WorldWideScience

Sample records for field emission characteristics

  1. Electron field emission characteristics of carbon nanotube on tungsten tip

    International Nuclear Information System (INIS)

    Phan Ngoc Hong; Bui Hung Thang; Nguyen Tuan Hong; Phan Ngoc Minh; Lee, Soonil

    2009-01-01

    Electron field emission characteristic of carbon nanotubes on tungsten tip was investigated in 2x10 -6 Torr vacuum. The measurement results showed that the CNTs/W tip could emit electron at 0.7 V/μm (nearly 10 times lower than that of the W tip itself) and reach up to 26 μA at the electric field of 1 V/μm. The emission characteristic follows the Fowler-Nordheim mechanism. Analysis of the emission characteristic showed that the CNTs/W tip has a very high value of field enhancement factor (β = 4.1 x 10 4 cm -1 ) that is much higher than that of the tungsten tip itself. The results confirmed the excellent field emission behavior of the CNTs materials and the CNTs/W tip is a prospective candidate for advanced electron field emitter.

  2. Electron field emission characteristics of graphene/carbon nanotubes hybrid field emitter

    International Nuclear Information System (INIS)

    Chen, Leifeng; He, Hong; Yu, Hua; Cao, Yiqi; Lei, Da; Menggen, QiQiGe; Wu, Chaoxing; Hu, Liqin

    2014-01-01

    The graphene (GP) and multi-walled carbon nanotubes (MCNTs) hybrid nanostructure emitter was constructed by a larger scale electrophoretic deposition (EPD) method. The field emission (FE) performance of the hybrid emitter is greatly improved compared with that of only GP or MCNTs emitter. The low turn-on electric field (EF), the low threshold EF and the reliability FE properties are obtained from the hybrid emitter. The better FE properties result from the improved electrical properties. For further enhancement FE of hybrids, Ag Nanoparticles (NPs) were decorated on the hybrids and FE characteristics were also studied. These studies indicate that we can use the hybrid nanostructure to improve conductivity and contact resistance, which results in enhancement of the FE properties

  3. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    Science.gov (United States)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  4. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds

    Institute of Scientific and Technical Information of China (English)

    YANG Yan-Ning; ZHANG Zhi-Yong; ZHANG Fu-Chun; DONG Jun-Tang; ZHAO Wu; ZHAI Chun-Xue; ZHANG Wei-Hu

    2012-01-01

    An electrophoresis solution,prepared in a specific ratio of titanium (Ti)-doped nano-diamond,is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis.After high-temperature vacuum annealing,the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope,scanning electron microscopy and Raman spectroscopy.The field emission characteristics and luminescence features are also tested,and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed.The experimental results show that under the same conditions,the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti powder.Compared with the undoped nano-diamond cathode,the turn-on fields decline from 6.95 to 5.95 V/μm.When the electric field strength is 13.80 V/μm,the field emission current density increases to 130.00 μA/cm2.Under the applied fields,the emission current is stable and the luminescence is at its best,while the field emission characteristics of the 10 mg Ti-doped coating become worse,as does the luminescence.The reason for this could be that an excessive amount of TiC is generated on the surface of the coating.%An electrophoresis solution, prepared in a speciGc ratio of titanium (Ti)-doped nano-diamond, is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis. After high-temperature vacuum annealing, the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope, scanning electron microscopy and Raman spectroscopy. The field emission characteristics and luminescence features are also tested, and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed. The experimental results show that under the same conditions, the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti

  5. Field emission characteristics of a small number of carbon fiber emitters

    Directory of Open Access Journals (Sweden)

    Wilkin W. Tang

    2016-09-01

    Full Text Available This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  6. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid, E-mail: mush_reslab@rediffmail.com

    2017-04-30

    Highlights: • Graphene was synthesized by PECVD system at a low temperature of 600 °C. • From different characterization techniques, the presence of single and few layered graphene was confirmed. • X-ray diffraction pattern of the graphene showed single crystalline nature of the film. • The as-grown graphene films were observed extremely good field emitters with long term emission current stability. - Abstract: In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  7. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Venkattraman, Ayyaswamy [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.

  8. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    International Nuclear Information System (INIS)

    Venkattraman, Ayyaswamy

    2013-01-01

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission

  9. Influence of heat treatment on field emission characteristics of boron nitride thin films

    International Nuclear Information System (INIS)

    Li Weiqing; Gu Guangrui; Li Yingai; He Zhi; Feng Wei; Liu Lihua; Zhao Chunhong; Zhao Yongnian

    2005-01-01

    Boron nitride (BN) nanometer thin films are synthesized on Si (1 0 0) substrates by RF reactive magnetron sputtering. Then the film surfaces are treated in the case of the base pressure below 5 x 10 -4 Pa and the temperature of 800 and 1000 deg. C, respectively. And the films are studied by Fourier transform infrared spectra (FTIR), atomic force microscopic (AFM) and field emission characteristics at different annealing temperature. The results show that the surface heat treatment makes no apparent influence on the surface morphology of the BN films. The transformations of the sample emission characteristics have to do with the surface negative electron affinity (NEA) of the films possibly. The threshold electric fields are lower for BN samples without heat-treating than the treated films, which possibly ascribed to the surface negative electron affinity effect. A threshold field of 8 V/μm and the emission current of 80 μA are obtained. The surface NEA is still presence at the heat treatment temperature of 800 deg. C and disappeared at temperature of 1000 deg. C

  10. Emission Characteristics of Gas-Fired Boilers based on Category-Specific Emission Factor from Field Measurements in Beijing, China

    Science.gov (United States)

    Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.

    2017-12-01

    Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas

  11. Tunable field emission characteristics of ZnO nanowires coated with varied thickness of lanthanum boride thin films

    International Nuclear Information System (INIS)

    Zhao, C.X.; Li, Y.F.; Chen, Jun; Deng, S.Z.; Xu, N.S.

    2013-01-01

    Lanthanum boride (LaB x ) thin films with various thicknesses were deposited on ZnO nanowire arrays by electron beam evaporation. Field emission characteristics of ZnO nanowires show close dependence on LaB x coating thickness. The turn-on field increases with increasing LaB x coating thickness from 10 nm to 50 nm. The observed phenomena were explained by a model that the tunneling at ZnO/LaB x interface dominates the emission process. - Highlights: ► Coating thickness dependence of field emission characteristics of ZnO nanowires was observed from LaB x coated ZnO nanowires. ► More stable field emission was observed from ZnO nanowires with LaB x coating. ► A model was proposed that the tunneling at ZnO/LaB x interface dominates the emission process

  12. Electrical discharge machining of carbon nanomaterials in air: machining characteristics and the advanced field emission applications

    International Nuclear Information System (INIS)

    Ok, Jong Girl; Kim, Bo Hyun; Chung, Do Kwan; Sung, Woo Yong; Lee, Seung Min; Lee, Se Won; Kim, Wal Jun; Park, Jin Woo; Chu, Chong Nam; Kim, Yong Hyup

    2008-01-01

    A reliable and precise machining process, electrical discharge machining (EDM), was investigated in depth as a novel method for the engineering of carbon nanomaterials. The machining characteristics of EDM applied to carbon nanomaterials 'in air' were systematically examined using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The EDM process turned out to 'melt' carbon nanomaterials with the thermal energy generated by electrical discharge, which makes both the materially and geometrically unrestricted machining of nanomaterials possible. Since the EDM process conducted in air requires neither direct contact nor chemical agents, it protects the carbon nanomaterial workpieces against physical damage and unnecessary contamination. From this EDM method, several advanced field emission applications including 'top-down' patterning and the creative lateral comb-type triode device were derived, while our previously reported study on emission uniformity enhancement by the EDM method was also referenced. The EDM method has great potential as a clean, effective and practical way to utilize carbon nanomaterials for various uses

  13. Surface properties and field emission characteristics of chemical vapor deposition diamond grown on Fe/Si substrates

    International Nuclear Information System (INIS)

    Hirakuri, Kenji; Yokoyama, Takahiro; Enomoto, Hirofumi; Mutsukura, Nobuki; Friedbacher, Gernot

    2001-01-01

    Electron field emission characteristics of diamond grains fabricated on iron dot-patterned silicon (Fe/Si) substrates at different methane concentrations have been investigated. The characteristics of the samples could be improved by control of the methane concentration during diamond fabrication. Etching treatment of the as-grown diamond has enhanced the emission properties both with respect to current and threshold voltage. In order to study the influence of etching effects on the field emission characteristics, the respective surfaces were studied by Raman spectroscopy, Auger electron spectroscopy, and electron spectroscopy for chemical analysis (ESCA). ESCA revealed intensive graphite and FeO x peaks on the sample surface grown at high methane concentration. For the etched samples, the peaks of diamond and silicon carbide were observed, and the peaks of nondiamond carbon disappeared. The experimental results show that the etching process removes graphitic and nondiamond carbon components. [copyright] 2001 American Institute of Physics

  14. Field emission characteristics of ZnO nanoneedle array cell under ultraviolet irradiation

    International Nuclear Information System (INIS)

    Lee, Woong; Jeong, Min-Chang; Kim, Min Jun; Myoung, Jae-Min

    2007-01-01

    Field emission (FE) behaviours of ZnO nanoneedle array under ultraviolet (UV) irradiation have been investigated. UV irradiation noticeably stabilized the FE behaviours. Modifications in the tunnelling barrier height and effective aspect ratio due to the oxygen-related surface species, which can be desorbed by UV irradiation, are supposed to be responsible for these observations

  15. Enhancement on field emission characteristics of pulsed laser deposited diamondlike carbon films using Au precoatings

    International Nuclear Information System (INIS)

    Chuang, F.Y.; Sun, C.Y.; Cheng, H.F.; Lin, I.N.

    1997-01-01

    Using Au precoatings has been observed to significantly enhance the field emission properties of diamondlike carbon (DLC) films deposited on Si substrates. The electron emission can be turned on at a low field as 7 V/μm and a large emission current density as 2000 μA/cm 2 can be obtained at 20 V/μm applied field. However, preannealing the Au-coated Si substrates at 500 degree C for 30 min is necessary to achieve such a performance. Microscopic examination on surface and cross-sectional morphologies of the DLC/Au/Si films using atomic force microscopy and scanning electron microscopy, respectively, in conjunction with the elemental depth profile examination of these films using secondary ion mass spectroscopy, indicated that substantial interdiffusion between DLC, Au, and Si layers has occurred. Such kind of reaction is proposed to lower the resistance for electrons to transport across the interfaces and, thereafter, enhances the field emission properties of the DLC/Au/Si films. copyright 1997 American Institute of Physics

  16. Characteristics of a single photon emission tomography system with a wide field gamma camera

    International Nuclear Information System (INIS)

    Mathonnat, F.; Soussaline, F.; Todd-Pokropek, A.E.; Kellershohn, C.

    1979-01-01

    This text summarizes a work study describing the imagery possibilities of a single photon emission tomography system composed of a conventional wide field gamma camera, connected to a computer. The encouraging results achieved on the various phantoms studied suggest a significant development of this technique in clinical work in Nuclear Medicine Departments [fr

  17. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block.

    KAUST Repository

    Lee, Seok Woo; Lee, Seung S; Yang, Eui-Hyeok

    2009-01-01

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V.

  18. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block.

    KAUST Repository

    Lee, Seok Woo

    2009-07-12

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V.

  19. Field electron emission characteristics of chemical vapour deposition diamond films with controlled sp2 phase concentration

    International Nuclear Information System (INIS)

    Lu, X.; Yang, Q.; Xiao, C.; Hirose, A.

    2008-01-01

    Diamond films were synthesized in a microwave plasma-enhanced chemical vapour deposition reactor. The microstructure and surface morphology of deposited films were characterized by Raman spectroscope and scanning electron microscope. The sp 2 phase concentration in diamond films was varied and its effect on the field electron emission (FEE) properties was investigated. Diamond films deposited under higher methane concentration exhibit better FEE property including lower turn-on electric field and larger emission current. The predominating factor modifying the FEE property is presumed to be the increase of sp 2 phase concentration. The influence of bias voltage on the FEE property of diamond films is not monotonic. Postgrowth acid treatment reduces the sp 2 phase content in diamond films without changing diamond grain sizes. The corresponding FEE property was degraded

  20. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ummethala, Raghunandan; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Wenger, Daniela; Tedde, Sandro F. [Siemens Healthcare GmbH, Technology Centre, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria)

    2016-01-28

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  1. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Science.gov (United States)

    Ummethala, Raghunandan; Wenger, Daniela; Tedde, Sandro F.; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd; Eckert, Jürgen

    2016-01-01

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  2. Enhanced field emission characteristics of boron doped diamond films grown by microwave plasma assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); Patil, Sandip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Kim, Tae-Gyu [Department of Nano System and Process Engineering, Pusan National University, 50 Cheonghak-ri, Samrangjin-eup, Miryang, Gyeongnam, Pusan 627-706 (Korea, Republic of); Yonekura, Daisuke [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan); More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Joag, Dilip S. [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.jp [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-josanjima-cho, Tokushima 770-8506 (Japan)

    2011-01-01

    Boron doped diamond films were synthesized on silicon substrates by microwave plasma chemical vapor deposition (MPCVD) technique. The effect of B{sub 2}O{sub 3} concentration varied from 1000 to 5000 ppm on the field emission characteristics was examined. The surface morphology and quality of films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. The surface morphology obtained by SEM showed variation from facetted microcrystal covered with nanometric grains to cauliflower of nanocrystalline diamond (NCD) particles with increasing B{sub 2}O{sub 3} concentration. The Raman spectra confirm the formation of NCD films. The field emission properties of NCD films were observed to improve upon increasing boron concentration. The values of the onset field and threshold field are observed to be as low as 0.36 and 0.08 V/{mu}m, respectively. The field emission current stability investigated at the preset value of {approx}1 {mu}A is observed to be good, in each case. The enhanced field emission properties are attributed to the better electrical conductivity coupled with the nanometric features of the diamond films.

  3. Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array

    Science.gov (United States)

    Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian

    2016-10-01

    Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.

  4. Emission characteristics of PBDEs during flame-retardant plastics extruding process: field investigation and laboratorial simulation.

    Science.gov (United States)

    Deng, Chao; Li, Ying; Li, Jinhui; Chen, Yuan; Li, Huafen

    2017-10-01

    Though mechanical recycling of WEEE plastics is supposed to be a promising method, PBDEs release and the resulting contamination during its processing remain unclear yet. The distribution of PBDEs pollution in production lines was investigated from two flame-retardant plastic modification plants in Southern China. This was followed by laboratory simulation experiments to characterize the emission processes. PBDEs concentrations ranged from 37 to 31,305 ng/L in cooling water and from 40,043 to 216,653 ng/g dry wt in solid samples taken during the field investigation. In the laboratory simulation, concentrations ranged from 146 to 433 ng/L in cooling water and from 411,436 to 747,516 ng/Nm 3 in flue gas. All samples were dominated by BDE-209 among the congeners. Temperatures and impurities in plastic substrate can significantly affect PBDEs release. Special attention should be paid to the risks of water directly discharge from the cooling system, especially for the biological sludge and sediments, as well as flue gas emissions to the environment.

  5. A study of variation characteristics of Gobi broadband emissivity based on field observational experiments in northwestern China

    Science.gov (United States)

    Zheng, Zhi-yuan; Wei, Zhi-gang; Wen, Zhi-ping; Dong, Wen-jie; Li, Zhen-chao; Wen, Xiao-hang; Zhu, Xian; Chen, Chen; Hu, Shan-shan

    2018-02-01

    Land surface emissivity is a significant variable in energy budgets, land cover assessments, and environment and climate studies. However, the assumption of an emissivity constant is being used in Gobi broadband emissivity (GbBE) parameterization scheme in numerical models because of limited knowledge surrounding the spatiotemporal variation characteristics of GbBE. To address this issue, we analyzed the variation characteristics of GbBE and possible impact factor-surface soil moisture based on long-term continuous and high temporal resolution field observational experiments over a typical Gobi underlying surface in arid and semiarid areas in northwestern China. The results indicate that GbBE has obvious daily and diurnal variation features, especially diurnal cycle characteristics. The multi-year average of the daily average of GbBE is in the range of 0.932 to 0.970 with an average of 0.951 ± 0.008, and the average diurnal GbBE is in the range of 0.880 to 0.940 with an average of 0.906 ± 0.018. GbBE varies with surface soil moisture content. We observed a slight decrease in GbBE with an increase in soil moisture, although this change was not very obvious because of the low soil moisture in this area. Nevertheless, we think that soil moisture must be one of the most significant impact factors on GbBE in arid and semiarid areas. Soil moisture must be taken into account into the parameterization schemes of bare soil broadband emissivity in land surface models. Additional field experiments and studies should be carried out in order to clarify this issue.

  6. Field emission electronics

    CERN Document Server

    Egorov, Nikolay

    2017-01-01

    This book is dedicated to field emission electronics, a promising field at the interface between “classic” vacuum electronics and nanotechnology. In addition to theoretical models, it includes detailed descriptions of experimental and research techniques and production technologies for different types of field emitters based on various construction principles. It particularly focuses on research into and production of field cathodes and electron guns using recently developed nanomaterials and carbon nanotubes. Further, it discusses the applications of field emission cathodes in new technologies such as light sources, flat screens, microwave and X-ray devices.

  7. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    Science.gov (United States)

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  8. Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid; Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India); Husain, Mushahid, E-mail: mush-reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia, New Delhi 110025 (India)

    2014-02-28

    Field emission properties of single wall carbon nanotubes (SWCNTs) grown on iron catalyst film by plasma enhanced chemical vapour deposition system were studied in diode configuration. The results were analysed in the framework of Fowler-Nordheim theory. The grown SWCNTs were found to be excellent field emitters, having emission current density higher than 20 mA/cm{sup 2} at a turn-on field of 1.3 V/μm. The as grown SWCNTs were further treated with Oxygen (O{sub 2}) plasma for 5 min and again field emission characteristics were measured. The O{sub 2} plasma treated SWCNTs have shown dramatic improvement in their field emission properties with emission current density of 111 mA/cm{sup 2} at a much lower turn on field of 0.8 V/μm. The as grown as well as plasma treated SWCNTs were also characterized by various techniques, such as scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, and Fourier transform infrared spectroscopy before and after O{sub 2} plasma treatment and the findings are being reported in this paper.

  9. A comparative study of nitrogen plasma effect on field emission characteristics of single wall carbon nanotubes synthesized by plasma enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avshish; Parveen, Shama; Husain, Samina; Ali, Javid [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Zulfequar, Mohammad [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Harsh [Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Husain, Mushahid, E-mail: mush_reslab@rediffmail.com [Department of Physics, Jamia Millia Islamia (A Central University), New Delhi 110025 (India); Centre for Nanoscience and Nanotechnology, Jamia Millia Islamia (A Central University), New Delhi 110025 (India)

    2014-12-15

    Highlights: • Vertically aligned single wall carbon nanotubes (SWCNTs) have been successfully grown on nickel (Ni) deposited silicon substrate. • The diameter distribution of the grown (SWCNTs) is in the range 1–2 nm. • A current density of 25.0 mA/cm{sup 2} at 1.9 V/μm of the grown SWCNTs is observed with a high turn-on field (E{sub to}) of 1.3 V/μm. • After N{sub 2} nitrogen plasma treatment, huge current density of 81.5 mA/cm{sup 2} at 2.0 V/μm was recorded with low E{sub to} of 1.2 V/μm. • The comparison of these two typical results indicates a drastic enhancement in the field emission properties after plasma treatments. - Abstract: Vertically aligned single wall carbon nanotubes (SWCNTs) with large scale control of diameter, length and alignment have successfully been grown by plasma enhanced chemical vapor deposition (PECVD) system. The nickel (Ni) as catalyst deposited on silicon (Si) substrate was used to grow the SWCNTs. Field emission (FE) characteristics of the as grown SWCNTs were measured using indigenously designed setup in which a diode is configured in such a way that by applying negative voltage on the copper plate (cathode) with respect to stainless steel anode plate, current density can be recorded. To measure the FE characteristics, SWCNTs film pasted on the copper plate with silver epoxy was used as electron emitter source. The effective area of anode was ∼78.5 mm{sup 2} for field emission measurements. The emission measurements were carried out under high vacuum pressure of the order of 10{sup −6} Torr to minimize the electron scattering and degradation of the emitters. The distance between anode and cathode was kept 500 μm (constant) during entire field emission studies. The grown SWCNTs are excellent field emitters, having emission current density higher than 25 mA/cm{sup 2} at turn-on field 1.3 V/μm. In order to enhance the field emission characteristics, the as grown SWCNTs have been treated under nitrogen (N{sub 2

  10. Field emission characteristics of vertically aligned carbon nanotubes with honeycomb configuration grown onto glass substrate with titanium coating

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chang, Hsin-Yueh; Chang, Hsuan-Chen [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Shih, Yi-Ting; Su, Wei-Jhih [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Ciou, Chen-Hong [Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Chen, Yi-Ling [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Honda, Shin-ichi [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Huang, Ying-Sheng [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Lee, Kuei-Yi, E-mail: kylee@mail.ntust.edu.tw [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China); Department of Electronic and computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-03-15

    Highlights: • We have successfully designed the honeycomb patterns on glass substrate by photolithography technique. • Honeycomb-VACNTs were synthesized successfully onto glass substrate by using thermal CVD and covered different Ti films on VACNTs by e-beam evaporation. • After coating the Ti films, the current density reached 7 mA/cm{sup 2} when the electric field was 2.5 V/μm. • The fluorescence of VACNTs with Ti 15 nm films exhibits the high brightness screen and emission uniformity. -- Abstract: Carbon nanotubes (CNTs) were grown successfully onto a glass substrate using thermal chemical vapor deposition (TCVD) with C{sub 2}H{sub 2} gas at 700 °C. The synthesized CNTs exhibited good crystallinity and a vertically aligned morphology. The vertically aligned CNTs (VACNTs) were patterned with a honeycomb configuration using photolithography and characterized using field emission (FE) applications. Owing to the electric field concentration, the FE current density of VACNTs with honeycomb configuration was higher than that of the un-patterned VACNTs. Ti was coated onto the VACNT surface utilizing the relatively lower work function property to enhance the FE current density. The FE current density reached up to 7.0 mA/cm{sup 2} at an applied electric field of 2.5 V/μm. A fluorescent screen was monitored to demonstrate uniform FE VACNTs with a honeycomb configuration. The designed field emitter provided an admirable example for FE applications.

  11. Field emission in RF cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    Electron field emission limits the accelerating gradient in superconducting cavities. It is shown how and why it is an important problem. The phenomenology of field emission is then described, both in DC and RF regimes. Merits of a few plausible 'remedies' to field emission are discussed. (author)

  12. Synthesis and field emission characteristics of carbon nanocoils with a high aspect ratio supported by copper micro-tips

    International Nuclear Information System (INIS)

    Sung, Woo Yong; Ok, Jong Girl; Kim, Wal Jun; Lee, Seung Min; Yeon, Soon Chang; Lee, Ho Young; Kim, Yong Hyup

    2007-01-01

    Carbon nanocoils (CNCs) were synthesized via thermal chemical vapour deposition (CVD) with C 2 H 2 and NH 3 gases at 600 deg. C. A Ni catalyst was placed upon the copper micro-tip structures that were fabricated on a silicon substrate. Our CNCs had a long rope shape with a length not exceeding 100 μm and a nanoscale diameter. The copper micro-tips were formed through high current pulse electroplating, which played a significant role in characterizing our CNCs. The CNCs grown on the copper micro-tips showed outstanding field emission performance and long-term stability. Their turn-on field, defined as that at a current density of 10 μA cm -2 , was 1.30 V μm -1 and the maximum current density reached 11.17 mA cm -2 at an electric field of 2.39 V μm -1

  13. Evaluation of the characteristics of a field emission cathode for use in a Mercury ion trap frequency standard

    Science.gov (United States)

    Christman, J. M.

    1988-01-01

    The performance is reported of a field emission array characterized for the purpose of replacing the filament in a trapped ion frequency standard. This dark electron emitter eliminates the need for the interference filter currently used in the trapped ion standard. While reducing the filament's unwanted light, this filter causes a significant reduction in the signal. The magnetic field associated with the filament is also eliminated, thus potentially improving the present stability of the trapped ion standard. The operation of the filament in the present system is described, as well as the associated concerns. The cathode considered for the filament's replacement is then described along with the experimental system. Experimental results, observations, and conclusions are presented.

  14. Engineering the interface characteristics on the enhancement of field electron emission properties of vertically aligned hexagonal boron nitride nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Sankaran, K.J.; Hoang, D.Q.; Drijkoningen, S.; Pobedinskas, P.; Haenen, K. [Institute for Materials Research (IMO), Hasselt University, Diepenbeek (Belgium); IMOMEC, IMEC vzw, Diepenbeek (Belgium); Srinivasu, K.; Leou, K.C. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu (China); Korneychuk, S.; Turner, S.; Verbeeck, J. [Electron Microscopy for Materials Science (EMAT), University of Antwerp (Belgium); Lin, I.N. [Department of Physics, Tamkang University, Tamsui (China)

    2016-10-15

    Utilization of Au and nanocrystalline diamond (NCD) as interlayers noticeably modifies the microstructure and field electron emission (FEE) properties of hexagonal boron nitride nanowalls (hBNNWs) grown on Si substrates. The FEE properties of hBNNWs on Au could be turned on at a low turn-on field of 14.3 V μm{sup -1}, attaining FEE current density of 2.58 mA cm{sup -2} and life-time stability of 105 min. Transmission electron microscopy reveals that the Au-interlayer nucleates the hBN directly, preventing the formation of amorphous boron nitride (aBN) in the interface, resulting in enhanced FEE properties. But Au forms as droplets on the Si substrate forming again aBN at the interface. Conversely, hBNNWs on NCD shows superior in life-time stability of 287 min although it possesses inferior FEE properties in terms of larger turn-on field and lower FEE current density as compared to that of hBNNWs-Au. The uniform and continuous NCD film on Si also circumvents the formation of aBN phases and allows hBN to grow directly on NCD. Incorporation of carbon in hBNNWs from the NCD-interlayer improves the conductivity of hBNNWs, which assists in transporting the electrons efficiently from NCD to hBNNWs that results in better field emission of electrons with high life-time stability. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Emission Characteristics of Greenhouse Gas from Maize Field of Black Soil Region Under Long-term Fertilization

    Directory of Open Access Journals (Sweden)

    GAO Hong-jun

    2017-08-01

    Full Text Available Study on greenhouse gases emission and their global warming potential under different fertilizations would be the theoretical basis for establishing measurements to reduce greenhouses gas emissions. Based on a long-term fertilization experiment, greenhouses gas(GHG emissions from black soil of summer maize were measured by using a static chamber-gas chromatograph technique, and global warming potential(GWP effect was also estimated. The results showed the peaks of CO2 and N2O emissions occurred at maize jointing period. The CO2 and N2O emission flux and CH4 uptake flux in the M2NPK treatment(mixed application of organic fertilizer and chemical fertilizer were significantly higher than those of the chemical fertilizer treatments(P2 and N2O emission flux in the chemical fertilizer treatments were higher than that of the no fertilizer treatment. The CO2 emission flux of the fallow treatment was the highest among all the treatments, but its N2O emission flux was significantly lower than that of the chemical fertilizer treatment. Under equal N rates, the N2O emission flux of the NPK treatment was significantly higher than that of the SNPK treatment(straw returning, but CH4 uptake flux was the opposite result. Compared with no fertilizer treatment(CK, GWP of the N and NPK treatments increased by 142% and 32% respectively, GWP of SNPK treatment decreased by 38%, and GWP in the M2NPK treatment was negative value. Greenhouse gas emission intensity(GHGI of the NPK, SNPK and M2NPK treatments were significantly lower than that of the CK and the N treatments, GHGI of the M2NPK treatment was -222 kg CO2-eq·t-1. Therefore, in order to implement the higher maize yield with lower GHGI synchronously, mixed application of organic fertilizer and chemical fertilizer would be the optimal fertilization measurement in black soil region of Northeast China.

  16. Surface and Bulk Characteristics of Cesium Iodide (CsI) coated Carbon (C) Fibers for High Power Microwave (HPM) Field Emission Cathodes

    Science.gov (United States)

    Vlahos, Vasilios; Morgan, Dane; Booske, John H.; Shiffler, Don

    2008-11-01

    CsI coated C fibers [1] are promising field emission cathodes for HPM applications. Ab initio computational modeling has shown that atomically-thin CsI coatings reduce the work function of C substrates by a surface dipole mechanism [2]. Characterization measurements of the composition and morphology of the CsI-coated C fibers are underway for determining the properties and characteristics of the following important regions of the fiber: (i) the surface on the tip of the fiber where the majority of electron emission is believed to occur, (ii) the surface covering the body of the fiber and its role on the emission properties of the system, and (iii) the interior volume of the fiber and its effects on the CsI surface re-supply process and rate. The results will be interpreted in terms of surface electronic properties and theoretical electron emission models. [1]D. Shiffler, et al., Phys. Plasmas 11 (2004) 1680. [2]V.Vlahos et al., Appl. Phys. Lett. 91 (2007) 144102.

  17. Field emission for cantilever sensors

    NARCIS (Netherlands)

    Yang, C.K.; le Fèbre, A.J.; Pandraud, G.; van der Drift, E.; French, P.J.

    2008-01-01

    Field emission provides an alternative sensing solution in scaled electromechanical systems and devices, when typical displacement detection techniques fail in submicron and nanodimenions. Apart from its independency from device dimension, it has also a high response, integration and high

  18. Field Emission from Carbon Nanostructures

    Directory of Open Access Journals (Sweden)

    Filippo Giubileo

    2018-03-01

    Full Text Available Field emission electron sources in vacuum electronics are largely considered to achieve faster response, higher efficiency and lower energy consumption in comparison with conventional thermionic emitters. Carbon nanotubes had a leading role in renewing attention to field emission technologies in the early 1990s, due to their exceptional electron emitting properties enabled by their large aspect ratio, high electrical conductivity, and thermal and chemical stability. In the last decade, the search for improved emitters has been extended to several carbon nanostructures, comprising carbon nanotubes, either individual or films, diamond structures, graphitic materials, graphene, etc. Here, we review the main results in the development of carbon-based field emitters.

  19. Field electron emission from branched nanotubes film

    International Nuclear Information System (INIS)

    Zeng Baoqing; Tian Shikai; Yang Zhonghai

    2005-01-01

    We describe the preparation and analyses of films composed of branched carbon nanotubes (CNTs). The CNTs were grown on a Ni catalyst film using chemical vapor deposition from a gas containing acetylene. From scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses, the branched structure of the CNTs was determined; the field emission characteristics in a vacuum chamber indicated a lower turn on field for branched CNTs than normal CNTs

  20. Study of field emission phenomena

    International Nuclear Information System (INIS)

    Ramanathan, Devaki; Vijendran, P.

    1976-01-01

    The theory of field emission has been explained, using Fowler-Nordheim equation and the Fowler-Nordheim plot. The imaging theory is also described in brief. The fabrication details of a field emission microscope (FEM) are mentioned. The design of the tube and the emitter assemblies are explained in detail. Simple experiments that can be demonstrated on the FEM such as indexing, detetermination of work function and surface diffusion constants, etc. are also mentioned. The use of FEM as a simple teaching aid has been brought out. (K.B.)

  1. ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics

    International Nuclear Information System (INIS)

    Chen, Hung-Wei; He, Hsin-Min; Lee, Yi-Mu; Yang, Hsi-Wen

    2016-01-01

    ZnO nanorod arrays were prepared by low temperature chemical bath deposition (CBD) combined with rapid thermal annealing (RTA) under different ambient conditions. The structure and morphology of the synthesized ZnO have been characterized by field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The obtained ZnO samples are highly crystalline with a hexagonal wurtzite phase and also display well-aligned array structure. A pronounced effect on increased nanorod length was found for the RTA-treated ZnO as compared to the as-grown ZnO. Analysis of XRD indicates that the (0 0 2) feature peak of the as-grown ZnO was shifted towards a lower angle as compared to the peaks of RTA-treated ZnO samples due to the reduction of tensile strain along the c-axis by RTA. Photoluminescence (PL) studies reveal that the ZnO nanorod arrays receiving RTA in an O 2 environment have the sharpest UV emission band and greatest intensity ratio of near band-edge emission (NBE) to deep level emission (DLE). Additionally, the effects of RTA on the field emission properties were evaluated. The results demonstrate that RTA an O 2 environment can lower the turn-on field and improve the field enhancement factor. The stability of the field emission current was also tested for 4 h. (paper)

  2. Characteristic of Rings. Prime Fields

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-12-01

    Full Text Available The notion of the characteristic of rings and its basic properties are formalized [14], [39], [20]. Classification of prime fields in terms of isomorphisms with appropriate fields (ℚ or ℤ/p are presented. To facilitate reasonings within the field of rational numbers, values of numerators and denominators of basic operations over rationals are computed.

  3. Field emission studies at Saclay and Orsay

    International Nuclear Information System (INIS)

    Tan, J.

    1996-01-01

    During the last five years, DC and RF equipment for field emission studies have been developed at Saclay and Orsay laboratories. Combining these devices, straight comparison has been carried out between DC and RF field emission from artificial emission sites on the same sample. Other topics are also reviewed: high field cleaning, plausible origins of thermal effects that occurred on emission sites in RF, behaviour of alumina particles under RF field, and optical observations and measurements. (author)

  4. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    Science.gov (United States)

    Cui, Yunkang; Chen, Jing; Di, Yunsong; Zhang, Xiaobing; Lei, Wei

    2017-12-01

    In this paper, a facile method to fabricate the flexible field emission devices (FEDs) based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD), selected area electron diffraction (SAED) and energy dispersive X-ray spectrometer (EDX), while the morphology was revealed by field emission scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). The results showed that the SiC nanowires grew along the [111] direction with the diameter of ˜110 nm and length of˜30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (˜0.95 V/μm) and threshold field (˜3.26 V/μm), and the high field enhancement factor (β=4670). It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  5. High performance field emission of silicon carbide nanowires and their applications in flexible field emission displays

    Directory of Open Access Journals (Sweden)

    Yunkang Cui

    2017-12-01

    Full Text Available In this paper, a facile method to fabricate the flexible field emission devices (FEDs based on SiC nanostructure emitters by a thermal evaporation method has been demonstrated. The composition characteristics of SiC nanowires was characterized by X-ray diffraction (XRD, selected area electron diffraction (SAED and energy dispersive X-ray spectrometer (EDX, while the morphology was revealed by field emission scanning electron microscopy (SEM and high resolution transmission electron microscopy (HRTEM. The results showed that the SiC nanowires grew along the [111] direction with the diameter of ∼110 nm and length of∼30 μm. The flexible FEDs have been fabricated by transferring and screen-printing the SiC nanowires onto the flexible substrates exhibited excellent field emission properties, such as the low turn-on field (∼0.95 V/μm and threshold field (∼3.26 V/μm, and the high field enhancement factor (β=4670. It is worth noting the current density degradation can be controlled lower than 2% per hour during the stability tests. In addition, the flexible FEDs based on SiC nanowire emitters exhibit uniform bright emission modes under bending test conditions. As a result, this strategy is very useful for its potential application in the commercial flexible FEDs.

  6. Field electron emission spectrometer combined with field ion/electron microscope as a field emission laboratory

    International Nuclear Information System (INIS)

    Shkuratov, S.I.; Ivanov, S.N.; Shilimanov, S.N.

    1996-01-01

    The facility, combining the field ion microscope, field electron emission microscope and field electron emission spectrometer, is described. Combination of three methodologies makes it possible to carry out the complete cycle of emission studies. Atom-plane and clean surface of the studied samples is prepared by means of field evaporation of the material atom layers without any thermal and radiation impact. This enables the study of atom and electron structure of clean surface of the wide range materials, the study whereof through the field emission methods was previously rather difficult. The temperature of the samples under study changes from 75 up to 2500 K. The energy resolution of the electron analyzer equals 30 MeV. 19 refs., 10 figs

  7. Marshmallowing of nanopillar arrays by field emission

    International Nuclear Information System (INIS)

    Qin Hua; Kim, Hyun-Seok; Blick, Robert H.

    2010-01-01

    We fabricated nanoscale field electron emitters formed by highly-doped silicon nanopillars on a silicon membrane. Electron-beam induced deposition of carbon-based contaminants is employed as a probe of the spatial activity of electron emission from the nanopillars. In stark contrast to the general assumption that field emission only occurs at the tips of nanoscale emitters, we found strong emission from the sidewalls of the nanopillars. This is revealed by the deposition of carbon contaminants on these sidewalls, so that the nanopillars finally resemble marshmallows. We conclude that field emission from nanostructured surfaces is more intricate than previously expected.

  8. Marshmallowing of nanopillar arrays by field emission

    International Nuclear Information System (INIS)

    Park, J; Qin, H; Kim, H-S; Blick, R H

    2009-01-01

    We have fabricated mechanically flexible field electron emitters formed by highly-doped silicon nanopillars on a silicon membrane. Electron beam induced deposition of carbon-based contaminants is employed to probe the spatial activity of electron emission from the nanopillars. The experimental configuration provides a powerful tool to investigate the physics of the field electron emission (FEE). In contrast to the general assumption that field emission only occurs at the tips of nanoscale emitters, we found that the emission from the nanopillars' sidewalls is as strong as from their tips.

  9. Field emission from a single nanomechanical pillar

    International Nuclear Information System (INIS)

    Kim, Hyun S; Qin Hua; Westphall, Michael S; Smith, Lloyd M; Blick, Robert H

    2007-01-01

    We measured field emission from a silicon nanopillar mechanically oscillating between two electrodes. The pillar has a height of about 200 nm and a diameter of 50 nm, allowing resonant mechanical excitations at radio frequencies. The tunnelling barriers for field emission are mechanically modulated via displacement of the gold island on top of the pillar. We present a rich frequency-dependent response of the emission current in the frequency range of 300-400 MHz at room temperature. Modified Fowler-Nordheim field emission is observed and attributed to the mechanical oscillations of the nanopillar

  10. Coulomb scattering in field and photofield emission

    International Nuclear Information System (INIS)

    Donders, P.J.; Lee, M.J.G.

    1987-01-01

    An anomalous high-energy tail has been observed in the measured total energy distribution (TED) in photofield emission from tungsten. The strength of this tail is proportional to the product of the photofield emission current and the total emission current. Similar high- and low-energy tails in the TED's in field emission, which have previously been reported by several workers, are also observed. In any given measurement, the fraction of the total photofield-emission current in the anomalous photofield-emission tail is approximately equal to the fraction of the total field-emission current in the anomalous field-emission tail. Measurements of both the absolute strengths and energy dependences of the anomalous tails are reported. The experimental observations are consistent with the predictions of a classical calculation of the energy transfer that results from the Coulomb interaction between electrons in the vacuum near the field emitter. The various internal mechanisms that have previously been invoked to account for the tails in field-emission TED's do not appear to contribute significantly to the anomalous distributions observed in the present work

  11. 47 CFR 2.201 - Emission, modulation, and transmission characteristics.

    Science.gov (United States)

    2010-10-01

    ... characteristics. 2.201 Section 2.201 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY..., and transmission characteristics. The following system of designating emission, modulation, and transmission characteristics shall be employed. (a) Emissions are designated according to their classification...

  12. Edge field emission of large-area single layer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Kleshch, Victor I., E-mail: klesch@polly.phys.msu.ru [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Bandurin, Denis A. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Orekhov, Anton S. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); A.V. Shubnikov Institute of Crystallography, RAS, Moscow 119333 (Russian Federation); Purcell, Stephen T. [ILM, Université Claude Bernard Lyon 1 et CNRS, UMR 5586, 69622 Villeurbanne (France); Obraztsov, Alexander N. [Department of Physics, M.V. Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Department of Physics and Mathematics, University of Eastern Finland, Joensuu 80101 (Finland)

    2015-12-01

    Graphical abstract: - Highlights: • Stable field emission was observed from the edge of large-area graphene on quartz. • A strong hysteresis in current–voltage characteristics was observed. • The hysteresis was explained by mechanical peeling of graphene edge from substrate. • Reversible peeling of graphene edge may be used in microelectromechanical systems. - Abstract: Field electron emission from the edges of large-area (∼1 cm × 1 cm) graphene films deposited onto quartz wafers was studied. The graphene was previously grown by chemical vapour deposition on copper. An extreme enhancement of electrostatic field at the edge of the films with macroscopically large lateral dimensions and with single atom thickness was achieved. This resulted in the creation of a blade type electron emitter, providing stable field emission at low-voltage with linear current density up to 0.5 mA/cm. A strong hysteresis in current–voltage characteristics and a step-like increase of the emission current during voltage ramp up were observed. These effects were explained by the local mechanical peeling of the graphene edge from the quartz substrate by the ponderomotive force during the field emission process. Specific field emission phenomena exhibited in the experimental study are explained by a unique combination of structural, electronic and mechanical properties of graphene. Various potential applications ranging from linear electron beam sources to microelectromechanical systems are discussed.

  13. Field emission from finite barrier quantum structures

    Energy Technology Data Exchange (ETDEWEB)

    Biswas Sett, Shubhasree, E-mail: shubhasree24@gmail.com [The Institution of Engineers - India, 8, Gokhale Road, Kolkata 700 020 (India); Bose, Chayanika, E-mail: chayanikab@ieee.org [Electronics and Telecommunication Engg. Dept., Jadavpur University, Kolkata 700 032 (India)

    2014-10-01

    We study field emission from various finite barrier quasi-low dimensional structures, taking image force into account. To proceed, we first formulate an expression for field emission current density from a quantum dot. Transverse dimensions of the dot are then increased in turn, to obtain current densities respectively from quantum wire and quantum well with infinite potential energy barriers. To find out field emission from finite barrier structures, the above analysis is followed with a correction in the energy eigen values. In course, variations of field emission current density with strength of the applied electric field and structure dimensions are computed considering n-GaAs and n-GaAs/Al{sub x}Ga{sub 1−x}As as the semiconductor materials. In each case, the current density is found to increase exponentially with the applied field, while it oscillates with structure dimensions. The magnitude of the emission current is less when the image force is not considered, but retains the similar field dependence. In all cases, the field emission from infinite barrier structures exceeds those from respective finite barrier ones.

  14. Field emission properties of an array of pyramidal structures

    Energy Technology Data Exchange (ETDEWEB)

    De Assis, Thiago A [Departamento de QuImica, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Borondo, F [Departamento de QuImica, Instituto Mixto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); De Castilho, C M C; Brito Mota, F [Grupo de Fisica de SuperfIcies e Materiais, Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador, BA (Brazil); Benito, R M, E-mail: t.albuquerque@uam.e, E-mail: f.borondo@uam.e, E-mail: caio@ufba.b, E-mail: fbmota@ufba.b, E-mail: rosamaria.benito@upm.e [Grupo de Sistemas Complejos, Departamento de Fisica y Mecanica, Escuela Tecnica Superior de Ingenieros Agronomos, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2009-10-07

    The properties and efficiency of the emission current density produced by a metallic array of pyramidal structures are investigated. The theoretical results obtained by numerical integration of the corresponding Laplace equation using a finite differences scheme offer useful information for the optimization of field emission devices based on cathodes with this geometry. Our study shows that the inter-pyramidal distance strongly affects the current density, and even more important for this issue is the protrusion characteristics of these structures. Another relevant, although less important, parameter determining this density is the anode-cathode distance. The effect of the array characteristics on the maximum local electric field intensity is also discussed.

  15. Pulsar Emission Geometry and Accelerating Field Strength

    Science.gov (United States)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  16. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  17. FIELD EVALUATION OF LOW-EMISSION COAL BURNER TECHNOLOGY ON UTILITY BOILERS VOLUME III. FIELD EVALUATIONS

    Science.gov (United States)

    The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...

  18. Resonant tunnelling from nanometre-scale silicon field emission cathodes

    International Nuclear Information System (INIS)

    Johnson, S.; Markwitz, A.

    2005-01-01

    In this paper we report the field emission properties of self-assembled silicon nanostructures formed on an n-type silicon (100) substrate by electron beam annealing. The nanostructures are square based, with an average height of 8 nm and are distributed randomly over the entire substrate surface. Following conditioning, the silicon nanostructure field emission characteristics become stable and reproducible with electron emission occurring for fields as low as 3 Vμm-1. At higher fields, a superimposed on a background current well described by conventional Fowler-Nordheim theory. These current peaks are understood to result from enhanced tunnelling through resonant states formed at the substrate-nanostructure and nanostructure-vacuum interface. (author). 13 refs., 3 figs

  19. Outstanding field emission properties of wet-processed titanium dioxide coated carbon nanotube based field emission devices

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jinzhuo; Ou-Yang, Wei, E-mail: ouyangwei@phy.ecnu.edu.cn; Chen, Xiaohong; Guo, Pingsheng; Piao, Xianqing; Sun, Zhuo [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Xu, Peng; Wang, Miao [Department of Physics, Zhejiang University, 38 ZheDa Road, Hangzhou 310027 (China); Li, Jun [Department of Electronic Science and Technology, Tongji University, 4800 Caoan Road, Shanghai 201804 (China)

    2015-02-16

    Field emission devices using a wet-processed composite cathode of carbon nanotube films coated with titanium dioxide exhibit outstanding field emission characteristics, including ultralow turn on field of 0.383 V μm{sup −1} and threshold field of 0.657 V μm{sup −1} corresponding with a very high field enhancement factor of 20 000, exceptional current stability, and excellent emission uniformity. The improved field emission properties are attributed to the enhanced edge effect simultaneously with the reduced screening effect, and the lowered work function of the composite cathode. In addition, the highly stable electron emission is found due to the presence of titanium dioxide nanoparticles on the carbon nanotubes, which prohibits the cathode from the influence of ions and free radical created in the emission process as well as residual oxygen gas in the device. The high-performance solution-processed composite cathode demonstrates great potential application in vacuum electronic devices.

  20. The oxidized porous silicon field emission array

    International Nuclear Information System (INIS)

    Smith, D.D.; Demroff, H.P.; Elliott, T.S.; Kasprowicz, T.B.; Lee, B.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Trost, H.J.

    1993-01-01

    The goal of developing a highly efficient microwave power source has led the authors to investigate new methods of electron field emission. One method presently under consideration involves the use of oxidized porous silicon thin films. The authors have used this technology to fabricate the first working field emission arrays from this substance. This approach reduces the diameter of an individual emitter to the nanometer scale. Tests of the first samples are encouraging, with extracted electron currents to nearly 1 mA resulting from less than 20 V of pulsed DC gate voltage. Modulated emission at 5 MHz was also observed. Developments of a full-scale emission array capable of delivering an electron beam at 18 GHz of minimum density 100 A/cm 2 is in progress

  1. Field electron emission from dense array of microneedles of tungsten

    International Nuclear Information System (INIS)

    Okuyama, F.; Aoyagi, M.; Kitai, T.; Ishikawa, K.

    1978-01-01

    Characteristics of field electron emission from the dense array of microneedles of tungsten prepared on a 10-μm tungsten filament were measured at an environmental pressure of approx.1 x 10 -8 Torr (1.33 x 10 -6 Pa). Electron emission was not uniform over the filament surface, but the variation of emission current with applied voltage explicitly obeyed the Fowler-Nordheim relationship. At an emission current of approx.10 -4 A, a vacuum arc was induced that led to a permanent change in current-voltage characteristic. Current fluctuation was dependent on emitter temperature and applied voltage, and the lowest fluctuation of about 4% was routinely obtained at approx.550 K and at applied voltages several percent lower than the arc-inducing voltage. Macroscopic current density amounted to approx.20-80 mA/cm 2 at the best stability

  2. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa

    2010-04-29

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  3. Field Emission of ITO-Coated Vertically Aligned Nanowire Array.

    KAUST Repository

    Lee, Changhwa; Lee, Seokwoo; Lee, Seung S

    2010-01-01

    An indium tin oxide (ITO)-coated vertically aligned nanowire array is fabricated, and the field emission characteristics of the nanowire array are investigated. An array of vertically aligned nanowires is considered an ideal structure for a field emitter because of its parallel orientation to the applied electric field. In this letter, a vertically aligned nanowire array is fabricated by modified conventional UV lithography and coated with 0.1-μm-thick ITO. The turn-on electric field intensity is about 2.0 V/μm, and the field enhancement factor, β, is approximately 3,078 when the gap for field emission is 0.6 μm, as measured with a nanomanipulator in a scanning electron microscope.

  4. Characteristics of Biogenic VOCs Emission and its High-Resolution Emission Inventory in China

    Science.gov (United States)

    Li, L.; Li, Y.; Xie, S.

    2017-12-01

    Biogenic volatile organic compounds (BVOCs), with high emission and reactivity, can have substantial impacts on the haze and photochemical pollution. It is essential to establish an accurate high-resolution BVOC emission inventory in China for air quality simulation and decision making. Firstly, a semi-static enclosure technique is developed for the field measurements of BVOC emission rates from 50 plant species in China. Using the GC-MS/FID system, 103 VOC species for each plant species are measured. Based on the field measurements in our study and the reported emission rates at home and abroad, a methodology for determining the emission categories of BVOCs is developed using statistical analysis. The isoprene and monoterpene emission rates of 192 plant species/genera in China are determined based on the above emission categories. Secondly, a new vegetation classification with 82 plant functional types (PFTs) is developed based on the most detailed and latest vegetation investigations, China's official statistical data and Vegetation Atlas of China (1:1,000,000). The leaf biomass is estimated based on provincial vegetation volume and production with biomass-apportion models. The WRF model is used to determine meteorological variables at a high spatio-temporal resolution. Using MEAGNv2.1 and the determined emission rates in our study, the high-resolution emission inventories of isoprene, 37 monoterpene species, 32 sesquiterpene species, and other VOCs (OVOCs) from 82 PFTs in China for 1981-2013 are established. The total annual BVOC emissions in 2013 are 55.88 Tg, including 33.87 Tg isoprene, 6.36 Tg monoterpene, 1.29 Tg sesquiterpene, and 14.37 Tg OVOCs. The distribution of isoprene emission fluxes is consistent with the distribution of broadleaf trees, especially tree species with high or higher emission potential. During 1981-2013, China's BVOC emissions have increased by 47.48% at an average rate of 1.80% yr-1. Emissions of isoprene have the largest enhancement

  5. Electron field emission for ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, A. R.; Auciello, O.; Ding, M. Q.; Gruen, D. M.; Huang, Y.; Zhirnov, V. V.; Givargizov, E. I.; Breskin, A.; Chechen, R.; Shefer, E. (and others)

    2001-03-01

    Ultrananocrystalline diamond (UNCD) films 0.1--2.4 {mu}m thick were conformally deposited on sharp single Si microtip emitters, using microwave CH{sub 4}--Ar plasma-enhanced chemical vapor deposition in combination with a dielectrophoretic seeding process. Field-emission studies exhibited stable, extremely high (60--100 {mu}A/tip) emission current, with little variation in threshold fields as a function of film thickness or Si tip radius. The electron emission properties of high aspect ratio Si microtips, coated with diamond using the hot filament chemical vapor deposition (HFCVD) process were found to be very different from those of the UNCD-coated tips. For the HFCVD process, there is a strong dependence of the emission threshold on both the diamond coating thickness and Si tip radius. Quantum photoyield measurements of the UNCD films revealed that these films have an enhanced density of states within the bulk diamond band gap that is correlated with a reduction in the threshold field for electron emission. In addition, scanning tunneling microscopy studies indicate that the emission sites from UNCD films are related to minima or inflection points in the surface topography, and not to surface asperities. These data, in conjunction with tight binding pseudopotential calculations, indicate that grain boundaries play a critical role in the electron emission properties of UNCD films, such that these boundaries: (a) provide a conducting path from the substrate to the diamond--vacuum interface, (b) produce a geometric enhancement in the local electric field via internal structures, rather than surface topography, and (c) produce an enhancement in the local density of states within the bulk diamond band gap.

  6. Field emission from a new type of electron source

    International Nuclear Information System (INIS)

    Mousa, M.S.

    1987-01-01

    A new type of field emission electron source has been developed. In this paper, the construction, characteristics and behaviour of tungsten micropoint emitters coated with a sub-micron layer of hydrocarbon using a TEM with poor ( ∼ 1 0 -3 torr) vacuum conditions are described. The hydrocarbon coating has been verified using the X-Ray energy dispersive analysis technique of a SEM. The technical capabilities and potential of the new type of electron source are compared with those of other comparable composite micropoint field emitters and other types of electron sources currently in use. The emission properties presented here include I-V characteristics, emission images and electron energy spectra of this type of composite micropoint emitters. The effect on the behaviour and characteristics of baking the coated emitters at temperatures ranging between 140 0 C and 350 0 C is also studied. The behaviour of the emitter has been interpreted in terms of a field-induced hot-electron emission mechanism associated with metal-insulator-vacuum (M-I-V) regime

  7. Characteristic evaluation of acoustic emission sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyun Kyu; Joo, Y. S.; Lee, N. H

    2000-12-01

    This report introduces the various kinds of Acoustic Emission(AE) sensors as well as the basic principle of AE sensors in order to select AE sensor suitably. The described sensors include : high sensitivity sensor, broadband sensor, underwater sensor, miniature sensor, directional sensor, integral pre-amplifier sensor. Sensor has two critical aspects of reliability and repeatability. For the high reliability, sensor has to be calibrated in accordance with ASTM standard E 1106 which explains to measure the characteristics of AE sensor accurately. For investigating the degradation of AE sensor under the severe environment for example the high radiation condition, It is important to perform the repeatability test which is described in detail in according to the ASTM standard E 976. Two kinds of AE sensor applications are also summarized.

  8. Field emission current from a junction field-effect transistor

    International Nuclear Information System (INIS)

    Monshipouri, Mahta; Abdi, Yaser

    2015-01-01

    Fabrication of a titanium dioxide/carbon nanotube (TiO 2 /CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO 2 nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO 2 /CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO 2 /CNT hetero-structure is also investigated, and well modeled

  9. Effect of Vehicle Characteristics on Unpaved Road Dust Emissions

    National Research Council Canada - National Science Library

    Gillies, J. A; Etyemezian, V; Kuhns, H; Nikolic, D; Gillette, D. A

    2005-01-01

    This paper presents PM10 fugitive dust emission factors for a range of vehicles types and examines the influence of vehicle and wake characteristics on the strength of emissions from an unpaved road...

  10. Fluxon induced resistance and field emission

    CERN Document Server

    Calatroni, Sergio; Darriulat, Pierre; Peck, M A; Valente, A M; Van't Hof, C A

    2000-01-01

    The surface resistance of superconducting niobium films induced by the presence of trapped magnetic flux, presumably in the form of a pinned fluxon lattice, is shown to be modified by the presence of a field emitting impurity or defect. The modification takes the form of an additional surface resistance proportional to the density of the fluxon lattice and increasing linearly with the amplitude of the microwave above a threshold significantly lower than the field emission threshold. Such an effect, precursor of electron emission, is observed here for the first time in a study using radiofrequency cavities operated at their fundamental 1.5 GHz frequency. The measured properties of the additional surface resistance severely constrain possible explanations of the observed effect.

  11. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu; Patole, Shashikant P.; Patil, Sumati; Yoo, J.B.; Dharmadhikari, C.V.

    2017-01-01

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1

  12. Electron injection in diodes with field emission

    International Nuclear Information System (INIS)

    Denavit, J.; Strobel, G.L.

    1986-01-01

    This paper presents self-consistent steady-state solutions of the space charge, transmitted current, and return currents in diodes with electron injection from the cathode and unlimited field emission of electrons and ions from both electrodes. Time-dependent particle simulations of the diode operation confirm the analytical results and show how these steady states are reached. The results are applicable to thermionic diodes and to photodiodes

  13. Characteristic emission in glutaraldehyde polymerized hemoglobin

    International Nuclear Information System (INIS)

    Ma Li; Wang Xiaojun

    2011-01-01

    Hemoglobin with different modifications has been investigated using spectroscopic techniques. A new emission at around 371 nm has been observed under excitation of 305 nm from glutaraldehyde polymerized human hemoglobin. Intensity and peak position of the emission are dependent on both oxidation state and ligand environment and the emission has been identified from the hemoglobin oligomer.

  14. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  15. In inhomogeneity and emission characteristics of Iguana

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Yoichi [Department of Electronic Science and Engineering, Kyoto University, Kyoto (Japan)]. E-mail: kawakami@kuee.kyoto-u.ac.jp; Omae, Kunimichi; Kaneta, Akio; Okamoto, Koichi; Fujita, Shigeo [Department of Electronic Science and Engineering, Kyoto University, Kyoto (Japan); Narukawa, Yukio; Mukai, Takashi [Nitride Semiconductor Research Laboratory, Nichia Corporation, Oka, Kaminaka, Anan, Tokushima (Japan)

    2001-08-13

    Recombination dynamics of spontaneous and stimulated emissions have been assessed in InGaN-based light emitting diodes (LEDs) and laser diodes (LDs), by employing time-resolved photoluminescence and pump and probe spectroscopy. As for an In{sub 0.02}Ga{sub 0.98}N ultraviolet LED, excitons are weakly localized by 15 meV at low temperature, but they become almost free at room temperature (RT). It was found that addition of a small amount of In results in the reduction of nonradiative recombination centres originating from point defects. The internal electric field does exist in InGaN active layers, and induces a large modification of excitonic transitions. However, it alone does not explain the feature of spontaneous emission observed in an In{sub 0.3}Ga{sub 0.7}N blue LED such as an anomalous temperature dependence of peak energy, almost temperature independence of radiative lifetimes and mobility-edge type behaviour, indicating an important role of exciton localization. The lasing mechanism was investigated for In{sub 0.1}Ga{sub 0.9}N near ultraviolet (390 nm), In{sub 0.2}Ga{sub 0.8}N violet-blue (420 nm) and In{sub 0.3}Ga{sub 0.7}N blue (440 nm) LDs. The optical gain was contributed from the nearly delocalized states (the lowest quantized levels (LQLs) within quantum wells) in the violet LD, while it was from highly localized levels with respect to the LQL by 250 meV for the violet-blue LD, and by 500 meV for the blue LD. It was found that the photo-generated carriers rapidly (less than 1 ps) transferred to the LQL, and then relaxed to the localized tail within the timescale of a few ps, giving rise to the optical gain. Such gain spectra were saturated and other bands appeared in the vicinity of the LQL under higher photo-excitation. (author)

  16. Electron field emission from undoped and doped DLC films

    International Nuclear Information System (INIS)

    Chakhovskoi, A G; Evtukh, A A; Felter, T E; Klyui, N I; Kudzinovsky, S Y; Litovchenko, V G; Litvin, Y M

    1999-01-01

    Electron field emission and electrical conductivity of undoped and nitrogen doped DLC films have been investigated. The films were grown by the PE CVD method from CH(sub 4):H(sub 2) and CH(sub 4):H(sub 2):N(sub 2) gas mixtures, respectively. By varying nitrogen content in the gas mixture over the range 0 to 45%, corresponding concentrations of 0 to 8% (atomic) could be achieved in the films. Three different gas pressures were used in the deposition chamber: 0.2, 0.6 and 0.8 Torr. Emission current measurements were performed at approximately 10(sup -6) Torr using the diode method with emitter-anode spacing set at 20(micro)m. The current - voltage characteristics of the Si field electron emission arrays covered with DLC films show that threshold voltage (V(sub th)) varies in a complex manner with nitrogen content. As a function of nitrogen content, V(sub th) initially increases rapidly, then decreases and finally increases again for the highest concentration. Corresponding Fowler-Nordheim (F-N) plots follow F-N tunneling over a wide range. The F-N plots were used for determination of the work function, threshold voltage, field enhancement factor and effective emission area. For a qualitative explanation of experimental results, we treat the DLC film as a diamond-like (sp(sup 3) bonded) matrix with graphite-like inclusions

  17. Field emission current from a junction field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Monshipouri, Mahta; Abdi, Yaser, E-mail: y.abdi@ut.ac.ir [University of Tehran, Nano-Physics Research Laboratory, Department of Physics (Iran, Islamic Republic of)

    2015-04-15

    Fabrication of a titanium dioxide/carbon nanotube (TiO{sub 2}/CNT)-based transistor is reported. The transistor can be considered as a combination of a field emission transistor and a junction field-effect transistor. Using direct current plasma-enhanced chemical vapor deposition (DC-PECVD) technique, CNTs were grown on a p-typed (100)-oriented silicon substrate. The CNTs were then covered by TiO{sub 2} nanoparticles 2–5 nm in size, using an atmospheric pressure CVD technique. In this device, TiO{sub 2}/CNT junction is responsible for controlling the emission current. High on/off-current ratio and proper gate control are the most important advantages of device. A model based on Fowler–Nordheim equation is utilized for calculation of the emission current and the results are compared with experimental data. The effect of TiO{sub 2}/CNT hetero-structure is also investigated, and well modeled.

  18. Discrete space charge affected field emission: Flat and hemisphere emitters

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kevin L., E-mail: kevin.jensen@nrl.navy.mil [Code 6854, Naval Research Laboratory, Washington, DC 20375 (United States); Shiffler, Donald A.; Tang, Wilkin [Air Force Research Laboratory, Kirtland AFB, New Mexico 87117 (United States); Rittersdorf, Ian M. [Code 6770, Naval Research Laboratory, Washington, DC 20375 (United States); Lebowitz, Joel L. [Department of Mathematics and Department of Physics, Rutgers University, Piscataway, New Jersey 08854-8019 (United States); Harris, John R. [U.S. Navy Reserve, New Orleans, Louisiana 70143 (United States); Lau, Y. Y. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109 (United States); Petillo, John J. [Leidos, Billerica, Massachusetts 01821 (United States); Luginsland, John W. [Physics and Electronics Directorate, AFOSR, Arlington, Virginia 22203 (United States)

    2015-05-21

    Models of space-charge affected thermal-field emission from protrusions, able to incorporate the effects of both surface roughness and elongated field emitter structures in beam optics codes, are desirable but difficult. The models proposed here treat the meso-scale diode region separate from the micro-scale regions characteristic of the emission sites. The consequences of discrete emission events are given for both one-dimensional (sheets of charge) and three dimensional (rings of charge) models: in the former, results converge to steady state conditions found by theory (e.g., Rokhlenko et al. [J. Appl. Phys. 107, 014904 (2010)]) but show oscillatory structure as they do. Surface roughness or geometric features are handled using a ring of charge model, from which the image charges are found and used to modify the apex field and emitted current. The roughness model is shown to have additional constraints related to the discrete nature of electron charge. The ability of a unit cell model to treat field emitter structures and incorporate surface roughness effects inside a beam optics code is assessed.

  19. Carbon nanowalls in field emission cathodes

    Directory of Open Access Journals (Sweden)

    Belyanin A. F.

    2017-12-01

    Full Text Available The carbon nanowall (CNW layers were grown from a gas mixture of hydrogen and methane, activated by a DC glow discharge, on Si substrates (Si/CNW layered structure. The second layer of CNW was grown either on the first layer (Si/CNW/CNW structure or on Ni or NiO films deposited on the first CNW layer (Si/CNW/Ni/CNW and Si/CNW/NiO/CNW structures. The composition and structure of the resulting layered structures were studied using scanning electron microscopy, Raman spectroscopy, and X-ray diffractometry. It was found that annealing of Si/CNW structure in vacuum, growing of the second CNW layer on Si/CNW, as well as deposition of Ni or NiO films prior to the growing of the second CNW layer improve functional properties of field emission cathodes based on the electron-emitting CNW layers.

  20. Vertically aligned zinc selenide nanoribbon arrays: microstructure and field emission

    International Nuclear Information System (INIS)

    Zhao Lijuan; Pang Qi; Cai Yuan; Wang Ning; Ge Weikun; Wang Jiannong; Yang Shihe

    2007-01-01

    Uniform ZnSe precursor (ZnSe : 0.38en, en = ethylenediamine) nanoribbon arrays are grown vertically on Zn foils in ethylenediamine (en) using a solvothermal method. After the annealing treatment in N 2 , the ZnSe nanoribbon arrays can be obtained without an obvious morphology change and the crystallinity of ribbons is greatly improved. The microstructures of both individual ZnSe precursor and ZnSe nanoribbons are investigated. Field emission characteristics show that the onset field required drawing a current density of ∼0.1 μ A cm -2 from the ZnSe nanoribbons is 5.0 V μm -1 and the field enhancement factors are determined to be ∼1382

  1. Facile solution synthesis of hexagonal Alq3 nanorods and their field emission properties.

    Science.gov (United States)

    Hu, Jin-Song; Ji, Heng-Xing; Cao, An-Min; Huang, Zheng-Xi; Zhang, Yang; Wan, Li-Jun; Xia, An-Dong; Yu, Da-Peng; Meng, Xiang-Min; Lee, Shuit-Tong

    2007-08-07

    A facile self-assembly growth route assisted by surfactant has been developed to synthesize tris(8-hydroxyquinoline)aluminium (Alq(3)) nanorods with regular hexagonal shape and good crystallinity, which exhibit field-emission characteristics with a very low turn-on field of ca. 3.1 V microm(-1) and a high field-enhancement factor of ca. 1300.

  2. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency

    International Nuclear Information System (INIS)

    Luong, M.

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics (β, A e ) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  3. Investigation of field emission properties of laser irradiated tungsten

    International Nuclear Information System (INIS)

    Akram, Mahreen; Bashir, Shazia; Hayat, Asma; Mahmood, Khaliq; Jalil, Sohail Abdul; Rafique, Muhammad Shahid

    2018-01-01

    Nd:YAG laser irradiation of Tungsten (W) has been performed in air at atmospheric pressure for four laser fluences ranging from 130 to 500 J/cm 2 . Scanning electron microscope analysis revealed the formation of micro and nanoscale surface features including cones, grains, mounds and pores. Field emission (FE) studies have been performed in a planar diode configuration under ultra-high vacuum conditions by recording I-V characteristics and plotting corresponding electric field (E) versus emission current density (J). The Fowler-Nordheim (FN) plots are found to be linear confirming the quantum mechanical tunneling phenomena for the structured targets. The irradiated samples at different fluences exhibit a turn-on field, field enhancement factor β and a maximum current density ranging from 5 to 8.5 V/μm, 1300 to 3490 and 107 to 350 μA/cm 2 , respectively. The difference in the FE properties is attributed to the variation in the nature and density of the grown structures at different fluences. (orig.)

  4. Role of adsorbates on current fluctuations in DC field emission

    International Nuclear Information System (INIS)

    Luong, M.; Bonin, B.; Long, H.; Safa, H.

    1996-01-01

    Field emission experiments in DC regime usually show important current fluctuations for a fixed electric field. These fluctuations are attributed to adsorbed layers (molecules or atoms), liable to affect the work function, height and shape of the potential barrier binding the electron in the metal. The role of these adsorbed species is investigated by showing that the field emission from a well desorbed sample is stable and reproducible and by comparing the emission from the same sample before and after desorption. (author)

  5. Research on Acoustic Emission and Electromagnetic Emission Characteristics of Rock Fragmentation at Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Fujun Zhao

    2018-01-01

    Full Text Available The relationships among the generation of acoustic emission, electromagnetic emission, and the fracture stress of rock grain are investigated, which are based on the mechanism of acoustic emission and electromagnetic emission produced in the process of indenting rock. Based on the relationships, the influence of loading rate on the characteristics of acoustic emission and electromagnetic emission of rock fragmentation is further discussed. Experiment on rock braking was carried out with three loading rates of 0.001 mm/s, 0.01 mm/s, and 0.1 mm/s. The results show that the phenomenon of acoustic emission and electromagnetic emission is produced during the process of loading and breaking rock. The wave forms of the two signals and the curve of the cutter indenting load show jumping characteristics. Both curves have good agreement with each other. With the increase of loading rate, the acoustic emission and electromagnetic emission signals are enhanced. Through analysis, it is found that the peak count rate, the energy rate of acoustic emission, the peak intensity, the number of pulses of the electromagnetic emission, and the loading rate have a positive correlation with each other. The experimental results agree with the theoretical analysis. The proposed studies can lead to an in-depth understanding of the rock fragmentation mechanism and help to prevent rock dynamic disasters.

  6. Penetration length-dependent hot electrons in the field emission from ZnO nanowires

    Science.gov (United States)

    Chen, Yicong; Song, Xiaomeng; Li, Zhibing; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-01-01

    In the framework of field emission, whether or not hot electrons can form in the semiconductor emitters under a surface penetration field is of great concern, which will provide not only a comprehensive physical picture of field emission from semiconductor but also guidance on how to improve device performance. However, apart from some theoretical work, its experimental evidence has not been reported yet. In this article, the field penetration length-dependent hot electrons were observed in the field emission of ZnO nanowires through the in-situ study of its electrical and field emission characteristic before and after NH3 plasma treatment in an ultrahigh vacuum system. After the treatment, most of the nanowires have an increased carrier density but reduced field emission current. The raised carrier density was caused by the increased content of oxygen vacancies, while the degraded field emission current was attributed to the lower kinetic energy of hot electrons caused by the shorter penetration length. All of these results suggest that the field emission properties of ZnO nanowires can be optimized by modifying their carrier density to balance both the kinetic energy of field induced hot electrons and the limitation of saturated current under a given field.

  7. Field emission of carbon nanotubes grown on nickel substrate

    International Nuclear Information System (INIS)

    Hu Yemin; Huo Kaifu; Chen Hong; Lu Yinong; Xu Li; Hu Zheng; Chen Yi

    2006-01-01

    Carbon nanotubes (CNTs) have been synthesized directly on the electrically conducting nickel substrate without additional catalyst. Field emission properties of the as-prepared sample were characterized using parallel plate diode configurations. It was observed that the field emission qualitatively follows the conventional Fowler-Nordheim (F-N) theory from the straight line of ln(I/V 2 ) versus 1/V plot at the high applied field region. The uniformity and stability of the electron emission have also been examined. The low electron turn-on field (E to ) and high emission current density indicates the potential applications of this new CNT-based emitter

  8. Absorption and emission characteristics of interstellar dust

    International Nuclear Information System (INIS)

    Allamandola, L.J.

    1984-01-01

    Molecular transitions which occur in the middle infrared region of the spectrum correspond with the characteristic frequencies of molecular vibrations. Thus, moderate resolution spectroscopy of the interstellar medium offers unique evidence about the molecules in the condensed and gaseous phases and their distribution. The author discusses the spectral properties of the condensed phase. However, in the astrophysical literature, it is difficult to find a qualitative description of the effects the solid state has on molecular vibrations, and since it is these which largely determine the spectroscopic properties of the interstellar dust, this discussion begins with a general description of these effects and then is directed toward describing the optical characteristics of the molecular ice component of the dust. The properties of this component of the dust are stressed, rather than those expected from more homogeneous components such as silicates, graphite, or amorphous carbon since these have been discussed in considerable detail elsewhere. (Auth.)

  9. Photo field emission spectroscopy of the tantalum band structure

    International Nuclear Information System (INIS)

    Kleint, Ch.; Radon, T.

    1978-01-01

    Photo field emission (PFE) currents of clean and barium covered tantalum tips have been measured with single lines of the mercury arc spectrum and phase-sensitive detection. Field strength and work function were determined from Fowler-Nordheim plots of the FE currents. Shoulders in the PFE current-voltage characteristics could be correlated to transitions in the band structure of tantalum according to a recently proposed two-step PFE model. A comparison with the relativistic calculations of Mattheiss and the nonrelativistic bands of Petroff and Viswanathan shows that Mattheiss' bands are more appropriate. Beside direct transitions several nondirect transitions from the different features composing the upper two density of states maxima below the Fermi edge of tantalum have been found. (Auth.)

  10. Study of the microwave emissivity characteristics over Gobi Desert

    International Nuclear Information System (INIS)

    Yubao, Qiu; Lijuan, Shi; Wenbo, Wu

    2014-01-01

    The microwave emissivity represents the capacity of the thermal radiation of the surface, and it is the significant parameter for understanding the geophysical processes such as surface energy budget and surface radiation. Different land covers have different emissivity properties, and the Gobi Desert in Central Asia seriously impact the sandstorms occur and develop in China, because of its special geographical environment and surface soil characteristics. In this study half-month averaged microwave emissivity from March 2003 to February 2004 over the Gobi Desert has been estimated. Emissivities in this area at different frequencies, polarization and their seasonal variations are discussed respectively. The results showed that emissivity polarization difference decrease as the frequency increases, and the polarization difference is large (0.03–0.127). The H polarization emissivity increases with increasing frequency, but the V-polarized microwave emissivity is reduced with increasing frequency because of the body scattering. In winter, emissivity decreases sharply in snow covered area, especially for higher frequencies (such as 89GHz). In addition, we compared emissivity with MODIS NDVI data at the same time in the Gobi Desert, and the results indicate that NDVI derived the good negative correlation with microwave emissivity polarization difference at 37GHz

  11. Study of Thermal-Field Emission Properties and Investigation of Temperature dependent Noise in the Emission Current form vertical Carbon nanotube emitters

    KAUST Repository

    Kolekar, Sadhu

    2017-05-05

    We have investigated temperature dependent field electron emission characteristics of vertical carbon nanotubes (CNTs). The generalized expression for electron emission from well defined cathode surface is given by Millikan and Lauritsen [1] for the combination of temperature and electric field effect. The same expression has been used to explain the electron emission characteristics from vertical CNT emitters. Furthermore, this has been applied to explain the electron emission for different temperatures ranging from room temperature to 1500 K. The real-time field electron emission images at room temperature and 1500 K are recorded by using Charge Coupled Device (CCD), in order to understand the effect of temperature on electron emission spots in image morphology (as indicated by ring like structures) and electron emission spot intensity of the emitters. Moreover, the field electron emission images can be used to calculate the total number of emitters per cm2 for electron emission. The calculated number of emitters per cm2 is 4.5x107 and, the actual number emitters per cm2 present for electron emission calculated from Atomic Force Microscopy (AFM) data is 1.2x1012. The measured Current-Voltage (I-V) characteristics obey the Folwer-Nordheim (F-N) type behavior. The fluctuations in the emission current are recorded at different temperatures and, temperature dependence of power spectral density obeys power law relation s(f)=I2/f2 with that of emission current and frequency.

  12. Effect of annealing on field emission properties of nanodiamond coating

    International Nuclear Information System (INIS)

    Zhai, C.X.; Yun, J.N.; Zhao, L.L.; Zhang, Z.Y.; Wang, X.W.; Chen, Y.Y.

    2011-01-01

    Field electron emission of detonation nanodiamond (ND) coated on a titanium substrate by electrophoretic deposition is investigated. It is found that thermal annealing can significantly improve the field emission properties of the ND layer, which can be mainly attributed to the formation of the TiC phase between diamond and Ti. The first-principles calculated results show that the formation of transition layers can lower the interface barrier and enhance the field electron emission of ND coating. Besides, the transformation of diamond to graphite after annealing has been revealed by Raman spectra. This transformation also benefits the electron emission enhancement.

  13. Effect of annealing on field emission properties of nanodiamond coating

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, C.X., E-mail: zhaicatty@126.co [School of Information Science and Technology, Northwest University, Xi' an 710127, Shaanxi (China); Yun, J.N.; Zhao, L.L.; Zhang, Z.Y.; Wang, X.W.; Chen, Y.Y. [School of Information Science and Technology, Northwest University, Xi' an 710127, Shaanxi (China)

    2011-03-01

    Field electron emission of detonation nanodiamond (ND) coated on a titanium substrate by electrophoretic deposition is investigated. It is found that thermal annealing can significantly improve the field emission properties of the ND layer, which can be mainly attributed to the formation of the TiC phase between diamond and Ti. The first-principles calculated results show that the formation of transition layers can lower the interface barrier and enhance the field electron emission of ND coating. Besides, the transformation of diamond to graphite after annealing has been revealed by Raman spectra. This transformation also benefits the electron emission enhancement.

  14. Impact Of Real-World Driving Characteristics On Vehicular Emissions

    OpenAIRE

    Nesamani, K S; Subramanian, K. P.

    2005-01-01

    With increase in traffic volume and change in travel related characteristics, vehicular emissions and energy consumption have increased significantly since two decades in India. Current models are not capable of estimating vehicular emissions accurately due to inadequate representation of real-world driving. The focus of this paper is to understand the level of Indian Driving cycle (IDC) in representing the real-world driving and to assess the impact of real-world driving on vehicular emissio...

  15. Knife-edge thin film field emission cathodes

    International Nuclear Information System (INIS)

    Lee, B.; Demroff, H.P.; Drew, M.M.; Elliott, T.S.; Mazumdar, T.K.; McIntyre, P.M.; Pang, Y.; Smith, D.D.; Trost, H.J.

    1993-01-01

    Cathodes made of thin-film field emission arrays (FEA) have the advantages of high current density, pulsed emission, and low bias voltage operation. The authors have developed a technology to fabricate knife-edge field emission cathodes on (110) silicon wafers. The emitter geometry is optimized for efficient modulation at high frequency. Cathode fabrication progress and preliminary analysis of their applications in RF power sources are presented

  16. Electron field emission from boron doped microcrystalline diamond

    International Nuclear Information System (INIS)

    Roos, M.; Baranauskas, V.; Fontana, M.; Ceragioli, H.J.; Peterlevitz, A.C.; Mallik, K.; Degasperi, F.T.

    2007-01-01

    Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (N B ) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (E th ) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm -2 were obtained using electric fields less than 8 V/μm

  17. Field emission from the surface of highly ordered pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Knápek, Alexandr, E-mail: knapek@isibrno.cz [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic); Sobola, Dinara; Tománek, Pavel [Department of Physics, FEEC, Brno University of Technology, Technická 8, Brno (Czech Republic); Pokorná, Zuzana; Urbánek, Michal [Institute of Scientific Instruments of the ASCR, v.v.i., Královopolská 147, Brno (Czech Republic)

    2017-02-15

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  18. Field emission from the surface of highly ordered pyrolytic graphite

    International Nuclear Information System (INIS)

    Knápek, Alexandr; Sobola, Dinara; Tománek, Pavel; Pokorná, Zuzana; Urbánek, Michal

    2017-01-01

    Highlights: • HOPG shreds were created and analyzed in the UHV conditions. • Current-voltage measurements have been done to confirm electron tunneling, based on the Fowler-Nordheim theory. • Surface was characterized by other surface evaluation methods, in particular by: SNOM, SEM and AFM. - Abstract: This paper deals with the electrical characterization of highly ordered pyrolytic graphite (HOPG) surface based on field emission of electrons. The effect of field emission occurs only at disrupted surface, i.e. surface containing ripped and warped shreds of the uppermost layers of graphite. These deformations provide the necessary field gradients which are required for measuring tunneling current caused by field electron emission. Results of the field emission measurements are correlated with other surface characterization methods such as scanning near-field optical microscopy (SNOM) or atomic force microscopy.

  19. Laser terahertz emission microscopy with near-field probes

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Mittleman, Daniel M.

    2016-01-01

    Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm.......Using an AFM, an optical near-field image at 800 nm of a dipole antenna for THz emission is measured, and by simultaneously collecting the emitted THz radiation, the laser light confined under the AFM probe gives a THz emission resolution of less than 50 nm....

  20. Characteristics of the fast electron emission produced during the ...

    Indian Academy of Sciences (India)

    water adsorption and other characteristics of the fast electron emission ..... that the surface charges which leak away when there is adosrbed water on ... implies that it is a measure of the supply of excited species rather than due to the charge.

  1. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  2. Emissions characteristics of higher alcohol/gasoline blends

    International Nuclear Information System (INIS)

    Gautam, M.; Martin, D.W.; Carder, D.

    2000-01-01

    An experimental investigation was conducted to determine the emissions characteristics of higher alcohols and gasoline (UTG96) blends. While lower alcohols (methanol and ethanol) have been used in blends with gasoline, very little work has been done or reported on higher alcohols (propanol, butanol and pentanol). Comparisons of emissions and fuel characteristics between higher alcohol/gasoline blends and neat gasoline were made to determine the advantages and disadvantages of blending higher alcohols with gasoline. All tests were conducted on a single-cylinder Waukesha Cooperative Fuel Research engine operating at steady state conditions and stoichiometric air-fuel (A/F) ratio. Emissions test were conducted at the optimum spark timing-knock limiting compression ratio combination for the particular blend being tested. The cycle emission [mass per unit time (g/h)] of CO, CO 2 and organic matter hydrocarbon equivalent (OMHCE) from the higher alcohol/gasoline blends were very similar to those from neat gasoline. Cycle emissions of NO x from the blends were higher than those from neat gasoline. However, for all the emissions species considered, the brake specific emissions (g/kW h) were significantly lower for the higher alcohol/gasoline blends than for neat gasoline. This was because the blends had greater resistance to knock and allowed higher compression ratios, which increased engine power output. The contribution of alcohols and aldehydes to the overall OMHCE emissions was found to be minimal. Cycle fuel consumption (g/h) of higher alcohol/gasoline blends was slightly higher than with neat gasoline due to the lower stoichiometric A/F ratios required by the blends. However, the brake specific fuel consumption (g/kW h) for the blends was significantly lower than that for neat gasoline. (Author)

  3. Room temperature Coulomb blockade mediated field emission via self-assembled gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Fei [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China); College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Fang, Jingyue, E-mail: fjynudt@aliyun.com [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Chang, Shengli; Qin, Shiqiao; Zhang, Xueao [College of Science, National University of Defense Technology, Changsha, Hunan 410073 (China); Xu, Hui, E-mail: cmpxhg@csu.edu.cn [College of Physics and Electronics, Central South University, Changsha, Hunan 410073 (China)

    2017-02-05

    Coulomb blockade mediated field-emission current was observed in single-electron tunneling devices based on self-assembled gold nanoparticles at 300 K. According to Raichev's theoretical model, by fixing a proper geometric distribution of source, island and drain, the transfer characteristics can be well explained through a combination of Coulomb blockade and field emission. Coulomb blockade and field emission alternately happen in our self-assembled devices. The Coulomb island size derived from the experimental data is in good agreement with the average size of the gold nanoparticles used in the device. The integrated tunneling can be adjusted via a gate electrode. - Highlights: • The phenomenon of single-electron field emission in a transistor setting using self-assembled gold nanoparticles was investigated. • The transfer characteristics can be well explained by the model that is a combination of Coulomb blockage and field emission. • This transport mechanism is novel and may be used in many applications in field emission devices.

  4. Stability of field emission current from porous n-GaAs(110)

    Science.gov (United States)

    Tondare, V. N.; Naddaf, M.; Bhise, A. B.; Bhoraskar, S. V.; Joag, D. S.; Mandale, A. B.; Sainkar, S. R.

    2002-02-01

    Field electron emission from porous GaAs has been investigated. The emitter was prepared by anodic etching of n-GaAs (110) in 0.1 M HCl solution. The as-etched porous GaAs shows nonlinear Fowler-Nordheim (FN) characteristics, with a low onset voltage. The emitter, after operating for 6 h at the residual gas pressure of 1×10-8 mbar, shows a linear FN characteristics with a relatively high onset voltage and poor field emission current stability as compared to the as-etched emitter. The change in the behavior was attributed to the residual gas ion bombardment during field electron emission. X-ray photoelectron spectroscopic investigations were carried out on as-etched sample and the one which was studied for field emission. The studies indicate that the as-etched surface contains As2O3 and the surface after field electron emission for about 6 h becomes gallium rich. The presence of As2O3 seems to be a desirable feature for the stable field emission current.

  5. Recent progress in nanostructured next-generation field emission devices

    International Nuclear Information System (INIS)

    Mittal, Gaurav; Lahiri, Indranil

    2014-01-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40–50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices. (topical review)

  6. Recent progress in nanostructured next-generation field emission devices

    Science.gov (United States)

    Mittal, Gaurav; Lahiri, Indranil

    2014-08-01

    Field emission has been known to mankind for more than a century, and extensive research in this field for the last 40-50 years has led to development of exciting applications such as electron sources, miniature x-ray devices, display materials, etc. In the last decade, large-area field emitters were projected as an important material to revolutionize healthcare and medical devices, and space research. With the advent of nanotechnology and advancements related to carbon nanotubes, field emitters are demonstrating highly enhanced performance and novel applications. Next-generation emitters need ultra-high emission current density, high brightness, excellent stability and reproducible performance. Novel design considerations and application of new materials can lead to achievement of these capabilities. This article presents an overview of recent developments in this field and their effects on improved performance of field emitters. These advancements are demonstrated to hold great potential for application in next-generation field emission devices.

  7. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  8. Rf Gun with High-Current Density Field Emission Cathode

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  9. Application of field blanks in odour emission research

    NARCIS (Netherlands)

    Ogink, Nico W.M.; Klarenbeek, Johannes V.

    2016-01-01

    In the Netherlands field blanks are mandatory when sampling odour emission. Field blanks are matrices that have negligible or unmeasurable amounts of the substance of interest. They are used to document possible contamination during sampling, transport and storage of samples. Although field

  10. Negative ion emission at field electron emission from amorphous (alpha-C:H) carbon

    CERN Document Server

    Bernatskij, D P; Ivanov-Omskij, V I; Pavlov, V G; Zvonareva, T K

    2001-01-01

    The study on the electrons field emission from the plane cathode surface on the basis of the amorphous carbon film (alpha-C:H) is carried out. The methodology, making it possible to accomplish simultaneously the registration of the emission currents and visually observe the distribution of the emission centers on the plane emitter surface is developed. The analysis of the oscillograms indicated that apart from the proper electron constituent the negative ions of hydrogen (H sup - and H sub 2 sup -), carbon (C sup -) and hydrocarbon (CH sub n sup -) are observed. The ions emission is connected with the processes of formation and degradation of the local emission centers

  11. Fundamental properties of field emission-driven direct current microdischarges

    International Nuclear Information System (INIS)

    Rumbach, Paul; Go, David B.

    2012-01-01

    For half a century, it has been known that the onset of field emission in direct current microdischarges with gap sizes less than 10 μm can lead to breakdown at applied voltages far less than predicted by Paschen's law. It is still unclear how field emission affects other fundamental plasma properties at this scale. In this work, a one-dimensional fluid model is used to predict basic scaling laws for fundamental properties including ion density, electric field due to space charge, and current-voltage relations in the pre-breakdown regime. Computational results are compared with approximate analytic solutions. It is shown that field emission provides an abundance of cathode electrons, which in turn create large ion concentrations through ionizing collisions well before Paschen's criterion for breakdown is met. Breakdown due to ion-enhanced field emission occurs when the electric field due to space charge becomes comparable to the applied electric field. Simple scaling analysis of the 1D Poisson equation demonstrates that an ion density of n + ≈ 0.1V A ε 0 /qd 2 is necessary to significantly distort the electric field. Defining breakdown in terms of this critical ion density leads analytically to a simple, effective secondary emission coefficient γ ′ of the same mathematical form initially suggested by Boyle and Kisliuk [Phys. Rev. 97, 255 (1955)].

  12. Multi-field electron emission pattern of 2D emitter: Illustrated with graphene

    Science.gov (United States)

    Luo, Ma; Li, Zhibing

    2016-11-01

    The mechanism of laser-assisted multi-field electron emission of two-dimensional emitters is investigated theoretically. The process is basically a cold field electron emission but having more controllable components: a uniform electric field controls the emission potential barrier, a magnetic field controls the quantum states of the emitter, while an optical field controls electron populations of specified quantum states. It provides a highly orientational vacuum electron line source whose divergence angle over the beam plane is inversely proportional to square root of the emitter height. Calculations are carried out for graphene with the armchair emission edge, as a concrete example. The rate equation incorporating the optical excitation, phonon scattering, and thermal relaxation is solved in the quasi-equilibrium approximation for electron population in the bands. The far-field emission patterns, that inherit the features of the Landau bands, are obtained. It is found that the optical field generates a characteristic structure at one wing of the emission pattern.

  13. Field electron emission from pencil-drawn cold cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiangtao; Yang, Bingjun; Liu, Xiahui; Yang, Juan; Yan, Xingbin, E-mail: xbyan@licp.cas.cn [Laboratory of Clean Energy Chemistry and Materials, State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-05-09

    Field electron emitters with flat, curved, and linear profiles are fabricated on flexible copy papers by direct pencil-drawing method. This one-step method is free of many restricted conditions such as high-temperature, high vacuum, organic solvents, and multistep. The cold cathodes display good field emission performance and achieve high emission current density of 78 mA/cm{sup 2} at an electric field of 3.73 V/μm. The approach proposed here would bring a rapid, low-cost, and eco-friendly route to fabricate but not limited to flexible field emitter devices.

  14. Field emission properties of the graphenated carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudson.zanin@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Ceragioli, H.J.; Peterlevitz, A.C.; Baranauskas, Vitor [Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Marciano, F.R.; Lobo, A.O. [Laboratory of Biomedical Nanotechnology/Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, SP (Brazil)

    2015-01-01

    Graphical abstract: - Highlights: • Facile method to prepare graphenated carbon nanotubes (g-CNTs). • The electric field emission behaviour of g-CNTs was studied. • g-CNTs show better emission current stability than non-graphenated CNTs. - Abstract: Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  15. Experimental study on secondary electron emission characteristics of Cu

    Science.gov (United States)

    Liu, Shenghua; Liu, Yudong; Wang, Pengcheng; Liu, Weibin; Pei, Guoxi; Zeng, Lei; Sun, Xiaoyang

    2018-02-01

    Secondary electron emission (SEE) of a surface is the origin of the multipacting effect which could seriously deteriorate beam quality and even perturb the normal operation of particle accelerators. Experimental measurements on secondary electron yield (SEY) for different materials and coatings have been developed in many accelerator laboratories. In fact, the SEY is just one parameter of secondary electron emission characteristics which include spatial and energy distribution of emitted electrons. A novel experimental apparatus was set up in China Spallation Neutron Source, and an innovative method was applied to obtain the whole characteristics of SEE. Taking Cu as the sample, secondary electron yield, its dependence on beam injection angle, and the spatial and energy distribution of secondary electrons were achieved with this measurement device. The method for spatial distribution measurement was first proposed and verified experimentally. This contribution also tries to give all the experimental results a reasonable theoretical analysis and explanation.

  16. Performance and emissions characteristics of biodiesel from soybean oil

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli University, Izmit (Turkey). Faculty of Technical Education

    2005-07-15

    Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO{sub 2} emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO{sub x}. (author)

  17. Electrophoretic deposition and field emission properties of patterned carbon nanotubes

    International Nuclear Information System (INIS)

    Zhao Haifeng; Song Hang; Li Zhiming; Yuan Guang; Jin Yixin

    2005-01-01

    Patterned carbon nanotubes on silicon substrates were obtained using electrophoretic method. The carbon nanotubes migrated towards the patterned silicon electrode in the electrophoresis suspension under the applied voltage. The carbon nanotubes arrays adhered well on the silicon substrates. The surface images of carbon nanotubes were observed by scanning electron microscopy. The field emission properties of the patterned carbon nanotubes were tested in a diode structure under a vacuum pressure below 5 x 10 -4 Pa. The measured emission area was about 1.0 mm 2 . The emission current density up to 30 mA/cm 2 at an electric field of 8 V/μm has been obtained. The deposition of patterned carbon nanotubes by electrophoresis is an alternative method to prepare field emission arrays

  18. Velocity field measurement in micro-bubble emission boiling

    International Nuclear Information System (INIS)

    Ito, Daisuke; Saito, Yasushi; Natazuka, Jun

    2017-01-01

    Liquid inlet behavior to a heat surface in micro-bubble emission boiling (MEB) was investigated by flow measurement using particle image velocimetry (PIV). Subcooled pool boiling experiments under atmospheric pressure were carried out using a heat surface with a diameter of 10 mm. An upper end of a heater block made of copper was used as the heat surface. Working fluid was the deionized water and the subcooling was varied from 40 K to 70 K. Three K-type thermocouples were installed in the copper block to measure the temperature gradient, and the heat flux and wall superheat were estimated from these temperature data to make a boiling curve. The flow visualization around the heat surface was carried out using a high-speed video camera and a light sheet. The microbubbles generated in the MEB were used as tracer particles and the velocity field was obtained by PIV analysis of the acquired image sequence. As a result, the higher heat fluxes than the critical heat flux could be obtained in the MEB region. In addition, the distribution characteristics of the velocity in MEB region were studied using the PIV results and the location of the stagnation point in the velocity fields was discussed. (author)

  19. Methane emission from wetland rice fields

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01


    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic

  20. A Platform to Optimize the Field Emission Properties of Carbon Nanotube Based Fibers (Postprint)

    Science.gov (United States)

    2016-08-25

    characterization of key metrics , such as effective field enhancement factor and emission area. It is imperative to address issues relating to whether...important are the effects of Coulomb repulsion between adjacent emitting CNTs on the FE characteristics? When do space-charge effects become important and

  1. Emission Spectrum Property of Modulated Atom-Field Coupling System

    International Nuclear Information System (INIS)

    Gao Yun-Feng; Feng Jian; Li Yue-Ke

    2013-01-01

    The emission spectrum of a two-level atom interacting with a single mode radiation field in the case of periodic oscillation coupling coefficient is investigated. A general expression for the emission spectrum is derived. The numerical results for the initial field in pure number stare are calculated. It is found that the effect of the coupling coefficient modulation on the spectral structure is very obvious in the case of a low modulation frequency and larger amplitude when the initial field is vacuum, which is potentially useful for exploring a modulated light source. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  2. Evaluation of field emission properties from multiple-stacked Si quantum dots

    International Nuclear Information System (INIS)

    Takeuchi, Daichi; Makihara, Katsunori; Ohta, Akio; Ikeda, Mitsuhisa; Miyazaki, Seiichi

    2016-01-01

    Multiple-stacked Si quantum dots (QDs) with ultrathin SiO 2 interlayers were formed on ultrathin SiO 2 layers by repeating a process sequence consisting of the formation of Si-QDs by low pressure chemical vapor deposition using a SiH 4 gas and the surface oxidation and subsequent surface modification by remote hydrogen and oxygen plasmas, respectively. To clarify the electron emission mechanism from multiple-stacked Si-QDs covered with an ultrathin Au top electrode, the energy distribution of the emitted electrons and its electric field dependence was measured using a hemispherical electron energy analyzer in an X-ray photoelectron spectroscopy system under DC bias application to the multiple-stacked Si-QD structure. At − 6 V and over, the energy distributions reached a peak at ~ 2.5 eV with a tail toward the higher energy side. While the electron emission intensity was increased exponentially with an increase in the applied DC bias, there was no significant increase in the emission peak energy. The observed emission characteristics can be interpreted in terms of field emissions from the second and/or third topmost Si-QDs resulting from the electric concentration there. - Highlights: • Electron field emission from 6-fold stack of Si-QDs has been evaluated. • AFM measurements show the local electron emission from individual Si-QDs. • Impact of applied bias on the electron emission energy distribution was investigated.

  3. Field emission properties of ring-shaped Si ridges with DLC coating

    Science.gov (United States)

    Prommesberger, Christian; Ławrowski, Robert; Langer, Christoph; Mecani, Mirgen; Huang, Yifeng; She, Juncong; Schreiner, Rupert

    2017-05-01

    We report on the fabrication and the emission characterization of single ring-shaped Si ridges with a coating of diamond-like carbon (DLC). The reactive ion etching and the subsequent inductively coupled plasma step were adjusted to realize ring-shaped Si ridges with a height of 7.5 μm respectively 15 μm and an apex radius of 20 - 25 nm. The samples were coated with a DLC layer (thickness ≈ 2 - 5 nm) by a filtered cathodic vacuum arc deposition system in order to lower the work function of the emitter and to improve the field emission characteristics. The field emission characterizations were done in diode configuration with cathode and anode separated by a 50 μm thick mica spacer. A higher emission current was carried out for the ring-shaped Si ridge in comparison to the point-shaped Si tips due to the increased emission area. The highest emission current of 0.22 μA at 1000 V was measured on a DLC-coated sample with the highest aspect ratio. No degradation of the emission current was observed in the plateau regime during a measurement period of 6 h. Finally, no decreasing performance of the field emission properties was found due to changes in the geometry or destructions.

  4. Modification of C60/C70+Pd film structure under electric field influence during electron emission

    International Nuclear Information System (INIS)

    Czerwosz, E.; Dluzewski, P.; Kozlowski, M.

    2001-01-01

    We investigated the modification of structure of C 60 /C 70 +Pd films during cold electron emission from these films. Films were obtained by vacuum thermal deposition from two sources and were characterised before and after electron emission measurements by transmission electron microscopy and electron diffraction. Films were composed of nanocrystalline Pd objects dispersed in carbon/fullerenes matrix. I-V characteristics for electron emission were obtained in diode geometry with additionally applied voltage along the film surface. The modification of film structure occurred under applied electric field and the grouping of Pd nano crystals into bigger objects was observed

  5. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, B.B. [College of Chemistry and Chemical Engineering, Chongqing University of Technology, 69 Hongguang Rd, Lijiatuo, Banan District, Chongqing 400054 (China); Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Cheng, Q.J. [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Chen, X. [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Ostrikov, K., E-mail: kostya.ostrikov@csiro.au [Plasma Nanoscience Centre Australia (PNCA), CSIRO Materials Science and Engineering, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia)

    2011-09-22

    Highlights: > A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. > The carbon nanotubes are later treated with nitrogen plasmas. > The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. > A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 {mu}A/cm{sup 2}) achieved at a low applied field (3.50 V/{mu}m) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  6. Enhancement of electron field emission of vertically aligned carbon nanotubes by nitrogen plasma treatment

    International Nuclear Information System (INIS)

    Wang, B.B.; Cheng, Q.J.; Chen, X.; Ostrikov, K.

    2011-01-01

    Highlights: → A new and custom-designed bias-enhanced hot-filament chemical vapor deposition system is developed to synthesize vertically aligned carbon nanotubes. → The carbon nanotubes are later treated with nitrogen plasmas. → The electron field emission characteristics of the carbon nanotubes are significantly improved after the nitrogen plasma treatment. → A new physical mechanism is proposed to interpret the improvement of the field emission characteristics. - Abstract: The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm 2 ) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.

  7. Influence of local field on spontaneous light emission by nanoparticles

    DEFF Research Database (Denmark)

    Keller, Ole; Lozovski, V.; Iezhokin, I.

    2009-01-01

    moment of transition that takes local-field effects into account. The effective dipole moment depends on the particle shape and size. Therefore, dipole radiation depends on those parameters too. The direction patterns of light emission by cubic particles have been calculated. The particles have been......A self-consistent approach based on the local-field concept has been proposed to calculate the direction patterns of light emission by nanoparticles with various shapes. The main idea of the method consists in constructing self-consistent equations for the electromagnetic field at any point...... of the system. The solution of the equations brings about relationships between the local field at an arbitrary point in the system and the external long-wave field via the local-field factor. The latter connects the initial moment of optical dipole transition per system volume unit and the effective dipole...

  8. Current-voltage characteristics of carbon nanostructured field emitters in different power supply modes

    Science.gov (United States)

    Popov, E. O.; Kolosko, A. G.; Filippov, S. V.; Romanov, P. A.; Terukov, E. I.; Shchegolkov, A. V.; Tkachev, A. G.

    2017-12-01

    We received and compared the current-voltage characteristics of large-area field emitters based on nanocomposites with graphene and nanotubes. The characteristics were measured in two high voltage scanning modes: the "slow" and the "fast". Correlation between two types of hysteresis observed in these regimes was determined. Conditions for transition from "reverse" hysteresis to the "direct" one were experimentally defined. Analysis of the eight-shaped hysteresis was provided with calculation of the effective emission parameters. The phenomenological model of adsorption-desorption processes in the field emission system was proposed.

  9. Effect of synthesis parameters on morphology of polyaniline (PANI) and field emission investigation of PANI nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bankar, Prashant K.; More, Mahendra A., E-mail: mam@physics.unipune.ac.in [Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune-411007 (India); Patil, Sandip S. [Department of Physics, Modern College of Arts, Science and Commerce, Shivajinagar, Pune-411005. India (India)

    2015-06-24

    Polyaniline (PANI) nanostructures have been synthesized by simple chemical oxidation route at different monomer concentration along with variation in synthesis temperature. The effect of variation of synthesis parameters has been revealed using different characterization techniques. The structural and morphological characterization of the synthesized PANI nanostructures was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), whereas Fourier Transform Infrared spectroscopy (FTIR) has been used to reveal the chemical properties. With the variation in the synthesis temperature and monomer concentration, various morphologies characterized by formation of PANI nanoparticles, nanofibres, nanotubes and nanospheres, are revealed from the SEM analysis. The FTIR analysis reveals the formation of conducting state of PANI under prevailing experimental conditions. The field emission investigation of the conducting PANI nanotubes was performed in all metal UHV system at base pressure of 1x10{sup −8} mbar. The turn on field required to draw emission of 1 nA current was observed to be ∼ 2.2 V/μm and threshold field (corresponding to emission current density of 1 µA/cm2) was found to be 3.2 V/μm. The emission current was observed to be stable for more than three hours at a preset value 1 µA. The simple synthesis route and good field emission characteristics indicate potential of PANI nanofibres as a promising emitter for field emission based micro/nano devices.

  10. Process system and method for fabricating submicron field emission cathodes

    Science.gov (United States)

    Jankowski, Alan F.; Hayes, Jeffrey P.

    1998-01-01

    A process method and system for making field emission cathodes exists. The deposition source divergence is controlled to produce field emission cathodes with height-to-base aspect ratios that are uniform over large substrate surface areas while using very short source-to-substrate distances. The rate of hole closure is controlled from the cone source. The substrate surface is coated in well defined increments. The deposition source is apertured to coat pixel areas on the substrate. The entire substrate is coated using a manipulator to incrementally move the whole substrate surface past the deposition source. Either collimated sputtering or evaporative deposition sources can be used. The position of the aperture and its size and shape are used to control the field emission cathode size and shape.

  11. Field emission study of MWCNT/conducting polymer nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Alvi, M.A., E-mail: maalvee@yahoo.co.in [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Al-Ghamdi, A.A. [Department of Physics, King Abdulaziz University, Jeddah-21589 (Saudi Arabia); Husain, M. [Department of Physics, Jamia Millia Islamia, New Delhi-110025 (India)

    2014-12-01

    MWCNTs/Polypyrrole nanocomposites were synthesized by solution mixing method. These synthesized nanocomposites were studied carefully by Raman Spectroscopy and Scanning Electron Microscopy measurements. The field emission study of MWCNTs/Polypyrrole nanocomposites were performed in diode arrangement under vacuum of the order of 10{sup −5} Torr. The emission current under exploration depends on applied voltage. The prepared nanocomposites depict low turn-on field at 1.4 V/μm that reaches to a maximum emission current density 0.020 mA/cm{sup 2} at 2.4 V/µm, which is calculated from the graph of current density (J) against the applied electric field (E) and from Fowler–Nordheim (F–N) plot.

  12. Enhanced field emission from carbon nanotubes by hydrogen plasma treatment

    International Nuclear Information System (INIS)

    Zhi, C.Y.; Bai, X.D.; Wang, E.G.

    2002-01-01

    The field emission capability of the carbon nanotubes (CNTs) has been improved by hydrogen plasma treatment, and the enhanced emission mechanism has been studied systematically using Fourier-transform infrared spectroscopy, Raman, and transmission electron microscopy. The hydrogen concentration in the samples increases with increasing plasma treatment duration. A C δ- -H δ+ dipole layer may form on CNTs' surface and a high density of defects results from the plasma treatment, which is likely to make the external surface of CNTs more active to emit electrons after treatment. In addition, the sharp edge of CNTs' top, after removal of the catalyst particles, may increase the local electronic field more effectively. The present study suggests that hydrogen plasma treatment is a useful method for improving the field electron emission property of CNTs

  13. High-Performance Field Emission from a Carbonized Cork.

    Science.gov (United States)

    Lee, Jeong Seok; Lee, Hak Jun; Yoo, Jae Man; Kim, Taewoo; Kim, Yong Hyup

    2017-12-20

    To broaden the range of application of electron beams, low-power field emitters are needed that are miniature and light. Here, we introduce carbonized cork as a material for field emitters. The light natural cork becomes a graphitic honeycomb upon carbonization, with the honeycomb cell walls 100-200 nm thick and the aspect ratio larger than 100, providing an ideal structure for the field electron emission. Compared to nanocarbon field emitters, the cork emitter produces a high current density and long-term stability with a low turn-on field. The nature of the cork material makes it quite simple to fabricate the emitter. Furthermore, any desired shape of the emitter tailored for the final application can easily be prepared for point, line, or planar emission.

  14. Field-emission from quantum-dot-in-perovskite solids.

    Science.gov (United States)

    García de Arquer, F Pelayo; Gong, Xiwen; Sabatini, Randy P; Liu, Min; Kim, Gi-Hwan; Sutherland, Brandon R; Voznyy, Oleksandr; Xu, Jixian; Pang, Yuangjie; Hoogland, Sjoerd; Sinton, David; Sargent, Edward

    2017-03-24

    Quantum dot and well architectures are attractive for infrared optoelectronics, and have led to the realization of compelling light sensors. However, they require well-defined passivated interfaces and rapid charge transport, and this has restricted their efficient implementation to costly vacuum-epitaxially grown semiconductors. Here we report solution-processed, sensitive infrared field-emission photodetectors. Using quantum-dots-in-perovskite, we demonstrate the extraction of photocarriers via field emission, followed by the recirculation of photogenerated carriers. We use in operando ultrafast transient spectroscopy to sense bias-dependent photoemission and recapture in field-emission devices. The resultant photodiodes exploit the superior electronic transport properties of organometal halide perovskites, the quantum-size-tuned absorption of the colloidal quantum dots and their matched interface. These field-emission quantum-dot-in-perovskite photodiodes extend the perovskite response into the short-wavelength infrared and achieve measured specific detectivities that exceed 10 12 Jones. The results pave the way towards novel functional photonic devices with applications in photovoltaics and light emission.

  15. Emission characteristics of negative oxygen ions into vacuum from cerium oxide

    International Nuclear Information System (INIS)

    Sakai, Takaaki; Fujiwara, Yukio; Kaimai, Atsushi; Yashiro, Keiji; Matsumoto, Hiroshige; Nigara, Yutaka; Kawada, Tatsuya; Mizusaki, Junichiro

    2006-01-01

    The oxygen ion emission characteristics of CeO 2 were studied under electric field in a vacuum chamber to find a candidate material for a novel ion source, 'solid oxide ion source (SOIS)'. The emission current was observed from CeO 2 under a pressure of around 10 -3 Pa, at the temperature ranging from 973 K to 1173 K. It was found that the emission current increased with temperature and applied voltage. The ions emitted from CeO 2 were confirmed to be oxygen negative ions (O - ) by the use of quadrupole mass spectrometer. The emission current decreased with time as was observed in the earlier works with other oxide ion conductors such as stabilized zirconia or other materials . To enhance the emission current from CeO 2 , an introduction of donor into CeO 2 was tested using Ce 0.992 Nb 0.008 O 2 . For comparison, effect of acceptor doping was also tested using Ce 0.9 Gd 0.1 O 1.95 . The emission current from Ce 0.9 Gd 0.1 O 1.95 was smaller than that from donor-doped and pure CeO 2. Clear enhancement of the emission current was not observed with Ce 0.992 Nb 0.008 O 2

  16. Improved field emission from indium decorated multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sreekanth, M.; Ghosh, S., E-mail: santanu1@physics.iitd.ernet.in; Biswas, P.; Kumar, S.; Srivastava, P.

    2016-10-15

    Graphical abstract: Improved field emission properties have been achieved for Indium (In) decorated MWCNTs and are shown using the schematic of field emission set up with In/CNT cathode, and a plot of J-E characteristics for pristine and In decorated CNTs. - Highlights: • Field emission (FE) properties have been studied for the first time from Indium (In) decorated MWCNT films. • Observed increased density of states near the Fermi level for In decorated films. • Superior field emission properties have been achieved for In decorated CNT films. - Abstract: Multi-walled carbon nanotube (MWCNT) films were grown using thermal chemical vapor deposition (T-CVD) process and were decorated with indium metal particles by thermal evaporation technique. The In metal particles are found to get oxidized. The In decorated films show 250% enhancement in the FE current density, lower turn-on and threshold fields, and better temporal stability as compared to their undecorated counterpart. This improvement in field emission properties is primarily attributed to increased density of states near the Fermi level. The presence of O 2p states along with a small contribution from In 5s states results in the enhancement of density of states in the vicinity of the Fermi level.

  17. Plasma-induced field emission study of carbon nanotube cathode

    Directory of Open Access Journals (Sweden)

    Yi Shen

    2011-10-01

    Full Text Available An investigation on the plasma-induced field emission (PFE properties of a large area carbon nanotube (CNT cathode on a 2 MeV linear induction accelerator injector is presented. Experimental results show that the cathode is able to emit intense electron beams. Intense electron beams of 14.9–127.8  A/cm^{2} are obtained from the cathode. The CNT cathode desorbs gases from the CNTs during the PFE process. The fast cathode plasma expansion affects the diode perveance. The amount of outgassing is estimated to be 0.06–0.49  Pa·L, and the ratio of outgassing and electron are roughly calculated to be within the range of 170–350 atoms per electron. The effect of the outgassing is analyzed, and the outgassing mass spectrum of the CNT cathode has been studied during the PFE. There is a significant desorption of CO_{2}, N_{2}(CO, and H_{2} gases, which plays an important role during the PFE process. All the experiments demonstrate that the outgassing plays an important role in the formation of the cathode plasma. Moreover, the characteristic turn-on time of the CNT cathode was measured to be 39 ns.

  18. Emission characteristics of uranium hexafluoride at high temperatures

    International Nuclear Information System (INIS)

    Krascella, N.L.

    1976-01-01

    An experimental study was conducted to ascertain the spectral characteristics of uranium hexafluoride (UF 6 ) and possible UF 6 thermal decomposition products as a function of temperature and pressure. Relative emission measurements were made for UF 6 /Argon mixtures heated in a plasma torch over a range of temperatures from 800 to about 3600 0 K over a wavelength range from 80 to 600 nm. Total pressures were varied from 1 to approximately 1.7 atm. Similarly absorption measurements were carried out in the visible region from 420 to 580 nm over a temperature range from about 1000 to 1800 0 K. Total pressure for these measurements was 1.0 atm

  19. The PAH Emission Characteristics of the Reflection Nebula NGC 2023

    International Nuclear Information System (INIS)

    Peeters, Els; Bauschlicher, Charles W. Jr.; Allamandola, Louis J.; Tielens, Alexander G. G. M.; Ricca, Alessandra; Wolfire, Mark G.

    2017-01-01

    We present 5–20 μ m spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C 60 , and H 2 superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μ m PAH bands and find that at least two spatially distinct components contribute to the 7–9 μ m PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C 66 to C 210 , determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μ m components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μ m emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.

  20. The PAH Emission Characteristics of the Reflection Nebula NGC 2023

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, Els [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada); Bauschlicher, Charles W. Jr. [Entry Systems and Technology Division, Mail Stop 230-3, NASA Ames Research Center, Moffett Field, CA 94035 (United States); Allamandola, Louis J. [NASA Ames Research Center, Space Science Division, Mail Stop 245-6, Moffett Field, CA 94035 (United States); Tielens, Alexander G. G. M. [Leiden Observatory, P.O. Box 9513, 2300 RA Leiden (Netherlands); Ricca, Alessandra [Carl Sagan Center, SETI Institute, 189 N. Bernardo Avenue, Suite 100, Mountain View, CA 94043 (United States); Wolfire, Mark G., E-mail: epeeters@uwo.ca [Astronomy Department, University of Maryland, College Park, MD 20742 (United States)

    2017-02-20

    We present 5–20 μ m spectral maps of the reflection nebula NGC 2023 obtained with the Infrared Spectrograph SL and SH modes on board the Spitzer Space Telescope, which reveal emission from polycyclic aromatic hydrocarbons (PAHs), C{sub 60}, and H{sub 2} superposed on a dust continuum. We show that several PAH emission bands correlate with each other and exhibit distinct spatial distributions that reveal a spatial sequence with distance from the illuminating star. We explore the distinct morphology of the 6.2, 7.7, and 8.6 μ m PAH bands and find that at least two spatially distinct components contribute to the 7–9 μ m PAH emission in NGC 2023. We report that the PAH features behave independently of the underlying plateaus. We present spectra of compact, oval PAHs ranging in size from C{sub 66} to C{sub 210}, determined computationally using density functional theory, and we investigate trends in the band positions and relative intensities as a function of PAH size, charge, and geometry. Based on the NASA Ames PAH database, we discuss the 7–9 μ m components in terms of band assignments and relative intensities. We assign the plateau emission to very small grains with possible contributions from PAH clusters and identify components in the 7–9 μ m emission that likely originate in these structures. Based on the assignments and the observed spatial sequence, we discuss the photochemical evolution of the interstellar PAH family as the PAHs are more and more exposed to the radiation field of the central star in the evaporative flows associated with the Photo-Dissociation Regions in NGC 2023.

  1. CYANOBACTERIA FOR MITIGATING METHANE EMISSION FROM SUBMERGED PADDY FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Upasana Mishra; Shalini Anand [Department of Environmental Studies, Inderprastha Engineering College, Sahibabad, Ghaziabad (India)

    2008-09-30

    Atmospheric methane, a potent greenhouse gas with high absorption potential for infrared radiation, is responsible for one forth of the total anticipated warming. It is forming a major part of green house gases, next after carbon dioxide. Its concentration has been increasing alarmingly on an average at the rate of one percent per year. Atmospheric methane, originating mainly from biogenic sources such as paddy fields, natural wetlands and landfills, accounts for 15-20% of the world's total anthropogenic methane emission. With intensification of rice cultivation in coming future, methane emissions from paddy fields are anticipated to increase. India's share in world's rice production is next after to China and likewise total methane emission from paddy fields also. Methane oxidation through planktophytes, particularly microalgae which are autotrophic and abundant in rice rhizospheres, hold promise in controlling methane emission from submerged paddy fields. The present study is focused on the role of nitrogen fixing, heterocystous cyanobacteria and Azolla (a water fern harboring a cyanobacterium Anabaena azollae) as biological sink for headspace concentration of methane in flooded soils. In this laboratory study, soil samples containing five potent nitrogen fixer cyanobacterial strains from paddy fields, were examined for their methane reducing potential. Soil sample without cyanobacterial strain was tested and taken as control. Anabaena sp. was found most effective in inhibiting methane concentration by 5-6 folds over the control. Moist soil cores treated with chemical nitrogen, urea, in combination with cyanobacteria mixture, Azolla microphylla or cyanobacteria mixture plus Azolla microphylla exhibited significance reduction in the headspace concentration of methane than the soil cores treated with urea alone. Contrary to other reports, this study also demonstrates that methane oxidation in soil core samples from paddy fields was stimulated by

  2. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    International Nuclear Information System (INIS)

    Lee, Do Hwan; Ha, Che Woong

    2015-01-01

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer

  3. Characteristics of Acceleration and Acoustic Emission Signals from Mechanical Seals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Hwan; Ha, Che Woong [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Based on these results, the applicability of acceleration signals for condition monitoring of mechanical seals is examined in the present study. Mechanical seals are used for pumps to prevent excessive leakage that might be occurred between rotational and stationary parts. The mechanical seals account for the major pump component failures. In spite of its importance, there have been few studies on condition monitoring of the components. Recently, some researchers have paid attention to the application of acoustic emission (AE) sensors for the fault detection of seals. The characteristics of acceleration and AE signals obtained from various defects are investigated. In order to prevent excessive leakage from mechanical seals, a condition monitoring technique is necessary. Based on the previous studies on AE techniques for seal monitoring, the signal characteristics from accelerometer.

  4. Synthesis, property and field-emission behaviour of amorphous polypyrrole nanowires

    International Nuclear Information System (INIS)

    Yan Hongliang; Zhang Lan; Shen Jiaoyan; Chen Zhaojia; Shi Gaoquan; Zhang Binglin

    2006-01-01

    Polypyrrole nanowires have been electrosynthesized by direct oxidation of 0.1 mol l -1 pyrrole in a medium of 75% isopropyl alcohol + 20% boron trifluoride diethyl etherate + 5% poly (ethylene glycol) (by volume) using porous alumina membranes as the templates. The as-prepared nanowires had a smooth surface and uniform diameter and were arranged in an orderly manner in a high density. The conductivity of a single nanowire was measured by the four-electrode technique to be 23.4 S cm -1 at room temperature. The field emission devices based on the nanowire array were fabricated and their operations were explored. The experimental results indicated that the field emission characteristics of the devices fitted well to the Fowler-Nordheim model of emission. The turn-on electric field was only 1.2 V μm -1 and the current density reached 200 μA cm -2 at 2.6 V μm -1

  5. Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

    Science.gov (United States)

    Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang

    2016-04-01

    The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).

  6. Field emission from vertically aligned few-layer graphene

    International Nuclear Information System (INIS)

    Malesevic, Alexander; Kemps, Raymond; Vanhulsel, Annick; Chowdhury, Manish Pal; Volodin, Alexander; Van Haesendonck, Chris

    2008-01-01

    The electric field emission behavior of vertically aligned few-layer graphene was studied in a parallel plate-type setup. Few-layer graphene was synthesized in the absence of any metallic catalyst by microwave plasma enhanced chemical vapor deposition with gas mixtures of methane and hydrogen. The deposit consists of nanostructures that are several micrometers wide, highly crystalline stacks of four to six atomic layers of graphene, aligned vertically to the substrate surface in a high density network. The few-layer graphene is found to be a good field emitter, characterized by turn-on fields as low as 1 V/μm and field amplification factors up to several thousands. We observe a clear dependence of the few-layer graphene field emission behavior on the synthesis parameters: Hydrogen is identified as an efficient etchant to improve field emission, and samples grown on titanium show lower turn-on field values and higher amplification factors when compared to samples grown on silicon

  7. n-Characteristic Vector Fields of Contact Manifoldss

    OpenAIRE

    Hassanzadeh, Babak

    2017-01-01

    In present paper we define and study $n$-characteristic vector fields. We present definition of Tanaka-Webster connection, then use it for studying the behavior of $n$-characteristic vector fields. Also we show some results about of these vector fields by Tanaka-Webster connection.

  8. Field emission from the surface of highly ordered pyrolytic graphite

    Czech Academy of Sciences Publication Activity Database

    Knápek, Alexandr; Sobola, D.; Tománek, P.; Pokorná, Zuzana; Urbánek, Michal

    2017-01-01

    Roč. 395, FEB 15 (2017), s. 157-161 ISSN 0169-4332 R&D Projects: GA TA ČR(CZ) TE01020118 Institutional support: RVO:68081731 Keywords : field emission * HOPG * scanning electron microscopy * scanning near-field optical microscopy Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering OBOR OECD: Nano-processes (applications on nano-scale) Impact factor: 3.387, year: 2016

  9. Probe-Hole Field Emission Microscope System Controlled by Computer

    Science.gov (United States)

    Gong, Yunming; Zeng, Haishan

    1991-09-01

    A probe-hole field emission microscope system, controlled by an Apple II computer, has been developed and operated successfully for measuring the work function of a single crystal plane. The work functions on the clean W(100) and W(111) planes are measured to be 4.67 eV and 4.45 eV, respectively.

  10. Development of Field-Emission Electron Gun from Carbon Nanotubes

    CERN Document Server

    Hozumi, Y

    2004-01-01

    Aiming to use a narrow energy-spread electron beam easily and low costly on injector electron guns, we have been tested field emission cathodes of carbon nanotubes (CNTs). Experiments for these three years brought us important suggestions and a few rules of thumb. Now at last, anode current of 3.0 [A/cm2

  11. Focus-variation image reconstruction in field-emission TEM

    NARCIS (Netherlands)

    Coene, W.M.J.; Janssen, A.J.E.M.; Op de Beeck, M.; Van Dyck, D.; Van Zwet, E.J.; Zandbergen, H.W.; Bailey, G.W.; Rieder, C.L.

    1993-01-01

    The use of a field emission gun (FEG) in high resolution TEM (HRTEM) improves the information limit much below the point resolution. In the area between point and information resolution of the FEG-TEM, image interpretation is complicated by the lens aberrations and focus effects. Different

  12. Propagation characteristics of resonance cone in a nonuniform magnetic field

    International Nuclear Information System (INIS)

    Ohnuma, T.; Sanuki, H.

    1984-01-01

    Propagation characteristics of resonance cone field for frequencies below the electron cyclotron frequency are described in a mirror magnetic field on the basis of fluid equation. Theoretical results are compared qualitatively with those of experiment

  13. Measurement of gradient magnetic field temporal characteristics

    International Nuclear Information System (INIS)

    Bartusek, K.; Jflek, B.

    1994-01-01

    We describe a technique of measuring the time dependence and field distortions of magnetic fields due to eddy currents (EC) produced by time-dependent magnetic field gradients. The EC measuring technique makes use of a large volume sample and selective RF excitation pulses and free induction decay (FID) (or a spin or gradient echo) to measure the out-of-phase component of the FID, which is proportional to γδB, i.e. the amount the signal is off resonance. The measuring technique is sensitive, easy to implement and interpret, and used for determining pre-emphasis compensation parameters

  14. Field-emission from parabolic tips: Current distributions, the net current, and effective emission area

    Science.gov (United States)

    Biswas, Debabrata

    2018-04-01

    Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.

  15. Optimization of field emission properties of carbon nanotubes by Taguchi method

    International Nuclear Information System (INIS)

    Ting, J.-H.; Chang, C.-C.; Chen, S.-L.; Lu, D.-S.; Kung, C.-Y.; Huang, F.-Y.

    2006-01-01

    It is the purpose of this study to evaluate the field emission property of carbon nanotubes (CNTs) prepared by microwave plasma-enhanced chemical vapor deposition (MPCVD) method. Nickel layer of 5 nm in thickness on 20-nm thickness titanium nitride film was transformed into discrete islands after hydrogen plasma pretreatment. CNTs were then grown up on Ni-coated areas by MPCVD. Through the practice of Taguchi method, superior CNT films with very low emission onset electric field, about 0.7 V/μm (at J = 10 μA/cm 2 ), are attained without post-deposition treatment. It is found that microwave power has the most important influence on the field emission characteristics of CNT films. The increase of methane flow ratio will downgrade the degree of graphitization of CNT and thus its field emission characteristics. Scanning electron microscope and transmission electron microscopy (TEM) observation and energy dispersive X-ray spectrometer analysis reveal that CNT growth by MPCVD is based on tip-growth mechanism. TEM micrographs validate the hollow, bamboo-like structure of the multi-walled CNTs

  16. Field emission properties of ZnO nanosheet arrays

    International Nuclear Information System (INIS)

    Naik, Kusha Kumar; Rout, Chandra Sekhar; Khare, Ruchita; More, Mahendra A.; Chakravarty, Disha; Late, Dattatray J.; Thapa, Ranjit

    2014-01-01

    Electron emission properties of electrodeposited ZnO nanosheet arrays grown on Indium tin oxide coated glass substrates have been studied. Influence of oxygen vacancies on electronic structures and field emission properties of ZnO nanosheets are investigated using density functional theory. The oxygen vacancies produce unshared d electrons which form an impurity energy state; this causes shifting of Fermi level towards the vacuum, and so the barrier energy for electron extraction reduces. The ZnO nanosheet arrays exhibit a low turn-on field of 2.4 V/μm at 0.1 μA/cm 2 and current density of 50.1 μA/cm 2 at an applied field of 6.4 V/μm with field enhancement factor, β = 5812 and good field emission current stability. The nanosheet arrays grown by a facile electrodeposition process have great potential as robust high performance vertical structure electron emitters for future flat panel displays and vacuum electronic device applications

  17. Novel field emission SEM column with beam deceleration technology

    Energy Technology Data Exchange (ETDEWEB)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-11-15

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications.

  18. Novel field emission SEM column with beam deceleration technology

    International Nuclear Information System (INIS)

    Jiruše, Jaroslav; Havelka, Miloslav; Lopour, Filip

    2014-01-01

    A novel field-emission SEM column has been developed that features Beam Deceleration Mode, high-probe current and ultra-fast scanning. New detection system in the column is introduced to detect true secondary electron signal. The resolution power at low energy was doubled for conventional SEM optics and moderately improved for immersion optics. Application examples at low landing energies include change of contrast, imaging of non-conductive samples and thin layers. - Highlights: • A novel field-emission SEM column has been developed. • Implemented beam deceleration improves the SEM resolution at 1 keV two times. • New column maintains high analytical potential and wide field of view. • Detectors integrated in the column allow gaining true SE and BE signal separately. • Performance of the column is demonstrated on low energy applications

  19. Laser-assisted electron emission from gated field-emitters

    CERN Document Server

    Ishizuka, H; Yokoo, K; Mimura, H; Shimawaki, H; Hosono, A

    2002-01-01

    Enhancement of electron emission by illumination of gated field-emitters was studied using a 100 mW cw YAG laser at a wavelength of 532 nm, intensities up to 10 sup 7 W/m sup 2 and mechanically chopped with a rise time of 4 mu s. When shining an array of 640 silicon emitters, the emission current responded quickly to on-off of the laser. The increase of the emission current was proportional to the basic emission current at low gate voltages, but it was saturated at approx 3 mu A as the basic current approached 100 mu A with the increase of gate voltage. The emission increase was proportional to the square root of laser power at low gate voltages and to the laser power at elevated gate voltages. For 1- and 3-tip silicon emitters, the rise and fall of the current due to on-off of the laser showed a significant time lag. The magnitude of emission increase was independent of the position of laser spot on the emitter base and reached 2 mu A at a basic current of 5 mu A without showing signs of saturation. The mech...

  20. Morphology-control of VO2 (B) nanostructures in hydrothermal synthesis and their field emission properties

    International Nuclear Information System (INIS)

    Yin Haihong; Yu Ke; Zhang Zhengli; Zhu Ziqiang

    2011-01-01

    VO 2 (B) nanostructures were synthesized via a facile hydrothermal process using V 2 O 5 as source material and oxalic acid as reductant. Three nanostructures of nanorods, nanocarambolas and nanobundles were found existing in the products, and a continuous changing of morphology was found in the synthesis process, during which the proportion of these three types of nanostructures can be adjusted by altering the concentrations of oxalic acid. The microstructures were evaluated using X-ray diffraction and scanning and transmission electron microscopies, respectively. FE properties measurement of these three types of nanostructures showed that the nanobundles have the best field emission performance with a turn-on field of ∼1.4 V/μm and a threshold field of ∼5.38 V/μm. These characteristics make VO 2 (B) nanostructures a competitive cathode material in field emission devices.

  1. Patterned growth of carbon nanotubes over vertically aligned silicon nanowire bundles for achieving uniform field emission.

    Science.gov (United States)

    Hung, Yung-Jr; Huang, Yung-Jui; Chang, Hsuan-Chen; Lee, Kuei-Yi; Lee, San-Liang

    2014-01-01

    A fabrication strategy is proposed to enable precise coverage of as-grown carbon nanotube (CNT) mats atop vertically aligned silicon nanowire (VA-SiNW) bundles in order to realize a uniform bundle array of CNT-SiNW heterojunctions over a large sample area. No obvious electrical degradation of as-fabricated SiNWs is observed according to the measured current-voltage characteristic of a two-terminal single-nanowire device. Bundle arrangement of CNT-SiNW heterojunctions is optimized to relax the electrostatic screening effect and to maximize the field enhancement factor. As a result, superior field emission performance and relatively stable emission current over 12 h is obtained. A bright and uniform fluorescent radiation is observed from CNT-SiNW-based field emitters regardless of its bundle periodicity, verifying the existence of high-density and efficient field emitters on the proposed CNT-SiNW bundle arrays.

  2. Field emission electric propulsion thruster modeling and simulation

    Science.gov (United States)

    Vanderwyst, Anton Sivaram

    Electric propulsion allows space rockets a much greater range of capabilities with mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field emission electric propulsion (FEEP) thrusters provide a specific design that possesses extremely high efficiency and small impulse bits. Depending on mass flow rate, these thrusters can emit both ions and droplets. To date, fundamental experimental work has been limited in FEEP. In particular, detailed individual droplet mechanics have yet to be understood. In this thesis, theoretical and computational investigations are conducted to examine the physical characteristics associated with droplet dynamics relevant to FEEP applications. Both asymptotic analysis and numerical simulations, based on a new approach combining level set and boundary element methods, were used to simulate 2D-planar and 2D-axisymmetric probability density functions of the droplets produced for a given geometry and electrode potential. The combined algorithm allows the simulation of electrostatically-driven liquids up to and after detachment. Second order accuracy in space is achieved using a volume of fluid correction. The simulations indicate that in general, (i) lowering surface tension, viscosity, and potential, or (ii) enlarging electrode rings, and needle tips reduce operational mass efficiency. Among these factors, surface tension and electrostatic potential have the largest impact. A probability density function for the mass to charge ratio (MTCR) of detached droplets is computed, with a peak around 4,000 atoms per electron. High impedance surfaces, strong electric fields, and large liquid surface tension result in a lower MTCR ratio, which governs FEEP droplet evolution via the charge on detached droplets and their corresponding acceleration. Due to the slow mass flow along a FEEP needle, viscosity is of less importance in altering the droplet velocities. The width of the needle, the composition of the propellant, the

  3. A statistical model for field emission in superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Jost, W.; Wright, B.

    1993-01-01

    A statistical model is used to account for several features of performance of an ensemble of superconducting cavities. The input parameters are: the number of emitters/area, a distribution function for emitter β values, a distribution function for emissive areas, and a processing threshold. The power deposited by emitters is calculated from the field emission current and electron impact energy. The model can successfully account for the fraction of tests that reach the maximum field Epk in an ensemble of cavities, for eg, 1-cells at sign 3 GHz or 5-cells at sign 1.5 GHz. The model is used to predict the level of power needed to successfully process cavities of various surface areas with high pulsed power processing (HPP)

  4. X-ray emission characteristics of foam target plasmas

    International Nuclear Information System (INIS)

    Fronya, A.A.; Borisenko, N.G.; Chernodub, M.L.; Merkuliev, Yu.A.; Osipov, M.V.; Puzyrev, V.N.; Sahakyan, A.T.; Starodub, A.N.; Vasin, B.L.; Yakushev, O.F.

    2010-01-01

    Complete text of publication follows. Experimental results of laser radiation interaction with a foam targets are presented. The spatial, temporal and energy characteristics of x-ray plasma radiation have been investigated. The pinhole-camera and Schwarzschild objective have been used for the plasma image formation in different spectral ranges. The plasma image is registered by the Schwarzschild objective in a narrow spectral range 180 - 200 A. Spectral characteristics of x-ray radiation registered by pinhole-camera have been defined by means outer filters. The use of the filters with different transmission curves allowed one the determine the localization of x-ray radiation with fixed wavelength. Spatial resolution accounts 16 μm in the pinhole-camera diagnostic channel and 2.5 μm in the Schwarzschild objective diagnostic channel. The plasma images in the intrinsic x-ray radiation show that the emission area in the transverse direction with respect to the direction of the propagating heating radiation exceeds the focal spot size. This fact indicates that the target heating in the transverse direction is due to internal energy of the created plasma. The average value of plasma electron temperature is ∼ 0.4 - 1.4 keV. Acknowledgements. The work is partly supported by the Russian Foundation for Basic Researches, grant no. 10-02-00113 and by Federal Target Program 'Research and scientific-pedagogical cadres of Innovative Russia' (grant 2009-1.1-122-052-025).

  5. EMISSIONS CHARACTERISTICS OF A RESIDENTIAL PELLET BOILER AND A STOVE

    OpenAIRE

    Win, Kaung Myat; Persson, Tomas

    2010-01-01

    Gaseous and particulate emissions from a residential pellet boiler and a stove are measured at a realistic 6-day operation sequence and during steady state operation. The aim is to characterize the emissions during each phase in order to identify when the major part of the emissions occur to enable actions for emission reduction where the savings can be highest. The characterized emissions comprised carbon monoxide (CO), nitrogen oxide (NO), total organic carbon (TOC) and particulate matter (...

  6. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  7. Effect of plasma pretreatment on the structure and emission characteristics of carbon nanotubes

    International Nuclear Information System (INIS)

    Uh, Hyung Soo; Lee, Soo Myun; Choi, Seok Rim; Park, Sang Sik; Cho, Euo Sik; Lee, Jong Duk; Kwon, Sang Jik

    2003-01-01

    Carbon nanotubes (CNTs) were grown on Ni-coated TiN/Si substrates by using microwave plasma chemical vapor deposition with a gas mixture of H 2 /CH 4 at a low temperature of 500 .deg. C. The effect of H 2 plasma pretreatment on the diameter of grown CNTs was investigated. We found that the average diameter of CNTs could be easily controlled by using the H 2 -plasma pretreatment time before CNTs growth and varied from 36 nm to 26 nm as the pretreatment time changed from 5 min to 15 min. However, any further increase in the pretreatment time gave rise to a rapid decrease in CNTs growth. After 25 min of the plasma pretreatment, scanning electron microscopy observation exhibited the destruction of the CNTs. The impact of the plasma pretreatment time on the emission behavior of CNTs was also investigated in a diode-type electron-emission configuration. The variation of the CNT diameter due to the plasma pretreatment caused a drastic change in emission properties. The turn-on voltages of CNT emitters varied from 3.5 V/μm to 9 V/μm, depending on the hydrogen-plasma pretreatment conditions. The close relationship between the electron-emission characteristics and the pretreatment time indicates that the pretreatment condition may be a key process parameter in CNTs growth for field-emission displays and should be optimized.

  8. Characteristics of phenomenon and sound in microbubble emission boiling

    International Nuclear Information System (INIS)

    Zhu Guangyu; Sun Licheng; Tang Jiguo

    2014-01-01

    Background: Nowadays, the efficient heat transfer technology is required in nuclear energy. Therefore, micro-bubble emission boiling (MEB) is getting more attentions from many researchers due to its extremely high heat-transfer dissipation capability. Purpose: An experimental setup was built up to study the correspondences between the characteristics on the amplitude spectrum of boiling sound in different boiling modes. Methods: The heat element was a copper block heated by four Si-C heaters. The upper of the copper block was a cylinder with the diameter of 10 mm and height of 10 mm. Temperature data were measured by three T-type sheathed thermocouples fitted on the upper of the copper block and recorded by NI acquisition system. The temperature of the heating surface was estimated by extrapolating the temperature distribution. Boiling sound data were acquired by hydrophone and processed by Fourier transform. Bubble behaviors were captured by high-speed video camera with light system. Results: In nucleate boiling region, the boiling was not intensive and as a result, the spectra didn't present any peak. While the MEB fully developed on the heating surface, an obvious peak came into being around the frequency of 300 Hz. This could be explained by analyzing the video data. The periodic expansion and collapse into many extremely small bubbles of the vapor film lead to MEB presenting an obvious characteristic peak in its amplitude spectrum. Conclusion: The boiling mode can be distinguished by its amplitude spectrum. When the MEB fully developed, it presented a characteristic peak in its amplitude spectrum around the frequency between 300-400 Hz. This proved that boiling sound of MEB has a close relation with the behavior of vapor film. (authors)

  9. Simulation and fabrication of carbon nanotubes field emission pressure sensors

    International Nuclear Information System (INIS)

    Qian Kaiyou; Chen Ting; Yan Bingyong; Lin Yangkui; Xu Dong; Sun Zhuo; Cai Bingchu

    2006-01-01

    A novel field emission pressure sensor has been achieved utilizing carbon nanotubes (CNTs) as the electron source. The sensor consists of the anode sensing film fabricated by wet etching process and multi-wall carbon nanotubes (MWNTs) cathode in the micro-vacuum chamber. MWNTs on the silicon substrate were grown by thermal CVD. The prototype pressure sensor has a measured sensitivity of about 0.17-0.77 nA/Pa (101-550 KPa). The work shows the potential use of CNTs-based field-emitter in microsensors, such as accelerometers and tactile sensors

  10. Characterization of radiofrequency field emissions from smart meters.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert; Mezei, Gabor

    2013-01-01

    This study presents measurement data that describe radiofrequency emission levels and patterns from smart meters (rated nominally at 1 W) currently deployed in Pacific Gas and Electric Company's service territory in northern California. The smart meters in our investigation could not be set to operate continuously and required a Field Service Unit to induce short periods of emitted fields. To obtain peak field data under both laboratory and ambient conditions, a spectrum analyzer scanned across the 83 transmitting channels between 902 and 928 MHz used by the smart meter on a random frequency-hopping basis. To obtain data describing temporal emission patterns, the analyzer operated in scope mode. Duty cycle was estimated using transmit data acquired by the system operator from over 88,000 m. Instantaneous peak fields at 0.3 m in front of the meters were no more than 15% of the US Federal Communications Commission (FCC) exposure limit for the general public, and 99.9% of the meters operated with a duty cycle of 1.12% or less during the sampling period. In a sample of measurements in six single-detached residences equipped with individual smart meters, no interior measurement of peak field exceeded 1% of the FCC's general public exposure limit.

  11. N2O Emission from energy crop fields

    International Nuclear Information System (INIS)

    Joergensen, B.J.; Nyholm Joergensen, R.

    1996-03-01

    The interest in N 2 O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N 2 O per unit mass is about 320 times greater than CO 2 . The contribution of N 2 O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N 2 O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N 2 O from the soil per produced energy unit. The aims of this study were to assess the annual N 2 O flux from a Miscanthus 'Giganteus' (M. 'Giganteus') and winter rye (Secale cereale) field, and to investigate the factors affecting the N 2 O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N 2 O emission from the soils, a section with development of the technique for N 2 O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N 2 O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N 2 O ha -1 yr -1 . This amount corresponds to 960 kg CO 2 ha -1 yr -1 compared to a total CO 2 reduction of 10 to 19 tons CO 2 ha -1 yr -1 using the energy crops as substitution for fossil fuels. An efficient way to reduce the N 2 O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO 2 reduction per unit dry matter. Following the guidelines for good agricultural practice concerning the

  12. Enhanced field emission behavior of layered MoSe2

    International Nuclear Information System (INIS)

    Suryawanshi, Sachin R; Pawbake, Amit S; Jadkar, Sandesh R; More, Mahendra A; Pawar, Mahendra S; Late, Dattatray J

    2016-01-01

    Herein, we report one step facile chemical vapor deposition method for synthesis of single-layer MoSe 2 nanosheets with average lateral dimension ∼60 μm on 300 nm SiO 2 /Si and n-type silicon substrates and field emission investigation of MoSe 2 /Si at the base pressure of ∼1 × 10 −8 mbar. The morphological and structural analyses of the as-deposited single-layer MoSe 2 nanosheets were carried out using an optical microscopy, Raman spectroscopy and atomic force microscopy. Furthermore, the values of turn-on and threshold fields required to extract an emission current densities of 1 and 10 μA cm −2 , are found to be ∼1.9 and ∼2.3 V μm −1 , respectively. Interestingly, the MoSe 2 nanosheet emitter delivers maximum field emission current density of ∼1.5 mA cm −2 at a relatively lower applied electric field of ∼3.9 V μm −1 . The long term operational current stability recorded at the preset values of 35 μA over 3 hr duration and is found to be very good. The observed results demonstrates that the layered MoSe 2 nanosheet based field emitter can open up many opportunities for their potential application as an electron source in flat panel display, transmission electron microscope, and x-ray generation. Thus, the facile one step synthesis approach and robust nature of single-layer MoSe 2 nanosheets emitter can provide prospects for the future development of practical electron sources. (paper)

  13. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    Science.gov (United States)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches

  14. Optical Emissions of Sprite Streamers in Weak Electric Fields

    Science.gov (United States)

    Liu, N.; Pasko, V. P.

    2004-12-01

    Sprites commonly consist of large numbers of needle-shaped filaments of ionization [e.g., Gerken and Inan, JASTP, 65, 567, 2003] and typically initiate at altitudes 70-75 km in a form of upward and downward propagating streamers [Stanley et al., GRL, 26, 3201, 1999; Stenbaek-Nielsen et al., GRL, 27, 3829, 2000; McHarg et al., JGR, 107, 1364, 2002; Moudry et al., JASTP, 65, 509, 2003]. The strong electric fields E exceeding the conventional breakdown threshold field Ek are needed for initiation of sprite streamers from single electron avalanches and recent modeling studies indicate that streamers propagating in fields E>Ek experience strong acceleration and expansion in good agreement with the above cited observations [Liu and Pasko, JGR, 109, A04301, 2004]. The initiated streamers are capable of propagating in fields substantially lower than Ek [Allen and Ghaffar, J. Phys. D: Appl. Phys., 28, 331, 1995] and it is expected that a significant part of sprite optical output comes from regions with EEk). Additionally, the values of electric fields inside of the streamer channel are always well below Ek and since the excitation coefficients for optical emissions are very sensitive to the driving electric field magnitude most of the optical luminosity of streamers in this case arises from streamer tips, indicating that observed streamer filaments in many cases may be produced by time averaging of optical luminosity coming from localized regions around streamer tips as streamers move through an instrument's field of view. We will discuss pressure dependent differences of optical emissions at different sprite altitudes, and important similarities between observed sprite streamers and recent time resolved (van Veldhuizen et al., IEEE Trans. Plasma Sci., 30, 162, 2002; Yi and Williams, J. Phys. D. Appl. Phys., 35, 205, 2002].

  15. Charged particle emission effects on the characteristics of glow discharges with oscillating electrons

    CERN Document Server

    Nikulin, S P

    2001-01-01

    One discusses the effect of selection of charged particles on conditions to maintain and the characteristics of a glow discharge with oscillating electrons. It is shown that there is a pressure dependent optimal level of ion selection when the energy efficiency of ion source reaches its maximum value. It is determined that departure of fast ionizing electrons affects negatively the discharge maintenance wile emission of slow plasma electrons may promote maintenance of a discharge high current shape. It is shown that high efficient electron emission without violation of a discharge stability may take place in a magnetic field due to different nature of spatial distributions of fast and slow particles in discharges with electron oscillation

  16. Electronic field emission models beyond the Fowler-Nordheim one

    Science.gov (United States)

    Lepetit, Bruno

    2017-12-01

    We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.

  17. Molecular dynamics simulations of field emission from a planar nanodiode

    Energy Technology Data Exchange (ETDEWEB)

    Torfason, Kristinn; Valfells, Agust; Manolescu, Andrei [School of Science and Engineering, Reykjavik University, Menntavegur 1, IS-101 Reykjavik (Iceland)

    2015-03-15

    High resolution molecular dynamics simulations with full Coulomb interactions of electrons are used to investigate field emission in planar nanodiodes. The effects of space-charge and emitter radius are examined and compared to previous results concerning transition from Fowler-Nordheim to Child-Langmuir current [Y. Y. Lau, Y. Liu, and R. K. Parker, Phys. Plasmas 1, 2082 (1994) and Y. Feng and J. P. Verboncoeur, Phys. Plasmas 13, 073105 (2006)]. The Fowler-Nordheim law is used to determine the current density injected into the system and the Metropolis-Hastings algorithm to find a favourable point of emission on the emitter surface. A simple fluid like model is also developed and its results are in qualitative agreement with the simulations.

  18. Realization and field emission of CdSe nano-tetrapods with different arm lengths

    International Nuclear Information System (INIS)

    Zhao Lijuan; Pang Qi; Yang Shihe; Ge Weikun; Wang Jiannong

    2009-01-01

    The arms of CdSe nano-tetrapods can be greatly elongated with the core diameters and arm width unchanged by multiple injections. Room-temperature absorption and photoluminescence (PL) spectra of tetrapods with different arm lengths show that these tetrapods have almost the same core size, which is consistent with the high resolution TEM results. Field emission characteristics show that the onset field required drawing a current density of ∼0.1 μAcm -2 from CdSe nano-tetrapods with different arm lengths are 22 Vμm -1 , 9 Vμm -1 , and 4 Vμm -1 , respectively, and the field enhancement factors are determined to be about 218, 554, and 946, respectively. Results show that the longer is the arm of the tetrapods, the lower the turn-on field and the higher the field enhancement factor.

  19. Realization and field emission of CdSe nano-tetrapods with different arm lengths

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lijuan, E-mail: ljzhao@dhu.edu.c [Applied Physics Department, Donghua University, Shanghai 201620 (China); Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Pang Qi [Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Yang Shihe [Chemistry Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong); Ge Weikun; Wang Jiannong [Physics Department and the Institute of Nano-Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2009-08-10

    The arms of CdSe nano-tetrapods can be greatly elongated with the core diameters and arm width unchanged by multiple injections. Room-temperature absorption and photoluminescence (PL) spectra of tetrapods with different arm lengths show that these tetrapods have almost the same core size, which is consistent with the high resolution TEM results. Field emission characteristics show that the onset field required drawing a current density of approx0.1 muAcm{sup -2} from CdSe nano-tetrapods with different arm lengths are 22 Vmum{sup -1}, 9 Vmum{sup -1}, and 4 Vmum{sup -1}, respectively, and the field enhancement factors are determined to be about 218, 554, and 946, respectively. Results show that the longer is the arm of the tetrapods, the lower the turn-on field and the higher the field enhancement factor.

  20. Characteristic features of the geomagnetic field of the Earth

    International Nuclear Information System (INIS)

    Petrova, G.N.

    1978-01-01

    The laws of the earth magnetism permitting to make a model of the earth magnetic field are popularly investigated. The modern methods of investigations used in the development of geomagnetism and determining the quantity and direction of the earth magnetic field from the moment of rock formation are described. Considered are the characteristic peculiarities of geomagnetic field: the inclination of the magnetic axis to the rotational axis of the Earth, the western drift of the geomagnetic field, the magnetic field asymmetry, its pole exchange and secular variations. The sources of the continuous magnetic field are investigated. The theory of hydromagnatic dinamo operating in the earth core is described. According to the invariance of the geomagnetic field characteristics it is possible to assume that the core has not significantly evolved for milliard years

  1. Seasonal CH4 and N2O emissions and plant growth characteristics of several cultivars in direct seeded rice systems

    Science.gov (United States)

    Simmonds, M.; Anders, M. M.; Adviento-Borbe, M. A.; Van Kessel, C.; McClung, A.; Linquist, B.

    2014-12-01

    Understanding cultivar effects on field greenhouse gas (GHG) emissions in rice (Oryza sativa L.) systems is needed to improve the accuracy of predictive models used for estimating GHG emissions, and to determine to what extent choice of cultivar may have on GHG mitigation. We compared CH4 and N2O emissions, global warming potential (GWP = N2O + CH4), yield-scaled GWP (GWPY = GWP Mg-1 grain), and plant growth characteristics of 8 cultivars within 4 study sites in California and Arkansas. Seasonal CH4 emissions differed between cultivars by a factor of 2.1 and 1.3 at one California and one Arkansas site, respectively. Nitrous oxide emissions were negligible, comprised food security.

  2. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    Science.gov (United States)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-09-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  3. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao [Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Zhuo; Ou-Yang, Wei, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China)

    2015-09-14

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  4. Field Emission of Wet Transferred Suspended Graphene Fabricated on Interdigitated Electrodes.

    Science.gov (United States)

    Xu, Ji; Wang, Qilong; Tao, Zhi; Qi, Zhiyang; Zhai, Yusheng; Wu, Shengqi; Zhang, Xiaobing; Lei, Wei

    2016-02-10

    Suspended graphene (SG) membranes could enable strain-engineering of ballistic Dirac fermion transport and eliminate the extrinsic bulk disorder by annealing. When freely suspended without contact to any substrates, graphene could be considered as the ultimate two-dimensional (2D) morphology, leading to special field characteristics with the 2D geometrical effect and effectively utilized as an outstanding structure to explore the fundamental electronic or optoelectronic mechanism. In this paper, we report field emission characterization on an individual suspended few-layer graphene. A controllable wet transfer method is used to obtain the continuous and suspended graphene membrane on interdigitated gold electrodes. This suspended structure displays an overall field emission from the entirely surface, except for the variation in the emitting positions, acquiring a better enhancement than the exfoliated graphene on the conventional flat substrate. We also observe the transition process from space charge flow at low bias to the Fowler-Nordheim theory at high current emission regime. It could enable theoretical and experimental investigation of the typical electron emission properties of the 2D regime. Numerical simulations are also carried out to study the electrical properties of the suspended structure. Further improvement on the fabrication would realize low disorder, high quality, and large-scale suspended graphene devices.

  5. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    International Nuclear Information System (INIS)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-01-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm 2 , which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics

  6. Soliton emission stimulated by sound wave or external field

    International Nuclear Information System (INIS)

    Malomed, B.A.

    1987-01-01

    Langmuir soliton interaction with ion-acoustic wave results in soliton radiative decay at the expence of emission by the soliton of linear langmuir waves. Intensity of this radiation in the ''subsonic'' regime as well as the rate of energy transfer from acoustic waves to langmuir ones and soliton decay rate are calculated. Three cases are considered: monochromatic acoustic wave, nonmonochromatic wave packet with a wide spectrum, random acoustic field, for which results appear to be qualitatively different. A related problem, concerning the radiation generation by soliton under external electromagnetic wave effect is also considered. Dissipation effect on radiation is investigated

  7. Performance of a carbon nanotube field emission electron gun

    Science.gov (United States)

    Getty, Stephanie A.; King, Todd T.; Bis, Rachael A.; Jones, Hollis H.; Herrero, Federico; Lynch, Bernard A.; Roman, Patrick; Mahaffy, Paul

    2007-04-01

    A cold cathode field emission electron gun (e-gun) based on a patterned carbon nanotube (CNT) film has been fabricated for use in a miniaturized reflectron time-of-flight mass spectrometer (RTOF MS), with future applications in other charged particle spectrometers, and performance of the CNT e-gun has been evaluated. A thermionic electron gun has also been fabricated and evaluated in parallel and its performance is used as a benchmark in the evaluation of our CNT e-gun. Implications for future improvements and integration into the RTOF MS are discussed.

  8. Study of static characteristics of acoustic-emission radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vakar, K B; Rzhevkin, V R [Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii

    1982-09-01

    Experimental installation for measuring statistical parameters of acoustic emission is described and results of measuring dimetric histograms-amplitude of emission pulses-interval between pulses - are given. The installation was constructed on the base of CAMAC ideology and anables to analyse emission signals both in real time scale and after the experiment reading out the data from outer carrier. The given results demonstrate the principle possibility to distinguish processes, proceeding in material on load.

  9. Study of field induced hot-electron emission using the composite microemitters with varying dielectric layer thickness

    International Nuclear Information System (INIS)

    Mousa, M.S.

    1987-07-01

    The analysis of the measurements obtained from the of field emission of electrons from composite metal-insulator (M-I) micropoint cathodes, using the combination of a high resolution electron spectrometer and a field emission microscope, has been presented. Results obtained describe the reversible current-voltage characteristic, emission images and electron energy distribution measurements of both thin and the optimum thick coatings. The observed effects, e.g. the threshold switch-on phenomena and the field-dependence of the F.W.H.M. and energy shift of the electron spectra have been identified in terms of a field-induced hot-electron emission (FIHEE) mechanism resulting from field penetration in the insulating film where conducting channels are formed. The theoretical implications accounts for the channels field intensification mechanism and the conduction properties with applied field, and the F.W.H.M. dependence on electron temperature. The control of the emission process at low fields by the M-I contact junction and at high fields by the bulk properties of the insulator have also been accounted for. These experimental and theoretical findings have been shown to be consistent with recently published data on M-I microstructures on broad-area (BA) high-voltage electrodes. (author). 18 refs, 6 figs

  10. Silicon-based metallic micro grid for electron field emission

    International Nuclear Information System (INIS)

    Kim, Jaehong; Jeon, Seok-Gy; Kim, Jung-Il; Kim, Geun-Ju; Heo, Duchang; Shin, Dong Hoon; Sun, Yuning; Lee, Cheol Jin

    2012-01-01

    A micro-scale metal grid based on a silicon frame for application to electron field emission devices is introduced and experimentally demonstrated. A silicon lattice containing aperture holes with an area of 80 × 80 µm 2 and a thickness of 10 µm is precisely manufactured by dry etching the silicon on one side of a double-polished silicon wafer and by wet etching the opposite side. Because a silicon lattice is more rigid than a pure metal lattice, a thin layer of Au/Ti deposited on the silicon lattice for voltage application can be more resistant to the geometric stress caused by the applied electric field. The micro-fabrication process, the images of the fabricated grid with 88% geometric transparency and the surface profile measurement after thermal feasibility testing up to 700 °C are presented. (paper)

  11. Graphene enhanced field emission from InP nanocrystals.

    Science.gov (United States)

    Iemmo, L; Di Bartolomeo, A; Giubileo, F; Luongo, G; Passacantando, M; Niu, G; Hatami, F; Skibitzki, O; Schroeder, T

    2017-12-08

    We report the observation of field emission (FE) from InP nanocrystals (NCs) epitaxially grown on an array of p-Si nanotips. We prove that FE can be enhanced by covering the InP NCs with graphene. The measurements are performed inside a scanning electron microscope chamber with a nano-controlled W-thread used as an anode. We analyze the FE by Fowler-Nordheim theory and find that the field enhancement factor increases monotonically with the spacing between the anode and the cathode. We also show that InP/p-Si junction has a rectifying behavior, while graphene on InP creates an ohmic contact. Understanding the fundamentals of such nanojunctions is key for applications in nanoelectronics.

  12. Investigating of the Field Emission Performance on Nano-Apex Carbon Fiber and Tungsten Tips

    Science.gov (United States)

    Mousa, Marwan S.; Alnawasreh, Shadi; Madanat, Mazen A.; Al-Rabadi, Anas N.

    2015-10-01

    Field electron emission measurements have been performed on carbon-based and tungsten microemitters. Several samples of both types of emitters with different apex radii have been obtained employing electrolytic etching techniques using sodium hydroxide (NaOH) solution with different molarities depending on the material used. A suitable, home-built, field electron microscope (FEM) with 10 mm tip to screen separation distance was used to electrically characterize the electron emitters. Measurements were carried out under ultra high vacuum (UHV) conditions with base pressure of 10-9 mbar. The current-voltage characteristics (I-V) presented as Fowler-Nordheim (FN) type plots, and field electron emission images have been recorded. In this work, initial comparison of the field electron emission performance of these micro and nanoemitters has been carried out, with the aim of obtaining a reliable, stable and long life powerful electron source. We compare the apex radii measured from the micrographs obtained from the SEM images to those extracted from the FN-type _I-V_plots for carbon fibers and tungsten tips.

  13. Investigating of the Field Emission Performance on Nano-Apex Carbon Fiber and Tungsten Tips

    International Nuclear Information System (INIS)

    Mousa, Marwan S; Alnawasreh, Shadi; Al-Rabadi, Anas N; Madanat, Mazen A

    2015-01-01

    Field electron emission measurements have been performed on carbon-based and tungsten microemitters. Several samples of both types of emitters with different apex radii have been obtained employing electrolytic etching techniques using sodium hydroxide (NaOH) solution with different molarities depending on the material used. A suitable, home-built, field electron microscope (FEM) with 10 mm tip to screen separation distance was used to electrically characterize the electron emitters. Measurements were carried out under ultra high vacuum (UHV) conditions with base pressure of 10 -9 mbar. The current-voltage characteristics (I-V) presented as Fowler-Nordheim (FN) type plots, and field electron emission images have been recorded. In this work, initial comparison of the field electron emission performance of these micro and nanoemitters has been carried out, with the aim of obtaining a reliable, stable and long life powerful electron source. We compare the apex radii measured from the micrographs obtained from the SEM images to those extracted from the FN-type -I-V-plots for carbon fibers and tungsten tips. (paper)

  14. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    International Nuclear Information System (INIS)

    Mathur, A.; Roy, S.S.; Hazra, K.S.; Wadhwa, S.; Ray, S.C.; Mitra, S.K.; Misra, D.S.; McLaughlin, J.A.

    2012-01-01

    Highlights: ► We showed Ar/O 2 plasma can be effective for the end opening of aligned CNTs. ► The field emission property was dramatically enhanced after plasma modification. ► Microstructures were clearly understood by Raman and SEM analysis. ► Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15–20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110° to 40°. It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from ∼0.80 V μm −1 (untreated) to ∼0.60 V μm −1 (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  15. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  16. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus `Giganteus` (M. `Giganteus`) and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substituion for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the CO{sub 2} reduction

  17. N{sub 2}O Emission from energy crop fields

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, B.J. [The Royal Veterinary and Agricultural Univ., Dept. of Agricultural Sciences, Section of Soil, Water and Plant Nutrition (Denmark); Nyholm Joergensen, R. [Research Centre Foulum, The Danish Inst. of Plant and Soil Science, Dept. of Soil Science (Denmark)

    1996-03-01

    The interest in N{sub 2}O emissions from soils with energy crops is a results of its properties as a greenhouse gas, since the global warming potential of N{sub 2}O per unit mass is about 320 times greater than CO{sub 2}. The contribution of N{sub 2}O from the soil to the atmosphere may increase due to agricultural management. Consequently, large N{sub 2}O emissions can lower the reduction of the greenhouse effect achieved by the substitution of fossil fuels by energy crops. For this reason it is crucial to find the crops for combustion with the lowest potential for emission of N{sub 2}O from the soil per produced energy unit. The aims of this study were to assess the annual N{sub 2}O flux from a Miscanthus 'Giganteus' (M. 'Giganteus') and winter rye (Secale cereale) field, and to investigate the factors affecting the N{sub 2}O emission. To obtain these aims a method was developed for measurements in tall crops. The thesis contains a literature review on the N{sub 2}O emission from the soils, a section with development of the technique for N{sub 2}O flux measurements, and an experimental section. Finally, the thesis contains a section where the results are discussed in relation to the use of energy crops. In all the filed studies, the N{sub 2}O emission was measured by using a new developed closed-chamber technique. The main advantages of the chamber method were the ability to contain growing plants up to a height of 3 m, and the relatively large area (2X2m) covered by each other. Soils with annual and perennial crops can be expected to emit less then 3 kg N{sub 2}O ha{sup -1} yr{sup -1}. This amount corresponds to 960 kg CO{sub 2} ha{sup -1} yr{sup -1} compared to a total CO{sub 2} reduction of 10 to 19 tons CO{sub 2} ha{sup -1} yr{sup -1} using the energy crops as substitution for fossil fuels. An efficient way to reduce the N{sub 2}O emission is to exclude use of fertiliser but this also reduces the dry matter yield and consequently also the

  18. Emission characteristics of petrol and diesel driven vehicles in Rewa town

    International Nuclear Information System (INIS)

    Mishra, R.M.; Gupta, A.K.; Parihar, Sarita

    1993-01-01

    Air pollution by road traffic is likely to be severe in most of the major cities of India, in near future. An emission survey was conducted in Rewa town to obtain the basic data on emission characteristics of inservice vehicles. About 250 two wheelers, 110 cars and 350 diesel vehicles were tested for the emissions of carbon monoxide and hydrocarbons. Present paper summarizes the data of vehicular emissions observed in this survey and discusses the emission level of different categories of vehicles, in the light of the proposed national standards and the emission standards enforced in developed countries. (author). 9 refs., 4 tabs

  19. [Investigation of emission characteristics for light duty vehicles with a portable emission measurement system].

    Science.gov (United States)

    Wang, Hai-Kun; Fu, Li-Xin; Zhou, Yu; Lin, Xin; Chen, Ai-Zhong; Ge, Wei-hu; Du, Xuan

    2008-10-01

    Emission from 7 typical light-duty vehicles under actual driving conditions was monitored using a portable emission measurement system to gather data for characterization of the real world vehicle emission in Shenzhen, including the effects of driving modes on vehicle emission, comparison of fuel consumption based emission factors (g x L(-1) with mileage based emission factors (g x km(-1)), and the average emission factors of the monitored vehicles. The acceleration and deceleration modes accounted for 66.7% of total travel time, 80.3% of traveling distance and 74.6%-79.2% of vehicle emission; the acceleration mode contributed more than other driving modes. The fuel based emission factors were less dependent on the driving speed; they may be utilized in building macro-scale vehicle emission inventory with smaller sensitivity to the vehicle driving conditions. The effect of vehicle technology on vehicle emission was significant; the emission factors of CO, HC and NO(x) of carbureted vehicles were 19.9-20.5, 5.6-26.1 and 1.8-2.0 times the more advanced vehicles of Euro II, respectively. Using the ECE + EUDC driving cycle would not produce the desired real-world emission rates of light duty vehicles in a typical Chinese city.

  20. Silicon microelectronic field-emissive devices for advanced display technology

    Science.gov (United States)

    Morse, J. D.

    1993-03-01

    Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.

  1. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  2. Evaluation of emission characteristics and compliance of emission standards for in-use petrol driven vehicles in Delhi.

    Science.gov (United States)

    Sarin, S M; Singh, A; Sharma, N; Sharma, K; Shanmugum, P

    2001-01-01

    The tail pipe CO (carbon monoxide) and HC (hydrocarbon) emission characteristics of in-use petrol driven vehicles were evaluated between November 1996 through September 1997 in Delhi. A total of 4300 vehicles were checked at CRRI Pollution Checking Centre. Approximately 90% of the total vehicles meet the prescribed CO emission standards even without following routine I/M practices. The age of the vehicles appeared to have influence on the emission characteristics. The non-compliance level was found to be higher for older vehicles. Insignificant correlation was observed between CO and HC emissions for all categories of in-use petrol driven vehicles. The emission reduction (gain) in CO and HC emissions was observed for two wheelers equipped with four-stroke engines and four wheelers fitted with catalytic converters over their respective conventional vehicles. The observed high compliance levels indicate that existing tail pipe emission standards are lenient and need to be reviewed. The emission standards are proposed for different categories of in-use petrol driven vehicles.

  3. Effect of Substrate Morphology on Growth and Field Emission Properties of Carbon Nanotube Films

    Directory of Open Access Journals (Sweden)

    Kumar Vikram

    2008-01-01

    Full Text Available AbstractCarbon nanotube (CNT films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i mirror polished, (ii catalyst patterned, (iii mechanically polished having pits of varying size and shape, and (iv electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and structural characteristics of the films were investigated by scanning and transmission electron microscopes, respectively. CNT films of different morphology such as vertically aligned, randomly oriented flowers, or honey-comb like, depending on the morphology of the Si substrates, were obtained. CNTs had sharp tip and bamboo-like internal structure irrespective of growth morphology of the films. Comparative field emission measurements showed that patterned CNT films and that with randomly oriented morphology had superior emission characteristics with threshold field as low as ~2.0 V/μm. The defective (bamboo-structure structures of CNTs have been suggested for the enhanced emission performance of randomly oriented nanotube samples.

  4. Two-photon cooperative emission in the presence of athermal electromagnetic field

    International Nuclear Information System (INIS)

    Enaki, N.A.; Mihalache, D.

    1997-01-01

    The possibility of cooperative spontaneous two-photon emission of an extended radiators system and the influence of the external thermal electromagnetic field on the spontaneous emission rate, in such a system, are investigated. It is concluded that, in an external electromagnetic field, the two-photon cooperative emission rate increases significantly. The importance of this effect on the emission of gamma rays from inverted long-lived isomers triggered by X-ray thermal fields, is emphasized

  5. Performance characteristics of mix oil biodiesel blends with smoke emissions

    Directory of Open Access Journals (Sweden)

    Sanjay Mohite

    2016-08-01

    July 10th 2016; Available online How to Cite This Article: Mohite. S, Kumar, S. &  Maji, S.  (2016 Performance  characteristics of mix oil biodiesel blends with smoke emissions. Int. Journal of Renewable Energy Development, 5(2, 163-170. http://dx.doi.org/10.14710/ijred.5.2.163-170 

  6. Comparison of performance and emission characteristics of diesel ...

    African Journals Online (AJOL)

    Dr Oke

    In first validation, the commercial code is validated by experimental data ... method has greater potential to reduce smoke and NOx emissions at .... Fig 3, a type of combustion model based on laminar flame let concept is applied in the present.

  7. Relating Emissions of Carbon to Characteristics of Consumption in India

    Directory of Open Access Journals (Sweden)

    Madhumati Dutta

    2018-06-01

    Full Text Available In order to determine how the average Indian’s emissions may be reduced, one needs to understand the consumption basket and the implications of various categories of household consumption (such as cereals or durables on emissions. With this in mind, this paper looks at consumption choices in India and calculates per capita carbon dioxide emissions of the different categories of consumption during 1987-1988 to 2007-2008. It is seen that both the increase in per person consumption and a change in the product basket have led to an increase in emissions per person. Further, the urban or higher class Indian emits more, not only because he consumes more of everything (compared, respectively, to the rural or lower class Indian, but also because of differences in the composition of consumption. Four products/product groups – fuel for cooking, fuel for lighting, durables and housing – are further explored to identify several problem products.

  8. Combustion, performance and emissions characteristics of a newly ...

    Indian Academy of Sciences (India)

    of a newly developed CRDI single cylinder diesel engine. AVINASH ... In case of unit injector and unit pump systems, fuel injection pressure depends on ... nozzle hole diameters were effective in reducing smoke and PM emissions. However ...

  9. White top emitting OLED with angle independent emission characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Thomschke, Michael; Freitag, Patricia; Schwartz, Gregor; Nitsche, Robert; Walzer, Karsten; Leo, Karl [Technische Universitaet Dresden, Institut fuer Angewandte Photophysik, Georg-Baehr-Strasse 1, 01062 Dresden (Germany)

    2008-07-01

    The general device structure of a top emitting organic light emitting diode (OLED) consists of several organic layers sandwiched in between two metal contacts, with the top one being semitransparent for light outcoupling reasons. Due to the high reflectivity of the electrodes, strong microcavity effects occur which lead to a preferred emission of light of a certain wavelength with main outcoupling in forward direction. This creates rather narrow emission bands, accompanied by strong spectral shifts upon viewing angle variation. By using an organic capping layer on top of the semitransparent metal contact, this unwanted effect can be reduced. This is important especially for white light emission for the use of OLEDs in future lighting applications. Our optical simulations show that the strong angular dependence of the emission color almost vanishes. To verify the simulations we study white top emitting OLEDs based on an approach which are adapted to the top emitting case.

  10. Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Yung-Jr, E-mail: yungjrhung@gmail.com [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Department of Photonics, National Sun Yat-sen University, No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, San-Liang [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Beng, Looi Choon [Faculty of Engineering, Multimedia University, Jalan Multimedia, 63100 Cyberjaya, Selangor (Malaysia); Chang, Hsuan-Chen [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Huang, Yung-Jui [Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Lee, Kuei-Yi; Huang, Ying-Sheng [Department of Electronic Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China); Graduate Institute of Electro-Optical Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan, ROC (China)

    2014-04-01

    Top-down fabrication strategies are proposed and demonstrated to realize arrays of vertically-aligned silicon nanowire bundles and bundle arrays of carbon nanotube–silicon nanowire (CNT–SiNW) heterojunctions, aiming for releasing the electrostatic screening effect and improving the field emission characteristics. The trade-off between the reduction in the electrostatic screening effect and the decrease of emission sites leads to an optimal SiNW bundle arrangement which enables the lowest turn-on electric field of 1.4 V/μm and highest emission current density of 191 μA/cm{sup 2} among all testing SiNW samples. Benefiting from the superior thermal and electrical properties of CNTs and the flexible patterning technologies available for SiNWs, bundle arrays of CNT–SiNW heterojunctions show improved and highly-uniform field emission with a lower turn-on electric field of 0.9 V/μm and higher emission current density of 5.86 mA/cm{sup 2}. The application of these materials and their corresponding fabrication approaches is not limited to the field emission but can be used for a variety of emerging fields like nanoelectronics, lithium-ion batteries, and solar cells. - Highlights: • Aligned silicon nanowire (SiNW) bundle arrays are realized with top-down methods. • Growing carbon nanotubes atop SiNW bundle arrays enable uniform field emission. • A turn-on field of 0.9 V/μm and an emission current of > 5 mA/cm{sup 2} are achieved.

  11. Non-methane hydrocarbon characteristics of motor vehicular emissions in the Pearl River Delta region

    Science.gov (United States)

    Tsai, Wai Yan

    2007-12-01

    Air pollution problem in Hong Kong and the Pearl River Delta (PRD) region has raised much concern from the public in recent years. The primary aim of this research is to use field measurement data to characterize non-methane hydrocarbons (NMHCs) in emission from motor vehicles. Fuel vapor compositions for several commonly used vehicular fuels in Hong Kong, Macau, Guangzhou and Zhuhai were analyzed in 2003, and they are believed to be the first one reported for the PRD region. These profiles were used to study the impact of evaporative loss of the fuels on air quality. From the roadside and tunnel samples collected in the four cities mentioned above from 2000 to 2003, results showed that vehicular engine combustion was a main NMHC source, while gasoline evaporative losses also contributed much to the total NMHC emission, besides, LPG leakage was also found to be significant from the tunnel measurement data collected in Hong Kong. Characteristics of vehicular engine exhaust emissions were also studied. Measurements of diesel emission showed a large influence on the emission profile due to the change of diesel compositions. The E/E ratios implied that gasoline-powered vehicles in Hong Kong were equipped with well functioning catalysts, while those in Guangzhou and Zhuhai, especially the motorcycles, were found dirtier in NMHC emission. Although the E/E ratios showed that private cars in Hong Kong had high combustion efficiency, the existence of significant amounts of unburned gasoline in their exhaust stream pointed out that they still had low fuel economy. From the results of a simple model, it was found that the evaporative losses of gasoline and LPG contributed much to the total NMHC pollution from vehicle. The preliminary results from the dynamometer study conducted in Hong Kong showed large variations of exhaust characteristics for private cars and taxis during different driving speeds. The results can be used as scientific basis for regulatory parties in

  12. The influence of magnetic fields on absorption and emission spectroscopy

    International Nuclear Information System (INIS)

    Zhang, Heshou; Yan, Huirong

    2016-10-01

    Spectroscopic observations play essential roles in astrophysics. They are crucial for determining important physical parameters, providing information about the composition of various objects in the universe, as well as depicting motions in the universe. However, spectroscopic studies often do not consider the influence of magnetic fields. In this paper, we explore the influence of magnetic fields on the spectroscopic observations arising from Ground State Alignment (GSA). Synthetic spectra are generated to show the measurable changes of the spectra due to GSA. The influences of atomic alignment on absorption from DLAs, emission from H II Regions, submillimeter fine-structure lines from star forming regions are presented as examples to illustrate the effect in diffuse gas. Furthermore, we demonstrate the influence of atomic alignment on physical parameters derived from spectral line ratios, such as the alpha-to-iron ratio([X/Fe]), interstellar temperature, and ionization rate. Results in our paper show that due to GSA, magnetic fields will affect the spectra of diffuse gas with high signal-to-noise(S/N) ratio under the condition that photon-excitation is much more efficient than thermal collision.

  13. Vacuum field energy and spontaneous emission in anomalously dispersive cavities

    International Nuclear Information System (INIS)

    Bradshaw, Douglas H.; Di Rosa, Michael D.

    2011-01-01

    Anomalously dispersive cavities, particularly white-light cavities, may have larger bandwidth to finesse ratios than their normally dispersive counterparts. Partly for this reason, they have been proposed for use in laser interferometer gravitational-wave observatory (LIGO)-like gravity-wave detectors and in ring-laser gyroscopes. In this paper we analyze the quantum noise associated with anomalously dispersive cavity modes. The vacuum field energy associated with a particular cavity mode is proportional to the cavity-averaged group velocity of that mode. For anomalously dispersive cavities with group index values between 1 and 0, this means that the total vacuum field energy associated with a particular cavity mode must exceed (ℎ/2π)ω/2. For white-light cavities in particular, the group index approaches zero and the vacuum field energy of a particular spatial mode may be significantly enhanced. We predict enhanced spontaneous emission rates into anomalously dispersive cavity modes and broadened laser linewidths when the linewidth of intracavity emitters is broader than the cavity linewidth.

  14. New results on RF and DC field emission

    International Nuclear Information System (INIS)

    Padamsee, H.; Kirchgessner, J.; Moffat, D.; Noer, R.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper reviews progress in RF and DC field emission since the last workshop held two years ago at Argonne National Laboratory. Through better characterization, progress has been made towards improved understanding of FE in cavities. Through development of new cures, gains have made towards higher fields. Through better rinsing procedures low-frequency (500 and 350 MHz) cavities regularly reach surface electric fields of 20 MV/m. Processing times are substantially reduced. Through heat treatment at 1350degC high frequency (1500 MHz) cavities have reached 53 MV/m, and 3000 MHz cavities have reached 70 MV/m. The state of the art in Epk is described first. Then, benefits of high temperature treatment are discussed, focusing on highest temperature (1300-1350degC) treatment, intermediate heat treatments, and heat treatment without final methanol rinsing. He processing, heat treatment of 3-GHz cavitie, general inferences concerning emitter properties, influence of condensed gases, and sources of emitters are also addressed. Finally, lessons to be learned from copper cavities and high power processing is pointed out and discussed. (N.K.)

  15. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  16. Field test of available methods to measure remotely SOx and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Gast, L. F. L.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; Swart, D. P. J.; Berkhout, A. J. C.; Jalkanen, J.-P.; Prata, A. J.; van der Hoff, G. R.; Borowiak, A.

    2014-08-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors based on remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, Differential Optical Absorption Spectroscopy (DOAS), UV camera), combined with model-based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the land-based ones because they allow optimizing the sampling conditions and sampling from ships on the open sea. Although optical methods can provide reliable results it was found that at the state of the art level, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  17. Field test of available methods to measure remotely SO2 and NOx emissions from ships

    Science.gov (United States)

    Balzani Lööv, J. M.; Alfoldy, B.; Beecken, J.; Berg, N.; Berkhout, A. J. C.; Duyzer, J.; Gast, L. F. L.; Hjorth, J.; Jalkanen, J.-P.; Lagler, F.; Mellqvist, J.; Prata, F.; van der Hoff, G. R.; Westrate, H.; Swart, D. P. J.; Borowiak, A.

    2013-11-01

    Methods for the determination of ship fuel sulphur content and NOx emission factors from remote measurements have been compared in the harbour of Rotterdam and compared to direct stack emission measurements on the ferry Stena Hollandica. The methods were selected based on a review of the available literature on ship emission measurements. They were either optical (LIDAR, DOAS, UV camera), combined with model based estimates of fuel consumption, or based on the so called "sniffer" principle, where SO2 or NOx emission factors are determined from simultaneous measurement of the increase of CO2 and SO2 or NOx concentrations in the plume of the ship compared to the background. The measurements were performed from stations at land, from a boat, and from a helicopter. Mobile measurement platforms were found to have important advantages compared to the landbased ones because they allow to optimize the sampling conditions and to sample from ships on the open sea. Although optical methods can provide reliable results, it was found that at the state of the art, the "sniffer" approach is the most convenient technique for determining both SO2 and NOx emission factors remotely. The average random error on the determination of SO2 emission factors comparing two identical instrumental set-ups was 6%. However, it was found that apparently minor differences in the instrumental characteristics, such as response time, could cause significant differences between the emission factors determined. Direct stack measurements showed that about 14% of the fuel sulphur content was not emitted as SO2. This was supported by the remote measurements and is in agreement with the results of other field studies.

  18. Performance of a field emission gun TEM/STEM

    International Nuclear Information System (INIS)

    Carpenter, R.W.; Bentley, J.

    1979-01-01

    First experimental results on a Phillips EM 400 TEM/STEM fitted with a field-emission electron gun and objective twin lens are given here. Operation of the FEG is reliable up to maximum design voltage (120 kV). Highest resolution achieved in TEM was 1.9 A fringe. A wide variety of diffraction modes were demonstrated, ranging from CBDP from a small area (approx. 10 A dia) in STEM mode to SAD with angular resolution of 8 μrad in TEM mode. The EDS sensitivity is very high. STEM imaging performance to the highest magnifications examined (200 kx) is good. Work is in progress to evaluate the limits of STEM performance

  19. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    International Nuclear Information System (INIS)

    Tong Wang

    2002-01-01

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radio frequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ∼140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ∼140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ∼140 MV

  20. Enhanced Field Emission Studies on Niobium Surfaces Relevant to High Field Superconducting Radio-Frequency Devices

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2002-09-18

    Enhanced field emission (EFE) presents the main impediment to higher acceleration gradients in superconducting niobium (Nb) radiofrequency cavities for particle accelerators. The strength, number and sources of EFE sites strongly depend on surface preparation and handling. The main objective of this thesis project is to systematically investigate the sources of EFE from Nb, to evaluate the best available surface preparation techniques with respect to resulting field emission, and to establish an optimized process to minimize or eliminate EFE. To achieve these goals, a scanning field emission microscope (SFEM) was designed and built as an extension to an existing commercial scanning electron microscope (SEM). In the SFEM chamber of ultra high vacuum, a sample is moved laterally in a raster pattern under a high voltage anode tip for EFE detection and localization. The sample is then transferred under vacuum to the SEM chamber equipped with an energy-dispersive x-ray spectrometer for individual emitting site characterization. Compared to other systems built for similar purposes, this apparatus has low cost and maintenance, high operational flexibility, considerably bigger scan area, as well as reliable performance. EFE sources from planar Nb have been studied after various surface preparation, including chemical etching and electropolishing, combined with ultrasonic or high-pressure water rinse. Emitters have been identified, analyzed and the preparation process has been examined and improved based on EFE results. As a result, field-emission-free or near field-emission-free surfaces at ~140 MV/m have been consistently achieved with the above techniques. Characterization on the remaining emitters leads to the conclusion that no evidence of intrinsic emitters, i.e., no fundamental electric field limit induced by EFE, has been observed up to ~140 MV/m. Chemically etched and electropolished Nb are compared and no significant difference is observed up to ~140 MV/m. To

  1. Microwave magnetoelectric fields: An analytical study of topological characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Joffe, R., E-mail: ioffr1@gmail.com [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel); Department of Electrical and Electronics Engineering, Shamoon College of Engineering, Beer Sheva (Israel); Shavit, R.; Kamenetskii, E.O. [Microwave Magnetic Laboratory, Department of Electrical and Computer Engineering, Ben Gurion University of the Negev, Beer Sheva (Israel)

    2015-10-15

    The near fields originated from a small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillations are the fields with broken dual (electric-magnetic) symmetry. Numerical studies show that such fields – called the magnetoelectric (ME) fields – are distinguished by the power-flow vortices and helicity parameters (E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. E 87 (2013) 023201). These numerical studies can well explain recent experimental results with MDM ferrite disks. In the present paper, we obtain analytically topological characteristics of the ME-field modes. For this purpose, we used a method of successive approximations. In the second approximation we take into account the influence of the edge regions of an open ferrite disk, which are excluded in the first-approximation solving of the magnetostatic (MS) spectral problem. Based on the analytical method, we obtain a “pure” structure of the electric and magnetic fields outside the MDM ferrite disk. The analytical studies can display some fundamental features that are non-observable in the numerical results. While in numerical investigations, one cannot separate the ME fields from the external electromagnetic (EM) radiation, the present theoretical analysis allows clearly distinguish the eigen topological structure of the ME fields. Importantly, this ME-field structure gives evidence for certain phenomena that can be related to the Tellegen and bianisotropic coupling effects. We discuss the question whether the MDM ferrite disk can exhibit properties of the cross magnetoelectric polarizabilities. - Highlights: • We obtain analytically topological characteristics of the ME-field modes. • We take into account the influence of the edge regions of an open ferrite disk. • We obtain a “pure” structure of the electromagnetic fields outside the ferrite disk. • Analytical studies show features that are non-observable in the numerical results. • ME-field gives evidence for

  2. Microwave magnetoelectric fields: An analytical study of topological characteristics

    International Nuclear Information System (INIS)

    Joffe, R.; Shavit, R.; Kamenetskii, E.O.

    2015-01-01

    The near fields originated from a small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillations are the fields with broken dual (electric-magnetic) symmetry. Numerical studies show that such fields – called the magnetoelectric (ME) fields – are distinguished by the power-flow vortices and helicity parameters (E.O. Kamenetskii, R. Joffe, R. Shavit, Phys. Rev. E 87 (2013) 023201). These numerical studies can well explain recent experimental results with MDM ferrite disks. In the present paper, we obtain analytically topological characteristics of the ME-field modes. For this purpose, we used a method of successive approximations. In the second approximation we take into account the influence of the edge regions of an open ferrite disk, which are excluded in the first-approximation solving of the magnetostatic (MS) spectral problem. Based on the analytical method, we obtain a “pure” structure of the electric and magnetic fields outside the MDM ferrite disk. The analytical studies can display some fundamental features that are non-observable in the numerical results. While in numerical investigations, one cannot separate the ME fields from the external electromagnetic (EM) radiation, the present theoretical analysis allows clearly distinguish the eigen topological structure of the ME fields. Importantly, this ME-field structure gives evidence for certain phenomena that can be related to the Tellegen and bianisotropic coupling effects. We discuss the question whether the MDM ferrite disk can exhibit properties of the cross magnetoelectric polarizabilities. - Highlights: • We obtain analytically topological characteristics of the ME-field modes. • We take into account the influence of the edge regions of an open ferrite disk. • We obtain a “pure” structure of the electromagnetic fields outside the ferrite disk. • Analytical studies show features that are non-observable in the numerical results. • ME-field gives evidence for

  3. 47 CFR 5.77 - Change in equipment and emission characteristics.

    Science.gov (United States)

    2010-10-01

    ... characteristics. 5.77 Section 5.77 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL EXPERIMENTAL RADIO... characteristics. (a) A change may be made in a licensed transmitter without specific authorization from the... outstanding authorization for the station involved. (b) Discrete changes in emission characteristics may be...

  4. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  5. Field emission from patterned SnO2 nanostructures

    International Nuclear Information System (INIS)

    Zhang Yongsheng; Yu Ke; Li Guodong; Peng Deyan; Zhang Qiuxiang; Hu Hongmei; Xu Feng; Bai Wei; Ouyang Shixi; Zhu Ziqiang

    2006-01-01

    A simple and reliable method has been developed for synthesizing finely patterned tin dioxide (SnO 2 ) nanostructure arrays on silicon substrates. A patterned Au catalyst film was prepared on the silicon wafer by radio frequency (RF) magnetron sputtering and photolithographic patterning processes. The patterned SnO 2 nanostructures arrays, a unit area is of ∼500 μm x 200 μm, were synthesized via vapor phase transport method. The surface morphology and composition of the as-synthesized SnO 2 nanostructures were characterized by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanism of formation of SnO 2 nanostructures was also discussed. The measurement of field emission (FE) revealed that the as-synthesized SnO 2 nanorods, nanowires and nanoparticles arrays have a lower turn-on field of 2.6, 3.2 and 3.9 V/μm, respectively, at the current density of 0.1 μA/cm 2 . This approach must have a wide variety of applications such as fabrications of micro-optical components and micropatterned oxide thin films used in FE-based flat panel displays, sensor arrays and so on

  6. Characteristics of a cold cathode electron source combined with secondary electron emission in a FED

    International Nuclear Information System (INIS)

    Lei Wei; Zhang Xiaobing; Zhou Xuedong; Zhu Zuoya; Lou Chaogang; Zhao Hongping

    2005-01-01

    In electron beam devices, the voltage applied to the cathode (w.r.t. grid voltage) provides the initial energy for the electrons. Based on the type of electron emission, the electron sources are (mainly) classified into thermionic cathodes and cold cathodes. The power consumption of a cold cathode is smaller than that of a thermionic cathode. The delay time of the electron emission from a cold cathode following the voltage rise is also smaller. In cathode ray tubes, field emission display (=FED) panels and other devices, the electron current emitted from the cathode needs to be modulated. Since the strong electric field, which is required to extract electrons from the cold cathode, accelerates the electrons to a high velocity near the gate electrode, the required voltage swing for the current modulation is also high. The design of the driving circuit becomes quite difficult and expensive for a high driving voltage. In this paper, an insulator plate with holes is placed in front of a cold cathode. When the primary electrons hit the surface of the insulator tunnels, secondary electrons are generated. In this paper, the characteristics of the secondary electrons emitted from the gate structure are studied. Because the energies of the secondary electrons are smaller than that of the primary electron, the driving voltage for the current modulation is decreased by the introduction of the insulator tunnels, resulting in an improved energy uniformity of the electron beam. Triode structures with inclined insulator tunnels and with double insulator plates are also fabricated and lead to further improvements in the energy uniformity. The improved energy uniformity predicted by the simulation calculations is demonstrated by the improved brightness uniformity in the screen display images

  7. Density functional theory for field emission from carbon nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhibing, E-mail: stslzb@mail.sysu.edu.cn

    2015-12-15

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. - Highlights: • Applications of DFT to electron field emission of nano-structures are reviewed. • Fundamental concepts of field emission are re-visited with emphasis on the many-body effects. • New insights to field emission of nano-structures are obtained by multi-scale DFT calculations. • It is shown that the exchange–correlation effect on the emission barrier is significant. • Spontaneous symmetry breaking in field emission of CNT has been predicted.

  8. As-pyrolyzed sugarcane bagasse possessing exotic field emission properties

    Science.gov (United States)

    Krishnia, Lucky; Yadav, Brajesh S.; Palnitkar, Umesh; Satyam, P. V.; Gupta, Bipin Kumar; Koratkar, Nikhil A.; Tyagi, Pawan K.

    2018-06-01

    The present study aims to demonstrate the application of sugarcane bagasse as an excellent field emitter. Field emission property of as-pyrolyzed sugarcane bagasse (p-SBg) before and after the plasma treatment has been investigated. It has been observed that electronic nature of p-SBg transformed from semiconducting to metallic after plasma treatment. Maximum current and turn-on field defined at 10 μA/cm2 was found to be 800 μA/cm2 and 2.2 V/μm for as-pyrolyzed sugarcane bagasse (p-SBg) and 25 μA/cm2 and 8.4 V/μm for H2-plasma treated p-SBg. These values are found to be better than the reported values for graphene and activated carbon. In this report, pyrolysis of bagasse has been carried in a thermal chemical vapor deposition (Th-CVD) system in inert argon atmosphere. Scanning electron microscopy (SEM), X-ray Diffraction (XRD), High-resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS) have been used to study the structure of both pre and post plasma-treated p-SBg bagasse's sample. HRTEM study reveals that carbonaceous structures such as 3D-nanographene oxide (3D-NGO), graphite nanodots (GNDs), carbon nanotubes (CNTs), and carbon onions are present in both pre-treated and plasma-treated p-SBg. Hence, we envision that the performed study will be a forwarding step to facilitate the application of p-SBg in display devices.

  9. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications

    Directory of Open Access Journals (Sweden)

    Sangjun Park

    2018-05-01

    Full Text Available In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE characteristics with respective turn on (1 μA/cm2 and threshold (1 mA/cm2 field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm2 was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm2 for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.

  10. Emission characteristics and stability of laser ion sources

    Czech Academy of Sciences Publication Activity Database

    Krása, Josef; Velyhan, Andriy; Krouský, Eduard; Láska, Leoš; Rohlena, Karel; Jungwirth, Karel; Ullschmied, Jiří; Lorusso, A.; Velardi, L.; Nassisi, V.; Czarnecka, A.; Ryc, L.; Parys, P.; Wolowski, J.

    2010-01-01

    Roč. 85, č. 5 (2010), s. 617-621 ISSN 0042-207X R&D Projects: GA AV ČR IAA100100715 Institutional research plan: CEZ:AV0Z10100523; CEZ:AV0Z20430508 Keywords : laser ion sources * ion emission reproducibility * thermal and fast ions * ion temperature * centre-of-mass velocity Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.048, year: 2010

  11. [Emission Characteristics of VOCs from Typical Restaurants in Beijing].

    Science.gov (United States)

    Cui, Tong; Cheng, Jing-chen; He, Wan-qing; Ren, Pei-fang; Nie, Lei; Xu, Dong-yao; Pan, Tao

    2015-05-01

    Using the EPA method, emission of volatile organic compounds (VOCs) , sampled from barbecue, Chinese and Western fast-food, Sichuan cuisine and Zhejiang cuisine restaurants in Beijing was investigated. VOCs concentrations and components from different cuisines were studied. The results indicated that based on the calibrated baseline ventilation volume, the VOCs emission level from barbecue was the highest, reaching 12.22 mg · m(-3), while those from fast-food of either Chinese or Western, Sichuan cuisine and Zhejiang cuisine were about 4 mg · m(-3). The components of VOCs from barbecue were different from those in the other cuisines, which were mainly propylene, 1-butene, n-butane, etc. The non-barbecue cuisines consisted of high concentration of alcohols, and Western fast-food contained relatively high proportion of aldehydes and ketones organic compounds. According to emission concentration of baseline ventilation volume, barbecue released more pollutants than the non-barbecue cuisines at the same scale. So, barbecue should be supervised and controlled with the top priority.

  12. Variable geometry turbocharging for lower emissions and improved torque characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.G.; Wallace, F.J.; Cox, A. [Bath Univ., Dept. of Mechanical Engineering, Bath (United Kingdom); Horrocks, R.W.; Bird, G.L. [Ford Motor Company Ltd., Engineering Centre for Advanced Vehicle Technology (Diesels), Dunton (United Kingdom)

    1999-07-01

    Currently, 80 per cent of european diesel passenger cars are turbocharged and, as emission standards become more stringent, this figure is expected to approach 100 per cent in the near future. One major focus that has emerged of the high-speed diesel engine is the application of variable geometry turbocharging (VGT). An extensive steady state experimental investigation has been undertaken on a prototype 1.8 L direct injection (DI) diesel engine to compare the potential benefits of VGT relative to the standard build of the engine with a wastegated fixed geometry turbocharger (FGT). Under part load operation, where emission production is significant in the European drive cycle, independent control of both VCT vane position and exhaust gas recirculation (EGR) value position was used to optimise emission levels. A reduction in the levels of nitrogen oxides (NO{sub x}) of up to 45 per cent was observed at discrete operating points without compromising FGT levels of fuel consumption or smoke. Under limiting torque conditions a 10 per cent improvement was achieved with the VGT over and above the figures of the baseline FGT build within the limiting criteria set for maximum cylinder pressure, smoke level and pre-turbine temperature. (Author)

  13. Field emission from optimized structure of carbon nanotube field emitter array

    International Nuclear Information System (INIS)

    Chouhan, V.; Noguchi, T.; Kato, S.

    2016-01-01

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm"2 at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  14. Field emission from optimized structure of carbon nanotube field emitter array

    Energy Technology Data Exchange (ETDEWEB)

    Chouhan, V., E-mail: vchouhan@post.kek.jp, E-mail: vijaychouhan84@gmail.com [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); Noguchi, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Kato, S. [School of High Energy Accelerator, The Graduate University for Advanced Studies, Tsukuba 305-0801 (Japan); High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan)

    2016-04-07

    The authors report a detail study on the emission properties of field emitter array (FEA) of micro-circular emitters of multiwall carbon nanotubes (CNTs). The FEAs were fabricated on patterned substrates prepared with an array of circular titanium (Ti) islands on titanium nitride coated tantalum substrates. CNTs were rooted into these Ti islands to prepare an array of circular emitters. The circular emitters were prepared in different diameters and pitches in order to optimize their structure for acquiring a high emission current. The pitch was varied from 0 to 600 μm, while a diameter of circular emitters was kept constant to be 50 μm in order to optimize a pitch. For diameter optimization, a diameter was changed from 50 to 200 μm while keeping a constant edge-to-edge distance of 150 μm between the circular emitters. The FEA with a diameter of 50 μm and a pitch of 120 μm was found to be the best to achieve an emission current of 47 mA corresponding to an effective current density of 30.5 A/cm{sup 2} at 7 V/μm. The excellent emission current was attributed to good quality of CNT rooting into the substrate and optimized FEA structure, which provided a high electric field on a whole circular emitter of 50 μm and the best combination of the strong edge effect and CNT coverage. The experimental results were confirmed with computer simulation.

  15. Experimental Development of Low-emittance Field-emission Electron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Lueangaranwong, A. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Buzzard, C. [Northern Illinois Univ., DeKalb, IL (United States); Divan, R. [Argonne National Lab. (ANL), Argonne, IL (United States). Center for Nanoscale Materials; Korampally, V. [Northern Illinois Univ., DeKalb, IL (United States); Piot, P. [Northern Illinois Univ., DeKalb, IL (United States). Northern Illinois Center for Accelerator & Detector Development; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-10-10

    Field emission electron sources are capable of extreme brightness when excited by static or time-dependent electro- magnetic fields. We are currently developing a cathode test stand operating in DC mode with possibility to trigger the emission using ultra-short (~ 100-fs) laser pulses. This contribution describes the status of an experiment to investigate field-emission using cathodes under development at NIU in collaboration with the Argonne’s Center for Nanoscale Materials.

  16. Characteristics of outage radiation fields around various reactor components

    International Nuclear Information System (INIS)

    Verzilov, Y.; Husain, A.; Corbin, G.

    2008-01-01

    Full text: Activity monitoring surveys, consisting of gamma spectroscopy and dose rate measurements, of various CANDU station components such as the reactor face, feeder cabinet, steam generators and moderator heat exchangers are often performed during shutdown in order to trend the transport of activity around the primary heat transport and moderator systems. Recently, the increased dose expenditure for work such as feeder inspection and replacement in the reactor vault has also spurred interest in improved characterization of the reactor face fields to facilitate better ALARA decision making and hence a reduction in future dose expenditures. At present, planning for reactor face work is hampered by insufficient understanding of the relative contribution of the various components to the overall dose. In addition to the increased dose expenditure for work at the reactor face, maintenance work associated with horizontal flux detectors and liquid injection systems has also resulted in elevated dose expenditures. For instance at Darlington, radiation fields in the vicinity of horizontal flux detectors (HFD) and Liquid Injection Shutdown System (LISS) nozzle bellows are trending upwards with present contact fields being in the range 16-70 rem/h and working distance fields being in the range 100-500 mrem/h. This paper presents findings based on work currently being funded by the CANDU Owners Group. Measurements were performed at Ontario Power Generation's Pickering and Darlington nuclear stations. Specifically, the following are addressed: Characteristics of Reactor Vault Fields; Characteristics of Steam Generator Fields; Characteristics of Moderator Heat Exchanger Fields. Measurements in the reactor vault were performed at the reactor face, along the length of end fittings, along the length of feeders, at the bleed condenser and at the HFD and LISS nozzle bellows. Steam generator fields were characterized at various elevations above the tube sheet, with and without the

  17. Optics and design of the fringe field monochromator for a Schottky field emission gun

    International Nuclear Information System (INIS)

    Mook, H.W.; Kruit, P.

    1999-01-01

    For the improvement of high-resolution electron energy loss spectroscopy a new electron source monochromator, based on the Wien filter principle, is presented. In the fringe field monochromator the electric and magnetic filter fields are tightly enclosed by field clamps to satisfy the Wien condition, E=vB. The whole monochromator including the 150 nm energy selection slits (Nanoslits) is positioned in the gun area. Its total length is only 42 mm. Using electron trajectory simulation through the filter fields the dispersion and aberrations are determined. The parasitic astigmatism of the gun lens needs to be corrected using an electrostatic quadrupole field incorporated in the filter. Estimations of the influence of filter electrode misalignment show that at least six filter electrodes must be used to loosen the alignment demands sufficiently. Using theoretical estimations of the Coulomb interaction the final energy resolution, beam brightness and current are predicted. For a Schottky field emission electron gun with typical brightness of 10 8 A/sr m 2 V the monochromator is expected to produce a 50 meV 1 nA beam with a brightness of 10 7

  18. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Science.gov (United States)

    Li, Detian; Cheng, Yongjun; Wang, Yongjun; Zhang, Huzhong; Dong, Changkun; Li, Da

    2016-03-01

    Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10-8 Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  19. On-road emission characteristics of CNG-fueled bi-fuel taxis

    Science.gov (United States)

    Yao, Zhiliang; Cao, Xinyue; Shen, Xianbao; Zhang, Yingzhi; Wang, Xintong; He, Kebin

    2014-09-01

    To alleviate air pollution and lessen the petroleum demand from the motor vehicle sector in China, natural gas vehicles (NGVs) have been rapidly developed over the last several years. However, the understanding of the real-world emissions of NGVs is very limited. In this study, the emissions from 20 compressed-natural-gas-fueled bi-fuel taxis were measured using a portable emission measurement system (PEMS) under actual driving conditions in Yichang, China. The emission characteristics of the tested vehicles were analyzed, revealing that the average CO2, CO, HC and NOx emissions from the tested compressed-natural-gas (CNG) taxis under urban driving conditions were 1.6, 4.0, 2.0 and 0.98 times those under highway road conditions, respectively. The CO, HC and NOx emissions from Euro 3 CNG vehicles were approximately 40%, 55% and 44% lower than those from Euro 2 vehicles, respectively. Compared with the values for light-duty gasoline vehicles reported in the literature, the CO2 and CO emissions from the tested CNG taxis were clearly lower; however, significant increases in the HC and NOx emissions were observed. Finally, we normalized the emissions under the actual driving cycles of the entire test route to the New European Driving Cycle (NEDC)-based emissions using a VSP modes method developed by North Carolina State University. The simulated NEDC-based CO emissions from the tested CNG taxis were better than the corresponding emissions standards, whereas the simulated NEDC-based HC and NOx emissions greatly exceeded the standards. Thus, more attention should be paid to the emissions from CNG vehicles. As for the CNG-fueled bi-fuel taxis currently in use, the department of environmental protection should strengthen their inspection and supervision to reduce the emissions from these vehicles. The results of this study will be helpful in understanding and controlling emissions from CNG-fueled bi-fuel vehicles in China.

  20. Characteristics of extreme ultraviolet emission from high-Z plasmas

    International Nuclear Information System (INIS)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-01-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics. (paper)

  1. Characteristics of extreme ultraviolet emission from high-Z plasmas

    Science.gov (United States)

    Ohashi, H.; Higashiguchi, T.; Suzuki, Y.; Kawasaki, M.; Suzuki, C.; Tomita, K.; Nishikino, M.; Fujioka, S.; Endo, A.; Li, B.; Otsuka, T.; Dunne, P.; O'Sullivan, G.

    2016-03-01

    We demonstrate the extreme ultraviolet (EUV) and soft x-ray sources in the 2 to 7 nm spectral region related to the beyond EUV (BEUV) question at 6.x nm and the water window source based on laser-produced high-Z plasmas. Resonance emission from multiply charged ions merges to produce intense unresolved transition arrays (UTAs), extending below the carbon K edge (4.37 nm). An outline of a microscope design for single-shot live cell imaging is proposed based on high-Z plasma UTA source, coupled to multilayer mirror optics.

  2. Field Emission Scanning Electron Microscope (FESEM) Facility in BTI

    International Nuclear Information System (INIS)

    Cik Rohaida Che Hak; Foo, C.T.; Nor Azillah Fatimah Othman

    2015-01-01

    Field Emission Scanning Electron Microscope (FE-SEM) provides ultra-high resolution imaging at low accelerating voltages and small working distances. The GeminisSEM 500, a new FESEM imaging facility will be installed soon in MTEC, BTI. It provides resolution of the images is as low as 0.6 nm at 15 kV and 1.2 nm at 1 kV, allowing examination of the top surface of nano powders, nano film and nano fiber in the wide range of applications such as mineralogy, ceramics, polymer, metallurgy, electronic devices, chemistry, physics and life sciences. This system is equipped with several detectors to detect various signals such as secondary electrons (SE) detector for topographic information and back-scattered electrons (BSE) detector for materials composition contrast. Energy dispersive x-ray spectroscopy (EDS) with detector energy resolution of < 129 eV and detection limit in the range of 1000-3000 ppm coupled with FE-SEM is used to determine the chemical composition of micro-features including boron (B) to uranium (U). Wavelength dispersive x-ray spectroscopy (WDS) which has detector resolution of 2-20 eV and detection limit of 30-300 ppm coupled with FE-SEM is used to detect elements that cannot be resolved with EDS. The ultra-high resolution imaging combined with the high sensitivity WDS helps to resolve the thorium and rare earth elemental analysis. (author)

  3. Oxygen plasma assisted end-opening and field emission enhancement in vertically aligned multiwall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mathur, A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Roy, S.S., E-mail: sinharoy@ualberta.ca [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Hazra, K.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); Wadhwa, S. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom); Ray, S.C. [School of Physics, University of the Witwatersrand, WITS 2050, Johannesburg (South Africa); Mitra, S.K. [Department of Mechanical Engineering, University of Alberta, Edmonton, T6T 2G8 (Canada); Misra, D.S. [Department of Physics, IIT Bombay, Powai, Mumbai-400076 (India); McLaughlin, J.A. [NIBEC, School of Engineering, University of Ulster, Jordanstown, BT37 0QB (United Kingdom)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We showed Ar/O{sub 2} plasma can be effective for the end opening of aligned CNTs. Black-Right-Pointing-Pointer The field emission property was dramatically enhanced after plasma modification. Black-Right-Pointing-Pointer Microstructures were clearly understood by Raman and SEM analysis. Black-Right-Pointing-Pointer Surface wet-ability at various functionalised conditions was studied. - Abstract: This paper highlights the changes in micro-structural and field emission properties of vertically aligned carbon nanotubes (VACNTs) via oxygen plasma treatment. We find that exposure of very low power oxygen plasma (6 W) at 13.56 MHz for 15-20 min, opens the tip of vertically aligned CNTs. Scanning electron microscopy and transmission electron microscopy images were used to identify the quality and micro-structural changes of the nanotube morphology and surfaces. Raman spectra showed that the numbers of defects were increased throughout the oxygen plasma treatment process. In addition, the hydrophobic nature of the VACNTs is altered significantly and the contact angle decreases drastically from 110 Degree-Sign to 40 Degree-Sign . It was observed that the electron field emission (EFE) characteristics are significantly enhanced. The turn-on electric field (ETOE) of CNTs decreased from {approx}0.80 V {mu}m{sup -1} (untreated) to {approx}0.60 V {mu}m{sup -1} (oxygen treated). We believe that the open ended VACNTs would be immensely valuable for applications such as micro/nanofluidic based filtering elements and display devices.

  4. Bright and durable field emission source derived from refractory taylor cones

    Science.gov (United States)

    Hirsch, Gregory

    2016-12-20

    A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.

  5. Large-scale aligned silicon carbonitride nanotube arrays: Synthesis, characterization, and field emission property

    International Nuclear Information System (INIS)

    Liao, L.; Xu, Z.; Liu, K. H.; Wang, W. L.; Liu, S.; Bai, X. D.; Wang, E. G.; Li, J. C.; Liu, C.

    2007-01-01

    Large-scale aligned silicon carbonitride (SiCN) nanotube arrays have been synthesized by microwave-plasma-assisted chemical vapor deposition using SiH 4 , CH 4 , and N 2 as precursors. The three elements of Si, C, and N are chemically bonded with each other and the nanotube composition can be adjusted by varying the SiH 4 concentration, as revealed by electron energy loss spectroscopy and x-ray photoelectron spectroscopy. The evolution of microstructure of the SiCN nanotubes with different Si concentrations was characterized by high-resolution transmission electron microscopy and Raman spectroscopy. The dependence of field emission characteristics of the SiCN nanotubes on the composition has been investigated. With the increasing Si concentration, the SiCN nanotube exhibits more favorable oxidation resistance, which suggests that SiCN nanotube is a promising candidate as stable field emitter

  6. Synthesis of magnetic systems producing field with maximal scalar characteristics

    International Nuclear Information System (INIS)

    Klevets, Nickolay I.

    2005-01-01

    A method of synthesis of the magnetic systems (MSs) consisting of uniformly magnetized blocks is proposed. This method allows to synthesize MSs providing maximum value of any magnetic field scalar characteristic. In particular, it is possible to synthesize the MSs providing the maximum of a field projection on a given vector, a gradient of a field modulus and a gradient of a field energy on a given directing vector, a field magnitude, a magnetic flux through a given surface, a scalar product of a field or a force by a directing function given in some area of space, etc. The synthesized MSs provide maximal efficiency of permanent magnets utilization. The usage of the proposed method of MSs synthesis allows to change a procedure of projecting in principal, namely, to execute it according to the following scheme: (a) to choose the sizes, a form and a number of blocks of a system proceeding from technological (economical) reasons; (b) using the proposed synthesis method, to find an orientation of site magnetization providing maximum possible effect of magnet utilization in a system obtained in (a). Such approach considerably reduces a time of MSs projecting and guarantees maximal possible efficiency of magnets utilization. Besides it provides absolute assurance in 'ideality' of a MS design and allows to obtain an exact estimate of the limit parameters of a field in a working area of a projected MS. The method is applicable to a system containing the components from soft magnetic material with linear magnetic properties

  7. Acoustic emission in a superconductor (Nb-Ti) during magnetic field and current sweep

    International Nuclear Information System (INIS)

    Nomura, Harehiko

    1980-01-01

    Though superconducting magnets are indispensable in the fields of nuclear fusion, MHD power generation, high energy technology, and the trains using magnetic levitation, the safety of the magnets used for those fields is required to be fully investigated because their accumulating energy reaches up to several GJ. For this purpose, the improvement of monitoring techniques is extremely important to grasp exactly the magnetization of such large energy magnets. Although the detection of the terminal voltage of the magnets has been mainly used so far, the purpose has not yet been fulfilled because various phenomena appear in the form of noises in the terminal voltage. The authors have found the monitoring method using acoustic emission in a system completely independent from voltage observation. From this viewpoint, the experiments have been performed aiming at the generation of acoustic emission in conjunction with magnetization out of the fine structure of super-conductors, taking notice of the emitted sound frequency ranging over several hundred kHz. The results and investigation revealed that the superconductor itself emitted ultrasonic sound. It was found that the observation of this acoustic power intensity was able to monitor not only the magnetization of superconductors but also its current sweep. Since the motion of the magnetic flux is converted into the signal of acoustic field, this measuring method is less affected by noise disturbance from electromagnetic systems, and is expected to be useful for the researches on analyzing superconductor characteristics. (Wakatsuki, Y.)

  8. The ALFAM2 database on ammonia emission from field-applied manure

    NARCIS (Netherlands)

    Hafner, Sasha D.; Pacholski, Andreas; Bittman, Shabtai; Burchill, William; Bussink, Wim; Chantigny, Martin; Carozzi, Marco; Génermont, Sophie; Häni, Christoph; Hansen, Martin N.; Huijsmans, Jan; Hunt, Derek; Kupper, Thomas; Lanigan, Gary; Loubet, Benjamin; Misselbrook, Tom; Meisinger, John J.; Neftel, Albrecht; Nyord, Tavs; Pedersen, Simon V.; Sintermann, Jörg; Thompson, Rodney B.; Vermeulen, Bert; Voylokov, Polina; Williams, John R.; Sommer, Sven G.

    2018-01-01

    Ammonia (NH3) emission from animal manure contributes to air pollution and ecosystem degradation, and the loss of reactive nitrogen (N) from agricultural systems. Estimates of NH3 emission are necessary for national inventories and nutrient management, and NH3 emission from field-applied manure has

  9. Earthworms can increase nitrous oxide emissions from managed grassland: a field study

    NARCIS (Netherlands)

    Lubbers, I.M.; López González, E.; Hummelink, E.W.J.; Groenigen, van J.W.

    2013-01-01

    Earthworms are important in determining the greenhouse gas (GHG) balance of soils. In laboratory studies they have been shown to increase emissions of the potent GHG nitrous oxide (N2O). Here we test whether these earthworm-induced N2O emissions also occur in the field. We quantified N2O emissions

  10. PLD synthesis of GaN nanowires and nanodots on patterned catalyst surface for field emission study

    Energy Technology Data Exchange (ETDEWEB)

    Ng, D.K.T.; Hong, M.H. [National University of Singapore (Singapore). Department of Electrical and Computer Engineering; Data Storage Institute, Singapore (Singapore); Tan, L.S. [National University of Singapore (Singapore). Department of Electrical and Computer Engineering; Zhu, Y.W.; Sow, C.H. [National University of Singapore (Singapore). Nanoscience and Nanotechnology Initiative; National University of Singapore (Singapore). Department of Physics

    2008-11-15

    Patterned gallium nitride nanowires and nanodots have been grown on n-Si(100) substrates by pulsed laser deposition. The nanostructures are patterned using a physical mask, resulting in regions of nanowire growth of different densities. The field emission (FE) characteristics of the patterned gallium nitride nanowires show a turn-on field of 9.06 V/{mu}m to achieve a current density of 0.01 mA/cm{sup 2} and an enhanced field emission current density as high as 0.156 mA/cm{sup 2} at an applied field of 11 V/{mu}m. Comparing the peak FE current densities of both the nanowires and nanodots, the peak FE current density of nanowires is around 700 times higher than that of the peak FE current density of nanodots since nanodots have a lower aspect ratio compared to nanowires. The field emission results indicate that, besides density difference, crystalline quality as well as the low electron affinity of gallium nitride, high aspect ratio of gallium nitride nanostructures will greatly enhance their field emission properties. (orig.)

  11. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  12. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Directory of Open Access Journals (Sweden)

    Chang-Lin Chiang

    2016-01-01

    Full Text Available The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO, aluminum oxide coated FTO (Al2O3/FTO and magnesium oxide coated FTO (MgO/FTO were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  13. Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chang-Lin, E-mail: CLChiang@itri.org.tw; Li, Chia-Hung [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China); Zeng, Hui-Kai [Department of Electronic Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li 320, Taiwan (China); Li, Jung-Yu, E-mail: JY-Lee@itri.org.tw; Chen, Shih-Pu; Lin, Yi-Ping [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Road, Chutung 310, Taiwan (China); Hsieh, Tai-Chiung; Juang, Jenh-Yih, E-mail: jyjuang@cc.nctu.edu.tw [Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan (China)

    2016-01-15

    The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the working gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.

  14. NOx emissions and combustibility characteristics of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Arias, B.; Pis, J.J. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain). Dept. of Energy and Environment

    2001-07-01

    In this work, a series of coals with different origin and rank were blended and several aspects of the resultant blends were studied. This included determination of the grindability of individual coals and blends by means of the Hardgrove Grindability Index (HGI), and temperature programmed combustion test, which were carried out in a thermogravimetric analyser (TG) coupled to a quadruple mass spectrometer (MS) for evolved gas analysis. Special attention was paid to the combustibility parameters and the NO emissions during blends combustion. It was found that while some coal blends present interaction between the individual coals, others do not. This behaviour was assumed to be due to the differences in coal structure and functional groups composition. 18 refs., 11 figs., 2 tabs.

  15. Emission characteristics of Xe-RbBr plasma

    Science.gov (United States)

    Heneral, A. A.; Avtaeva, S. V.

    2017-12-01

    The luminescence spectra of the longitudinal pulsed-periodic discharge in Xe-RbBr gas-vapour mixtures at low pressures are experimentally studied. Conditions for obtaining strong UV radiation of XeBr* exiplex molecules in the spectral range of 200-425 nm are found. The greatest output of the XeBr* UV radiation is provided at temperature of the gas-discharge tube walls of ~1000 K. The maximum UV emission power of the whole plasma volume is 4.8 W. Formation of XeBr* exciplex molecules in the pulsed-periodic discharge in Xe-RbBr gas-vapour mixtures at low pressures is discussed.

  16. Thermal emission characteristics of a graded index semitransparent medium

    International Nuclear Information System (INIS)

    Huang Yong; Dong Sujun; Yang Min; Wang Jun

    2008-01-01

    This paper develops a numerical model for thermal radiative transfer in a two-dimensional semitransparent graded index medium. A piecewise continuous refractive index model, the linear refractive index bar model, is presented. This model is established based on three hypotheses, and has a higher precision than the bar model used previously. This paper also studies the thermal emission from a two-dimensional graded index medium, which is scattering or non-scattering. We find that it can present an obvious pattern of directional distribution at times. The refractive index distribution and absorption coefficient are the two main influential factors. This finding differs from the common belief that thermal sources, such as the incandescent filament of a light bulb, emit a quasi-isotropic light. The finding also suggests that there maybe other important applications of artificial GRIN materials

  17. Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel.

    Science.gov (United States)

    Brand, Christian; Goodman, Anna; Rutter, Harry; Song, Yena; Ogilvie, David

    2013-04-01

    Carbon dioxide (CO 2 ) emissions from motorised travel are hypothesised to be associated with individual, household, spatial and other environmental factors. Little robust evidence exists on who contributes most (and least) to travel CO 2 and, in particular, the factors influencing commuting, business, shopping and social travel CO 2 . This paper examines whether and how demographic, socio-economic and other personal and environmental characteristics are associated with land-based passenger transport and associated CO 2 emissions. Primary data were collected from 3474 adults using a newly developed survey instrument in the iConnect study in the UK. The participants reported their past-week travel activity and vehicle characteristics from which CO 2 emissions were derived using an adapted travel emissions profiling method. Multivariable linear and logistic regression analyses were used to examine what characteristics predicted higher CO 2 emissions. CO 2 emissions from motorised travel were distributed highly unequally, with the top fifth of participants producing more than two fifth of emissions. Car travel dominated overall CO 2 emissions, making up 90% of the total. The strongest independent predictors of CO 2 emissions were owning at least one car, being in full-time employment and having a home-work distance of more than 10 km. Income, education and tenure were also strong univariable predictors of CO 2 emissions, but seemed to be further back on the causal pathway than having a car. Male gender, late-middle age, living in a rural area and having access to a bicycle also showed significant but weaker associations with emissions production. The findings may help inform the development of climate change mitigation policies for the transport sector. Targeting individuals and households with high car ownership, focussing on providing viable alternatives to commuting by car, and supporting planning and other policies that reduce commuting distances may provide an

  18. Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel

    Science.gov (United States)

    Brand, Christian; Goodman, Anna; Rutter, Harry; Song, Yena; Ogilvie, David

    2013-01-01

    Carbon dioxide (CO2) emissions from motorised travel are hypothesised to be associated with individual, household, spatial and other environmental factors. Little robust evidence exists on who contributes most (and least) to travel CO2 and, in particular, the factors influencing commuting, business, shopping and social travel CO2. This paper examines whether and how demographic, socio-economic and other personal and environmental characteristics are associated with land-based passenger transport and associated CO2 emissions. Primary data were collected from 3474 adults using a newly developed survey instrument in the iConnect study in the UK. The participants reported their past-week travel activity and vehicle characteristics from which CO2 emissions were derived using an adapted travel emissions profiling method. Multivariable linear and logistic regression analyses were used to examine what characteristics predicted higher CO2 emissions. CO2 emissions from motorised travel were distributed highly unequally, with the top fifth of participants producing more than two fifth of emissions. Car travel dominated overall CO2 emissions, making up 90% of the total. The strongest independent predictors of CO2 emissions were owning at least one car, being in full-time employment and having a home-work distance of more than 10 km. Income, education and tenure were also strong univariable predictors of CO2 emissions, but seemed to be further back on the causal pathway than having a car. Male gender, late-middle age, living in a rural area and having access to a bicycle also showed significant but weaker associations with emissions production. The findings may help inform the development of climate change mitigation policies for the transport sector. Targeting individuals and households with high car ownership, focussing on providing viable alternatives to commuting by car, and supporting planning and other policies that reduce commuting distances may provide an equitable and

  19. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  20. New perspectives in vacuum high voltage insulation. I. The transition to field emission

    CERN Document Server

    Diamond, W T

    1998-01-01

    Vacuum high-voltage insulation has been investigated for many years. Typically, electrical breakdown occurs between two broad-area electrodes at electric fields 100-1000 times lower than the breakdown field (about 5000 MV/m) between a well-prepared point cathode and a broad-area anode. Explanations of the large differences remain unsatisfactory, usually evoking field emission from small projections on the cathode that are subject to higher peak fields. The field emission then produces secondary effects that lead to breakdown. This article provides a significant resolution to this long standing problem. Field emission is not present at all fields, but typically starts after some process occurs at the cathode surface. Three effects have been identified that produce the transition to field emission: work function changes; mechanical changes produced by the strong electrical forces on the electrode surfaces; and gas desorption from the anode with sufficient density to support an avalanche discharge. Material adso...

  1. Field Measurements of PCB emissions from Building Surfaces Using a New Portable Emission Test Cell

    DEFF Research Database (Denmark)

    Lyng, Nadja; Haven, Rune; Gunnarsen, Lars Bo

    2016-01-01

    The purpose of the study was to measure PCB-emission rates from indoor surfaces on-site in contaminated buildings using a newly developed portable emission test cell. Emission rates were measured from six different surfaces; three untreated surfaces and three remediated surfaces in a contaminated...

  2. Influence of high-energy electron irradiation on field emission properties of multi-walled carbon nanotubes (MWCNTs) films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Sandip S. [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Koinkar, Pankaj M. [Center for International Cooperation in Engineering Education (CICEE), University of Tokushima, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506 (Japan); Dhole, Sanjay D. [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); More, Mahendra A., E-mail: mam@physics.unipune.ac.i [Center for Advanced Studies in Material Science and Condensed Matter Physics, Department of Physics, University of Pune, Pune 411007 (India); Murakami, Ri-ichi, E-mail: murakami@me.tokushima-u.ac.j [Department of Mechanical Engineering, University of Tokushima, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506 (Japan)

    2011-04-15

    The effect of very high energy electron beam irradiation on the field emission characteristics of multi-walled carbon nanotubes (MWCNTs) has been investigated. The MWCNTs films deposited on silicon (Si) substrates were irradiated with 6 MeV electron beam at different fluence of 1x10{sup 15}, 2x10{sup 15} and 3x10{sup 15} electrons/cm{sup 2}. The irradiated films were characterized using scanning electron microscope (SEM) and micro-Raman spectrometer. The SEM analysis clearly revealed a change in surface morphology of the films upon irradiation. The Raman spectra of the irradiated films show structural damage caused by the interaction of high-energy electrons. The field emission studies were carried out in a planar diode configuration at the base pressure of {approx}1x10{sup -8} mbar. The values of the threshold field, required to draw an emission current density of {approx}1 {mu}A/cm{sup 2}, are found to be {approx}0.52, 1.9, 1.3 and 0.8 V/{mu}m for untreated, irradiated with fluence of 1x10{sup 15}, 2x10{sup 15} and 3x10{sup 15} electrons/cm{sup 2}. The irradiated films exhibit better emission current stability as compared to the untreated film. The improved field emission properties of the irradiated films have been attributed to the structural damage as revealed from the Raman studies.

  3. Some studies of lead and iron adsorption on the W(100) surface by field emission microscopy

    International Nuclear Information System (INIS)

    Jones, J.P.; Roberts, E.W.

    1978-01-01

    The behaviour of lead and iron adsorbed on the W(100) surface has been studied by probe hole field emission microscopy, field desorption, and by measurement of the total energy distribution (TED) of field-emitted electrons. Lead adsorbed at 300 K which reduces the work function of W(100) can be completely removed at 78 K by field desorption below 3.2 V A -1 and the resulting surface has both the work function and TED, which are characteristic of the clean plane. Condensation at 800 K followed by field desorption, results in a plane surface of work function 4.17 eV and an altered TED. This effect is attributed to the microfacetting, which is observed by LEED. The Swanson peak in the W(100) TED which is removed by submonolayer amounts of lead re-emerges at monolayer coverage when lead adopts the (1 X 1) structure. Such behaviour is consistent with the model proposed by Kar and Soven. A spectral peak observed when lead is adsorbed on the reconstructed W(100) surface is thought to derive for the atomic 1 D state. Adsorption of iron on a W(100) surface reduces phi considerably due to dipole formation and efficiently quenches the Swanson peak. (Auth.)

  4. The impact of capacitor bank inrush current on field emission current in vacuum

    NARCIS (Netherlands)

    Koochack-Zadeh, M.; Hinrichsen, V.; Smeets, R.P.P.; Lawall, A.

    2010-01-01

    Field emission current measurements during the recovery voltage are investigated to understand the origin of restrikes in vacuum interrupters in case of the interruption of capacitive loads. Measurement and analysis of very small field emission currents (0.01 - 1 mA) from the current zero crossing

  5. Self-calibrating magnetic field diagnostics in beam emission spectroscopy

    International Nuclear Information System (INIS)

    Voslamber, D.

    1995-01-01

    Magnetic field diagnostics in tokamaks using the motional Stark effect in fast neutral beams have been based on two kinds of polarimetry which we call ''static'' and ''dynamic.'' A detailed analysis shows that static polarimetry presents a number of advantages over dynamic polarimetry, provided it is made complete in the sense that a sufficient number of polarization analyzers are installed and different parts of the spectrum are explored to yield full information on the set of unknowns inherent in the problem. A detailed scheme of complete static polarimetry is proposed, including the case where an in-vessel mirror with changing characteristics (coating by impurities) is placed in front of the optical detection system. The main merit of this scheme relies on the fact that it is self-calibrating with respect to both the characteristics of the mirror and the transmission of the different polarization channels, the latter item implying that it is uniquely based on relative measurements of spectra. Further advantages are a greater flexibility with regard to different kinds of diagnostics and the circumstance that the technical equipment is less involved. The above scheme is based on a detection system of moderate etendue exploiting a large spectral domain, which is the regime where static polarimetry usually operates. It is also possible, however, to work with large etendue and a small spectral domain, such as commonly adopted in dynamic polarimetry. Using such a regime, static polarimetry loses the advantages mentioned above but gains, as a new advantage, the benefit of a comparatively lower level of photon noise. copyright 1995 American Institute of Physics

  6. Analysis of the Extremely Low Frequency Magnetic Field Emission from Laptop Computers

    Directory of Open Access Journals (Sweden)

    Brodić Darko

    2016-03-01

    Full Text Available This study addresses the problem of magnetic field emission produced by the laptop computers. Although, the magnetic field is spread over the entire frequency spectrum, the most dangerous part of it to the laptop users is the frequency range from 50 to 500 Hz, commonly called the extremely low frequency magnetic field. In this frequency region the magnetic field is characterized by high peak values. To examine the influence of laptop’s magnetic field emission in the office, a specific experiment is proposed. It includes the measurement of the magnetic field at six laptop’s positions, which are in close contact to its user. The results obtained from ten different laptop computers show the extremely high emission at some positions, which are dependent on the power dissipation or bad ergonomics. Eventually, the experiment extracts these dangerous positions of magnetic field emission and suggests possible solutions.

  7. Density functional theory for field emission from carbon nano-structures.

    Science.gov (United States)

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  8. Improved field emission properties of carbon nanotubes grown on stainless steel substrate and its application in ionization gauge

    Energy Technology Data Exchange (ETDEWEB)

    Li, Detian; Cheng, Yongjun [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Wang, Yongjun, E-mail: wyjlxlz@163.com [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Zhang, Huzhong [Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Lanzhou 730000 (China); Dong, Changkun [Institute of Micro-Nano Structures and Optoelectronics, Wenzhou University, Wenzhou 325035 (China); Li, Da [Division of Advanced Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215125 (China)

    2016-03-01

    Graphical abstract: - Highlights: • The high quality CNT arrays were successfully grown on conductive stainless steel substrates. • The CNT array grown on stainless steel substrate exhibited superior field emission properties. • A high vacuum level about 10–8 Pa was measured by resultant CNT-based ionization gauge. • The ionization gauge with CNT cathode demonstrated a high stability. - Abstract: Vertically aligned carbon nanotube (CNT) arrays were fabricated by chemical vapor deposition (CVD) technique on different substrates. Microstructures and field emission characteristics of the as-grown CNT arrays were investigated systematically, and its application in ionization gauge was also evaluated preliminarily. The results indicate that the as-grown CNT arrays are vertically well-aligned relating to the substrate surfaces, but the CNTs grown on stainless steel substrate are longer and more crystalline than the ones grown on silicon wafer substrate. The field emission behaviors of the as-grown CNT arrays are strongly dependent upon substrate properties. Namely, the CNT array grown on stainless steel substrate has better field emission properties, including lower turn on and threshold fields, better emission stability and repeatability, compared with the one grown on silicon wafer substrate. The superior field emission properties of the CNT array grown on stainless steel substrate are mainly attributed to low contact resistance, high thermal conductivity, good adhesion strength, etc. In addition, the metrological behaviors of ionization gauge with the CNT array grown on stainless steel substrate as an electron source were investigated, and this novel cathode ionization gauge extends the lower limit of linear pressure measurement to 10{sup −8} Pa, which is one order of magnitude lower than the result reported for the same of gauge with CNT cathode.

  9. Enhancement of electron emission and long-term stability of tip-type carbon nanotube field emitters via lithium coating

    International Nuclear Information System (INIS)

    Kim, Jong-Pil; Chang, Han-Beet; Kim, Bu-Jong; Park, Jin-Seok

    2013-01-01

    Carbon nanotubes (CNTs) were deposited on conical tip-type substrates via electrophoresis and coated with lithium (Li) thin films with diverse thicknesses via electroplating. For the as-deposited (i.e., without Li coating) CNT, the turn-on (or triggering) electric field was 0.92 V/μm, and the emission current, which was generated at an applied field of 1.2 V/μm was 56 μA. In the case of the 4.7 nm-thick Li-coated CNT, the turn-on field decreased to 0.65 V/μm and the emission current at the same applied field increased more than ten times to 618 μA. The analysis based on the Kelvin probe measurement and Fowler–Nordheim theory indicated that the coating of Li caused a loss in the structural-aspect-ratio of the CNTs and it reduced their effective work functions from 5.36 eV to 4.90 eV, which led to a great improvement of their electron emission characteristics. The results obtained in this study also showed that the long-term emission stability could be enhanced by the coating of thin Li films on CNTs. - Highlights: ► CNTs are deposited via electrophoretic deposition (EPD). ► Thin films of Li are coated on CNTs via electroplating, without plasma damage. ► Li coating enhanced field emission properties and emission stability of CNTs. ► The effective work functions and field enhancement factors of CNTs are evaluated

  10. Emission characteristics of harmful air pollutants from cremators in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Yifeng Xue

    Full Text Available The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM, sulfur dioxide (SO2, nitrogen oxides (NOx, volatile organic compounds (VOCs, and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of "odor" in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50% of the chemical components of VOCs in the flue gas from the cremators.

  11. The field emission properties from the pristine/B-doped graphene–C{sub 70} composite

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaoju; Wang, Yan; Yang, Ping, E-mail: yangpingdm@ujs.edu.cn

    2017-06-28

    The aim of this paper is to implement a theoretical prediction and evaluation on the quality of graphene–C{sub 70} composite as cathode material. The pristine graphene–C{sub 70} composite and the B-doped graphene–C{sub 70} composites were constructed to investigate their field emission properties. The results suggest that the work function (WF) and ionization potential (IP) of the composites decrease with the increasing electric field. It implies that the electron emission becomes more and more easy. Under the field, the molecular orbital energy levels close to the vacuum level and their energy gap also has a declining trend. It means a good trend for improving the field emission properties of the composites. The above mentioned results show that the composites have the advanced capacity for electron emission and the potential for cathode material. It makes us believe that the composites will be the good field emission electron sources in the electronic device fabrication and the investigation can give a theoretical guidance for the corresponding experiments and may develop the application of fullerene for field emission. - Highlights: • We implement a theoretical prediction on graphene–C{sub 70} composite as cathode materials. • We detect the work function of the composite decrease with increasing electric field. • The ionization potential of the composites decrease with increasing electric field. • We find the molecular orbital energy level close to the vacuum level under the field. • The composites have the advanced capacity for electron emission as cathode material.

  12. Highly stable field emission from ZnO nanowire field emitters controlled by an amorphous indium–gallium–zinc-oxide thin film transistor

    Science.gov (United States)

    Li, Xiaojie; Wang, Ying; Zhang, Zhipeng; Ou, Hai; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2018-04-01

    Lowering the driving voltage and improving the stability of nanowire field emitters are essential for them to be applied in devices. In this study the characteristics of zinc oxide (ZnO) nanowire field emitter arrays (FEAs) controlled by an amorphous indium–gallium–zinc-oxide thin film transistor (a-IGZO TFT) were studied. A low driving voltage along with stabilization of the field emission current were achieved. Modulation of field emission currents up to three orders of magnitude was achieved at a gate voltage of 0–32 V for a constant anode voltage. Additionally, a-IGZO TFT control can dramatically reduce the emission current fluctuation (i.e., from 46.11 to 1.79% at an emission current of ∼3.7 µA). Both the a-IGZO TFT and ZnO nanowire FEAs were prepared on glass substrates in our research, demonstrating the feasibility of realizing large area a-IGZO TFT-controlled ZnO nanowire FEAs.

  13. Enhanced field emission from Si doped nanocrystalline AlN thin films

    International Nuclear Information System (INIS)

    Thapa, R.; Saha, B.; Chattopadhyay, K.K.

    2009-01-01

    Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 deg. C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (E to ) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm 2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.

  14. THERMIONIC EMISSION ENHANCEMENT FROM CESIUM COATED RHENIUM IN ELECTRIC FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    de Steese, J. G.; Zollweg, R. J.

    1963-04-15

    The plasma-anode technique was used to observe anomalously high thermionic emission from a rhenium surface with small cesium coverage, where the work function of the composite surface is greater than the ionization potential of cesium. Data suggest that emission enhancement is caused by increased cesium coverage because of cesiumion trapping near the emitter surface under the influence of an ion-rich sheath. (auth)

  15. China’s regional CH_4 emissions: Characteristics, interregional transfer and mitigation policies

    International Nuclear Information System (INIS)

    Zhang, Bo; Yang, T.R.; Chen, B.; Sun, X.D.

    2016-01-01

    -side emission characteristics, mitigation potentials and emission responsibilities.

  16. The Adaptation Law for emissions trading. Part 2. A level playing field for emissions trading?

    International Nuclear Information System (INIS)

    Simonetti, S.

    2010-01-01

    To supplement, clarify and simplify the regulations for emission trading, the Amendment Act emission trading II was submitted to the Dutch Lower Chamber end of 2009. This article discusses the pending bill and comments on a number of remarkable stipulations that may be important to the market parties. First a brief overview is provided of the basic principles of emission trading and the players in the CO2 market. [nl

  17. Fabrication of graphene and ZnO nanocones hybrid structure for transparent field emission device

    Energy Technology Data Exchange (ETDEWEB)

    Zulkifli, Zurita [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Faculty of Electrical Engineering, Universiti Teknologi Mara (Malaysia); Shinde, Sachin M.; Suguira, Takatoshi [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Kalita, Golap, E-mail: kalita.golap@nitech.ac.jp [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan); Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Tanemura, Masaki [Department of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology (Japan)

    2015-11-30

    Graphical abstract: Fabrication of a transparent field emission device with chemical vapor deposited graphene and zinc oxide nanocones showing low turn-on field due to locally enhance electric field. - Highlights: • Demonstrated transparent field emission device with CVD graphene and ZnO nanocones. • Graphene film was coated on carbon doped ZnO nanocone prepared by ion irradiation. • Low turn-on field for the graphene/C:ZnO nanocones hybrid structure is achieved. • Graphene/C:ZnO heterostructure is promising for transparent field emission devices. - Abstract: Fabrication of a transparent and high performance electron emission device is the key challenge for suitable display applications. Here, we demonstrate fabrication of a transparent and efficient field emission device integrating large-area chemical vapor deposited graphene and carbon doped zinc oxide (C:ZnO) nanocones. The ZnO nanocones were obtained with ion irradiation process at room temperature, over which the graphene film was transferred without destroying nanocone tips. Significant enhancement in field emission properties were observed with the transferred graphene film on C:ZnO nanocones. The threshold field for hybrid and pristine C:ZnO nanocones film at current density of 1 μA/cm{sup 2} was obtained as 4.3 V/μm and 6.5 V/μm, respectively. The enhanced field emission properties with low turn-on field for the graphene/C:ZnO nanocones can be attributed to locally enhance electric field. Our finding shows that a graphene/C:ZnO hybridized structure is very promising to fabricate field emission devices without compromising with high transparency.

  18. THE EFFECT OF ELECTRO MAGNETIC FIELD INTENSITY TO BIODIESEL CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    T. H. Nufus

    2017-07-01

    Full Text Available Various studies of diesel fuel optimization have been done, one of them by using a permanent magnet on the fuel line, the lack of magnetic field intensity decreases along with time increasing by using an electromagnetic field. The purpose of this study is to analyse the biodiesel fuel characteristics due to exposure of electromagnetic fields in terms of the viscosity and vibration of these fuel molecules. Electromagnetic field is generated from wire coil of 5000-9000 on galvanum pipe with diameter of 1.5 cm and length of 10 cm and connected to 12 V batteries. Here, biodiesel fuel is inserted in a galvanum tube, magnetized for 1200 s, and tested its viscosity of the falling ball system by viscometer. Fuel functional groups as well as vibrations between fuel molecules are tested with FTIR. The results show that the magnetized fuel changes. The viscosity of fuels from 2933 to 2478 and an increasing in the absorption of fuel molecules ranges from 13-58%. Therefore, the increasing of vibrating fuel molecules decreases its molecular attraction tug. These indicate that the magnetized fuel molecule causes a changing in the fuel molecule, cluster becomes de-clustered. It is a potential method to clarify the phenomenon of fuel magnetization due to its efficient combustion process.

  19. Study of electrons photoemitted from field emission tips. Progress report, July 1, 1979-March 1, 1980

    International Nuclear Information System (INIS)

    Reifenberger, R.

    1980-02-01

    Photo-induced field emission is a technique which studies electrons that have been photoemitted from a field emission tip. This new experimental method promises to combine the proven utility of both field emission and photoemission for investigating the electronic states near a metal surface. The primary objective of the research being performed is to investigate photo-induced field emitted electrons using a tuneable cw dye laser. To fully exploit this continuously tuneable photon source, a differential energy analyzer is being constructed to allow energy resolved measurements of the photo-field emitted electrons. This report describes the progress made in implementing experiments on photo-induced field emission from July 1979 to March 1980

  20. Greenhouse gas emissions from dairy manure management: a review of field-based studies.

    Science.gov (United States)

    Owen, Justine J; Silver, Whendee L

    2015-02-01

    Livestock manure management accounts for almost 10% of greenhouse gas emissions from agriculture globally, and contributes an equal proportion to the US methane emission inventory. Current emissions inventories use emissions factors determined from small-scale laboratory experiments that have not been compared to field-scale measurements. We compiled published data on field-scale measurements of greenhouse gas emissions from working and research dairies and compared these to rates predicted by the IPCC Tier 2 modeling approach. Anaerobic lagoons were the largest source of methane (368 ± 193 kg CH4 hd(-1) yr(-1)), more than three times that from enteric fermentation (~120 kg CH4 hd(-1) yr(-1)). Corrals and solid manure piles were large sources of nitrous oxide (1.5 ± 0.8 and 1.1 ± 0.7 kg N2O hd(-1) yr(-1), respectively). Nitrous oxide emissions from anaerobic lagoons (0.9 ± 0.5 kg N2O hd(-1) yr(-1)) and barns (10 ± 6 kg N2O hd(-1) yr(-1)) were unexpectedly large. Modeled methane emissions underestimated field measurement means for most manure management practices. Modeled nitrous oxide emissions underestimated field measurement means for anaerobic lagoons and manure piles, but overestimated emissions from slurry storage. Revised emissions factors nearly doubled slurry CH4 emissions for Europe and increased N2O emissions from solid piles and lagoons in the United States by an order of magnitude. Our results suggest that current greenhouse gas emission factors generally underestimate emissions from dairy manure and highlight liquid manure systems as promising target areas for greenhouse gas mitigation. © 2014 John Wiley & Sons Ltd.

  1. Study of the Emission Characteristics of Single-Walled CNT and Carbon Nano-Fiber Pyrograf III

    Science.gov (United States)

    Mousa, Marwan S.; Al-Akhras, M.-Ali H.; Daradkeh, Samer

    2018-02-01

    Field emission microscopy measurements from Single-Walled Carbon Nanotubes (SWCNTs) and Carbon Nano-Fibers Pyrograf III PR-1 (CNF) were performed. Details of the materials employed in the experiments are as follows: (a) Carbon Nano-Fibers Pyrograf III PR-1 (CNF), having an average fiber diameter that is ranging between (100-200) nm with a length of (30-100) μm. (b) Single walled Carbon Nanotubes were produced by high-pressure CO over Fe particle (HiPCO: High-Pressure Carbon Monoxide process), having an average diameter ranging between (1-4) nm with a length of (1-3) μm. The experiments were performed under vacuum pressure value of (10-7 mbar). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For both the SWCNT and the CNF a single spot pattern for the electron spatial; distributions were observed.

  2. The influence of oxidation properties on the electron emission characteristics of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    He, Li [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Xiaoning, E-mail: znn@mail.xjtu.edu.cn [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Wenjiang [Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Haicheng [School of Electrical and Information Engineering, Beifang University of Nationalities, Yinchuan750021 (China)

    2016-09-30

    Highlights: • Evaluated the oxidation properties of porous silicon from semi-quantitative methods. • Discovered the relationship between oxidation properties and emission characteristics. • Revealed the micro-essence of the electron emission of the porous silicon. - Abstract: In order to investigate the influence of oxidation properties such as oxygen content and its distribution gradient on the electron emission characteristics of porous silicon (PS) emitters, emitters with PS thickness of 8 μm, 5 μm, and 3 μm were prepared and then oxidized by electrochemical oxidation (ECO) and ECO-RTO (rapid thermal oxidation) to get different oxidation properties. The experimental results indicated that the emission current density, efficiency, and stability of the PS emitters are mainly determined by oxidation properties. The higher oxygen content and the smaller oxygen distribution gradient in the PS layer, the larger emission current density and efficiency we noted. The most favorable results occurred for the PS emitter with the smallest oxygen distribution gradient and the highest level of oxygen content, with an emission current density of 212.25 μA/cm{sup 2} and efficiency of 59.21‰. Additionally, it also demonstrates that thick PS layer benefits to the emission stability due to its longer electron acceleration tunnel. The FN fitting plots indicated that the effective emission areas of PS emitters can be enlarged and electron emission thresholds is decreased because of the higher oxygen content and smaller distribution gradient, which were approved by the optical micrographs of top electrode of PS emitters before and after electron emission.

  3. The influence of oxidation properties on the electron emission characteristics of porous silicon

    International Nuclear Information System (INIS)

    He, Li; Zhang, Xiaoning; Wang, Wenjiang; Wei, Haicheng

    2016-01-01

    Highlights: • Evaluated the oxidation properties of porous silicon from semi-quantitative methods. • Discovered the relationship between oxidation properties and emission characteristics. • Revealed the micro-essence of the electron emission of the porous silicon. - Abstract: In order to investigate the influence of oxidation properties such as oxygen content and its distribution gradient on the electron emission characteristics of porous silicon (PS) emitters, emitters with PS thickness of 8 μm, 5 μm, and 3 μm were prepared and then oxidized by electrochemical oxidation (ECO) and ECO-RTO (rapid thermal oxidation) to get different oxidation properties. The experimental results indicated that the emission current density, efficiency, and stability of the PS emitters are mainly determined by oxidation properties. The higher oxygen content and the smaller oxygen distribution gradient in the PS layer, the larger emission current density and efficiency we noted. The most favorable results occurred for the PS emitter with the smallest oxygen distribution gradient and the highest level of oxygen content, with an emission current density of 212.25 μA/cm"2 and efficiency of 59.21‰. Additionally, it also demonstrates that thick PS layer benefits to the emission stability due to its longer electron acceleration tunnel. The FN fitting plots indicated that the effective emission areas of PS emitters can be enlarged and electron emission thresholds is decreased because of the higher oxygen content and smaller distribution gradient, which were approved by the optical micrographs of top electrode of PS emitters before and after electron emission.

  4. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    Directory of Open Access Journals (Sweden)

    Zhijie Wen

    2017-01-01

    Full Text Available Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE, which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the influence of different height to diameter ratio on the acoustic emission characteristics of coal-rock damage evolution was discussed by microparticle flow PFC2D software platform. The results show that coal-rock size influences the uniaxial compressive strength, peak strain, and elastic modulus of itself; the size effect has little effect on the acoustic emission law of coal-rock damage and the effects of the size of coal-rock samples on acoustic emission characteristics are mainly reflected in three aspects: the triggering time of acoustic emission, the strain range of strong acoustic emission, and the intensity of acoustic emission; the damage evolution of coal-rock specimen can be divided into 4 stages: initial damage, stable development, accelerated development, and damage.

  5. Electron field emission from screen-printed graphene/DWCNT composite films

    International Nuclear Information System (INIS)

    Xu, Jinzhuo; Pan, Rong; Chen, Yiwei; Piao, Xianqin; Qian, Min; Feng, Tao; Sun, Zhuo

    2013-01-01

    Highlights: ► The field emission performance improved significantly when adding graphene into DWCNTs as the emission material. ► We set up a model of pure DWCNT films and graphene/DWCNT composite films. ► We discussed the contact barrier between emission films and electric substrates by considering the Fermi energies of silver, DWCNT and graphene. - Abstract: The electron field emission properties of graphene/double-walled carbon nanotube (DWCNT) composite films prepared by screen printing have been systematically studied. Comparing with the pure DWCNT films and pure graphene films, a significant enhancement of electron emission performance of the composite films are observed, such as lower turn-on field, higher emission current density, higher field enhancement factor, and long-term stability. The optimized composite films with 20% weight ratio of graphene show the best electron emission performance with a low turn-on field of 0.62 V μm −1 (at 1 μA cm −2 ) and a high field enhancement factor β of 13,000. A model of the graphene/DWCNT composite films is proposed, which indicate that a certain amount of graphene will contribute the electron transmission in the silver substrate/composite films interface and in the interior of composite films, and finally improve the electron emission performance of the graphene/DWCNT composite films.

  6. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Kalpataru, E-mail: panda@afm.eei.eng.osaka-u.ac.jp, E-mail: phy.kalpa@gmail.com; Inami, Eiichi; Sugimoto, Yoshiaki [Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871 (Japan); Sankaran, Kamatchi J.; Tai, Nyan Hwa [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Lin, I-Nan, E-mail: inanlin@mail.tku.edu.tw [Department of Physics, Tamkang University, Tamsui 251, Taiwan (China)

    2014-10-20

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm{sup 2} at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  7. Direct observation and mechanism for enhanced field emission sites in platinum ion implanted/post-annealed ultrananocrystalline diamond films

    International Nuclear Information System (INIS)

    Panda, Kalpataru; Inami, Eiichi; Sugimoto, Yoshiaki; Sankaran, Kamatchi J.; Tai, Nyan Hwa; Lin, I-Nan

    2014-01-01

    Enhanced electron field emission (EFE) properties for ultrananocrystalline diamond (UNCD) films upon platinum (Pt) ion implantation and subsequent post-annealing processes is reported, viz., low turn-on field of 4.17 V/μm with high EFE current density of 5.08 mA/cm 2 at an applied field of 7.0 V/μm. Current imaging tunneling spectroscopy (CITS) mode in scanning tunneling spectroscopy directly revealed the increased electron emission sites density for Pt ion implanted/post-annealed UNCD films than the pristine one. The high resolution CITS mapping and local current–voltage characteristic curves demonstrated that the electrons are dominantly emitted from the diamond grain boundaries and Pt nanoparticles.

  8. Field emission of carbon quantum dots synthesized from a single organic solvent.

    Science.gov (United States)

    Liu, Xiahui; Yang, Bingjun; Yang, Juan; Yu, Shengxue; Chen, Jiangtao

    2016-11-04

    In this paper, a facile synthesis of carbon quantum dots (CQDs) and its field emission performance are reported. The CQDs are prepared from a single N, N-dimethylformamide acting as carbon and nitrogen-doping sources simultaneously. The CQDs are investigated by photoluminescence, transmission electron microscopy and x-ray photoelectron spectroscopy. The CQDs have an average size of 3 nm and are doped with N atoms. CQD dispersion shows strong fluorescence under UV illumination. For the first time, the field emission behavior of CQDs coated on Si substrate is studied. As a candidate of cold cathode, the CQDs display good field emission performance. The CQD emitter reaches the current density of 1.1 mA cm(-2) at 7.0 V μm(-1) and exhibits good long-term emission stability, suggesting promising application in field emission devices.

  9. Construction and characterization of the fringe field monochromator for a field emission gun

    Science.gov (United States)

    Mook; Kruit

    2000-04-01

    Although some microscopes have shown stabilities sufficient to attain below 0.1 eV spectral resolution in high-resolution electron energy loss spectroscopy, the intrinsic energy width of the high brightness source (0.3-0.6 eV) has been limiting the resolution. To lower the energy width of the source to 50 meV without unnecessary loss of brightness, a monochromator has been designed consisting of a short (4 mm) fringe field Wien filter and a 150 nm energy selection slit (nanoslit) both to be incorporated in the gun area of the microscope. A prototype has been built and tested in an ultra-high-vacuum setup (10(-9) mbar). The monochromator, operating on a Schottky field emission gun, showed stable and reproducible operation. The nanoslits did not contaminate and the structure remained stable. By measuring the current through the slit structure a direct image of the beam in the monochromator could be attained and the monochromator could be aligned without the use of a microscope. Good dispersed imaging conditions were found indicating an ultimate resolution of 55 meV. A Mark II fringe field monochromator (FFM) was designed and constructed compatible with the cold tungsten field emitter of the VG scanning transmission microscope. The monochromator was incorporated in the gun area of the microscope at IBM T.J. Watson research center, New York. The monochromator was aligned on 100 kV and the energy distribution measured using the monochromator displayed a below 50 meV filtering capability. The retarding Wien filter spectrometer was used to show a 61 meV EELS system resolution. The FFM is shown to be a monochromator which can be aligned without the use of the electron microscope. This makes it directly applicable for scanning transmission microscopy and low-voltage scanning electron microscopy, where it can lower the resolution loss which is caused by chromatic blur of the spot.

  10. Optimization study of direct morphology observation by cold field emission SEM without gold coating.

    Science.gov (United States)

    He, Dan; Fu, Cheng; Xue, Zhigang

    2018-06-01

    Gold coating is a general operation that is generally applied on non-conductive or low conductive materials, during which the morphology of the materials can be examined by scanning electron microscopy (SEM). However, fatal deficiencies in the materials can result in irreversible distortion and damage. The present study directly characterized different low conductive materials such as hydroxyapatite, modified poly(vinylidene fluoride) (PVDF) fiber, and zinc oxide nanopillar by cold field emission scanning electron microscopy (FE-SEM) without a gold coating. According to the characteristics of the low conductive materials, various test conditions, such as different working signal modes, accelerating voltages, electron beam spots, and working distances, were characterized to determine the best morphological observations of each sample. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Field emission mechanism from a single-layer ultra-thin semiconductor film cathode

    International Nuclear Information System (INIS)

    Duan Zhiqiang; Wang Ruzhi; Yuan Ruiyang; Yang Wei; Wang Bo; Yan Hui

    2007-01-01

    Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin AlN film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering

  12. Experimental study of matrix carbon field-emission cathodes and computer aided design of electron guns for microwave power devices, exploring these cathodes

    International Nuclear Information System (INIS)

    Grigoriev, Y.A.; Petrosyan, A.I.; Penzyakov, V.V.; Pimenov, V.G.; Rogovin, V.I.; Shesterkin, V.I.; Kudryashov, V.P.; Semyonov, V.C.

    1997-01-01

    The experimental study of matrix carbon field-emission cathodes (MCFECs), which has led to the stable operation of the cathodes with current emission values up to 100 mA, is described. A method of computer aided design of TWT electron guns (EGs) with MCFEC, based on the results of the MCFEC emission experimental study, is presented. The experimental MCFEC emission characteristics are used to define the field gain coefficient K and the cathode effective emission area S eff . The EG program computes the electric field upon the MCFEC surface, multiplies it by the K value and uses the Fowler Nordheim law and the S eff value to calculate the MCFEC current; the electron trajectories are computed as well. copyright 1997 American Vacuum Society

  13. Characteristics of radiation field in living environment, 2

    International Nuclear Information System (INIS)

    Nagaoka, Toshi; Sakamoto, Ryuichi; Tsutsumi, Masahiro; Saito, Kimiaki; Moriuchi, Shigeru

    1990-01-01

    A series of environmental radiation survey was carried out on train lines within Tokyo metropolitan area to clarify the characteristics of radiation field in living environment. Eleven JR, 18 private and 10 subway lines were surveyed, which cover 97% of whole train lines in Tokyo district in terms of annual number of passengers. The characteristics of environmental radiation field on train lines were discussed. The mean absorbed dose rate in air due to γ-rays on the subway lines was higher than those on the JR and private lines. It is due to the difference in the radioactivity concentration and the distribution of surrounding materials as the γ-ray sources. On the other hand, the mean dose rate due to cosmic-rays on the subway lines was lower than those on the JR and private lines. It is due to the shielding effect of the upper materials such as soil or building materials of tunnels. The mean dose rates for the JR, private and subway lines were calculated using these obtained data. Though the ratio of mean dose rate of γ-rays to that of cosmic-rays for the subway lines was different from those for the JR and private lines, the sum of γ- and cosmic-ray dose rates for the JR, private and subway lines were comparable, 40∼50 nGy/h for any of them. These data will be useful for a precise and realistic evaluation of collective dose, considering the life style of the public and the variation characteristics of environmental radiation. (author)

  14. The Characteristics of Electromagnetic Fields Induced by Different Type Sources

    Science.gov (United States)

    Di, Q.; Fu, C.; Wang, R.; Xu, C.; An, Z.

    2011-12-01

    method is reliable and effective for modeling models including ionosphere, atmosphere and earth media. In order to discuss EM fields' characters for complicate earth-ionosphere media excited by long bipole, "L" shape bipole and circle current sources in the far-field and wave-guide zones, we modeled the frequency responses and decay characters of EM fields for three layers earth-ionosphere model. Because of the effect of ionosphere, the earth-ionosphere electromagnetic fields' decay curves with given frequency show that the fields of Ex and Hy , excited by a long bipole and "L" shape bipole, can be divided into an extra wave-guide field with slower attenuation and strong amplititude than that in half space, but the EM fields of circle current source does not show the same characteristics, ionosphere makes the amplitude of the EM field weaker for the circle current source. For this reason, it is better to use long bipole source while working in the wave-guide field with a fixed large power source.

  15. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    Science.gov (United States)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  16. Creating a level playing field? The concentration and centralisation of emissions in the European Union Emissions Trading System

    International Nuclear Information System (INIS)

    Bryant, Gareth

    2016-01-01

    This article questions the assumption that carbon markets create a level playing field by exploring the relationship between the organisation of capital and the organisation of emissions in the European Union Emissions Trading System (EU ETS). It constructs a database by matching installations and owners to reveal that a relatively small number of large-scale coal-fired power stations, owned by a very small group of states and corporations, are responsible for a significant proportion of greenhouse gas emissions. The findings are analysed by considering how technological dependence on coal together with the corporate institutional form combine to support the socio-spatial concentration and centralisation of capital and emissions. Case studies of the consolidation of the seven largest polluting owners from Europe's coal-dependent electricity sector and the carbon trading strategies of the two largest polluters, RWE and E.ON, then assess the impacts of energy liberalisation and emissions trading policies. The article concludes that EU energy and climate policies are pulling in different directions by clustering responsibility for greenhouse gas emissions and diffusing responsibility to address climate change. The uneven distribution of emissions within the EU ETS makes an alternative policy approach that directly targets the biggest corporate and state polluters both feasible and necessary. - Highlights: • 20 ultimate owners are responsible for one-half of 2005–12 EU ETS emissions. • 83 installations are responsible for one-third of 2005–12 EU ETS emissions. • Focus on technological dependence on coal and the corporate institutional form. • Energy liberalisation policy has consolidated responsibility for emissions. • Carbon markets have diffused responsibility for addressing climate change.

  17. Leakage and field emission in side-gate graphene field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Di Bartolomeo, A., E-mail: dibant@sa.infn.it; Iemmo, L.; Romeo, F.; Cucolo, A. M. [Physics Department “E.R. Caianiello,” University of Salerno, via G. Paolo II, 84084 Fisciano (Italy); CNR-SPIN Salerno, via G. Paolo II, 84084 Fisciano (Italy); Giubileo, F. [CNR-SPIN Salerno, via G. Paolo II, 84084 Fisciano (Italy); Russo, S.; Unal, S. [Physics Department, University of Exeter, Stocker Road 6, Exeter, Devon EX4 4QL (United Kingdom); Passacantando, M.; Grossi, V. [Department of Physical and Chemical Sciences, University of L' Aquila, Via Vetoio, 67100 Coppito, L' Aquila (Italy)

    2016-07-11

    We fabricate planar graphene field-effect transistors with self-aligned side-gate at 100 nm from the 500 nm wide graphene conductive channel, using a single lithographic step. We demonstrate side-gating below 1 V with conductance modulation of 35% and transconductance up to 0.5 mS/mm at 10 mV drain bias. We measure the planar leakage along the SiO{sub 2}/vacuum gate dielectric over a wide voltage range, reporting rapidly growing current above 15 V. We unveil the microscopic mechanisms driving the leakage, as Frenkel-Poole transport through SiO{sub 2} up to the activation of Fowler-Nordheim tunneling in vacuum, which becomes dominant at higher voltages. We report a field-emission current density as high as 1 μA/μm between graphene flakes. These findings are important for the miniaturization of atomically thin devices.

  18. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  19. Testing the near field/far field model performance for prediction of particulate matter emissions in a paint factory

    DEFF Research Database (Denmark)

    Koivisto, A.J.; Jensen, A.C.Ø.; Levin, Marcus

    2015-01-01

    A Near Field/Far Field (NF/FF) model is a well-accepted tool for precautionary exposure assessment but its capability to estimate particulate matter (PM) concentrations is not well studied. The main concern is related to emission source characterization which is not as well defined for PM emitters...

  20. Electron field emission from sp -induced insulating to metallic ...

    Indian Academy of Sciences (India)

    Administrator

    Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India. MS received 20 ... emissions of amorphous carbon films have been investigated. The observed ... water followed by acetone was positioned at the centre of first zone ..... clusters islands, surface geometry, and internal structures of the films.

  1. Experimental study on the luminous radiation associated to the field emission of samples submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Luong, M.; Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    Nowadays the accelerating gradient of the RF cavities is limited by the strong field emission (FE) of electrons stemming from the metallic walls. Previous experiments evidenced luminous radiations associated with electron emission on cathodes subjected to intense DC electric field. These observations led these authors to propose new theoretical models of the field emission phenomenon. The presented experimental study extends these previous DC works to the RF case. A special copper RF cavity has been developed equipped with an optical window and a removable sample. It has been designed for measuring both electron current and luminous radiation emitted by the sample, subjected to maximum RF electric field. The optical apparatus attached to the cavity permits to characterize the radiation in terms of intensity, glowing duration and spectral distribution. The results concerning different niobium or copper samples, whom top was either scratched or intentionally contaminated with metallic or dielectric particles are summarized. (author)

  2. Experimental study on the luminous radiation associated to the field emission of samples submitted to high RF fields

    International Nuclear Information System (INIS)

    Maissa, S.; Junquera, T.; Fouaidy, M.; Le Goff, A.; Luong, M.; Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    The accelerating gradient of the RF cavities is limited by the strong field emission (FE) of electrons stemming from the metallic walls. Previous experiments evidenced luminous radiations associated with electron emission of cathodes subjected to intense DC electric field. These observations invoked the proposal of new theoretical models of the field emission phenomenon. This experimental study extends the previous DC works to the RF case. A special copper RF cavity has been developed equipped with an optical window and a removable sample. It has been designed for measuring both electron current and luminous radiation emitted by the sample, subjected to maximum RF electric field. The optical apparatus attached to the cavity permits to characterize the radiation in terms of intensity, glowing duration and spectral distribution. The results concerning different niobium or copper samples, whom top was either scratched or intentionally contaminated with metallic or dielectric particles are summarized. (author)

  3. Amplified spontaneous emission spectrum and gain characteristic of a two-electrode semiconductor optical amplifier

    International Nuclear Information System (INIS)

    Wang Hanchao; Huang Lirong; Shi Zhongwei

    2011-01-01

    A two-electrode multi-quantum-well semiconductor optical amplifier is designed and fabricated. The amplified spontaneous emission (ASE) spectrum and gain were measured and analyzed. It is shown that the ASE spectrum and gain characteristic are greatly influencedby the distribution of the injection current density. By changing the injection current density of two electrodes, the full width at half maximum, peak wavelength, peak power of the ASE spectrum and the gain characteristic can be easily controlled. (semiconductor devices)

  4. Increased field-emission site density from regrown carbon nanotube films

    International Nuclear Information System (INIS)

    Wang, Y.Y.; Gupta, S.; Liang, M.; Nemanich, R.J.

    2005-01-01

    Electron field-emission properties of as-grown, etched, and regrown carbon nanotube thin films were investigated. The aligned carbon nanotube films were deposited by the microwave plasma-assisted chemical vapor deposition technique. The surface of the as-grown film contained a carbon nanotube mat of amorphous carbon and entangled nanotubes with some tubes protruding from the surface. Hydrogen plasma etching resulted in the removal of the surface layer, and regrowth on the etched surface displayed the formation of a new carbon nanotube mat. The emission site density and the current-voltage dependence of the field emission from all of the samples were analyzed. The results showed that the as-grown sample had a few strong emission spots and a relatively high emission current density (∼20 μA/cm 2 at 1 V/μm), while the regrown sample exhibited a significantly increased emission site density

  5. Effects of ZnO Quantum Dots Decoration on the Field Emission Behavior of Graphene.

    Science.gov (United States)

    Sun, Lei; Zhou, Xiongtu; Lin, Zhixian; Guo, Tailiang; Zhang, Yongai; Zeng, Yongzhi

    2016-11-23

    ZnO quantum dots (QDs) have been decorated on graphene deposited on patterned Ag electrodes as a field emission cathode by a solution process. Effects of ZnO QDs on the field emission behavior of graphene are studied by experiment and first-principles calculations. The results indicate that the attachment of ZnO QDs with a C atom leads to the enhancement of electron emission from graphene, which is mainly attributed to the reduction of the work function and ionization potential, and the increase of the Fermi level of graphene after the decoration. A change in the local density distribution and the density of states near the Fermi level may also account for this behavior. Our study may help to develop new field emission composites and expand ZnO QDs in applications for electron emission devices as well.

  6. Magnetic Field Emissions for Ferrite and Non-Ferrite Geometries for Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced. For geo......Minimizing magnetic field emissions to surroundings is one of the most challenging design criteria for wireless power transfer to vehicles. In this paper, concept of division of the emissions into three zones (primary, secondary, and combined zone) in the vertical direction is introduced...... for vertical separation between the coils in range of 100-180 mm. It is observed that lower vertical separation results in higher overlapping of the zones and the coils behave as they are effectively placed close to center of air gap. The analysis in this work provides a better understanding of the space...... profile of magnetic field emissions (with and without ferrite) for wireless power transfer to vehicles....

  7. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    International Nuclear Information System (INIS)

    Hojati-Talemi, Pejman; Gibson, Mark A.; East, Daniel; Simon, George P.

    2011-01-01

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  8. High performance bulk metallic glass/carbon nanotube composite cathodes for electron field emission

    Energy Technology Data Exchange (ETDEWEB)

    Hojati-Talemi, Pejman [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Gibson, Mark A. [Process Science and Engineering, Commonwealth Scientific and Industrial Research Organisation, Clayton, Vic 3168 (Australia); East, Daniel; Simon, George P. [Department of Materials Engineering, Monash University, Clayton, Vic 3800 (Australia)

    2011-11-07

    We report the preparation of new nanocomposites based on a combination of bulk metallic glass and carbon nanotubes for electron field emission applications. The use of bulk metallic glass as the matrix ensures high electrical and thermal conductivity, high thermal stability, and ease of processing, whilst the well dispersed carbon nanotubes act as highly efficient electron emitters. These advantages, alongside excellent electron emission properties, make these composites one of the best reported options for electron emission applications to date.

  9. Tunneling emission of electrons from semiconductors' valence bands in high electric fields

    International Nuclear Information System (INIS)

    Kalganov, V. D.; Mileshkina, N. V.; Ostroumova, E. V.

    2006-01-01

    Tunneling emission currents of electrons from semiconductors to vacuum (needle-shaped GaAs photodetectors) and to a metal (silicon metal-insulator-semiconductor diodes with a tunneling-transparent insulator layer) are studied in high and ultrahigh electric fields. It is shown that, in semiconductors with the n-type conductivity, the major contribution to the emission current is made by the tunneling emission of electrons from the valence band of the semiconductor, rather than from the conduction band

  10. Laser induced surface structuring of Cu for enhancement of field emission properties

    Science.gov (United States)

    Akram, Mahreen; Bashir, Shazia; Jalil, Sohail Abdul; Shahid Rafique, Muhammad; Hayat, Asma; Mahmood, Khaliq

    2018-02-01

    The effect of Nd:YAG (1064 nm, 10 ns, 10 Hz) laser induced surface structuring of copper (Cu) for enhancement of field emission (FE) properties has been investigated. X-ray diffraction analysis was employed to investigate the surface structural and compositional modifications. The surface structuring was explored by scanning electron microscope investigation. FE properties were studied under UHV conditions in a parallel plate configuration of planar un-irradiated Cu anode and laser irradiated Cu cathode. The Fowler-Nordheim plots were drawn to confirm the dominance of FE behavior of the measured I-V characteristics. The obtained values of turn-on field ‘E o’, field enhancement factor ‘β’ and maximum current density ‘J max’ come out to be to be in the range of 5.5-8.5 V μm-1, 1380-2730 and 147-375 μA cm-2 respectively for the Cu samples irradiated at laser irradiance ranging from 13 to 50 GW cm-2. The observed enhancement in the FE properties has been correlated with the growth of various surface structures such as ridged protrusions, cones and pores/tiny holes. The porous morphology is found to be responsible for a significant enhancement in the FE parameters.

  11. Temperature rising characteristics of ammonium diurante in microwave fields

    International Nuclear Information System (INIS)

    Liu Bingguo; Peng JinHui; Huang Daifu; Zhang Libo; Hu Jinming; Zhuang Zebiao; Kong Dongcheng; Guo Shenghui; Li Chunxiang

    2010-01-01

    The temperature rising characteristics of ammonium diurante, triuranium octaoxide (U 3 O 8 ), and their mixture were investigated under microwave irradiation, aiming at exploring newly theoretical foundation for advanced metallurgical methods. The temperature rising curves showed that ammonium diurante had weak capability to absorb microwave energy, while triuranium octaoxide had the very strong absorption capability. The temperature of mixture containing 20% of U 3 O 8 could rise from room temperature to 1171 K within 280 s. The ability to absorb microwave energy for the mixture with different ratios increased with the increase in the amount of U 3 O 8 . These are in good agreement with the results of Maxwell-Garnett effective medium theory. It is feasible to calcine ammonium diurante by adding of small amounts of U 3 O 8 in microwave fields.

  12. Emission characteristics of dispenser cathodes with a fine-grained tungsten top layer

    Science.gov (United States)

    Kimura, S.; Higuchi, T.; Ouchi, Y.; Uda, E.; Nakamura, O.; Sudo, T.; Koyama, K.

    1997-02-01

    In order to improve the emission stability of the Ir-coated dispenser cathode under ion bombardment, a fine-grained tungsten top layer was applied on the substrate porous tungsten plug before Ir coating. The emission characteristics were studied after being assembled in a CRT gun. Cathode current was measured under pulse operation in a range of 0.1-9% duty. Remarkable anti-ion bombardment characteristics were observed over the range of 1-6% duty. The improved cathode showed 1.5 times higher emission current than that of a conventional Ir-coated dispenser cathode at 4% duty. AES analysis showed that the recovering rates of surface Ba and O atoms after ion bombardment were 2.5 times higher. From these results it is confirmed that the Ir coated cathode with a fine-grained tungsten top layer is provided with a good tolerance against the ion bombardment.

  13. Controlling the diameters and field emission properties of vertically aligned carbon nanotubes synthesized by thermal chemical vapor deposition

    International Nuclear Information System (INIS)

    Choi, Sung Yool; Kang, Young Il; Cho, Kyoung Ik; Choi, Kyu Seok; Kim, Do Jin

    2001-01-01

    We report here the synthesis of vertically well-aligned carbon nanotubes and the effect of catalytic metal layer on the diameter of grown carbon nanotubes and the field emission characteristics of them, The carbon nanotubes were grown by thermal chemical vapor deposition at temperatures below 900 .deg. C on Fe metal catalytic layer, deposited by sputtering process on a Si substrate and pretreated by heat and NH 3 gas. We found that the thickness of metal layers could be an important parameter in controlling the diameters of carbon nanotubes. With varying the thickness of the metal layers the grain sizes of them also vary so that the diameters of the nanotubes could be controlled. Field emission measurement has been made on the carbon nanotube field emitters at room temperature in a vacuum chamber below 10 -6 Torr. Our vertically aligned carbon nanotube field emitter of the smallest diameter emits a current density about 10 mA/cm 2 at 7.2 V/μm. The field emission property of the carbon nanotubes shows strong dependence on the nanotube diameters as expected

  14. Preparation, characterisation, engine performance and emission characteristics of coconut oil based hybrid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pranil J.; Singh, Anirudh [Division of Physics, School of Engineering and Physics, Faculty of Science, Technology and Environment, University of the South Pacific, 325 Fletcher Road, Suva (Fiji); Khurma, Jagjit [Division of Chemistry, School of Biological, Chemical and Environmental Sciences, Faculty of Science, Technology and Environment, University of the South Pacific, Suva (Fiji)

    2010-09-15

    In this study, hybrid fuels consisting of coconut oil, aqueous ethanol and a surfactant (butan-1-ol) were prepared and tested as a fuel in a direct injection diesel engine. After determining fuel properties such as the density, viscosity and gross calorific values of these fuels, they were used to run a diesel engine. The engine performance and exhaust emissions were investigated and compared with that of diesel. The experimental results show that the efficiency of the hybrid fuels is comparable to that of diesel. As the viscosity of the hybrid fuels decreased and approached that of diesel, the efficiency increased progressively towards that of diesel. The exhaust emissions were lower than those for diesel, except carbon monoxide emissions, which increased. Hence, it is concluded that these hybrid fuels can be used successfully as an alternative fuel in diesel engines without any modifications. Their completely renewable nature ensures that they are environmentally friendly with regard to their emissions characteristics. (author)

  15. Field Experiment on Soaking Characteristics of Collapsible Loess

    Directory of Open Access Journals (Sweden)

    Zhichao Wang

    2017-01-01

    Full Text Available In collapsible loess area, migration of soil moisture often causes the temporal discontinuity and spatial nonuniformity of collapsibility, which leads to great damage for infrastructures. Therefore, the research on water infiltration is the key to solving the problem of collapsibility. The aim of this paper is to investigate the spatiotemporal evolution of infiltration characteristics of collapsible loess. A field soaking experiment was conducted on collapsible loess in western China, in which a soaking pool with diameter of 15 m was built. Time-Domain-Reflectometry (TDR system and soil sampling were employed to measure the water content within the depth of 12 m. Then the saturation isograms were drawn for visualization of the process of infiltration. Also, a pilot tunnel was excavated to investigate how the free face can affect the infiltration behaviors. The experimental results revealed the characteristics of infiltration in both horizontal and vertical directions. Moreover, the response of free face on infiltration behaviors was also found. These findings of research could provide the data for the infiltration laws of unsaturated loess and thereby provide the basis for integrated treatment of collapsible loess.

  16. Improved field emission performance of carbon nanotube by introducing copper metallic particles

    Directory of Open Access Journals (Sweden)

    Chen Yiren

    2011-01-01

    Full Text Available Abstract To improve the field emission performance of carbon nanotubes (CNTs, a simple and low-cost method was adopted in this article. We introduced copper particles for decorating the CNTs so as to form copper particle-CNT composites. The composites were fabricated by electrophoretic deposition technique which produced copper metallic particles localized on the outer wall of CNTs and deposited them onto indium tin oxide (ITO electrode. The results showed that the conductivity increased from 10-5 to 4 × 10-5 S while the turn-on field was reduced from 3.4 to 2.2 V/μm. Moreover, the field emission current tended to be undiminished after continuous emission for 24 h. The reasons were summarized that introducing copper metallic particles to decorate CNTs could increase the surface roughness of the CNTs which was beneficial to field emission, restrain field emission current from saturating when the applied electric field was above the critical field. In addition, it could also improve the electrical contact by increasing the contact area between CNT and ITO electrode that was beneficial to the electron transport and avoided instable electron emission caused by thermal injury of CNTs.

  17. Ultrafast electron field emission from gold resonant antennas studied by two terahertz pulse experiments

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew C.

    2015-01-01

    Summary form only given. Ultrafast electron field emission from gold resonant antennas induced by strong terahertz (THz) transient is investigated using two THz pulse experiments. It is shown that UV emission from nitrogen plasma generated by liberated electrons is a good indication of the local...

  18. Simulating emissions of 1,3-dichloropropene after soil fumigation under field conditions.

    Science.gov (United States)

    Yates, S R; Ashworth, D J

    2018-04-15

    Soil fumigation is an important agricultural practice used to produce many vegetable and fruit crops. However, fumigating soil can lead to atmospheric emissions which can increase risks to human and environmental health. A complete understanding of the transport, fate, and emissions of fumigants as impacted by soil and environmental processes is needed to mitigate atmospheric emissions. Five large-scale field experiments were conducted to measure emission rates for 1,3-dichloropropene (1,3-D), a soil fumigant commonly used in California. Numerical simulations of these experiments were conducted in predictive mode (i.e., no calibration) to determine if simulation could be used as a substitute for field experimentation to obtain information needed by regulators. The results show that the magnitude of the volatilization rate and the total emissions could be adequately predicted for these experiments, with the exception of a scenario where the field was periodically irrigated after fumigation. In addition, the timing of the daily peak 1,3-D emissions was not accurately predicted for these experiments due to the peak emission rates occurring during the night or early-morning hours. This study revealed that more comprehensive mathematical models (or adjustments to existing models) are needed to fully describe emissions of soil fumigants from field soils under typical agronomic conditions. Published by Elsevier B.V.

  19. Systematic Field Study of NO(x) Emission Control Methods for Utility Boilers.

    Science.gov (United States)

    Bartok, William; And Others

    A utility boiler field test program was conducted. The objectives were to determine new or improved NO (x) emission factors by fossil fuel type and boiler design, and to assess the scope of applicability of combustion modification techniques for controlling NO (x) emissions from such installations. A statistically designed test program was…

  20. “Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground”

    Science.gov (United States)

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic comounds, elemental carbon, organic carbon, ch...

  1. Comprehensive emission measurements from prescribed burning in Florida: field and laboratory, aerial and ground

    Science.gov (United States)

    Simultaneous aerial- and ground-based emission sampling was conducted during prescribed burns at Eglin Air Force Base in November 2012 on a short grass/shrub field and a pine forest. Cumulative emission samples for volatile organic compounds, elemental carbon, organic carbon, c...

  2. Effect of a microwave field on the cascade arc light emission

    NARCIS (Netherlands)

    Gerasimov, N.T.; Rosado, R.J.; Schram, D.C.

    1977-01-01

    The effect of a pulsed microwave field on the integral light emission from the argon plasma of a DC atmospheric-pressure cascade arc is investigated experimentally. An intensive light pulse and oscillations of light emission at frequencies of the order of 10 kHz are observed. The shape and amplitude

  3. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yunkang [Department of Mathematics and Physics, Nanjing Institute of technology, Nanjing, 211167 (China); Chen, Jing, E-mail: chenjingmoon@gmail.com [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong [School of Electronic Science & Engineering, Southeast University, Nanjing, 210096 (China); Zhang, Zichen, E-mail: zz241@ime.ac.cn [Integrated system for Laser applications Group, Institute of Microelectronics of Chinese Academy of Sciences, 100029, Beijing (China)

    2017-02-28

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  4. Enhanced performance of thermal-assisted electron field emission based on barium oxide nanowire

    International Nuclear Information System (INIS)

    Cui, Yunkang; Chen, Jing; Zhang, Yuning; Zhang, Xiaobing; Lei, Wei; Di, Yunsong; Zhang, Zichen

    2017-01-01

    Highlights: • A possible mechanism for thermal-assisted electric field was demonstrated. • A new path for the architecture of the novel nanomaterial and methodology for its potential application in the field emission device area was provided. • The turn-on field, the threshold field and the field emission current density were largely related to the temperature of the cathode. • The relationship between the work function of emitter material and the temperature of emitter was found. - Abstract: In this paper, thermal-assisted field emission properties of barium oxide (BaO) nanowire synthesized by a chemical bath deposition method were investigated. The morphology and composition of BaO nanowire were characterized by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SED), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX) respectively. The turn-on field, threshold field and the emission current density could be affected relatively due to the thermal-assisted effect when the electric field was applied, in the meanwhile, the turn-on field for BaO nanowire was measured to be decreased from 1.12 V/μm to 0.66 V/μm when the temperature was raised from 293 K to 593 K, whereas for the threshold field was found to decrease from 3.64 V/μm to 2.12 V/μm. The improved performance was demonstrated due to the reduced work function of the BaO nanowire as the agitation temperature increasing, leading to the higher probability of electrons tunneling through the energy barrier and enhancement of the field emission properties of BaO emitters.

  5. Emission Characteristics of a CI Engine Running with a Range of Biodiesel Feedstocks

    Directory of Open Access Journals (Sweden)

    Belachew Tesfa

    2014-01-01

    Full Text Available Currently, alternative fuels are being investigated in detail for application in compression ignition (CI engines resulting in exciting potential opportunities to increase energy security and reduce gas emissions. Biodiesel is one of the alternative fuels which is renewable and environmentally friendly and can be used in diesel engines with little or no modifications. The objective of this study is to investigate the effects of biodiesel types and biodiesel fraction on the emission characteristics of a CI engine. The experimental work was carried out on a four-cylinder, four-stroke, direct injection (DI and turbocharged diesel engine by using biodiesel made from waste oil, rapeseed oil, corn oil and comparing them to normal diesel. The fuels used in the analyses are B10, B20, B50, B100 and neat diesel. The engine was operated over a range of engine speeds. Based on the measured parameters, detailed analyses were carried out on major regulated emissions such as NOx, CO, CO2, and THC. It has been seen that the biodiesel types (sources do not result in any significant differences in emissions. The results also clearly indicate that the engine running with biodiesel and blends have higher NOx emission by up to 20%. However, the emissions of the CI engine running on neat biodiesel (B100 were reduced by up to 15%, 40% and 30% for CO, CO2 and THC emissions respectively, as compared to diesel fuel at various operating conditions.

  6. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  7. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  8. [Particle emission characteristics of diesel bus fueled with bio-diesel].

    Science.gov (United States)

    Lou, Di-Ming; Chen, Feng; Hu, Zhi-Yuan; Tan, Pi-Qiang; Hu, Wei

    2013-10-01

    With the use of the Engine Exhaust Particle Sizer (EEPS), a study on the characteristics of particle emissions was carried out on a China-IV diesel bus fueled with blends of 5% , 10% , 20% , 50% bio-diesel transformed from restaurant waste oil and China-IV diesel (marked separately by BD5, BD10, BD20, BD50), pure bio-diesel (BD100) and pure diesel (BD0). The results indicated that particulate number (PN) and mass (PM) emissions of bio-diesel blends increased with the increase in bus speed and acceleration; with increasing bio-diesel content, particulate emissions displayed a relevant declining trend. In different speed ranges, the size distribution of particulate number emissions (PNSD) was bimodal; in different acceleration ranges, PNSD showed a gradual transition from bimodal shape to unimodal when bus operation was switched from decelerating to accelerating status. Bio-diesel blends with higher mixture ratios showed significant reduction in PN emissions for accumulated modes, and the particulate number emission peaks moved towards smaller sizes; but little change was obtained in PN emissions for nuclei modes; reduction also occurred in particle geometric diameter (Dg).

  9. An empirical model to predict road dust emissions based on pavement and traffic characteristics.

    Science.gov (United States)

    Padoan, Elio; Ajmone-Marsan, Franco; Querol, Xavier; Amato, Fulvio

    2018-06-01

    The relative impact of non-exhaust sources (i.e. road dust, tire wear, road wear and brake wear particles) on urban air quality is increasing. Among them, road dust resuspension has generally the highest impact on PM concentrations but its spatio-temporal variability has been rarely studied and modeled. Some recent studies attempted to observe and describe the time-variability but, as it is driven by traffic and meteorology, uncertainty remains on the seasonality of emissions. The knowledge gap on spatial variability is much wider, as several factors have been pointed out as responsible for road dust build-up: pavement characteristics, traffic intensity and speed, fleet composition, proximity to traffic lights, but also the presence of external sources. However, no parameterization is available as a function of these variables. We investigated mobile road dust smaller than 10 μm (MF10) in two cities with different climatic and traffic conditions (Barcelona and Turin), to explore MF10 seasonal variability and the relationship between MF10 and site characteristics (pavement macrotexture, traffic intensity and proximity to braking zone). Moreover, we provide the first estimates of emission factors in the Po Valley both in summer and winter conditions. Our results showed a good inverse relationship between MF10 and macro-texture, traffic intensity and distance from the nearest braking zone. We also found a clear seasonal effect of road dust emissions, with higher emission in summer, likely due to the lower pavement moisture. These results allowed building a simple empirical mode, predicting maximal dust loadings and, consequently, emission potential, based on the aforementioned data. This model will need to be scaled for meteorological effect, using methods accounting for weather and pavement moisture. This can significantly improve bottom-up emission inventory for spatial allocation of emissions and air quality management, to select those roads with higher emissions

  10. An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions

    International Nuclear Information System (INIS)

    Kowalski, Jerzy

    2014-01-01

    Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as “working properly” and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO 2 emission increase and NOx emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO 2 emission and the decrease of NOx emission. - Highlights: •Chosen malfunctions of the fuel injection pump of marine engine are simulated. •Changes of thermodynamic parameters of marine engine are analyzed. •Changes of CO, CO 2 and NOx emission characteristics of marine engine are analyzed. •Injection pump malfunctions take significant changes in emission characteristics

  11. Interpolation of the discrete logarithm in a finite field of characteristic two by Boolean functions

    DEFF Research Database (Denmark)

    Brandstaetter, Nina; Lange, Tanja; Winterhof, Arne

    2005-01-01

    We obtain bounds on degree, weight, and the maximal Fourier coefficient of Boolean functions interpolating the discrete logarithm in finite fields of characteristic two. These bounds complement earlier results for finite fields of odd characteristic....

  12. TAURUS observations of the emission-line velocity field of Centaurus A (NGC 5128)

    International Nuclear Information System (INIS)

    Taylor, K.; Atherton, P.D.

    1983-01-01

    Using TAURUS - an Imaging Fabry Perot system in conjunction with the IPCS on the AAT, the authors have studied the velocity field of the Hα emission line at a spatial resolution of 1.7'' over the dark lane structure of Centaurus A. The derived velocity field is quite symmetrical and strongly suggests that the emission line material is orbiting the elliptical component, as a warped disc. (orig.)

  13. Emission characteristics of premixed lean diesel combustion. Effects of injection nozzle and combustion chamber shape on combustion and emission characteristics; Kihaku yokongo diesel nensho no haishutsubutsu tokusei. Funmu keijo oyobi nenshoshitsu keijo ga haishutsu gas tokusei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Harada, A; Sasaki, S; Miyamoto, T; Akagawa, H; Tsujimura, K

    1997-10-01

    Many articles about low NOx emission combustion are reported. A mixture formation is necessary to success low NOx emission combustion. But, there is few reports about the effect of nozzle and combustion shape on emissions which give influence on mixture. In this paper, the effects on characteristic of combustion and emissions of some land of injection nozzle and combustion chamber shape were investigated. As a result, it was cleared that the influence of combustion chamber shape on characteristic of combustion and emissions was varied by spray shape, and pintle type injection nozzle was suitable for PREDIC. 7 refs., 10 figs., 1 tab.

  14. Substrate dependence of TM-polarized light emission characteristics of BAlGaN/AlN quantum wells

    Science.gov (United States)

    Park, Seoung-Hwan; Ahn, Doyeol

    2018-06-01

    To study the substrate dependence of light emission characteristics of transverse-magnetic (TM)-polarized light emitted from BAlGaN/AlN quantum wells (QWs) grown on GaN and AlN substrates were investigated theoretically. It is found that the topmost valence subband for QW structures grown on AlN substrate, is heavy hole state (HH1) while that for QW structures grown on GaN substrate is crystal-field split off light hole state (CL1), irrespective of the boron content. Since TM-polarized light emission is associated with the light hole state, the TM-polarized emission peak of BAlGaN/AlN QW structures grown on GaN substrate is expected to be much larger than that of the QW structure grown on AlN substrate. Also, both QW structures show that the spontaneous emission peak of BAlGaN/AlN QW structures would be improved with the inclusion of the boron. However, it rapidly begins to decrease when the boron content exceeds a critical value.

  15. Optimization of Performance and Emission Characteristics of Diesel Engine with Biodiesel Using Grey-Taguchi Method

    Directory of Open Access Journals (Sweden)

    Goutam Pohit

    2013-01-01

    Full Text Available Engine performances and emission characteristics of Karanja oil methyl ester blended with diesel were carried out on a variable compression diesel engine. In order to search for the optimal process response through a limited number of experiment runs, application of Taguchi method in combination with grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a particular combination of input parameters was predicted so as to achieve optimum response characteristics. It was observed that a blend of fifty percent was most suitable for use in a diesel engine without significantly affecting the engine performance and emissions characteristics.

  16. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal, E-mail: zainabh@petronas.com.my [Centre of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  17. Reducing field emission in the superconducting rf cavities for the next generation of particle accelerators

    International Nuclear Information System (INIS)

    Shu, Q.S.; Hartung, W.; Leibovich, A.; Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.

    1991-01-01

    This paper reports on field emission, which is an obstacle to reaching the higher fields called for in future applications of superconducting radio frequency cavities to particle accelerators. The authors used heat treatment up to 1500 degrees C in an ultra-high vacuum furnace, along with processing of cavities and temperature mapping, to suppress field emission and analyze emitter properties. In 27 tests of 1-cell 1500 MHz fired accelerating cavities, on the average the accelerating field E acc increased to 24 MV/m (H pk = 1250 Oe) from 13 MV/m with chemical treatment alone; the highest E acc reached was 30.5 MV/m

  18. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  19. Emissions Characteristics of Small Diesel Engine Fuelled by Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2014-07-01

    Full Text Available Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. However, biodiesel has oxygenated, more density and viscosity compared to mineral diesel. Despite years of improvement attempts, the key issue in using waste cooking oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. Thus, the improvement of emission exhausted from diesel engines fueled by biodiesel derived from waste cooking oil (WCO is urgently required to meet the future stringent emission regulations. The purpose of this research is to investigate the influences of WCO blended fuel and combustion reliability in small engine on the combustion characteristics and exhaust emissions. The engine speed was varied from 1500-2500 rpm and WCO blending ratio from 5-15 vol% (W5-W15. Increased blends of WCO ratio is found to influences to the combustion process, resulting in decreased the HC emissions and also other exhaust emission element. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.

  20. Interstellar Magnetic Fields and Polarimetry of Dust Emission

    Science.gov (United States)

    Dowell, Darren

    2010-01-01

    Magnetic fields are an important ingredient in the stormy cosmos. Magnetic fields: (1) are intimately involved with winds from Active Galactic Nuclei (AGN) and stars (2) create at least some of the structures observed in the ISM (3) modulate the formation of clouds, cores, and stars within a turbulent medium (4) may be dynamically important in protostellar accretion disks (5) smooth weak shocks (C-shocks).

  1. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  2. Estimation of methane and nitrous oxide emissions from paddy fields in Taiwan

    International Nuclear Information System (INIS)

    Yang, Shang-Shyng; Lai, Chao-Ming; Chang, Hsiu-Lan; Chang, Ed-Huan; Wei, Chia-Bei

    2009-01-01

    To investigate the greenhouse gases emissions from paddy fields, methane and nitrous oxide emissions were estimated with the local measurement and the IPCC method during 1990-2006 in Taiwan. Annual methane emission ranged from 9001 to 14,980 ton in the first crop season for 135,314-242,298 ha of paddy fields, and it was between 16,412 and 35,208 ton for 101,710-211,968 ha in the second crop season with the local measurement for intermittent irrigation. The value ranged from 31,122 to 55,729 ton of methane emission in the first crop season, and it was between 29,493 and 61,471 ton in the second crop season with the IPCC guideline for continuous flooding. Annual nitrous oxide emission from paddy fields was between 371 and 728 ton in the first crop season, and the value ranged from 163 to 365 ton in the second crop season with the local measurement. Methane emission from paddy fields in Taiwan for intermittent irrigation was only 26.72-28.92%, 55.65-57.32% and 41.19-43.10% with the IPCC guidelines for continuous flooding and mean temperature of transplanting stage in the first crop, the second crop and total paddy fields, respectively. The values were 53.44-57.84%, 111.29-114.55% and 82.38-86.20% with the IPCC guidelines for single aeration and mean temperature of transplanting stage, respectively; and the values were 133.60-144.61%, 282.56-286.62% and 205.96-215.49% with the IPCC guidelines for multiple aeration and mean temperature of transplanting stage, respectively. Intermittent irrigation in paddy fields reduces methane emission significantly; appropriate application of nitrogen fertilizer and irrigation in paddy fields also decreases nitrous oxide emission. (author)

  3. Beam Dynamics Simulations of Optically-Enhanced Field Emission from Structured Cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Seymour, A. [Northern Illinois U.; Grote, D. [LLNL, Livermore; Mihalcea, D. [Northern Illinois U.; Piot, P. [Fermilab; Vay, J.-L. [LBNL, Berkeley

    2014-01-01

    Structured cathodes - cathodes with a segmented emission surface - are finding an increasing number of applications and can be combined with a variety of emission mechanisms, including photoemission and field emission. These cathodes have been used to enhance the quantum efficiency of metallic cathodes when operated as plasmonic cathodes, have produced high-current electron bunches though field emission from multiple tips, and can be used to form beams with transverse segmentations necessary for improving the performance of accelerator-based light sources. In this report we present recent progress towards the development of finite-difference time-domain particle-in-cell simulations using the emission process in structured cathodes based on the WARP framework. The simulations give further insight on the localized source of the emitted electrons which could be used for additional high-fidelity start-to-end simulations of electron accelerators that employ this type of electron source.

  4. HARD X-RAY EMISSION DURING FLARES AND PHOTOSPHERIC FIELD CHANGES

    International Nuclear Information System (INIS)

    Burtseva, O.; Petrie, G. J. D.; Pevtsov, A. A.; Martínez-Oliveros, J. C.

    2015-01-01

    We study the correlation between abrupt permanent changes of magnetic field during X-class flares observed by the Global Oscillation Network Group and Helioseismic and Magnetic Imager instruments, and the hard X-ray (HXR) emission observed by RHESSI, to relate the photospheric field changes to the coronal restructuring and investigate the origin of the field changes. We find that spatially the early RHESSI emission corresponds well to locations of the strong field changes. The field changes occur predominantly in the regions of strong magnetic field near the polarity inversion line (PIL). The later RHESSI emission does not correspond to significant field changes as the flare footpoints are moving away from the PIL. Most of the field changes start before or around the start time of the detectable HXR signal, and they end at about the same time or later than the detectable HXR flare emission. Some of the field changes propagate with speed close to that of the HXR footpoint at a later phase of the flare. The propagation of the field changes often takes place after the strongest peak in the HXR signal when the footpoints start moving away from the PIL, i.e., the field changes follow the same trajectory as the HXR footpoint, but at an earlier time. Thus, the field changes and HXR emission are spatio-temporally related but not co-spatial nor simultaneous. We also find that in the strongest X-class flares the amplitudes of the field changes peak a few minutes earlier than the peak of the HXR signal. We briefly discuss this observed time delay in terms of the formation of current sheets during eruptions

  5. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kusa, F. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Echternkamp, K. E.; Herink, G.; Ropers, C. [4th Physical Institute – Solids and Nanostructures, University of Göttingen, 37077 Göttingen (Germany); Ashihara, S., E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  6. Characteristics of smoke emissions from biomass fires of the Amazon region--Base-A experiment

    International Nuclear Information System (INIS)

    Ward, D.E.; Setzer, A.W.; Kaufman, Y.J.; Rasmussen, R.A.

    1991-01-01

    An airborne sampling system was used to collect grab samples of smokes for analysis of both in-plume smoke characteristics and ambient air in Brazil. In addition to the emission measurements, the chemical composition of the forest biomass burned by one fire in the Amazon region of Brazil was compared to the fuel composition for biomass burned in North America. The limited data set suggests that combustion efficiencies for tropical biomass combustion are higher than those of temperature forest fuels, as are emission factors for carbon dioxide

  7. Emission characteristics of plastic syringes sterilized with ethylene oxide--a controlled study.

    Science.gov (United States)

    Chien, Yeh-Chung; Su, Po-Chi; Lee, Lien-Hsiung; Chen, Chang-Yuh

    2009-11-01

    This study examined the emission characteristics of ethylene oxide (EO)-sterilized syringes under various environmental conditions, aiming to develop control strategies to minimize worker exposure. Experiments were performed in a facility in which temperature, relative humidity (RH), and air change rate (ACR) were controlled. Analytical results indicate that the main effects of the four test variables on kinetic parameters were statistically significant (p Plastic content, temperature, RH, and ACR affected EO emissions. ACR is an achievable means of control; however, the aeration area/system should be isolated to ensure adequate ventilation is achieved.

  8. Nitrogen plasma formation through terahertz-induced ultrafast electron field emission

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Zalkovskij, Maksim; Strikwerda, Andrew

    2015-01-01

    Electron microscopy and electron diffraction techniques rely on electron sources. Those sources require strong electric fields to extract electrons from metals, either by the photoelectric effect, driven by multiphoton absorption of strong laser fields, or in the static field emission regime....... Terahertz (THz) radiation, commonly understood to be nonionizing due to its low photon energy, is here shown to produce electron field emission. We demonstrate that a carrier-envelope phase-stable single-cycle optical field at THz frequencies interacting with a metallic microantenna can generate...... and accelerate ultrashort and ultrabright electron bunches into free space, and we use these electrons to excite and ionize ambient nitrogen molecules near the antenna. The associated UV emission from the gas forms a novel THz wave detector, which, in contrast with conventional photon-counting or heat...

  9. Atmospheric toxic metals emission inventory and spatial characteristics from anthropogenic sources of Guangdong province, China

    Science.gov (United States)

    Cher, S.; Menghua, L.; Xiao, X.; Yuqi, W.; Zhuangmin, Z.; Zhijiong, H.; Cheng, L.; Guanglin, J.; Zibing, Y.; Junyu, Z.

    2017-12-01

    Atmospheric toxic metals (TMs) are part of particulate matters, and may create adverse effects on the environment and human health depending upon their bioavailability and toxicity. Localized emission inventory is fundamental for parsing of toxic metals to identify key sources in order to formulate efficient toxic metals control strategies. With the use of the latest municipal level environment statistical data, this study developed a bottom-up emission inventory of five toxic metals (Hg, As, Pb, Cd, Cr) from anthropogenic activities in Guangdong province for the year of 2014. Major atmospheric toxic metals sources including combustion sources (coal, oil, biomass, municipal solid waste) and industrial process sources (cement production, nonferrous metal smelting, iron and steel industry, battery and fluorescent lamp production) were investigated. Results showed that: (1) The total emissions of Hg, As, Pb, Cd, Cr in Guangdong province were 18.14, 32.59, 411.34, 13.13, 84.16 t, respectively. (2) Different pollutants have obvious characteristics of emission sources. For total Hg emission, 46% comes from combustion sources, of which 32% from coal combustion and 8% from MSW combustion. Other 54% comes from industrial processes, which dominated by the cement (19%), fluorescent lamp (18%) and battery production (13%). Of the total Hg emission, 69% is released as Hg0 , 29% as Hg2+ , and only 2% as Hgp due to strict particulate matters controls policies. For As emissions, coal combustion, nonferrous metal smelting and iron and steel industry contributed approximate 48%, 25% and 24%, respectively. Pb emissions primarily come from battery production (42%), iron and steel industry (21%) and on-road mobile gasoline combustion (17%). Cd and Cr emissions were dominated by nonferrous metal smelting (71%) and iron and steel industry (82%), respectively. (3) In term of the spatial distribution, emissions of atmospheric toxic metals are mainly concentrated in the central region of

  10. Testing climate-smart irrigation strategies to reduce methane emissions from rice fields

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Approximately 11% of the global 308 Tg CH4 anthropogenic emissions are currently attributed to rice cultivation. In this study, the impact of water conservation practices on rice field CH4 emissions was evaluated in Arkansas, the leading state in US rice cultivation. While conserving water, the Alternate Wetting and Drying (AWD) irrigation practice can also reduce CH4 emissions through the deliberate, periodic introduction of aerobic conditions. Seasonal CH4emissions from a pair of adjacent, production-sized rice fields were estimated and compared during the 2015 to 2017 growing seasons using the eddy covariance method on each field. The fields were alternately treated with continuous flood (CF) and AWD irrigation. In 2015, the seasonal cumulative carbon losses by CH4 emission were 30.3 ± 6.3 and 141.9 ± 8.6 kg CH4-C ha-1 for the AWD and CF treatments, respectively. Data from 2016 and 2017 will be analyzed and shown within this presentation; an initial view demonstrates consistent findings to 2015. When accounting for differences in field conditions and soils, the AWD practice is attributable to a 36-51% reduction in seasonal emissions. The substantial decrease in CH4 emissions by AWD supports previous chamber-based research and offers strong evidence for the efficacy of AWD in reducing CH4 emissions in Arkansas rice production. The AWD practice has enabled the sale of credits for carbon offsets trading and this new market could encourage CH4 emissions reductions on a national scale. These eddy covariance towers are being placed into a regional perspective including crop and forest land in the three states comprising the Mississippi Delta: Arkansas, Mississippi, and Louisiana.

  11. Enhancement of field emission and photoluminescence properties of graphene-SnO2 composite nanostructures.

    Science.gov (United States)

    Ding, Jijun; Yan, Xingbin; Li, Jun; Shen, Baoshou; Yang, Juan; Chen, Jiangtao; Xue, Qunji

    2011-11-01

    In this study, the SnO(2) nanostructures and graphene-SnO(2) (G-SnO(2)) composite nanostructures were prepared on n-Si (100) substrates by electrophoretic deposition and magnetron sputtering techniques. The field emission of SnO(2) nanostructures is improved largely by depositing graphene buffer layer, and the field emission of G-SnO(2) composite nanostructures can also further be improved by decreasing sputtering time of Sn nanoparticles to 5 min. The photoluminescence (PL) spectra of the SnO(2) nanostructures revealed multipeaks, which are consistent with previous reports except for a new peak at 422 nm. Intensity of six emission peaks increased after depositing graphene buffer layer. Our results indicated that graphene can also be used as buffer layer acting as interface modification to simultaneity improve the field emission and PL properties of SnO(2) nanostructures effectively.

  12. Effect of Electric Field in the Stabilized Premixed Flame on Combustion Process Emissions

    Science.gov (United States)

    Otto, Krickis

    2017-10-01

    The effect of the AC and DC electrical field on combustion processes has been investigated by various researchers. The results of these experiments do not always correlate, due to different experiment conditions and experiment equipment variations. The observed effects of the electrical field impact on the combustion process depends on the applied voltage polarity, flame speed and combustion physics. During the experiment was defined that starting from 1000 V the ionic wind takes the effect on emissions in flue gases, flame shape and combustion instabilities. Simulation combustion process in hermetically sealed chamber with excess oxygen amount 3 % in flue gases showed that the positive effect of electrical field on emissions lies in region from 30 to 400 V. In aforementioned voltage range carbon monoxide emissions were reduced by 6 % and at the same time the nitrogen oxide emissions were increased by 3.5 %.

  13. Water-molecular emission from cavitation bubbles affected by electric fields.

    Science.gov (United States)

    Lee, Hyang-Bok; Choi, Pak-Kon

    2018-04-01

    Orange emission was observed during multibubble sonoluminescence at 1 MHz in water saturated with noble gas. The emission arose in the vicinity of the peeled ground electrode of a piezoceramic transducer exposed to water, suggesting that cavitation bubbles were affected by the electric fields that leaked from the transducer. The spectrum of the emission exhibited a broad component whose intensity increased towards the near-infrared region with peaks at 713 and 813 nm. The spectral shape was independent of the saturation gas of He, Ne, or Kr. The broad component was attributed to the superposition of lines due to vibration-rotation transitions of water molecules, each of which was broadened by the high pressure and electric fields at bubble collapse. An emission mechanism based on charge induction by electric fields and the charged droplet model is proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electric field distribution and current emission in a miniaturized geometrical diode

    Science.gov (United States)

    Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng

    2017-06-01

    We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.

  15. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    Science.gov (United States)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fairly extensive measurements have been conducted of the turbulent flow around various surfaces as a basis for a study of the acoustic characteristics involved. In the experiments the flow from a nozzle was directed upon various two-dimensional surface configurations such as the three-flap model. A turbulent flow field description is given and an estimate of the acoustic characteristics is provided. The developed equations are based upon fundamental theories for simple configurations having simple flows. Qualitative estimates are obtained regarding the radiation pattern and the velocity power law. The effect of geometry and turbulent flow distribution on the acoustic emission from simple configurations are discussed.

  16. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  17. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    International Nuclear Information System (INIS)

    Kunj, Saurabh; Sreenivas, K.

    2016-01-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O_2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  18. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Science.gov (United States)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  19. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Kunj, Saurabh; Sreenivas, K. [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 INDIA (India)

    2016-05-06

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O{sub 2}) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  20. Field penetration induced charge redistribution effects on the field emission properties of carbon nanotubes - a first-principle study

    International Nuclear Information System (INIS)

    Chen, C.-W.; Lee, M.-H.; Clark, S.J.

    2004-01-01

    The effect of field penetration induced charge redistribution on the field emission properties of carbon nanotubes (CNTs) have been studied by the first-principle calculations. It is found that the carbon nanotube becomes polarized under external electric field leading to a charge redistribution. The resulting band bending induced by field penetration into the nanotube tip surface can further reduce the effective workfunction of the carbon nanotubes. The magnitude of the redistributed charge ΔQ is found to be nearly linear to the applied external field strength. In addition, we found that the capped (9, 0) zigzag nanotube demonstrates better field emission properties than the capped (5, 5) armchair nanotube due to the fact that the charge redistribution of π electrons along the zigzag-like tube axis is easier than for the armchair-like tube. The density of states (DOS) of the capped region of the nanotube is found to be enhanced with a value 30% higher than that of the sidewall part for the capped (5, 5) nanotube and 40% for the capped (9, 0) nanotube under an electric field of 0.33 V/A. Such enhancements of the DOS at the carbon nanotube tip show that electrons near the Fermi level will emit more easily due to the change of the surface band structure resulting from the field penetration in a high field

  1. Enhanced field emission of ZnO nanoneedle arrays via solution etching at room temperature

    DEFF Research Database (Denmark)

    Ma, Huanming; Qin, Zhiwei; Wang, Zaide

    2017-01-01

    ZnO nanoneedle arrays (ZnO nns) were synthesized by a facile two-step solution-phase method based on the etching of pre-synthesized ZnO nanowire arrays (ZnO nws) with flat ends at room temperature. Field emission measurement results showed that the turn-on electronic fields of ZnO nns and nws wer...

  2. Field emission from individual multiwalled carbon nanotubes prepared in an electron microscope

    NARCIS (Netherlands)

    de Jonge, N.; van Druten, N.J.

    2003-01-01

    Individual multiwalled carbon nanotube field emitters were prepared in a scanning electron microscope. The angular current density, energy spectra, and the emission stability of the field-emitted electrons were measured. An estimate of the electron source brightness was extracted from the

  3. Relative work function of clean molybdenum single-crystal planes determined by field emission microscopy

    International Nuclear Information System (INIS)

    Bergeret, G.; Abon, M.; Tardy, B.; Teichner, S.J.

    1974-01-01

    A probe-hole field emission microscope was used to determine the work function of clean molybdenum single crystal planes relative to the average work function of the field emitter, assumed to be 4.20 eV. Results are compared with other available data

  4. Use of an additive in biofuel to evaluate emissions, engine component wear and lubrication characteristics

    International Nuclear Information System (INIS)

    Kalam, M.A.; Majsuki, H.H.

    2003-01-01

    This paper presents the results of experiments carried out to evaluate the effect of adding an anticorrosion additive to blended biofuel and lubricating oil on emissions, engine component wear and lubrication characteristics. The blended biofuels consist of 7.5 and 15 per cent palm olein (PO) with ordinary diesel oil (OD). Pure OD was used for comparison purposes. Exhaust emission gases such as NO x , CO and hydrocarbons (HCs) were measured by an exhaust emission analyser for engine operation on 50 per cent throttle at speeds of 800-3600 r/min. To measure engine component wear and lubricating oil characteristics, the engine was operated at 50 per cent throttle at a speed of 2000 r/min for a period of 100 h with each of the fuel samples. The same lubricating oil, conventional SAE 40, was used in all the fuels. A multielement oil analyser (MOA) was used to measure the increase in wear of metals (Fe, Cu, Al, Pd) and the decrease in lubricating oil additives (Zn, Ca) in the lubricating oil used. An ISL automatic Houillon viscometer (ASTM D445) and potentiometric titration (ASTM D2896) were used to measure viscosity and total base number (TBN) respectively. The results show that the addition of anticorrosion additive with biofuel and lubricating oil improves the emission and engine wear characteristics; both the exhaust emission gases (NO x , CO and HCs) and the wear of metals (Fe, Cu, Al and Pd) decrease with the blended fuels in comparison with the base fuel OD. Detailed results, including engine brake power, are discussed. (Author)

  5. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Chou, S.K.; Chua, K.J.

    2012-01-01

    Highlights: ► Impact of engine load on engine’s performance, combustion and emission characteristics. ► The brake specific fuel consumption (BSFC) increases significantly at partial load conditions. ► The brake thermal efficiency (BTE) drops at lower engine loads, and increases at higher loads. ► The partial load also influences the trend of CO emissions. -- Abstract: This paper investigated the performance, combustion and emission characteristics of diesel engine fueled by biodiesel at partial load conditions. Experiments were conducted on a common-rail fuel injection diesel engine using ultra low sulfur diesel, biodiesel (B100) and their blend fuels of 10%, 20%, 50% (denoted as B10, B20 and B50 respectively) under various loads. The results show that biodiesel/blend fuels have significant impacts on the engine’s brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) at partial load conditions. The increase in BSFC for B100 is faster than that of pure diesel with the decrease of engine load. A largest increase of 28.1% in BSFC is found at 10% load. Whereas for BTE, the results show that the use of biodiesel results in a reduced thermal efficiency at lower engine loads and improved thermal efficiency at higher engine loads. Furthermore, the characteristics of carbon monoxide (CO) emissions are also changed at partial load conditions. When running at lower engine loads, the CO emission increases with the increase of biodiesel blend ratio and the decrease of engine speed. However, at higher engine loads, an opposite trend is obtained.

  6. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion

    Science.gov (United States)

    Tissari, Jarkko; Hytönen, Kati; Lyyränen, Jussi; Jokiniemi, Jorma

    Emission data from residential wood combustion are usually obtained on test stands in the laboratory but these measurements do not correspond to the operational conditions in the field because of the technological boundary conditions (e.g. testing protocol, environmental and draught conditions). The field measurements take into account the habitual practice of the operators and provide the more reliable results needed for emission inventories. In this study, a workable and compact method for measuring emissions from residential wood combustion in winter conditions was developed. The emissions for fine particle, gaseous and PAH compounds as well as particle composition in real operational conditions were measured from seven different appliances. The measurement technique worked well and was evidently suitable for winter conditions. It was easy and fast to use, and no construction scaffold was needed. The dilution of the sample with the combination of a porous tube diluter and an ejector diluter was well suited to field measurement. The results indicate that the emissions of total volatile organic carbon (TVOC) (17 g kg -1 (of dry wood burned)), carbon monoxide (CO) (120 g kg -1) and fine particle mass (PM 1) (2.7 g kg -1) from the sauna stove were higher than in the other measured appliances. In the masonry heaters, baking oven and stove, the emissions were 2.9-9 g kg -1 TVOC, 28-68 g kg -1 CO and 0.6-1.6 g kg -1 PM 1. The emission of 12 PAHs (PAH 12) from the sauna stove was 164 mg kg -1 and consisted mainly of PAHs with four benzene rings in their structure. PAH 12 emission from other appliances was, on average, 21 mg kg -1 and was dominated by 2-ring PAHs. These results indicate that despite the non-optimal operational practices in the field, the emissions did not differ markedly from the laboratory measurements.

  7. Study on the emission characteristics of cathodes in an ionized gas flow

    International Nuclear Information System (INIS)

    Maslennikov, N.M.

    1975-01-01

    Emission characteristics of molybdenum, tungsten and tantalum cathodes in a flow of argon and argon-potassium plasma with gas pressure of 0.04 atm, 1 atm and 0.25 atm were investigated. Gas was heated in a plasmatron. Measuring electrodes were arranged across the gas flow. Investigations in an argon plasma were carried out with the object of comparing of current-voltage dependences for potassium-activated and nonactivated cathodes. In all cases the current-voltage characteristics were growing. No saturation was observed of a current between accurent electrodes. The increase of a current between the cathodes due to the thermionic emission from the cathode began to effect at the cathode temperature of 2.470 K. The work function was found to be 5 to 5.2 ev. The comparison of the results obtained experimentally in the paper show a qualitative coincidence with calculations by some authors and a discrepancy with theoretical conceptions of other authors

  8. Developing Automatic Water Table Control System for Reducing Greenhouse Gas Emissions from Paddy Fields

    Science.gov (United States)

    Arif, C.; Fauzan, M. I.; Satyanto, K. S.; Budi, I. S.; Masaru, M.

    2018-05-01

    Water table in rice fields play important role to mitigate greenhouse gas (GHG) emissions from paddy fields. Continuous flooding by maintenance water table 2-5 cm above soil surface is not effective and release more GHG emissions. System of Rice Intensification (SRI) as alternative rice farming apply intermittent irrigation by maintaining lower water table is proven can reduce GHG emissions reducing productivity significantly. The objectives of this study were to develop automatic water table control system for SRI application and then evaluate the performances. The control system was developed based on fuzzy logic algorithms using the mini PC of Raspberry Pi. Based on laboratory and field tests, the developed system was working well as indicated by lower MAPE (mean absolute percentage error) values. MAPE values for simulation and field tests were 16.88% and 15.80%, respectively. This system can save irrigation water up to 42.54% without reducing productivity significantly when compared to manual irrigation systems.

  9. Recent trends of the emission characteristics from the road construction industry.

    Science.gov (United States)

    Chauhan, Sippy K; Sharma, Sangita; Shukla, Anuradha; Gangopadhyay, S

    2010-11-01

    Bitumen is a black, thermoplastic, hydrocarbon material derived from the processing of crude oil. At ambient temperature, bitumen is solid and does not present any health/environmental risks. This is one of the main reasons that bitumen is widely used for road construction all over the world. But during manufacturing/modification according to its application, storage, transportation, and use of bitumen is heated giving off various hydrocarbons emissions. In recent years, there has been increasing interest in investigating the potential of bitumen emissions to cause health effects. This is mainly because of the reason that bitumen has small amount of poly-aromatic hydrocarbons, along with some other volatiles like benzene, toluene, etc., which are known to be carcinogenic in nature. Thus, assessment of the emission characteristics and health hazards of bitumen fumes may have far reaching industrial economic and public health implications. In this review, we will discuss about the emission characteristics from bitumen, asphalts, or road construction, which is mainly contributed by bitumen fumes. Sampling strategies and analytical methods employed are also described briefly.

  10. The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests

    Science.gov (United States)

    Ratnaningsih, Ambar Tri; Rayahu Prasytaningsih, Sri

    2017-12-01

    Riau Province has a high threat to forest fire in peat soils, especially in industrial forest areas. The impact of fires will produce carbon (CO2) emissions in the atmosphere. The magnitude of carbon losses from the burning of peatlands can be estimated by knowing the characteristics of the fire peat and estimating CO2 emissions produced. The objectives of the study are to find out the characteristics of fire-burning peat, and to estimate carbon storage and CO2 emissions. The location of the research is in the area of industrial forest plantations located in Bengkalis Regency, Riau Province. The method used to measure peat carbon is the method of lost in ignation. The results showed that the research location has a peat depth of 600-800 cm which is considered very deep. The Peat fiber content ranges from 38 to 75, classified as hemic peat. The average bulk density was 0.253 gram cm-3 (0.087-0,896 gram cm-3). The soil ash content is 2.24% and the stored peat carbon stock with 8 meter peat thickness is 10723,69 ton ha-1. Forest fire was predicted to burn peat to a depth of 100 cm and produced CO2 emissions of 6,355,809 tons ha-1.

  11. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    OpenAIRE

    S. Sendilvelan; S.Mohanamurugan

    2011-01-01

    Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA) in a Homogeneous Charge Compression Ignition (HCCI) engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combus...

  12. Emission characteristics of laser ablation-hollow cathode glow discharge spectral source

    Directory of Open Access Journals (Sweden)

    Karatodorov Stefan

    2014-11-01

    Full Text Available The emission characteristics of a scheme combining laser ablation as sample introduction source and hollow cathode discharge as excitation source are presented. The spatial separation of the sample material introduction by laser ablation and hollow cathode excitation is achieved by optimizing the gas pressure and the sample-cathode gap length. At these conditions the discharge current is maximized to enhance the analytical lines intensity.

  13. Emission characteristics of laser and superluminescent diodes with a gradient-index waveguide

    Energy Technology Data Exchange (ETDEWEB)

    Bazarov, A.E.; Garmash, I.A.; Goldobin, I.S.; Eliukhin, V.A.; Pak, G.T.

    1987-05-01

    A study is made of the emission characteristics of laser and superluminescent diodes with gradient-index waveguides based on Al(x)Ga(1-x)As solid solutions, operating in the CW mode at room temperature. The coupling coefficients for a single-mode fiber are 25 and 18 percent for laser and superluminescent diodes, respectively, when an interface device consisting of three microlenses is used. 6 references.

  14. Effect of Engine Modifications on Performance and Emission Characteristics of Diesel Engines with Alternative Fuels

    OpenAIRE

    Venkateswarlu, K.; Murthy, B.S.R

    2010-01-01

    Performance and emission characteristics unmodified diesel engines operating on different alternative fuels with smaller blend proportions are comparable with pure diesel operation. But with increased blend proportions due to the associated problems of vegetable oils like high viscosity and low volatility pollution levels increase which however is accompanied by operating and durability problems with the long term usage of engine. This paper discusses the necessary modifications required to o...

  15. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    OpenAIRE

    Kahraman, Erol; Özcanlı, Şevket Cihangir; Özerdem, Barış

    2007-01-01

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effectiv...

  16. A study on the performance and emission characteristics of esterified pinnai oil tested in VCR engine.

    Science.gov (United States)

    Ashok Kumar, T; Chandramouli, R; Mohanraj, T

    2015-11-01

    Biodiesel is a clean renewable fuel derived from vegetable oils and animal fats. It is biodegradable, oxygenated, non toxic and free from sulfur and aromatics. The biodiesel prepared from pinnai oil undergoes acid esterification followed by alkaline transesterification process. The fatty acid methyl esters components were identified using gas chromatography and compared with the standard properties. The properties of biodiesel are comparable with diesel. The yield of the biodiesel production depends upon the process parameters such as reaction temperature, pH, time duration and amount of catalyst. The yield of biodiesel by transesterification process was 73% at 55°C. This fuel was tested in a variable compression ratio engine with blend ratios of B10 and B20. During the test runs the compression ratio of the engine was varied from 15:1 to 18:1 and the torque is adjusted from zero to maximum value of 22Nm. The performance characteristics such as the brake thermal efficiency, brake specific energy consumption and exhaust gas temperature of the engine are analyzed. The combustion characteristics of biodiesel like ignition delay, combustion duration and maximum gas temperature and the emission characteristics are also analyzed. The performance characteristics, combustion characteristics and engine emission are effective in the variable compression ratio engine with biodiesel and it is compared with diesel. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    Science.gov (United States)

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  18. NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar

    International Nuclear Information System (INIS)

    Jeong Park; Kyunghwan Lee; Keeman Lee

    2002-01-01

    Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H 2 /CO 2 /Ar have been numerically simulated with detailed chemistry. The combination of H 2 , CO 2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO 2 . A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO 2 , N 2 O and Fenimore are taken into account to separately evaluate the effects of CO 2 addition on NO emission characteristics. The increase of added CO 2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO 2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N 2 O and NO 2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO 2 quantity increase, NO production is remarkably augmented. (Author)

  19. An experimental study on performance and emission characteristics of a hydrogen fuelled spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Kahraman, Erol [Program of Energy Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey); Cihangir Ozcanli, S.; Ozerdem, Baris [Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430 (Turkey)

    2007-08-15

    In the present paper, the performance and emission characteristics of a conventional four cylinder spark ignition (SI) engine operated on hydrogen and gasoline are investigated experimentally. The compressed hydrogen at 20 MPa has been introduced to the engine adopted to operate on gaseous hydrogen by external mixing. Two regulators have been used to drop the pressure first to 300 kPa, then to atmospheric pressure. The variations of torque, power, brake thermal efficiency, brake mean effective pressure, exhaust gas temperature, and emissions of NO{sub x}, CO, CO{sub 2}, HC, and O{sub 2} versus engine speed are compared for a carbureted SI engine operating on gasoline and hydrogen. Energy analysis also has studied for comparison purpose. The test results have been demonstrated that power loss occurs at low speed hydrogen operation whereas high speed characteristics compete well with gasoline operation. Fast burning characteristics of hydrogen have permitted high speed engine operation. Less heat loss has occurred for hydrogen than gasoline. NO{sub x} emission of hydrogen fuelled engine is about 10 times lower than gasoline fuelled engine. Finally, both first and second law efficiencies have improved with hydrogen fuelled engine compared to gasoline engine. It has been proved that hydrogen is a very good candidate as an engine fuel. The obtained data are also very useful for operational changes needed to optimize the hydrogen fueled SI engine design. (author)

  20. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    International Nuclear Information System (INIS)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao; Song, Yenan; Li, Zhenhua; Zhao, Pei; Shang, Xuefu

    2015-01-01

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm 2 , and field enhancement factor of ∼1.3 × 10 4 . The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport

  1. Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Song, Meng; Xu, Peng; Wang, Xu; Wu, Huizhen; Wang, Miao, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Department of Physics, Zhejiang University, Hangzhou 310027 (China); Song, Yenan; Li, Zhenhua; Zhao, Pei, E-mail: peizhao@zju.edu.cn, E-mail: miaowang@css.zju.edu.cn [Institute of Applied Mechanics, Zhejiang University, Hangzhou 310027 (China); Shang, Xuefu [Department of Physics, Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2015-09-15

    Integrating carbon nanotubes (CNTs) and graphene into hybrid structures provides a novel approach to three dimensional (3D) materials with advantageous properties. Here we present a water-processing method to create integrated CNT/graphene hybrids and test their field emission properties. With an optimized mass ratio of CNTs to graphene, the hybrid shows a significantly enhanced field emission performance, such as turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum current density of 0.1 mA/cm{sup 2}, and field enhancement factor of ∼1.3 × 10{sup 4}. The optimized mass ratio for field emission emphasizes the importance of both CNTs and graphene in the hybrid. We also hypothesize a possible mechanism for this enhanced field emission performance from the CNT/graphene hybrid. During the solution treatment, graphene oxide behaves as surfactant sheets for CNTs to form a well dispersed solution, which leads to a better organized 3D structure with more conducting channels for electron transport.

  2. Excellent field emission properties of vertically oriented CuO nanowire films

    Directory of Open Access Journals (Sweden)

    Long Feng

    2018-04-01

    Full Text Available Oriented CuO nanowire films were synthesized on a large scale using simple method of direct heating copper grids in air. The field emission properties of the sample can be enhanced by improving the aspect ratio of the nanowires just through a facile method of controlling the synthesis conditions. Although the density of the nanowires is large enough, the screen effect is not an important factor in this field emission process because few nanowires sticking out above the rest. Benefiting from the unique geometrical and structural features, the CuO nanowire samples show excellent field emission (FE properties. The FE measurements of CuO nanowire films illustrate that the sample synthesized at 500 °C for 8 h has a comparatively low turn-on field of 0.68 V/μm, a low threshold field of 1.1 V/μm, and a large field enhancement factor β of 16782 (a record high value for CuO nanostructures, to the best of our knowledge, indicating that the samples are promising candidates for field emission applications.

  3. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.

    Science.gov (United States)

    Yang, Na; Zhang, Hua; Shao, Li-Ming; Lü, Fan; He, Pin-Jing

    2013-11-15

    Reducing greenhouse gas (GHG) emissions from municipal solid waste (MSW) treatment can be highly cost-effective in terms of GHG mitigation. This study investigated GHG emissions during MSW landfilling in China under four existing scenarios and in terms of seven different categories: waste collection and transportation, landfill management, leachate treatment, fugitive CH4 (FM) emissions, substitution of electricity production, carbon sequestration and N2O and CO emissions. GHG emissions from simple sanitary landfilling technology where no landfill gas (LFG) extraction took place (Scenario 1) were higher (641-998 kg CO2-eq·t(-1)ww) than those from open dump (Scenario 0, 480-734 kg CO2-eq·t(-1)ww). This was due to the strictly anaerobic conditions in Scenario 1. LFG collection and treatment reduced GHG emissions to 448-684 kg CO2-eq·t(-1)ww in Scenario 2 (with LFG flare) and 214-277 kg CO2-eq·t(-1)ww in Scenario 3 (using LFG for electricity production). Amongst the seven categories, FM was the predominant contributor to GHG emissions. Global sensitivity analysis demonstrated that the parameters associated with waste characteristics (i.e. CH4 potential and carbon sequestered faction) and LFG management (i.e. LFG collection efficiency and CH4 oxidation efficiency) were of great importance. A further learning on the MSW in China indicated that water content and dry matter content of food waste were the basic factors affecting GHG emissions. Source separation of food waste, as well as increasing the incineration ratio of mixed collected MSW, could effectively mitigate the overall GHG emissions from landfilling in a specific city. To increase the LFG collection and CH4 oxidation efficiencies could considerably reduce GHG emissions on the landfill site level. While, the improvement in the LFG utilization measures had an insignificant impact as long as the LFG is recovered for energy generation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Low Emittance Gun Project based on Field Emission

    CERN Document Server

    Ganter, Romain; Dehler, M; Gobrecht, Jens; Gough, Chris; Ingold, Gerhard; Leemann, Simon C; Shing-Bruce-Li, Kevin; Paraliev, Martin; Pedrozzi, Marco; Raguin, Jean Yves; Rivkin, Leonid; Schlott, Volker; Sehr, Harald; Streun, Andreas; Wrulich, Albin F; Zelenika, Sasa

    2004-01-01

    The design of an electron gun capable of producing beam emittance one order of magnitude lower than current technology would reduce considerably the cost and size of a free electron laser emitting at 0.1nm. Field emitter arrays (FEAs) including a gate and a focusing layer are an attractive technology for such high brightness sources. Electrons are extracted from micrometric tips thanks to voltage pulses between gate and tips. The focusing layer should then reduce the initial divergence of each emitted beamlets. This FEA will be inserted in a high gradient diode configuration coupled with a radiofrequency structure. In the diode part very high electric field pulses (several hundreds of MV/m) will limit the degradation of emittance due to space charge effect. This first acceleration will be obtained with high voltage pulses (typically a megavolt in a few hundred of nanoseconds) synchronized with the low voltage pulses applied to the FEA (typically one hundred of volts in one nanosecond at frequency below kilohe...

  5. Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays

    International Nuclear Information System (INIS)

    Chen, Guohai; Shin, Dong Hoon; Lee, Cheol Jin; Iwasaki, Takayuki; Kawarada, Hiroshi

    2008-01-01

    Vertically aligned double-walled carbon nanotube (VA-DWCNT) arrays were synthesized by point-arc microwave plasma chemical vapor deposition on Cr/n-Si and SiO 2 /n-Si substrates. The outer tube diameters of VA-DWCNTs are in the range of 2.5-3.8 nm, and the average interlayer spacing is approximately 0.42 nm. The field emission properties of these VA-DWCNTs were studied. It was found that a VA-DWCNT array grown on a Cr/n-Si substrate had better field emission properties as compared with a VA-DWCNT array grown on a SiO 2 /n-Si substrate and randomly oriented DWCNTs, showing a turn-on field of about 0.85 V μm -1 at the emission current density of 0.1 μA cm -2 and a threshold field of 1.67 V μm -1 at the emission current density of 1.0 mA cm -2 . The better field emission performance of the VA-DWCNT array was mainly attributed to the vertical alignment of DWCNTs on the Cr/n-Si substrate and the low contact resistance between CNTs and the Cr/n-Si substrate

  6. Electric field enhancement of electron emission rates from Z1/2 centers in 4H-SiC

    International Nuclear Information System (INIS)

    Evwaraye, A. O.; Smith, S. R.; Mitchel, W. C.; Farlow, G. C.

    2009-01-01

    Z 1/2 defect centers were produced by irradiating 4H-SiC bulk samples with 1 MeV electrons at room temperature. The emission rate dependence on the electric field in the depletion region was measured using deep level transient spectroscopy and double-correlation deep level transient spectroscopy. It is found that the Z 1/2 defect level shows a strong electric field dependence with activation energy decreasing from E c -0.72 eV at zero field to E c -0.47 eV at 6.91x10 5 V/cm. The phonon assisted tunneling model of Karpus and Perel [Sov. Phys. JETP 64, 1376 (1986)] completely describes the experimental data. This model describes the dependence of the emission rate on electric field F as e n (F)=e no exp(F 2 /F c 2 ), where F c is the characteristic field that depends on the phonon assisted tunneling time τ 2 . The values of F c and τ 2 were determined and the analysis of the data leads to the suggestion that Z 1/2 may be a substitutional point defect.

  7. High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: Synthesis, characterization and field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Song, E-mail: tiansong22@126.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Hejun, E-mail: lihejun@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2017-04-30

    Highlights: • HfC naobelts accompanied by HfC nanowires were synthesized by a catalytic CVD method. • HfC nanobelts as a novel structure of HfC ceramic are reported for the first time. • HfC nanobelts have 100–200 μm in lengths and reach up to 10 μm in widths. • The synthesized product is promising field nanoemitters. - Abstract: As a key refractory carbide, hafnium carbide (HfC) is commonly used as structural materials while the field emission (FE) application of HfC in the field of vacuum microelectronics is almost the only one for functional material purposes. Based on its outstanding physical and chemical characteristics, HfC is identified as a potential candidate with satisfactory mechanical properties and long-term and/or high-temperature FE stability for future applications in high-performance field emitters. However, the development of HfC in various FE applications is hindered because it is not facile to fabricate large-scale low-dimensional HfC field nanoemitters. Herein, High-aspect-ratio HfC nanobelts accompanied by HfC nanowires were synthesized on a large scale by a traditional and simple catalytic chemical vapor deposition (CVD) method. Classical vapor–liquid–solid (VLS) theory was employed to explain the growth of the HfC nanowires and nanobelts along axial direction. The thin HfO{sub 2} shell and thin C layer surrounding the nanostructures might give rise to the diameter fluctuation of HfC nanowires and the width increase of HfC nanobelts in lateral direction. Field emission results show that the high-aspect-ratio HfC nanobelts accompanied by the nanowires are promising field nanoemitters, which exhibit excellent field emission properties with a fairly low turn-on field of ∼1.5 V μm{sup −1} and a low current fluctuation less than ∼10%. This suggests that HfC ceramics with high-aspect-ratio nanostructures are ideal cathode material for various field emission applications.

  8. Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers

    Energy Technology Data Exchange (ETDEWEB)

    Chen Yiwen; Miao, Hsin-Yuan; Zhang Mei; Liang, Richard; Zhang, Chuck; Wang, Ben [High-Performance Materials Institute, Florida State University, Tallahassee, FL 32310 (United States); Lin, Ryan Jiyao, E-mail: kenymiao@thu.edu.tw, E-mail: mzhang@eng.fsu.edu [Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803 (United States)

    2010-12-10

    Carbon nanotube (CNT) emitters on buckypaper were activated by laser treatment and their field emission properties were investigated. The pristine buckypapers and CNT emitters' height, diameter, and spacing were characterized through optical analysis. The emitter spacing directly impacted the emission results when the laser power and treatment times were fixed. The increasing emitter density increased the enhanced field emission current and luminance. However, a continuous and excessive increase of emitter density with spacing reduction generated the screening effect. As a result, the extended screening effect from the smaller spacing eventually crippled the field emission effectiveness. Luminance intensity and uniformity of field emission suggest that the highly effective buckypaper will have a density of 2500 emission spots cm{sup -2}, which presents an effective field enhancement factor of 3721 and a moderated screening effect of 0.005. Proper laser treatment is an effective post-treatment process for optimizing field emission, luminance, and durability performance for buckypaper cold cathodes.

  9. Field emission studies of silver nanoparticles synthesized by electron cyclotron resonance plasma

    International Nuclear Information System (INIS)

    Purohit, Vishwas; Mazumder, Baishakhi; Bhise, A.B.; Poddar, Pankaj; Joag, D.S.; Bhoraskar, S.V.

    2011-01-01

    Field emission has been studied for silver nanoparticles (25-200 nm), deposited within a cylindrical silver target in an electron cyclotron resonance (ECR) plasma. Particle size distribution was controlled by optimum biasing voltages between the chamber and the target. Presence of non-oxidized silver was confirmed from the X-Ray diffraction analysis; however, thin protective layer of oxide was identified from the selective area electron diffraction pattern obtained with transmission electron microscopy. The silver nanoparticles were seen to exhibit hilly pointed like structures when viewed under the atomic force microscopy (AFM). The emissive properties of these particles were investigated by field emission microscopy. It is found that this technique of deposition is ideal for formation of nanoparticles films on different substrate geometries with size controllability as well as its application to emission devices.

  10. Ampère-Class Pulsed Field Emission from Carbon-Nanotube Cathodes in a Radiofrequency Resonator

    Energy Technology Data Exchange (ETDEWEB)

    Mihalcea, D. [Northern Illinois U.; Faillace, L. [RadiaBeam Tech.; Hartzell, J. [RadiaBeam Tech.; Panuganti, H. [Northern Illinois U.; Boucher, S. M. [RadiaBeam Tech.; Murokh, A. [RadiaBeam Tech.; Piot, P. [Fermilab; Thangaraj, J. C.T. [Fermilab

    2014-12-01

    Pulsed field emission from cold carbon-nanotube cathodes placed in a radiofrequency resonant cavity was observed. The cathodes were located on the backplate of a conventional $1+\\frac{1}{2}$-cell resonant cavity operating at 1.3-GHz and resulted in the production of bunch train with maximum average current close to 0.7 Amp\\`ere. The measured Fowler-Nordheim characteristic, transverse emittance, and pulse duration are presented and, when possible, compared to numerical simulations. The implications of our results to high-average-current electron sources are briefly discussed.

  11. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments

    Science.gov (United States)

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  12. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles-a combination of laboratory and field experiments.

    Science.gov (United States)

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  13. 3 MeV proton irradiation effects on surface, structural, field emission and electrical properties of brass

    Science.gov (United States)

    Ali, Mian Ahsan; Bashir, Shazia; Akram, Mahreen; Mahmood, Khaliq; Faizan-ul-Haq; Hayat, Asma; Mutaza, G.; Chishti, Naveed Ahmed; Khan, M. Asad; Ahmad, Shahbaz

    2018-05-01

    Ion-induced modifications of brass in terms of surface morphology, elemental composition, phase changes, field emission properties and electrical conductivity have been investigated. Brass targets were irradiated by proton beam at constant energy of 3 MeV for various doses ranges from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2 using Pelletron Linear Accelerator. Field Emission Scanning Electron Microscope (FESEM) analysis reveals the formation of randomly distributed clusters, particulates, droplets and agglomers for lower ion doses which are explainable on the basis of cascade collisional process and thermal spike model. Whereas, at moderate ion doses, fiber like structures are formed due to incomplete melting. The formation of cellular like structure is observed at the maximum ion dose and is attributed to intense heating, melting and re-solidification. SRIM software analysis reveals that the penetration depth of 3 MeV protons in brass comes out to be 38 μm, whereas electronic and nuclear energy losses come out to be 5 × 10-1 and 3.1 × 10-4 eV/Å respectively. The evaluated values of energy deposited per atom vary from 0.01 to 1.5 eV with the variation of ion doses from 1 × 1012 ions/cm2 to 1.5 × 1014 ions/cm2. Both elemental analysis i.e. Energy Dispersive X-ray spectroscopy (EDX) and X-ray Diffraction (XRD) supports each other and no new element or phase is identified. However, slight change in peak intensity and angle shifting is observed. Field emission properties of ion-structured brass are explored by measuring I-V characteristics of targets under UHV condition in diode-configuration using self designed and fabricated setup. Improvement in field enhancement factor (β) is estimated from the slope of Fowler-Nordheim (F-N) plots and it shows significant increase from 5 to 1911, whereas a reduction in turn on field (Eo) from 65 V/μm to 30 V/μm and increment in maximum current density (Jmax) from 12 μA/cm2 to 3821 μA/cm2 is observed. These enhancements

  14. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  15. Nanometer-scale discernment of field emission from tungsten surface with single carbon monoxide molecule

    Science.gov (United States)

    Matsunaga, Soichiro; Suwa, Yuji; Katagiri, Souichi

    2017-12-01

    Unusual quantized beam fluctuations were found in the emission current from a cold-field emitter (CFE) operating in an extremely high vacuum of 10-10 Pa. To clarify the microscopic mechanism behind these fluctuations, we developed a new calculation method to evaluate the field emission from a heterogeneous surface under a strong electric field of 4 × 109 V/m by using the local potential distribution obtained by a first-principles calculation, instead of by using the work function. As a result of the first-principles calculations of a single molecule adsorbed on a tungsten surface, we found that dissociative adsorption of a carbon monoxide (CO) molecule enhances the emission current by changing the potential barrier in the area surrounding the C and O adatoms when these two atoms are placed at their most stable positions. It is also found that the migration of the O atom from the most stable position reduces the emission current. These types of enhancement and reduction of the emission current quantitatively explain the observed quantized fluctuations of the CFE emission current.

  16. Direct Determination of Field Emission across the Heterojunctions in a ZnO/Graphene Thin-Film Barristor.

    Science.gov (United States)

    Mills, Edmund M; Min, Bok Ki; Kim, Seong K; Kim, Seong Jun; Kang, Min-A; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok; Jung, Jongwan; Kim, Sangtae

    2015-08-26

    Graphene barristors are a novel type of electronic switching device with excellent performance, which surpass the low on-off ratios that limit the operation of conventional graphene transistors. In barristors, a gate bias is used to vary graphene's Fermi level, which in turn controls the height and resistance of a Schottky barrier at a graphene/semiconductor heterojunction. Here we demonstrate that the switching characteristic of a thin-film ZnO/graphene device with simple geometry results from tunneling current across the Schottky barriers formed at the ZnO/graphene heterojunctions. Direct characterization of the current-voltage-temperature relationship of the heterojunctions by ac-impedance spectroscopy reveals that this relationship is controlled predominantly by field emission, unlike most graphene barristors in which thermionic emission is observed. This governing mechanism makes the device unique among graphene barristors, while also having the advantages of simple fabrication and outstanding performance.

  17. Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique

    Science.gov (United States)

    Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.

    2006-11-01

    The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.

  18. Field emission and high voltage cleaning of particulate contaminants on extended metallic surfaces

    International Nuclear Information System (INIS)

    Tan, J.; Bonin, B.; Safa, H.

    1996-01-01

    The vacuum insulation properties of extended metallic surfaces depends strongly on their cleanliness. The usual technique to reduce electronic field emission from such surfaces consists in exposing them to very high electric fields during limited periods of time. This kind of processing also reduces the occurrence of vacuum breakdown. The processing of the surface is generally believed to be due to a thermomechanical destruction of the emitting sites, initiated by the emission itself. Comparison of the electric forces vs adherence forces which act on dust particles lying on the surface shows that the processing could also be due simply to the mechanical removal of the dust particles, with a subsequent reduction of field emission from the contaminated surface. (author)

  19. Structural origination of charge transfer complex nanostructures: Excellent candidate for field emission

    International Nuclear Information System (INIS)

    Pal, Shreyasi; Chattopadhyay, Kalyan Kumar

    2016-01-01

    Worldwide strategies for amalgamating rationally controlled one-dimensional organic nanowires are of fundamental importance for their applications in flexible, cheaper and lighter electronics. In this work we have fabricated large-area, ordered CuTCNQ (copper-7,7,8,8-tetracyanoquinodimethane) nano architecture arrays over flexible conducting substrate and discussed the rational growth and integration of nanostructures. Here we adopted the organic solid phase reaction (VLS) technique for the growth of organic hierarchies and investigated how field emission properties changes by tuning the nanostructures morphology i.e., by varying length, diameter, alignment and orientation over flexible substrate. The CuTCNQ nanowires with optimized geometry exhibit excellent high field emission performance with low turn-on and threshold field values. The result strongly indicate that CuTCNQ nanowires on flexible carbon cloth substrate are promising candidates for constructing cold cathode based emission display devices, vacuum nanoelectronics, and etc.

  20. Nanocrystalline silicon as the light emitting material of a field emission display device

    International Nuclear Information System (INIS)

    Biaggi-Labiosa, A; Sola, F; Resto, O; Fonseca, L F; Gonzalez-BerrIos, A; Jesus, J De; Morell, G

    2008-01-01

    A nanocrystalline Si-based paste was successfully tested as the light emitting material in a field emission display test device that employed a film of carbon nanofibers as the electron source. Stable emission in the 550-850 nm range was obtained at 16 V μm -1 . This relatively low field required for intense cathodoluminescence (CL) from the PSi paste may lead to longer term reliability of both the electron emitting and the light emitting materials, and to lower power consumption. Here we describe the synthesis, characterization, and analyses of the light emitting nanostructured Si paste and the electron emitting C nanofibers used for building the device, including x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. The corresponding spectra and field emission curves are also shown and discussed

  1. Structural origination of charge transfer complex nanostructures: Excellent candidate for field emission

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Shreyasi; Chattopadhyay, Kalyan Kumar [Thin Films and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India)

    2016-05-23

    Worldwide strategies for amalgamating rationally controlled one-dimensional organic nanowires are of fundamental importance for their applications in flexible, cheaper and lighter electronics. In this work we have fabricated large-area, ordered CuTCNQ (copper-7,7,8,8-tetracyanoquinodimethane) nano architecture arrays over flexible conducting substrate and discussed the rational growth and integration of nanostructures. Here we adopted the organic solid phase reaction (VLS) technique for the growth of organic hierarchies and investigated how field emission properties changes by tuning the nanostructures morphology i.e., by varying length, diameter, alignment and orientation over flexible substrate. The CuTCNQ nanowires with optimized geometry exhibit excellent high field emission performance with low turn-on and threshold field values. The result strongly indicate that CuTCNQ nanowires on flexible carbon cloth substrate are promising candidates for constructing cold cathode based emission display devices, vacuum nanoelectronics, and etc.

  2. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    Science.gov (United States)

    Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li

    2015-05-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).

  3. Experimental and theoretical study on field emission properties of zinc oxide nanoparticles decorated carbon nanotubes

    International Nuclear Information System (INIS)

    Li Xin; Zhou Wei-Man; Liu Wei-Hua; Wang Xiao-Li

    2015-01-01

    Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. (paper)

  4. Optical and field emission properties of layer-structure GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhen [Science School, Xi’an University of Technology, Xi’an 710048 (China); School of automation and Information Engineering, Xi’an University of Technology, Xi’an 710048 (China); Li, Enling, E-mail: Lienling@xaut.edu.cn [Science School, Xi’an University of Technology, Xi’an 710048 (China); Shi, Wei; Ma, Deming [Science School, Xi’an University of Technology, Xi’an 710048 (China)

    2014-08-15

    Highlights: • The layer-structure GaN nanowires with hexagonal-shaped cross-sections are produced via a process based on the CVD method. • The diameter of the layer-structure GaN nanowire gradually decreases from ∼500 nm to ∼200 nm along the wire axis. • The layer-structure GaN nanowire film possesses good field emission property. - Abstract: A layer-structure gallium nitride (GaN) nanowires, grown on Pt-coated n-type Si (1 1 1) substrate, have been synthesized using chemical vapor deposition (CVD). The results show: (1) SEM indicates that the geometry structure is layer-structure. HRTEM indicates that GaN nanowire’s preferential growth direction is along [0 0 1] direction. (2) The room temperature PL emission spectrum of the layer-structure GaN nanowires has a peak at 375 nm, which proves that GaN nanowires have potential application in light-emitting nano-devices. (3) Field-emission measurements show that the layer-structure GaN nanowires film has a low turn-on field of 4.39 V/μm (at room temperature), which is sufficient for electron emission devices, field emission displays and vacuum nano-electronic devices. The growth mechanism for GaN nanowires has also been discussed briefly.

  5. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR

    International Nuclear Information System (INIS)

    Abdelaal, M.M.; Hegab, A.H.

    2012-01-01

    Highlights: ► An existed DI diesel engine has been modified to suit dual fuel operation with EGR. ► Comparative study has been conducted between different operating modes. ► Dual fuel mode exhibits better performance at high loads than diesel. ► Dual fuel mode exhibits lower NOx and higher HC emissions than diesel. ► EGR improves performance at part loads and emissions of dual fuel mode. - Abstract: The use of natural gas as a partial supplement for liquid diesel fuel is a very promising solution for reducing pollutant emissions, particularly nitrogen oxides (NOx) and particulate matters (PM), from conventional diesel engines. In most applications of this technique, natural gas is inducted or injected in the intake manifold to mix uniformly with air, and the homogenous natural gas–air mixture is then introduced to the cylinder as a result of the engine suction. This type of engines, referred to as dual-fuel engines, suffers from lower thermal efficiency and higher carbon monoxide (CO) and unburned hydrocarbon (HC) emissions; particularly at part load. The use of exhaust gas recirculation (EGR) is expected to partially resolve these problems and to provide further reduction in NOx emission as well. In the present experimental study, a single-cylinder direct injection (DI) diesel engine has been properly modified to run on dual-fuel mode with natural gas as a main fuel and diesel fuel as a pilot, with the ability to employ variable amounts of EGR. Comparative results are given for various operating modes; conventional diesel mode, dual-fuel mode without EGR, and dual-fuel mode with variable amounts of EGR, at different operating conditions; revealing the effect of utilization of EGR on combustion process and exhaust emission characteristics of a pilot ignited natural gas diesel engine.

  6. Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms

    Energy Technology Data Exchange (ETDEWEB)

    Becaccia, A.; Ferrer, P.; Ibañez, M.A.; Estellés, F.; Rodríguez, C.; Moset, V.; Blas, C. de; Calvet, P.; García-Rebollar, P.

    2015-07-01

    This study aimed to analyse several factors of variation of slurry composition and to establish prediction equations for potential methane (CH4) and ammonia (NH3) emissions. Seventy-nine feed and slurry samples were collected at two seasons (summer and winter) from commercial pig farms sited at two Spanish regions (Centre and Mediterranean). Nursery, growing-fattening, gestating and lactating facilities were sampled. Feed and slurry composition were determined, and potential CH4 and NH3 emissions measured at laboratory. Feed nutrient contents were used as covariates in the analysis. Near infrared reflectance spectroscopy (NIRS) was evaluated as a predicting tool for slurry composition and potential gaseous emissions. A wide variability was found both in feed and slurry composition. Mediterranean farms had a higher pH (p<0.001) and ash (p=0.02) concentration than those located at the Centre of Spain. Also, type of farm affected ether extract content of the slurry (p=0.02), with highest values obtained for the youngest animal facilities. Results suggested a buffer effect of dietary fibre on slurry pH and a direct relationship (p<0.05) with fibre constituents of manure. Dietary protein content did not affect slurry nitrogen content but decreased (p=0.003) total and volatile solids concentration. Prediction models of potential NH3 emissions (R2=0.89) and CH4 yield (R2=0.61) were obtained from slurry composition. Predictions from NIRS showed a high accuracy for most slurry constituents (R2>0.90) and similar accuracy of prediction of potential NH3 and CH4 emissions (R2=0.84 and 0.68, respectively) to models using slurry characteristics, which can be of interest to estimate emissions from commercial farms and establish mitigation strategies or optimize biogas production. (Author)

  7. Comparative field evaluation of vehicle cruise speed and acceleration level impacts on hot stabilized emissions

    International Nuclear Information System (INIS)

    El-Shawarby, Ihab; Ahn, Kyoungho; Rakha, Hesham

    2005-01-01

    The main objectives of this paper are two fold. First, the paper evaluates the impact of vehicle cruise speed and acceleration levels on vehicle fuel-consumption and emission rates using field data gathered under real-world driving conditions. Second, it validates the VT-Micro model for the modeling of real-world conditions. Specifically, an on-board emission-measurement device was used to collect emissions of oxides of nitrogen, hydrocarbons, carbon monoxide, and carbon dioxide using a light-duty test vehicle. The analysis demonstrates that vehicle fuel-consumption and emission rates per-unit distance are optimum in the range of 60-90 km/h, with considerable increase outside this optimum range. The study demonstrates that as the level of aggressiveness for acceleration maneuvers increases, the fuel-consumption and emission rates per maneuver decrease because the vehicle spends less time accelerating. However, when emissions are gathered over a sufficiently long fixed distance, fuel-consumption and mobile-source emission rates per-unit distance increase as the level of acceleration increases because of the history effects that accompany rich-mode engine operations. In addition, the paper demonstrates the validity of the VT-Micro framework for modeling steady-state vehicle fuel-consumption and emission behavior. Finally, the research demonstrates that the VT-Micro framework requires further refinement to capture non-steady-state history behavior when the engine operates in rich mode. (Author)

  8. Characterization of novel powder and thin film RGB phosphors for field emissions display application

    International Nuclear Information System (INIS)

    Chakhovskoi, A.G.; Hunt, C.E.

    1996-01-01

    The spectral response, brightness and outgassing characteristics of new, low-voltage phosphors for application in field-emission flat-panel displays, are presented. The tested phosphor materials include combustion synthesized powders and thin films prepared by RF-diode or magnetron sputtering, laser ablation and molecular beam epitaxy. These cathodoluminescent materials are tested with e-beam excitation at currents up to 50 μA within the 200-2000V (e.g. open-quotes low-voltageclose quotes) and 3-8 kV (e.g. open-quotes medium voltageclose quotes) ranges. The spectral coordinates are compared to commercial low-voltage P22 phosphors. Phosphor outgassing, as a function of time is measured with a residual gas analyzer at fixed 50 μA beam current in the low-voltage range. We find that levels of outgassing stabilize to low values after the first few hours of excitation. The desorption rates measured for powder phosphor layers with different thickness are compared to desorption from thin films

  9. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency; Etude de l'emision electronique par effet de champ sur des surfaces larges en regime statique et hyperfrequence

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics ({beta}, A{sub e}) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  10. Study of electronic field emission from large surfaces under static operating conditions and hyper-frequency; Etude de l'emision electronique par effet de champ sur des surfaces larges en regime statique et hyperfrequence

    Energy Technology Data Exchange (ETDEWEB)

    Luong, M

    1997-09-01

    The enhanced electronic field emission from large area metallic surfaces lowers performances of industrial devices that have to sustain high electric field under vacuum. Despite of numerous investigations in the past, the mechanisms of such an emission have never been well clarified. Recently, research in our laboratory has pointed out the importance played by conducting sites (particles and protrusions). A refined geometrical model, called superposed protrusions model has been proposed to explain the enhanced emission by local field enhancement. As a logical continuation, the present work aims at testing this model and, in the same time, investigating the means to suppress the emission where it is undesirable. Thus, we have showed: the cause of current fluctuations in a continuous field regime (DC), the identity of emission characteristics ({beta}, A{sub e}) in both radiofrequency (RF) and DC regimes, the effectiveness of a thermal treatment by extern high density electronic bombardment, the effectiveness of a mechanical treatment by high pressure rinsing with ultra pure water, the mechanisms and limits of an in situ RF processing. Furthermore, the electronic emission from insulating particles has also been studied concurrently with a spectral analysis of the associated luminous emission. Finally, the refined geometrical model for conducting sites is reinforced while another model is proposed for some insulating sites. Several emission suppressing treatments has been explored and validated. At last, the characteristic of a RF pulsed field emitted electron beam has been checked for the first time as a possible application of such a field emission. (author)

  11. Electron Bernstein wave emission from an overdense reversed field pinch plasma

    International Nuclear Information System (INIS)

    Chattopadhyay, P.K.; Anderson, J.K.; Biewer, T.M.; Craig, D.; Forest, C.B.; Harvey, R.W.; Smirnov, A.P.

    2002-01-01

    Blackbody levels of emission in the electron cyclotron range of frequencies have been observed from an overdense (ω pe ∼3ω ce ) Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed field pinch plasma, a result of electrostatic electron Bernstein waves emitted from the core and mode converted into electromagnetic waves at the extreme plasma edge. Comparison of the measured radiation temperature with profiles measured by Thomson scattering indicates that the mode conversion efficiency can be as high as ∼75%. Emission is preferentially in the X-mode polarization, and is strongly dependent upon the density and magnetic field profiles at the mode conversion point

  12. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  13. The characteristics of acoustic emission signal under composite destruction on GFRP gas cylinder

    International Nuclear Information System (INIS)

    Jee, Hyun Sup; Lee, Jong O; Ju, No Hoe; So, Cheal Ho; Lee, Jong Kyu

    2013-01-01

    This study is investigation of the characteristics for acoustic emission signal generated by destruction on glass fiber bundles and specimen that was machined composite materials surrounding the outside of GFRP cylinder. The Amplitude of acoustic emission signal gets bigger as the cutting angle of knife increases. Accordingly, the number of hits in destruction of composite materials specimen have more in longitudinal direction (longitudinal direction to the glass fiber) than in hoop direction (horizontal direction to the glass fiber) while the amplitude of signals were bigger in hoop direction than longitudinal direction. It was found out that the amplitude of the glass fiber breakage is more than 40 dB and that the amplitude of signal for matrix crack was less than 40 dB because matrix crack signal was not observed when threshold value is 40 dB and matrix crack signal suddenly appeared when threshold value is 32 dB. The slope of the amplitude is related to the acoustic emission source and the slope of the amplitude of the horizontal and vertical directions are 0.16 and 0.08. In particular, The slope of the amplitude of longitudinal direction breakage appear similar to the glass fiber breakage and therefore Acoustic emission source of longitudinal direction breakage is estimated the glass fiber breakage.

  14. Performance and emission characteristics of compression ignition engine operating with false flax biodiesel and butanol blends

    Directory of Open Access Journals (Sweden)

    Mustafa Atakan Akar

    2016-02-01

    Full Text Available In this study, fuel properties, engine performance, and emission characteristics of diesel fuel, false flax biodiesel, and their blends with butanol have been evaluated. Blend ratios used in this study were diesel–biodiesel–butanol (70% diesel–20% biodiesel–10% butanol and 60% diesel–20% biodiesel–20% butanol by volume and biodiesel–diesel (20% biodiesel–80% diesel and 100% biodiesel by volume. Experiments showed that 10% alcohol addition to diesel and biodiesel fuels caused a decrease in torque value up to 8.57%. When butanol ratio raised to 20%, torque value decreased to an average of 12.7% and power values decreased to an average of 13.57%. Specific fuel consumption increased to an average of 10.63% and 12.80% with 10% and 20% butanol addition, respectively. Alcohol addiction into conventional diesel and biodiesel fuel slightly increased NOX emissions. Supplement of alcohol decreased CO and CO2 emissions when it was entrained to diesel and increased it when it was added to biodiesel. It means that addition of alcohol to diesel changed CO and CO2 emissions.

  15. Characteristics of thermal neutron calibration fields using a graphite pile

    International Nuclear Information System (INIS)

    Uchita, Yoshiaki; Saegusa, Jun; Kajimoto, Yoichi; Tanimura, Yoshihiko; Shimizu, Shigeru; Yoshizawa, Michio

    2005-03-01

    The Facility of Radiation Standards of Japan Atomic Energy Research Institute is equipped with thermal neutron fields for calibrating area and personal neutron dosemeters. The fields use moderated neutrons leaked from a graphite pile in which radionuclide sources are placed. In January 2003, we have renewed the pile with some modifications in its size. In accordance with the renewal, we measured and calculated thermal neutron fluence rates, neutron energy distributions and angular distributions of the fields. The thermal neutron fluence rates of the ''inside-pile fields'' and the outside-pile fields'' were determined by the gold foil activation method. The neutron energy distributions of the outside-pile fields were also measured with the Bonner multi-sphere spectrometer system. The contributions of epithermal and fast neutrons to the total dose-equivalents were 9% in the southern outside-pile field and 12% in the western outside-pile field. The personal dose-equivalents, H p,slab (10, α), in the outside-pile fields are evaluated by considering the calculated angular distributions of incoming neutrons. The H p,slab (10, α) was found to be about 40% higher than the value in assuming the unidirectional neutron between the pile and the test point. (author)

  16. Comment on "Water-processed carbon nanotube/graphene hybrids with enhanced field emission properties" [AIP Advances 5, 097130 (2015)

    Science.gov (United States)

    Rani, Reena; Bhatia, Ravi

    2018-03-01

    In their research paper, M. Song et al. [AIP ADVANCES 5, 097130 (2015)] have claimed to have achieved enhanced field emission (FE) characteristics of carbon nanotubes (CNT)/graphene hybrids experimentally, exhibiting improved FE parameters e.g. turn-on electric field of 0.79 V/μm, threshold electric field of 1.05 V/μm, maximum emission current density (Jmax) of 5.76 mA/cm2, and field enhancement factor (β) of ˜1.3 × 104. The authors have emphasized on the surprisingly high value of β to be the basis of their claim of achieving superior FE performance which is further attributed to the optimized mass ratio CNT/ graphene, which is 5:1 in the present case. However, the claim based upon high value of β is misleading because it does not corroborate with the obtained Jmax parameter. Also, the obtained value of J is quite low in the mentioned study as compared to the reported values. For an instance, Sameera et al. [J. Appl. Phys. 111, 044307 (2012) & Appl. Phys. Lett. 102, 033102 (2013)] have reported FE properties of CNT composites and reduced graphene oxide with Jmax and β values of the order of ˜102 mA/cm2 and 6 × 103, respectively. Therefore, the conclusions drawn by M. Song et al. [AIP ADVANCES 5, 097130 (2015)] in their paper do no hold.

  17. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    Science.gov (United States)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  18. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    Science.gov (United States)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine

  19. Mitigating nitrous oxide emissions from tea field soil using bioaugmentation with a Trichoderma viride biofertilizer.

    Science.gov (United States)

    Xu, Shengjun; Fu, Xiaoqing; Ma, Shuanglong; Bai, Zhihui; Xiao, Runlin; Li, Yong; Zhuang, Guoqiang

    2014-01-01

    Land-use conversion from woodlands to tea fields in subtropical areas of central China leads to increased nitrous oxide (N2O) emissions, partly due to increased nitrogen fertilizer use. A field investigation of N2O using a static closed chamber-gas chromatography revealed that the average N2O fluxes in tea fields with 225 kg N ha(-1) yr(-1) fertilizer application were 9.4 ± 6.2 times higher than those of woodlands. Accordingly, it is urgent to develop practices for mitigating N2O emissions from tea fields. By liquid-state fermentation of sweet potato starch wastewater and solid-state fermentation of paddy straw with application of Trichoderma viride, we provided the tea plantation with biofertilizer containing 2.4 t C ha(-1) and 58.7 kg N ha(-1). Compared to use of synthetic N fertilizer, use of biofertilizer at 225 kg N ha(-1) yr(-1) significantly reduced N2O emissions by 33.3%-71.8% and increased the tea yield by 16.2%-62.2%. Therefore, the process of bioconversion/bioaugmentation tested in this study was found to be a cost-effective and feasible approach to reducing N2O emissions and can be considered the best management practice for tea fields.

  20. Characteristics of forming of synonymic rows within lexical phraseological field

    Directory of Open Access Journals (Sweden)

    Мария Валерьевна Волнакова

    2011-03-01

    Full Text Available The article deals with the characteristics of forming of phraseological synonymic rows with a lexical identifier as a dominant of a row. Revealed synonymic rows mirror the deepness of systematic language relationships between lexis and phraseology.

  1. Engine performance and emissions characteristics of a diesel engine fueled with diesel-biodiesel-bioethanol emulsions

    International Nuclear Information System (INIS)

    Tan, Yie Hua; Abdullah, Mohammad Omar; Nolasco-Hipolito, Cirilo; Zauzi, Nur Syuhada Ahmad; Abdullah, Georgie Wong

    2017-01-01

    Highlights: • Different composition of diesel fuel, biodiesel and bioethanol emulsions were examined. • The fuels were tested in a direct injection diesel engine and parameters were evaluated. • Engine power, torque, exhaust gas temperature & fuel consumptions were compared. • Emulsions fuels emitted lower CO and CO_2 than fossil diesel. • Lower NOx emission was observed at medium engine speeds and loads for emulsion fuels. - Abstract: In this research work, the experimental investigation of the effect of diesel-biodiesel-bioethanol emulsion fuels on combustion, performance and emission of a direct injection (DI) diesel engine are reported. Four kind of emulsion fuels were employed: B (diesel-80%, biodiesel-20% by volume), C (diesel-80%, biodiesel-15%, bioethanol-5%), D (diesel-80%, biodiesel-10%, bioethanol-10%) and E (diesel-80%, biodiesel-5%, bioethanol-15%) to compare its’ performance with the conventional diesel, A. These emulsion fuels were prepared by mechanical homogenizer machine with the help of Tween 80 (1% v/v) and Span 80 (0.5% v/v) as surfactants. The emulsion characteristics were determined by optical electron microscope, emulsification stability test, FTIR, and the physiochemical properties of the emulsion fuels which were all done by following ASTM test methods. The prepared emulsion fuels were then tested in diesel engine test bed to obtain engine performance and exhaust emissions. All the engine experiments were conducted with engine speeds varying from 1600 to 2400 rpm. The results showed the heating value and density of the emulsion fuels decrease as the bioethanol content in the blend increases. The total heating value of the diesel-biodiesel-bioethanol fuels were averagely 21% higher than the total heating value of the pure biodiesel and slightly lower (2%) than diesel fuel. The engine power, torque and exhaust gas temperature were reduced when using emulsion fuels. The brake specific fuel consumption (BSFC) for the emulsion fuels

  2. Analysis of Field Emission of Fabricated Nanogap in Pd Strips for Surface Conduction Electron-Emitter Displays

    Science.gov (United States)

    Lo, Hsiang-Yu; Li, Yiming; Tsai, Chih-Hao; Pan, Fu-Ming

    2008-04-01

    We study the field emission (FE) property of a nanometer-scale gap structure in a palladium strip, which was fabricated by hydrogen absorption under high-pressure treatment. A vigorous cracking process could be accompanied by extensive atomic migration during the hydrogen treatment. A three-dimensional finite-difference time-domain particle-in-cell method is adopted to simulate the electron emission in a surface-conduction electron-emitter display (SED) device. Examinations of conducting characteristics, FE efficiency, the local field around the emitter, and the current density on the anode plate with one FE emitter are conducted. The image of a light spot is successfully produced on a phosphor plate, which implies that the explored electrode with nanometer separation possesses a potential SED application. Experimental observation and numerical simulation show that the proposed structure can be used as a surface conduction electron emitter and has a high FE efficiency with low turn-on voltage and a different electron emission mechanism. This study benefits the advanced SED design for a new type of electron source.

  3. Effects of organic matter application on methane emission from paddy fields adopting organic farming system

    Directory of Open Access Journals (Sweden)

    P Nungkat

    2015-01-01

    Full Text Available A study that was aimed to determine the effect of the use of organic manure and azolla on methane emission on paddy field of organic systems was conducted on paddy fields in the Gempol Village, Sambirejo District of Sragen Regency, Indonesia. The experimental design performed for this study was a completely randomized block design consisting of three factors; the factor I was rice cultivars (Mira-1; Mentik Wangi; Merah Putih; factor II was dose of organic manure (0 t/ha and 10 t/ha and factor III was Azolla inoculums dose (0 t/ha and 2 t/ha. Gas sampling was conducted 3 times in one growing season when the rice plants reached ages of 38, 66 and 90 days after planting. The results showed that there was no correlation between the uses of organic fertilizers for rice production on methane emission. The increase of methane emission was very much influenced by the redox potential. Methane emission from Mira-1 field was higher than that from Mentik Wangi and Merah Putih fields. Emission of methane gas from Mira-1 field ranged from -509.82 to 791.34 kg CH4/ha; that from Wangi ranged from -756.77 to d 547.50 kg CH4/ha and that from Merah Putih ranged from -399.63 to 459.94 kg CH4/ha. Application of 10 t organic manure /ha and 2 t azolla/ha in Mentik Wangi reduced methane emissions with a high rice production compared to Merah Putih and Mira-1.

  4. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  5. Performance and emission characteristics of a turpentine-diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Karthikeyan, R. [Adhiparasakthi Engineering College, Melmaruvathur, Tamil Nadu (India); Mahalakshmi, N.V. [I.C. Engines Division, Department of Mechanical Engineering, College of Engineering Guindy, Chennai, Tamil Nadu (India)

    2007-07-15

    This paper describes an experimental study concerning the feasibility of using bio-oil namely turpentine obtained from the resin of pine tree. The emission and performance characteristics of a D.I. diesel engine were studied through dual fuel (DF) mode. Turpentine was inducted as a primary fuel through induction manifold and diesel was admitted into the engine through conventional fueling device as an igniter. The result showed that except volumetric efficiency, all other performance and emission parameters are better than those of diesel fuel with in 75% load. The toxic gases like CO, UBHC are slightly higher than that of the diesel baseline (DBL). Around 40-45% smoke reduction is obtained with DF mode. The pollutant No{sub x} is found to be equal to that of DBL except at full load. This study has proved that approximately 75% diesel replacement with turpentine is possible by DF mode with little engine modification. (author)

  6. The Particle Number Emission Characteristics of the Diesel Engine with a Catalytic Diesel Particle Filter

    Directory of Open Access Journals (Sweden)

    Li Jia Qiang

    2016-01-01

    Full Text Available Due to their adverse health effects and their abundance in urban areas, diesel exhaust ultrafine particles caused by the aftertreatment devices have been of great concern in the past years. An experiment of particles number emissions was carried out on a high-pressure, common rail diesel engine with catalytic diesel particle filter (CDPF to investigate the impact of CDPF on the number emission characteristics of particles. The results indicated that the conversion rates of CDPF is over 97%. The size distributions of particles are bimodal lognormal distributions downstream CDPF at 1400 r/min and 2300 r/min. CDPF has a lower conversion rates on the nucleation mode particles. The geometric number mean diameters of particles downstream CDPF is smaller than that upstream CDPF.

  7. Ultrasound assisted direct transesterification of algae for biodiesel production : Analysis of emission characteristics

    Directory of Open Access Journals (Sweden)

    Namasivayam Manickam

    2014-03-01

    Full Text Available Recently, the algae-for-fuel concept has gained renewed interest with energy prices fluctuating widely. Due to some restrictions over the oil extraction from algae, direct transesterification may be considered as a good alternative. In this study, to improve the performance of direct transesterification, ultrasound induction was carried out. A sonicator probe was used to induce the direct transesterification of Cladophora fracta, a freshwater macro alga, which contains 14% lipid on dry biomass basis. Due to ultrasonication about 25% increased biodiesel yields were obtained and the biodiesel thus prepared was analyzed for emission characteristics. The analysis results showed that Cladophora biodiesel emits 18 mg/L of CO whereas petroleum diesel emits 50 mg/L. Similarly, the emission of NOx and particulate matter also were reduced to a considerable level. The Cladophora is a suitable source of biodiesel by ultrasound assisted direct transesterification in industrial level in the future.

  8. [Effects of diurnal warming on soil N2O emission in soybean field].

    Science.gov (United States)

    Hu, Zheng-Hua; Zhou, Ying-Ping; Cui, Hai-Ling; Chen, Shu-Tao; Xiao, Qi-Tao; Liu, Yan

    2013-08-01

    To investigate the impact of experimental warming on N2O emission from soil of soybean field, outdoor experiments with simulating diurnal warming were conducted, and static dark chamber-gas chromatograph method was used to measure N2O emission fluxes. Results indicated that: the diurnal warming did not change the seasonal pattern of N2O emissions from soil. In the whole growing season, comparing to the control treatment (CK), the warming treatment (T) significantly enhanced the N2O flux and the cumulative amount of N2O by 17.31% (P = 0.019), and 20.27% (P = 0.005), respectively. The significant correlations were found between soil N2O emission and soil temperature, moisture. The temperature sensitivity values of soil N2O emission under CK and T treatments were 3.75 and 4.10, respectively. In whole growing stage, T treatment significantly increased the crop aboveground and total biomass, the nitrate reductase activity, and total nitrogen in leaves, while significantly decreased NO3(-) -N content in leaves. T treatment significantly increased soil NO3(-) -N content, but had no significant effect on soil organic carbon and total nitrogen contents. The results of this study suggested that diurnal warming enhanced N2O emission from soil in soybean field.

  9. Closed string emission from unstable D-brane with background electric field

    International Nuclear Information System (INIS)

    Nagami, Kenji

    2004-01-01

    We study the closed string emission from an unstable Dp-brane with constant background electric field in bosonic string theory. The average total number density and the average total energy density of emitted closed strings are explicitly calculated in the presence of electric field. It is explicitly shown that the energy density in the UV region becomes finite whenever the background electric field is switched on. The energy density converted into closed strings in the presence of electric field is negligibly small compared with the D-brane tension in the weak string coupling limit. (author)

  10. Emissions of carbon dioxide and methane from fields fertilized with digestate from an agricultural biogas plant

    Science.gov (United States)

    Czubaszek, Robert; Wysocka-Czubaszek, Agnieszka

    2018-01-01

    Digestate from biogas plants can play important role in agriculture by providing nutrients, improving soil structure and reducing the use of mineral fertilizers. Still, less is known about greenhouse gas emissions from soil during and after digestate application. The aim of the study was to estimate the emissions of carbon dioxide (CO2) and methane (CH4) from a field which was fertilized with digestate. The gas fluxes were measured with the eddy covariance system. Each day, the eddy covariance system was installed in various places of the field, depending on the dominant wind direction, so that each time the results were obtained from an area where the digestate was distributed. The results showed the relatively low impact of the studied gases emissions on total greenhouse gas emissions from agriculture. Maximum values of the CO2 and CH4 fluxes, 79.62 and 3.049 µmol s-1 m-2, respectively, were observed during digestate spreading on the surface of the field. On the same day, the digestate was mixed with the topsoil layer using a disc harrow. This resulted in increased CO2 emissions the following day. Intense mineralization of digestate, observed after fertilization may not give the expected effects in terms of protection and enrichment of soil organic matter.

  11. The Field Emission Properties of Graphene Aggregates Films Deposited on Fe-Cr-Ni alloy Substrates

    Directory of Open Access Journals (Sweden)

    Zhanling Lu

    2010-01-01

    Full Text Available The graphene aggregates films were fabricated directly on Fe-Cr-Ni alloy substrates by microwave plasma chemical vapor deposition system (MPCVD. The source gas was a mixture of H2 and CH4 with flow rates of 100 sccm and 12 sccm, respectively. The micro- and nanostructures of the samples were characterized by Raman scattering spectroscopy, field emission scanning electron microscopy (SEM, and transparent electron microscopy (TEM. The field emission properties of the films were measured using a diode structure in a vacuum chamber. The turn-on field was about 1.0 V/m. The current density of 2.1 mA/cm2 at electric field of 2.4 V/m was obtained.

  12. SURFACE FILMS TO SUPPRESS FIELD EMISSION IN HIGH-POWER MICROWAVE COMPONENTS

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay l

    2014-02-07

    Results are reported on attempts to reduce the RF breakdown probability on copper accelerator structures by applying thin surface films that could suppress field emission of electrons. Techniques for application and testing of copper samples with films of metals with work functions higher than copper are described, principally for application of platinum films, since platinum has the second highest work function of any metal. Techniques for application of insulating films are also described, since these can suppress field emission and damage on account of dielectric shielding of fields at the copper surface, and on account of the greater hardness of insulating films, as compared with copper. In particular, application of zirconium oxide films on high-field portions of a 11.424 GHz SLAC cavity structure for breakdown tests are described.

  13. Combined effect of nitrogen doping and nanosteps on microcrystalline diamond films for improvement of field emission

    International Nuclear Information System (INIS)

    Mengui, U.A.; Campos, R.A.; Alves, K.A.; Antunes, E.F.; Hamanaka, M.H.M.O.; Corat, E.J.; Baldan, M.R.

    2015-01-01

    Highlights: • Hot filament chemical vapor deposition using methane, hydrogen and a solution of urea in methanol produced nitrogen-doped diamond films. • Diamonds had the grain morphology changed for long growth time (28 h), and the nitrogen doping were evaluated by Raman spectroscopy. • Field emission characterization shows a decrease up to 70% in threshold field, related to reference diamond layer. - Abstract: Nitrogen-doped microcrystalline diamond (N-MCD) films were grown on Si substrates using a hot filament reactor with methanol solution of urea as N source. Electrostatic self-assembly seeding of nanocrystalline diamond were used to obtain continuous and uniform films. Simultaneous changes in grains morphology and work function of diamond by nitrogen doping decreased the threshold field and the angular coefficient of Fowler–Nordhein plots. The field emission properties of our N-MCD films are comparable to carbon nanotube films

  14. Field emission properties of low-density carbon nanotubes prepared on anodic aluminum-oxide template

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Soo-Hwan [Samsung Advanced Institute of Technology, Suwon (Korea, Republic of); Lee, Kun-Hong [Pohang University of Science and Technology, Pohang (Korea, Republic of)

    2004-08-15

    Anodic aluminum-oxide (AAO) templates were fabricated by two-step anodizing an Al film. After the Co catalyst had been electrochemically deposited onto the bottom of the AAO template, carbon nanotubes (CNTs) were grown by using catalytic pyrolysis of C{sub 2}H{sub 2} and H{sub 2} at 650 .deg. C. Overgrowth of CNTs with low density on the AAO templates was observed. The field-emission measurements on the samples showed a turn-on field of 2.17 V/mum and a field enhancement factor of 5700. The emission pattern on a phosphor screen was quite homogeneous over the area at a relatively low electric field.

  15. Field emission response from multi-walled carbon nanotubes grown on electrochemically engineered copper foil

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Amit Kumar; Jain, Vaibhav [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Saini, Krishna [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Lahiri, Indranil, E-mail: indrafmt@iitr.ac.in [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India)

    2017-02-01

    Exciting properties of carbon nanotube has proven it to be a promising candidate for field emission applications, if its processing cost can be reduced effectively. In this research, a new electrochemical technique is proposed for growing carbon nanotubes in selective areas by thermal chemical vapour deposition. In this process, electrochemical processing is used to create localized pits and deposition of catalysts, which act as roots to support growth and alignment of the CNTs on copper substrate. CNTs grown thus were characterized and studied using scanning electron microscope, transmission electron microscope and Raman spectroscopy, elucidating presence of multiwall carbon nanotubes (MWCNT). These CNT emitters have comparatively lower turn-on field and higher field enhancement factor. - Highlights: • Electrochemical pitting for localized carbon nanotube growth is proposed. • Electrochemical pitting method shows patterning effect on the substrate. • Size and density of pits depend on voltage, pH and temperature. • CNTs thus grown shows good field emission response.

  16. Combined effect of nitrogen doping and nanosteps on microcrystalline diamond films for improvement of field emission

    Energy Technology Data Exchange (ETDEWEB)

    Mengui, U.A., E-mail: ursulamengui@gmail.com [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil); Campos, R.A.; Alves, K.A.; Antunes, E.F. [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil); Hamanaka, M.H.M.O. [Centro de Tecnologia da Informação Renato Archer, Divisão de Superfícies de Interação e Displays, Rodovia D. Pedro I (SP 65) km 143.6, CP 6162, CEP 13089-500, Campinas, SP (Brazil); Corat, E.J.; Baldan, M.R. [INPE – Instituto Nacional de Pesquisas Espaciais Laboratório Associado de Sensores e Materiais – LAS, Av. dos Astronautas 1758, CP 515, CEP 12.245-970, São José dos Campos, SP (Brazil)

    2015-04-15

    Highlights: • Hot filament chemical vapor deposition using methane, hydrogen and a solution of urea in methanol produced nitrogen-doped diamond films. • Diamonds had the grain morphology changed for long growth time (28 h), and the nitrogen doping were evaluated by Raman spectroscopy. • Field emission characterization shows a decrease up to 70% in threshold field, related to reference diamond layer. - Abstract: Nitrogen-doped microcrystalline diamond (N-MCD) films were grown on Si substrates using a hot filament reactor with methanol solution of urea as N source. Electrostatic self-assembly seeding of nanocrystalline diamond were used to obtain continuous and uniform films. Simultaneous changes in grains morphology and work function of diamond by nitrogen doping decreased the threshold field and the angular coefficient of Fowler–Nordhein plots. The field emission properties of our N-MCD films are comparable to carbon nanotube films.

  17. Improvement of electron emission characteristics of porous silicon emitter by using cathode reduction and electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, He; Wenjiang, Wang, E-mail: wwj@mail.xjtu.edu.cn; Xiaoning, Zhang

    2017-03-31

    Highlights: • An electron emitter based on porous silicon having the strong application potential was prepared in the studying. • A new simple and convenient post-treat technique was proposed to improve the electron emission properties of the PS emitter. • It demonstrated that the improving of the PS morphology and the oxygen distribution is very important to the PS emitter. - Abstract: A new simple and convenient post-treat technique combined the cathode reduction (CR) and electrochemical oxidation (ECO) was proposed to improve the electron emission properties of the surface-emitting cold cathodes based on the porous silicon (PS). It is demonstrated here that by introducing this new technique combined CR and ECO, the emission properties of the diode have been significantly improved than those as-prepared samples. The experimental results showed that the emission current densities and efficiencies of sample treated by CR were 62 μA/cm{sup 2} and 12.10‰, respectively, nearly 2 orders of magnitude higher than those of as-prepared sample. Furthermore, the CR-treated PS emitter shows higher repeatability and stability compared with the as-prepared PS emitter. The scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), furier transformed infrared (FTIR) spectroscopy results indicated that the improved mechanism is mainly due to the passivation of the PS, which not only improve the PS morphology by the passivation of the H{sup +} but also improve the uniformity of the oxygen content distribution in the whole PS layer. Therefore, the method combined the CR treatment and ECO is expected to be a valuable technique to enhance the electron emission characteristics of the PS emitter.

  18. Improvement of electron emission characteristics of porous silicon emitter by using cathode reduction and electrochemical oxidation

    International Nuclear Information System (INIS)

    Li, He; Wenjiang, Wang; Xiaoning, Zhang

    2017-01-01

    Highlights: • An electron emitter based on porous silicon having the strong application potential was prepared in the studying. • A new simple and convenient post-treat technique was proposed to improve the electron emission properties of the PS emitter. • It demonstrated that the improving of the PS morphology and the oxygen distribution is very important to the PS emitter. - Abstract: A new simple and convenient post-treat technique combined the cathode reduction (CR) and electrochemical oxidation (ECO) was proposed to improve the electron emission properties of the surface-emitting cold cathodes based on the porous silicon (PS). It is demonstrated here that by introducing this new technique combined CR and ECO, the emission properties of the diode have been significantly improved than those as-prepared samples. The experimental results showed that the emission current densities and efficiencies of sample treated by CR were 62 μA/cm"2 and 12.10‰, respectively, nearly 2 orders of magnitude higher than those of as-prepared sample. Furthermore, the CR-treated PS emitter shows higher repeatability and stability compared with the as-prepared PS emitter. The scanning electron microscope (SEM), atomic force microscope (AFM), energy dispersive spectrometer (EDS), furier transformed infrared (FTIR) spectroscopy results indicated that the improved mechanism is mainly due to the passivation of the PS, which not only improve the PS morphology by the passivation of the H"+ but also improve the uniformity of the oxygen content distribution in the whole PS layer. Therefore, the method combined the CR treatment and ECO is expected to be a valuable technique to enhance the electron emission characteristics of the PS emitter.

  19. Design and fabrication of carbon nanotube field-emission cathode with coaxial gate and ballast resistor.

    Science.gov (United States)

    Sun, Yonghai; Yeow, John T W; Jaffray, David A

    2013-10-25

    A low density vertically aligned carbon nanotube-based field-emission cathode with a ballast resistor and coaxial gate is designed and fabricated. The ballast resistor can overcome the non-uniformity of the local field-enhancement factor at the emitter apex. The self-aligned fabrication process of the coaxial gate can avoid the effects of emitter tip misalignment and height non-uniformity. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Thermal field emission observation of single-crystal LaB6

    International Nuclear Information System (INIS)

    Nagata, H.; Harada, K.; Shimizu, R.

    1990-01-01

    TFE (thermal field emission) properties of LaB 6 left-angle 100 right-angle and left-angle 310 right-angle single crystals were investigated by emission pattern observation. It was found that field evaporation with the tip temperature held at ∼1500 degree C is very useful to get a clean pattern of fourfold symmetry. Each of four bright spots in the clean pattern was presumed to correspond to left-angle 310 right-angle emission. It is proposed, as the most appropriate operating condition, to use the left-angle 310 right-angle LaB 6 tip at a temperature ∼1000 degree C in vacuum of 10 -9 Torr region, promising a new TF emitter of high brightness and stability for practical use

  1. Implementation of palm biodiesel based on economic aspects, performance, emission, and wear characteristics

    International Nuclear Information System (INIS)

    Mosarof, M.H.; Kalam, M.A.; Masjuki, H.H.; Ashraful, A.M.; Rashed, M.M.; Imdadul, H.K.; Monirul, I.M.

    2015-01-01

    Highlights: • Global environmental protection of using alternative fuel. • Economic aspects of palm oil biodiesel in Malaysia. • Tribological characteristics of palm oil biodiesel in engine components. • Engine performance and emission of palm oil biodiesel. • Effect of temperature on density and kinematic viscosity for various biodiesel. - Abstract: The high cost of energy supplies and the growing concern over the dependency on fossil fuels have impelled many countries to search for renewable and alternative energy sources. The extensive use of fossil fuels for transportation and power generation all over the world have caused the supply of fossil fuels to continuously decrease and have aggravated environmental pollution. Searching for alternative fuels has become imperative to reduce pollution and address the problems on fossil fuels. Vegetable oil fuels, such as palm oil biodiesel, serve as alternative forms of energy and are currently being studied, particularly as a diesel fuel substitute. The purpose of this study is to review the potential of palm oil as an energy source and alternative diesel fuel in terms of its performance, environmental impact, wear characteristics, and economic considerations. Compared with other vegetable oils, palm oil is a relatively sustainable, environment-friendly, less expensive, and economically beneficial potential source of energy. Palm oil plantation and production is a major industry in Malaysia, contributing to the economic growth and development of the country. The properties of palm oil biodiesel, namely, high oxidation stability, good cold properties, cetane number, and higher viscosity, makes it a suitable diesel substitute. Compared with other vegetable oils and petroleum diesel fuels, palm oil is associated with better engine performance, higher specific fuel consumption, and shorter ignition delay. Use of palm oil also reduces exhaust emission of hydrocarbon, carbon monoxide, carbon dioxide, and smoke, but

  2. Theoretical progress in studying the characteristic x-ray emission from heavy few-electron ions

    International Nuclear Information System (INIS)

    Surzhykov, Andrey; Stohlker, Thomas; Fritzsche, Stephan; Kabachnik, Nikolai M

    2009-01-01

    Recent theoretical progress in the study of the x-ray characteristic emission from highly-charged, few-electron ions is reviewed. These investigations show that the bound-state radiative transitions in high-Z ions provide a unique tool for better understanding the interplay between the structural and dynamical properties of heavy ions. In order to illustrate such an interplay, detailed calculations are presented for the K α1 decay of the helium-like uranium ions U 90+ following radiative electron capture, Coulomb excitation and dielectronic recombination processes.

  3. Synthesis and atmospheric pressure field emission operation of W18O49 nanowires

    NARCIS (Netherlands)

    Agiral, A.; Gardeniers, Johannes G.E.

    2008-01-01

    Tungsten oxide W18O49 nanorods with diameters of 15−20 nm were grown on tungsten thin films exposed to ethene and nitrogen at 700 °C at atmospheric pressure. It was found that tungsten carbide formation enhances nucleation and growth of nanorods. Atmospheric pressure field emission measurements in

  4. Field determination of multipollutant, open area combustion source emission factors with a hexacopter unmanned aerial vehicle

    Science.gov (United States)

    An emission sensor/sampler system was coupled to a NASA hexacopter unmanned aerial system (UAS) to characterize gases and particles in the plume emitted from open burning of military ordnance. The UAS/sampler was tested at two field sites resulting in 33 flights at Radford, VA a...

  5. A vertex including emission of spin fields for an arbitrary bc system

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Madsen, R.A.; Roland, K.

    1990-01-01

    We construct the (N+2M) Point Vertex involving the emission of N Neveu-Schwarz and 2M Ramond states for a bosonic and fermionic bc system with a bockground charge Q. From it one can compute correlation functions on the sphere involving any number of spin fields. We show in detail that the vertex satisfies overlap conditions. (orig.)

  6. Emissions from Prescribed Burning of Agricultural Fields in the Pacific Northwest

    Science.gov (United States)

    Prescribed burns of winter wheat stubble and Kentucky bluegrass fields in northern Idaho and eastern Washington states (U.S.A.) were sampled using ground-, aerostat-, airplane-, and laboratory-based measurement platforms to determine emission factors, compare methods, and provide...

  7. Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells

    Czech Academy of Sciences Publication Activity Database

    Havrdová, M.; Poláková, K.; Skopalík, J.; Vůjtek, M.; Mokdad, A.; Homolková, M.; Tuček, J.; Nebesářová, Jana; Zbořil, R.

    2014-01-01

    Roč. 67, DEC 2014 (2014), s. 149-154 ISSN 0968-4328 Institutional support: RVO:60077344 Keywords : Field emission scanning electronmicroscopy (FE-SEM) * Stem cells * Iron oxide nanoparticles * Cellular morphology * Endosomes * Cell uptake Subject RIV: FD - Oncology ; Hematology Impact factor: 1.988, year: 2014

  8. Characteristics of On-road Diesel Vehicles: Black Carbon Emissions in Chinese Cities Based on Portable Emissions Measurement.

    Science.gov (United States)

    Zheng, Xuan; Wu, Ye; Jiang, Jingkun; Zhang, Shaojun; Liu, Huan; Song, Shaojie; Li, Zhenhua; Fan, Xiaoxiao; Fu, Lixin; Hao, Jiming

    2015-11-17

    Black carbon (BC) emissions from heavy-duty diesel vehicles (HDDVs) are rarely continuously measured using portable emission measurement systems (PEMSs). In this study, we utilize a PEMS to obtain real-world BC emission profiles for 25 HDDVs in China. The average fuel-based BC emissions of HDDVs certified according to Euro II, III, IV, and V standards are 2224 ± 251, 612 ± 740, 453 ± 584, and 152 ± 3 mg kg(-1), respectively. Notably, HDDVs adopting mechanical pump engines had significantly higher BC emissions than those equipped with electronic injection engines. Applying the useful features of PEMSs, we can relate instantaneous BC emissions to driving conditions using an operating mode binning methodology, and the average emission rates for Euro II to Euro IV diesel trucks can be constructed. From a macroscopic perspective, we observe that average speed is a significant factor affecting BC emissions and is well correlated with distance-based emissions (R(2) = 0.71). Therefore, the average fuel-based and distance-based BC emissions on congested roads are 40 and 125% higher than those on freeways. These results should be taken into consideration in future emission inventory studies.

  9. Effects of diesel/ethanol dual fuel on emission characteristics in a heavy-duty diesel engine

    Science.gov (United States)

    Liu, Junheng; Sun, Ping; Zhang, Buyun

    2017-09-01

    In order to reduce emissions and diesel consumption, the gas emissions characteris-tics of diesel/aqueous ethanol dual fuel combustion (DFC) were carried out on a heavy-duty turbocharged and intercooled automotive diesel engine. The aqueous ethanol is prepared by a blend of anhydrous ethanol and water in certain volume proportion. In DFC mode, aqueous ethanol is injected into intake port to form homogeneous charge, and then ignited by the diesel fuel. Results show that DFC can reduce NOx emissions but increase HC and CO emissions, and this trend becomes more prominent with the increase of water blending ratio. Increased emissions of HC and CO could be efficiently cleaned by diesel oxidation catalytic converter (DOC), even better than those of diesel fuel. It is also found that DFC mode reduces smoke remarkably, while increases some unconventional emissions such as formaldehyde and acetal-dehyde. However, unconventional emissions could be reduced approximately to the level of baseline engine with a DOC.

  10. Architectured Bi{sub 2}S{sub 3} nanoflowers: photoenhanced field emission study

    Energy Technology Data Exchange (ETDEWEB)

    Warule, Sambhaji S.; Kashid, Ranjit V.; Shinde, Deodatta R. [University of Pune, Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics (India); Chaudhari, Nilima S.; Kale, Bharat B., E-mail: kbbb1@yahoo.com [Centre for Materials for Electronics Technology (C-MET), Department of Information Technology, Government of India (India); More, Mahendra A., E-mail: mam@physics.unipune.ac.in [University of Pune, Center for Advanced Studies in Materials Science and Condensed Matter Physics, Department of Physics (India)

    2012-06-15

    In the present investigation, we demonstrate a facile hydrothermal/solvothermal route to fabricate elegant Bi{sub 2}S{sub 3} nanoflowers in large scale with highly oriented (001) surfaces. The synthesis route was observed to radically determine the overall morphology of the resultant product. Under hydrothermal conditions (12 h), formation of Bi{sub 2}S{sub 3} flowers on nickel foil composed with the self-assembled tapered nanorods were obtained. Whereas after prolonged reaction time (24 h), formation of ultra long micro belts were observed. Interestingly, the architectured Bi{sub 2}S{sub 3} flowers obtained by solvothermal route are seen to be composed with self assembled nanorods and it was also observed that the synthesis duration influences their shape, size, and areal density. Finding of such unique nanostructures on nickel foil arose by hydrothermal route exemplify a prominent photoenhanced field emission upon visible light illumination, which is attributed to the photoconductivity of Bi{sub 2}S{sub 3}. It is noteworthy that the field emission studies reveal low turn-on field of {approx}1.04 V/{mu}m, required to draw an emission current density of {approx}0.1 {mu}A/cm{sup 2}, which is found to be lower than the earlier reports. The average emission current is observed to be stable over the duration of 3 h. In addition, field emission behavior of a single Bi{sub 2}S{sub 3} flower (pasted on a tungsten microtip) has also been investigated. The high sensitivity and fast response of photoenhanced emission current switching indicate the Bi{sub 2}S{sub 3} nanoflowers as a promising candidate for micro/nano-optoelectronic devices.Graphical abstract.

  11. The characteristics on dose distribution of a large field

    International Nuclear Information System (INIS)

    Lee, Sang Rok; Jeong, Deok Yang; Lee, Btiung Koo; Kwon, Young Ho

    2003-01-01

    In special cases of Total Body Irradiation(TBI), Half Body Irradiation(HBI), Non-Hodgkin's lymphoma, E-Wing's sarcoma, lymphosarcoma and neuroblastoma a large field can be used clinically. The dose distribution of a large field can use the measurement result which gets from dose distribution of a small field (standard SSD 100 cm, size of field under 40 x 40 cm 2 ) in the substitution which always measures in practice and it will be able to calibrate. With only the method of simple calculation, it is difficult to know the dose and its uniformity of actual body region by various factor of scatter radiation. In this study, using Multidata Water Phantom from standard SSD 100 cm according to the size change of field, it measures the basic parameter (PDD,TMR,Output,Sc,Sp) From SSD 180 cm (phantom is to the bottom vertically) according to increasing of a field, it measures a basic parameter. From SSD 350 cm (phantom is to the surface of a wall, using small water phantom. which includes mylar capable of horizontal beam's measurement) it measured with the same method and compared with each other. In comparison with the standard dose data, parameter which measures between SSD 180 cm and 350 cm, it turned out there was little difference. The error range is not up to extent of the experimental error. In order to get the accurate data, it dose measures from anthropomorphous phantom or for this objective the dose measurement which is the possibility of getting the absolute value which uses the unlimited phantom that is devised especially is demanded. Additionally, it needs to consider ionization chamber use of small volume and stem effect of cable by a large field.

  12. The incidence angle influence on the structure of secondary-emission characteristics of single crystals

    International Nuclear Information System (INIS)

    Gasanov, E.R.; Aliyev, B.Z.

    2012-01-01

    Full text : The dependences of Wand MO single crystals in different atom planes have been studied in this work. It is revealed that maximums are added to each dependency and also minimums of first and second degree. This fact is explained by diffraction dynamic theory. It is established that electron diffraction oriented not perpendicularly to crystal surface is the reason of appearance of second order structure on studied secondary-emission characteristics. In the present work being the continuation and development of SEE investigations of high-melting metal single crystals begun earlier by authors, the structure dependence of SEE main characteristics of angle has been studied. This angle has been chosen because as it is mentioned before the bad repeatability in different experiments for it is observed

  13. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  14. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  15. Biodiesel production from waste cotton seed oil using low cost catalyst: Engine performance and emission characteristics

    Directory of Open Access Journals (Sweden)

    Duple Sinha

    2016-09-01

    Full Text Available Production of fatty acid methyl esters from waste cotton seed oil through transesterification was reported. The GC–MS analysis of WCCO oil was studied and the major fatty acids were found to be palmitic acid (27.76% and linoleic acid (42.84%. The molecular weight of the oil was 881.039 g/mol. A maximum yield of 92% biodiesel was reported when the reaction temperature, time, methanol/oil ratio and catalyst loading rate were 60 °C, 50 min, 12:1 and 3% (wt.%, respectively. The calcined egg shell catalyst was prepared and characterized. Partial purification of the fatty acid methyl esters was proposed for increasing the purity of the biodiesel and better engine performance. The flash point and the fire point of the biodiesel were found to be 128 °C and 136 °C, respectively. The Brake thermal efficiency of WCCO B10 biodiesel was 26.04% for maximum load, specific fuel consumption for diesel was 0.32 kg/kW h at maximum load. The use of biodiesel blends showed a reduction of carbon monoxide and hydrocarbon emissions and a marginal increase in nitrogen oxides (NOx emissions improved emission characteristics.

  16. Exhaust Emission Characteristics of Heavy Duty Diesel Engine During Cold and Warm Start

    Directory of Open Access Journals (Sweden)

    YANG Rong

    2014-07-01

    Full Text Available Through experiment conducted on a six cylinder direct injection diesel engine with SCR catalyst, effects of coolant temperature on rail pressure, injection quantity, excess air coefficient and emissions characteristics during cold and warm start were investigated. The results showed that, the maximum injection quantity during a starting event was several times higher than idling operation mode, so was the maximal opacity in the cold and warm starting process. When coolant temperature rose up to above 20℃, NOX emissions in the starting process exhibited peculiar rise which was times higher than idling mode. Compared with engine warm start, rail pressure, cycle fuel quantity, opacity, CO and HC emissions during engine cold start were higher in the course from their transient maximal values towards stabilized idling status. NOX in the same transient course, however, were lower in cold start. As coolant temperature rose, the maximal and the idling value of rail pressure and cycle fuel injection quantity during diesel engine starting process decreased gradually, the excess air coefficient increased to a certain degree, and the maximal and idling values of NOX increased gradually.

  17. Discharge characteristics in inhomogeneous fields under air flow

    DEFF Research Database (Denmark)

    Vogel, Stephan; Holbøll, Joachim

    2017-01-01

    the frequency and magnitude of partial discharges in the vicinity of the electrode due to an increased rate of space charge removal around the tip of the needle and in the gap. The positive polarity shows higher dependency on air flow compared to the negative polarity. It is shown that positive breakdown......This research investigates the impact of high velocity air flow on Partial Discharge (PD) patterns generated in strongly inhomogeneous fields. In the laboratory, a needle plane electrode configuration was exposed to a high electrical DC-field and a laminar air flow up to 22 ms. The needle...

  18. Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products: Correlation to Liquid Composition and Design Characteristics.

    Science.gov (United States)

    El-Hellani, Ahmad; Salman, Rola; El-Hage, Rachel; Talih, Soha; Malek, Nathalie; Baalbaki, Rima; Karaoghlanian, Nareg; Nakkash, Rima; Shihadeh, Alan; Saliba, Najat A

    2018-01-05

    Available in hundreds of device designs and thousands of flavors, electronic cigarette (ECIG) may have differing toxicant emission characteristics. This study assesses nicotine and carbonyl yields in the most popular brands in the U.S. market. These products included disposable, prefilled cartridge, and tank-based ECIGs. Twenty-seven ECIG products of 10 brands were procured and their power outputs were measured. The e-liquids were characterized for pH, nicotine concentration, propylene glycol/vegetable glycerin (PG/VG) ratio, and water content. Aerosols were generated using a puffing machine and nicotine and carbonyls were, respectively, quantified using gas chromatograph and high-performance liquid chromatography. A multiregression model was used to interpret the data. Nicotine yields varied from 0.27 to 2.91 mg/15 puffs, a range corresponding to the nicotine yield of less than 1 to more than 3 combustible cigarettes. Nicotine yield was highly correlated with ECIG type and brand, liquid nicotine concentration, and PG/VG ratio, and to a lower significance with electrical power, but not with pH and water content. Carbonyls, including the carcinogen formaldehyde, were detected in all ECIG aerosols, with total carbonyl concentrations ranging from 3.72 to 48.85 µg/15 puffs. Unlike nicotine, carbonyl concentrations were mainly correlated with power. In 15 puffs, some ECIG devices emit nicotine quantities that exceed those of tobacco cigarettes. Nicotine emissions vary widely across products but carbonyl emissions showed little variations. In spite of that ECIG users are exposed to toxicologically significant levels of carbonyl compounds, especially formaldehyde. Regression analysis showed the importance of design and e-liquid characteristics as determinants of nicotine and carbonyl emissions. Periodic surveying of characteristics of ECIG products available in the marketplace is valuable for understanding population-wide changes in ECIG use patterns over time. © The

  19. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    Science.gov (United States)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  20. Unstable plasma characteristics in mirror field electron cyclotron ...

    Indian Academy of Sciences (India)

    left hand polarized (LHP) wave. Shufflbotham and ... of a Maxwellian distribution and also the non-effectiveness of a magnetic field on plasma ... Plot of microwave input power versus reflected power and ion current density at pressure 0.4 ...

  1. Industrial--hydrogeological characteristics of water in the Orenburg Field

    Energy Technology Data Exchange (ETDEWEB)

    Kortsenshtein, V N; Zhabrev, I P; Uchastkin, Yu V; Alekseeva, I V

    1977-06-01

    An examination is made of the industrial hydrogeological conditions of the Orenburg Field in connection with the beginning of its development. Features of pay dirt water manifestation are demonstrated, genetic types of water brought out by gas flow are described, and methods are suggested for processing hydrogeological information. 3 references, 2 figures, 1 table.

  2. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    Science.gov (United States)

    Gupta, Bipin Kumar; Kedawat, Garima; Gangwar, Amit Kumar; Nagpal, Kanika; Kashyap, Pradeep Kumar; Srivastava, Shubhda; Singh, Satbir; Kumar, Pawan; Suryawanshi, Sachin R.; Seo, Deok Min; Tripathi, Prashant; More, Mahendra A.; Srivastava, O. N.; Hahm, Myung Gwan; Late, Dattatray J.

    2018-01-01

    The vertical aligned carbon nanotubes (CNTs)-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si) wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness) as a barrier layer and iron (Fe, 1.5 nm thickness) as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM) images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2-30 walls with an inner diameter of 3-8 nm. Raman spectrum analysis shows G-band at 1580 cm-1 and D-band at 1340 cm-1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm), low turn-on field (0.6 V/μm) and field enhancement factor (6917) with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  3. High-performance field emission device utilizing vertically aligned carbon nanotubes-based pillar architectures

    Directory of Open Access Journals (Sweden)

    Bipin Kumar Gupta

    2018-01-01

    Full Text Available The vertical aligned carbon nanotubes (CNTs-based pillar architectures were created on laminated silicon oxide/silicon (SiO2/Si wafer substrate at 775 °C by using water-assisted chemical vapor deposition under low pressure process condition. The lamination was carried out by aluminum (Al, 10.0 nm thickness as a barrier layer and iron (Fe, 1.5 nm thickness as a catalyst precursor layer sequentially on a silicon wafer substrate. Scanning electron microscope (SEM images show that synthesized CNTs are vertically aligned and uniformly distributed with a high density. The CNTs have approximately 2–30 walls with an inner diameter of 3–8 nm. Raman spectrum analysis shows G-band at 1580 cm−1 and D-band at 1340 cm−1. The G-band is higher than D-band, which indicates that CNTs are highly graphitized. The field emission analysis of the CNTs revealed high field emission current density (4mA/cm2 at 1.2V/μm, low turn-on field (0.6 V/μm and field enhancement factor (6917 with better stability and longer lifetime. Emitter morphology resulting in improved promising field emission performances, which is a crucial factor for the fabrication of pillared shaped vertical aligned CNTs bundles as practical electron sources.

  4. MAGNETIC FIELD STRUCTURE OF THE LARGE MAGELLANIC CLOUD FROM FARADAY ROTATION MEASURES OF DIFFUSE POLARIZED EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S. A. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); McClure-Griffiths, N. M.; McConnell, D. [Australia Telescope National Facility, CSIRO Astronomy and Space Science, Epping, NSW 1710 (Australia); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Haverkorn, M. [Department of Astrophysics, Radboud University, P.O. Box 9010, 6500-GL Nijmegen (Netherlands); Beck, R. [Max-Planck-Institut fuer Radioastronomie, D-53121 Bonn (Germany); Wolleben, M. [Square Kilometre Array South Africa, The Park, Pinelands 7405 (South Africa); Stanimirovic, S. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Dickey, J. M. [Physics Department, University of Tasmania, Hobart, TAS 7001 (Australia); Staveley-Smith, L., E-mail: mao@astro.wisc.edu [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia)

    2012-11-01

    We present a study of the magnetic field of the Large Magellanic Cloud (LMC), carried out using diffuse polarized synchrotron emission data at 1.4 GHz acquired at the Parkes Radio Telescope and the Australia Telescope Compact Array. The observed diffuse polarized emission is likely to originate above the LMC disk on the near side of the galaxy. Consistent negative rotation measures (RMs) derived from the diffuse emission indicate that the line-of-sight magnetic field in the LMC's near-side halo is directed coherently away from us. In combination with RMs of extragalactic sources that lie behind the galaxy, we show that the LMC's large-scale magnetic field is likely to be of quadrupolar geometry, consistent with the prediction of dynamo theory. On smaller scales, we identify two brightly polarized filaments southeast of the LMC, associated with neutral hydrogen arms. The filaments' magnetic field potentially aligns with the direction toward the Small Magellanic Cloud (SMC). We suggest that tidal interactions between the SMC and the LMC in the past 10{sup 9} years are likely to have shaped the magnetic field in these filaments.

  5. Numerical investigation on the flow, combustion, and NOX emission characteristics in a 660 MWe tangential firing ultra-supercritical boiler

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2016-02-01

    Full Text Available A three-dimensional numerical simulation was carried out to study the pulverized-coal combustion process in a tangentially fired ultra-supercritical boiler. The realizable k-ε model for gas coupled with discrete phase model for coal particles, P-1 radiation model for radiation, two-competing-rates model for devolatilization, and kinetics/diffusion-limited model for combustion process are considered. The characteristics of the flow field, particle motion, temperature distribution, species components, and NOx emissions were numerically investigated. The good agreement of the measurements and predictions implies that the applied simulation models are appropriate for modeling commercial-scale coal boilers. It is found that an ideal turbulent flow and particle trajectory can be observed in this unconventional pulverized-coal furnace. With the application of over-fire air and additional air, lean-oxygen combustion takes place near the burner sets region and higher temperature at furnace exit is acquired for better heat transfer. Within the limits of secondary air, more steady combustion process is achieved as well as the reduction of NOx. Furthermore, the influences of the secondary air, over-fire air, and additional air on the NOx emissions are obtained. The numerical results reveal that NOx formation attenuates with the decrease in the secondary air ratio (γ2nd and the ratio of the additional air to the over-fire air (γAA/γOFA was within the limits.

  6. Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods

    International Nuclear Information System (INIS)

    Li Chun; Fang Guojia; Yuan Longyan; Liu Nishuang; Ai Lei; Xiang Qi; Zhao Dongshan; Pan Chunxu; Zhao Xingzhong

    2007-01-01

    The field emission (FE) properties of carbon nanotube (CNT) bundle arrays grown on vertically self-aligned ZnO nanorods (ZNRs) are reported. The ZNRs were first synthesized on ZnO-seed-coated Si substrate by the vapour phase transport method, and then the radically grown CNTs were grown directly on the surface of the ZNRs from ethanol flames. The CNT/ZNR composite showed a turn-on field of 1.5 V μm -1 (at 0.1 μA cm -2 ), a threshold field of 4.5 V μm -1 (at 1 mA cm -2 ) and a stable emission current with fluctuations of 5%, demonstrating significantly enhanced FE of ZNRs due to the low work function and high aspect ratio of the CNTs, and large surface-to-volume ratio of the underlying ZNRs

  7. Field-emission properties of transparent tungsten oxide nano-urchins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyung [Kyungpook National University, Nano-applied Physics Laboratory, Department of Physics, Daegu (Korea, Republic of)

    2012-09-15

    The field-emission properties of transparent tungsten oxide nano-urchin (NU) films deposited on conducting glass substrates were examined. The novel crystalline tungsten oxide NUs consisted of nanowires added to a spherical shell. The WO{sub 2.72} NUs showed better field-emission properties than the WO{sub 3} NUs with a low turn-on field of approximately 5.8 V/{mu}m and a current density as high as 1.3 mA/cm{sup 2} at 7.2 V/mm. The WO{sub x} NUs films could be used in FE applications using a large-area glass substrate without the need for a catalyst and a mechanical rubbing or lift-up process. These results have implications for the enhancement of FE properties by further tuning the WO{sub x} phases. (orig.)

  8. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    Science.gov (United States)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  9. Field-emission liquid-metal ion source and triode ion gun

    International Nuclear Information System (INIS)

    Komuro, M.; Kawakatsu, H.

    1981-01-01

    A pointed-filament-type field-emission liquid-metal ion source is designed and employed as a gold ion source. By adding a crossbar across a hairpin bend, the amount of the gold adhering on the filament is increased. The lifetime is estimated to be over 200 h at 10-mA emission current. The emission current increases with increasing extraction voltage up to a saturation value which is ascribed to a limitation of the supply of liquid gold to the needle apex. The value of current density per unit solid angle is 30 mA/sr at a total current of 30 mA, which is of the same order as that obtained from a gallium ion source previously reported. Emission current fluctuations of a few tens of percent of the dc component are observed. In order to regulate the emission current and suppress current fluctuations, a bias electrode in addition to a counterelectrode is placed close to the needle apex. With such a triode structure, the emission current is regulated by a bias voltage of several hundred volts and stabilized to within 1% by means of feedback to the bias voltage of a current monitor output

  10. Diurnal variation of methane emission from a paddy field in Brazilian Southeast

    Directory of Open Access Journals (Sweden)

    Magda Aparecida de Lima

    2018-04-01

    Full Text Available ABSTRACT: This study aimed to investigate the diurnal variation of methane (CH4 emission in a flooded-irrigated rice field at different stages of the plant development under tropical climate in three growing seasons, in order to determine the most appropriate time for gas sampling in the Brazilian Southeast region. It aimed also to verify correlations between CH4 flux and air, water and soil temperatures, and solar radiation. The CH4 emissions were measured every 3-hour interval on specific days in different development stages of the flooded rice in the Experiment Station of the Agência Paulista de Tecnologia dos Agronegócios (APTA, Pólo Regional Vale do Paraíba, at Pindamonhangaba, State of São Paulo (22°55’ S, 45°30’ W, Brazil. Different CH4 emission rates were observed among the plant growth stages and also among the growing seasons. The CH4 emission showed high correlation with the soil temperature at 2cm depth. At this depth, the CH4 emission activation energy in response to soil temperature was higher in the stage R2. Emission peaks were observed at afternoon, while lower fluxes were recorded at the early morning. The most appropriate local time for gas sampling was estimated at 12:11:15a.m.±01:14:16 and 09:05:49p.m.±01:29:04.

  11. Scalar boson emission by electrons in the Weinberg-Salam theory under a constant electromagnetic field

    International Nuclear Information System (INIS)

    Rodionov, V.N.; Studenikin, A.I.

    1985-01-01

    Consideration of processes with the assistance of virtual and real Higgs scalar neutral σ-bosons in the presence of a constant external crossed electromagnetic field is conducted. In the second order of the perturbation theory in the Weinberg-Jalam model corresponding contribution into mass lepton operator in this base probability dependence of σ-boson emission and radiation field σ-bosn effects on the crossed field parameter is investigated: x=√(eFsub(μν)psup(ν)sup(2)/msup(3)

  12. STUDI EMISI TUNGKU MASAK RUMAH TANGGA (Study for Emission Characteristic of Household Stoves

    Directory of Open Access Journals (Sweden)

    Agus Haryanto

    2013-03-01

    Full Text Available The objective of this research was to study emission characteristic of household stoves. Five stoves were tested, namely clay pot biomass stove, brick biomass stove, kerosene stove, coal stove, and LPG stove.  Emission parameters to be measured were CO, NO2, SO2, and particulates. Gas emission was measured using gas analyzer Wolfsense TG 501, while particulate was determined based on Indonesian National Standard (SNI: 19-7117.12-2005. Results showed that LPG stove emitted no CO indicating that complete burning existed. Other stoves emitted CO with kerosene stove exhibited the highest CO emission of 1074 μg/m3. Biomass pot stoves produced SO2 (722 μg/m3 which is lower than LPG stove (1488 μg/m3 and kerosene stove (1055 μg/m3, but higher than coal stove (290 μg/m3. On the other side, biomass pot stoves produced more NO2 (99 μg/m3 with pot stove as compared to kerosene stove (25 μg/m3. Particulate emission increased based on the fuels used with an order from the lowest was LPG stove, kerosene stove, coal stove, and biomass stove. Key words: emission, stove, biomass, fossil fuels   ABSTRAK Tujuan penelitian ini adalah untuk mengkaji karakteristik emisi beberapa tungku atau kompor dapur rumah tangga. Penelitian dilakukan dengan menggunakan lima jenis tungku atau kompor, yaitu tungku biomassa pot tebal, tungku biomassa bata, kompor minyak tanah, kompor batubara, dan kompor LPG. Parameter emisi yang diukur meliputi CO, NO2, SO2 dan partikel. Emisi gas diukur menggunakan gas analyser Wolfsense TG 501, sedangkan emisi partikel debu ditentukan berdasarkan standar SNI 19-7117.12-2005. Hasil penelitian menunjukkan bahwa kompor LPG tidak menghasilkan emisi CO. Kompor minyak tanah menghasilkan emisi CO paling tinggi yaitu (1074 μg/m3. Kompor LPG menghasilkan emisi SO2 paling banyak (1488 μg/m3, diikuti kompor minyak tanah (1055 μg/m3, tungku kayu pot (722 μg/m3, dan kompor batubara (290 μg/m3. Di pihak lain, tungku biomassa pot tebal

  13. Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine

    International Nuclear Information System (INIS)

    Ganapathy, T.; Gakkhar, R.P.; Murugesan, K.

    2011-01-01

    Highlights: → The effect of injection timing, load and speed on BSFC, BTE, peak pressure, HRR, CO, HC, NO and smoke were investigated. → Advanced injection timing caused reduced BSFC, CO, HC, smoke and increased BTE, P max , HRR max and NO for Jatropha biodiesel. → At 15 N m, 1800 rpm and 340 CAD, reduction in BSFC, CO, HC and smoke were 5.1%, 2.5%, 1.2% and 1.5% for Jatropha biodiesel. → Increase in BTE, P max , HRR max and NO at 15 N m, 1800 rpm and 340 CAD were 5.3%, 1.8%, 26% and 20% for Jatropha biodiesel. → Optimal injection timing for Jatropha biodiesel with minimum BSFC, CO, HC, smoke and maximum BTE, P max , HRR is 340 CAD. -- Abstract: The study of effect of injection timing along with engine operating parameters in Jatropha biodiesel engine is important as they significantly affect its performance and emissions. The present paper focuses on the experimental investigation of the influence of injection timing, load torque and engine speed on the performance, combustion and emission characteristics of Jatropha biodiesel engine. For this purpose, the experiments were conducted using full factorial design consisting of (3 3 ) with 27 runs for each fuel, diesel and Jatropha biodiesel. The effect of variation of above three parameters on brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak cylinder pressure (P max ), maximum heat release rate (HRR max ), CO, HC, NO emissions and smoke density were investigated. It has been observed that advance in injection timing from factory settings caused reduction in BSFC, CO, HC and smoke levels and increase in BTE, P max , HRR max and NO emission with Jatropha biodiesel operation. However, retarded injection timing caused effects in the other way. At 15 N m load torque, 1800 rpm engine speed and 340 crank angle degree (CAD) injection timing, the percentage reduction in BSFC, CO, HC and smoke levels were 5.1%, 2.5%, 1.2% and 1.5% respectively. Similarly the percentage increase in BTE, P

  14. Study of Acoustic Emission and Mechanical Characteristics of Coal Samples under Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Huamin Li

    2015-01-01

    Full Text Available To study the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, the uniaxial compression tests are carried out under various levels of loading rates, including 0.001 mm/s, 0.002 mm/s, and 0.005 mm/s, respectively, using AE-win E1.86 acoustic emission instrument and RMT-150C rock mechanics test system. The results indicate that the loading rate has a strong impact on peak stress and peak strain of coal samples, but the effect of loading rate on elasticity modulus of coal samples is relatively small. When the loading rate increases from 0.001 mm/s to 0.002 mm/s, the peak stress increases from 22.67 MPa to 24.99 MPa, the incremental percentage is 10.23%, and under the same condition the peak strain increases from 0.006191 to 0.007411 and the incremental percentage is 19.71%. Similarly, when the loading rate increases from 0.002 mm/s to 0.005 mm/s, the peak stress increases from 24.99 MPa to 28.01 MPa, the incremental percentage is 12.08%, the peak strain increases from 0.007411 to 0.008203, and the incremental percentage is 10.69%. The relationship between acoustic emission and loading rate presents a positive correlation, and the negative correlation relation has been determined between acoustic emission cumulative counts and loading rate during the rupture process of coal samples.

  15. Emission characteristics and size distribution of polycyclic aromatic hydrocarbons from coke production in China

    Science.gov (United States)

    Mu, Ling; Peng, Lin; Liu, Xiaofeng; He, Qiusheng; Bai, Huiling; Yan, Yulong; Li, Yinghui

    2017-11-01

    Coking is regarded as a major source of atmospheric polycyclic aromatic hydrocarbons (PAHs), but few researches have been conducted on the emission characteristics of PAHs from coke production. In this study, emissions of size-segregated particulate matter (PM) and particle-bound PAHs emitted from charging of coal (CC) and pushing of coke (PC) in four typical coke plants were determined. The emission factors on average, sums of CC and PC, were 4.65 mg/kg, 5.96 mg/kg, 19.18 μg/kg and 20.69 μg/kg of coal charged for PM2.1 (≤ 2.1 μm), PM, PAHs in PM2.1 and total-PAHs, respectively. PM and PAHs emission from plants using stamp charging were significantly more than those using top charging. The profile of PAHs in PM with size ≤ 1.4 μm (PM1.4) emitted from CC process were similar with that from PC, however, it revealed obviously different tendency for PAHs in PM with size > 1.4 μm, indicating the different formation mechanism for coarse particles emitted from CC and PC. Size distributions of PM and PAHs indicated that they were primarily connected with PM1.4, and the contributions of PM1.4 to PM and PAHs emitted from the plants using stamp charging were higher than those using top charging. Some improved technology in air-pollution control devices should be considered in coke production in future based on the considerable impacts of PM1.4 and PAHs on human health and ambient air quality.

  16. Investigation and analysis of neutron emission characteristics in Denaplasma focus facility

    International Nuclear Information System (INIS)

    Goodarzi, Sh.; Amrollahi, R.; Babazadeh, A.; Nasiri, A.

    2003-01-01

    Since the first experiments with plasma focus facilities in 1960' s. These devices are known as intense sources of neutron when the working gas contains deuterium with a proper density. Most of the emitted neutrons are produced by D-D reactions, but the mechanism of these reactions in not still clear completely. In this paper, the results of experimental investigations of neutron emission characteristics in D ena p lasma focus facility (Filipov type, 90 kJ, 25 kV) over a range of discharge voltages and pressures are presented. Out working gases are D 2 and D 2+%1 Kr, two different conic and flat insert anodes were employed. We have simultaneously measured the total emission in our experiments for analyzing the neutron generation mechanism in this device. We have found the upper and lower pressure limits and the optimum pressure for neutron generation, and we have observed the double pluses structure of neutron signal for the first time in this device. Form the experimental results, it seems that both thermonuclear and no thermonuclear mechanisms are always present in neutron generation, but their contribution in the total yield is strongly dependent on experimental conditions (initial pressure, discharge voltage, gas admixture, etc.). It was found that the range of variation of total neutron yield and neutron emission anisotropy factor for experiments with D + %1 Kr is wider than experiments with D 2, and the best neutron emission results belongs to discharges in D 2 + %1 Kr with a conic insert anode. By employing D 2 + %1 Kr with a conic insert anode, and varying pressure between 0.3-2 torr at a discharge voltage of 16 kV, it can be deduced that in low pressures ( n ∝ I α ρ ∝E α / 2 was found about 3.62 for D 2 + %1 Kr and 3 for D 2

  17. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  18. Field electron emission improvement of ZnO nanorod arrays after Ar plasma treatment

    International Nuclear Information System (INIS)

    Li Chun; Fang Guojia; Yuan Longyan; Liu Nishuang; Li Jun; Li Dejie; Zhao Xingzhong

    2007-01-01

    Vertically well-aligned single crystal ZnO nanorod arrays were synthesized and enhanced field electron emission was achieved after radio-frequency (rf) Ar plasma treatment. With Ar plasma treatment for 30 min, flat tops of the as-grown ZnO nanorods have been etched into sharp tips without damaging ZnO nanorod geometrical morphologies and crystallinity. After the Ar ion bombardment, the emission current density increases from 2 to 20 μA cm -2 at 9.0 V μm -1 with a decrease in turn-on voltage from 7.1 to 4.8 V μm -1 at a current density of 1 μA cm -2 , which demonstrates that the field emission of the as-grown ZnO nanorods has been efficiently enhanced. The scanning electron microscopy (SEM) results, in conjunction with the results of transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence observation, are used to investigate the mechanisms of the field emission enhancement. It is believed that the enhancements can be mainly attributed to the sharpening of rod tops, and the decrease of electrostatic screening effect

  19. Influence of water-soaking time on the acoustic emission characteristics and spatial fractal dimensions of coal under uniaxial compression

    Directory of Open Access Journals (Sweden)

    Jia Zheqiang

    2017-01-01

    Full Text Available The water-soaking time affects the physical and mechanical properties of coals, and the temporal and spatial evolution of acoustic emissions reflects the fracture damage process of rock. This study conducted uniaxial compression acoustic emissions tests of coal samples with different water-soaking times to investigate the influence of water-soaking time on the acoustic emissions characteristics and spatial fractal dimensions during the deformation and failure process of coals. The results demonstrate that the acoustic emissions characteristics decrease with increases in the water-soaking time. The acoustic emissions spatial fractal dimension changes from a single dimensionality reduction model to a fluctuation dimensionality reduction model, and the stress level of the initial descending point of the fractal dimension increases. With increases in the water-soaking time, the destruction of coal transitions from continuous intense failure throughout the process to a lower release of energy concentrated near the peak strength.

  20. Decreasing the emissions of a partially premixed gasoline fueled compression ignition engine by means of injection characteristics and EGR

    Directory of Open Access Journals (Sweden)

    Nemati Arash

    2011-01-01

    Full Text Available This paper is presented in order to elucidate some numerical investigations related to a partially premixed gasoline fuelled engine by means of three dimensional CFD code. Comparing with the diesel fuel, gasoline has lower soot emission because of its higher ignition delay. The application of double injection strategy reduces the maximum heat release rate and leads to the reduction of NOx emission. For validation of the model, the results for the mean in-cylinder pressure, H.R.R., NOx and soot emissions are compared with the corresponding experimental data and show good levels of agreement. The effects of injection characteristics such as, injection duration, spray angle, nozzle hole diameter, injected fuel temperature and EGR rate on combustion process and emission formation are investigated yielding the determination of the optimal point thereafter. The results indicated that optimization of injection characteristics leads to simultaneous reduction of NOx and soot emissions with negligible change in IMEP.

  1. Long term continuous field survey to assess nutrient emission impact from irrigated paddy field into river catchment

    Science.gov (United States)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2017-04-01

    In order to achieve good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. As we could reduce impact from urban and industrial activities by wastewater treatment, pollution from point sources are likely to be controlled. Besides them, nutrient emission from agricultural activity is dominant pollution source into the river system. In many countries in Asia and Africa, rice is widely cultivated and paddy field covers large areas. In Japan 54% of its arable land is occupied with irrigated paddy field. While paddy field can deteriorate river water quality due to fertilization, it is also suggested that paddy field can purify water. We carried out field survey in middle reach of the Tone River Basin with focus on a paddy field IM. The objectives of the research are 1) understanding of water and nutrient balance in paddy field, 2) data collection for assessing nutrient emission. Field survey was conducted from June 2015 to October 2016 covering two flooding seasons in summer. In our measurement, all input and output were measured regarding water, N and P to quantify water and nutrient balance in the paddy field. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and flooding water, we tried to quantitatively understand water, N and P cycle in a paddy field including seasonal trends, and changes accompanied with rainy events and agricultural activities like fertilization. Concerning water balance, infiltration rate was estimated by following equation. Infiltration=Irrigation water + Precipitation - Evapotranspiration -Outflow We estimated mean daily water balance during flooding season. Infiltration is 11.9mm/day in our estimation for summer in 2015. Daily water reduction depth (WRD) is sum of Evapotranspiration and Infiltration. WRD is 21.5mm/day in IM and agrees with average value in previous research. Regarding nutrient balance, we estimated an annual N and

  2. Oil palm and the emission of greenhouse gasses- from field measurements in Indonesia

    Science.gov (United States)

    Rahman, Niharika; Bruun, Thilde Bech; Giller, Ken E.; Magid, Jakob; van de Ven, Gerrie; de Neergaard, Andreas

    2017-04-01

    Palm oil from the oil palm (Elaeis guianensis) has in recent years become the world's most important vegetable oil. The increasing demand for palm oil has led to expansion of oil palm plantations, which has caused environmental controversies associated with carbon losses and the use of large amounts of mineral fertilizers. Efforts to increase sustainability of oil palm cultivation, include recycling of oil-mill residues and pruning's, but with this comes increased potential for methane emission from the plantations. Until now no field-based data on greenhouse gas emissions from oil palm plantations have been reported. Here for the first time we present data from a long term (360 days) field trial in Bah Lias Research Station, North Sumatra, Indonesia on greenhouse gas emissions from an oil palm plantation with various treatments of recycled oil palm waste products, fertilizers and simulated rainfall. The first experiment was conducted over a full year (dry + wet season) with mineral fertilizer treatments including urea and ammonium sulphate, and organic fertilizer treatments constituting: empty fruit bunches (EFB), enriched mulch (EFB + palm oil mill effluent (POME) ) and pruned oil palm fronds (OPF). Treatment doses represent the current management in Indonesian plantations and the higher doses that are expected in the imminent future. For the organic treatments several methods of application (applied in inter-rows, piles, patches or bands) were evaluated. The second experiment investigated effects of soil water saturation on GHG emissions through adding 25 mm simulated rainfall per day for 21 days. Each palm tree received 1 kg of N fertilizer as urea or ammonium sulphate and enriched mulch. The gas fluxes in the fields was measured by a large static-chamber (1.8 m x 1.2 m) method and CH4 and N2O concentrations were determined using gas chromatographs. We found that emissions were significantly affected by the type and dose of mineral fertilizers. Application of

  3. Analysis of the emission characteristics of ion sources for high-value optical counting processes

    International Nuclear Information System (INIS)

    Beermann, Nils

    2009-01-01

    The production of complex high-quality thin film systems requires a detailed understanding of all partial processes. One of the most relevant partial processes is the condensation of the coating material on the substrate surface. The optical and mechanical material properties can be adjusted by the well-defined impingement of energetic ions during deposition. Thus, in the past, a variety of different ion sources were developed. With respect to the present and future challenges in the production of precisely fabricated high performance optical coatings, the ion emission of the sources has commonly not been characterized sufficiently so far. This question is addressed in the frame of this work which itself is thematically integrated in the field of process-development and -control of ion assisted deposition processes. In a first step, a Faraday cup measurement system was developed which allows the spatially resolved determination of the ion energy distribution as well as the ion current distribution. Subsequently, the ion emission profiles of six ion sources were determined depending on the relevant operating parameters. Consequently, a data pool for process planning and supplementary process analysis is made available. On the basis of the acquired results, the basic correlations between the operating parameters and the ion emission are demonstrated. The specific properties of the individual sources as well as the respective control strategies are pointed out with regard to the thin film properties and production yield. Finally, a synthesis of the results and perspectives for future activities are given. (orig.)

  4. METHANE EMISSION FROM PADDY FIELDS AS INFLUENCED BY DIFFERENT WATER REGIMES IN CENTRAL JAVA

    Directory of Open Access Journals (Sweden)

    Prihasto Setyanto

    2013-07-01

    Full Text Available The concentration of methane (CH4 in the atmosphere is increasing at 1% per annum and rice fields are one of the sources that contribute to about 10-15% of the atmospheric CH4. One of the options to reduce greenhouse gas emission from rice fields is probably through water management. A field study was conducted to investigate the effects of water management practices on CH4 emission from rice field plots on a silty sand Aeric Tropaquept soil at Research Station for Agricultural Environment Preservation, Jakenan, Central Java, Indonesia, during the dry season of March to June 2002. Four water regimes tested were: (1 5 cm continuous flooding (CF, (2 0-1 cm continuous flooding (ST, (3 intermittent irrigation (IR where plots received continuously 5 cm of flooding with two times of draining at 15-20 and 25-30 days after transplanting (DAT, and (4 pulse irrigation (PI where plots were watered until 5 cm level and left to dry by itself until the water table reached 30 cm beneath soil surface then watered again. The total CH4 emissions of the four water treatments were 254, 185, 136 and 96 kg CH4 ha-1 for CF, ST, IR and PI, respectively. Methane emission increased during the early growing season, which coincided with the low redox potential of -100 to -150 mV in all treatments. Dry matter weight of straw and filled grain among the water treatments did not show significant differences. Likewise, total grain yield at 14% moisture content was not significantly different among treatments. However, this result should be carefully interpreted because the rice plants in all water treatments were infested by stem borer, which reduced the total grain yield of IR64 between 11% and 16%. This study suggests that intermittent and pulse irrigation practices will be important not only for water use efficiency, but also for CH4 emission reduction.

  5. Time characteristics of photon fields at a nuclear medicine clinic

    International Nuclear Information System (INIS)

    Zimak, J.; Hermanska, J.; Sabol, J.

    1998-01-01

    The radiation fields were measured at the Nuclear Medicine Clinic of the Faculty Hospital in Prague-Motol. Gamma photons from iodine 131 administered to the patients is the main contributor to the fields. The dose rates at short distances from the patients can be as high as 20 mSv/h, whereby the cumulated doses to the health care personnel can exceed the annual limits for professional exposures. It is very important that unnecessary close contact with the patients be avoided unless emergency of other urgent procedures are required. Administration of high activities to several patients sharing a room in the ward should also be taken into account when handling the patients (including food service, housekeeping, changing linen, etc.). In normal circumstances, the radiation level in corridors and at other places accessible to cancer patients within the clinic are usually below 5 μSv/h averaged for 1 min intervals. (P.A.)

  6. Instrument for the measuring magnetic field characteristics of induction acceleration

    International Nuclear Information System (INIS)

    Novikov, V.M.; Romasheva, P.I.

    1976-01-01

    An instrument for the measuring instantaneous values of variable and pulsed magnetic fields with an amplitide of 0.005-2.0 and duration of 5x10 -6 -2x10 -2 sec is described. Time resolution is not less than 0.5 musec, measuring accuracy is about 1%. Induction coils are used as sensors. A digital voltmeter serves as a secondary recorder

  7. SOME CHARACTERISTICS OF THE "KONGORA" - TOMISLAVGRAD COAL FIELD (WEST HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Stanislav Živković

    1997-12-01

    Full Text Available According to it's energy potential »Kongora« coal field is very important source of energy. Coal strech, spreading and laying and proportion between coal and barren give good presumption for a rentabile surface exploitation. The coal analyses, specially analysis of sulphur content showed, that content of harm component on the update technology level is in permissible limits, and exploitation in thermal power plants will not destroy environment (the paper is published in Croatian.

  8. Transition from Fowler-Nordheim field emission to space charge limited current density

    International Nuclear Information System (INIS)

    Feng, Y.; Verboncoeur, J. P.

    2006-01-01

    The Fowler-Nordheim law gives the current density extracted from a surface under strong fields, by treating the emission of electrons from a metal-vacuum interface in the presence of an electric field normal to the surface as a quantum mechanical tunneling process. Child's law predicts the maximum transmitted current density by considering the space charge effect. When the electric field becomes high enough, the emitted current density will be limited by Child's law. This work analyzes the transition of the transmitted current density from the Fowler-Nordheim law to Child's law space charge limit using a one-dimensional particle-in-cell code. Also studied is the response of the emission model to strong electric fields near the transition point. We find the transition without geometrical effort is smooth and much slower than reported previously [J. P. Barbour, W. W. Dolan, J. K. Trolan, E. E. Martin, and W. P. Dyke, Phys. Rev. 92, 45 (1953)]. We analyze the effects of geometric field enhancement and work function on the transition. Using our previous model for effective field enhancement [Y. Feng and J. P. Verboncoeur, Phys. Plasmas 12, 103301 (2005)], we find the geometric effect dominates, and enhancement β>10 can accelerate the approach to the space charge limit at practical electric field. A damped oscillation near the local plasma frequency is observed in the transient system response

  9. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    Science.gov (United States)

    Cho, Kyu-Gong

    2000-12-01

    utilized to optimize the thin film phosphor properties for the application of field emission flat panel displays.

  10. The Breakdown Mechanisms In Electrical Discharges: The Role Of The Field Emission Effect In Direct Current Discharges In Micro gaps

    International Nuclear Information System (INIS)

    Radmilovic-Radjenovic, M.; Radjenovic, B.; Bojarov, A.; Klas, M.; Matejcik, S.

    2013-01-01

    This review represents an attempt to sum up the current state of the research in the field of breakdown phenomena in electrical discharges. The paper provides facts and theories concerning different classes of direct current, radio and microwave frequency discharges, in vacuum, in the gas and in liquids, without and in the presence of the magnetic fields. The emphasize was made on the field emission effects and on the fundamental aspects of the breakdown phenomena in micro discharges via discussions and analysis of the experimental, theoretical and simulation results. It was found that the Paschen's law is not applicable for the micron gap sizes, when deviations from the standard scaling law become evident and modified Paschen curve should be used. The explanation of the deviations from the Paschen law was attributed to the secondary electron emission enhanced by the strong field generated in micro gaps. The experiments were carried out in order to establish scaling law in micro gaps. The volt-ampere characteristics were also recorded and compared with the theoretical predictions based on the Fowler-Nordheim theory. The importance of the enhancement factor and the space charge on results was also considered. On the basis of the experimental breakdown voltage curves, the effective yields in micro gaps have been estimated for different gases which can be served as input data in modeling. The effective yields allow analytically produce modified Paschen curves that predicts the deviations from the Paschen law observed in the experiments. In addition, we present results of computer simulations using a Particle-in-cell/Monte Carlo Collisions (PIC/MCC) code with the secondary emission model in order to include the field emission enhanced secondary electron production in micro gaps. The agreement between simulation and experimental results suggest that computer simulations can be used to improve understanding of the plasma physics as an alternative to analytical

  11. Emission of massive scalar fields by a higher-dimensional rotating black hole

    International Nuclear Information System (INIS)

    Kanti, P.; Pappas, N.

    2010-01-01

    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m Φ ≤1 TeV in the bulk and m Φ ≤0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 34%) when the mass of the emitted field is taken into account.

  12. Effect of sequential surface irrigations on field-scale emissions of 1,3-dichloropropene.

    Science.gov (United States)

    Yates, S R; Knuteson, J; Ernst, F F; Zheng, W; Wang, Q

    2008-12-01

    A field experiment was conducted to measure subsurface movement and volatilization of 1,3-dichloropropene (1,3-D) after shank injection to an agricultural soil. The goal of this study was to evaluate the effect of sprinkler irrigation on the emissions of 1,3-D to the atmosphere and is based on recent research that has shown that saturating the soil pore space reduces gas-phase diffusion and leads to reduced volatilization rates. Aerodynamic, integrated horizontal flux, and theoretical profile shape methods were used to estimate fumigant volatilization rates and total emission losses. These methods provide estimates of the volatilization rate based on measurements of wind speed, temperature, and 1,3-D concentration in the atmosphere. The volatilization rate was measured continuously for 16 days, and the daily peak volatilization rates for the three methods ranged from 18 to 60 microg m(-2) s(-1). The total 13-D mass entering the atmosphere was approximately 44-68 kg ha(-1), or 10-15% of the applied active ingredient This represents approximately 30-50% reduction in the total emission losses compared to conventional fumigant applications in field and field-plot studies. Significant reduction in volatilization of 1,3-D was observed when five surface irrigations were applied to the field, one immediately after fumigation followed by daily irrigations.

  13. Effect of an alternating electric field on the polluting emission from propane flame.

    Science.gov (United States)

    Ukradiga, I.; Turlajs, D.; Purmals, M.; Barmina, I.; Zake, M.

    2001-12-01

    The experimental investigations of the AC field effect on the propane combustion and processes that cause the formation of polluting emissions (NO_x, CO, CO_2) are performed. The AC-enhanced variations of the temperature and composition of polluting emissions are studied for the fuel-rich and fuel-lean conditions of the flame core. The results show that the AC field-enhanced mixing of the fuel-rich core with the surrounding air coflow enhances the propane combustion with increase in the mass fraction of NO_x and CO_2 in the products. The reverse field effect on the composition of polluting emissions is observed under the fuel-lean conditions in the flame core. The field-enhanced CO_2 destruction is registered when the applied voltage increase. The destruction of CO_2 leads to a correlating increase in the mass fraction of CO in the products and enhances the process of NO_x formation within the limit of the fuel lean and low temperature combustion. Figs 11, Refs 18.

  14. Optimization of performance and emission characteristics of PPCCI engine fuelled with ethanol and diesel blends using grey-Taguchi method

    Science.gov (United States)

    Natarajan, S.; Pitchandi, K.; Mahalakshmi, N. V.

    2018-02-01

    The performance and emission characteristics of a PPCCI engine fuelled with ethanol and diesel blends were carried out on a single cylinder air cooled CI engine. In order to achieve the optimal process response with a limited number of experimental cycles, multi objective grey relational analysis had been applied for solving a multiple response optimization problem. Using grey relational grade and signal-to-noise ratio as a performance index, a combination of input parameters was prefigured so as to achieve optimum response characteristics. It was observed that 20% premixed ratio of blend was most suitable for use in a PPCCI engine without significantly affecting the engine performance and emissions characteristics.

  15. A characteristic scale in radiation fields of fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W.; Cahalan, R.; Davis, A.; Marshak, A. [Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    The wavenumber spectrum of Landsat imagery for marine stratocumulus cloud shows a scale break when plotted on a double log plot. We offer an explanation of this scale break in terms of smoothing by horizontal radiative fluxes, which is parameterized and incorporated into an improved pixel approximation. We compute the radiation fields emerging from cloud models with horizontally variable optical depth fractal models. We use comparative spectral and multifractal analysis to qualify the validity of the independent pixel approximation at the largest scales and demonstrate it`s shortcomings on the smallest scales.

  16. Simultaneous field measurements of biogenic emissions of nitric oxide and nitrous oxide

    Science.gov (United States)

    Anderson, Iris Cofman; Levine, Joel S.

    1987-01-01

    Seasonal and diurnal emissions of NO and N2O from agricultural sites in Jamestown, Virginia and Boulder, Colorado are estimated in terms of soil temperature; percent moisture; and exchangeable nitrate, nitrite, and ammonium concentrations. The techniques and procedures used to analyze the soil parameters are described. The spatial and temporal variability of the NO and N2O emissions is studied. A correlation between NO fluxes in the Virginia sample and nitrate concentration, temperature, and percent moisture is detected, and NO fluxes for the Colorado site correspond with temperature and moisture. It is observed that the N2O emissions are only present when percent moisture approaches or exceeds th