical relation to the metric. The correct field equations with respect to variation of the connections and the metric independently are given. We deduce field equations which differs from previous ones by variation of the metric, the torsion, and the nonmetricity from which the connections are built. 6 refs

  7. Evaluation of abutment scour prediction equations with field data

    Science.gov (United States)

    Benedict, S.T.; Deshpande, N.; Aziz, N.M.

    2007-01-01

    The U.S. Geological Survey, in cooperation with FHWA, compared predicted abutment scour depths, computed with selected predictive equations, with field observations collected at 144 bridges in South Carolina and at eight bridges from the National Bridge Scour Database. Predictive equations published in the 4th edition of Evaluating Scour at Bridges (Hydraulic Engineering Circular 18) were used in this comparison, including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. The comparisons showed that most equations tended to provide conservative estimates of scour that at times were excessive (as large as 158 ft). Equations also produced underpredictions of scour, but with less frequency. Although the equations provide an important resource for evaluating abutment scour at bridges, the results of this investigation show the importance of using engineering judgment in conjunction with these equations.

  8. Field Method for Integrating the First Order Differential Equation

    Institute of Scientific and Technical Information of China (English)

    JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

    2007-01-01

    An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

  9. Parallel Vector Fields and Einstein Equations of Gravity | Mahara ...

    African Journals Online (AJOL)

    In this paper, we prove that no nontrivial timelike or spacelike parallel vector field exists in a region where the gravitational field created by macroscopic bodies and governed by Einstein's equations does not vanish. In other words, we prove that the existence of such vector fields in a region implies the vanishing of the ...

  10. Relativistic wave equations for particles in electromagnetic fields

    International Nuclear Information System (INIS)

    Good, R.H. Jr.

    1989-01-01

    A new type of generalization of the Dirac equation of higher spin particles and antiparticles is given, in case only the terms proportional to the external fields need to be retained. copyright 1989 Academic Press, Inc

  11. A new solution of Einstein's vacuum field equations

    Indian Academy of Sciences (India)

    The motivation for the new solution ensues ... terms of singularity, does not seem to work universally as there also exist other solutions of eq. ..... the field equations and not necessarily a contribution to the energy–stress tensor, rather just.

  12. Relativistic covariant wave equations and acausality in external fields

    International Nuclear Information System (INIS)

    Pijlgroms, R.B.J.

    1980-01-01

    The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)

  13. The magnetic field experiment onboard Equator-S and its scientific possibilities

    Directory of Open Access Journals (Sweden)

    K.-H. Fornacon

    1999-12-01

    Full Text Available The special feature of the ringcore fluxgate magnetometer on Equator-S is the high time and field resolution. The scientific aim of the experiment is the investigation of waves in the 10–100 picotesla range with a time resolution up to 64 Hz. The instrument characteristics and the influence of the spacecraft on the magnetic field measurement will be discussed. The work shows that the applied pre- and inflight calibration techniques are sufficient to suppress spacecraft interferences. The offset in spin axis direction was determined for the first time with an independent field measurement by the Equator-S Electron Drift Instrument. The data presented gives an impression of the accuracy of the measurement.Key words. Magnetospheric physics (instruments and techniques · Space plasma physics (instruments and techniques

  14. The magnetic field experiment onboard Equator-S and its scientific possibilities

    Directory of Open Access Journals (Sweden)

    K.-H. Fornacon

    Full Text Available The special feature of the ringcore fluxgate magnetometer on Equator-S is the high time and field resolution. The scientific aim of the experiment is the investigation of waves in the 10–100 picotesla range with a time resolution up to 64 Hz. The instrument characteristics and the influence of the spacecraft on the magnetic field measurement will be discussed. The work shows that the applied pre- and inflight calibration techniques are sufficient to suppress spacecraft interferences. The offset in spin axis direction was determined for the first time with an independent field measurement by the Equator-S Electron Drift Instrument. The data presented gives an impression of the accuracy of the measurement.

    Key words. Magnetospheric physics (instruments and techniques · Space plasma physics (instruments and techniques

  15. Extended Thermodynamics: a Theory of Symmetric Hyperbolic Field Equations

    Science.gov (United States)

    Müller, Ingo

    2008-12-01

    Extended thermodynamics is based on a set of equations of balance which are supplemented by local and instantaneous constitutive equations so that the field equations are quasi-linear first order differential equations. If the constitutive functions are subject to the requirements of the entropy principle, one may write them in symmetric hyperbolic form by a suitable choice of fields. The kinetic theory of gases, or the moment theories based on the Boltzmann equation provide an explicit example for extended thermodynamics. The theory proves its usefulness and practicality in the successful treatment of light scattering in rarefied gases. This presentation is based upon the book [1] of which the author of this paper is a co-author. For more details about the motivation and exploitation of the basic principles the interested reader is referred to that reference. It would seem that extended thermodynamics is worthy of the attention of mathematicians. It may offer them a non-trivial field of study concerning hyperbolic equations, if ever they get tired of the Burgers equation. Physicists may prefer to appreciate the success of extended thermodynamics in light scattering and to work on the open problems concerning the modification of the Navier-Stokes-Fourier theory in rarefied gases as predicted by extended thermodynamics of 13, 14, and more moments.

  16. Generalized force in classical field theory. [Euler-Lagrange equations

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-02-01

    The source strengths of the Euler-Lagrange equations, for a system of interacting fields, are heuristically interpreted as generalized forces. The canonical form of the energy-momentum tensor thus consistently appears, without recourse to space-time symmetry arguments. A concept of 'conservative' generalized force in classical field theory is also briefly discussed.

  17. Rarita-Schwinger field and multicomponent wave equation

    International Nuclear Information System (INIS)

    Kaloshin, A.E.; Lomov, V.P.

    2011-01-01

    We suggest a simple method to solve a wave equation for Rarita-Schwinger field without additional constraints. This method based on the use of off-shell projection operators allows one to diagonalize spin-1/2 sector of the field

  18. CSR Fields: Direct Numerical Solution of the Maxwell's Equation

    International Nuclear Information System (INIS)

    Novokhatski, Alexander

    2011-01-01

    We discuss the properties of the coherent electromagnetic fields of a very short, ultra-relativistic bunch in a rectangular vacuum chamber inside a bending magnet. The analysis is based on the results of a direct numerical solution of Maxwell's equations together with Newton's equations. We use a new dispersion-free time-domain algorithm which employs a more efficient use of finite element mesh techniques and hence produces self-consistent and stable solutions for very short bunches. We investigate the fine structure of the CSR fields including coherent edge radiation. This approach should be useful in the study of existing and future concepts of particle accelerators and ultrafast coherent light sources. The coherent synchrotron radiation (CSR) fields have a strong action on the beam dynamics of very short bunches, which are moving in the bends of all kinds of magnetic elements. They are responsible for additional energy loss and energy spread; micro bunching and beam emittance growth. These fields may bound the efficiency of damping rings, electron-positron colliders and ultrafast coherent light sources, where high peak currents and very short bunches are envisioned. This is relevant to most high-brightness beam applications. On the other hand these fields together with transition radiation fields can be used for beam diagnostics or even as a powerful resource of THz radiation. A history of the study of CSR and a good collection of references can be found in (1). Electromagnetic theory suggests several methods on how to calculate CSR fields. The most popular method is to use Lienard-Wiechert potentials. Other approach is to solve numerically the approximate equations, which are a Schrodinger type equation. These numerical methods are described in (2). We suggest that a direct solution of Maxwell's equations together with Newton's equations can describe the detailed structure of the CSR fields (3).

  19. Field Equations for Lovelock Gravity: An Alternative Route

    Directory of Open Access Journals (Sweden)

    Sumanta Chakraborty

    2018-01-01

    Full Text Available We present an alternative derivation of the gravitational field equations for Lovelock gravity starting from Newton’s law, which is closer in spirit to the thermodynamic description of gravity. As a warm up exercise, we have explicitly demonstrated that, projecting the Riemann curvature tensor appropriately and taking a cue from Poisson’s equation, Einstein’s equations immediately follow. The above derivation naturally generalizes to Lovelock gravity theories where an appropriate curvature tensor satisfying the symmetries as well as the Bianchi derivative properties of the Riemann tensor has to be used. Interestingly, in the above derivation, the thermodynamic route to gravitational field equations, suited for null hypersurfaces, emerges quiet naturally.

  20. Dirac's equation and the nature of quantum field theory

    International Nuclear Information System (INIS)

    Plotnitsky, Arkady

    2012-01-01

    This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.

  1. Dynamic field theory and equations of motion in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Kopeikin, Sergei M., E-mail: kopeikins@missouri.edu [Department of Physics and Astronomy, University of Missouri, 322 Physics Bldg., Columbia, MO 65211 (United States); Petrov, Alexander N., E-mail: alex.petrov55@gmail.com [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetskij Prospect 13, Moscow 119992 (Russian Federation)

    2014-11-15

    We discuss a field-theoretical approach based on general-relativistic variational principle to derive the covariant field equations and hydrodynamic equations of motion of baryonic matter governed by cosmological perturbations of dark matter and dark energy. The action depends on the gravitational and matter Lagrangian. The gravitational Lagrangian depends on the metric tensor and its first and second derivatives. The matter Lagrangian includes dark matter, dark energy and the ordinary baryonic matter which plays the role of a bare perturbation. The total Lagrangian is expanded in an asymptotic Taylor series around the background cosmological manifold defined as a solution of Einstein’s equations in the form of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric tensor. The small parameter of the decomposition is the magnitude of the metric tensor perturbation. Each term of the series expansion is gauge-invariant and all of them together form a basis for the successive post-Friedmannian approximations around the background metric. The approximation scheme is covariant and the asymptotic nature of the Lagrangian decomposition does not require the post-Friedmannian perturbations to be small though computationally it works the most effectively when the perturbed metric is close enough to the background FLRW metric. The temporal evolution of the background metric is governed by dark matter and dark energy and we associate the large scale inhomogeneities in these two components as those generated by the primordial cosmological perturbations with an effective matter density contrast δρ/ρ≤1. The small scale inhomogeneities are generated by the condensations of baryonic matter considered as the bare perturbations of the background manifold that admits δρ/ρ≫1. Mathematically, the large scale perturbations are given by the homogeneous solution of the linearized field equations while the small scale perturbations are described by a particular solution of

  2. Building Secure Public Key Encryption Scheme from Hidden Field Equations

    Directory of Open Access Journals (Sweden)

    Yuan Ping

    2017-01-01

    Full Text Available Multivariate public key cryptography is a set of cryptographic schemes built from the NP-hardness of solving quadratic equations over finite fields, amongst which the hidden field equations (HFE family of schemes remain the most famous. However, the original HFE scheme was insecure, and the follow-up modifications were shown to be still vulnerable to attacks. In this paper, we propose a new variant of the HFE scheme by considering the special equation x2=x defined over the finite field F3 when x=0,1. We observe that the equation can be used to further destroy the special structure of the underlying central map of the HFE scheme. It is shown that the proposed public key encryption scheme is secure against known attacks including the MinRank attack, the algebraic attacks, and the linearization equations attacks. The proposal gains some advantages over the original HFE scheme with respect to the encryption speed and public key size.

  3. Remarks on an equation common to Weyl's gauge field, Yang-Mills field and Toda lattice

    International Nuclear Information System (INIS)

    Nishioka, M.

    1984-01-01

    In this letter a remark is presented on an equation of a gauge-invariant Weyl's gauge field and it is shown that the equation is common to Yang's approach to the self-duality condition for SU 2 gauge field and the simplest Toda lattice

  4. Geometry of Kaluza-Klein theory. II. Field equations

    International Nuclear Information System (INIS)

    Maia, M.D.

    1985-01-01

    In the preceding paper a geometric formulation of Kaluza-Klein theory was presented with the basic assumption that the space-time is locally and isometrically embedded in the high-dimensional space which emerged at the big bang. In the present note the Gauss-Codazzi-Ricci equations which are the integrability equations for the embedding are interpreted as the dynamical equations for a low-energy observer. The second quadratic form which results from the embedding is interpreted as a fundamental spin-two massless field. The dynamics for an observer with high-energy probes is described as usual by the Einstein-Hilbert action defined in the high-dimensional space and dimensionally reduced by integration over the internal space. The behavior of fermion masses under different gravitational field strengths is implemented by use of the mass operator defined with the second-order Casimir operator of the embedding symmetry group

  5. Parquet equations for numerical self-consistent-field theory

    International Nuclear Information System (INIS)

    Bickers, N.E.

    1991-01-01

    In recent years increases in computational power have provided new motivation for the study of self-consistent-field theories for interacting electrons. In this set of notes, the so-called parquet equations for electron systems are derived pedagogically. The principal advantages of the parquet approach are outlined, and its relationship to simpler self-consistent-field methods, including the Baym-Kadanoff technique, is discussed in detail. (author). 14 refs, 9 figs

  6. A stochastic differential equation framework for the turbulent velocity field

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Schmiegel, Jürgen

    We discuss a stochastic differential equation, as a modelling framework for the turbulent velocity field, that is capable of capturing basic stylized facts of the statistics of velocity increments. In particular, we focus on the evolution of the probability density of velocity increments...

  7. Grassmann expansion of the classical N=2 supergravity field equations

    International Nuclear Information System (INIS)

    Embacher, F.

    1984-01-01

    The classical field equations of N=2 supergravity are expanded with respect to an infinite dimensional Grassmann algebra. The general freedom in constructing classical solution is exhibited. As an application, a uniqueness theorem for supersymmetric extreme black holes is given. (Author)

  8. A New Solution for Einstein Field Equation in General Relativity

    Science.gov (United States)

    Mousavi, Sadegh

    2006-05-01

    There are different solutions for Einstein field equation in general relativity that they have been proposed by different people the most important solutions are Schwarzchild, Reissner Nordstrom, Kerr and Kerr Newmam. However, each one of these solutions limited to special case. I've found a new solution for Einstein field equation which is more complete than all previous ones and this solution contains the previous solutions as its special forms. In this talk I will present my new metric for Einstein field equation and the Christofel symbols and Richi and Rieman tensor components for the new metric that I have calculated them by GR TENSOR software. As a result I will determine the actual movement of black holes which is different From Kerr black hole's movement. Finally this new solution predicts, existence of a new and constant field in the nature (that nobody can found it up to now), so in this talk I will introduce this new field and even I will calculate the amount of this field. SADEGH MOUSAVI, Amirkabir University of Technology.

  9. Parametrized post-Newtonian approximation and Rastall's gravitational field equations

    International Nuclear Information System (INIS)

    Smalley, L.L.

    1978-01-01

    The parametrized post-Newtonian (PPN) approximation is generalized to accomodate Rastall's modification of Einstein's theory of gravity, which allows nonzero divergence of the energy-momentum tensor. Rastall's theory is then shown to have consistent field equations, gauge conditions, and the correct Newtonian limit of the equations of motion. The PPN parameters are obtained and shown to agree experimentally with those for the Einstein theory. In light of the nonzero divergence condition, integral conservation laws are investigated and shown to yield conserved energy-momentum and angular-momentum. We conclude that the above generalization of metric theories, within the PPN framework, is a natural extension of the concept of metric theories

  10. Post-Newtonian celestial dynamics in cosmology: Field equations

    Science.gov (United States)

    Kopeikin, Sergei M.; Petrov, Alexander N.

    2013-02-01

    formulated in terms of the field variables which play a role of generalized coordinates in the Lagrangian formalism. It allows us to implement the powerful methods of variational calculus to derive the gauge-invariant field equations of the post-Newtonian celestial mechanics of an isolated astronomical system in an expanding universe. These equations generalize the field equations of the post-Newtonian theory in asymptotically flat spacetime by taking into account the cosmological effects explicitly and in a self-consistent manner without assuming the principle of liner superposition of the fields or a vacuole model of the isolated system, etc. The field equations for matter dynamic variables and gravitational field perturbations are coupled in the most general case of an arbitrary equation of state of matter of the background universe. We introduce a new cosmological gauge which generalizes the de Donder (harmonic) gauge of the post-Newtonian theory in asymptotically flat spacetime. This gauge significantly simplifies the gravitational field equations and allows one to find out the approximations where the field equations can be fully decoupled and solved analytically. The residual gauge freedom is explored and the residual gauge transformations are formulated in the form of the wave equations for the gauge functions. We demonstrate how the cosmological effects interfere with the local system and affect the local distribution of matter of the isolated system and its orbital dynamics. Finally, we worked out the precise mathematical definition of the Newtonian limit for an isolated system residing on the cosmological manifold. The results of the present paper can be useful in the Solar System for calculating more precise ephemerides of the Solar System bodies on extremely long time intervals, in galactic astronomy to study the dynamics of clusters of galaxies, and in gravitational wave astronomy for discussing the impact of cosmology on generation and propagation of

  11. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  12. Rigorous derivation of porous-media phase-field equations

    Science.gov (United States)

    Schmuck, Markus; Kalliadasis, Serafim

    2017-11-01

    The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.

  13. Reduction of static field equation of Faddeev model to first order PDE

    International Nuclear Information System (INIS)

    Hirayama, Minoru; Shi Changguang

    2007-01-01

    A method to solve the static field equation of the Faddeev model is presented. For a special combination of the concerned field, we adopt a form which is compatible with the field equation and involves two arbitrary complex functions. As a result, the static field equation is reduced to a set of first order partial differential equations

  14. Gravitational field equations on and off a 3-brane world

    International Nuclear Information System (INIS)

    Aliev, A N; Guemruekcueoglu, A E

    2004-01-01

    The effective gravitational field equations on and off a 3-brane world possessing a Z 2 mirror symmetry and embedded in a five-dimensional bulk spacetime with cosmological constant were derived by Shiromizu, Maeda and Sasaki (SMS) in the framework of the Gauss-Codazzi projective approach with the subsequent specialization to the Gaussian normal coordinates in the neighbourhood of the brane. However, the Gaussian normal coordinates imply a very special slicing of spacetime and clearly, the consistent analysis of the brane dynamics would benefit from complete freedom in the slicing of spacetime, pushing the layer surfaces in the fifth dimension at any rates of evolution and in arbitrary positions. We rederive the SMS effective gravitational field equations on a 3-brane and generalize the off-brane equations to the case where there is an arbitrary energy-momentum tensor in the bulk. We use a more general setting to allow for acceleration of the normals to the brane surface through the lapse function and the shift vector in the spirit of Arnowitt, Deser and Misner. We show that the gravitational influence of the bulk spacetime on the brane may be described by a traceless second-rank tensor W ij , constructed from the 'electric' part of the bulk Riemann tensor. We also present the evolution equations for the tensor W ij , as well as for the corresponding 'magnetic' part of the bulk curvature. These equations involve terms determined by both the nonvanishing acceleration of normals in the nongeodesic slicing of spacetime and the presence of other fields in the bulk

  15. Visualising magnetic fields numerical equation solvers in action

    CERN Document Server

    Beeteson, John Stuart

    2001-01-01

    Visualizing Magnetic Fields: Numerical Equation Solvers in Action provides a complete description of the theory behind a new technique, a detailed discussion of the ways of solving the equations (including a software visualization of the solution algorithms), the application software itself, and the full source code. Most importantly, there is a succinct, easy-to-follow description of each procedure in the code.The physicist Michael Faraday said that the study of magnetic lines of force was greatly influential in leading him to formulate many of those concepts that are now so fundamental to our modern world, proving to him their "great utility as well as fertility." Michael Faraday could only visualize these lines in his mind's eye and, even with modern computers to help us, it has been very expensive and time consuming to plot lines of force in magnetic fields

  16. Direct Construction of Conservation Laws from Field Equations

    International Nuclear Information System (INIS)

    Anco, S.C.; Bluman, G.

    1997-01-01

    This Letter presents an algorithm to obtain all local conservation laws for any system of field equations. The algorithm uses a formula which directly generates the conservation laws and does not depend on the system having a Lagrangian formulation, in contrast to Noether close-quote s theorem which requires a Lagrangian. Several examples are considered including dissipative systems inherently having no Lagrangian. copyright 1997 The American Physical Society

  17. Finite field equation for asymptotically free phi4 theory

    International Nuclear Information System (INIS)

    Brandt, R.A.; Wing-chiu, N.; Wai-Bong, Y.

    1979-01-01

    We consider the finite local field equation - (D 7 Alembertian + m 2 ) phi (x) = lim/sub xitsarrow-rightts/0[1/6gZ (xi 2 ):phi (x - xi) phi (x) phi (x + xi):- Δ (xi 2 ) phi (x) + sigma (xi 2 )(xi x partial/sub x/) 2 phi (x)], which rigorously describes gphi 4 scalar field theory, and the operator-product expansion phi (xi) phi (0) /sup approximately/ /sub xitsarrow-rightts0/F (xi 2 ) N[phi 2 ], where N[phi 2 ] denotes a normal product. For g 2 ), Δ (xi 2 ), sigma (xi 2 ), and F (xi 2 ). We perform the R transformation phi (x) → phi (x) + r on the finite field equation and obtain the operator part of the change to be proportional to lim/sub xitsarrow-rightts0/Z (xi 2 ) F (xi 2 ) N[phi 2 ] which vanishes by our knowledge of the functions Z (xi 2 ) and F (xi 2 ). We have therefore verified rigorously the partial R invariance of - vertical-bargvertical-barphi 4 theory. We discuss and solve the technical problem of finding the solution for renormalization-group equations with a matrix γ function where the lowest-order expansions of the various elements do not begin with the same powers of g

  18. Many-Body Mean-Field Equations: Parallel implementation

    International Nuclear Information System (INIS)

    Vallieres, M.; Umar, S.; Chinn, C.; Strayer, M.

    1993-01-01

    We describe the implementation of Hartree-Fock Many-Body Mean-Field Equations on a Parallel Intel iPSC/860 hypercube. We first discuss the Nuclear Mean-Field approach in physical terms. Then we describe our parallel implementation of this approach on the Intel iPSC/860 hypercube. We discuss and compare the advantages and disadvantages of the domain partition versus the Hilbert space partition for this problem. We conclude by discussing some timing experiments on various computing platforms

  19. Extensions of the auxiliary field method to solve Schroedinger equations

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2008-01-01

    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed

  20. Extensions of the auxiliary field method to solve Schroedinger equations

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2008-10-24

    It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed.

  1. Covariant field equations, gauge fields and conservation laws from Yang-Mills matrix models

    International Nuclear Information System (INIS)

    Steinacker, Harold

    2009-01-01

    The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.

  2. On classical solutions of SU(3) gauge field equations

    International Nuclear Information System (INIS)

    Chakrabarti, A.

    1975-01-01

    Static classical solutions of SU(3) gauge field equations are studied. The roles of the O(3) subgroup and of the quadrupole generators are discussed systematically. The general form thus obtained leads, through-out, to a high degree of symmetry in the results. This brings in some simplifying features. An octet of scalar mesons is finally added. Certain classes of exact solutions are given that are singular at the origin. A generalized gauge condition is pointed out. The relation of the general form to known particular cases is discussed [fr

  3. On the hydrodynamic limit of self-consistent field equations

    International Nuclear Information System (INIS)

    Pauli, H.C.

    1980-01-01

    As an approximation to the nuclear many-body problem, the hydrodynamical limit of self-consistent field equations is worked out and applied to the treatment of vibrational and rotational motion. Its validity is coupled to the value of a smallness parameter, behaving as 20Asup(-2/3) with the number of nucleons. For finite nuclei, this number is not small enough as compared to 1, and indeed one observes a discrepancy of roughly a factor of 5 between the hydrodynamic frequencies and the relevant experimental numbers. (orig.)

  4. The reduced basis method for the electric field integral equation

    International Nuclear Information System (INIS)

    Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.

    2011-01-01

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.

  5. Sine-Gordon breather form factors and quantum field equations

    International Nuclear Information System (INIS)

    Babujian, H; Karowski, M

    2002-01-01

    Using the results of previous investigations on sine-Gordon form factors, exact expressions of all breather matrix elements are obtained for several operators: all powers of the fundamental Bose field, general exponentials of it, the energy-momentum tensor and all higher currents. Formulae for the asymptotic behaviour of bosonic form factors are presented which are motivated by Weinberg's power counting theorem in perturbation theory. It is found that the quantum sine-Gordon field equation holds, and an exact relation between the 'bare' mass and the renormalized mass is obtained. Also a quantum version of a classical relation for the trace of the energy-momentum is proved. The eigenvalue problem for all higher conserved charges is solved. All results are compared with perturbative Feynman graph expansions and full agreement is found

  6. Finite field equation of Yang--Mills theory

    International Nuclear Information System (INIS)

    Brandt, R.A.; Wing-Chiu, N.; Yeung, W.

    1980-01-01

    We consider the finite local field equation -][1+1/α (1+f 4 )]g/sup munu/D'Alembertian-partial/sup μ/partial/sup ν/]A/sup nua/ =-(1+f 3 ) g 2 N[A/sup c/νA/sup a/μA/sub ν//sup c/] +xxx+(1-s) 2 M 2 A/sup a/μ, introduced by Lowenstein to rigorously describe SU(2) Yang--Mills theory, which is written in terms of normal products. We also consider the operator product expansion A/sup c/ν(x+xi) A/sup a/μ(x) A/sup b/lambda(x-xi) approx.ΣM/sup c/abνμlambda/sub c/'a'b'ν'μ'lambda' (xi) N[A/sup nuprimec/'A/sup muprimea/'A/sup lambdaprimeb/'](x), and using asymptotic freedom, we compute the leading behavior of the Wilson coefficients M/sup ...//sub .../(xi) with the help of a computer, and express the normal products in the field equation in terms of products of the c-number Wilson coefficients and of operator products like A/sup c/ν(x+xi) A/sup a/μ(x) A/sup b/lambda(x-xi) at separated points. Our result is -][1+(1/α)(1+f 4 )]g/sup munu/D'Alembertian-partial/sup μ/partial/sup ν/]A/sup nua/ =-(1+f 3 ) g 2 lim/sub xiarrow-right0/] (lnxi)/sup -0.28/2b/[A/sup c/ν (x+xi) A/sup a/μ(x) A/sub ν//sup c/(x-xi) +epsilon/sup a/bcA/sup muc/(x+xi) partial/sup ν/A/sup b//sub ν/(x)+xxx] +xxx]+(1-s) 2 M 2 A/sup a/μ, where β (g) =-bg 3 , and so (lnxi)/sup -0.28/2b/ is the leading behavior of the c-number coefficient multiplying the operator products in the field equation

  7. Solution of radial spin-1 field equation in Robertson-Walker space-time via Heun's equation

    International Nuclear Information System (INIS)

    Zecca, A.

    2010-01-01

    The spin-1 field equation is considered in Robertson-Walker spacetime. The problem of the solution of the separated radial equations, previously discussed in the flat space-time case, is solved also for both the closed and open curvature case. The radial equation is reduced to Heun's differential equation that recently has been widely reconsidered. It is shown that the solution of the present Heun equation does not fall into the class of polynomial-like or hypergeometric functions. Heun's operator results also non-factorisable. The properties follow from application of general theorems and power series expansion. In the positive curvature case of the universe a discrete energy spectrum of the system is found. The result follows by requiring a polynomial-like behaviour of at least one component of the spinor field. Developments and applications of the theory suggest further study of the solution of Heun's equation.

  8. The time dependent Schrodinger equation revisited I: quantum field and classical Hamilton-Jacobi routes to Schrodinger's wave equation

    International Nuclear Information System (INIS)

    Scully, M O

    2008-01-01

    The time dependent Schrodinger equation is frequently 'derived' by postulating the energy E → i h-bar (∂/∂t) and momentum p-vector → ( h-bar /i)∇ operator relations. In the present paper we review the quantum field theoretic route to the Schrodinger wave equation which treats time and space as parameters, not operators. Furthermore, we recall that a classical (nonlinear) wave equation can be derived from the classical action via Hamiltonian-Jacobi theory. By requiring the wave equation to be linear we again arrive at the Schrodinger equation, without postulating operator relations. The underlying philosophy is operational: namely 'a particle is what a particle detector detects.' This leads us to a useful physical picture combining the wave (field) and particle paradigms which points the way to the time-dependent Schrodinger equation

  9. Backreaction effects on the matter side of Einstein's field equations

    CERN Document Server

    Floerchinger, Stefan; Wiedemann, Urs Achim

    2015-01-01

    Recently, we have derived a novel and compact expression for how perturbations in the matter fields of the cosmological fluid can lead to deviations from the standard Friedmann equations. Remarkably, the dissipative damping of velocity perturbations by bulk and shear viscosity in the dark sector can modify the expansion history of the universe on arbitrarily large scales. In universes in which this effect is sufficiently sizeable, it could account for the acceleration of the cosmological expansion. But even if dark matter should be less viscous and if the effect would be correspondingly smaller, it may have observable consequences in the era of precision cosmology. Here, we review the origin of this backreaction effect and possibilities to constrain it further.

  10. Consistent equations for interacting gauge fields of all spins in 3+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A [AN SSSR, Moscow. Inst. Teoreticheskoj Fiziki (USSR)

    1990-07-05

    Consistent equations of motion of interacting gauge fields of all spins in 3+1 dimensions are formulated in a closed form. These equations are explicitly general coordinate invariant, possess all necessary higher spin gauge symmetries and reduce to the usual equations of free massless fields of all spins s=0, 1/2, 1, ..., {infinity} at the linearized level. In the spin-2 sector, the proposed equations are equivalent to the Einstein equations with the cosmological term. (orig.).

  11. The Vlasov equation with strong magnetic field and oscillating electric field as a model for isotop resonant separation

    Directory of Open Access Journals (Sweden)

    Emmanuel Frenod

    2002-01-01

    Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.

  12. Killing vector fields in three dimensions: a method to solve massive gravity field equations

    Energy Technology Data Exchange (ETDEWEB)

    Guerses, Metin, E-mail: gurses@fen.bilkent.edu.t [Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara (Turkey)

    2010-10-21

    Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.

  13. Extension of Gibbs-Duhem equation including influences of external fields

    Science.gov (United States)

    Guangze, Han; Jianjia, Meng

    2018-03-01

    Gibbs-Duhem equation is one of the fundamental equations in thermodynamics, which describes the relation among changes in temperature, pressure and chemical potential. Thermodynamic system can be affected by external field, and this effect should be revealed by thermodynamic equations. Based on energy postulate and the first law of thermodynamics, the differential equation of internal energy is extended to include the properties of external fields. Then, with homogeneous function theorem and a redefinition of Gibbs energy, a generalized Gibbs-Duhem equation with influences of external fields is derived. As a demonstration of the application of this generalized equation, the influences of temperature and external electric field on surface tension, surface adsorption controlled by external electric field, and the derivation of a generalized chemical potential expression are discussed, which show that the extended Gibbs-Duhem equation developed in this paper is capable to capture the influences of external fields on a thermodynamic system.

  14. Functional renormalisation group equations for supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Synatschke-Czerwonka, Franziska

    2011-01-11

    This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)

  15. On integrability conditions of the equations of nonsymmetrical chiral field on SO(4)

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.

    1990-01-01

    Possibility of integrating the equations of nonsymmetrical chiral field on SO(4) by means of the inverse scattering method is investigated. Maximal number of the motion integrals is found for the corresponding system of ordinary differential equations

  16. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2009-01-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation

  17. New exact solutions of the Einstein—Maxwell equations for magnetostatic fields

    International Nuclear Information System (INIS)

    Goyal, Nisha; Gupta, R.K.

    2012-01-01

    The symmetry reduction method based on the Fréchet derivative of differential operators is applied to investigate symmetries of the Einstein—Maxwell field equations for magnetostatic fields, which is a coupled system of nonlinear partial differential equations of the second order. The technique yields invariant transformations that reduce the given system of partial differential equations to a system of nonlinear ordinary differential equations. Some of the reduced systems are further studied to obtain the exact solutions

  18. Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit

    International Nuclear Information System (INIS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2015-01-01

    Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with an arbitrary potential of the form V(|ϕ| 2 ). We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrodinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c → +∞. (paper)

  19. On theories of gravitation in which the dynamical equations do not follow from the field equations and the Birkhoff theorem

    International Nuclear Information System (INIS)

    Bleyer, U.; Muecket, J.P.

    1980-01-01

    In general the Birkhoff theorem is violated in non-Einsteinian theories of gravitation. We show for theories in which the dynamical equations do not follow from the field equations that time-dependent vacuum solutions are needed in order to join nonstatic spherically symmetric incoherent matter distributions. It is shown for Treder's tetrad theories that such vacuum solutions exist and a continuous and unique junction is possible. In generalization of these results we consider the problem in what theories of gravitation the dynamical equations do not follow from the field equations. This consideration leads to non-Einsteinian theories like bimetric theories or Treder's tetrad theories containing supplementary geometrical quantities which are not dynamical variables of the theory. (author)

  20. Electromagnetic-field equations in the six-dimensional space-time R6

    International Nuclear Information System (INIS)

    Teli, M.T.; Palaskar, D.

    1984-01-01

    Maxwell's equations (without monopoles) for electromagnetic fields are obtained in six-dimensional space-time. The equations possess structural symmetry in space and time, field and source densities. Space-time-symmetric conservation laws and field solutions are obtained. The results are successfully correlated with their four-dimensional space-time counterparts

  1. Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation

    Directory of Open Access Journals (Sweden)

    Mitsuo Kato

    2018-01-01

    Full Text Available A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.

  2. Invariant gauge families inherent in Abelian-gauge field theory. [Scalar dipole ghost field, free-field equations

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Kan-ichi; Kubo, Reijiro

    1974-12-01

    The framework of the Nakanishi-Lautrup formalism should be enlarged by introducing a scalar dipole ghost field B(x), which is called gauge on field, together with its pair field. By taking free Lagrangian density, Free-field equations can be described. The vacuum is defined by using a neutral vector field U..mu..(x). The state-vector space is generated by the adjoining conjugates of U..mu..sup((+))(x), and auxiliary fields B(x), B/sub 1/(x) and B/sub 2/(x), which were introduced in the form of the Lagrangian density. The physical states can be defined by the supplementary conditions of the form B/sub 1/sup((+))(x) 1 phys>=B/sub 2/sup((+))(x) 1 phys>=0. It is seen that all the field equations and all the commutators are kept form-invariant, and that the gauge parameter ..cap alpha.. is transformed into ..cap alpha..' given by ..cap alpha..'=..cap alpha..+lambda, with epsilon unchanged. The Lagrangian density is specified only by the gauge invariant parameter epsilon. The gauge structure of theory has universal meaning over whole Abelian-gauge field. C-number gauge transformation and the gauge structure in the presence of interaction are also discussed.

  3. New exact solutions of Einstein's field equations: gravitational force can also be repulsive!

    International Nuclear Information System (INIS)

    Dietz, W.

    1988-01-01

    This article has not been written for specialists of exact solutions of Einstein's field equations but for physicists who are interested in nontrivial information on this topic. We recall the history and some basic properties of exact solutions of Einstein's vacuum equations. We show that the field equations for stationary axisymmetric vacuum gravitational fields can be expressed by only one nonlinear differential equation for a complex function. This compact form of the field equations allows the generation of almost all stationary axisymmetric vacuum gravitational fields. We present a new stationary two-body solution of Einstein's equations as an application of this generation technique. This new solution proves the existence of a macroscopic, repulsive spin-spin interaction in general relativity. Some estimates that are related to this new two-body solution are given

  4. Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program

    International Nuclear Information System (INIS)

    Sharp, W.M.; Yu, S.S.; Lee, E.P.

    1987-01-01

    A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations

  5. Solution of the Bethe-Salpeter equation in the field of a plane electromagnetic wave

    International Nuclear Information System (INIS)

    Starostin, V.S.

    1988-01-01

    A solution is obtained of the Bethe--Salpeter equation for positronium in the field of linearly and circularly polarized plane electromagnetic waves at frequencies much higher than atomic. It is not assumed that the field is weak

  6. Infinite sets of conservation laws for linear and nonlinear field equations

    International Nuclear Information System (INIS)

    Mickelsson, J.

    1984-01-01

    The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the 'coupling constant') the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model. (orig.)

  7. Kinetic equations within the formalism of non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1988-01-01

    After reviewing the real-time formalism of dissipative quantum field theory, i.e. non-equilibrium thermo field dynamics (NETFD), a kinetic equation, a self-consistent equation for the dissipation coefficient and a ''mass'' or ''chemical potential'' renormalization equation for non-equilibrium transient situations are extracted out of the two-point Green's function of the Heisenberg field, in their most general forms upon the basic requirements of NETFD. The formulation is applied to the electron-phonon system, as an example, where the gradient expansion and the quasi-particle approximation are performed. The formalism of NETFD is reinvestigated in connection with the kinetic equations. (orig.)

  8. Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations

    International Nuclear Information System (INIS)

    Fouxon, Itzhak; Oz, Yaron

    2008-01-01

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them

  9. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    Science.gov (United States)

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  10. Einstein's equations of motion in the gravitational field of an oblate ...

    African Journals Online (AJOL)

    In an earlier paper we derived Einstein's geometrical gravitational field equations for the metric tensor due to an oblate spheroidal massive body. In this paper we derive the corresponding Einstein's equations of motion for a test particle of nonzero rest mass in the gravitational field exterior to a homogeneous oblate ...

  11. Solutions of weakened field equations in Gödel space-time

    Directory of Open Access Journals (Sweden)

    Aditya Mani Mishra

    2019-04-01

    Full Text Available We have solved Weakened field equations, collected work of Lovelock for cylindrically symmetric G¨odel type spacetime. A comparative study of these solutions to solution of Einstein’s field equation have shown. Conformality of Gödel spacetime has discussed with vanishing and non-vanishing scalar curvature of the spacetime.

  12. Equations of motion for massive spin 2 field coupled to gravity

    International Nuclear Information System (INIS)

    Buchbinder, I.L.; Gitman, D.M.; Krykhtin, V.A.; Pershin, V.D.

    2000-01-01

    We investigate the problems of consistency and causality for the equations of motion describing massive spin two field in external gravitational and massless scalar dilaton fields in arbitrary spacetime dimension. From the field theoretical point of view we consider a general classical action with non-minimal couplings and find gravitational and dilaton background on which this action describes a theory consistent with the flat space limit. In the case of pure gravitational background all field components propagate causally. We show also that the massive spin two field can be consistently described in arbitrary background by means of the lagrangian representing an infinite series in the inverse mass. Within string theory we obtain equations of motion for the massive spin two field coupled to gravity from the requirement of quantum Weyl invariance of the corresponding two-dimensional sigma-model. In the lowest order in α' we demonstrate that these effective equations of motion coincide with consistent equations derived in field theory

  13. Testing electric field models using ring current ion energy spectra from the Equator-S ion composition (ESIC instrument

    Directory of Open Access Journals (Sweden)

    L. M. Kistler

    Full Text Available During the main and early recovery phase of a geomagnetic storm on February 18, 1998, the Equator-S ion composition instrument (ESIC observed spectral features which typically represent the differences in loss along the drift path in the energy range (5–15 keV/e where the drift changes from being E × B dominated to being gradient and curvature drift dominated. We compare the expected energy spectra modeled using a Volland-Stern electric field and a Weimer electric field, assuming charge exchange along the drift path, with the observed energy spectra for H+ and O+. We find that using the Weimer electric field gives much better agreement with the spectral features, and with the observed losses. Neither model, however, accurately predicts the energies of the observed minima.

    Key words. Magnetospheric physics (energetic particles trapped; plasma convection; storms and substorms

  14. Interacting fields of arbitrary spin and N > 4 supersymmetric self-dual Yang-Mills equations

    International Nuclear Information System (INIS)

    Devchand, Ch.; Ogievetsky, V.

    1996-06-01

    We show that the self-dual Yang-Mills equations afford supersymmetrization to systems of equations invariant under global N-extended super-Poincare transformations for arbitrary values of N, without the limitation (N ≤ 4) applicable to standard non-self-dual Yang-Mills theories. These systems of equations provide novel classically consistent interactions for vector supermultiplets containing fields of spin up to N-2/2. The equations of motion of the component fields of spin greater than 1/2 are interacting variants of the first-order Dirac-Fierz equations for zero rest-mass fields of arbitrary spin. The interactions are governed by conserved currents which are constructed by an iterative procedure. In (arbitrarily extended) chiral superspace, the equations of motion for the (arbitrarily large) self-dual supermultiplet are shown to be completely equivalent to the set of algebraic supercurvature defining the self-dual superconnection. (author). 25 refs

  15. Cartan's equations define a topological field theory of the BF type

    International Nuclear Information System (INIS)

    Cuesta, Vladimir; Montesinos, Merced

    2007-01-01

    Cartan's first and second structure equations together with first and second Bianchi identities can be interpreted as equations of motion for the tetrad, the connection and a set of two-form fields T I and R J I . From this viewpoint, these equations define by themselves a field theory. Restricting the analysis to four-dimensional spacetimes (keeping gravity in mind), it is possible to give an action principle of the BF type from which these equations of motion are obtained. The action turns out to be equivalent to a linear combination of the Nieh-Yan, Pontrjagin, and Euler classes, and so the field theory defined by the action is topological. Once Einstein's equations are added, the resulting theory is general relativity. Therefore, the current results show that the relationship between general relativity and topological field theories of the BF type is also present in the first-order formalism for general relativity

  16. A reduced set of gyrofluid equations for plasma flow in a diverging magnetic field

    International Nuclear Information System (INIS)

    Robertson, Scott

    2016-01-01

    Plasmas are often generated in a small diameter source with a strong magnetic field and subsequently flow into a region with greater diameter and smaller field. The magnetic mirror force that accelerates plasma in a diverging magnetic field appears in the gyrofluid equations developed for applications to toroidal devices, but this force is often absent from fluid equations. A set of gyrofluid equations with reduced complexity is developed in which drifts are assumed negligible and the mirror force is retained. The Chew–Goldberger–Low equations of state are used for a simple closure. These reduced gyrofluid equations are applied to plasma equilibrium in a magnetic mirror, to acceleration of plasma in a magnetic nozzle, and to space charge neutralization of an ion beam by electrons in a diverging magnetic field. The results from gyrofluid theory are compared with results from drift kinetic theory to find the accuracy of the gyrofluid approximation in these applications.

  17. Separation of massive field equation of arbitrary spin in Robertson-Walker space-time

    International Nuclear Information System (INIS)

    Zecca, A.

    2006-01-01

    The massive spin-(3/2) field equation is explicitly integrated in the Robertson-Walker space-time by the Newman Penrose formalism. The solution is obtained by extending a separation procedure previously used to solve the spin-1 equation. The separated time dependence results in two coupled equations depending on the cosmological background evolution. The separated angular equations are explicitly integrated and the eigenvalues determined. The separated radial equations are integrated in the flat space-time case. The separation method of solution is then generalized, by induction, to prove the main result, that is the separability of the massive field equations of arbitrary spin in the Robertson-Walker space-time

  18. Field differential equations for a potential flow from a Hamilton type variational principle

    International Nuclear Information System (INIS)

    Fierros Palacios, A.

    1992-01-01

    The same theoretical frame that was used to solve the problem of the field equations for a viscous fluid is utilized in this work. The purpose is to obtain the differential field equations for a potential flow from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density as a function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. A particular Lagrangian density of the T-V type leads to the wave equation for the velocity potential. (Author)

  19. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  20. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  1. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan

    2009-10-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.

  2. Prolongation structure and linear eigenvalue equations for Einstein-Maxwell fields

    International Nuclear Information System (INIS)

    Kramer, D.; Neugebauer, G.

    1981-01-01

    The Einstein-Maxwell equations for stationary axisymmetric exterior fields are shown to be the integrability conditions of a set of linear eigenvalue equations for pseudopotentials. Using the method of Wahlquist and Estabrook (J. Math Phys.; 16:1 (1975)) it is shown that the prolongation structure of the Einstein-Maxwell equations contains the SU(2,1) Lie algebra. A new mapping of known solutions to other solutions has been found. (author)

  3. Alternative integral equations and perturbation expansions for self-coupled scalar fields

    International Nuclear Information System (INIS)

    Ford, L.H.

    1985-01-01

    It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)

  4. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  5. Axiomatic field theory and quantum electrodynamics: the massive case. [Gauge invariance, Maxwell equations, high momentum behavior

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik

    1975-01-01

    Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.

  6. Detailed balance principle and finite-difference stochastic equation in a field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    A finite-difference equation, which is a generalization of the Langevin equation in field theory, has been obtained basing upon the principle of detailed balance for the Markov chain. Advantages of the present approach as compared with the conventional Parisi-Wu method are shown for examples of an exactly solvable problem of zero-dimensional quantum theory and a simple numerical simulation

  7. Newton\\'s equation of motion in the gravitational field of an oblate ...

    African Journals Online (AJOL)

    In this paper, we derived Newton's equation of motion for a satellite in the gravitational scalar field of a uniformly rotating, oblate spheriodal Earth using spheriodal coordinates. The resulting equation is solved for the corresponding precession and the result compared with similar ones. JONAMP Vol. 11 2007: pp. 279-286 ...

  8. Principle of detailed balance and the finite-difference stochastic equation in field theory

    International Nuclear Information System (INIS)

    Kozhamkulov, T.A.

    1986-01-01

    The principle of detailed balance for the Markov chain is used to obtain a finite-difference equation which generalizes the Langevin equation in field theory. The advantages of using this approach compared to the conventional Parisi-Wu method are demonstrated for the examples of an exactly solvable problem in zero-dimensional quantum theory and a simple numerical simulation

  9. Functionals Hartree-Fock equations in the Schrodinger representation of quantum field theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1989-08-01

    Hartree-Fock equations for a scalar field theory in the Schrodinger representation are derived. It is shown that renormalization of the total energy in the functional Schrodinger equation is enterely contained in the eigenvalues of the Hartree-Fock hamiltonian. (A.C.A.S.) [pt

  10. Some physical solutions of Yang's equations for SU (2) gauge fields ...

    Indian Academy of Sciences (India)

    Some previously obtained physical solutions [1–3] of Yang's equations for (2) gauge fields [4], Charap's equations for pion dynamics [5,6] and their combination as proposed by Chakraborty and Chanda [1] have been presented. They represent different physical characteristics, e.g. spreading wave with solitary profile ...

  11. An efficient explicit marching on in time solver for magnetic field volume integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, H. Arda; Bagci, Hakan

    2015-01-01

    An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep

  12. Local solutions of harmonical and Bi-harmonical equations, universal field equation and self-dual configurations of Yang-Mills fields in four dimensions

    International Nuclear Information System (INIS)

    Leznov, A.N.

    1994-01-01

    A general method for the construction of solutions of the d'Alamberian and double d'Alamberian (harmonic and bi-harmonic) equations with local dependence of arbitrary functions upon two independent arguments is proposed. The connection between solutions of this kind and self-dual configurations of gauge fields having no singularities is established. 5 refs

  13. Equations of motion of a particle interacting with a scalar field

    International Nuclear Information System (INIS)

    Sato, N.K.

    1984-01-01

    The equations of motion of a particle (nucleon) interacting with a escalar (mesonic) field are derived by the energy momentum tensor moments method of Papapetrou. After a detailed study of the mesonic radiation field the expression of the reactive radiation force of the field upon the particle is established. (Author) [pt

  14. On the mixed discretization of the time domain magnetic field integral equation

    KAUST Repository

    Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan

    2012-01-01

    Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed

  15. Continuous creation of matter and Tolman's modification of Einstein field equations

    International Nuclear Information System (INIS)

    Turkowski, P.

    1985-01-01

    A modification of Einstein field equations which permits processes of creation or destruction of energy, suggested by Richard C. Tolman, is presented. Brief comment is given and the cosmological consequences of the hypothesis are examined. 8 refs. (author)

  16. Parallel implementation of many-body mean-field equations

    International Nuclear Information System (INIS)

    Chinn, C.R.; Umar, A.S.; Vallieres, M.; Strayer, M.R.

    1994-01-01

    We describe the numerical methods used to solve the system of stiff, nonlinear partial differential equations resulting from the Hartree-Fock description of many-particle quantum systems, as applied to the structure of the nucleus. The solutions are performed on a three-dimensional Cartesian lattice. Discretization is achieved through the lattice basis-spline collocation method, in which quantum-state vectors and coordinate-space operators are expressed in terms of basis-spline functions on a spatial lattice. All numerical procedures reduce to a series of matrix-vector multiplications and other elementary operations, which we perform on a number of different computing architectures, including the Intel Paragon and the Intel iPSC/860 hypercube. Parallelization is achieved through a combination of mechanisms employing the Gram-Schmidt procedure, broadcasts, global operations, and domain decomposition of state vectors. We discuss the approach to the problems of limited node memory and node-to-node communication overhead inherent in using distributed-memory, multiple-instruction, multiple-data stream parallel computers. An algorithm was developed to reduce the communication overhead by pipelining some of the message passing procedures

  17. Fermat's equation over the tower of cyclotomic fields

    International Nuclear Information System (INIS)

    Kolyvagin, V A

    2001-01-01

    Let l>3 be a prime, let L n =Q( l n+1 √1) let R n be the maximal real subfield of L n , and let H n be the maximal l-subextension of R n . We define effectively calculable integer-valued functions φ 1 (l), φ 2 (l) and φ 3 (l) such that -1≤φ 1 (l)≤φ 2 (l)≤φ 3 (l)≤(l-3)/2-I(l), where I(l) is the index of irregularity of l. For φ 1 (l)≥0 we prove the first case of Fermat's theorem for L φ 1 (l) , R φ 2 (l) , H φ 3 (l) and l. We obtain explicit lower estimates for φ 1 (l), φ 2 (l) and φ 3 (l). For regular l (when φ 1 (l ≥ 1) we prove the second case of Fermat's theorem for L (l-3)/2 and l and Fermat's theorem for L φ 1 (l) , R φ 2 (l) and l, generalizing the classical result on the validity of Fermat's theorem for L 0 and regular l. We also obtain some other results on solutions of Fermat's equation x l +y l +z l =0 over L n , R n and H n

  18. Higher equations of motion in N=2 superconformal Liouville field theory

    International Nuclear Information System (INIS)

    Ahn, Changrim; Stanishkov, Marian; Stoilov, Michail

    2011-01-01

    We present an infinite set of higher equations of motion in N=2 supersymmetric Liouville field theory. They are in one to one correspondence with the degenerate representations and are enumerated in addition to the U(1) charge ω by the positive integers m or (m,n) respectively. We check that in the classical limit these equations hold as relations among the classical fields.

  19. Differential equation for genus-two characters in arbitrary rational conformal field theories

    International Nuclear Information System (INIS)

    Mathur, S.D.; Sen, A.

    1989-01-01

    We develop a general method for deriving ordinary differential equations for the genus-two ''characters'' of an arbitrary rational conformal field theory using the hyperelliptic representation of the genus-two moduli space. We illustrate our method by explicitly deriving the character differential equations for k=1 SU(2), G 2 , and F 4 WZW models. Our method provides an intrinsic definition of conformal field theories on higher genus Riemann surfaces. (orig.)

  20. Adimensional temperature field of air around a horizontal heating cylinder empirical equations, for free convection

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Dolz, M. Belda, R.; Herraez, J.V.

    1988-01-01

    The analytical process follow to obtain the adimensional temperature field of air around a horizontal isothermal cylinder of 1 cm diameter and 10.5 length is presented. The equations defining the adimensional temperature variation with the adimensional distance are given for each semiplane that the total field was divide. Comparison of experimental results with obtained of that equations are also carried out and the validity in each case discussed.

  1. Perturbation theory for the Bethe-Salpeter equation in the field of a plane electromagnetic wave

    International Nuclear Information System (INIS)

    Starostin, V.S.; Litskevich, I.K.

    1990-01-01

    The completeness and orthogonality of the solutions of the Bethe-Salpeter equation is proven. A correct derivation of perturbation-theory equations is given. A generalization that includes the field of a plane electromagnetic wave is proposed. The rate of one-photon annihilation of positronium in this field is calculated. If the one-photon decay is allowed, the stationary states of the system are found (states of light-positronium)

  2. On the relation between the Einstein field equations and the Jacobi–Ricci–Bianchi system

    International Nuclear Information System (INIS)

    Van den Bergh, N

    2013-01-01

    The 1 + 3 covariant equations, embedded in an extended tetrad formalism and describing a spacetime with an arbitrary energy–momentum distribution, are reconsidered. It is shown that, provided the 1 + 3 splitting is performed with respect to a generic time-like congruence with a tangent vector u, the Einstein field equations can be regarded as the integrability conditions for the Jacobi and Bianchi equations together with the Ricci equations for u. The same conclusion holds for a generic null congruence in the Newman–Penrose framework. (paper)

  3. Field calibration and modification of scs design equation for predicting length of border under local conditions

    International Nuclear Information System (INIS)

    Choudhary, M.R.; Mustafa, U.S.

    2009-01-01

    Field tests were conducted to calibrate the existing SCS design equation in determining field border length using field data of different field lengths during 2nd and 3rd irrigations under local conditions. A single ring infiltrometer was used to estimate the water movement into and through the irrigated soil profile and in estimating the coefficients of Kostiakov infiltration function. Measurements of the unit discharge and time of advance were carried out during different irrigations on wheat irrigated fields having clay loam soil. The collected field data were used to calibrate the existing SCS design equation developed by USDA for testing its validity under local field conditions. SCS equation was modified further to improve its applicability. Results from the study revealed that the Kostiakov model over predicted the coefficients, which in turn overestimated the water advance length for boarder in the selected field using existing SCS design equation. However, the calibrated SCS design equation after parametric modification produced more satisfactory results encouraging the scientists to make its use at larger scale. (author)

  4. Equations for the gravitational field and local conserved quantities in the general theory of relativity

    International Nuclear Information System (INIS)

    Manoff, S.

    1979-07-01

    By utilization of the method of Lagrangians with covariant derivatives (MLCD) the different energy-momentum tensors (canonical, generalized canonical, symmetrical) and the relations between them are considered. On this basis, Einstein's theory of gravitation is studied as a field theory with a Lagrangian density of the type Lsub(g)=√-g.Lsub(g)(gsub(ij),Rsub(A)), (Rsub(A)=Rsub(ijkl)). It is shown that the energy-momentum tensors of the gravitational field can be defined for this theory. The symmetrical energy-momentum tensor of the gravitational field sub(gs)Tsub(k)sup(i), which in the general case is not a local conserved quantity (sub(gs)Tsub(k)sup(i)sub(;i) unequal 0) (in contrast to the material fields satisfying condition sub(Ms)Tsub(k)sup(i)sub(;i) = 0), is equal to zero for the gravitational field in vacuum (cosmological constant Λ = 0). Equations of the gravitational field of a new type are suggested, leading to equations of motion (sub(Ms)Tsub(k)sup(i) + sub(gs)Tsub(k)sup(i))sub(;i) = 0. The equations corresponding to the Lagrangian density Lsub(g)=(√-g/kappasub(o)) (R - lambda approximately), lambda approximately = const., are considered. The equations of Einstein Rsub(ij) = 0 are obtained in the case of gravitational field in vacuum. Some particular cases are examined as an illustration to material fields and the corresponding gravitational equations. (author)

  5. Spherically Symmetric Solutions of the Einstein-Bach Equations and a Consistent Spin-2 Field Theory

    International Nuclear Information System (INIS)

    Janda, A.

    2006-01-01

    We briefly present a relationship between General Relativity coupled to certain spin-0 and spin-2 field theories and higher derivatives metric theories of gravity. In a special case, described by the Einstein-Bach equations, the spin-0 field drops out from the theory and we obtain a consistent spin-two field theory interacting gravitationally, which overcomes a well known inconsistency of the theory for a linear spin-two field coupled to the Einstein's gravity. Then we discuss basic properties of static spherically symmetric solutions of the Einstein-Bach equations. (author)

  6. Coupled force-balance and particle-occupation rate equations for high-field electron transport

    International Nuclear Information System (INIS)

    Lei, X. L.

    2008-01-01

    It is pointed out that in the framework of balance-equation approach, the coupled force-balance and particle-occupation rate equations can be used as a complete set of equations to determine the high-field transport of semiconductors in both strong and weak electron-electron interaction limits. We call to attention that the occupation rate equation conserves the total particle number and maintains the energy balance of the relative electron system, and there is no need to introduce any other term in it. The addition of an energy-drift term in the particle-occupation rate equation [Phys. Rev. B 71, 195205 (2005)] is physically inadequate for the violation of the total particle-number conservation and the energy balance. It may lead to a substantial unphysical increase of the total particle number by the application of a dc electric field

  7. Functional differential equation approach to the large N expansion and mean field perturbation theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Cooper, F.

    1985-01-01

    An apparent difference between formulating mean field perturbation theory for lambdaphi 4 field theory via path integrals or via functional differential equations when there are external sources present is shown not to exist when mean field theory is considered as the N = 1 limit of the 0(N)lambdaphi 4 field theory. A simply method is given for determining the 1/N expansion for the Green's functions in the presence of external sources by directly solving the functional differential equations order by order in 1/N. The 1/N expansion for the effective action GAMMA(phi,chi) is obtained by directly integrating the functional differential equations for the fields phi and chi (equivalent1/2lambda/Nphi/sub α/phi/sup α/-μ 2 ) in the presence of two external sources j = -deltaGAMMA/deltaphi, S = -deltaGAMMA/deltachi

  8. Generalized continuity equations from two-field Schrödinger Lagrangians

    Science.gov (United States)

    Spourdalakis, A. G. B.; Pappas, G.; Morfonios, C. Â. V.; Kalozoumis, P. A.; Diakonos, F. K.; Schmelcher, P.

    2016-11-01

    A variational scheme for the derivation of generalized, symmetry-induced continuity equations for Hermitian and non-Hermitian quantum mechanical systems is developed. We introduce a Lagrangian which involves two complex wave fields and whose global invariance under dilation and phase variations leads to a mixed continuity equation for the two fields. In combination with discrete spatial symmetries of the underlying Hamiltonian, the mixed continuity equation is shown to produce bilocal conservation laws for a single field. This leads to generalized conserved charges for vanishing boundary currents and to divergenceless bilocal currents for stationary states. The formalism reproduces the bilocal continuity equation obtained in the special case of P T -symmetric quantum mechanics and paraxial optics.

  9. Infinite sets of conservation laws for linear and non-linear field equations

    International Nuclear Information System (INIS)

    Niederle, J.

    1984-01-01

    The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation

  10. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    Science.gov (United States)

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that

  11. Structure of the space of solutions of Einstein's equations II: Several killing fields and the Einstein-Yang-Mills equations

    International Nuclear Information System (INIS)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1982-01-01

    The space of solutions of Einstein's vacuum equations is shown to have conical singularities at each spacetime possessing a compact Cauchy surface of constant mean curvature and a nontrivial set of Killing fields. Similar results are shown for the coupled Einstein-Yang-Mills system. Combined with an appropriate slice theorem, the results show that the space of geometrically equivalent solutions is a stratified manifold with each stratum being a symplectic manifold characterized by the symmetry type of its members. Contents: Introduction 1. The Kuranishi map and its properties. 2. The momentum constraints. 3. The Hamiltonian constraints. 4. The Einstein-Yang-Mills system. 5. Discussion and examples

  12. Introducing time-dependent molecular fields: a new derivation of the wave equations

    Science.gov (United States)

    Baer, Michael

    2018-02-01

    This article is part of a series of articles trying to establish the concept molecular field. The theory that induced us to introduce this novel concept is based on the Born-Huang expansion as applied to the Schroedinger equation that describes the interaction of a molecular system with an external electric field. Assuming the molecular system is made up of two coupled adiabatic states the theory leads from a single spatial curl equation, two space-time curl equations and one single space-time divergent equation to a pair of decoupled wave equations usually encountered within the theory of fields. In the present study, just like in the previous study [see Baer et al., Mol. Phys. 114, 227 (2016)] the wave equations are derived for an electric field having two features: (a) its intensity is high enough; (b) its duration is short enough. Although not all the findings are new the derivation, in the present case, is new, straightforward, fluent and much friendlier as compared to the previous one and therefore should be presented again. For this situation the study reveals that the just described interaction creates two fields that coexist within a molecule: one is a novel vectorial field formed via the interaction of the electric field with the Born-Huang non-adiabatic coupling terms (NACTs) and the other is an ordinary, scalar, electric field essentially identical to the original electric field. Section 4 devoted to the visualization of the outcomes via two intersecting Jahn-Teller cones which contain NACTs that become singular at the intersection point of these cones. Finally, the fact that eventually we are facing a kind of a cosmic situation may bring us to speculate that singular NACTs are a result of cosmic phenomena. Thus, if indeed this singularity is somehow connected to reality then, like other singularities in physics, it is formed at (or immediately after) the Big Bang and consequently, guarantees the formation of molecules.

  13. Field Equations for Abelian Vector Fields in the Bianchi Type I Metric in the Framework of Teleparallel Gravity

    International Nuclear Information System (INIS)

    Triyanta; Zen, F. P.; Supardi; Wardaya, A. Y.

    2010-01-01

    Gauge theory, under the framework of quantum field theory, has successfully described three fundamental interactions: electromagnetic, weak, and strong interactions. Problems of describing the gravitational interaction in a similar manner has not been satisfied yet until now. Teleparallel gravity (TG) is one proposal describing gravitational field as a gauge field. This theory is quite new and it is equivalent to Einstein's general relativity. But as gravitational field in TG is expressed by torsion, rather than curvature, it gives an alternative framework for solving problems on gravity. This paper will present solution of the dynamical equation of abelian vector fields under the framework of TG in the Bianchi type I spacetime.

  14. Non-relativistic correspondence of Dirac equation with external electromagnetic field and space-time torsion

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Dias Junior, Mario Marcio

    2013-01-01

    Full text: The discussion of experimental manifestations of torsion at low energies is mainly related to the torsion-spin interaction. In this respect the behavior of Dirac field and the spinning particle in an external torsion field deserves and received very special attention. In this work, we consider the combined action of torsion and magnetic field on the massive spinor field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor has two components. The equations have mixed terms between the two components. The electromagnetic field is introduced in the action by the usual gauge transformation. The torsion field is described by the field S μ . The main purpose of the work is to get an explicit form to the equation of motion that shows the possible interactions between the external fields and the spinor in a Hamiltonian that is independent to each component. We consider that S 0 is constant and is the unique non-vanishing term of S μ . This simplification is taken just to simplify the algebra, as our main point is not to describe the torsion field itself. In order to get physical analysis of the problem, we consider the non-relativistic approximation. The final result is a Hamiltonian that describes a half spin field in the presence of electromagnetic and torsion external fields. (author)

  15. Non-degeneracy, Mean Field Equations and the Onsager Theory of 2D Turbulence

    Science.gov (United States)

    Bartolucci, Daniele; Jevnikar, Aleks; Lee, Youngae; Yang, Wen

    2018-04-01

    The understanding of some large energy, negative specific heat states in the Onsager description of 2D turbulence seem to require the analysis of a subtle open problem about bubbling solutions of the mean field equation. Motivated by this application we prove that, under suitable non-degeneracy assumptions on the associated m-vortex Hamiltonian, the m-point bubbling solutions of the mean field equation are non-degenerate as well. Then we deduce that the Onsager mean field equilibrium entropy is smooth and strictly convex in the high energy regime on domains of second kind.

  16. Equations of motion of higher-spin gauge fields as a free differential algebra

    International Nuclear Information System (INIS)

    Vasil'ev, M.A.

    1988-01-01

    It is shown that the introduction of auxiliary dynamical variables that generalize the gravitational Weyl tensor permits one to reduce the equations of motion of free massless fields of all spins in the anti-de Sitter O(3,2) space to a form characteristic of free differential algebras. The equations of motion of auxiliary gauge fields introduced previously are modified analogously. Arguments are presented to the effect that the equations of motion of interacting massless fields of all spins should be described in terms of a free differential algebra which is a deformation of a known free differential algebra generated by 1- and 0-forms in the adjoint representation of a nonabelian superalgebra of higher spins and auxiliary fields

  17. Pure gauge configurations and solutions to fermionic superstring field theory equations of motion

    International Nuclear Information System (INIS)

    Aref'eva, I Ya; Gorbachev, R V; Medvedev, P B

    2009-01-01

    Recent results on solutions to the equation of motion of the cubic fermionic string field theory and an equivalence of nonpolynomial and cubic string field theory are discussed. To have the possibility of dealing with both GSO(+) and GSO(-) sectors in the uniform way, a matrix formulation for the NS fermionic SFT is used. In constructions of analytical solutions to open-string field theories truncated pure gauge configurations parametrized by wedge states play an essential role. The matrix form of this parametrization for NS fermionic SFT is presented. Using the cubic open superstring field theory as an example we demonstrate explicitly that for the large parameter of the perturbation expansion these truncated pure gauge configurations give divergent contributions to the equations of motion on the subspace of the wedge states. The perturbation expansion is corrected by adding extra terms that are just those necessary for the equation of motion contracted with the solution itself to be satisfied.

  18. On the separability of field equations in Myers-Perry spacetimes

    International Nuclear Information System (INIS)

    Murata, Keiju; Soda, Jiro

    2008-01-01

    We study the separability of scalar, vector and tensor fields in five-dimensional Myers-Perry spacetimes with equal angular momenta. In these spacetimes, there exists enlarged symmetry, U(2) ≅ SU(2) x U(1). Using the group theoretical method with a twist, we perform the dimensional reduction at the action level and show that both vector and tensor field equations can be reduced to coupled ordinary differential equations. We reveal the structure of couplings between variables. In particular, we have obtained the decoupled master equations for zero modes of a vector field. The same analysis can be done for zero modes of a tensor field. Therefore, our formalism gives a basis for studying of the stability of Myers-Perry black holes

  19. ODE/IM correspondence and Bethe ansatz for affine Toda field equations

    Directory of Open Access Journals (Sweden)

    Katsushi Ito

    2015-07-01

    Full Text Available We study the linear problem associated with modified affine Toda field equation for the Langlands dual gˆ∨, where gˆ is an untwisted affine Lie algebra. The connection coefficients for the asymptotic solutions of the linear problem are found to correspond to the Q-functions for g-type quantum integrable models. The ψ-system for the solutions associated with the fundamental representations of g leads to Bethe ansatz equations associated with the affine Lie algebra gˆ. We also study the A2r(2 affine Toda field equation in massless limit in detail and find its Bethe ansatz equations as well as T–Q relations.

  20. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2011-06-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.

  1. Equations of motion for massive spin 2 field coupled to gravity

    Energy Technology Data Exchange (ETDEWEB)

    Buchbinder, I.L. E-mail: ilb@mail.tomsknet.ru; Gitman, D.M. E-mail: gitman@fma.if.usp.br; Krykhtin, V.A. E-mail: krykhtin@phys.dfe.tpu.edu.ru; Pershin, V.D. E-mail: pershin@ic.tsu.ru

    2000-09-18

    We investigate the problems of consistency and causality for the equations of motion describing massive spin two field in external gravitational and massless scalar dilaton fields in arbitrary spacetime dimension. From the field theoretical point of view we consider a general classical action with non-minimal couplings and find gravitational and dilaton background on which this action describes a theory consistent with the flat space limit. In the case of pure gravitational background all field components propagate causally. We show also that the massive spin two field can be consistently described in arbitrary background by means of the lagrangian representing an infinite series in the inverse mass. Within string theory we obtain equations of motion for the massive spin two field coupled to gravity from the requirement of quantum Weyl invariance of the corresponding two-dimensional sigma-model. In the lowest order in {alpha}' we demonstrate that these effective equations of motion coincide with consistent equations derived in field theory.

  2. Picard-Fuchs equations and the moduli space of superconformal field theories

    International Nuclear Information System (INIS)

    Cadavid, A.C.; Ferrara, S.

    1991-01-01

    We derive simple techniques which allow us to relate Picard-Fuchs differential equations for the periods of holomorphic p-forms on certain complex manifolds, to their moduli space and its modular group (target space duality). For Calabi-Yau manifolds the special geometry of moduli space gives the Zamolodchikov metric and the Yukawa couplings in terms of the periods. For general N=2 superconformal theories these equations exactly determine perturbed correlation functions of the chiral rings of primary fields. (orig.)

  3. From the Berlin "Entwurf" Field Equations to the Einstein Tensor III: March 1916

    OpenAIRE

    Weinstein, Galina

    2012-01-01

    I discuss Albert Einstein's 1916 General Theory of Relativity. I show that in Einstein's 1916 review paper, "the Foundation of the General Theory of Relativity", he derived his November 25, 1915 field equations with an additional term on the right hand side involving the trace of the energy-momentum tensor (he posed the condition square root -g=1) using the equations he presented on November 4, 1915. Series of papers: Final paper.

  4. Magnetostatic fields computed using an integral equation derived from Green's theorems

    International Nuclear Information System (INIS)

    Simkin, J.; Trowbridge, C.W.

    1976-04-01

    A method of computing magnetostatic fields is described that is based on a numerical solution of the integral equation obtained from Green's Theorems. The magnetic scalar potential and its normal derivative on the surfaces of volumes are found by solving a set of linear equations. These are obtained from Green's Second Theorem and the continuity conditions at interfaces between volumes. Results from a two-dimensional computer program are presented and these show the method to be accurate and efficient. (author)

  5. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  6. Molecular dynamics on diffusive time scales from the phase-field-crystal equation.

    Science.gov (United States)

    Chan, Pak Yuen; Goldenfeld, Nigel; Dantzig, Jon

    2009-03-01

    We extend the phase-field-crystal model to accommodate exact atomic configurations and vacancies by requiring the order parameter to be non-negative. The resulting theory dictates the number of atoms and describes the motion of each of them. By solving the dynamical equation of the model, which is a partial differential equation, we are essentially performing molecular dynamics simulations on diffusive time scales. To illustrate this approach, we calculate the two-point correlation function of a fluid.

  7. An energy-stable convex splitting for the phase-field crystal equation

    KAUST Repository

    Vignal, P.; Dalcin, L.; Brown, D. L.; Collier, N.; Calo, V. M.

    2015-01-01

    Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.

  8. Superfield generating equation of field-antifield formalism as a hyper-gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Batalin, Igor A. [P.N. Lebedev Physics Institute, Moscow (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation); Lavrov, Peter M. [Tomsk State Pedagogical University, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2017-02-15

    Within a superfield approach, we formulate a simple quantum generating equation of the field-antifield formalism. Then we derive the Schroedinger equation with the Hamiltonian whose Δ-exact part serves as a generator to the quantum master transformations. We show that these generators do satisfy a nice composition law in terms of the quantum antibrackets. We also present an Sp(2) symmetric extension to the main construction, with specific features caused by the principal fact that all basic equations become Sp(2) vector-valued ones. (orig.)

  9. An energy-stable convex splitting for the phase-field crystal equation

    KAUST Repository

    Vignal, P.

    2015-10-01

    Abstract The phase-field crystal equation, a parabolic, sixth-order and nonlinear partial differential equation, has generated considerable interest as a possible solution to problems arising in molecular dynamics. Nonetheless, solving this equation is not a trivial task, as energy dissipation and mass conservation need to be verified for the numerical solution to be valid. This work addresses these issues, and proposes a novel algorithm that guarantees mass conservation, unconditional energy stability and second-order accuracy in time. Numerical results validating our proofs are presented, and two and three dimensional simulations involving crystal growth are shown, highlighting the robustness of the method. © 2015 Elsevier Ltd.

  10. A Dynamic BI–Orthogonal Field Equation Approach to Efficient Bayesian Inversion

    Directory of Open Access Journals (Sweden)

    Tagade Piyush M.

    2017-06-01

    Full Text Available This paper proposes a novel computationally efficient stochastic spectral projection based approach to Bayesian inversion of a computer simulator with high dimensional parametric and model structure uncertainty. The proposed method is based on the decomposition of the solution into its mean and a random field using a generic Karhunen-Loève expansion. The random field is represented as a convolution of separable Hilbert spaces in stochastic and spatial dimensions that are spectrally represented using respective orthogonal bases. In particular, the present paper investigates generalized polynomial chaos bases for the stochastic dimension and eigenfunction bases for the spatial dimension. Dynamic orthogonality is used to derive closed-form equations for the time evolution of mean, spatial and the stochastic fields. The resultant system of equations consists of a partial differential equation (PDE that defines the dynamic evolution of the mean, a set of PDEs to define the time evolution of eigenfunction bases, while a set of ordinary differential equations (ODEs define dynamics of the stochastic field. This system of dynamic evolution equations efficiently propagates the prior parametric uncertainty to the system response. The resulting bi-orthogonal expansion of the system response is used to reformulate the Bayesian inference for efficient exploration of the posterior distribution. The efficacy of the proposed method is investigated for calibration of a 2D transient diffusion simulator with an uncertain source location and diffusivity. The computational efficiency of the method is demonstrated against a Monte Carlo method and a generalized polynomial chaos approach.

  11. Trends of Abutment-Scour Prediction Equations Applied to 144 Field Sites in South Carolina

    Science.gov (United States)

    Benedict, Stephen T.; Deshpande, Nikhil; Aziz, Nadim M.; Conrads, Paul

    2006-01-01

    The U.S. Geological Survey conducted a study in cooperation with the Federal Highway Administration in which predicted abutment-scour depths computed with selected predictive equations were compared with field measurements of abutment-scour depth made at 144 bridges in South Carolina. The assessment used five equations published in the Fourth Edition of 'Evaluating Scour at Bridges,' (Hydraulic Engineering Circular 18), including the original Froehlich, the modified Froehlich, the Sturm, the Maryland, and the HIRE equations. An additional unpublished equation also was assessed. Comparisons between predicted and observed scour depths are intended to illustrate general trends and order-of-magnitude differences for the prediction equations. Field measurements were taken during non-flood conditions when the hydraulic conditions that caused the scour generally are unknown. The predicted scour depths are based on hydraulic conditions associated with the 100-year flow at all sites and the flood of record for 35 sites. Comparisons showed that predicted scour depths frequently overpredict observed scour and at times were excessive. The comparison also showed that underprediction occurred, but with less frequency. The performance of these equations indicates that they are poor predictors of abutment-scour depth in South Carolina, and it is probable that poor performance will occur when the equations are applied in other geographic regions. Extensive data and graphs used to compare predicted and observed scour depths in this study were compiled into spreadsheets and are included in digital format with this report. In addition to the equation-comparison data, Water-Surface Profile Model tube-velocity data, soil-boring data, and selected abutment-scour data are included in digital format with this report. The digital database was developed as a resource for future researchers and is especially valuable for evaluating the reasonableness of future equations that may be developed.

  12. Ghost sector of vacuum string field theory and the projection equation

    International Nuclear Information System (INIS)

    Potting, Robertus; Raeymaekers, Joris

    2002-01-01

    We study the ghost sector of vacuum string field theory where the BRST operator Q is given by the midpoint insertion proposed by Gaiotto, Rastelli, Sen and Zwiebach. We introduce a convenient basis of half-string modes in terms of which Q takes a particularly simple form. We show that there exists a field redefinition which reduces the ghost sector field equation to a pure projection equation for string fields satisfying the constraint that the ghost number is equally divided over the left- and right halves of the string. When this constraint is imposed, vacuum string field theory can be reformulated as a U(∞) cubic matrix model. Ghost sector solutions can be constructed from projection operators on half-string Hilbert space just as in the matter sector. We construct the ghost sector equivalent of various well-known matter sector projectors such as the sliver, butterfly and nothing states. (author)

  13. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    International Nuclear Information System (INIS)

    Chen Yunyun; Li Zhenhua; Song Yang; He Anzhi

    2009-01-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  14. Curvature tensors and unified field equations on SEX/sub n/

    International Nuclear Information System (INIS)

    Chung, K.T.; Lee, I.L.

    1988-01-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEX/sub n/. We obtain several basic properties of the vectors S/subλ/ and U/sub λ/ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEX/sub n/ an done of its particular solutions is constructed and displayed

  15. Fokker-Planck equation in the presence of a uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chao, E-mail: chaodong@iphy.ac.cn [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Nuclear Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Zhang, Wenlu [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Ding, E-mail: dli@ustc.edu.cn [Center for Plasma Theory and Computation, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Modern Physics, University of Science and Technology of China, Anhui Hefei 230026 (China)

    2016-08-15

    The Fokker-Planck equation in the presence of a uniform magnetic field is derived which has the same form as the case of no magnetic field but with different Fokker-Planck coefficients. The coefficients are calculated explicitly within the binary collision model, which are free from infinite sums of Bessel functions. They can be used to investigate relaxation and transport phenomena conveniently. The kinetic equation is also manipulated into the Landau form from which it is straightforward to compare with previous results and prove the conservation laws.

  16. Fokker-Planck equation in the presence of a uniform magnetic field

    International Nuclear Information System (INIS)

    Dong, Chao; Zhang, Wenlu; Li, Ding

    2016-01-01

    The Fokker-Planck equation in the presence of a uniform magnetic field is derived which has the same form as the case of no magnetic field but with different Fokker-Planck coefficients. The coefficients are calculated explicitly within the binary collision model, which are free from infinite sums of Bessel functions. They can be used to investigate relaxation and transport phenomena conveniently. The kinetic equation is also manipulated into the Landau form from which it is straightforward to compare with previous results and prove the conservation laws.

  17. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2009-06-19

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.

  18. The auxiliary field method and approximate analytical solutions of the Schroedinger equation with exponential potentials

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2009-01-01

    The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential

  19. On the discovery of the gravitational field equations by Einstein and Hilbert: new materials

    International Nuclear Information System (INIS)

    Vizgin, Vladimir P

    2001-01-01

    This article describes the history of discovery of the equations of gravitational field by Albert Einstein and David Hilbert in November 1915. The proof sheet of Hilbert's lecture report, made on 20 November 1915 and published in March 1916, rediscovered in 1997 in the archive of the university of Goettingen, throws new light on the history of this discovery. We also discuss the early history of the general theory of relativity that led to the expression of the general covariant equations of gravitational field. (from the history of physics)

  20. Thermodynamic interpretation of the field equation of BTZ charged black hole near the horizon

    International Nuclear Information System (INIS)

    Larranaga, A.

    2008-01-01

    As is already known, a spacetime horizon acts like a boundary of a thermal system and we can associate with it notions such as temperature and entropy. Following the work of M. Akbar, in this paper we will show how it is possible to interpret the field equation of a charged BTZ black hole near the horizon as a thermodynamic identity dE=TdS+P r dA+ΦdQ$, where Φ is the electric potential and $Q$ is the electric charge of a BTZ black hole. These results indicate that the field equations for the charged BTZ black hole possess intrinsic thermodynamic properties near the horizon.

  1. Application research of computational mass-transfer differential equation in MBR concentration field simulation.

    Science.gov (United States)

    Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan

    2016-01-01

    After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.

  2. Equations for effective nuclear fields taking account of 2p2h configurations

    International Nuclear Information System (INIS)

    Kamerdzhiev, S.P.

    1977-01-01

    Equations taking into account 1p1h and 2p2h configurations were obta+ned by means of effective fields in the nucleus. The consideration is restricted by the even-even Fermi system only with particle-hole interaction and by the first order with respect to an external field, which corresponds to the case of an even-even nucleus without pairing in a weak external field. The principal results of the investigation are as follows: a set of equations for effective fields V 2 and V 4 is obtained by the Green function method; the solutxon of the set makes it possible to consider 1p1h and 2p2h configurations consecutively and dispense with the Hartree-Fock self-consistence. The equations for V 2 and V 4 can be used to obtain quantum equations taking into account 2p2h configurations and their effect on 1p1h states. Allowance for integration regions far removed from the Fermi surface results in the appearance of the V 4 0 seed portion in the V 4 effective field. Taking into account 2p2h configurations at V 4 0 not equal to 0 changes the form of the seed multipole operator of a nucleus; a new term appears in the expression for transition probability. As a rule, the V 4 0 value was neglected in investigations dealing with the 2p2h configuration

  3. Nuclear structure information studied through Dirac equation with deformed mean fields

    International Nuclear Information System (INIS)

    Dudek, J.

    2000-01-01

    Complete text of publication follows. Relativistic mean-field theory provides a formal expression for the Dirac equation for the nucleonic motion in an atomic nucleus. The 'potentials' within such a formalism are given in terms of the meson fields, the latter obtained through a coupled system of equations of the Klein-Grodon type. Usually the whole system is being solved by using a Hartree approximation by employing an iterative selfonsistent algorithms. On a more phenomenological level one can parametrize the potentials that enter into a Dirac equation rather than obtain the selfconsistently; such a simplification was suggested some time ago by the Munich group. We introduce a Woods-Saxon type parametrisation and verify by a non-linear search routine what are the 'best fit potential parameters' that reproduce the single particle excitations in the double-magic spherical nuclei as well as the band-head properties in some hundreds of deformed nuclei. Next, by introducing a low-energy reduction of the Dirac equation, one may obtain in a natural way a Pauli Schrodinger type equation with a position dependent effective mass. The role of the corresponding term in a description of single particle energies of the nucleons is illustrated and the implications for the cranking equation are discussed in some detail. (author)

  4. Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations

    KAUST Repository

    Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan

    2014-01-01

    The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers

  5. The adjoint method for general EEG and MEG sensor-based lead field equations

    International Nuclear Information System (INIS)

    Vallaghe, Sylvain; Papadopoulo, Theodore; Clerc, Maureen

    2009-01-01

    Most of the methods for the inverse source problem in electroencephalography (EEG) and magnetoencephalography (MEG) use a lead field as an input. The lead field is the function which relates any source in the brain to its measurements at the sensors. For complex geometries, there is no analytical formula of the lead field. The common approach is to numerically compute the value of the lead field for a finite number of point sources (dipoles). There are several drawbacks: the model of the source space is fixed (a set of dipoles), and the computation can be expensive for as much as 10 000 dipoles. The common idea to bypass these problems is to compute the lead field from a sensor point of view. In this paper, we use the adjoint method to derive general EEG and MEG sensor-based lead field equations. Within a simple framework, we provide a complete review of the explicit lead field equations, and we are able to extend these equations to non-pointlike sensors.

  6. Generating solutions of Einstein's field equations by typing mistakes

    Energy Technology Data Exchange (ETDEWEB)

    Hoenselaers, C.; Skea, J.E.F.

    1989-01-01

    A solution to Einstein's field equations is presented that represents a Petrov type II electromagnetic null field with one Killing vector. This solution generalizes a vacuum solution previously discovered by Hoenselaers. The solution was found by the peculiar method of generalizing a member of this class inadvertently discovered by making a typing error when checking the vacuum solution with the computer algebra system SHEEP.

  7. Wheeler-DeWitt equation and Lie symmetries in Bianchi scalar-field cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Paliathanasis, A. [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Karpathopoulos, L. [University of Athens, Faculty of Physics, Department of Astronomy-Astrophysics-Mechanics, Athens (Greece); Wojnar, A. [Institute for Theoretical Physics, Wroclaw (Poland); Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy); Capozziello, S. [Universita' di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Dipartimento di Fisica ' ' E. Pancini' ' , Naples (Italy); Complesso Universitario di Monte S. Angelo, Naples (Italy); Gran Sasso Science Institute (INFN), L' Aquila (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sez. di Napoli, Naples (Italy)

    2016-04-15

    Lie symmetries are discussed for the Wheeler-De Witt equation in Bianchi Class A cosmologies. In particular, we consider general relativity, minimally coupled scalar-field gravity and hybrid gravity as paradigmatic examples of the approach. Several invariant solutions are determined and classified according to the form of the scalar-field potential. The approach gives rise to a suitable method to select classical solutions and it is based on the first principle of the existence of symmetries. (orig.)

  8. Equations Governing the Propagation of Second-Order Correlations in Non-Stationary Electromagnetic Fields

    Science.gov (United States)

    1961-09-25

    eqlwatwnis vanish and t hese equations are- then gene - rali/Mit ions to a non-statiiona ry free field of eils. (1.3.1 Jl) and (1.3.11b). Thie remiainingi...correlation eqluations may hfe derived from eql. (3.1), which is tlite- snime as for the free field. Or’ 2 obtains :i~:•a •,,;l ,. X .. TI. T,, 2) -_ TI

  9. Equations of motion for anisotropic nonlinear elastic continuum in gravitational field

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1994-01-01

    Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs

  10. On dynamic equations for interaction of the affinor field with affine connection

    International Nuclear Information System (INIS)

    Pestov, A.B.

    1987-01-01

    The Lagrangian of interaction of an affinor field with an affine connection is constructed and the equations of motion and conservation laws are derived. It is shown that there exists a symmetric conserved tensor of the affine-connection energy-momentum

  11. SO(4)-symmetric solutions of Minkowskian Yang-Mills field equations

    International Nuclear Information System (INIS)

    Luescher, M.

    1977-06-01

    We construct all solutions to the SU(2) Yang-Mills field equations in Minkowski space that are invariant under an SO(4) subgroup of the conformal group. They are real, regular and have finite energy and action. A connection with the instanton solution is pointed out. (orig.) [de

  12. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2010-01-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well

  13. Stochastic quantization of topological field theory: generalized Langevin equation with memory kernel

    International Nuclear Information System (INIS)

    Menezes, G.; Svaiter, N.F.

    2006-04-01

    We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient. (author)

  14. Classical relativistic equations for particles with spin moving in external fields

    NARCIS (Netherlands)

    Dam, H. van; Ruijgrok, Th.W.

    1980-01-01

    We derive equations of motion for a point particle with spin in an external electromagnetic and in an external scalar field. The derivation is based on the ten conservation laws of linear and angular momentum and on a general expression for the current by which the particle interacts with the

  15. Marching on in anything: solving electromagnetic field equations with a varying physical parameter

    NARCIS (Netherlands)

    Tijhuis, A.G.; Zwamborn, A.P.M.; Smith, P.D.; Cloude, S.R.

    2002-01-01

    In this paper, we consider the determination of electromagnetic fields for a (large) number of values of a physical parameter. We restrict ourselves to the case where the linear system originates from one or more integral equations. We apply an iterative procedure based on the minimization of an

  16. Singularity-free static centrally symmetric solutions of some fourth order gravitational field equations

    International Nuclear Information System (INIS)

    Fiedler, B.; Schimming, R.

    1983-01-01

    The fourth order field equations proposed by TREDER with a linear combination of BACH's tensor and EINSTEIN's tensor on the left-hand side admit static centrally symmetric solutions which are analytical and non-flat in some neighborhood of the centre of symmetry. (author)

  17. Generation of exact solutions to the Einstein field equations for homogeneous space--time

    International Nuclear Information System (INIS)

    Hiromoto, R.E.

    1978-01-01

    A formalism is presented capable of finding all homogeneous solutions of the Einstein field equations with an arbitrary energy-stress tensor. Briefly the method involves the classification of the four-dimensional Lie algebra over the reals into nine different broad classes, using only the Lorentz group. Normally the classification of Lie algebras means that one finds all essentially different solutions of the Jacobi identities, i.e., there exists no nonsingular linear transformation which transforms two sets of structure constants into the other. This approach is to utilize the geometrical considerations of the homogeneous spacetime and field equations to be solved. Since the set of orthonormal basis vectors is not only endowed with a Minkowskian metric, but also constitutes the vector space of our four-dimensional Lie algebras, the Lie algebras are classified against the Lorentz group restricts the linear group of transformations, denoting the essentially different Lie algebras, into nine different broad classes. The classification of the four-dimensional Lie algebras represents the unification of various methods previously introduced by others. Where their methods found only specific solutions to the Einstein field equations, systematic application of the nine different classes of Lie algebras guarantees the extraction of all solutions. Therefore, the methods of others were extended, and their foundations of formalism which goes beyond the present literature of exact homogeneous solutions to the Einstein field equations is built upon

  18. Exact Solutions of the Field Equations for Empty Space in the Nash Gravitational Theory

    Directory of Open Access Journals (Sweden)

    Matthew T. Aadne

    2017-02-01

    Full Text Available John Nash has proposed a new theory of gravity. We define a Nash-tensor equal to the curvature tensor appearing in the Nash field equations for empty space, and calculate its components for two cases: 1. A static, spherically symmetric space; and 2. The expanding, homogeneous and isotropic space of the Friedmann-Lemaitre-Robertson-Walker (FLRW universe models. We find the general, exact solution of Nash’s field equations for empty space in the static case. The line element turns out to represent the Schwarzschild-de Sitter spacetime. Also we find the simplest non-trivial solution of the field equations in the cosmological case, which gives the scale factor corresponding to the de Sitter spacetime. Hence empty space in the Nash theory corresponds to a space with Lorentz Invariant Vacuum Energy (LIVE in the Einstein theory. This suggests that dark energy may be superfluous according to the Nash theory. We also consider a radiation filled universe model in an effort to find out how energy and matter may be incorporated into the Nash theory. A tentative interpretation of the Nash theory as a unified theory of gravity and electromagnetism leads to a very simple form of the field equations in the presence of matter. It should be noted, however, that the Nash theory is still unfinished. A satisfying way of including energy momentum into the theory has yet to be found.

  19. Lagrangian derivation of the two coupled field equations in the Janus cosmological model

    Science.gov (United States)

    Petit, Jean-Pierre; D'Agostini, G.

    2015-05-01

    After a review citing the results obtained in previous articles introducing the Janus Cosmological Model, consisting of a set of two coupled field equations, where one metrics refers to the positive masses and the other to the negative masses, which explains the observed cosmic acceleration and the nature of dark energy, we present the Lagrangian derivation of the model.

  20. Large time asymptotics of solutions of the equations of principal chiral field

    International Nuclear Information System (INIS)

    Sukhanov, V.V.

    1990-01-01

    Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation

  1. The Hardy inequality and the heat equation with magnetic field in any dimension

    Czech Academy of Sciences Publication Activity Database

    Cazacu, C.; Krejčiřík, David

    2016-01-01

    Roč. 41, č. 7 (2016), s. 1056-1088 ISSN 0360-5302 R&D Projects: GA ČR(CZ) GA14-06818S Institutional support: RVO:61389005 Keywords : Aharonov-Bohm magnetic field * Hardy inequality * heat equation * large time behaviour of solutions * magnetic Schrodinger operator Subject RIV: BE - Theoretical Physics Impact factor: 1.608, year: 2016

  2. Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations

    Science.gov (United States)

    Enciso, Alberto; Poyato, David; Soler, Juan

    2018-05-01

    Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness

  3. Conformal invariance of the Lungren-Monin-Novikov equations for vorticity fields in 2D turbulence

    Science.gov (United States)

    Grebenev, V. N.; Wacławczyk, M.; Oberlack, M.

    2017-10-01

    We study the statistical properties of the vorticity field in two-dimensional turbulence. The field is described in terms of the infinite Lundgren-Monin-Novikov (LMN) chain of equations for multi-point probability density functions (pdf’s) of vorticity. We perform a Lie group analysis of the first equation in this chain using the direct method based on the canonical Lie-Bäcklund transformations devised for integro-differential equations. We analytically show that the conformal group is broken for the first LMN equation i.e. for the 1-point pdf at least for the inviscid case but the equation is still conformally invariant on the associated characteristic with zero-vorticity. Then, we demonstrate that this characteristic is conformally transformed. We find this outcome coincides with the numerical results about the conformal invariance of the statistics of zero-vorticity isolines, see e.g. Falkovich (2007 Russian Math. Surv. 63 497-510). The conformal symmetry can be understood as a ‘local scaling’ and its traces in two-dimensional turbulence were already discussed in the literature, i.e. it was conjectured more than twenty years ago in Polyakov (1993 Nucl. Phys. B 396 367-85) and clearly validated experimentally in Bernard et al (2006 Nat. Phys. 2 124-8).

  4. EINSTEIN EQUATIONS FOR TETRAD FIELDS ECUACIONES DE EINSTEIN PARA CAMPOS TETRADOS

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available Every metric tensor can be expressed by the inner product of tetrad fields. We prove that Einstein's equations for these fields have the same form as the stress-energy tensor of electromagnetism if the total external current . Using the Evans' unified field theory, we show that the true unification of gravity and electromagnetism is with source-free Maxwell equations.Todo tensor métrico puede ser expresado por el producto interno de campos tetrados. Se prueba que las ecuaciones de Einstein para esos campos tienen la misma forma que el tensor electromagnético de momento-energía si la corriente externa total es igual a cero. Usando la teoría de campo unificado de Evans se muestra que la verdadera unificación de la gravedad y el electromagnetismo es con las ecuaciones de Maxwell sin fuentes.

  5. Horizon thermodynamics and gravitational field equations in Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Cai Ronggen; Ohta, Nobuyoshi

    2010-01-01

    We explore the relationship between the first law of thermodynamics and gravitational field equation at a static, spherically symmetric black hole horizon in Horava-Lifshitz theory with/without detailed balance. It turns out that as in the cases of Einstein gravity and Lovelock gravity, the gravitational field equation can be cast to a form of the first law of thermodynamics at the black hole horizon. This way we obtain the expressions for entropy and mass in terms of black hole horizon, consistent with those from other approaches. We also define a generalized Misner-Sharp energy for static, spherically symmetric spacetimes in Horava-Lifshitz theory. The generalized Misner-Sharp energy is conserved in the case without matter field, and its variation gives the first law of black hole thermodynamics at the black hole horizon.

  6. Derivation of equations for scalar and fermion fields using properties of dispersion-codispersion operators

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Ranaivoson, R.T.R; Hanitriarivo, R.; Harison, V.

    2014-01-01

    We establish equations for scalar and fermion fields using results obtained from a study on a phase space representation of quantum theory that we have performed in a previous work. Our approaches are similar to the historical ones to obtain Klein-Gordon and Dirac equations but the main difference is that ours are based on the use of properties of operators called dispersion-codispersion operators. We begin with a brief recall about the dispersion-codispersion operators. Then, introducing a mass operator with its canonical conjugate coordinate and applying rules of quantization, based on the use of dispersion - codispersion operators , we deduce a second order differential operator relation from the relativistic expression relying energy, momentum and mass. Using Dirac matrices, we derive from this second order differential operator relation a first order one. The application of the second order differential operator relation on a scalar function gives the equation for the scalar field and the use of the first order differential operator relation leads to the equation for fermion field.

  7. A numerical study of the integral equations for the laser fields in free-electron lasers

    International Nuclear Information System (INIS)

    Yoo, J. G.; Park, S. H.; Jeong, Y. U.; Lee, B. C.; Rhee, Y. J.; Cho, S. O.

    2004-01-01

    The dynamics of the radiation fields in free-electron lasers is investigated on the basis of the integro-differential equations in the one-dimensional formulation. For simple cases we solved the integro-differential equations analytically and numerically to test our numerical procedures developed on the basis of the Filon method. The numerical results showed good agreement with the analytical solutions. To confirm the legitimacy of the numerical package, we carried out numerical studies on the inhomogeneous broadening effects, where no analytic solutions are available, due to the energy spread and the emittance of the electron beam.

  8. Pathological behavior of the open-shell restricted self-consistent-field equations

    International Nuclear Information System (INIS)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-01-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations

  9. First-order symmetrizable hyperbolic formulations of Einstein's equations including lapse and shift as dynamical fields

    International Nuclear Information System (INIS)

    Alvi, Kashif

    2002-01-01

    First-order hyperbolic systems are promising as a basis for numerical integration of Einstein's equations. In previous work, the lapse and shift have typically not been considered part of the hyperbolic system and have been prescribed independently. This can be expensive computationally, especially if the prescription involves solving elliptic equations. Therefore, including the lapse and shift in the hyperbolic system could be advantageous for numerical work. In this paper, two first-order symmetrizable hyperbolic systems are presented that include the lapse and shift as dynamical fields and have only physical characteristic speeds

  10. Dynamical equations and transport coefficients for the metals at high pulse electromagnetic fields

    International Nuclear Information System (INIS)

    Volkov, N B; Chingina, E A; Yalovets, A P

    2016-01-01

    We offer a metal model suitable for the description of fast electrophysical processes in conductors under influence of powerful electronic and laser radiation of femto- and picosecond duration, and also high-voltage electromagnetic pulses with picosecond front and duration less than 1 ns. The obtained dynamic equations for metal in approximation of one quasineutral liquid are in agreement with the equations received by other authors formerly. New wide-range expressions for the electronic conduction in strong electromagnetic fields are obtained and analyzed. (paper)

  11. Pathological behavior of the open-shell restricted self-consistent-field equations

    Energy Technology Data Exchange (ETDEWEB)

    Moscardo, F.; Alvarez-Collado, J.R.

    1979-02-01

    The possible solutions of open-shell restricted self-consistent-field equations for a doublet are studied for Li and Na atoms, according to the values of the parameters implied in those equations. A similar behavior, characterized by the presence of several variational solutions is observed in both atoms. Some of these solutions can be assigned to excited configurations. Excitation energies are in good agreement with experimental data. Doublet stability for the solutions obtained has been studied, discussing the saddle-point character present in those solutions associated to excited configurations.

  12. Streaming from the Equator of a Drop in an External Electric Field.

    Science.gov (United States)

    Brosseau, Quentin; Vlahovska, Petia M

    2017-07-21

    Tip streaming generates micron- and submicron-sized droplets when a thin thread pulled from the pointy end of a drop disintegrates. Here, we report streaming from the equator of a drop placed in a uniform electric field. The instability generates concentric fluid rings encircling the drop, which break up to form an array of microdroplets in the equatorial plane. We show that the streaming results from an interfacial instability at the stagnation line of the electrohydrodynamic flow, which creates a sharp edge. The flow draws from the equator a thin sheet which destabilizes and sheds fluid cylinders. This streaming phenomenon provides a new route for generating monodisperse microemulsions.

  13. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    . Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...

  14. The state equation of Yang-Mills field dark energy models

    International Nuclear Information System (INIS)

    Zhao Wen; Zhang Yang

    2006-01-01

    In this paper, we study the possibility of building Yang-Mills (YM) field dark energy models with equation of state (EoS) crossing -1, and find that it cannot be realized by the single YM field models, no matter what kind of Lagrangian or initial condition. But the states of -1 -1 to <-1, and it will go to the critical state of ω = -1 with the expansion of the universe, which character is the same as the single YM field models, and the big rip is naturally avoided

  15. Transport equation for the time scale of a turbulent scalar field

    International Nuclear Information System (INIS)

    Kurbatskij, A.F.

    1999-01-01

    The two-parametric turbulence models cause serious difficulties by modeling the near-wall flows due to absence of the natural boundary condition on the wall for dissipation of the ε turbulence energy and the ε θ scalar field destruction. This difficulty may be overcome, if instead of the ε and ε θ , as the second parameter of the model, to apply the time scales of the turbulent dynamic and scalar fields. The equation of the scalar field is derived and numerical coefficients included therein, are determined from the simplest problems on the turbulent heat transfer [ru

  16. A new look at the free electromagnetic field. The Gauss law as a hamiltonian equation of motion

    International Nuclear Information System (INIS)

    Aldaya, V.; Navarro-Salas, J.

    1992-01-01

    A new canonical formalism for the free electromagnetic field is proposed in terms of an infinite-dimensional Lie group. The Gauss law is derived as a hamiltonian equation of motion and the quantum theory is obtained by constructing the irreducible representation of the group. The quantum Gauss law thus appears as an additional polarization equation and not as a constraint equation. (orig.)

  17. Integral equation and simulation studies of a planar nematogenic liquid in crossed external fields

    International Nuclear Information System (INIS)

    Lado, F; Lomba, E; MartIn, C; Almarza, N G

    2005-01-01

    We study a fluid of nematogenic molecules with centres of mass constrained to lie in a plane but with axes free to rotate in any direction. An external disorienting field perpendicular to the plane along with a second orienting field in the plane induce an in-plane order-disorder transition. We analyse the behaviour of this simple biaxial model using a well-established generalization of molecular integral equation methods built upon specially tailored basis functions that maintain orthogonality in the presence of anisotropy. Computer simulation and integral equation calculations predict an isotropic-nematic transition at low temperatures in zero field and an in-plane transition at somewhat higher temperatures in the presence of the disorienting field. The oriented states obtained in the presence of both fields can subsequently be used as input to uncover in detail first the transition in the absence of the in-plane orienting field and finally the spontaneous transition in the absence of any field. According to the simulation, the transition apparently belongs to the Berezinskii-Kosterlitz-Thouless defect-mediated type, whereas the theory reproduces a weak first-order transition

  18. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Directory of Open Access Journals (Sweden)

    D.X. Horváth

    2016-01-01

    Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  19. A new representation of rotational flow fields satisfying Euler's equation of an ideal compressible fluid

    International Nuclear Information System (INIS)

    Kambe, Tsutomu

    2013-01-01

    A new representation of the solution to Euler's equation of motion is presented by using a system of expressions for compressible rotational flows of an ideal fluid. This is regarded as a generalization of Bernoulli's theorem to compressible rotational flows. The present expressions are derived from the variational principle. The action functional for the principle consists of the main terms of the total kinetic, potential and internal energies, together with three additional terms yielding the equations of continuity, entropy and a third term that provides the rotational component of velocity field. The last term has the form of scalar product satisfying gauge symmetry with respect to both translation and rotation. This is a generalization of the Clebsch transformation from a physical point of view. It is verified that the system of new expressions, in fact, satisfies Euler's equation of motion. (paper)

  20. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)

    2016-01-15

    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  1. Hunting the ghosts of a 'strictly quantum field': the Klein-Gordon equation

    International Nuclear Information System (INIS)

    Bertozzi, Eugenio

    2010-01-01

    This paper aims to identify and tackle some problems related to teaching quantum field theory (QFT) at university level. In particular, problems arising from the canonical quantization are addressed by focusing on the Klein-Gordon equation (KGE). After a brief description of the status of the KGE in teaching as it emerges from an analysis of a selected sample of university textbooks, an analysis of the applications of the KGE in contexts different from the QFT is presented. The results of the analysis show that, while in the real case the solutions of the equation can be easily interpreted from a physical point of view, in the complex case the coherence with relativistic quantum mechanics and the electrodynamics framework brings to light interpretative problems related to the classical complex KG field. The comparison between the classical cases investigated and the QFT framework, where the equation finds a coherent particle interpretation, leads to share Ryder's statement asserting that the KG field is a 'strictly quantum field'. Implications of the results in terms of remarks about the canonical procedure currently utilized for teaching are underlined.

  2. Quantum kinetic field theory in curved spacetime: Covariant Wigner function and Liouville-Vlasov equations

    International Nuclear Information System (INIS)

    Calzetta, E.; Habib, S.; Hu, B.L.

    1988-01-01

    We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe

  3. The Dirac equation in external fields: Variable separation in Cartesian coordinates

    International Nuclear Information System (INIS)

    Shishkin, G.V.; Cabos, W.D.

    1991-01-01

    The method of separation of variables in the Dirac equation proposed in an earlier work by one of the present authors [J. Math. Phys. 30, 2132 (1989)] is developed for the complete set of interactions of the Dirac particle. The essence of the method consists of the separation of the first-order matrix differential operators that define the dependence of the Dirac bispinor on the related variables, but commutation of such operators with or between the operator of the equation is not assumed. This approach, which is perfectly justified in the presence of gravitational [Theor. Math. Phys. 70, 204 (1987)] or vector fields [J. Math. Phys. 30, 2132 (1989)], permits one to find all the possibilities of separation of variables in the Dirac equation in the case of the most general set of external fields. The complete set of interactions of the Dirac particle is determined by the symmetry group of equations, namely, viz. the SU(4) group. The interactions are scalar, vector, tensor, pseudovector and pseudoscalar. The analysis in this article is limited to Cartesian coordinates. The corresponding results for the general curvilinear coordinates will be presented in a future paper

  4. Dispersion equations for field-aligned cyclotron waves in axisymmetric magnetospheric plasmas

    Directory of Open Access Journals (Sweden)

    N. I. Grishanov

    2006-03-01

    Full Text Available In this paper, we derive the dispersion equations for field-aligned cyclotron waves in two-dimensional (2-D magnetospheric plasmas with anisotropic temperature. Two magnetic field configurations are considered with dipole and circular magnetic field lines. The main contribution of the trapped particles to the transverse dielectric permittivity is estimated by solving the linearized Vlasov equation for their perturbed distribution functions, accounting for the cyclotron and bounce resonances, neglecting the drift effects, and assuming the weak connection of the left-hand and right-hand polarized waves. Both the bi-Maxwellian and bi-Lorentzian distribution functions are considered to model the ring current ions and electrons in the dipole magnetosphere. A numerical code has been developed to analyze the dispersion characteristics of electromagnetic ion-cyclotron waves in an electron-proton magnetospheric plasma with circular magnetic field lines, assuming that the steady-state distribution function of the energetic protons is bi-Maxwellian. As in the uniform magnetic field case, the growth rate of the proton-cyclotron instability (PCI in the 2-D magnetospheric plasmas is defined by the contribution of the energetic ions/protons to the imaginary part of the transverse permittivity elements. We demonstrate that the PCI growth rate in the 2-D axisymmetric plasmasphere can be significantly smaller than that for the straight magnetic field case with the same macroscopic bulk parameters.

  5. Derivation of the phase field equations from the thermodynamic extremal principle

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; McDowell, D.L.

    2012-01-01

    Thermodynamics employs quantities that characterize the state of the system and provides driving forces for system evolution. These quantities can be applied by means of the thermodynamic extremal principle to obtain models and consequently constitutive equations for the evolution of the thermodynamic systems. The phase field method is a promising tool for simulation of the microstructure evolution in complex systems but introduces several parameters that are not standard in thermodynamics. The purpose of this paper is to show how the phase field method equations can be derived from the thermodynamic extremal principle, allowing the common treatment of the phase field parameters together with standard thermodynamic parameters in future applications. Fixed values of the phase field parameters may, however, not guarantee fixed values of thermodynamic parameters. Conditions are determined, for which relatively stable values of the thermodynamic parameters are guaranteed during phase field method simulations of interface migration. Finally, analytical relations between the thermodynamic and phase field parameters are found and verified for these simulations. A slight dependence of the thermodynamic parameters on the driving force is determined for the cases examined.

  6. The two-wave X-ray field calculated by means of integral-equation methods

    International Nuclear Information System (INIS)

    Bremer, J.

    1984-01-01

    The problem of calculating the two-wave X-ray field on the basis of the Takagi-Taupin equations is discussed for the general case of curved lattice planes. A two-dimensional integral equation which incorporates the nature of the incoming radiation, the form of the crystal/vacuum boundary, and the curvature of the structure, is deduced. Analytical solutions for the symmetrical Laue case with incoming plane waves are obtained directly for perfect crystals by means of iteration. The same method permits a simple derivation of the narrow-wave Laue and Bragg cases. Modulated wave fronts are discussed, and it is shown that a cut-off in the width of an incoming plane wave leads to lateral oscillations which are superimposed on the Pendelloesung fringes. Bragg and Laue shadow fields are obtained. The influence of a non-zero kernel is discussed and a numerical procedure for calculating wave amplitudes in curved crystals is presented. (Auth.)

  7. An efficient explicit marching on in time solver for magnetic field volume integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2015-07-25

    An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep scheme. At each time step, a system with a Gram matrix is solved for the predicted/corrected field expansion coefficients. Depending on the type of spatial testing scheme Gram matrix is sparse or consists of blocks with only diagonal entries regardless of the time step size. Consequently, the resulting MOT scheme is more efficient than its implicit counterparts, which call for inversion of fuller matrix system at lower frequencies. Numerical results, which demonstrate the efficiency, accuracy, and stability of the proposed MOT scheme, are presented.

  8. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric

    2012-01-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  9. Reduction of the Poincare gauge field equations by means of a duality rotation

    International Nuclear Information System (INIS)

    Mielke, E.W.

    1981-10-01

    A rather general procedure is developed in order to reduce the two field equations of the Poincare gauge theory of gravity by a modified ansatz for the curvature tensor involving double duality. In the case of quasi-linear Lagrangians of the Yang-Mills type it is shown that non-trivial torsion solutions with duality properties necessarily ''live'' on an Einstein space as metrical background. (author)

  10. A vanishing diffusion limit in a nonstandard system of phase field equations

    Czech Academy of Sciences Publication Activity Database

    Colli, P.; Gilardi, G.; Krejčí, Pavel; Sprekels, J.

    2014-01-01

    Roč. 3, č. 2 (2014), s. 257-275 ISSN 2163-2480 R&D Projects: GA ČR GAP201/10/2315 Institutional support: RVO:67985840 Keywords : nonstandard phase field system * nonlinear partial differential equations * asympotic limit Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=9918

  11. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  12. Confined electron assemblies in intense electric and magnetic fields and a generalization of Emden's equation

    International Nuclear Information System (INIS)

    March, N.H.

    2003-09-01

    The Feynman propagator, and its parallel in statistical mechanics, namely the canonical density matrix, are first used to treat both homogeneous and confined electron assemblies in the presence of a static electric field of arbitrary strength. The models are relevant to plasmas having variable electron density and degeneracy. The second topic concerns atomic ions in intense magnetic fields. Semiclassical theory is here applied, non-relativistic and relativistic approximations being invoked. Both treatments are shown to be embraced by a generalization of Emden's equation. (author)

  13. Linear analysis of neoclassical tearing mode based on the four-field reduced neoclassical MHD equation

    International Nuclear Information System (INIS)

    Furuya, Atsushi; Yagi, Masatoshi; Itoh, Sanae-I.

    2003-01-01

    The linear neoclassical tearing mode is investigated using the four-field reduced neoclassical MHD equations, in which the fluctuating ion parallel flow and ion neoclassical viscosity are taken into account. The dependences of the neoclassical tearing mode on collisionality, diamagnetic drift and q profile are investigated. These results are compared with the results from the conventional three-field model. It is shown that the linear neoclassical tearing mode is stabilized by the ion neoclassical viscosity in the banana regime even if Δ' > 0. (author)

  14. Equations of motion of interacting massless fields of all spins as a free differential algebra

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-08-11

    It is argued that the equations of motion of interacting massless fields of all spins s=0, 1, ..., infinity can naturally be formulated in terms of a free differential algebra (FDA) constructed from one-forms and zero-forms that belong both to the adjoint representation of the infinite-dimensional superalgebra of higher spins and auxiliary fields proposed previously. This FDA is found explicitly in the first non-trivial order in the zero-forms. Various properties of the proposed FDA are discussed including the ways for incorporating internal (Yang-Mills) gauge symmetries via associative algebras.

  15. Equation of state of strange quark matter in a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2012-01-01

    Thermodynamic properties of strange quark matter (SQM) in strong magnetic fields H up to 10 20 G are considered at zero temperature within the MIT bag model. The effects of the pressure anisotropy, exhibiting in the difference between the pressures along and perpendicular to the field direction, become essential at H>H t h , with the estimate 10 17 t h 18 G. The longitudinal pressure vanishes in the critical field H c , which can be somewhat less or larger than 10 18 G, depending on the total baryon number density and bag pressure. As a result, the longitudinal instability occurs in strongly magnetized SQM. The appearance of such instability sets the upper bound on the magnetic field strength which can be reached in the interior of a neutron star with the quark core. The longitudinal and transverse pressures as well as the anisotropic equation of state of SQM are determined under the conditions relevant for the cores of magnetars

  16. From the Dyson-Schwinger to the Transport Equation in the Background Field Gauge of QCD

    CERN Document Server

    Wang, Q; Stöcker, H; Greiner, W

    2003-01-01

    The non-equilibrium quantum field dynamics is usually described in the closed-time-path formalism. The initial state correlations are introduced into the generating functional by non-local source terms. We propose a functional approach to the Dyson-Schwinger equation, which treats the non-local and local source terms in the same way. In this approach, the generating functional is formulated for the connected Green functions and one-particle-irreducible vertices. The great advantages of our approach over the widely used two-particle-irreducible method are that it is much simpler and that it is easy to implement the procedure in a computer program to automatically generate the Feynman diagrams for a given process. The method is then applied to a pure gluon plasma to derive the gauge-covariant transport equation from the Dyson-Schwinger equation in the background covariant gauge. We discuss the structure of the kinetic equation and show its relationship with the classical one. We derive the gauge-covariant colli...

  17. Theoretical Maxwell's Equations, Gauge Field and Their Universality Based on One Conservation Law

    Institute of Scientific and Technical Information of China (English)

    Liu Changmao

    2005-01-01

    The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codifferential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, respectively. The definitions of the divergence and the curl of a 2D surface flux of a tensor are obtained.Maxwell's equations, namely, the construction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field ( or its composition). By the feature of central field ( or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple basing no effect on the sum of forces) are presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.

  18. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    International Nuclear Information System (INIS)

    Kholmetskii, A L; Missevitch, O V; Yarman, T

    2011-01-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j·E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  19. Continuity equations for bound electromagnetic field and the electromagnetic energy-momentum tensor

    Energy Technology Data Exchange (ETDEWEB)

    Kholmetskii, A L [Department of Physics, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus); Missevitch, O V [Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Street, 220030 Minsk (Belarus); Yarman, T, E-mail: khol123@yahoo.com [Department of Engineering, Okan University, Akfirat, Istanbul, Turkey and Savronik, Eskisehir (Turkey)

    2011-05-01

    We analyze the application of the Poynting theorem to the bound (velocity-dependent) electromagnetic (EM) field and show that an often-used arbitrary elimination of the term of self-interaction in the product j{center_dot}E (where j is the current density and E the electric field) represents, in general, an illegitimate operation, which leads to incorrect physical consequences. We propose correct ways of eliminating the terms of self-interaction from the Poynting theorem to transform it into the form that is convenient for problems with bound EM field, which yield the continuity equations for the proper EM energy density, the interaction part of EM energy density and the total EM energy density of bound fields, respectively. These equations indicate the incompleteness of the common EM energy-momentum tensor, and in our analysis, we find a missed term in its structure, which makes its trace non-vanished. Some implications of these results are discussed, in particular, in view of the notion of EM mass of charged particles.

  20. Closed string field theory: Quantum action and the Batalin-Vilkovsky master equation

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1993-01-01

    The complete quantum theory of covariant closed strings is constructed in detail. The nonpolynomial action is defined by elementary vertices satisfying recursion relations that give rise to Jacobi-like identities for an infinite chain of string field products. The genus zero string field algebra is the homotopy Lie algebra L ∞ encoding the gauge symmetry of the classical theory. The higher genus algebraic structure implies the Batalin-Vilkovisky (BV) master equation and thus consistent BRST quantization of the quantum action. From the L ∞ algebra, and the BV equation on the off-shell state space we derive the L ∞ algebra, and the BV equation on physical states that were recently constructed in d=2 string theory. The string diagrams are surfaces with minimal area metrics, foliated by closed geodesics of length 2π. These metrics generalize quadratic differentials in that foliation bands can cross. The string vertices are succinctly characterized; they include the surfaces whose foliation bands are all of height smaller than 2π. (orig.)

  1. Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields

    International Nuclear Information System (INIS)

    Baxter, Mathew; Van Gorder, Robert A

    2013-01-01

    We obtain solutions to a transformation of the axially symmetric Ernst equation, which governs a class of exact solutions of Einstein's field equations. Physically, the equation serves as a model of axially symmetric stationary vacuum gravitational fields. By an application of the method of homotopy analysis, we are able to construct approximate analytic solutions to the relevant boundary value problem in the case where exact solutions are not possible. The results presented constitute a solution for a complicated nonlinear and singular initial value problem. Through appropriate selection of the auxiliary linear operator and convergence control parameter, we are able to obtain low order approximations which minimize residual error over the problem domain. The benefit to such approach is that we obtain very accurate approximations after computing very few terms, hence the computational efficiency is high. Finally, an exact solution is provided in a special case, and this corresponds to the analytical solutions obtained in the more general case. The approximate solutions agree qualitatively with the exact solutions. (paper)

  2. Field transformations and the classical equation of motion in chiral perturbation theory

    International Nuclear Information System (INIS)

    Scherer, S.; Fearing, H.W.

    1995-01-01

    The construction of effective Lagrangians commonly involves the application of the ''classical equation of motion'' to eliminate redundant structures and thus generate the minimal number of independent terms. We investigate this procedure in the framework of chiral perturbation theory with particular emphasis on the new features which appear at O(p 6 ). The use of the ''classical equation of motion'' is interpreted in terms of field transformations. Such an interpretation is crucial if one wants to bring a given Lagrangian into a canonical form with a minimal number of terms. We emphasize that the application of field transformations leads to a modification of the coefficients of higher-order terms as well as eliminating structures, or what is equivalent, expressing certain structures in terms of already known different structures. This will become relevant once one considers the problem of expressing in canonical form a model effective interaction containing terms beyond next-to-leading order, i.e., beyond O(p 4 ). In such circumstances the naive application of the clasical equation of motion to simply drop terms, as is commonly done at lowest order, leads to subtle errors, which we discuss

  3. Equation of Motion of a Mass Point in Gravitational Field and Classical Tests of Gauge Theory of Gravity

    International Nuclear Information System (INIS)

    Wu Ning; Zhang Dahua

    2007-01-01

    A systematic method is developed to study the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.

  4. A variational principle giving gravitational 'superpotentials', the affine connection, Riemann tensor, and Einstein field equations

    International Nuclear Information System (INIS)

    Stachel, J.

    1977-01-01

    A first-order Lagrangian is given, from which follow the definitions of the fully covariant form of the Riemann tensor Rsub(μνkappalambda) in terms of the affine connection and metric; the definition of the affine connection in terms of the metric; the Einstein field equations; and the definition of a set of gravitational 'superpotentials' closely connected with the Komar conservation laws (Phys. Rev.; 113:934 (1959)). Substitution of the definition of the affine connection into this Lagrangian results in a second-order Lagrangian, from which follow the definition of the fully covariant Riemann tensor in terms of the metric, the Einstein equations, and the definition of the gravitational 'superpotentials'. (author)

  5. First and second order operator splitting methods for the phase field crystal equation

    International Nuclear Information System (INIS)

    Lee, Hyun Geun; Shin, Jaemin; Lee, June-Yub

    2015-01-01

    In this paper, we present operator splitting methods for solving the phase field crystal equation which is a model for the microstructural evolution of two-phase systems on atomic length and diffusive time scales. A core idea of the methods is to decompose the original equation into linear and nonlinear subequations, in which the linear subequation has a closed-form solution in the Fourier space. We apply a nonlinear Newton-type iterative method to solve the nonlinear subequation at the implicit time level and thus a considerably large time step can be used. By combining these subequations, we achieve the first- and second-order accuracy in time. We present numerical experiments to show the accuracy and efficiency of the proposed methods

  6. Gravitational and electromagnetic potentials of the stationary Einstein-Maxwell field equations

    International Nuclear Information System (INIS)

    Jones, T.C.

    1979-01-01

    Associated with the stationary Einstein-Maxwell field equations is an infinite hierarchy of potentials. The basic characteristics of these potentials are examined in general and then in greater detail for the particular case of the Reissner-Nordstrom metric. Thier essential utility in the process of solution generation is elucidated, and the necessary equations for solution generation are developed. Appropriate generating functions, which contain the complete infinite hierarchy of potentials, are developed and analyzed. Particular attention is paid to the inherent gauge freedom of these generating functions. Two methods of solution generation, which yield asymptotically flat solutions in vacuum, are generalized to include electromagnetism. One method, using potentials consistent with the Harrison transformation and the Reissner-Nordstrom metric, is discussed in detail, and its resultant difficulties are explored

  7. Approximate solution of space and time fractional higher order phase field equation

    Science.gov (United States)

    Shamseldeen, S.

    2018-03-01

    This paper is concerned with a class of space and time fractional partial differential equation (STFDE) with Riesz derivative in space and Caputo in time. The proposed STFDE is considered as a generalization of a sixth-order partial phase field equation. We describe the application of the optimal homotopy analysis method (OHAM) to obtain an approximate solution for the suggested fractional initial value problem. An averaged-squared residual error function is defined and used to determine the optimal convergence control parameter. Two numerical examples are studied, considering periodic and non-periodic initial conditions, to justify the efficiency and the accuracy of the adopted iterative approach. The dependence of the solution on the order of the fractional derivative in space and time and model parameters is investigated.

  8. An impurity solver for nonequilibrium dynamical mean field theory based on hierarchical quantum master equations

    Energy Technology Data Exchange (ETDEWEB)

    Haertle, Rainer [Institut fuer Theoretische Physik, Georg-August-Universitaet Goettingen, Goettingen (Germany); Millis, Andrew J. [Department of Physics, Columbia University, New York (United States)

    2016-07-01

    We present a new impurity solver for real-time and nonequilibrium dynamical mean field theory applications, based on the recently developed hierarchical quantum master equation approach. Our method employs a hybridization expansion of the time evolution operator, including an advanced, systematic truncation scheme. Convergence to exact results for not too low temperatures has been demonstrated by a direct comparison to quantum Monte Carlo simulations. The approach is time-local, which gives us access to slow dynamics such as, e.g., in the presence of magnetic fields or exchange interactions and to nonequilibrium steady states. Here, we present first results of this new scheme for the description of strongly correlated materials in the framework of dynamical mean field theory, including benchmark and new results for the Hubbard and periodic Anderson model.

  9. Radiation tails of the scalar wave equation in a weak gravitational field

    International Nuclear Information System (INIS)

    Mankin, R.; Piir, I.

    1974-01-01

    A class of solutions of the linearized Einstein equations is found making use of the Newman-Penrose spin coefficient formalism. These solutions describe a weak retarded gravitational field with an arbitrary multipole structure. The study of the radial propagation of the scalar waves in this gravitational field shows that in the first approximation the tails of the scalar outgoing radiation appear either in the presence of a gravitational mass or in the case of a nonzero linear momentum of the gravitational source. The quadrupole moment and the higher multipole moments of the gravitational field as well as the constant dipole moment and the angular moment of the source do not contribute to the tail

  10. Exact solutions to the nonlinear spinor field equations in the Goedel universe

    International Nuclear Information System (INIS)

    Herrera, A.

    1996-01-01

    The nonlinear spinor field in the external gravitational field of the Goedel universe is considered and exact static solutions to the field equations corresponding to the Lagrangians with the nonlinear terms L N =F(I S ) and L N =G(I P ) are obtained. Here F(I S ) and G(I P ) are arbitrary functions of the spinor invariants I S =S+Ψ bar Ψ and I P =P 2 =(iΨ bar γ 5 Ψ) 2 . The conditions under which one-dimensional soliton-like solutions exist are established and the role of gravity in the formation of these objects is determined. 9 refs., 1 fig

  11. Modeling of Acoustic Field for a Parametric Focusing Source Using the Spheroidal Beam Equation

    Directory of Open Access Journals (Sweden)

    Yu Lili

    2015-09-01

    Full Text Available A theoretical model of acoustic field for a parametric focusing source on concave spherical surface is proposed. In this model, the source boundary conditions of the Spheroidal Beam Equation (SBE for difference frequency wave excitation were studied. Propagation curves and beam patterns for difference frequency component of the acoustic field are compared with those obtained for Khokhlov-Zabolotskaya-Kuznetsov (KZK model. The results demonstrate that the focused parametric model of SBE is good valid for a large aperture angle in the strongly focused acoustic field. It is also investigated that high directivity and good focal ability with the decreasing of downshift ratio and the increasing of half-aperture angle for the focused parametric model of SBE.

  12. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shumin; Duyn, Jeff H [Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 10/B1D728, Bethesda, MD 20892 (United States)

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  13. Observational constraints on scalar field models of dark energy with barotropic equation of state

    International Nuclear Information System (INIS)

    Sergijenko, Olga; Novosyadlyj, Bohdan; Durrer, Ruth

    2011-01-01

    We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological parameters using the following datasets: the CMB power spectra from WMAP7, the baryon acoustic oscillations in the space distribution of galaxies from SDSS DR7, the power spectrum of luminous red galaxies from SDSS DR7 and the light curves of SN Ia from 2 different compilations: Union2 (SALT2 light curve fitting) and SDSS (SALT2 and MLCS2k2 light curve fittings). It has been found that the initial value of dark energy equation of state parameter is constrained very weakly by most of the data while the other cosmological parameters are well constrained: their likelihoods and posteriors are similar, their forms are close to Gaussian (or half-Gaussian) and the confidence ranges are narrow. The most reliable determinations of the best-fit value and 1σ confidence range for the initial value of the dark energy equation of state parameter are obtained from the combined datasets including SN Ia data from the full SDSS compilation with MLCS2k2 light curve fitting. In all such cases the best-fit value of this parameter is lower than the value of corresponding parameter for current epoch. Such dark energy loses its repulsive properties and in future the expansion of the Universe changes into contraction. We also perform a forecast for the Planck mock data and show that they narrow significantly the confidence ranges of cosmological parameters values, moreover, their combination with SN SDSS compilation with MLCS2k2 light curve fitting may exclude the fields with initial equation of state parameter > −0.1 at 2σ confidence level

  14. Heisenberg equations of motion for the spin-3/2 field in the presence of an interaction

    International Nuclear Information System (INIS)

    Nagpal, A.K.

    1977-01-01

    The Rarita-Schwinger spin-3/2 field interacting with a Dirac field and a scalar field (external) is found to satisfy the Heisenberg equations of motion, in the weak-field limit. This is analogous to the result, for the case of spin-3/2 field minimally coupled with external electromagnetic field, recently obtained by Mainland and Sudarshan (Phys. Rev. D. 8:1088 (1973)). (author)

  15. Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities.

    Science.gov (United States)

    Chremmos, Ioannis

    2010-01-01

    The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.

  16. An Algorithm for the Numerical Solution of the Pseudo Compressible Navier-stokes Equations Based on the Experimenting Fields Approach

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; Amin, Mohamed F. El

    2015-01-01

    In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.

  17. An Algorithm for the Numerical Solution of the Pseudo Compressible Navier-stokes Equations Based on the Experimenting Fields Approach

    KAUST Repository

    Salama, Amgad

    2015-06-01

    In this work, the experimenting fields approach is applied to the numerical solution of the Navier-Stokes equation for incompressible viscous flow. In this work, the solution is sought for both the pressure and velocity fields in the same time. Apparently, the correct velocity and pressure fields satisfy the governing equations and the boundary conditions. In this technique a set of predefined fields are introduced to the governing equations and the residues are calculated. The flow according to these fields will not satisfy the governing equations and the boundary conditions. However, the residues are used to construct the matrix of coefficients. Although, in this setup it seems trivial constructing the global matrix of coefficients, in other setups it can be quite involved. This technique separates the solver routine from the physics routines and therefore makes easy the coding and debugging procedures. We compare with few examples that demonstrate the capability of this technique.

  18. Differential field equations for the MHD waves and wave equation of Alfven; Las ecuaciones diferenciales de campo para las ondas MHD y la ecuacion de onda de Alfven

    Energy Technology Data Exchange (ETDEWEB)

    Fierros Palacios, Angel [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-02-01

    In this work the complete set of differential field equations which describes the dynamic state of a continuos conducting media which flow in presence of a perturbed magnetic field is obtained. Then, the thermic equation of state, the wave equation and the conservation law of energy for the Alfven MHD waves are obtained. [Spanish] Es este trabajo se obtiene el conjunto completo de ecuaciones diferenciales de campo que describen el estado dinamico de un medio continuo conductor que se mueve en presencia de un campo magnetico externo perturbado. Asi, se obtiene la ecuacion termica de estado, la ecuacion de onda y la ley de la conservacion de la energia para las ondas de Alfven de la MHD.

  19. Linear Scaling Solution of the Time-Dependent Self-Consistent-Field Equations

    Directory of Open Access Journals (Sweden)

    Matt Challacombe

    2014-03-01

    Full Text Available A new approach to solving the Time-Dependent Self-Consistent-Field equations is developed based on the double quotient formulation of Tsiper 2001 (J. Phys. B. Dual channel, quasi-independent non-linear optimization of these quotients is found to yield convergence rates approaching those of the best case (single channel Tamm-Dancoff approximation. This formulation is variational with respect to matrix truncation, admitting linear scaling solution of the matrix-eigenvalue problem, which is demonstrated for bulk excitons in the polyphenylene vinylene oligomer and the (4,3 carbon nanotube segment.

  20. On the mixed discretization of the time domain magnetic field integral equation

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed discretization scheme, unlike the classical scheme which uses RWG functions as both basis and testing functions, is proper: Testing functions belong to dual space of the basis functions. Numerical results demonstrate that the marching on-in-time (MOT) solution of the mixed discretized MFIE yields more accurate results than that of classically discretized MFIE. © 2012 IEEE.

  1. Canonical formulations of a classical particle in a Yang-Mills field and Wong's equations

    International Nuclear Information System (INIS)

    Montgomery, R.

    1984-01-01

    Wong (1970) introduced equations of motion for a spin 0 particle in a Yang-Mills field which was widely accepted among physicists. It is shown that these are equivalent to the various mathematical formulations for the motion of such particles as given by the Kaluza-Klein formulation of Kerner, and those of Sternberg, and Weinstein. In doing this, we show that Sternberg's space is, in a natural way, a symplectic leaf of a reduced Poisson manifold and relations to a construction of Kummer's for dynamics on the cotangent bundle of a principle bundle are clarified. (orig.)

  2. Hamiltonian field description of the one-dimensional Poisson-Vlasov equations

    International Nuclear Information System (INIS)

    Morrison, P.J.

    1981-07-01

    The one-dimensional Poisson-Vlasov equations are cast into Hamiltonian form. A Poisson Bracket in terms of the phase space density, as sole dynamical variable, is presented. This Poisson bracket is not of the usual form, but possesses the commutator properties of antisymmetry, bilinearity, and nonassociativity by virtue of the Jacobi requirement. Clebsch potentials are seen to yield a conventional (canonical) formulation. This formulation is discretized by expansion in terms of an arbitrary complete set of basis functions. In particular, a wave field representation is obtained

  3. A general solution of the BV-master equation and BRST field theories

    International Nuclear Information System (INIS)

    Dayi, O.F.

    1993-05-01

    For a class of first order gauge theories it was shown that the proper solution of the BV-master equation can be obtained straightforwardly. Here we present the general condition which the gauge generators should satisfy to conclude that this construction is relevant. The general procedure is illustrated by its application to the Chern-Simons theory in any odd-dimension. Moreover, it is shown that this formalism is also applicable to BRST field theories, when one replaces the role of the exterior derivative with the BRST charge of first quantization. (author). 17 refs

  4. Renormalization Group Equations of d=6 Operators in the Standard Model Effective Field Theory

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The one-loop renormalization group equations for the Standard Model (SM) Effective Field Theory (EFT) including dimension-six operators are calculated. The complete 2499 × 2499 one-loop anomalous dimension matrix of the d=6 Lagrangian is obtained, as well as the contribution of d=6 operators to the running of the parameters of the renormalizable SM Lagrangian. The presence of higher-dimension operators has implications for the flavor problem of the SM. An approximate holomorphy of the one-loop anomalous dimension matrix is found, even though the SM EFT is not a supersymmetric theory.

  5. Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation

    International Nuclear Information System (INIS)

    Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

    2008-01-01

    We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature

  6. Auxiliary fields as a tool for computing analytical solutions of the Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

    2008-07-11

    We propose a new method to obtain approximate solutions for the Schroedinger equation with an arbitrary potential that possesses bound states. This method, relying on the auxiliary field technique, allows to find in many cases, analytical solutions. It offers a convenient way to study the qualitative features of the energy spectrum of bound states in any potential. In particular, we illustrate our method by solving the case of central potentials with power-law form and with logarithmic form. For these types of potentials, we propose very accurate analytical energy formulae which greatly improves the corresponding formulae that can be found in the literature.

  7. Neutron Star masses from the Field Correlator Method Equation of State

    Directory of Open Access Journals (Sweden)

    Zappalà D.

    2014-04-01

    Full Text Available We analyse the hadron-quark phase transition in neutron stars by confronting the hadronic Equation of State (EoS obtained according to the microscopic Brueckner-Hartree-Fock many body theory, with the quark matter EoS derived within the Field Correlator Method. In particular, the latter EoS is only parametrized in terms of the gluon condensate and the large distance quark-antiquark potential, so that the comparison of the results of this analysis with the most recent measurements of heavy neutron star masses provides some physical constraints on these two parameters.

  8. Solving Schwinger-Dyson equations by truncation in zero-dimensional scalar quantum field theory

    International Nuclear Information System (INIS)

    Okopinska, A.

    1991-01-01

    Three sets of Schwinger-Dyson equations, for all Green's functions, for connected Green's functions, and for proper vertices, are considered in scalar quantum field theory. A truncation scheme applied to the three sets gives three different approximation series for Green's functions. For the theory in zero-dimensional space-time the results for respective two-point Green's functions are compared with the exact value calculated numerically. The best convergence of the truncation scheme is obtained for the case of proper vertices

  9. On the initial conditions of time-dependent mean-field equations of evolution. Pt. 2

    International Nuclear Information System (INIS)

    Troudet, T.; Paris-11 Univ., 91 - Orsay

    1986-01-01

    We analyze the problem so far untouched of determining the initial mean-field wavefunction in the context of zero-temperature mean-field descriptions of time-dependent expectation values and quantum fluctuations of nuclear observables. The nucleus, at zero temperature, is taken to be in a low-lying excited many-body eigenstate and is approximated by the corresponding RPA wavefunction as a continuous superposition of coherent states (i.e. Slater determinants). A generating function Gsub(A)(lambda) for time-dependent expectation values and quantum fluctuations is constructed within the formalism of functional integration. By applying the saddle-point method to the functional action of Gsub(A)(lambda) and then taking its lambda-derivatives, we recover the well-known TDHF theory and propose a simple determination of the initial Slater determinant for an appropriate mean-field description of time-dependent expectation values. The analog mean-field description of quadratic-quantum fluctuations proceeds similarly and in addition includes the contribution of the uncorrelated TDHF-RPA phonons coupled to collective excitations of the initial (static) mean-field configuration. When the collective TDHF-RPA excitations are solely taken into account, we obtain an improved version of the Balian-Veneroni dispersion formula by showing how to determine the initial mean-field wavefunction. By first taking the lambda-derivatives of Gsub(A)(lambda) before applying the saddle-point method, the initial mean-field wavefunction is found to be non-linearly coupled to the mean-field dynamics themselves. In return, and in contrast to the first quantization scheme, these both depend non-trivially upon the observable A being measured so that approximations must be proposed to simplify the resulting mean-field equations. (orig.)

  10. Canonical variables and Heisenberg equations of motion for the spin-3/2 field in the presence of interactions

    International Nuclear Information System (INIS)

    Nagpal, A.K.

    1978-01-01

    Contrary to the prevalent belief, it is shown here that for the spin-3/2 Rarita-Schwinger field in the presence of a fully quantized interaction, the (anti) commutation relations are compatible with the Heisenberg equations of motion. The latter are indeed the same as the Lagrangian equations of motion. Further, it is shown that the validity of the Heisenberg equations of motion does not depend upon the choice of the canonical variables

  11. Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology?

    Science.gov (United States)

    Abe, Yumiko; Hunkeler, Daniel

    2006-03-01

    Stable isotope data have been increasingly used to assess in situ biodegradation of organic contaminants in groundwater. The data are usually evaluated using the Rayleigh equation to evaluate whether isotope data follow a Rayleigh trend, to calculate the extent of contaminant biodegradation, or to estimate first-order rate constants. However, the Rayleigh equation was developed for homogeneous systems while in the subsurface, contaminants can migrate at different velocities due to physical heterogeneity. This paper presents a method to quantify the systematic effect that is introduced by applying the Rayleigh equation to field isotope data. For this purpose, the travel time distribution between source and sampling point is characterized by an analytical solution to the advection-dispersion equation. The systematic effect was evaluated as a function of the magnitude of physical heterogeneity, geometry of the contaminant plume, and degree of biodegradation. Results revealed that the systematic effect always leads to an underestimation of the actual values of isotope enrichment factors, the extent of biodegradation, or first-order rate constants, especially in the dispersion-dominant region representing a higher degree of physical heterogeneity. A substantial systematic effect occurs especially for the quantification of first-order rate constants (up to 50% underestimation of actual rate) while it is relatively small for quantification of the extent of biodegradation (< 5% underestimation of actual degree of biodegradation). The magnitude of the systematic effect is in the same range as the uncertainty due to uncertainty of the analytical data, of the isotope enrichment factor, and the average travel time.

  12. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    International Nuclear Information System (INIS)

    Broderick, A.; Prakash, M.; Lattimer, J. M.

    2000-01-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10 14 G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10 18 G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society

  13. The Equation of State of Neutron Star Matter in Strong Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, A; Prakash, M; Lattimer, J M

    2000-07-01

    We study the effects of very strong magnetic fields on the equation of state (EOS) in multicomponent, interacting matter by developing a covariant description for the inclusion of the anomalous magnetic moments of nucleons. For the description of neutron star matter, we employ a field-theoretical approach, which permits the study of several models that differ in their behavior at high density. Effects of Landau quantization in ultrastrong magnetic fields (B>10{sup 14} G) lead to a reduction in the electron chemical potential and a substantial increase in the proton fraction. We find the generic result for B>10{sup 18} G that the softening of the EOS caused by Landau quantization is overwhelmed by stiffening due to the incorporation of the anomalous magnetic moments of the nucleons. In addition, the neutrons become completely spin polarized. The inclusion of ultrastrong magnetic fields leads to a dramatic increase in the proton fraction, with consequences for the direct Urca process and neutron star cooling. The magnetization of the matter never appears to become very large, as the value of |H/B| never deviates from unity by more than a few percent. Our findings have implications for the structure of neutron stars in the presence of large frozen-in magnetic fields. (c) 2000 The American Astronomical Society.

  14. Numerical study on the incompressible Euler equations as a Hamiltonian system: Sectional curvature and Jacobi field

    Science.gov (United States)

    Ohkitani, K.

    2010-05-01

    We study some of the key quantities arising in the theory of [Arnold "Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits," Annales de l'institut Fourier 16, 319 (1966)] of the incompressible Euler equations both in two and three dimensions. The sectional curvatures for the Taylor-Green vortex and the ABC flow initial conditions are calculated exactly in three dimensions. We trace the time evolution of the Jacobi fields by direct numerical simulations and, in particular, see how the sectional curvatures get more and more negative in time. The spatial structure of the Jacobi fields is compared to the vorticity fields by visualizations. The Jacobi fields are found to grow exponentially in time for the flows with negative sectional curvatures. In two dimensions, a family of initial data proposed by Arnold (1966) is considered. The sectional curvature is observed to change its sign quickly even if it starts from a positive value. The Jacobi field is shown to be correlated with the passive scalar gradient in spatial structure. On the basis of Rouchon's physical-space based expression for the sectional curvature (1984), the origin of negative curvature is investigated. It is found that a "potential" αξ appearing in the definition of covariant time derivative plays an important role, in that a rapid growth in its gradient makes a major contribution to the negative curvature.

  15. Field theoretical construction of an infinite set of quantum commuting operators related with soliton equations

    International Nuclear Information System (INIS)

    Sasaki, Ryu; Yamanaka, Itaru

    1987-01-01

    The quantum version of an infinite set of polynomial conserved quantities of a class of soliton equations is discussed from the point of view of naive continuum field theory. By using techniques of two dimensional field theories, we show that an infinite set of quantum commuting operators can be constructed explicitly from the knowledge of its classical counterparts. The quantum operators are so constructed as to coincide with the classical ones in the ℎ → 0 limit (ℎ; Planck's constant divided by 2π). It is expected that the explicit forms of these operators would shed some light on the structure of the infinite dimensional Lie algebras which underlie a certain class of quantum integrable systems. (orig.)

  16. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  17. Field theoretical construction of an infinite set of quantum commuting operators related with soliton equations

    International Nuclear Information System (INIS)

    Sasaki, Ryu; Yamanaka, Itaru.

    1986-08-01

    The quantum version of an infinite set of polynomial conserved quantities of a class of soliton equations is discussed from the point of view of naive continuum field theory. By using techniques of two dimensional field theories, we show that an infinite set of quantum commuting operators can be constructed explicitly from the knowledge of its classical counterparts. The quantum operators are so constructed as to coincide with the classical ones in the ℎ → 0 limit (ℎ; Planck's constant divided by 2π). It is expected that the explicit forms of these operators would shed some light on the structure of the infinite dimensional Lie algebras which underlie certain class of quantum integrable systems. (author)

  18. Can a nightside geomagnetic Delta H observed at the equator manifest a penetration electric field?

    Science.gov (United States)

    Wei, Y.; Fraenz, M.; Dubinin, E.; He, M.; Ren, Z.; Zhao, B.; Liu, J.; Wan, W.; Yumoto, K.; Watari, S.; Alex, S.

    2013-06-01

    A prompt penetration electric field (PPEF) usually manifests itself in the form of an equatorial ionospheric electric field being in correlation with a solar wind electric field. Due to the strong Cowling conductivity, a PPEF on the dayside can be inferred from Delta H (ΔH), which is the difference in the magnitudes of the horizontal (H) component between a magnetometer at the magnetic equator and one off the equator. This paper aims to investigate the performance of ΔH in response to a PPEF on the nightside, where the Cowling conductivity is not significant. We first examine the strongest geomagnetically active time during the 20 November 2003 superstorm when the Dst drops to -473 nT and show that the nightside ΔH can indeed manifest a PPEF but with local time dependence and longitude dependence. We then examine a moderately active time by taking advantage of the multiple-penetration event during 11-16 November 2003 when the Dst remains greater than -60 nT. During this event, a series of PPEF pulses recorded in Peru, Japan, and India form a database, allowing us to examine PPEF effects at different local times and longitudes. The results show that (1) the nightside ΔH was caused by attenuation of the effects of the polar electric field with decreasing latitude; (2) the nightside ΔH can manifest a PPEF at least in the midnight-dawn sector (0000-0500 LT), but not always; and (3) the magnitude of the nightside ΔH in the midnight-dawn sector in Peru is on average only 1/18 of that of the dayside ΔH in response to a given PPEF.

  19. Thermodynamic Analysis of the Static Spherically Symmetric Field Equations in Rastall Theory

    International Nuclear Information System (INIS)

    Moradpour, Hooman; Salako, Ines G.

    2016-01-01

    The restrictions on the Rastall theory due to application of the Newtonian limit to the theory are derived. In addition, we use the zero-zero component of the Rastall field equations as well as the unified first law of thermodynamics to find the Misner-Sharp mass content confined to the event horizon of the spherically symmetric static spacetimes in the Rastall framework. The obtained relation is calculated for the Schwarzschild and de-Sitter back holes as two examples. Bearing the obtained relation for the Misner-Sharp mass in mind together with recasting the one-one component of the Rastall field equations into the form of the first law of thermodynamics, we obtain expressions for the horizon entropy and the work term. Finally, we also compare the thermodynamic quantities of system, including energy, entropy, and work, with their counterparts in the Einstein framework to have a better view about the role of the Rastall hypothesis on the thermodynamics of system.

  20. The Dirac equation in the local representation - contributions to the quantum electrodynamics of strong fields

    International Nuclear Information System (INIS)

    Schlueter, P.

    1985-05-01

    In this work three topics related to the theory of positron creation in heavy ion collisions are investigated. The first of these is concerned with the local representation of the Dirac matrices. It consists of a space dependent similarity transformation of the Dirac matrices which is chosen in such a way that for certain orthogonal coordinate systems the Dirac equation assumes a simple standardized form. This form is well suited for analytical as well as numerical calculations. For all generally used coordinate systems the transformation can be given in closed form. The application of this idea is not restricted to the solution of the two-centre Dirac equation but may be used also for different electro-magnetic potentials. In the second of the above mentioned problems, the question is discussed, whether the recently observed peak structures in positron spectra from U-U collisions can originate from nuclear conversion processes. It is demonstrated that, taking this hypothesis at face value, in the photon or delta-electron spectrum corresponding structures should be observed. Moreover, rather large nuclear excitation probabilities in the order of percents are needed to make this explanation plausible. Finally, the third topic is concerned with a more fundamental question: May it be possible that the interaction of the strongly bound electrons in a critical electric field with the radiation field leads to an energy shift which is big enough to prevent the diving of the 1s-state into the negative energy continuum. (orig./HSI) [de

  1. More on equations of motion for interacting massless field of all spins in 3+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A [Inst. of Theoretical Physics, Goteborg (Sweden)

    1992-07-09

    We establish the simple link between the recently proposed equations of motion for interacting massless fields of all spins 0{<=}s<{infinity} in 3+1 dimensions and conventional formulations of free higher-spin dynamics. In addition, we discuss various types of formal generalizations of the system of equations of Vasiliev which may give rise to interesting relativistic systems in 2+1 and 3+1 dimensions. In particular, it is shown that there exists a class of equations generalizing Vasiliev's system, parametrized by an arbitrary function of one variable. Self-dual higher-spin equations are discussed briefly. (orig.).

  2. Nonequilibrium dynamics of moving mirrors in quantum fields: Influence functional and the Langevin equation

    International Nuclear Information System (INIS)

    Wu, C.-H.; Lee, D.-S.

    2005-01-01

    We employ the Schwinger-Keldysh formalism to study the nonequilibrium dynamics of the mirror with perfect reflection moving in a quantum field. In the case where the mirror undergoes the small displacement, the coarse-grained effective action is obtained by integrating out the quantum field with the method of influence functional. The semiclassical Langevin equation is derived, and is found to involve two levels of backreaction effects on the dynamics of mirrors: radiation reaction induced by the motion of the mirror and backreaction dissipation arising from fluctuations in quantum field via a fluctuation-dissipation relation. Although the corresponding theorem of fluctuation and dissipation for the case with the small mirror's displacement is of model independence, the study from the first principles derivation shows that the theorem is also independent of the regulators introduced to deal with short-distance divergences from the quantum field. Thus, when the method of regularization is introduced to compute the dissipation and fluctuation effects, this theorem must be fulfilled as the results are obtained by taking the short-distance limit in the end of calculations. The backreaction effects from vacuum fluctuations on moving mirrors are found to be hardly detected while those effects from thermal fluctuations may be detectable

  3. Fokker-Planck equation for the non-Markovian Brownian motion in the presence of a magnetic field

    Science.gov (United States)

    Das, Joydip; Mondal, Shrabani; Bag, Bidhan Chandra

    2017-10-01

    In the present study, we have proposed the Fokker-Planck equation in a simple way for a Langevin equation of motion having ordinary derivative (OD), the Gaussian random force and a generalized frictional memory kernel. The equation may be associated with or without conservative force field from harmonic potential. We extend this method for a charged Brownian particle in the presence of a magnetic field. Thus, the present method is applicable for a Langevin equation of motion with OD, the Gaussian colored thermal noise and any kind of linear force field that may be conservative or not. It is also simple to apply this method for the colored Gaussian noise that is not related to the damping strength.

  4. Monthly gravity field recovery from GRACE orbits and K-band measurements using variational equations approach

    Directory of Open Access Journals (Sweden)

    Changqing Wang

    2015-07-01

    Full Text Available The Gravity Recovery and Climate Experiment (GRACE mission can significantly improve our knowledge of the temporal variability of the Earth's gravity field. We obtained monthly gravity field solutions based on variational equations approach from GPS-derived positions of GRACE satellites and K-band range-rate measurements. The impact of different fixed data weighting ratios in temporal gravity field recovery while combining the two types of data was investigated for the purpose of deriving the best combined solution. The monthly gravity field solution obtained through above procedures was named as the Institute of Geodesy and Geophysics (IGG temporal gravity field models. IGG temporal gravity field models were compared with GRACE Release05 (RL05 products in following aspects: (i the trend of the mass anomaly in China and its nearby regions within 2005–2010; (ii the root mean squares of the global mass anomaly during 2005–2010; (iii time-series changes in the mean water storage in the region of the Amazon Basin and the Sahara Desert between 2005 and 2010. The results showed that IGG solutions were almost consistent with GRACE RL05 products in above aspects (i–(iii. Changes in the annual amplitude of mean water storage in the Amazon Basin were 14.7 ± 1.2 cm for IGG, 17.1 ± 1.3 cm for the Centre for Space Research (CSR, 16.4 ± 0.9 cm for the GeoForschungsZentrum (GFZ and 16.9 ± 1.2 cm for the Jet Propulsion Laboratory (JPL in terms of equivalent water height (EWH, respectively. The root mean squares of the mean mass anomaly in Sahara were 1.2 cm, 0.9 cm, 0.9 cm and 1.2 cm for temporal gravity field models of IGG, CSR, GFZ and JPL, respectively. Comparison suggested that IGG temporal gravity field solutions were at the same accuracy level with the latest temporal gravity field solutions published by CSR, GFZ and JPL.

  5. Out-of-equilibrium dynamical mean-field equations for the perceptron model

    Science.gov (United States)

    Agoritsas, Elisabeth; Biroli, Giulio; Urbani, Pierfrancesco; Zamponi, Francesco

    2018-02-01

    Perceptrons are the building blocks of many theoretical approaches to a wide range of complex systems, ranging from neural networks and deep learning machines, to constraint satisfaction problems, glasses and ecosystems. Despite their applicability and importance, a detailed study of their Langevin dynamics has never been performed yet. Here we derive the mean-field dynamical equations that describe the continuous random perceptron in the thermodynamic limit, in a very general setting with arbitrary noise and friction kernels, not necessarily related by equilibrium relations. We derive the equations in two ways: via a dynamical cavity method, and via a path-integral approach in its supersymmetric formulation. The end point of both approaches is the reduction of the dynamics of the system to an effective stochastic process for a representative dynamical variable. Because the perceptron is formally very close to a system of interacting particles in a high dimensional space, the methods we develop here can be transferred to the study of liquid and glasses in high dimensions. Potentially interesting applications are thus the study of the glass transition in active matter, the study of the dynamics around the jamming transition, and the calculation of rheological properties in driven systems.

  6. Renormalization group equation for interacting Thirring fields in dimensional regularization scheme

    International Nuclear Information System (INIS)

    Chowdhury, A.R.; Roy, T.; Kar, S.

    1976-01-01

    The dynamics of two interacting Thirring fields has been investigated within the dimensional regularization framework. The coupling constants are renormalized in the same way as observed in the non-perturbative approach of Ansel'm et al (Sov. Phys. - JETP 36: 608 (1959)). Functionsβsub(i)(g 1 , g 2 , g 3 ) and γsub(i)(g 1 , g 2 , g 3 ), pertaining to the stability and anomalous behaviour of the problem, are computed up to a third order in the coupling parameters. With the help of these, subsidiary non-linear differential equations of the renormalization group are studied in 2-epsilon dimension. The results show up some peculiar features of the theory: a zero of βsub(i)(g 1 , g 2 , g 3 ) corresponding to g 2 approximately α√epsilon, a characteristic of phi theory. The scale invariant limit is reached when g 2 → 0 (i.e. the two Thirring fields are decoupled) and also when g 1 = xg 2 = g 3 , where x is a root of 2x 3 + 2x 2 - 1 = 0. The branch-point zero makes the transition to the epsilon tends to 0 limit non-unique. The anomalous dimensions are obtained and seen to match that of the Dashen-Frishman model (Phys. Lett.; 46B 439 (1973)). The existence of a non-trivial scale invariant limit distinguishes the model from many simple field theories. (author)

  7. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan

    2010-08-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.

  8. Quantum-corrected plasmonic field analysis using a time domain PMCHWT integral equation

    KAUST Repository

    Uysal, Ismail E.

    2016-03-13

    When two structures are within sub-nanometer distance of each other, quantum tunneling, i.e., electrons "jumping" from one structure to another, becomes relevant. Classical electromagnetic solvers do not directly account for this additional path of current. In this work, an auxiliary tunnel made of Drude material is used to "connect" the structures as a support for this current path (R. Esteban et al., Nat. Commun., 2012). The plasmonic fields on the resulting connected structure are analyzed using a time domain surface integral equation solver. Time domain samples of the dispersive medium Green function and the dielectric permittivities are computed from the analytical inverse Fourier transform applied to the rational function representation of their frequency domain samples.

  9. Factoring health equations comment on "do you recommend an interdisciplinary field to your graduate student?".

    Science.gov (United States)

    Rhodes, Michael Grant

    2013-08-01

    The International Journal of Health Policy and Management (IJHPM) is a new journal that aims to stimulate not only inter-disciplinary research relating to health, but even an entire new generation of such journals. The challenges of improving human health worldwide clearly suggest 'why' such a journal is needed, but 'how' bridges and junctions across fields of study towards this end might be found poses other questions. From the agnosticism of many sciences with respect to human health, to the great faith others place in more esoteric movements for human well-being, both suggest finding common factors in the many equations that affect human health. Particularly, as it is typically defined professionally, it might pose more fundamental challenges than those which appear first. However, the first editorial and edition quietly assure that the journal is in good hands, and that the search for a new generation of journals has begun.

  10. On the solution of nonlinear differential equations over the field of Mikusinski operators

    International Nuclear Information System (INIS)

    Sharkawi, I.E.; El-Sabagh, M.A.

    1983-08-01

    The nonlinear differential equation X'(lambda)+a(lambda)X(lambda)=sb(lambda)Xsup(n+1)(lambda) with the initial condition X(0)=I, over the field of Mikusinski operators [Mikusinski, J. Operational Calculus, Pergamon Press (1957)] is discussed, where a(lambda) and b(lambda) are continuous numerical functions, s is the operator of differentiation, and I is the unit operator. A solution is constructed of the following form: X(lambda)=F(lambda) ([tsup((1/n)-1)]/[GAMMA(1/n)(ng(lambda))sup(1/n)])exp(t/(ng(lambda))), where F(lambda)=exp(-integ 0 sup(lambda)a(lambda)d(lambda) and g(lambda)=integ 0 sup(lambda)[b(lambda)exp(n integ 0 sup(lambda)a(lambda))]dlambda are numerical functions

  11. Investigations of solutions of Einstein's field equations close to λ-Taub-NUT

    International Nuclear Information System (INIS)

    Beyer, Florian

    2008-01-01

    We present investigations of a class of solutions of Einstein's field equations close to the family of λ-Taub-NUT spacetimes. The studies are done using a numerical code introduced by the author elsewhere. One of the main technical complications is due to the paragraph -topology of the Cauchy surfaces. Complementing these numerical results with heuristic arguments, we are able to yield some first insights into the strong cosmic censorship issue and the conjectures by Belinskii, Khalatnikov and Lifschitz in this class of spacetimes. In particular, the current investigations suggest that strong cosmic censorship holds in this class. We further identify open issues in our current approach and point to future research projects

  12. Investigations of solutions of Einstein's field equations close to {lambda}-Taub-NUT

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Florian [KTH Matematik, 10044 Stockholm (Sweden)], E-mail: fbeyer@math.kth.se

    2008-12-07

    We present investigations of a class of solutions of Einstein's field equations close to the family of {lambda}-Taub-NUT spacetimes. The studies are done using a numerical code introduced by the author elsewhere. One of the main technical complications is due to the paragraph -topology of the Cauchy surfaces. Complementing these numerical results with heuristic arguments, we are able to yield some first insights into the strong cosmic censorship issue and the conjectures by Belinskii, Khalatnikov and Lifschitz in this class of spacetimes. In particular, the current investigations suggest that strong cosmic censorship holds in this class. We further identify open issues in our current approach and point to future research projects.

  13. Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations

    International Nuclear Information System (INIS)

    Zhang Lue; Wang Xiang-Da; Liu Xiao-Zhou; Gong Xiu-Fen

    2015-01-01

    With converged shock wave, extracorporeal shock wave lithotripsy (ESWL) has become a preferable way to crush human calculi because of its advantages of efficiency and non-intrusion. Nonlinear spheroidal beam equations (SBE) are employed to illustrate the acoustic wave propagation for transducers with a wide aperture angle. To predict the acoustic field distribution precisely, boundary conditions are obtained for the SBE model of the monochromatic wave when the source is located on the focus of an ESWL transducer. Numerical results of the monochromatic wave propagation in water are analyzed and the influences of half-angle, fundamental frequency, and initial pressure are investigated. According to our results, with optimization of these factors, the pressure focal gain of ESWL can be enhanced and the effectiveness of treatment can be improved. (paper)

  14. A structural equation model to integrate changes in functional strategies during old-field succession.

    Science.gov (United States)

    Vile, Denis; Shipley, Bill; Garnier, Eric

    2006-02-01

    From a functional perspective, changes in abundance, and ultimately species replacement, during succession are a consequence of integrated suites of traits conferring different relative ecological advantages as the environment changes over time. Here we use structural equations to model the interspecific relationships between these integrated functional traits using 34 herbaceous species from a Mediterranean old-field succession and thus quantify the notion of a plant strategy. We measured plant traits related to plant vegetative and reproductive size, leaf functioning, reproductive phenology, seed mass, and production on 15 individuals per species monitored during one growing season. The resulting structural equation model successfully accounts for the pattern of trait covariation during the first 45 years post-abandonment using just two forcing variables: time since site abandonment and seed mass; no association between time since field abandonment and seed mass was observed over these herbaceous stages of secondary succession. All other predicted traits values are determined by these two variables and the cause-effect linkage between them. Adding pre-reproductive vegetative mass as a third forcing variable noticeably increased the predictive power of the model. Increasing the time after abandonment favors species with increasing life span and pre-reproductive biomass and decreasing specific leaf area. Allometric coefficients relating vegetative and reproductive components of plant size were in accordance with allometry theory. The model confirmed the trade-off between seed mass and seed number. Maximum plant height and seed mass were major determinants of reproductive phenology. Our results show that beyond verbal conceptualization, plant ecological strategies can be quantified and modeled.

  15. On the conformal higher spin unfolded equation for a three-dimensional self-interacting scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Bengt E.W. [Fundamental Physics, Chalmers University of Technology,SE-412 96 Göteborg (Sweden)

    2016-08-24

    We propose field equations for the conformal higher spin system in three dimensions coupled to a conformal scalar field with a sixth order potential. Both the higher spin equation and the unfolded equation for the scalar field have source terms and are based on a conformal higher spin algebra which we treat as an expansion in multi-commutators. Explicit expressions for the source terms are suggested and subjected to some simple tests. We also discuss a cascading relation between the Chern-Simons action for the higher spin gauge theory and an action containing a term for each spin that generalizes the spin 2 Chern-Simons action in terms of the spin connection expressed in terms of the frame field. This cascading property is demonstrated in the free theory for spin 3 but should work also in the complete higher spin theory.

  16. INFLUENCE OF THE HIGHER ORDER DERIVATIVES ON THE PLANET PERIHELION PRECESSION IN THE EINSTEIN FIELD EQUATIONS FOR VACUUM CONDITION

    Directory of Open Access Journals (Sweden)

    Teguh Budi Prayitno

    2011-04-01

    Full Text Available This paper studies the effect of higher order derivative tensor in the Einstein field equations for vacuum condition on the planet perihelion precession. This tensor was initially proposed as the space-time curvature tensor by Deser and Tekin on discussions about the energy effects caused by this tensor. However, they include this tensor to Einstein field equations as a new model in general relativity theory. This is very interesting since there are some questions in cosmology and astrophysics that have no answers. Thus, they hoped this model could solve those problems by finding analytical or perturbative solution and interpreting it. In this case, the perturbative solution was used to find the Schwarzschild solution and it was also applied to consider the planetary motion in the solar gravitational field. Furthermore, it was proven that the tensor is divergence-free in order to keep the Einstein field equations remain valid.

  17. On symmetries and exact solutions of the Einstein–Maxwell field equations via the symmetry approach

    International Nuclear Information System (INIS)

    Kaur, Lakhveer; Gupta, R K

    2013-01-01

    Using the Lie symmetry approach, we have examined herein the system of partial differential equations corresponding to the Einstein–Maxwell equations for a static axially symmetric spacetime. The method used reduces the system of partial differential equations to a system of ordinary differential equations according to the Lie symmetry admitted. In particular, we found the relevant system of ordinary differential equations is all optimal subgroups. The system of ordinary differential equations is further solved in general to obtain exact solutions. Several new physically important families of exact solutions are derived. (paper)

  18. A vector field method on the distorted Fourier side and decay for wave equations with potentials

    CERN Document Server

    Donninger, Roland

    2016-01-01

    The authors study the Cauchy problem for the one-dimensional wave equation \\partial_t^2 u(t,x)-\\partial_x^2 u(t,x)+V(x)u(t,x)=0. The potential V is assumed to be smooth with asymptotic behavior V(x)\\sim -\\tfrac14 |x|^{-2}\\mbox{ as } |x|\\to \\infty. They derive dispersive estimates, energy estimates, and estimates involving the scaling vector field t\\partial_t+x\\partial_x, where the latter are obtained by employing a vector field method on the âeoedistortedâe Fourier side. In addition, they prove local energy decay estimates. Their results have immediate applications in the context of geometric evolution problems. The theory developed in this paper is fundamental for the proof of the co-dimension 1 stability of the catenoid under the vanishing mean curvature flow in Minkowski space; see Donninger, Krieger, Szeftel, and Wong, âeoeCodimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski spaceâe, preprint arXiv:1310.5606 (2013).

  19. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

    KAUST Repository

    Liu, Yang

    2016-03-25

    A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

  20. Higher groupoid bundles, higher spaces, and self-dual tensor field equations

    Energy Technology Data Exchange (ETDEWEB)

    Jurco, Branislav [Charles University in Prague, Faculty of Mathematics and Physics, Mathematical Institute, Prague (Czech Republic); Saemann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics, Heriot-Watt University, Edinburgh (United Kingdom); Wolf, Martin [Department of Mathematics, University of Surrey, Guildford (United Kingdom)

    2016-08-15

    We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of (∞, 1)-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to L{sub ∞}-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Higher groupoid bundles, higher spaces, and self-dual tensor field equations

    International Nuclear Information System (INIS)

    Jurco, Branislav; Saemann, Christian; Wolf, Martin

    2016-01-01

    We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of (∞, 1)-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to L ∞ -algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. An online interactive geometric database including exact solutions of Einstein's field equations

    International Nuclear Information System (INIS)

    Ishak, Mustapha; Lake, Kayll

    2002-01-01

    We describe a new interactive database (GRDB) of geometric objects in the general area of differential geometry. Database objects include, but are not restricted to, exact solutions of Einstein's field equations. GRDB is designed for researchers (and teachers) in applied mathematics, physics and related fields. The flexible search environment allows the database to be useful over a wide spectrum of interests, for example, from practical considerations of neutron star models in astrophysics to abstract space-time classification schemes. The database is built using a modular and object-oriented design and uses several Java technologies (e.g. Applets, Servlets, JDBC). These are platform-independent and well adapted for applications developed for the World Wide Web. GRDB is accompanied by a virtual calculator (GRTensorJ), a graphical user interface to the computer algebra system GRTensorII, used to perform online coordinate, tetrad or basis calculations. The highly interactive nature of GRDB allows systematic internal self-checking and minimization of the required internal records. This new database is now available online at http://grdb.org

  3. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

    KAUST Repository

    Liu, Yang; Al-Jarro, Ahmed; Bagci, Hakan; Michielssen, Eric

    2016-01-01

    A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

  4. Coupled energy-drift and force-balance equations for high-field hot-carrier transport

    International Nuclear Information System (INIS)

    Huang, Danhong; Alsing, P.M.; Apostolova, T.; Cardimona, D.A.

    2005-01-01

    Coupled energy-drift and force-balance equations that contain a frictional force for the center-of-mass motion of electrons are derived for hot-electron transport under a strong dc electric field. The frictional force is found to be related to the net rate of phonon emission, which takes away the momentum of a phonon from an electron during each phonon-emission event. The net rate of phonon emission is determined by the Boltzmann scattering equation, which depends on the distribution of electrons interacting with phonons. The work done by the frictional force is included into the energy-drift equation for the electron-relative scattering motion and is found to increase the thermal energy of the electrons. The importance of the hot-electron effect in the energy-drift term under a strong dc field is demonstrated in reducing the field-dependent drift velocity and mobility. The Doppler shift in the energy conservation of scattering electrons interacting with impurities and phonons is found to lead to an anisotropic distribution of electrons in the momentum space along the field direction. The importance of this anisotropic distribution is demonstrated through a comparison with the isotropic energy-balance equation, from which we find that defining a state-independent electron temperature becomes impossible. To the leading order, the energy-drift equation is linearized with a distribution function by expanding it into a Fokker-Planck-type equation, along with the expansions of both the force-balance equation and the Boltzmann scattering equation for hot phonons

  5. Derivation of the Wenzel and Cassie Equations from a Phase Field Model for Two Phase Flow on Rough Surface

    KAUST Repository

    Xu, Xianmin; Wang, Xiaoping

    2010-01-01

    In this paper, the equilibrium behavior of an immiscible two phase fluid on a rough surface is studied from a phase field equation derived from minimizing the total free energy of the system. When the size of the roughness becomes small, we derive the effective boundary condition for the equation by the multiple scale expansion homogenization technique. The Wenzel and Cassie equations for the apparent contact angles on the rough surfaces are then derived from the effective boundary condition. The homogenization results are proved rigorously by the F-convergence theory. © 2010 Society for Industrial and Applied Mathematics.

  6. Second relativistic mean field and virial equation of state for astrophysical simulations

    International Nuclear Information System (INIS)

    Shen, G.; Horowitz, C. J.; O'Connor, E.

    2011-01-01

    We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the virial expansion of a nonideal gas for matter at low density. For this EOS we use the RMF effective interaction FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction has a lower pressure at high densities compared to the NL3 interaction. We calculate the resulting EOS at over 100 000 grid points in the temperature range T=0 to 80 MeV, the density range n B =10 -8 to 1.6 fm -3 , and the proton fraction range Y p =0 to 0.56. We then interpolate these data points using a suitable scheme to generate a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this EOS, our NL3-based EOS, and previous EOSs by Lattimer-Swesty and H. Shen et al. for the thermodynamic properties, composition, and neutron star structure. The original FSUGold interaction produces an EOS, which we call FSU1.7, that has a maximum neutron star mass of 1.7 solar masses. A modification in the high-density EOS is introduced to increase the maximum neutron star mass to 2.1 solar masses and results in a slightly different EOS that we call FSU2.1. The EOS tables for FSU1.7 and FSU2.1 are available for download.

  7. Astrophysically Satisfactory Solutions to Einstein's R-33 Gravitational Field Equations Exterior/Interior to Static Homogeneous Oblate Spheroidal Masses

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-10-01

    Full Text Available In this article, we formulate solutions to Einstein's geometrical field equations derived using our new approach. Our field equations exterior and interior to the mass distribution have only one unknown function determined by the mass or pressure distribution. Our obtained solutions yield the unknown function as generalizations of Newton's gravitational scalar potential. Thus, our solution puts Einstein's geometrical theory of gravity on same footing with Newton's dynamical theory; with the dependence of the field on one and only one unknown function comparable to Newton's gravitational scalar potential. Our results in this article are of much significance as the Sun and planets in the solar system are known to be more precisely oblate spheroidal in geometry. The oblate spheroidal geometries of these bodies have effects on their gravitational fields and the motions of test particles and photons in these fields.

  8. Sine-Gordon equation as a model of a nonlinear scalar field in the Duffin-Kemmer formalism

    International Nuclear Information System (INIS)

    Getmanov, B.S.

    1980-01-01

    The nonlinear self-interaction of a scalar field is studied in the Minkowski space-time of an arbitrary dimension. It is shown that the sine-Gordon equation can be considered as a model of the nonlinear scalar field in the Duffin-Kemmer formalism with a specific kind of nonlinearity. The ''V-A'' type interaction is found to be equivalent to the ''complex sine-Gordon'' model. Such a new formation of the sine-Gordon equation might be useful for search for its integrable generalizations

  9. Travelling-wave amplitudes as solutions of the phase-field crystal equation

    Science.gov (United States)

    Nizovtseva, I. G.; Galenko, P. K.

    2018-01-01

    The dynamics of the diffuse interface between liquid and solid states is analysed. The diffuse interface is considered as an envelope of atomic density amplitudes as predicted by the phase-field crystal model (Elder et al. 2004 Phys. Rev. E 70, 051605 (doi:10.1103/PhysRevE.70.051605); Elder et al. 2007 Phys. Rev. B 75, 064107 (doi:10.1103/PhysRevB.75.064107)). The propagation of crystalline amplitudes into metastable liquid is described by the hyperbolic equation of an extended Allen-Cahn type (Galenko & Jou 2005 Phys. Rev. E 71, 046125 (doi:10.1103/PhysRevE.71.046125)) for which the complete set of analytical travelling-wave solutions is obtained by the method (Malfliet & Hereman 1996 Phys. Scr. 15, 563-568 (doi:10.1088/0031-8949/54/6/003); Wazwaz 2004 Appl. Math. Comput. 154, 713-723 (doi:10.1016/S0096-3003(03)00745-8)). The general solution of travelling waves is based on the function of hyperbolic tangent. Together with its set of particular solutions, the general solution is analysed within an example of specific task about the crystal front invading metastable liquid (Galenko et al. 2015 Phys. D 308, 1-10 (doi:10.1016/j.physd.2015.06.002)). The influence of the driving force on the phase-field profile, amplitude velocity and correlation length is investigated for various relaxation times of the gradient flow. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  10. From condensed matter to Higgs physics. Solving functional renormalization group equations globally in field space

    Energy Technology Data Exchange (ETDEWEB)

    Borchardt, Julia

    2017-02-07

    By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.

  11. Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations

    Science.gov (United States)

    Zhang, Lue; Wang, Xiang-Da; Liu, Xiao-Zhou; Gong, Xiu-Fen

    2015-01-01

    With converged shock wave, extracorporeal shock wave lithotripsy (ESWL) has become a preferable way to crush human calculi because of its advantages of efficiency and non-intrusion. Nonlinear spheroidal beam equations (SBE) are employed to illustrate the acoustic wave propagation for transducers with a wide aperture angle. To predict the acoustic field distribution precisely, boundary conditions are obtained for the SBE model of the monochromatic wave when the source is located on the focus of an ESWL transducer. Numerical results of the monochromatic wave propagation in water are analyzed and the influences of half-angle, fundamental frequency, and initial pressure are investigated. According to our results, with optimization of these factors, the pressure focal gain of ESWL can be enhanced and the effectiveness of treatment can be improved. Project supported by the National Basic Research Program of China (Grant Nos. 2012CB921504 and 2011CB707902), the National Natural Science Foundation of China (Grant No. 11274166), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA201401), and the China Postdoctoral Science Foundation (Grant No. 2013M531313).

  12. Equation of state of neutron-rich nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Norbert; Strohmeier, Susanne [Technische Universitaet Muenchen (Germany)

    2016-07-01

    Based on chiral effective field theory, the equation of state of neutron-rich nuclear matter is investigated systematically. The contributing diagrams include one- and two-pion exchange together with three-body terms arising from virtual Δ(1232)-isobar excitations. The proper expansion of the energy per particle, anti E(k{sub f},δ) = anti E{sub n}(k{sub f}) + δB{sub 1}(k{sub f}) + δ{sup 5/3}B{sub 5/3}(k{sub f}) + δ{sup 2}B{sub 2}(k{sub f}) +.., for the system with neutron density ρ{sub n} = k{sub f}{sup 3}(1-δ)/3π{sup 2} and proton density ρ{sub p} = k{sub f}{sup 3}δ/3π{sup 2} is performed analytically for the various interaction contributions. One observes essential structural differences to the commonly used quadratic approximation. The density dependent coefficient B{sub 1}(k{sub f}) turns out to be unrelated to the isospin-asymmetry of nuclear matter. The coefficient B{sub 5/3}(k{sub f}) of the non-analytical δ{sup 5/3}-term receives contributions from the proton kinetic energy and from the one- and two-pion exchange interactions. The physical consequences for neutron star matter are studied.

  13. Structure of the space of solutions of Einstein's equations II: Several killing fields and the Einstein-Yang-Mills equations

    Energy Technology Data Exchange (ETDEWEB)

    Arms, J.M.; Marsden, J.E.; Moncrief, V.

    1982-11-01

    The space of solutions of Einstein's vacuum equations is shown to have conical singularities at each spacetime possessing a compact Cauchy surface of constant mean curvature and a nontrivial set of Killing fields. Similar results are shown for the coupled Einstein-Yang-Mills system. Combined with an appropriate slice theorem, the results show that the space of geometrically equivalent solutions is a stratified manifold with each stratum being a symplectic manifold characterized by the symmetry type of its members. Contents: Introduction 1. The Kuranishi map and its properties. 2. The momentum constraints. 3. The Hamiltonian constraints. 4. The Einstein-Yang-Mills system. 5. Discussion and examples.

  14. Field lines of gravity, their curvature and torsion, the Lagrange and the Hamilton equations of the plumbline

    Directory of Open Access Journals (Sweden)

    E. W. Grafarend

    1997-06-01

    Full Text Available The length of the gravitational field lines/of the orthogonal trajectories of a family of gravity equipotential surfaces/of the plumbline between a terrestrial topographic point and a point on a reference equipotential surface like the geoid í also known as the orthometric height í plays a central role in Satellite Geodesy as well as in Physical Geodesy. As soon as we determine the geometry of the Earth pointwise by means of a satellite GPS (Global Positioning System: «global problem solver» we are left with the problem of converting ellipsoidal heights (geometric heights into orthometric heights (physical heights. For the computation of the plumbline we derive its three differential equations of first order as well as the three geodesic equations of second order. The three differential equations of second order take the form of a Newton differential equation when we introduce the parameter time via the Marussi gauge on a conformally flat three-dimensional Riemann manifold and the generalized force field, the gradient of the superpotential, namely the modulus of gravity squared and taken half. In particular, we compute curvature and torsion of the plumbline and prove their functional relationship to the second and third derivatives of the gravity potential. For a spherically symmetric gravity field, curvature and torsion of the plumbline are zero, the plumbline is straight. Finally we derive the three Lagrangean as well as the six Hamiltonian differential equations of the plumbline, in particular in their star form with respect to Marussi gauge.

  15. Assessment of the NCHRP abutment scour prediction equations with laboratory and field data

    Science.gov (United States)

    Benedict, Stephen T.

    2014-01-01

    The U.S. Geological Survey, in coopeation with nthe National Cooperative Highway Research Program (NCHRP) is assessing the performance of several abutment-scour predcition equations developed in NCHRP Project 24-15(2) and NCHRP Project 24-20. To accomplish this assssment, 516 laboratory and 329 fiels measurements of abutment scor were complied from selected sources and applied tto the new equations. Results will be used to identify stregths, weaknesses, and limitations of the NCHRP abutment scour equations, providing practical insights for applying the equations. This paper presents some prelimiray findings from the investigation.

  16. A novel solution to the Klein–Gordon equation in the presence of a strong rotating electric field

    Directory of Open Access Journals (Sweden)

    E. Raicher

    2015-11-01

    Full Text Available The Klein–Gordon equation in the presence of a strong electric field, taking the form of the Mathieu equation, is studied. A novel analytical solution is derived for particles whose asymptotic energy is much lower or much higher than the electromagnetic field amplitude. The condition for which the new solution recovers the familiar Volkov wavefunction naturally follows. When not satisfied, significant deviation from the Volkov wavefunction is demonstrated. The new condition is shown to differ by orders of magnitudes from the commonly used one. As this equation describes (neglecting spin effects the emission processes and the particle motion in Quantum Electrodynamics (QED cascades, our results suggest that the standard theoretical approach towards this phenomenon should be revised.

  17. A novel solution to the Klein–Gordon equation in the presence of a strong rotating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Raicher, E., E-mail: erez.raicher@mail.huji.ac.il [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Department of Applied Physics, Soreq Nuclear Research Center, Yavne 81800 (Israel); Eliezer, S. [Department of Applied Physics, Soreq Nuclear Research Center, Yavne 81800 (Israel); Nuclear Fusion Institute, Polytechnic University of Madrid, Madrid (Spain); Zigler, A. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2015-11-12

    The Klein–Gordon equation in the presence of a strong electric field, taking the form of the Mathieu equation, is studied. A novel analytical solution is derived for particles whose asymptotic energy is much lower or much higher than the electromagnetic field amplitude. The condition for which the new solution recovers the familiar Volkov wavefunction naturally follows. When not satisfied, significant deviation from the Volkov wavefunction is demonstrated. The new condition is shown to differ by orders of magnitudes from the commonly used one. As this equation describes (neglecting spin effects) the emission processes and the particle motion in Quantum Electrodynamics (QED) cascades, our results suggest that the standard theoretical approach towards this phenomenon should be revised.

  18. Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysis.

    Science.gov (United States)

    Faye, Grégory; Rankin, James; Chossat, Pascal

    2013-05-01

    The existence of spatially localized solutions in neural networks is an important topic in neuroscience as these solutions are considered to characterize working (short-term) memory. We work with an unbounded neural network represented by the neural field equation with smooth firing rate function and a wizard hat spatial connectivity. Noting that stationary solutions of our neural field equation are equivalent to homoclinic orbits in a related fourth order ordinary differential equation, we apply normal form theory for a reversible Hopf bifurcation to prove the existence of localized solutions; further, we present results concerning their stability. Numerical continuation is used to compute branches of localized solution that exhibit snaking-type behaviour. We describe in terms of three parameters the exact regions for which localized solutions persist.

  19. Second level semi-degenerate fields in W{sub 3} Toda theory: matrix element and differential equation

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudnyi, 141700 Moscow region (Russian Federation); Cao, Xiangyu [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie, Sorbonne Universités,4 Place Jussieu, 75252 Paris Cedex 05 (France); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)

    2017-03-02

    In a recent study we considered W{sub 3} Toda 4-point functions that involve matrix elements of a primary field with the highest-weight in the adjoint representation of sl{sub 3}. We generalize this result by considering a semi-degenerate primary field, which has one null vector at level two. We obtain a sixth-order Fuchsian differential equation for the conformal blocks. We discuss the presence of multiplicities, the matrix elements and the fusion rules.

  20. A rate-equation model for polarized laser-induced fluorescence to measure electric field in glow discharge He plasmas

    International Nuclear Information System (INIS)

    Takiyama, K.; Watanabe, M.; Oda, T.

    1998-01-01

    Possibility of applying polarized laser-induced fluorescence (LIF) spectroscopy for measuring the electric field in a plasma with a large collisional depolarization has been investigated. A rate equation model including the depolarization process was employed to analyze the time evolution of LIF polarization components. The polarized LIF pulse shapes observed in the sheath of a He glow discharge plasma were successfully reproduced, and the electric field distribution was obtained with high accuracy. (author)

  1. Application of parametric equations of motion to study the laser induced multiphoton dissociation of H2+ in intense laser field.

    Science.gov (United States)

    Kalita, Dhruba J; Rao, Akshay; Rajvanshi, Ishir; Gupta, Ashish K

    2011-06-14

    We have applied parametric equations of motion (PEM) to study photodissociation dynamics of H(2)(+). The resonances are extracted using smooth exterior scaling method. This is the first application of PEM to non-Hermitian Hamiltonian that includes resonances and the continuum. Here, we have studied how the different resonance states behave with respect to the change in field amplitude. The advantage of this method is that one can easily trace the different states that are changing as the field parameter changes.

  2. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using

  3. On the problem of the existence of the solutions of the nonlinear nonsingular equations of quantum field theory

    International Nuclear Information System (INIS)

    Nelipa, N.F.

    1978-01-01

    The existence of the solution of the nonlinear, singular equations of quantum field theory is discussed. By making use of the Banach's and Schauder's fixed point theorems, the condition of the existence of these equations is found. As some illustration, these methods were applied to the equations for the π-scattering on static nucleon. The investigations of the other equations of quantum field theory (Chew-Low, double dispersin relation, Green's function) lead to the similar result. The application of the Newton-Kantorovich method to the Chew-Low equations also gives the similar result. What are the causes of such situation[ The main suggestions which the author has used were that the Banach's, the Schauder's, and the Newton-Kantorovich methods were applied and the Hoelder space was choosen. It may be that the method are crude. It may be that the solutions do not belong to the Hoelder space. Now it is rather difficult to say which role each of these two suggestions plays. (Kobatake, H.)

  4. Extraction of emission parameters for large-area field emitters, using a technically complete Fowler–Nordheim-type equation

    International Nuclear Information System (INIS)

    Forbes, Richard G

    2012-01-01

    In papers on cold field electron emission from large-area field emitters (LAFEs), it has become widespread practice to publish a misleading Fowler–Nordheim-type (FN-type) equation. This equation over-predicts the LAFE-average current density by a large highly variable factor thought to usually lie between 10 3 and 10 9 . This equation, although often referenced to FN’s 1928 paper, is a simplified equation used in undergraduate teaching, does not apply unmodified to LAFEs and does not appear in the 1928 paper. Technological LAFE papers often do not cite any theoretical work more recent than 1928, and often do not comment on the discrepancy between theory and experiment. This usage has occurred widely, in several high-profile American and UK applied-science journals (including Nanotechnology), and in various other places. It does not inhibit practical LAFE development, but can give a misleading impression of potential LAFE performance to non-experts. This paper shows how the misleading equation can be replaced by a conceptually complete FN-type equation that uses three high-level correction factors. One of these, or a combination of two of them, may be useful as an additional measure of LAFE quality; this paper describes a method for estimating factor values using experimental data and discusses when it can be used. Suggestions are made for improved engineering practice in reporting LAFE results. Some of these should help to prevent situations arising whereby an equation appearing in high-profile applied-science journals is used to support statements that an engineering regulatory body might deem to involve professional negligence. (paper)

  5. Electromagnetic Field Analysis of an Electric Dipole Antenna Based on a Surface Integral Equation in Multilayered Dissipative Media

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2017-07-01

    Full Text Available In this paper, a novel method based on the Poggio–Miller–Chang-Harrington–Wu–Tsai (PMCHWT integral equation is presented to study the electromagnetic fields excited by vertical or horizontal electric dipoles in the presence of a layered region which consists of K-layered dissipative media and the air above. To transform the continuous integral equation into a block tridiagonal matrix with the feature of convenient solution, the Rao–Wilton–Glisson (RWG functions are introduced as expansion and testing functions. The electromagnetic fields excited by an electric dipole are calculated and compared with the available results, where the electric dipole antenna is buried in the non-planar air–sea–seabed, air–rock–earth–mine, and multilayered sphere structures. The analysis and computations demonstrate that the method exhibits high accuracy and solving performance in the near field propagation region.

  6. Exact solutions of the dirac equation for an electron in magnetic field with shape invariant method

    International Nuclear Information System (INIS)

    Setare, M.R.; Hatami, O.

    2008-01-01

    Based on the shape invariance property we obtain exact solutions of the Virac equation for an electron moving in the presence of a certain varying magnetic Geld, then we also show its non-relativistic limit. (authors)

  7. Sound field computations in the Bay of Bengal using parabolic equation method

    Digital Repository Service at National Institute of Oceanography (India)

    Navelkar, G.S.; Somayajulu, Y.K.; Murty, C.S.

    Effect of the cold core eddy in the Bay of Bengal on acoustic propagation was analysed by parabolic equation (PE) method. Source depth, frequency and propagation range considered respectively for the two numerical experiments are 150 m, 400 Hz, 650...

  8. Field equations of the gauge theory of gravitation originate from a quadratic Lagrangian with torsion

    International Nuclear Information System (INIS)

    Gogala, B.

    1983-01-01

    The equations of the gauge theory of gravitation are derived from a complex quadratic Lagrangian with torsion. The derivation is performed in a coordinate basis in a completely covariant way. (author)

  9. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  10. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation

    Science.gov (United States)

    Yu, Li-Li; Shou, Wen-De; Hui, Chun

    2012-02-01

    A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov—Zabolotskaya—Kuznetsov (KZK) model, respectively. Axial dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field.

  11. Accurate nonadiabatic quantum dynamics on the cheap: making the most of mean field theory with master equations.

    Science.gov (United States)

    Kelly, Aaron; Brackbill, Nora; Markland, Thomas E

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  12. An initial response of magnetic fields at geosynchronous orbit to Pi 2 onset as observed from the dip-equator

    Directory of Open Access Journals (Sweden)

    O. Saka

    1998-05-01

    Full Text Available Fluxgate magnetometer data recorded at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00 with higher accuracy of timing (0.1 s and amplitude resolution (0.01 nT were utilized to survey an onset of Pi 2 pulsations in the midnight sector (2100–0100 LT during PROMIS (Polar Region and Outer Magnetosphere International Study periods (1 March–20 June, 1986. It is found that changing field line magnitude and vector as observed by magnetometer on board the synchronous satellites in the midnight sector often takes place simultaneously with the onset of Pi 2 pulsations at the dip-equator. The field disturbances that follow thereafter tend to last for some time both at the geosynchronous altitudes and the dip-equator. In this report, we examine the initial response of the field lines in space, and attempt to classify how the field line vector changed in the meridional plane. Key words. Magnetospheric physics · Magnetospheric configuration and dynamics · MHD waves and instabilities · Plasmasphere

  13. An initial response of magnetic fields at geosynchronous orbit to Pi 2 onset as observed from the dip-equator

    Directory of Open Access Journals (Sweden)

    O. Saka

    Full Text Available Fluxgate magnetometer data recorded at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00 with higher accuracy of timing (0.1 s and amplitude resolution (0.01 nT were utilized to survey an onset of Pi 2 pulsations in the midnight sector (2100–0100 LT during PROMIS (Polar Region and Outer Magnetosphere International Study periods (1 March–20 June, 1986. It is found that changing field line magnitude and vector as observed by magnetometer on board the synchronous satellites in the midnight sector often takes place simultaneously with the onset of Pi 2 pulsations at the dip-equator. The field disturbances that follow thereafter tend to last for some time both at the geosynchronous altitudes and the dip-equator. In this report, we examine the initial response of the field lines in space, and attempt to classify how the field line vector changed in the meridional plane.

    Key words. Magnetospheric physics · Magnetospheric configuration and dynamics · MHD waves and instabilities · Plasmasphere

  14. Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Aaron; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Brackbill, Nora [Department of Physics, Stanford University, Stanford, California 94305 (United States)

    2015-03-07

    In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.

  15. Weyl consistency conditions and a local renormalisation group equation for general renormalisable field theories

    International Nuclear Information System (INIS)

    Osborn, H.

    1991-01-01

    A local renormalisation group equation which realises infinitesimal Weyl rescalings of the metric and which is an extension of the usual Callan-Symanzik equation is described. In order to ensure that any local composite operators, with dimensions so that on addition to the basic lagrangian they preserve renormalisability, are well defined for arbitrarily many insertions into correlation functions the couplings are assumed to depend on χ. Local operators are then defined by functional differentiation with respect to the couplings just as the energy-momentum tensor is given by functional differentiation with respect to the metric. The local renormalisation group equation contains terms depending on derivatives of the couplings as well as the curvature tensor formed from the metric, constrained by power counting. Various consistency relations arising from the commutativity of Weyl transformations are derived, extending previous one-loop results for the trace anomaly to all orders. In two dimensions the relations give an alternative derivation of the c-theorem and similar extensions are obtained in four dimensions. The equations are applied in detail to general renormalisable σ-models in two dimensions. The Curci-Paffuti relation is derived without any commitment to a particular regularisation scheme and further equations used to construct an action for the vanishing of the β-functions are also obtained. The discussion is also extended to σ-models with a boundary, as appropriate for open strings, and relations for the additional β-functions present in such models are obtained. (orig.)

  16. Lumping of degree-based mean-field and pair-approximation equations for multistate contact processes

    Science.gov (United States)

    Kyriakopoulos, Charalampos; Grossmann, Gerrit; Wolf, Verena; Bortolussi, Luca

    2018-01-01

    Contact processes form a large and highly interesting class of dynamic processes on networks, including epidemic and information-spreading networks. While devising stochastic models of such processes is relatively easy, analyzing them is very challenging from a computational point of view, particularly for large networks appearing in real applications. One strategy to reduce the complexity of their analysis is to rely on approximations, often in terms of a set of differential equations capturing the evolution of a random node, distinguishing nodes with different topological contexts (i.e., different degrees of different neighborhoods), such as degree-based mean-field (DBMF), approximate-master-equation (AME), or pair-approximation (PA) approaches. The number of differential equations so obtained is typically proportional to the maximum degree kmax of the network, which is much smaller than the size of the master equation of the underlying stochastic model, yet numerically solving these equations can still be problematic for large kmax. In this paper, we consider AME and PA, extended to cope with multiple local states, and we provide an aggregation procedure that clusters together nodes having similar degrees, treating those in the same cluster as indistinguishable, thus reducing the number of equations while preserving an accurate description of global observables of interest. We also provide an automatic way to build such equations and to identify a small number of degree clusters that give accurate results. The method is tested on several case studies, where it shows a high level of compression and a reduction of computational time of several orders of magnitude for large networks, with minimal loss in accuracy.

  17. Symmetry Analysis of Gauge-Invariant Field Equations via a Generalized Harrison-Estabrook Formalism.

    Science.gov (United States)

    Papachristou, Costas J.

    The Harrison-Estabrook formalism for the study of invariance groups of partial differential equations is generalized and extended to equations that define, through their solutions, sections on vector bundles of various kinds. Applications include the Dirac, Yang-Mills, and self-dual Yang-Mills (SDYM) equations. The latter case exhibits interesting connections between the internal symmetries of SDYM and the existence of integrability characteristics such as a linear ("inverse scattering") system and Backlund transformations (BT's). By "verticalizing" the generators of coordinate point transformations of SDYM, nine nonlocal, generalized (as opposed to local, point) symmetries are constructed. The observation is made that the prolongations of these symmetries are parametric BT's for SDYM. It is thus concluded that the entire point group of SDYM contributes, upon verticalization, BT's to the system.

  18. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Nungesser, Ernesto; Rendall, Alan D [Max-Planck-Institut fuer Gravitationsphysik, Albert-Einstein-Institut, Am Muehlenberg 1, 14476 Potsdam (Germany)

    2009-05-21

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  19. Strong cosmic censorship for solutions of the Einstein-Maxwell field equations with polarized Gowdy symmetry

    International Nuclear Information System (INIS)

    Nungesser, Ernesto; Rendall, Alan D

    2009-01-01

    A proof of strong cosmic censorship is presented for a class of solutions of the Einstein-Maxwell equations, those with polarized Gowdy symmetry. A key element of the argument is the observation that by means of a suitable choice of variables the central equations in this problem can be written in a form where they are identical to the central equations for general (i.e. non-polarized) vacuum Gowdy spacetimes. Using this, it is seen that the deep results of Ringstroem on strong cosmic censorship in the vacuum case have implications for the Einstein-Maxwell case. Working out the geometrical meaning of these analytical results leads to the main conclusion.

  20. Possible applications of the ion beams technique for investigations in the field of equation of state

    International Nuclear Information System (INIS)

    Kanel, G.I.; Fortov, V.E.; Baumung, K.; Bluhm, H.

    1998-01-01

    The shock wave generation through the interaction of a high-power ion beam with condensed targets is considered with a goal to reveal possible ways to study the equations of state of matter using ion beams. The equation of state is thought about in an extended interpretation including the relaxation processes, such as phase transitions, chemical reactions, and stress relaxation. Advantages of the beam-driven generation of the high-energy states and possible areas of competition with more conventional technique are discussed. (orig.)

  1. Functional stochastic differential equations: mathematical theory of nonlinear parabolic systems with applications in field theory and statistical mechanics

    International Nuclear Information System (INIS)

    Doering, C.R.

    1985-01-01

    Applications of nonlinear parabolic stochastic differential equations with additive colored noise in equilibrium and nonequilibrium statistical mechanics and quantum field theory are developed in detail, providing a new unified mathematical approach to many problems. The existence and uniqueness of solutions to these equations is established, and some of the properties of the solutions are investigated. In particular, asymptotic expansions for the correlation functions of the solutions are introduced and compared to rigorous nonperturbative bounds on the moments. It is found that the perturbative analysis is in qualitative disagreement with the exact result in models corresponding to cut-off self-interacting nonperturbatively renormalizable scalar quantum field theories. For these theories the nonlinearities cannot be considered as perturbations of the linearized theory

  2. Metric in a static cylindrical elastic medium and in an empty rotating frame as solutions of Einstein's field equations

    International Nuclear Information System (INIS)

    Gron, O.

    1982-01-01

    Using the Weyl-type canonical coordinates, an integration of Einstein's field equations in the cylindrosymmetric case considered by Kursunoglu is reexamined. It is made clear that the resulting metric is not describing the spacetime in a rotating frame, but in a static cylindrical elastic medium. The conclusion of Kursunoglu that ''for an observer on a rotating disk there is no way of escape from a curved spacetime'' is therefore not valid. The metric in an empty rotating frame is found as a solution of Einstein's field equations, and is not orthogonal. It is shown that the corresponding orthogonal solution represents spacetime in an inertial frame expressed in cylindrical coordinates. Introducing a noncoordinate basis, the metric in a rotating frame is given the static form of Kursunoglu's solution. The essential role played by the nonvanishing structure coefficients in this case is made clear

  3. Empirical equation to let reproducing the temperature field of air around a horizontal isothermal cylinder in natural convection case

    International Nuclear Information System (INIS)

    Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.

    1988-01-01

    The analysis of 7.000 measured pairs of values, distance-temperature, of air around a horizontal isothermal cylinder has made possible to obtain an empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same given for other authors. (Author)

  4. Empirical equation to let reproducing the temperature field of air around a horizontal isothermal cylinder in natural convection case

    Energy Technology Data Exchange (ETDEWEB)

    Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.

    1988-01-01

    The analysis of more or 7.000 measured pairs of values, diatance-temperature, of air around a horizontal isothermal cylinder has made it possible to obtain a empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same fiven for others authors

  5. The order parameter equations of superfluid Fermi-liquid with spin-triplet pairing near Tc in magnetic field

    International Nuclear Information System (INIS)

    Tarasov, A.N.

    1995-01-01

    The article is devoted to description of equilibrium properties of superfluid phases of 3 He in magnetic field at temperatures near the normal-superfluid point T c . The Landau Fermi-liquid (F-L) approach generalized to superfluid Fermi-liquids (SFLs) is used. Equations for the order parameter paramagnetic SFL with spin-triplet pairing in static and uniform (DC) moderately strong magnetic field are derived without taking into account strong-coupling (SC) effects. An integro-differential equation is deduced for the order parameter in the general case of spin-triplet pairing (spin of a pair is s = 1, orbital moment l of a pair is any odd number). It is valid in the approximation of small space inhomogeneities of the SFL for external DC magnetic field at temperatures near T c . In the case of spin-triplet p-wave pairing a Ginzburg-Landau (GL) equation is derived for the order parameter A αj (complex 3 x 3 matrix). Corrections to the coefficients in the GL eq. are resulted from taking into account the influence of moderately strong DC magnetic field and spin-exchange F-L interaction by the theory of permutations. In such fields these corrections can be of the same order of magnitude as the so-called > SC corrections to the GL eq. (or even exceed them) and are much higher than the particle-hole asymmetric contribution. The above corrections are connected with deformation of the order parameter in moderate magnetic fields and are of interest at description of 3 He - B at low pressures

  6. Equations of motion for a radiating charged particle in electromagnetic fields on curved spacetime

    International Nuclear Information System (INIS)

    Prasanna, A.R.

    1982-11-01

    In this note we present the equations of motion for a radiating charged particle in the framework of general relativity and give a formal procedure of solving the system numerically using iterations, when the motion is confined to the equatorial plane. (author)

  7. Explicit solution of the Volterra integral equation for transient fields on inhomogeneous arbitrarily shaped dielectric bodies

    KAUST Repository

    Al Jarro, Ahmed

    2011-09-01

    A new predictor-corrector scheme for solving the Volterra integral equation to analyze transient electromagnetic wave interactions with arbitrarily shaped inhomogeneous dielectric bodies is considered. Numerical results demonstrating stability and accuracy of the proposed method are presented. © 2011 IEEE.

  8. Light propagation in finite-sized photonic crystals: multiple scattering using an electric field integral equation

    DEFF Research Database (Denmark)

    Kristensen, Philip Trøst; Lodahl, Peter; Mørk, Jesper

    2010-01-01

    We present an accurate, stable, and efficient solution to the Lippmann–Schwinger equation for electromagnetic scattering in two dimensions. The method is well suited for multiple scattering problems and may be applied to problems with scatterers of arbitrary shape or non-homogenous background mat...

  9. Spectral fitting method for the solution of time-dependent Schroedinger equations: Applications to atoms in intense laser fields

    International Nuclear Information System (INIS)

    Qiao Haoxue; Cai Qingyu; Rao Jianguo; Li Baiwen

    2002-01-01

    A spectral fitting method for solving the time-dependent Schroedinger equation has been developed and applied to the atom in intense laser fields. This method allows us to obtain a highly accurate time-dependent wave function with a contribution from the high-order term of Δt. Moreover, the time-dependent wave function is determined on a small number of discrete mesh points, thus making calculations simple and accurate. This method is illustrated by computing wave functions and harmonic generation spectra of a model atom in laser fields

  10. A class of algebraically general solutions of the Einstein-Maxwell equations for non-null electromagnetic fields

    International Nuclear Information System (INIS)

    Tupper, B.O.J.

    1976-01-01

    In a previous article (Gen. Rel. Grav.; 6 : 345 (1975)) the Einstein-Maxwell field equations for non-null electromagnetic fields were studied under the conditions that the null tetrad is parallel-propagated along both principal null congruences. A solution with twist and shear, but no expansion, was found and was conjectured to be the only expansion-free solution. Here it is shown that this conjecture is false; the general expansion-free solution is found to be a family of space-times depending on a single constant parameter which is the ratio of the (constant) twists of the two principal null congruences. (author)

  11. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations

    Directory of Open Access Journals (Sweden)

    Olivier Sarbach

    2012-08-01

    Full Text Available Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

  12. Continuum and Discrete Initial-Boundary Value Problems and Einstein's Field Equations.

    Science.gov (United States)

    Sarbach, Olivier; Tiglio, Manuel

    2012-01-01

    Many evolution problems in physics are described by partial differential equations on an infinite domain; therefore, one is interested in the solutions to such problems for a given initial dataset. A prominent example is the binary black-hole problem within Einstein's theory of gravitation, in which one computes the gravitational radiation emitted from the inspiral of the two black holes, merger and ringdown. Powerful mathematical tools can be used to establish qualitative statements about the solutions, such as their existence, uniqueness, continuous dependence on the initial data, or their asymptotic behavior over large time scales. However, one is often interested in computing the solution itself, and unless the partial differential equation is very simple, or the initial data possesses a high degree of symmetry, this computation requires approximation by numerical discretization. When solving such discrete problems on a machine, one is faced with a finite limit to computational resources, which leads to the replacement of the infinite continuum domain with a finite computer grid. This, in turn, leads to a discrete initial-boundary value problem. The hope is to recover, with high accuracy, the exact solution in the limit where the grid spacing converges to zero with the boundary being pushed to infinity. The goal of this article is to review some of the theory necessary to understand the continuum and discrete initial boundary-value problems arising from hyperbolic partial differential equations and to discuss its applications to numerical relativity; in particular, we present well-posed initial and initial-boundary value formulations of Einstein's equations, and we discuss multi-domain high-order finite difference and spectral methods to solve them.

  13. Quasiseparation of variables in the Schroedinger equation with a magnetic field

    International Nuclear Information System (INIS)

    Charest, F.; Hudon, C.; Winternitz, P.

    2007-01-01

    We consider a two-dimensional integrable Hamiltonian system with a vector and scalar potential in quantum mechanics. Contrary to the case of a pure scalar potential, the existence of a second order integral of motion does not guarantee the separation of variables in the Schroedinger equation. We introduce the concept of 'quasiseparation of variables' and show that in many cases it allows us to reduce the calculation of the energy spectrum and wave functions to linear algebra

  14. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  15. A solver for General Unilateral Polynomial Matrix Equation with Second-Order Matrices Over Prime Finite Fields

    Science.gov (United States)

    Burtyka, Filipp

    2018-03-01

    The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.

  16. Numerical investigation of renormalization group equations in a model of vector field advected by anisotropic stochastic environment

    International Nuclear Information System (INIS)

    Busa, J.; Ajryan, Eh.A.; Jurcisinova, E.; Jurcisin, M.; Remecky, R.

    2009-01-01

    Using the field-theoretic renormalization group, the influence of strong uniaxial small-scale anisotropy on the stability of inertial-range scaling regimes in a model of passive transverse vector field advected by an incompressible turbulent flow is investigated. The velocity field is taken to have a Gaussian statistics with zero mean and defined noise with finite time correlations. It is shown that the inertial-range scaling regimes are given by the existence of infrared stable fixed points of the corresponding renormalization group equations with some angle integrals. The analysis of integrals is given. The problem is solved numerically and the borderline spatial dimension d e (1,3] below which the stability of the scaling regime is not present is found as a function of anisotropy parameters

  17. Analytical solutions of the Schroedinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang [Department of Physics, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-05-15

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schroedinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  18. Modeling of Focused Acoustic Field of a Concave Multi-annular Phased Array Using Spheroidal Beam Equation

    International Nuclear Information System (INIS)

    Yu Lili; Shou Wende; Hui Chun

    2012-01-01

    A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov-Zabolotskaya-Kuznetsov (KZK) model, respectively. Axial dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  19. From pure spinors to quantum physics and to some classical field equations like Maxwell's and gravitational

    International Nuclear Information System (INIS)

    Budinich, Paolo

    2009-03-01

    In a previous paper we proposed a purely mathematical way to quantum mechanics based on Cartan's simple spinors in their most elementary form of 2 components spinors. Here we proceed along that path proposing, this time, a symmetric tensor, quadrilinear in simple spinors, as a candidate for the symmetric tensor of general relativity. The procedure resembles closely that in which one builds bilinearly from simple spinors an asymmetric electromagnetic tensor, from which easily descend Maxwell's equations and the photon can be seen as a bilinear combination of neutrinos. Here Lorentzian spaces result compact, building up spheres, where hopefully the problems of the Standard Model could be solved. (author)

  20. A set of exact two soliton wave solutions to Einstein field equations

    International Nuclear Information System (INIS)

    Wang Youtang; He Zhixian

    1991-09-01

    A set of exact solutions of Einstein equations in vacuum is obtained. Taking this set of solutions as seed solutions and making use of the Belinsky-Zakharov generation technique a set of generated solutions is constructed. Both set of exact solutions and a set of generated solutions describe two solition waves, which propagate in opposite directions and collide with each other, and then recover their original shapes. The singularities of the two set of solutions are analyzed. The relationship between our solutions and other solutions is also discussed. (author). 11 refs, 4 figs

  1. Analysis of nonlinear parabolic equations modeling plasma diffusion across a magnetic field

    International Nuclear Information System (INIS)

    Hyman, J.M.; Rosenau, P.

    1984-01-01

    We analyse the evolutionary behavior of the solution of a pair of coupled quasilinear parabolic equations modeling the diffusion of heat and mass of a magnetically confined plasma. The solutions's behavior, due to the nonlinear diffusion coefficients, exhibits many new phenomena. In short time, the solution converges into a highly organized symmetric pattern that is almost completely independent of initial data. The asymptotic dynamics then become very simple and take place in a finite dimensional space. These conclusions are backed by extensive numerical experimentation

  2. Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in φ4-Theory

    International Nuclear Information System (INIS)

    Finster, Felix; Tolksdorf, Juergen

    2012-01-01

    Solutions of the classical φ 4 -theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a ''classical measurement process'' in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.

  3. Bosonic Loop Diagrams as Perturbative Solutions of the Classical Field Equations in ϕ4-Theory

    Science.gov (United States)

    Finster, Felix; Tolksdorf, Jürgen

    2012-05-01

    Solutions of the classical ϕ4-theory in Minkowski space-time are analyzed in a perturbation expansion in the nonlinearity. Using the language of Feynman diagrams, the solution of the Cauchy problem is expressed in terms of tree diagrams which involve the retarded Green's function and have one outgoing leg. In order to obtain general tree diagrams, we set up a "classical measurement process" in which a virtual observer of a scattering experiment modifies the field and detects suitable energy differences. By adding a classical stochastic background field, we even obtain all loop diagrams. The expansions are compared with the standard Feynman diagrams of the corresponding quantum field theory.

  4. Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model with second-order field equations.

    Science.gov (United States)

    Gao, Xian; Kobayashi, Tsutomu; Yamaguchi, Masahide; Yokoyama, Jun'ichi

    2011-11-18

    We completely clarify the feature of primordial non-Gaussianities of tensor perturbations in the most general single-field inflation model with second-order field equations. It is shown that the most general cubic action for the tensor perturbation h(ij) is composed only of two contributions, one with two spacial derivatives and the other with one time derivative on each h(ij). The former is essentially identical to the cubic term that appears in Einstein gravity and predicts a squeezed shape, while the latter newly appears in the presence of the kinetic coupling to the Einstein tensor and predicts an equilateral shape. Thus, only two shapes appear in the graviton bispectrum of the most general single-field inflation model, which could open a new clue to the identification of inflationary gravitational waves in observations of cosmic microwave background anisotropies as well as direct detection experiments.

  5. Derivation of the formalism for neutrino matter oscillations from the neutrino relativistic field equations

    International Nuclear Information System (INIS)

    Mannheim, P.D.

    1988-01-01

    We derive the standard formalism of Mikheyev, Smirnov, and Wolfenstein for the oscillation of neutrinos in matter taking into account the Lorentz and second-quantized structure of the neutrino fields. We consider neutrinos with Dirac or Majorana masses

  6. Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in an ultrastrong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2011-01-01

    Spin-polarized states in dense neutron matter with the recently developed Skyrme effective interaction (BSk20 parametrization) are considered in the magnetic fields H up to 10 20 G at finite temperature. In a strong magnetic field, the total pressure in neutron matter is anisotropic, and the difference between the pressures parallel and perpendicular to the field direction becomes significant at H>H th ∼10 18 G. The longitudinal pressure decreases with the magnetic field and vanishes in the critical field 10 18 c 19 G, resulting in the longitudinal instability of neutron matter. With increasing temperature, the threshold H th and critical H c magnetic fields also increase. The appearance of the longitudinal instability prevents the formation of a fully spin-polarized state in neutron matter and only the states with moderate spin polarization are accessible. The anisotropic equation of state is determined at densities and temperatures relevant to the interiors of magnetars. The entropy of strongly magnetized neutron matter turns out to be larger than the entropy of nonpolarized matter. This is caused by some specific details in the dependence of the entropy on the effective masses of neutrons with spin up and spin down in a polarized state.

  7. Solution of Einstein's Geometrical Gravitational Field Equations Exterior to Astrophysically Real or Hypothetical Time Varying Distributions of Mass within Regions of Spherical Geometry

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-07-01

    Full Text Available Here, we present a profound and complete analytical solution to Einstein’s gravitational field equations exterior to astrophysically real or hypothetical time varying distribu- tions of mass or pressure within regions of spherical geometry. The single arbitrary function f in our proposed exterior metric tensor and constructed field equations makes our method unique, mathematically less combersome and astrophysically satisfactory. The obtained solution of Einstein’s gravitational field equations tends out to be a gen- eralization of Newton’s gravitational scalar potential exterior to the spherical mass or pressure distribution under consideration

  8. q-deformed superstatistics of the Schrödinger equation in commutative and noncommutative spaces with magnetic field

    Science.gov (United States)

    Sargolzaeipor, S.; Hassanabadi, H.; Chung, W. S.

    2018-01-01

    We discuss the q-deformed algebra and study the Schrödinger equation in commutative and noncommutative spaces, under an external magnetic field. In this work, we obtain the energy spectrum by an analytical method and the thermodynamic properties of the system by using the q-deformed superstatistics are calculated. Actually, we derive a generalized version of the ordinary superstatistic for the non-equilibrium systems. Also, different effective Boltzmann factor descriptions are derived. In addition, we discuss about the results for various values of θ in commutative and noncommutative spaces and, to illustrate the results, some figures are plotted.

  9. Solution of Poisson equations for 3-dimensional grid generations. [computations of a flow field over a thin delta wing

    Science.gov (United States)

    Fujii, K.

    1983-01-01

    A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.

  10. Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    An explicit marching on-in-time (MOT) scheme for solving the time-domain magnetic field integral equation (TD-MFIE) is presented. The proposed MOT-TD-MFIE solver uses Rao-Wilton-Glisson basis functions for spatial discretization and a PE(CE)m-type linear multistep method for time marching. Unlike previous explicit MOT-TD-MFIE solvers, the time step size can be chosen as large as that of the implicit MOT-TD-MFIE solvers without adversely affecting accuracy or stability. An algebraic stability analysis demonstrates the stability of the proposed explicit solver; its accuracy and efficiency are established via numerical examples. © 1963-2012 IEEE.

  11. Marching on-in-time solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda

    2013-08-01

    An explicit marching on-in-time (MOT) scheme for solving the time-domain magnetic field integral equation (TD-MFIE) is presented. The proposed MOT-TD-MFIE solver uses Rao-Wilton-Glisson basis functions for spatial discretization and a PE(CE)m-type linear multistep method for time marching. Unlike previous explicit MOT-TD-MFIE solvers, the time step size can be chosen as large as that of the implicit MOT-TD-MFIE solvers without adversely affecting accuracy or stability. An algebraic stability analysis demonstrates the stability of the proposed explicit solver; its accuracy and efficiency are established via numerical examples. © 1963-2012 IEEE.

  12. Semi-simple continued fractions and diophantine equations for real quadratic fields

    International Nuclear Information System (INIS)

    Zhang Xianke.

    1994-09-01

    Main theorem: the equation x 2 - my 2 = c has an integer solution if and only if c = (-1) i Q i for some semi-simple continued-fraction expansion √m = [b 0 , b 1 , b 2 , ...] and some 0 ≤ i is an element of Z, where Q i denotes the i-th complete denominator of the expansion, i.e. [b i , b i+1 ,...] = (√m + P i )/Q i (P i , Q i is an element of Z). Here by semi-simple one means b i could be negative (and positive) integers. Such expansion with minimal modul Q i are also discussed. (author). 9 refs

  13. Necessary and sufficient conditions for the existence of a lagrangian in field theory. III. Generalized analytic representations of tensorial field equations

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1977-01-01

    In this paper we first study the equivalence transformations of class C 2 , regular, tensorial, quasi-linear systems of field which (a) preserve the continuity, regularity, and quasi-linear structure of the systems; and (b) occur within a fixed system of Minkowski coordinates and field components. We identify, among the transformations of this class, those which either induce or preserve a self-adjoint structure of the field equations and we term them genotopic and isotopic transformations, respectively. We then give the necessary and sufficient conditions for an equivalence transformation of the above type to be either genotopic or isotopic. By using this methodology, we then extend the theorem on the necessary and sufficient condition for the existence of ordered direct analytic representations introduced in the preceding paper to the case of ordered indirect analytic representations in terms of the conventional Lagrange equations; we introduce a method for the construction of a Lagrangian, when it exists, in this broader context; and we explore some implications of the underlying methodology for the problem of the structure of the Lagrangian capable of representing interactions within the framework of the indirect analytic representations. Some of the several aspects which demand an inspection prior to the use of this analytic approach in actual models are pointed out.In particular, we indicate a possible deep impact in the symmetries and conservation laws of the system generated by the use of the concept of indirect analytic representation

  14. Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations

    KAUST Repository

    Bogaert, Ignace

    2014-02-01

    The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers. It is proved that, at low frequencies, the frequency scaling of the nonsolenoidal part of the solution current can be incorrect for the standard discretization. In addition, it is proved that the frequency scaling obtained with the mixed discretization is correct. The reason for this problem in the standard discretization scheme is the absence of exact solenoidal currents in the rotated RWG finite element space. The adoption of the mixed discretization scheme eliminates this problem and leads to a well-conditioned system of linear equations that remains accurate at low frequencies. Numerical results confirm these theoretical predictions and also show that, when the frequency is lowered, a finer and finer mesh is required to keep the accuracy constant with the standard discretization. © 1963-2012 IEEE.

  15. An explicit marching on-in-time solver for the time domain volume magnetic field integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2014-07-01

    Transient scattering from inhomogeneous dielectric objects can be modeled using time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marching on-in-time (MOT) techniques. Classical MOT-TDVIE solvers expand the field induced on the scatterer using local spatio-temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation in space and time yields a system of equations that is solved by time marching. Depending on the type of the basis and testing functions and the time step, the time marching scheme can be implicit (N. T. Gres, et al., Radio Sci., 36(3), 379-386, 2001) or explicit (A. Al-Jarro, et al., IEEE Trans. Antennas Propag., 60(11), 5203-5214, 2012). Implicit MOT schemes are known to be more stable and accurate. However, under low-frequency excitation, i.e., when the time step size is large, they call for inversion of a full matrix system at very time step.

  16. Superconductivity a new approach based on the Bethe-Salpeter equation in the mean-field approximation

    CERN Document Server

    Malik, G P

    2016-01-01

    Given the Debye temperature of an elemental superconductor (SC) and its Tc, BCS theory enables one to predict the value of its gap 0 at T = 0, or vice versa. This monograph shows that non-elemental SCs can be similarly dealt with via the generalized BCS equations (GBCSEs) which, given any two parameters of the set {Tc, 10, 20 > 10}, enable one to predict the third. Also given herein are new equations for the critical magnetic field and critical current density of an elemental and a non-elemental SC — equations that are derived directly from those that govern pairing in them. The monograph includes topics that are usually not covered in any one text on superconductivity, e.g., BCS-BEC crossover physics, the long-standing puzzle posed by SrTiO3, and heavy-fermion superconductors — all of which are still imperfectly understood and therefore continue to avidly engage theoreticians. It suggests that addressing the Tcs, s and other properties (e.g., number densities of charge carriers) of high-Tc SCs via GBCSE...

  17. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baozn; Chen Liewen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, while the resulting density dependence of the symmetry energy at sub-saturation densities agrees with that extracted from the recent isospin diffusion data from intermediate energy heavy-ion reactions. The resulting equations of state have the special feature of being soft at intermediate densities but stiff at high densities naturally. With these constrained equations of state, it is found that the radius of a 1.4M o canonical neutron star is in the range of 11.9 km≤R≤13.1 km, and the maximum neutron star mass is around 2.0M o close to the recent observations

  18. An explicit marching on-in-time solver for the time domain volume magnetic field integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    Transient scattering from inhomogeneous dielectric objects can be modeled using time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marching on-in-time (MOT) techniques. Classical MOT-TDVIE solvers expand the field induced on the scatterer using local spatio-temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation in space and time yields a system of equations that is solved by time marching. Depending on the type of the basis and testing functions and the time step, the time marching scheme can be implicit (N. T. Gres, et al., Radio Sci., 36(3), 379-386, 2001) or explicit (A. Al-Jarro, et al., IEEE Trans. Antennas Propag., 60(11), 5203-5214, 2012). Implicit MOT schemes are known to be more stable and accurate. However, under low-frequency excitation, i.e., when the time step size is large, they call for inversion of a full matrix system at very time step.

  19. Transverse Field Dispersion in the Generalized Nonlinear Schrödinger Equation: Four Wave Mixing in a Higher Order Mode Fiber

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Cheng, Ji; Xu, Chris

    2013-01-01

    An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard...

  20. Self-consistent field theory of collisions: Orbital equations with asymptotic sources and self-averaged potentials

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Y.K., E-mail: ykhahn22@verizon.net

    2014-12-15

    The self-consistent field theory of collisions is formulated, incorporating the unique dynamics generated by the self-averaged potentials. The bound state Hartree–Fock approach is extended for the first time to scattering states, by properly resolving the principal difficulties of non-integrable continuum orbitals and imposing complex asymptotic conditions. The recently developed asymptotic source theory provides the natural theoretical basis, as the asymptotic conditions are completely transferred to the source terms and the new scattering function is made fullyintegrable. The scattering solutions can then be directly expressed in terms of bound state HF configurations, establishing the relationship between the bound and scattering state solutions. Alternatively, the integrable spin orbitals are generated by constructing the individual orbital equations that contain asymptotic sources and self-averaged potentials. However, the orbital energies are not determined by the equations, and a special channel energy fixing procedure is developed to secure the solutions. It is also shown that the variational construction of the orbital equations has intrinsic ambiguities that are generally associated with the self-consistent approach. On the other hand, when a small subset of open channels is included in the source term, the solutions are only partiallyintegrable, but the individual open channels can then be treated more simply by properly selecting the orbital energies. The configuration mixing and channel coupling are then necessary to complete the solution. The new theory improves the earlier continuum HF model. - Highlights: • First extension of HF to scattering states, with proper asymptotic conditions. • Orbital equations with asymptotic sources and integrable orbital solutions. • Construction of self-averaged potentials, and orbital energy fixing. • Channel coupling and configuration mixing, involving the new orbitals. • Critical evaluation of the

  1. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2014-07-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.

  2. Interpreting the Coulomb-field approximation for generalized-Born electrostatics using boundary-integral equation theory.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2008-10-14

    The importance of molecular electrostatic interactions in aqueous solution has motivated extensive research into physical models and numerical methods for their estimation. The computational costs associated with simulations that include many explicit water molecules have driven the development of implicit-solvent models, with generalized-Born (GB) models among the most popular of these. In this paper, we analyze a boundary-integral equation interpretation for the Coulomb-field approximation (CFA), which plays a central role in most GB models. This interpretation offers new insights into the nature of the CFA, which traditionally has been assessed using only a single point charge in the solute. The boundary-integral interpretation of the CFA allows the use of multiple point charges, or even continuous charge distributions, leading naturally to methods that eliminate the interpolation inaccuracies associated with the Still equation. This approach, which we call boundary-integral-based electrostatic estimation by the CFA (BIBEE/CFA), is most accurate when the molecular charge distribution generates a smooth normal displacement field at the solute-solvent boundary, and CFA-based GB methods perform similarly. Conversely, both methods are least accurate for charge distributions that give rise to rapidly varying or highly localized normal displacement fields. Supporting this analysis are comparisons of the reaction-potential matrices calculated using GB methods and boundary-element-method (BEM) simulations. An approximation similar to BIBEE/CFA exhibits complementary behavior, with superior accuracy for charge distributions that generate rapidly varying normal fields and poorer accuracy for distributions that produce smooth fields. This approximation, BIBEE by preconditioning (BIBEE/P), essentially generates initial guesses for preconditioned Krylov-subspace iterative BEMs. Thus, iterative refinement of the BIBEE/P results recovers the BEM solution; excellent agreement

  3. Monte Carlo steps per spin vs. time in the master equation II: Glauber kinetics for the infinite-range ising model in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)

    2006-01-15

    As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.

  4. Unified field theory from the classical wave equation: Preliminary application to atomic and nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Múnera, Héctor A., E-mail: hmunera@hotmail.com [Centro Internacional de Física (CIF), Apartado Aéreo 4948, Bogotá, Colombia, South America (Colombia); Retired professor, Department of Physics, Universidad Nacional de Colombia, Bogotá, Colombia, South America (Colombia)

    2016-07-07

    It is postulated that there exists a fundamental energy-like fluid, which occupies the flat three-dimensional Euclidean space that contains our universe, and obeys the two basic laws of classical physics: conservation of linear momentum, and conservation of total energy; the fluid is described by the classical wave equation (CWE), which was Schrödinger’s first candidate to develop his quantum theory. Novel solutions for the CWE discovered twenty years ago are nonharmonic, inherently quantized, and universal in the sense of scale invariance, thus leading to quantization at all scales of the universe, from galactic clusters to the sub-quark world, and yielding a unified Lorentz-invariant quantum theory ab initio. Quingal solutions are isomorphic under both neo-Galilean and Lorentz transformations, and exhibit nother remarkable property: intrinsic unstability for large values of ℓ (a quantum number), thus limiting the size of each system at a given scale. Unstability and scale-invariance together lead to nested structures observed in our solar system; unstability may explain the small number of rows in the chemical periodic table, and nuclear unstability of nuclides beyond lead and bismuth. Quingal functions lend mathematical basis for Boscovich’s unified force (which is compatible with many pieces of evidence collected over the past century), and also yield a simple geometrical solution for the classical three-body problem, which is a useful model for electronic orbits in simple diatomic molecules. A testable prediction for the helicoidal-type force is suggested.

  5. Convolution equations on lattices: periodic solutions with values in a prime characteristic field

    OpenAIRE

    Zaidenberg, Mikhail

    2006-01-01

    These notes are inspired by the theory of cellular automata. A linear cellular automaton on a lattice of finite rank or on a toric grid is a discrete dinamical system generated by a convolution operator with kernel concentrated in the nearest neighborhood of the origin. In the present paper we deal with general convolution operators. We propose an approach via harmonic analysis which works over a field of positive characteristic. It occurs that a standard spectral problem for a convolution op...

  6. Equating spatial summation in visual field testing reveals greater loss in optic nerve disease.

    Science.gov (United States)

    Kalloniatis, Michael; Khuu, Sieu K

    2016-07-01

    To test the hypothesis that visual field assessment in ocular disease measured with target stimuli within or close to complete spatial summation results in larger threshold elevation compared to when measured with the standard Goldmann III target size. The hypothesis predicts a greater loss will be identified in ocular disease. Additionally, we sought to develop a theoretical framework that would allow comparisons of thresholds with disease progression when using different Goldmann targets. The Humphrey Field Analyser (HFA) 30-2 grid was used in 13 patients with early/established optic nerve disease using the current Goldmann III target size or a combination of the three smallest stimuli (target size I, II and III). We used data from control subjects at each of the visual field locations for the different target sizes to establish the number of failed points (events) for the patients with optic nerve disease, as well as global indices for mean deviation (MD) and pattern standard deviation (PSD). The 30-2 visual field testing using alternate target size stimuli showed that all 13 patients displayed more defects (events) compared to the standard Goldmann III target size. The median increase for events was seven additional failed points: (range 1-26). The global indices also increased when the new testing approach was used (MD -3.47 to -6.25 dB and PSD 4.32 to 6.63 dB). Spatial summation mapping showed an increase in critical area (Ac) in disease and overall increase in thresholds when smaller target stimuli were used. When compared to the current Goldmann III paradigm, the use of alternate sized targets within the 30-2 testing protocol revealed a greater loss in patients with optic nerve disease for both event analysis and global indices (MD and PSD). We therefore provide evidence in a clinical setting that target size is important in visual field testing. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.

  7. Ensemble averaged coherent state path integral for disordered bosons with a repulsive interaction (Derivation of mean field equations)

    International Nuclear Information System (INIS)

    Mieck, B.

    2007-01-01

    We consider bosonic atoms with a repulsive contact interaction in a trap potential for a Bose-Einstein condensation (BEC) and additionally include a random potential. The ensemble averages for two models of static (I) and dynamic (II) disorder are performed and investigated in parallel. The bosonic many body systems of the two disorder models are represented by coherent state path integrals on the Keldysh time contour which allow exact ensemble averages for zero and finite temperatures. These ensemble averages of coherent state path integrals therefore present alternatives to replica field theories or super-symmetric averaging techniques. Hubbard-Stratonovich transformations (HST) lead to two corresponding self-energies for the hermitian repulsive interaction and for the non-hermitian disorder-interaction. The self-energy of the repulsive interaction is absorbed by a shift into the disorder-self-energy which comprises as an element of a larger symplectic Lie algebra sp(4M) the self-energy of the repulsive interaction as a subalgebra (which is equivalent to the direct product of M x sp(2); 'M' is the number of discrete time intervals of the disorder-self-energy in the generating function). After removal of the remaining Gaussian integral for the self-energy of the repulsive interaction, the first order variations of the coherent state path integrals result in the exact mean field or saddle point equations, solely depending on the disorder-self-energy matrix. These equations can be solved by continued fractions and are reminiscent to the 'Nambu-Gorkov' Green function formalism in superconductivity because anomalous terms or pair condensates of the bosonic atoms are also included into the selfenergies. The derived mean field equations of the models with static (I) and dynamic (II) disorder are particularly applicable for BEC in d=3 spatial dimensions because of the singularity of the density of states at vanishing wavevector. However, one usually starts out from

  8. The neutron's Dirac-equation: Its rigorous solution at slab-like magnetic fields, non-relativistic approximation, energy spectra and statistical characteristics

    International Nuclear Information System (INIS)

    Zhang Yongde.

    1987-03-01

    In this paper, the neutron Dirac-equation is presented. After decoupling it into two equations of the simple spinors, the rigorous solution of this equation is obtained in the case of slab-like uniform magnetic fields at perpendicular incidence. At non-relativistic approximation and first order approximation of weak field (NRWFA), our results have included all results that have been obtained in references for this case up to now. The corresponding transformations of the neutron's spin vectors are given. The single particle spectrum and its approximate expression are obtained. The characteristics of quantum statistics with the approximate expression of energy spectrum are studied. (author). 15 refs

  9. From interatomic interaction potentials via Einstein field equation techniques to time dependent contact mechanics

    International Nuclear Information System (INIS)

    Schwarzer, N

    2014-01-01

    In order to understand the principle differences between rheological or simple stress tests like the uniaxial tensile test to contact mechanical tests and the differences between quasistatic contact experiments and oscillatory ones, this study resorts to effective first principles. This study will show how relatively simple models simulating bond interactions in solids using effective potentials like Lennard-Jones and Morse can be used to investigate the effect of time dependent stress-induced softening or stiffening of these solids. The usefulness of the current study is in the possibility of deriving relatively simple dependences of the bulk-modulus B on time, shear and pressure P with time t. In cases where it is possible to describe, or at least partially describe a material by Lennard-Jones potential approaches, the above- mentioned dependences are even completely free of microscopic material parameters. Instead of bond energies and length, only specific integral parameters like Young’s modulus and Poisson’s ratio are required. However, in the case of time dependent (viscose) material behavior the parameters are not constants anymore. They themselves depend on time and the actual stress field, especially the shear field. A body completely consisting of so called standard linear solid interacting particles will then phenomenologically show a completely different and usually much more complicated mechanical behavior. The influence of the time dependent pressure-shear-induced Young’s modulus change is discussed with respect to mechanical contact experiments and their analysis in the case of viscose materials. (papers)

  10. On the equivalence of four-dimensional self-duality equations to the continual analogue of the principal chiral field problem

    International Nuclear Information System (INIS)

    Leznov, A.N.

    1987-01-01

    A connection is found between the self-dual equations of 4-dimensional space and the principal chiral field problem in n-dimensional space. It is shown that any solution of the principal chiral field equations in n-dimensional space with arbitrary 2-dimensional functions of definite linear combinations of 4 variables y, y-bar, z, z-bar as independent arguments satisfies the system of self-dual equations of 4-dimensional space. General solution of self-dual equations depending on the suitable number of functions of three independent variables coincides with the general solution of the principal chiral field problem when the dimensionality of the space tends to the infinity

  11. Mathematical Model for Electric Field Sensor Based on Whispering Gallery Modes Using Navier’s Equation for Linear Elasticity

    Directory of Open Access Journals (Sweden)

    Amir R. Ali

    2017-01-01

    Full Text Available This paper presents and verifies the mathematical model of an electric field senor based on the whispering gallery mode (WGM. The sensing element is a dielectric microsphere, where the light is used to tune the optical modes of the microsphere. The light undergoes total internal reflection along the circumference of the sphere; then it experiences optical resonance. The WGM are monitored as sharp dips on the transmission spectrum. These modes are very sensitive to morphology changes of the sphere, such that, for every minute change in the sphere’s morphology, a shift in the transmission spectrum will happen and that is known as WGM shifts. Due to the electrostriction effect, the applied electric field will induce forces acting on the surface of the dielectric sphere. In turn, these forces will deform the sphere causing shifts in its WGM spectrum. The applied electric field can be obtained by calculating these shifts. Navier’s equation for linear elasticity is used to model the deformation of the sphere to find the WGM shift. The finite element numerical studies are performed to verify the introduced model and to study the behavior of the sensor at different values of microspheres’ Young’s modulus and dielectric constant. Furthermore, the sensitivity and resolution of the developed WGM electric filed sensor model will be presented in this paper.

  12. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.

    Science.gov (United States)

    Müller, Erich A; Jackson, George

    2014-01-01

    A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

  13. A generalized measurement equation and van Cittert-Zernike theorem for wide-field radio astronomical interferometry

    Science.gov (United States)

    Carozzi, T. D.; Woan, G.

    2009-05-01

    We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.

  14. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei

    2013-08-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although \\'relaxed initial conditions,\\' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes\\' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made \\'invisible\\' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  15. On the internal resonant modes in marching-on-in-time solution of the time domain electric field integral equation

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2013-01-01

    Internal resonant modes are always observed in the marching-on-in-time (MOT) solution of the time domain electric field integral equation (EFIE), although 'relaxed initial conditions,' which are enforced at the beginning of time marching, should in theory prevent these spurious modes from appearing. It has been conjectured that, numerical errors built up during time marching establish the necessary initial conditions and induce the internal resonant modes. However, this conjecture has never been proved by systematic numerical experiments. Our numerical results in this communication demonstrate that, the internal resonant modes' amplitudes are indeed dictated by the numerical errors. Additionally, it is shown that in a few cases, the internal resonant modes can be made 'invisible' by significantly suppressing the numerical errors. These tests prove the conjecture that the internal resonant modes are induced by numerical errors when the time domain EFIE is solved by the MOT method. © 2013 IEEE.

  16. Behaviour of symmetric solutions of a nonlinear elliptic field equation in the semi-classical limit: Concentration around a circle

    Directory of Open Access Journals (Sweden)

    Teresa D'Aprile

    2000-11-01

    Full Text Available In this paper we study the existence of concentrated solutions of the nonlinear field equation $$ -h^{2}Delta v+V(xv-h^{p}Delta_{p}v+ W'(v=0,, $$ where $v:{mathbb R}^{N}o{mathbb R}^{N+1}$, $Ngeq 3$, $p>N$, the potential $V$ is positive and radial, and $W$ is an appropriate singular function satisfying a suitable symmetric property. Provided that $h$ is sufficiently small, we are able to find solutions with a certain spherical symmetry which exhibit a concentration behaviour near a circle centered at zero as $ho 0^{+}$. Such solutions are obtained as critical points for the associated energy functional; the proofs of the results are variational and the arguments rely on topological tools. Furthermore a penalization-type method is developed for the identification of the desired solutions.

  17. Electric Conductivity of Hot and Dense Quark Matter in a Magnetic Field with Landau Level Resummation via Kinetic Equations

    Science.gov (United States)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2018-04-01

    We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σ∥, we need to solve kinetic equations. Then, we numerically find that σ∥ has only a mild dependence on μ and the quark mass mq. Moreover, σ∥ first decreases and then linearly increases as a function of B , leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ∥ at a nonzero B remains within the range of the lattice-QCD estimate at B =0 .

  18. Analysis of axially symmetric wire antennas by the use of exact kernel of electric field integral equation

    Directory of Open Access Journals (Sweden)

    Krneta Aleksandra J.

    2016-01-01

    Full Text Available The paper presents a new method for the analysis of wire antennas with axial symmetry. Truncated cones have been applied to precisely model antenna geometry, while the exact kernel of the electric field integral equation has been used for computation. Accuracy and efficiency of the method has been further increased by the use of higher order basis functions for current expansion, and by selecting integration methods based on singularity cancelation techniques for the calculation of potential and impedance integrals. The method has been applied to the analysis of a typical dipole antenna, thick dipole antenna and a coaxial line. The obtained results verify the high accuracy of the method. [Projekat Ministarstva nauke Republike Srbije, br. TR-32005

  19. High-field transport of electrons and radiative effects using coupled force-balance and Fokker-Planck equations beyond the relaxation-time approximation

    International Nuclear Information System (INIS)

    Huang, Danhong; Apostolova, T.; Alsing, P.M.; Cardimona, D.A.

    2004-01-01

    The dynamics of a many-electron system under both dc and infrared fields is separated into a center-of-mass and a relative motion. The first-order force-balance equation is employed for the slow center-of-mass motion of electrons, and the Fokker-Planck equation is used for the ultrafast relative scattering motion of degenerate electrons. This approach allows us to include the anisotropic energy-relaxation process which has been neglected in the energy-balance equation in the past. It also leads us to include the anisotropic coupling to the incident infrared field with different polarizations. Based on this model, the transport of electrons is explored under strong dc and infrared fields by going beyond the relaxation-time approximation. The anisotropic dependence of the electron distribution function on the parallel and perpendicular kinetic energies of electrons is displayed with respect to the dc field direction, and the effect of anisotropic coupling to an incident infrared field with polarizations parallel and perpendicular to the applied dc electric field is shown. The heating of electrons is more accurately described beyond the energy-balance equation with the inclusion of an anisotropic coupling to the infrared field. The drift velocity of electrons is found to increase with the amplitude of the infrared field due to a suppressed momentum-relaxation process (or frictional force) under parallel polarization but decreases with the amplitude due to an enhanced momentum-relaxation process under perpendicular polarization

  20. Analytic equation of state for FCC C60 solid based on analytic mean-field potential approach

    International Nuclear Information System (INIS)

    Sun Jiuxun

    2006-01-01

    The analytic mean-field approach (AMFP) was applied to the FCC C60 solid. For the intermolecular forces the Girifalco potential has been utilized. The analytic expressions for the Helmholtz free energy, internal energy and equation of state have been derived. The numerical results of thermodynamic quantities are compared with the molecular dynamic (MD) simulations and the unsymmetrized self-consistent field approach (CUSF) in the literature. It is shown that our AMFP results are in good agreement with the MD data both at low and high temperatures. The results of CUSF are in accordance with the AMFP at low temperature, but at high temperature the difference becomes prominent. Especially the AMFP predicted that the FCC C60 solid is stable upto 2202 K, the spinodal temperature, in good agreement with 2320 K from the MD simulation. However, the CUST just gives 1916 K, a temperature evidently lower than the MD data. The AMFP qualifies as a useful approach that can reasonably consider the anharmonic effects at high temperature

  1. Infinite-Dimensional Symmetry Algebras as a Help Toward Solutions of the Self-Dual Field Equations with One Killing Vector

    Science.gov (United States)

    Finley, Daniel; McIver, John K.

    2002-12-01

    The sDiff(2) Toda equation determines all self-dual, vacuum solutions of the Einstein field equations with one rotational Killing vector. Some history of the searches for non-trivial solutions is given, including those that begin with the limit as n → ∞ of the An Toda lattice equations. That approach is applied here to the known prolongation structure for the Toda lattice, hoping to use Bäcklund transformations to generate new solutions. Although this attempt has not yet succeeded, new faithful (tangent-vector) realizations of A∞ are described, and a direct approach via the continuum Lie algebras of Saveliev and Leznov is given.

  2. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

    1997-10-01

    The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

  3. A Classical Based Derivation of Time Dilation Providing First Order Accuracy to Schwarzschild's Solution of Einstein's Field Equations

    Science.gov (United States)

    Austin, Rickey W.

    provides a minimum first order accuracy to Schwarzschild's solution to Einstein's field equations.

  4. Spaces of positive and negative frequency solutions of field equations in curved space--times. I. The Klein--Gordon equation in stationary space--times

    International Nuclear Information System (INIS)

    Moreno, C.

    1977-01-01

    In stationary space--times V/sub n/ x R with compact space-section manifold without boundary V/sub n/, the Klein--Gordon equation is solved by the one-parameter group of unitary operators generated by the energy operator i -1 T -1 in the Sobolev spaces H/sup l/(V/sub n/) x H/sup l/(V/sub n/). The canonical symplectic and complex structures of the associated dynamical system are calculated. The existence and the uniqueness of the Lichnerowicz kernel are established. The Hilbert spaces of positive and negative frequency-part solutions defined by means of this kernel are constructed

  5. Flows of non-smooth vector fields and degenerate elliptic equations with applications to the Vlasov-Poisson and semigeostrophic systems

    CERN Document Server

    Colombo, Maria

    2017-01-01

    The first part of the book is devoted to the transport equation for a given vector field, exploiting the lagrangian structure of solutions. It also treats the regularity of solutions of some degenerate elliptic equations, which appear in the eulerian counterpart of some transport models with congestion. The second part of the book deals with the lagrangian structure of solutions of the Vlasov-Poisson system, which describes the evolution of a system of particles under the self-induced gravitational/electrostatic field, and the existence of solutions of the semigeostrophic system, used in meteorology to describe the motion of large-scale oceanic/atmospheric flows.

  6. Differential equations for correlators on the torus: Two-point correlation function of isospin-1 primary fields in the k=3 SU(2) WZW theory

    International Nuclear Information System (INIS)

    Durganandini, P.

    1990-01-01

    We systematize the procedure developed by Mathur, Mukhi and Sen to derive differential equations for correlators in rational conformal field theories on the torus in those cases when it is necessary to study not only leading-order behaviour but also the nonleading behaviour of the solutions in the asymptotic limit Imτ→∞, Imz→∞. As an illustration, we derive the differential equation for the two-point correlator of the isospin-1 primary fields in the k=3 SU(2) WZW model on the torus. (orig.)

  7. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  8. Berry phases for 3D Hartree-type equations with a quadratic potential and a uniform magnetic field

    International Nuclear Information System (INIS)

    Litvinets, F N; Shapovalov, A V; Trifonov, A Yu

    2007-01-01

    A countable set of asymptotic space-localized solutions is constructed for a 3D Hartree-type equation with a quadratic potential by the complex germ method in the adiabatic approximation. The asymptotic parameter is 1/T, where T >> 1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schroedinger equation is formulated for the Hartree-type equation. For the solutions constructed, the Berry phases are found in an explicit form

  9. A new technique for the determination of coronal magnetic fields: A fixed mesh solution to Laplace's equation using line-of-sight boundary conditions

    International Nuclear Information System (INIS)

    Adams, J.; Pneuman, G.W.

    1976-01-01

    A new method for computing potential magnetic field configurations in the solar atmosphere is described. A discrete approximation to Laplace's equation is solved in the domain R(Sun) 1 , 0 1 being an arbitrary radial distance from the solar center). The method utilizes the measured line-of-sight magnetic fields directly as the boundary condition at the solar surface and constrains the field to become radial at the outer boundary, R 1 . First the differential equation and boundary conditions are reduced to a set of two-dimensional equations in r, theta by Fourier transforming out the periodic phi dependence. Next each transformed boundary condition is converted to a Dirichlet surface condition. Then each two-dimensional equation with standard Dirichlet-Dirichlet boundary conditions is solved for the Fourier coefficient it determines. Finally, the solution of the original three dimensional equation is obtained through inverse Fourier transformation. The primary numerical tools in this technique are the use of a finite fast Fourier transform technique and also a generalized cyclic reduction algorithm developed at NCAR. Any extraneous monopole component present in the data can be removed if so desired. (Auth.)

  10. Solution of the linearised Vlasov equation for collisionless plasmas evolving in external fields of arbitrary spatial and time dependence: Pt. 2

    International Nuclear Information System (INIS)

    Skarka, V.; Coveney, P.V.

    1990-01-01

    We solve perturbatively the linearised Vlasov equation describing inhomogeneous collisionless plasmas evolving in time-dependent external fields. The method employs an explicitly time-dependent formalism and is facilitated by the used of diagrammatic techniques. It leads to a straightforward algorithm for computing the contribution to the solution, order by order in the external field. In the previous paper we provided the solution to first order; higher orders are described in the present paper. (author)

  11. Use of profit equations to determine relative economic value of dairy cattle herd life and production from field data.

    NARCIS (Netherlands)

    Arendonk, van J.A.M.

    1991-01-01

    Profit equations or functions that reflect the realized profitability of cows have been used in the literature to determine the relative importance of different variables such as milk yield and herd life. In all profit equations, the opportunity cost of postponed replacement, which reflects the

  12. Limit equation for vacuum Einstein constraints with a translational Killing vector field in the compact hyperbolic case

    Science.gov (United States)

    Gicquaud, Romain; Huneau, Cécile

    2016-09-01

    We construct solutions to the constraint equations in general relativity using the limit equation criterion introduced in Dahl et al. (2012). We focus on solutions over compact 3-manifolds admitting a S1-symmetry group. When the quotient manifold has genus greater than 2, we obtain strong far from CMC results.

  13. Exact self-consistent solutions to the interacting spinor and scalar field equations in Bianchi type-I space-time

    International Nuclear Information System (INIS)

    Alvarado, R.; Rybakov, Yu.P.; Shikin, G.N.; Saha, B.

    1995-01-01

    Self-consistent solutions to the system of spinor and scalar field equations in General Relativity are studied for the case of Bianchi type-I space-time. The absence of initial singularity should be emphasized for some types of solutions and also the isotropic mode of space-time expansion in some special cases. 3 refs

  14. Projected interaction picture of field operators and memory superoperators. A master equation for the single-particle Green's function in a Liouville space

    International Nuclear Information System (INIS)

    Grinberg, H.

    1983-11-01

    The projection operator method of Zwanzig and Feshbach is used to construct the time-dependent field operators in the interaction picture. The formula developed to describe the time dependence involves time-ordered cosine and sine projected evolution (memory) superoperators, from which a master equation for the interaction-picture single-particle Green's function in a Liouville space is derived. (author)

  15. A non-local-thermodynamic equilibrium formulation of the transport equation for polarized light in the presence of weak magnetic fields. Doctoral thesis

    International Nuclear Information System (INIS)

    McNamara, D.J.

    1977-01-01

    The present work is motivated by the desire to better understand solar magnetism. Just as stellar astrophysics and radiative transfer have been coupled in the history of research in physics, so too has the study of radiative transfer of polarized light in magnetic fields and solar magnetism been a history of mutual growth. The Stokes parameters characterize the state of polarization of a beam of radiation. The author considers the changes in polarization, and therefore in the Stokes parameters, due to the transport of a beam through an optically thick medium in a weak magnetic field. The transport equation is derived from a general density matrix equation of motion. This allows the possibility of interference effects arising from the mixing of atomic sublevels in a weak magnetic field to be taken into account. The statistical equilibrium equations are similarly derived. Finally, the coupled system of equations is presented, and the order of magnitude of the interference effects, shown. Collisional effects are not considered. The magnitude of the interference effects in magnetic field measurements of the sun may be evaluated

  16. Large time asymptotics of solutions of the equations of principal chiral field. Asimptoticheskoe povedenie reshenij uravneniya glavnogo kiral'nogo polya pri bol'shikh vremenakh

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V [Leningradskij Gosudarstvennyj Univ., Leningrad (USSR)

    1990-07-01

    Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation.

  17. NEW HYPERON EQUATIONS OF STATE FOR SUPERNOVAE AND NEUTRON STARS IN DENSITY-DEPENDENT HADRON FIELD THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Banik, Sarmistha [BITS Pilani, Hyderabad Campus, Hyderabad-500078 (India); Hempel, Matthias [Departement Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Bandyopadhyay, Debades [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2014-10-01

    We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strange φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.

  18. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  19. An Operator Method for Field Moments from the Extended Parabolic Wave Equation and Analytical Solutions of the First and Second Moments for Atmospheric Electromagnetic Wave Propagation

    Science.gov (United States)

    Manning, Robert M.

    2004-01-01

    The extended wide-angle parabolic wave equation applied to electromagnetic wave propagation in random media is considered. A general operator equation is derived which gives the statistical moments of an electric field of a propagating wave. This expression is used to obtain the first and second order moments of the wave field and solutions are found that transcend those which incorporate the full paraxial approximation at the outset. Although these equations can be applied to any propagation scenario that satisfies the conditions of application of the extended parabolic wave equation, the example of propagation through atmospheric turbulence is used. It is shown that in the case of atmospheric wave propagation and under the Markov approximation (i.e., the delta-correlation of the fluctuations in the direction of propagation), the usual parabolic equation in the paraxial approximation is accurate even at millimeter wavelengths. The comprehensive operator solution also allows one to obtain expressions for the longitudinal (generalized) second order moment. This is also considered and the solution for the atmospheric case is obtained and discussed. The methodology developed here can be applied to any qualifying situation involving random propagation through turbid or plasma environments that can be represented by a spectral density of permittivity fluctuations.

  20. Closed-form solutions of the Wheeler-DeWitt equation in a scalar-vector field cosmological model by Lie symmetries

    Science.gov (United States)

    Paliathanasis, Andronikos; Vakili, Babak

    2016-01-01

    We apply as selection rule to determine the unknown functions of a cosmological model the existence of Lie point symmetries for the Wheeler-DeWitt equation of quantum gravity. Our cosmological setting consists of a flat Friedmann-Robertson-Walker metric having the scale factor a( t), a scalar field with potential function V(φ ) minimally coupled to gravity and a vector field of its kinetic energy is coupled with the scalar field by a coupling function f(φ ). Then, the Lie symmetries of this dynamical system are investigated by utilizing the behavior of the corresponding minisuperspace under the infinitesimal generator of the desired symmetries. It is shown that by applying the Lie symmetry condition the form of the coupling function and also the scalar field potential function may be explicitly determined so that we are able to solve the Wheeler-DeWitt equation. Finally, we show how we can use the Lie symmetries in order to construct conservation laws and exact solutions for the field equations.

  1. Time-averaged paleomagnetic field at the equator: Complete data and results from the Galapagos Islands, Ecuador

    Science.gov (United States)

    Gromme, Sherman; Mankinen, Edward A.; Prévot, Michel

    2010-01-01

    We present here the complete paleomagnetic laboratory results from a collection of approximately 1500 oriented cores from all 16 of the Galapagos Islands, Ecuador, collected by Allan Cox in 1964–1965 but nearly all previously unpublished. The islands are located in the eastern Pacific Ocean within 1.4° of latitude from the equator and range in age from historically erupted to 3 Ma, mostly determined by published K-Ar and 3He isotopic dating. The number of sites collected on each island ranges from 1 to 28, for a total of 186. After combining duplicate site mean directions, 149 are used for an overall mean direction and 8 represent excursions and one reversal path. Divided by geomagnetic polarity chron, 110 site means are Brunhes or Jaramillo (normal polarity), 27 are Matuyama (reversed polarity), and 12 are Gauss (both polarities). We have completed the magnetic cleaning that was commenced in the late 1960s. Secondary (mostly viscous) magnetizations were nearly all removed by alternating field demagnetization at 10 mT. We have used the so-called blanket cleaning method, generally at 10 mT. All sites were in basalt flows and gave good paleomagnetic results; none was rejected in toto, and only a few core specimens were magnetically unsatisfactory. Nearly all sites had eight independently oriented cores, and within-site angular standard deviations of directions range from 1° to 8°. We used both Fisher and Bingham statistics to analyze the data and found that many of the direction populations are strongly elongate along the paleomagnetic meridian, while the corresponding virtual pole (VGP) populations are essentially circularly distributed. The paleomagnetic poles, calculated as the means of VGPs, are as follows: Brunhes and Jaramillo, north latitude = 86.9°, east longitude = 245.1°, and 95% confidence radius A95 = 1.9°; Matuyama, latitude = 87.2°, longitude = 158.2°, and A95 = 3.8°; Gauss, latitude = 83.0°, longitude = 204.7°, and A95 = 7.0°. These

  2. Notes on Conservation Laws, Equations of Motion of Matter, and Particle Fields in Lorentzian and Teleparallel de Sitter Space-Time Structures

    Directory of Open Access Journals (Sweden)

    Waldyr A. Rodrigues

    2016-01-01

    Full Text Available We discuss the physics of interacting fields and particles living in a de Sitter Lorentzian manifold (dSLM, a submanifold of a 5-dimensional pseudo-Euclidean (5dPE equipped with a metric tensor inherited from the metric of the 5dPE space. The dSLM is naturally oriented and time oriented and is the arena used to study the energy-momentum conservation law and equations of motion for physical systems living there. Two distinct de Sitter space-time structures MdSL and MdSTP are introduced given dSLM, the first equipped with the Levi-Civita connection of its metric field and the second with a metric compatible parallel connection. Both connections are used only as mathematical devices. Thus, for example, MdSL is not supposed to be the model of any gravitational field in the General Relativity Theory (GRT. Misconceptions appearing in the literature concerning the motion of free particles in dSLM are clarified. Komar currents are introduced within Clifford bundle formalism permitting the presentation of Einstein equation as a Maxwell like equation and proving that in GRT there are infinitely many conserved currents. We prove that in GRT even when the appropriate Killing vector fields exist it is not possible to define a conserved energy-momentum covector as in special relativistic theories.

  3. A note on a nonlinear equation arising in discussions of the steady fall of a resistive, viscous, isothermal fluid across a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tautz, R. C., E-mail: robert.c.tautz@gmail.com [Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Lerche, I., E-mail: lercheian@yahoo.com [Institut für Geowissenschaften, Naturwissenschaftliche Fakultät III, Martin-Luther-Universität Halle, D-06099 Halle (Germany)

    2015-11-15

    This note considers the evolution of steady isothermal flow across a uniform magnetic field from an analytic standpoint. This problem is of concern in developments of magnetic fields in the solar corona and for prominence dynamics. Limiting behaviors are obtained to the nonlinear equation describing the flow depending on the value of a single parameter. For the situation where the viscous drag is a small correction to the inviscid flow limiting structures are also outlined. The purpose of the note is to show how one can evaluate some of the analytic properties of the highly nonlinear equation that are of use in considering the numerical evolution as done in Low and Egan [Phys. Plasmas 21, 062105 (2014)].

  4. Bi-Hamiltonian systems on the dual of the Lie algebra of vector fields of the circle and periodic shallow water equations

    OpenAIRE

    Kolev, Boris

    2006-01-01

    23 pages; International audience; This paper is a survey article on bi-Hamiltonian systems on the dual of the Lie algebra of vector fields on the circle. We investigate the special case where one of the structures is the canonical Lie-Poisson structure and the second one is constant. These structures called affine or modified Lie-Poisson structures are involved in the integrability of certain Euler equations that arise as models of shallow water waves.

  5. The exact solution of self-consistent equations in the scanning near-field optic microscopy problem

    DEFF Research Database (Denmark)

    Lozovski, Valeri; Bozhevolnyi, Sergey I.

    1999-01-01

    The macroscopic approach that allows one to obtain an exact solution of the self-consistent equation of the Lippmann-Schwinger type is developed. The main idea of our method consist in usage of diagram technque for exact summation of the infinite series corresponding to the iteration procedure fo...

  6. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    International Nuclear Information System (INIS)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria

  7. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  8. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  9. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  10. Shot- and angle-domain wave-equation traveltime inversion of reflection data: Synthetic and field data examples

    KAUST Repository

    Zhang, Sanzong

    2015-05-26

    Full-waveform inversion requires the accurate simulation of the dynamics and kinematics of wave propagation. This is difficult in practice because the amplitudes cannot be precisely reproduced for seismic waves in the earth. Wave-equation reflection traveltime tomography (WT) is proposed to avoid this problem by directly inverting the reflection-traveltime residuals without the use of the high-frequency approximation. We inverted synthetic traces and recorded seismic data for the velocity model by WT. Our results demonstrated that the wave-equation solution overcame the high-frequency approximation of ray-based tomography, was largely insensitive to the accurate modeling of amplitudes, and mitigated problems with ambiguous event identification. The synthetic examples illustrated the effectiveness of the WT method in providing a highly resolved estimate of the velocity model. A real data example from the Gulf of Mexico demonstrated these benefits of WT, but also found the limitations in traveltime residual estimation for complex models.

  11. Evolution of magnetic field and atmospheric response. I - Three-dimensional formulation by the method of projected characteristics. II - Formulation of proper boundary equations. [stellar magnetohydrodynamics

    Science.gov (United States)

    Nakagawa, Y.

    1981-01-01

    The method described as the method of nearcharacteristics by Nakagawa (1980) is renamed the method of projected characteristics. Making full use of properties of the projected characteristics, a new and simpler formulation is developed. As a result, the formulation for the examination of the general three-dimensional problems is presented. It is noted that since in practice numerical solutions must be obtained, the final formulation is given in the form of difference equations. The possibility of including effects of viscous and ohmic dissipations in the formulation is considered, and the physical interpretation is discussed. A systematic manner is then presented for deriving physically self-consistent, time-dependent boundary equations for MHD initial boundary problems. It is demonstrated that the full use of the compatibility equations (differential equations relating variations at two spatial locations and times) is required in determining the time-dependent boundary conditions. In order to provide a clear physical picture as an example, the evolution of axisymmetric global magnetic field by photospheric differential rotation is considered.

  12. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  13. A Stable Marching on-in-time Scheme for Solving the Time Domain Electric Field Volume Integral Equation on High-contrast Scatterers

    KAUST Repository

    Sayed, Sadeed Bin

    2015-05-05

    A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert- Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations can not be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown “future” field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known “past” ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.

  14. A Stable Marching on-in-time Scheme for Solving the Time Domain Electric Field Volume Integral Equation on High-contrast Scatterers

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin; Bagci, Hakan

    2015-01-01

    A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert- Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations can not be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown “future” field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known “past” ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.

  15. Invariance identities associated with finite gauge transformations and the uniqueness of the equations of motion of a particle in a classical gauge field

    International Nuclear Information System (INIS)

    Rund, H.

    1984-01-01

    A certain class of geometric objects is considered against the background of a classical gauge field associated with an arbitrary structural Lie group. It is shown that the necessary and sufficient conditions for the invariance of the given objects under a finite gauge transformation are embodied in a set of three relations involving the derivatives of their components. As a special case these so-called invariance identities indicate that there cannot exist a gauge-invariant Lagrangian that depends on the gauge potentials, the interaction parameters, and the 4-velocity components of a test particle. However, the requirement that the equations of motion that result from such a lagrangian be gauge-invariant, uniquely determines the structure of these equations. (author)

  16. Calculation of the Intensity of electrical field at the end of the loaded path in the solid-state nuclear track detectors by using the numerical calculation of Laplace equations

    International Nuclear Information System (INIS)

    Kolahdooz, M.; Abotalebi, A.; Sheikh Aleslam, F.

    2011-01-01

    The goal of this article is calculation of the electric field at the end of loaded path in solid-state track detectors. For the calculation, Laplace-Equation has been solved numerically. By solving the equation, upon considering a specific potential at the boundary of the region, in addition to calculating the electric field at the end of path, the parameters which are affecting the electric field have also been investigated.

  17. Analytical solutions of the Schrödinger equation for a two-dimensional exciton in magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Hoang, Van-Hung; Le, Van-Hoang

    2013-01-01

    The Feranchuk-Komarov operator method is developed by combining with the Levi-Civita transformation in order to construct analytical solutions of the Schrödinger equation for a two-dimensional exciton in a uniform magnetic field of arbitrary strength. As a result, analytical expressions for the energy of the ground and excited states are obtained with a very high precision of up to four decimal places. Especially, the precision is uniformly stable for the whole range of the magnetic field. This advantage appears due to the consideration of the asymptotic behaviour of the wave-functions in strong magnetic field. The results could be used for various physical analyses and the method used here could also be applied to other atomic systems.

  18. Unfolded Equations for Current Interactions of 4d Massless Fields as a Free System in Mixed Dimensions

    CERN Document Server

    Gelfond, O A

    2015-01-01

    Interactions of massless fields of all spins in four dimensions with currents of any spin is shown to result from a solution of the linear problem that describes a gluing between rank-one (massless) system and rank-two (current) system in the unfolded dynamics approach. Since the rank-two system is dual to a free rank-one higher-dimensional system, that effectively describes conformal fields in six space-time dimensions, the constructed system can be interpreted as describing a mixture between linear conformal fields in four and six dimensions. Interpretation of the obtained results in spirit of AdS/CFT correspondence is discussed.

  19. Field data-based mathematical modeling by Bode equations and vector fitting algorithm for renewable energy applications

    Science.gov (United States)

    W. Hasan, W. Z.

    2018-01-01

    The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system’s modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model. PMID:29351554

  20. Field data-based mathematical modeling by Bode equations and vector fitting algorithm for renewable energy applications.

    Directory of Open Access Journals (Sweden)

    A H Sabry

    Full Text Available The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system's modeling equations based on the Bode plot equations and the vector fitting (VF algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model.

  1. Field data-based mathematical modeling by Bode equations and vector fitting algorithm for renewable energy applications.

    Science.gov (United States)

    Sabry, A H; W Hasan, W Z; Ab Kadir, M Z A; Radzi, M A M; Shafie, S

    2018-01-01

    The power system always has several variations in its profile due to random load changes or environmental effects such as device switching effects when generating further transients. Thus, an accurate mathematical model is important because most system parameters vary with time. Curve modeling of power generation is a significant tool for evaluating system performance, monitoring and forecasting. Several numerical techniques compete to fit the curves of empirical data such as wind, solar, and demand power rates. This paper proposes a new modified methodology presented as a parametric technique to determine the system's modeling equations based on the Bode plot equations and the vector fitting (VF) algorithm by fitting the experimental data points. The modification is derived from the familiar VF algorithm as a robust numerical method. This development increases the application range of the VF algorithm for modeling not only in the frequency domain but also for all power curves. Four case studies are addressed and compared with several common methods. From the minimal RMSE, the results show clear improvements in data fitting over other methods. The most powerful features of this method is the ability to model irregular or randomly shaped data and to be applied to any algorithms that estimating models using frequency-domain data to provide state-space or transfer function for the model.

  2. Binary neutron star mergers and short gamma-ray bursts: Effects of magnetic field orientation, equation of state, and mass ratio

    Science.gov (United States)

    Kawamura, Takumu; Giacomazzo, Bruno; Kastaun, Wolfgang; Ciolfi, Riccardo; Endrizzi, Andrea; Baiotti, Luca; Perna, Rosalba

    2016-09-01

    We present fully general-relativistic magnetohydrodynamic simulations of the merger of binary neutron star (BNS) systems. We consider BNSs producing a hypermassive neutron star (HMNS) that collapses to a spinning black hole (BH) surrounded by a magnetized accretion disk in a few tens of ms. We investigate whether such systems may launch relativistic jets and hence power short gamma-ray bursts. We study the effects of different equations of state (EOSs), different mass ratios, and different magnetic field orientations. For all cases, we present a detailed investigation of the matter dynamics and of the magnetic field evolution, with particular attention to its global structure and possible emission of relativistic jets. The main result of this work is that we observe the formation of an organized magnetic field structure. This happens independently of EOS, mass ratio, and initial magnetic field orientation. We also show that those models that produce a longer-lived HMNS lead to a stronger magnetic field before collapse to a BH. Such larger fields make it possible, for at least one of our models, to resolve the magnetorotational instability and hence further amplify the magnetic field in the disk. However, by the end of our simulations, we do not (yet) observe a magnetically dominated funnel nor a relativistic outflow. With respect to the recent simulations of Ruiz et al. [Astrophys. J. 824, L6 (2016)], we evolve models with lower and more plausible initial magnetic field strengths and (for computational reasons) we do not evolve the accretion disk for the long time scales that seem to be required in order to see a relativistic outflow. Since all our models produce a similar ordered magnetic field structure aligned with the BH spin axis, we expect that the results found by Ruiz et al. (who only considered an equal-mass system with an ideal fluid EOS) should be general and—at least from a qualitative point of view—independent of the mass ratio, magnetic field

  3. Using the Multiplicative Schwarz Alternating Algorithm (MSAA) for Solving the Large Linear System of Equations Related to Global Gravity Field Recovery up to Degree and Order 120

    Science.gov (United States)

    Safari, A.; Sharifi, M. A.; Amjadiparvar, B.

    2010-05-01

    The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low

  4. KINETIC-J: A computational kernel for solving the linearized Vlasov equation applied to calculations of the kinetic, configuration space plasma current for time harmonic wave electric fields

    Science.gov (United States)

    Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.

    2018-04-01

    We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.

  5. Unfolded equations for current interactions of 4d massless fields as a free system in mixed dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gelfond, O. A., E-mail: gel@lpi.ru [Russian Academy of Sciences, Institute of System Research (Russian Federation); Vasiliev, M. A., E-mail: vasiliev@lpi.ru [Russian Academy of Sciences, I. E. Tamm Department of Theoretical Physics, Lebedev Physical Institute (Russian Federation)

    2015-03-15

    Interactions of massless fields of all spins in four dimensions with currents of any spin are shown to result from a solution of the linear problem that describes a gluing between a rank-one (massless) system and a rank-two (current) system in the unfolded dynamics approach. Since the rank-two system is dual to a free rank-one higher-dimensional system that effectively describes conformal fields in six space-time dimensions, the constructed system can be interpreted as describing a mixture between linear conformal fields in four and six dimensions. An interpretation of the obtained results in the spirit of the AdS/CFT correspondence is discussed.

  6. Study of diffusion of wave packets in a square lattice under external fields along the discrete nonlinear Schrödinger equation

    International Nuclear Information System (INIS)

    Brito, P.E. de; Nazareno, H.N.

    2012-01-01

    The object of the present work is to analyze the effect of nonlinearity on wave packet propagation in a square lattice subject to a magnetic and an electric field in the Hall configuration, by using the Discrete Nonlinear Schrödinger Equation (DNLSE). In previous works we have shown that without the nonlinear term, the presence of the magnetic field induces the formation of vortices that remain stationary, while a wave packet is introduced in the system. As for the effect of an applied electric field, it was shown that the vortices propagate in a direction perpendicular to the electric field, similar behavior as presented in the classical treatment, we provide a quantum mechanics explanation for that. We have performed the calculations considering first the action of the magnetic field as well as the nonlinearity. The results indicate that for low values of the nonlinear parameter U the vortices remain stationary while preserving the form. For greater values of the parameter the picture gets distorted, the more so, the greater the nonlinearity. As for the inclusion of the electric field, we note that for small U, the wave packet propagates perpendicular to the applied field, until for greater values of U the wave gets partially localized in a definite region of the lattice. That is, for strong nonlinearity the wave packet gets partially trapped, while the tail of it can propagate through the lattice. Note that this tail propagation is responsible for the over-diffusion for long times of the wave packet under the action of an electric field. We have produced short films that show clearly the time evolution of the wave packet, which can add to the understanding of the dynamics.

  7. A two-parameter family of exact asymptotically flat solutions to the Einstein-scalar field equations

    International Nuclear Information System (INIS)

    Nikonov, V V; Tchemarina, Ju V; Tsirulev, A N

    2008-01-01

    We consider a static spherically symmetric real scalar field, minimally coupled to Einstein gravity. A two-parameter family of exact asymptotically flat solutions is obtained by using the inverse problem method. This family includes non-singular solutions, black holes and naked singularities. For each of these solutions the respective potential is partially negative but positive near spatial infinity. (comments, replies and notes)

  8. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    Energy Technology Data Exchange (ETDEWEB)

    Hoang-Do, Ngoc-Tram [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Pham, Dang-Lan [Institute for Computational Science and Technology, Quang Trung Software Town, District 12, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: hoanglv@hcmup.edu.vn [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam)

    2013-08-15

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity.

  9. Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength

    International Nuclear Information System (INIS)

    Hoang-Do, Ngoc-Tram; Pham, Dang-Lan; Le, Van-Hoang

    2013-01-01

    Exact numerical solutions of the Schrödinger equation for a two-dimensional exciton in a constant magnetic field of arbitrary strength are obtained for not only the ground state but also high excited states. Toward this goal, the operator method is developed by combining with the Levi-Civita transformation which transforms the problem under investigation into that of a two-dimensional anharmonic oscillator. This development of the non-perturbation method is significant because it can be applied to other problems of two-dimensional atomic systems. The obtained energies and wave functions set a new record for their precision of up to 20 decimal places. Analyzing the obtained data we also find an interesting result that exact analytical solutions exist at some values of magnetic field intensity

  10. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    International Nuclear Information System (INIS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  11. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    KAUST Repository

    Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk

    2015-01-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  12. A free software for pore-scale modelling: solving Stokes equation for velocity fields and permeability values in 3D pore geometries

    KAUST Repository

    Gerke, Kirill

    2015-04-01

    In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy\\'s equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes\\' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software\\'s applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.

  13. A space-time mixed galerkin marching-on-in-time scheme for the time-domain combined field integral equation

    KAUST Repository

    Beghein, Yves

    2013-03-01

    The time domain combined field integral equation (TD-CFIE), which is constructed from a weighted sum of the time domain electric and magnetic field integral equations (TD-EFIE and TD-MFIE) for analyzing transient scattering from closed perfect electrically conducting bodies, is free from spurious resonances. The standard marching-on-in-time technique for discretizing the TD-CFIE uses Galerkin and collocation schemes in space and time, respectively. Unfortunately, the standard scheme is theoretically not well understood: stability and convergence have been proven for only one class of space-time Galerkin discretizations. Moreover, existing discretization schemes are nonconforming, i.e., the TD-MFIE contribution is tested with divergence conforming functions instead of curl conforming functions. We therefore introduce a novel space-time mixed Galerkin discretization for the TD-CFIE. A family of temporal basis and testing functions with arbitrary order is introduced. It is explained how the corresponding interactions can be computed efficiently by existing collocation-in-time codes. The spatial mixed discretization is made fully conforming and consistent by leveraging both Rao-Wilton-Glisson and Buffa-Christiansen basis functions and by applying the appropriate bi-orthogonalization procedures. The combination of both techniques is essential when high accuracy over a broad frequency band is required. © 2012 IEEE.

  14. A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D

    KAUST Repository

    Zheng, Xiang; Yang, Chao; Cai, Xiaochuan; Keyes, David E.

    2015-01-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation

  15. Generalized quantum sine-Gordon equation and its relation to the Thirring model in quantum field theory

    International Nuclear Information System (INIS)

    Skagerstam, B.K.

    1976-01-01

    We discuss a generalization of the conventional sine-Gordon quantum field theory by using methods recently developed by Coleman. As a result we can argue that the equivalence between the sine-Gordon theory and the massive Thirring model is unaffected if we perturb the sine-Gordon Hamiltonian by a bounded perturbation consisting of a continuous sum of sine-Gordon type interactions

  16. Evaluating the far-field sound of a turbulent jet with one-way Navier-Stokes equations

    Science.gov (United States)

    Pickering, Ethan; Rigas, Georgios; Towne, Aaron; Colonius, Tim

    2017-11-01

    The one-way Navier-Stokes (OWNS) method has shown promising ability to predict both near field coherent structures (i.e. wave packets) and far field acoustics of turbulent jets while remaining computationally efficient through implementation of a spatial marching scheme. Considering the speed and relative accuracy of OWNS, a predictive model for various jet configurations may be conceived and applied for noise control. However, there still remain discrepancies between OWNS and large eddy simulation (LES) databases which may be linked to the previous neglect of nonlinear forcing. Therefore, to better predict wave packets and far field acoustics, this study investigates the effect of nonlinear forcing terms derived from high-fidelity LES databases. The results of the nonlinear forcings are evaluated for several azimuthal modes and frequencies, as well as compared to LES derived acoustics using spectral proper orthogonal decomposition (SPOD). This research was supported by the Department of Defense (DoD) through the Office of Naval Research (Grant No. N00014-16-1-2445) and the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  17. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  18. Disturbance in the Tropical Ionosphere and Earth Magnetic Field Mensured on the Magnetic Equator Caused by Magnetic Storms

    Science.gov (United States)

    Almeida, Pedro; Sobral, José; Resende, Laysa; Marcos Denardini, Clezio; Carlotto Aveiro, Henrique

    The focus of the present work is to monitor the disturbances in the equatorial F region caused by magnetic storms and comparatively to observe possible effects caused by the storms in the earth magnetics field measured on the ground, aiming to establish the events time occurrence order. The motivation for this work is due to the diversity of phenomena of scientific interest, which are observed in this region and also are capable to disturbance the transionospheric communication. The monitoring on the ionospheric plasma variation in the F region during and after the magnetics storms can generate indications of magnetosphere - ionosphere coupling effects. For this study we have used F region parameters measured by digital sounder installed at the Observatório Espacial de São Lú (2.33° S; 44.20° W; -0.5° DIP): foF2 (critical frequency o a ıs of F layer), hmF2 (real height of electronic density F layer peak) and h'F (minimum virtual height of F layer). For monitoring the disturbance in the magnetic field we have studied the H- and Z-component of the Earth magnetic field measured by magnetometers installed in the same site. The results are presented and discussed.

  19. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  20. Simulation of temperature field for temperature-controlled radio frequency ablation using a hyperbolic bioheat equation and temperature-varied voltage calibration: a liver-mimicking phantom study.

    Science.gov (United States)

    Zhang, Man; Zhou, Zhuhuang; Wu, Shuicai; Lin, Lan; Gao, Hongjian; Feng, Yusheng

    2015-12-21

    This study aims at improving the accuracy of temperature simulation for temperature-controlled radio frequency ablation (RFA). We proposed a new voltage-calibration method in the simulation and investigated the feasibility of a hyperbolic bioheat equation (HBE) in the RFA simulation with longer durations and higher power. A total of 40 RFA experiments was conducted in a liver-mimicking phantom. Four mathematical models with multipolar electrodes were developed by the finite element method in COMSOL software: HBE with/without voltage calibration, and the Pennes bioheat equation (PBE) with/without voltage calibration. The temperature-varied voltage calibration used in the simulation was calculated from an experimental power output and temperature-dependent resistance of liver tissue. We employed the HBE in simulation by considering the delay time τ of 16 s. First, for simulations by each kind of bioheat equation (PBE or HBE), we compared the differences between the temperature-varied voltage-calibration and the fixed-voltage values used in the simulations. Then, the comparisons were conducted between the PBE and the HBE in the simulations with temperature-varied voltage calibration. We verified the simulation results by experimental temperature measurements on nine specific points of the tissue phantom. The results showed that: (1) the proposed voltage-calibration method improved the simulation accuracy of temperature-controlled RFA for both the PBE and the HBE, and (2) for temperature-controlled RFA simulation with the temperature-varied voltage calibration, the HBE method was 0.55 °C more accurate than the PBE method. The proposed temperature-varied voltage calibration may be useful in temperature field simulations of temperature-controlled RFA. Besides, the HBE may be used as an alternative in the simulation of long-duration high-power RFA.

  1. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  2. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  3. Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal.

    Science.gov (United States)

    Chremmos, Ioannis

    2009-12-01

    A rigorous integral equation (IE) analysis of the interaction between a surface plasmon polariton (SPP) and a circular dielectric cavity embedded in a metal half-space is presented. The device is addressed as the plasmonic counterpart of the established integrated optics filter comprising a whispering gallery (WG) resonator coupled to a waveguide. The mathematical formulation is that of a transverse magnetic scattering problem. Using a magnetic-type Green's function of the two-layer medium with boundary conditions that cancel the line integral contributions along the interface, an IE for the magnetic field inside the cavity is obtained. The IE is treated through an entire-domain method of moments (MoM) with cylindrical-harmonic basis functions. The entries of the MoM matrix are determined analytically by utilizing the inverse Fourier transform of Green's function and the Jacobi-Anger formula for interchanging between plane and cylindrical waves. Complex analysis techniques are applied to determine the transmitted, reflected, and radiated field quantities in series forms. The numerical results show that the scattered SPPs' spectra exhibit pronounced wavelength selectivity that is related to the excitation of WG-like cavity modes. It seems feasible to exploit the device as a bandstop or reflective filter or even as an efficient radiating element. In addition, the dependence of transmission on the cavity refractive index endows this structure with a sensing functionality.

  4. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  5. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  6. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  7. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  8. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  9. On the static loop modes in the marching-on-in-time solution of the time-domain electric field integral equation

    KAUST Repository

    Shi, Yifei; Bagci, Hakan; Lu, Mingyu

    2014-01-01

    When marching-on-in-time (MOT) method is applied to solve the time-domain electric field integral equation, spurious internal resonant and static loop modes are always observed in the solution. The internal resonant modes have recently been studied by the authors; this letter investigates the static loop modes. Like internal resonant modes, static loop modes, in theory, should not be observed in the MOT solution since they do not satisfy the zero initial conditions; their appearance is attributed to numerical errors. It is discussed in this letter that the dependence of spurious static loop modes on numerical errors is substantially different from that of spurious internal resonant modes. More specifically, when Rao-Wilton-Glisson functions and Lagrange interpolation functions are used as spatial and temporal basis functions, respectively, errors due to space-time discretization have no discernible impact on spurious static loop modes. Numerical experiments indeed support this discussion and demonstrate that the numerical errors due to the approximate solution of the MOT matrix system have dominant impact on spurious static loop modes in the MOT solution. © 2014 IEEE.

  10. Gauge-invariant flow equation

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  11. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  12. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  13. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  14. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  15. Guiding center drift equations

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1979-03-01

    The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem

  16. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  17. Painleve test and discrete Boltzmann equations

    International Nuclear Information System (INIS)

    Euler, N.; Steeb, W.H.

    1989-01-01

    The Painleve test for various discrete Boltzmann equations is performed. The connection with integrability is discussed. Furthermore the Lie symmetry vector fields are derived and group-theoretical reduction of the discrete Boltzmann equations to ordinary differentiable equations is performed. Lie Backlund transformations are gained by performing the Painleve analysis for the ordinary differential equations. 16 refs

  18. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  19. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  20. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  1. Analysis of spinodal decomposition in Fe-32 and 40 at.% Cr alloys using phase field method based on linear and nonlinear Cahn-Hilliard equations

    Directory of Open Access Journals (Sweden)

    Orlando Soriano-Vargas

    2016-12-01

    Full Text Available Spinodal decomposition was studied during aging of Fe-Cr alloys by means of the numerical solution of the linear and nonlinear Cahn-Hilliard differential partial equations using the explicit finite difference method. Results of the numerical simulation permitted to describe appropriately the mechanism, morphology and kinetics of phase decomposition during the isothermal aging of these alloys. The growth kinetics of phase decomposition was observed to occur very slowly during the early stages of aging and it increased considerably as the aging progressed. The nonlinear equation was observed to be more suitable for describing the early stages of spinodal decomposition than the linear one.

  2. New exact solutions of the Dirac equation

    International Nuclear Information System (INIS)

    Bagrov, V.G.; Gitman, D.M.; Zadorozhnyj, V.N.; Lavrov, P.M.; Shapovalov, V.N.

    1980-01-01

    Search for new exact solutions of the Dirac and Klein-Gordon equations are in progress. Considered are general properties of the Dirac equation solutions for an electron in a purely magnetic field, in combination with a longitudinal magnetic and transverse electric fields. New solutions for the equations of charge motion in an electromagnetic field of axial symmetry and in a nonstationary field of a special form have been found for potentials selected concretely

  3. A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D

    KAUST Repository

    Zheng, Xiang

    2015-03-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors. © 2015 Elsevier Inc.

  4. A parallel domain decomposition-based implicit method for the Cahn–Hilliard–Cook phase-field equation in 3D

    International Nuclear Information System (INIS)

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-01-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors

  5. A parallel domain decomposition-based implicit method for the Cahn-Hilliard-Cook phase-field equation in 3D

    Science.gov (United States)

    Zheng, Xiang; Yang, Chao; Cai, Xiao-Chuan; Keyes, David

    2015-03-01

    We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn-Hilliard-Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton-Krylov-Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracy (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.

  6. fields

    Directory of Open Access Journals (Sweden)

    Brad J. Arnold

    2014-07-01

    Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.

  7. Introduction to partial differential equations with applications

    CERN Document Server

    Zachmanoglou, E C

    1988-01-01

    This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

  8. dimensional Nizhnik–Novikov–Veselov equations

    Indian Academy of Sciences (India)

    2017-03-22

    Mar 22, 2017 ... order differential equations with modified Riemann–Liouville derivatives into integer-order differential equations, ... tered in a variety of scientific and engineering fields ... devoted to the advanced calculus can be easily applied.

  9. Solving Differential Equations in R

    Science.gov (United States)

    Although R is still predominantly applied for statistical analysis and graphical representation, it is rapidly becoming more suitable for mathematical computing. One of the fields where considerable progress has been made recently is the solution of differential equations. Here w...

  10. Feynman integrals and difference equations

    International Nuclear Information System (INIS)

    Moch, S.; Schneider, C.

    2007-09-01

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called ΠΣ * -fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  11. Feynman integrals and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2007-09-15

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called {pi}{sigma}{sup *}-fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  12. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  13. Mathematics and Maxwell's equations

    International Nuclear Information System (INIS)

    Boozer, Allen H

    2010-01-01

    The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.

  14. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  15. The invariant polarisation-tensor field for deuterons in storage rings and the Bloch equation for the polarisation-tensor density

    International Nuclear Information System (INIS)

    Barber, D.P.

    2015-10-01

    I extend and update earlier work, summarised in an earlier paper (D.P. Barber, M. Voigt, AIP Conference Proceedings 1149 (28)), whereby the invariant polarisation-tensor field (ITF) for deuterons in storage rings was introduced to complement the invariant spin field (ISF). Taken together, the ITF and the ISF provide a definition of the equilibrium spin density-matrix field which, in turn, offers a clean framework for describing equilibrium spin-1 ensembles in storage rings. I show how to construct the ITF by stroboscopic averaging, I give examples, I discuss adiabatic invariance and I introduce a formalism for describing the effect of noise and damping.

  16. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  17. The Dirac equation and its solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, Vladislav G. [Tomsk State Univ., Tomsk (Russian Federation). Dept. of Quantum Field Theroy; Gitman, Dmitry [Sao Paulo Univ. (Brazil). Inst. de Fisica; P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State Univ., Tomsk (Russian Federation). Faculty of Physics

    2013-07-01

    The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.

  18. The Dirac equation and its solutions

    CERN Document Server

    Bagrov, Vladislav G

    2014-01-01

    Dirac equations are of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly.In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.

  19. The Dirac equation and its solutions

    International Nuclear Information System (INIS)

    Bagrov, Vladislav G.; Gitman, Dmitry; P.N. Lebedev Physical Institute, Moscow; Tomsk State Univ., Tomsk

    2013-01-01

    The Dirac equation is of fundamental importance for relativistic quantum mechanics and quantum electrodynamics. In relativistic quantum mechanics, the Dirac equation is referred to as one-particle wave equation of motion for electron in an external electromagnetic field. In quantum electrodynamics, exact solutions of this equation are needed to treat the interaction between the electron and the external field exactly. In particular, all propagators of a particle, i.e., the various Green's functions, are constructed in a certain way by using exact solutions of the Dirac equation.

  20. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.