WorldWideScience

Sample records for field electrochemical measurements

  1. Electrochemical thermodynamic measurement system

    Science.gov (United States)

    Reynier, Yvan; Yazami, Rachid; Fultz, Brent T.

    2009-09-29

    The present invention provides systems and methods for accurately characterizing thermodynamic and materials properties of electrodes and electrochemical energy storage and conversion systems. Systems and methods of the present invention are configured for simultaneously collecting a suite of measurements characterizing a plurality of interconnected electrochemical and thermodynamic parameters relating to the electrode reaction state of advancement, voltage and temperature. Enhanced sensitivity provided by the present methods and systems combined with measurement conditions that reflect thermodynamically stabilized electrode conditions allow very accurate measurement of thermodynamic parameters, including state functions such as the Gibbs free energy, enthalpy and entropy of electrode/electrochemical cell reactions, that enable prediction of important performance attributes of electrode materials and electrochemical systems, such as the energy, power density, current rate and the cycle life of an electrochemical cell.

  2. Electrochemical Measurement of Atmospheric Corrosion

    Science.gov (United States)

    DeArmond, Anna H.; Davis, Dennis D.; Beeson, Harold D.

    1999-01-01

    Corrosion of Shuttle thruster components in atmospheres containing high concentrations of nitrogen tetroxide (NTO) and water is an important issue in ground operations of bipropellant systems in humid locations. Measurements of the corrosivities of NTO-containing atmospheres and the responses of different materials to these atmospheres have been accomplished using an electrochemical sensor. The sensor is composed of alternating aluminum/titanium strips separated by thin insulating layers. Under high humidity conditions a thin film of water covers the surface of the sensor. Added NTO vapor reacts with the water film to form a conductive medium and establishes a galvanic cell. The current from this cell can be integrated with respect to time and related to the corrosion activity. The surface layer formed from humid air/NTO reacts in the same way as an aqueous solution of nitric acid. Nitric acid is generally considered an important agent in NTO corrosion situations. The aluminum/titanium sensor is unresponsive to dry air, responds slightly to humid air (> 75% RH), and responds strongly to the combination of humid air and NTO. The sensor response is a power function (n = 2) of the NTO concentration. The sensor does not respond to NTO in dry air. The response of other materials in this type of sensor is related to position of the material in a galvanic series in aqueous nitric acid. The concept and operation of this electrochemical corrosion measurement is being applied to other corrosive atmospheric contaminants such as hydrogen chloride, hydrogen fluoride, sulfur dioxide, and acidic aerosols.

  3. Field Measurements

    CERN Document Server

    Bottura, L

    2004-01-01

    The measurement of the magnetic field is often the final verification of the complex design and fabrication process of a magnetic system. In several cases, when seeking high accuracy, the measurement technique and its realization can result in a considerable effort. This note describes most used measurement techniques, such as nuclear magnetic resonance, fluxmeters and Hall generators, and their typical range of application. In addition some of less commonly used techniques, such as magneto-optical, SQUIDs, or particle beams methods, are listed.

  4. Electrochemical measurement for analysis of DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.B.; Hong, J.S.; Pak, J.H. [Korea University, Seoul (Korea); Kim, Y.M. [National Institute of Health, Seoul (Korea)

    2002-02-01

    One of the important roles of a DNA chip is the capability of detecting genetic diseases and mutations by analyzing DNA sequence. For a successful electrochemical genotyping, several aspects should be considered including the chemical treatment of electrode surface, DNA immobilization on electrode, hybridization, choice of an intercalator to be selectively bound to double standed DNA, and an equipment for detecting and analyzing the output singal. Au was used as the electrode material, 2-mercaptoethanol was used for linking DNA to Au electrode, and methylene blue was used as an indicator that can be bound to a double stranded DNA selectively. From the analysis of reductive current of this indicator that was bound to a double stranded DNA on an electrode, a normal double stranded DNA was able to be distinguished from a single stranded DNA in just a few seconds. Also, it was found that the peak reduction current of indicator is proportional to the concentration of target DNA to be hybridized with probe DNA. Therefore, it is possible to realize a simple and cheap DNA sensor using the electrochemical measurement for genotyping. (author). 20 refs., 8 figs., 1 tab.

  5. ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR SAFEGUARDS MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Hazelton, Sandra G.; Duckworth, Douglas C.

    2010-08-11

    A critical objective of materials accountability in safeguards is the accurate and timely analysis of fuel reprocessing streams to detect both abrupt and prolonged diversions of nuclear materials. For this reason both on-line nondestructive (NDA) and destructive analysis (DA) approaches are sought-after. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. While direct on-line gamma measurements of Pu are desirable, they are not possible due to contributions from other actinides and fission products. Researchers at Pacific Northwest National Laboratory are currently investigating electrochemically-modulated separation (EMS) as a straightforward, cost-effective technology for selective separation of Pu or U from aqueous reprocessing streams. The EMS selectivity is electrochemically controlled and results from the sorption of Pu4+ and U4+ redox states onto the anodized target electrode, allowing for selective accumulation of U or Pu from nitric acid streams to be turned “on” or “off.” It is envisioned that this technology can be utilized to isolate Pu for both NDA and DA analysis. For the NDA approach, rapid Pu analysis by gamma-ray spectroscopy could be performed after chemical clean-up of activation and fission products by EMS. Likewise, in the DA approach, EMS could be used to retain and concentrate the Pu in nanogram quantities on the electrode surface to be transported to the lab for analysis using high precision mass spectrometry. Due to the challenges associated with complex matrices, a systematic investigation of the redox-dependent accumulation of Pu using EMS was necessary, and results will be presented. Approaches to mitigate interelement effects using large surface area cells will also be discussed. The EMS chemistry and spectroscopy for Pu isolation and measurement will be presented, proof-of-principle measurements will be described, and the application of this

  6. In-channel electrochemical detection in the middle of microchannel under high electric field.

    Science.gov (United States)

    Kang, Chung Mu; Joo, Segyeong; Bae, Je Hyun; Kim, Yang-Rae; Kim, Yongseong; Chung, Taek Dong

    2012-01-17

    We propose a new method for performing in-channel electrochemical detection under a high electric field using a polyelectrolytic gel salt bridge (PGSB) integrated in the middle of the electrophoretic separation channel. The finely tuned placement of a gold working electrode and the PGSB on an equipotential surface in the microchannel provided highly sensitive electrochemical detection without any deterioration in the separation efficiency or interference of the applied electric field. To assess the working principle, the open circuit potentials between gold working electrodes and the reference electrode at varying distances were measured in the microchannel under electrophoretic fields using an electrically isolated potentiostat. In addition, "in-channel" cyclic voltammetry confirmed the feasibility of electrochemical detection under various strengths of electric fields (∼400 V/cm). Effective separation on a microchip equipped with a PGSB under high electric fields was demonstrated for the electrochemical detection of biological compounds such as dopamine and catechol. The proposed "in-channel" electrochemical detection under a high electric field enables wider electrochemical detection applications in microchip electrophoresis.

  7. A Simple and Inexpensive Electrochemical Assay for the Identification of Nitrogen Containing Explosives in the Field

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Erickson

    2017-08-01

    Full Text Available We report a simple and inexpensive electrochemical assay using a custom built hand-held potentiostat for the identification of explosives. The assay is based on a wipe test and is specifically designed for use in the field. The prototype instrument designed to run the assay is capable of performing time-resolved electrochemical measurements including cyclic square wave voltammetry using an embedded microcontroller with parts costing roughly $250 USD. We generated an example library of cyclic square wave voltammograms of 12 compounds including 10 nitroaromatics, a nitramine (RDX, and a nitrate ester (nitroglycine, and designed a simple discrimination algorithm based on this library data for identification.

  8. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    Science.gov (United States)

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor. PMID:28134275

  9. Comparison between Field Effect Transistors and Bipolar Junction Transistors as Transducers in Electrochemical Sensors

    Science.gov (United States)

    Zafar, Sufi; Lu, Minhua; Jagtiani, Ashish

    2017-01-01

    Field effect transistors (FET) have been widely used as transducers in electrochemical sensors for over 40 years. In this report, a FET transducer is compared with the recently proposed bipolar junction transistor (BJT) transducer. Measurements are performed on two chloride electrochemical sensors that are identical in all details except for the transducer device type. Comparative measurements show that the transducer choice significantly impacts the electrochemical sensor characteristics. Signal to noise ratio is 20 to 2 times greater for the BJT sensor. Sensitivity is also enhanced: BJT sensing signal changes by 10 times per pCl, whereas the FET signal changes by 8 or less times. Also, sensor calibration curves are impacted by the transducer choice. Unlike a FET sensor, the calibration curve of the BJT sensor is independent of applied voltages. Hence, a BJT sensor can make quantitative sensing measurements with minimal calibration requirements, an important characteristic for mobile sensing applications. As a demonstration for mobile applications, these BJT sensors are further investigated by measuring chloride levels in artificial human sweat for potential cystic fibrosis diagnostic use. In summary, the BJT device is demonstrated to be a superior transducer in comparison to a FET in an electrochemical sensor.

  10. Dynamic Electrochemical Measurement of Chloride Ions.

    Science.gov (United States)

    Abbas, Yawar; de Graaf, Derk B; Olthuis, Wouter; van den Berg, Albert

    2016-02-05

    This protocol describes the dynamic measurement of chloride ions using the transition time of a silver silver chloride (Ag/AgCl) electrode. Silver silver chloride electrode is used extensively for potentiometric measurement of chloride ions concentration in electrolyte. In this measurement, long-term and continuous monitoring is limited due to the inherent drift and the requirement of a stable reference electrode. We utilized the chronopotentiometric approach to minimize drift and avoid the use of a conventional reference electrode. A galvanostatic pulse is applied to an Ag/AgCl electrode which initiates a faradic reaction depleting the Cl- ions near the electrode surface. The transition time, which is the time to completely deplete the ions near the electrode surface, is a function of the ion concentration, given by the Nernst equation. The square root of the transition time is in linear relation to the chloride ion concentration. Drift of the response over two weeks is negligible (59 µM/day) when measuring 1 mM [Cl-]using a current pulse of 10 Am(-2). This is a dynamic measurement where the moment of transition time determines the response and thus is independent of the absolute potential. Any metal wire can be used as a pseudo-reference electrode, making this approach feasible for long-term measurement inside concrete structures.

  11. Reliable Remote-Monitoring Electrochemical Potentiostat for Glucose Measurements

    Institute of Scientific and Technical Information of China (English)

    JIN Yang; WANG Hong; LV Zhengliang; YANG Shiyuan; CAI Haoyuan; JIANG Junfeng

    2009-01-01

    Electrochemical methods have been widely used in the chemical and pharmaceutical industries, which require accurate concentration measurements, chemical reaction detections and analyses. The elec-trochemical potentiostat, the core element in electrochemical instruments, have been discussed as a hot topic addressing the difficulty of applying high-preclsion constant voltage and picoampere current meas-urements. Meanwhile, reliable potenUostats are in demand for complicated industrial environments with noises as well as requirements of remotemonitors. This paper describes a potentiostat for industrial glucose measurement that is not only accurate but also fault tolerant to guarantee high reliability in industrial envi-ronments. The instrument uses standard industrial communication protocols, profibus, and a 4-20 mA cur-rent loop, for remote control and monitoring. Experimental results show that this design has 0.01% accuracy with 1 mV resolution for voltage applications and 0.01% accuracy with 1 pA resolution for current measure-ments. The design is also shown to be highly reliable in noisy environments.

  12. Mediated Electrochemical Measurements of Intracellular Catabolic Activities of Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    Jin Sheng ZHAO; Zhen Yu YANG; Yao LU; Zheng Yu YANG

    2005-01-01

    Coupling with the dual mediator system menadione/ferricyanide, microelectrode voltammetric measurements were undertaken to detect the ferrocyanide accumulations arising from the mediated reduction of ferricyanide by yeast cells. The results indicate that the dual mediator system menadione/ferricyanide could be used as a probe to detect cellular catabolic activities in yeast cells and the electrochemical response has a positive relationship with the specific growth rate of yeast cells.

  13. On accurate differential measurements with electrochemical impedance spectroscopy

    CERN Document Server

    Kernbach, S; Kernbach, O

    2016-01-01

    This paper describes the impedance spectroscopy adapted for analysis of small electrochemical changes in fluids. To increase accuracy of measurements the differential approach with temperature stabilization of fluid samples and electronics is used. The impedance analysis is performed by the single point DFT, signal correlation, calculation of RMS amplitudes and interference phase shift. For test purposes the samples of liquids and colloids are treated by fully shielded electromagnetic generators and passive cone-shaped structures. Fluidic samples collected from different geological locations are also analysed. In all tested cases we obtained different results for impacted and non-impacted samples, moreover, a degradation of electrochemical stability after treatment is observed. This method is used in laboratory analysis of weak emissions and ensures a high repeatability of results.

  14. Electrochemical cells: linking fields and currents with products and reactants

    Science.gov (United States)

    Hutchison, Douglas

    2016-11-01

    The interplay between the electromagnetism and chemistry within an electrochemical cell (a ‘battery’) is modelled in such a way so as to describe both open and closed circuit conditions. It is found that a classical field theory coupled with a generic model of the chemistry can consistently explain the behaviour of the cell and reproduce standard results. But this model also reveals an interesting interplay between time scales (field and chemical) that leads to a capacitive impedance within the cell. The assumption that the stasis associated with the emf results from the inability of ions to overcome the potential barriers near each electrode is abandoned. Rather, the equilibrium is viewed as dynamic and results from a balance between forward and reverse chemical reactions. Ions are able borrow enough energy to overcome the barriers as predicted by quantum theory to fuel the forward reactions. The probability of transmission (i.e. ‘tunnelling’) is calculated using a method based on the energy-time uncertainty principle.

  15. Spatially resolved voltage, current and electrochemical impedance spectroscopy measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gerteisen, D.; Kurz, T.; Schwager, M.; Hebling, C. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg im Breisgau (Germany); Merida, W. [Clean Energy Research Centre, University of British Columbia, Vancouver, BC (Canada); Lupotto, P. [Materials Mates Italia, Milano (Italy)

    2011-04-15

    In this work a 50-channel characterisation system for PEMFCs is presented. The system is capable of traditional electrochemical measurements (e.g. staircase voltammetry, chronoamperometry and cyclic voltammetry), and concurrent EIS measurements. Unlike previous implementations, this system relies on dedicated potentiostats for current and voltage control, and independent frequency response analysers (FRAs) at each channel. Segmented fuel cell hardware is used to illustrate the system's flexibility and capabilities. The results here include steady-state data for cell characterisation under galvanostatic and potentiostatic control as well as spatially resolved impedance spectra. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Magnetic controllable biorecognition process of doxorubicin detected by electrochemical contact angle measurement.

    Science.gov (United States)

    Zhou, Jian; Zhang, Renyun; Li, Xiaomao; Gutmann, Sebastian; Lv, Gang; Wang, Xuemei

    2007-08-01

    Fe3O4 nanoparticles are the most commonly used magnetic materials with promising applications in biomedical and biochemical engineering. In this study, a novel application of the tetraheptylammonium capped Fe3O4 nanoparticles in controllable biorecognition process of anticancer drug doxorubicin through combination with external static magnetic field has been demonstrated. Our AFM and electrochemical studies illustrate that the presence of the tetraheptylammonium capped Fe3O4 nanoparticles could promote the binding behavior of doxorubicin to DNA. And the results of the electrochemical contact angle measurements indicate that the controllable biomolecular recognition of doxorubicin could be readily achieved by combining these functionalized Fe3O4 nanoparticles with changing the positions of external magnetic field.

  17. Electrochemical concentration measurements for multianalyte mixtures in simulated electrorefiner salt

    Science.gov (United States)

    Rappleye, Devin Spencer

    The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).

  18. Field emission response from multi-walled carbon nanotubes grown on electrochemically engineered copper foil

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Amit Kumar; Jain, Vaibhav [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Saini, Krishna [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Lahiri, Indranil, E-mail: indrafmt@iitr.ac.in [Nanomaterials and Applications Lab., Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India); Centre of Excellence: Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand (India)

    2017-02-01

    Exciting properties of carbon nanotube has proven it to be a promising candidate for field emission applications, if its processing cost can be reduced effectively. In this research, a new electrochemical technique is proposed for growing carbon nanotubes in selective areas by thermal chemical vapour deposition. In this process, electrochemical processing is used to create localized pits and deposition of catalysts, which act as roots to support growth and alignment of the CNTs on copper substrate. CNTs grown thus were characterized and studied using scanning electron microscope, transmission electron microscope and Raman spectroscopy, elucidating presence of multiwall carbon nanotubes (MWCNT). These CNT emitters have comparatively lower turn-on field and higher field enhancement factor. - Highlights: • Electrochemical pitting for localized carbon nanotube growth is proposed. • Electrochemical pitting method shows patterning effect on the substrate. • Size and density of pits depend on voltage, pH and temperature. • CNTs thus grown shows good field emission response.

  19. Organic thin films as active materials in field effect transistors and electrochemical sensing

    OpenAIRE

    Tarabella, Giuseppe

    2012-01-01

    This PhD thesis is focused on Organic Electronics, an emerging field where different disciplines converge to gain insights into the properties of organic materials and their applications. Under the present work different organic materials have been realized and analysed for application both in Organic Field Effect Transistors and electrochemical sensing with Organic Electrochemical Transistors. An overview about Organic Electronic is reported with the most recent advancement of the last year...

  20. Signal Processing for the Impedance Measurement on an Electrochemical Generator

    Directory of Open Access Journals (Sweden)

    El-Hassane AGLZIM

    2008-04-01

    Full Text Available Improving the life time of batteries or fuel cells requires the optimization of components such as membranes and electrodes and enhancement of the flow of gases [1], [2]. These goals could be reached by using a real time measurement on loaded generator. The impedance spectroscopy is a new way that was recently investigated. In this paper, we present an electronic measurement instrumentation developed in our laboratory to measure and plot the impedance of a loaded electrochemical generator like batteries and fuel cells. Impedance measures were done according to variations of the frequency in a larger band than what is usually used. The electronic instrumentation is controlled by Hpvee® software which allows us to plot the Nyquist graph of the electrochemical generator impedance. The theoretical results obtained in simulation under Pspice® confirm the choice of the method and its advantage. For safety reasons, the experimental preliminary tests were done on a 12 V vehicle battery, having an input current of 330 A and a capacity of 40 Ah and are now extended to a fuel cell. The results were plotted at various nominal voltages of the battery (12.7 V, 10 V, 8 V and 5 V and with two imposed currents (0.6 A and 4 A. The Nyquist diagram resulting from the experimental data enable us to show an influence of the load of the battery on its internal impedance. The similitude in the graph form and in order of magnitude of the values obtained (both theoretical and practical enables us to validate our electronic measurement instrumentation. Different sensors (temperature, pressure were placed around the device under test (DUT. These influence parameters were permanently recorded. Results presented here concern a classic loaded 12 V vehicle battery. The Nyquist diagram resulting from the experimental data confirms the influence of the load of the DUT on its internal impedance.

  1. Sensorless battery temperature measurements based on electrochemical impedance spectroscopy

    Science.gov (United States)

    Raijmakers, L. H. J.; Danilov, D. L.; van Lammeren, J. P. M.; Lammers, M. J. G.; Notten, P. H. L.

    2014-02-01

    A new method is proposed to measure the internal temperature of (Li-ion) batteries. Based on electrochemical impedance spectroscopy measurements, an intercept frequency (f0) can be determined which is exclusively related to the internal battery temperature. The intercept frequency is defined as the frequency at which the imaginary part of the impedance is zero (Zim = 0), i.e. where the phase shift between the battery current and voltage is absent. The advantage of the proposed method is twofold: (i) no hardware temperature sensors are required anymore to monitor the battery temperature and (ii) the method does not suffer from heat transfer delays. Mathematical analysis of the equivalent electrical-circuit, representing the battery performance, confirms that the intercept frequency decreases with rising temperatures. Impedance measurements on rechargeable Li-ion cells of various chemistries were conducted to verify the proposed method. These experiments reveal that the intercept frequency is clearly dependent on the temperature and does not depend on State-of-Charge (SoC) and aging. These impedance-based sensorless temperature measurements are therefore simple and convenient for application in a wide range of stationary, mobile and high-power devices, such as hybrid- and full electric vehicles.

  2. FIELD STRENGTH MEASUREMENTS, PHASE II.

    Science.gov (United States)

    The measurement of the strength of radio frequency fields at high frequency and above has followed practices which are standard for the measurement...of field strength at medium and low frequencies. Variability of measurements made in practical situations and a lack of reproducibility of...measurements made under apparently identical conditions has prompted an investigation of equipment and methods used in the determinations. The field strength

  3. Electrochemical Measurement of the β-Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay.

    Science.gov (United States)

    Tschirhart, Tanya; Zhou, Xinyi Y; Ueda, Hana; Tsao, Chen-Yu; Kim, Eunkyoung; Payne, Gregory F; Bentley, William E

    2016-01-15

    In order to match our ability to conceive of and construct cells with enhanced function, we must concomitantly develop facile, real-time methods for elucidating performance. With these, new designs can be tested in silico and steps in construction incrementally validated. Electrochemical monitoring offers the above advantages largely because signal transduction stems from direct electron transfer, allowing for potentially quicker and more integrated measurements. One of the most common genetic reporters, β-galactosidase, can be measured both spectrophotometrically (Miller assay) and electrochemically. However, since the relationship between the two is not well understood, the electrochemical methods have not yet garnered the attention of biologists. With the aim of demonstrating the utility of an electrochemical measurement to the synthetic biology community, we created a genetic construct that interprets and reports (with β-galactosidase) on the concentration of the bacterial quorum sensing molecule autoinducer-2. In this work, we provide a correlation between electrochemical measurements and Miller Units. We show that the electrochemical assay works with both lysed and whole cells, allowing for the prediction of one from the other, and for continuous monitoring of cell response. We further present a conceptually simple and generalized mathematical model for cell-based β-galactosidase reporter systems that could aid in building and predicting a variety of synthetic biology constructs. This first-ever in-depth comparison and analysis aims to facilitate the use of electrochemical real-time monitoring in the field of synthetic biology as well as to facilitate the creation of constructs that can more easily communicate information to electronic systems.

  4. FIELD STRENGTH MEASUREMENTS, PHASE I.

    Science.gov (United States)

    The program included the testing and evaluation of commercial and military field- strength meters. It also included a study of the interpretation of...field- strength measurement data taken under multipath conditions. As part of the field- strength meter evaluation, five instruments, the AN/TRM-7, NF...interpretation of the measured data is the variability of field- strength values obtained over an area. Such variability is caused by the presence of multipath

  5. ac transmission line field measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kotter, F.R.; Misakian, M.

    1977-11-01

    The concern in recent years over the environmental effects of electric and magnetic fields from high voltage transmission lines has also focused attention on the accuracy of measurements of these fields. Electric field meters are discussed in terms of theory of operation, parameters affecting performance, meter performance under field and laboratory conditions, and calibration procedures. The performance and calibration of magnetic field meters is described. (LCL)

  6. Effect of Electrochemical Treatment in a Lithium Chloride Solution on Field Emission from Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    WANG Qiang; LI Chun; YUAN Guang; GU Chang-Zhi

    2009-01-01

    Carbon nanotubes (CNTs) are electrochemically treated in a lithium chloride solution at a concentration 0.1 mol/L.The field emission properties of the CNTs are investigated at different temperatures before and after the electrochemical treatment.After treatment,the turn-on voltage to produce field emission current of 10 μA decreases from 4.2kV to 2.7kV and the field emission current increases distinctly,but the stability falls off.Based on the Fowler-Nordheim plot,the values of the work function for the CNTs are calculated,which reveals that work function decreases after the electrochemical treatment.These results are attributed to the decrease of the work function of the carbon nanotubes.

  7. A compact microelectrode array chip with multiple measuring sites for electrochemical applications

    DEFF Research Database (Denmark)

    Dimaki, Maria; Vergani, Marco; Heiskanen, Arto

    2014-01-01

    In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes...

  8. Flow measurements in micro holes with electrochemical and optical methods

    Energy Technology Data Exchange (ETDEWEB)

    Zosel, J.; Guth, U.; Thies, A.; Reents, B

    2003-09-30

    The decreasing feature size of electronic compounds down to the micrometer range is paralleled by an increase in the aspect ratio, worsening all mass transport related processes. In this paper the conditions of liquid flow into micro holes and blind micro vias (BMV) with diameter of 100-300 {mu}m and depth between 100 {mu}m and 1.5 mm are investigated. The flow was induced by surface directed jet flows, visualised by microscopy aided particle image velocimetry ({mu}-PIV) and correlated with electrochemical mass transfer measurements using the ferro/ferri-hexacyanide redox couple. It was found that the mean flow velocity in the holes and the penetration depth in the blind holes are influenced especially by the roughness of the inner walls and, at a lower scale, by the velocity and the impinging angle of the jet. The results enable the estimation of the mean flow rate in through holes and the penetration depth in BMV at defined hydrodynamic conditions in the bath. This is one of the preconditions for the appropriate engineering of plating lines designed for micro structures.

  9. Electrochemical and CMT measurements of the anomalous dissolution of nickel in solutions containing oxygen

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; de Fontenay, Frank; Poulsen, Henning

    1997-01-01

    potential. When passivation was approached (spontaneously or by anodic polarization) the true rate of dissolution approached the rate of anodic reaction. During cathodic polarization there was still a significant rate of dissolution. The true rate of dissolution was determined by CMT measurements (Corrosion......In addition to single nickel crystals also nickel samples produced by dc and pr (pulse-reversal) plating were examined. As previously reported the true rate of dissolution of nickel in solutions containing oxygen was found to be as much as three times the electrochemical rate at the corrosion...... Measurements by Titration). Electrochemical measurements (EC) indicating the rate of electrochemical reactions were made simultaneously....

  10. Quantitative electrochemical measurements using in situ ec-S/TEM devices.

    Science.gov (United States)

    Unocic, Raymond R; Sacci, Robert L; Brown, Gilbert M; Veith, Gabriel M; Dudney, Nancy J; More, Karren L; Walden, Franklin S; Gardiner, Daniel S; Damiano, John; Nackashi, David P

    2014-04-01

    Insight into dynamic electrochemical processes can be obtained with in situ electrochemical-scanning/transmission electron microscopy (ec-S/TEM), a technique that utilizes microfluidic electrochemical cells to characterize electrochemical processes with S/TEM imaging, diffraction, or spectroscopy. The microfluidic electrochemical cell is composed of microfabricated devices with glassy carbon and platinum microband electrodes in a three-electrode cell configuration. To establish the validity of this method for quantitative in situ electrochemistry research, cyclic voltammetry (CV), choronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were performed using a standard one electron transfer redox couple [Fe(CN)6]3-/4--based electrolyte. Established relationships of the electrode geometry and microfluidic conditions were fitted with CV and chronoamperometic measurements of analyte diffusion coefficients and were found to agree with well-accepted values that are on the order of 10-5 cm2/s. Influence of the electron beam on electrochemical measurements was found to be negligible during CV scans where the current profile varied only within a few nA with the electron beam on and off, which is well within the hysteresis between multiple CV scans. The combination of experimental results provides a validation that quantitative electrochemistry experiments can be performed with these small-scale microfluidic electrochemical cells provided that accurate geometrical electrode configurations, diffusion boundary layers, and microfluidic conditions are accounted for.

  11. Measuring Earth's Magnetic Field Simply.

    Science.gov (United States)

    Stewart, Gay B.

    2000-01-01

    Describes a method for measuring the earth's magnetic field using an empty toilet paper tube, copper wire, clear tape, a battery, a linear variable resistor, a small compass, cardboard, a protractor, and an ammeter. (WRM)

  12. Field fluctuations measured by interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Glauber, R J [Lyman Laboratory, Harvard University, Cambridge, MA 02138 (United States); Orozco, L A [Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology, College Park, MD 20742-4111 (United States); Vogel, K; Schleich, W P [Institut fuer Quantenphysik, Universitaet Ulm, D-89069 Ulm (Germany); Walther, H, E-mail: glauber@physics.harvard.ed, E-mail: karl.vogel@uni-ulm.d [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)

    2010-09-01

    We derive the complete photon count statistics of an interferometer based on two beam splitters. As a special case we consider a joint intensity-electric field measurement. Our approach is based on the transformation properties of state vectors as well as field operators at a beam splitter.

  13. Interpenetrating polyaniline-gold electrodes for SERS and electrochemical measurements

    Science.gov (United States)

    West, R. M.; Semancik, S.

    2016-11-01

    Facile fabrication of nanostructured electrode arrays is critical for development of bimodal SERS and electrochemical biosensors. In this paper, the variation of applied potential at a polyaniline-coated Pt electrode is used to selectivity deposit Au on the polyaniline amine sites or on the underlying Pt electrode. By alternating the applied potential, the Au is grown simultaneously from the top and the bottom of the polyaniline film, leading to an interpenetrated, nanostructured polymer-metal composite extending from the Pt electrode to the electrolyte solution. The resulting films have unique pH-dependent electrochemical properties, e.g. they retain electrochemical activity in both acidic and neutral solutions, and they also include SERS-active nanostructures. By varying the concentration of chloroaurate used during deposition, Au nanoparticles, nanodendrites, or nanosheets can be selectively grown. For the films deposited under optimal conditions, using 5 mmol/L chloroaurate, the SERS enhancement factor for Rhodamine 6G was found to be as high as 1.1 × 106 with spot-to-spot and electrode-to-electrode relative standard deviations as low as 8% and 12%, respectively. The advantages of the reported PANI-Au composite electrodes lie in their facile fabrication, enabling the targeted deposition of tunable nanostructures on sensing arrays, and their ability to produce orthogonal optical and electrochemical analytical results.

  14. Design of a dual-mode electrochemical measurement and analysis system.

    Science.gov (United States)

    Yang, Jr-Fu; Wei, Chia-Ling; Wu, Jian-Fu; Liu, Bin-Da

    2013-01-01

    A dual-mode electrochemical measurement and analysis system is proposed. This system includes a dual-mode chip, which was designed and fabricated by using TSMC 0.35 µm 3.3 V/5 V 2P4M mixed-signal CMOS process. Two electrochemical measurement and analysis methods, chronopotentiometry and voltammetry, can be performed by using the proposed chip and system. The proposed chip and system are verified successfully by performing voltammetry and chronopotentiometry on solutions.

  15. Design and Fabrication of Complementary Metal-Oxide-Semiconductor Sensor Chip for Electrochemical Measurement

    Science.gov (United States)

    Yamazaki, Tomoyuki; Ikeda, Takaaki; Kano, Yoshiko; Takao, Hidekuni; Ishida, Makoto; Sawada, Kazuaki

    2010-04-01

    An electrochemical sensor has been developed on a single chip in which potentiostat and sensor electrodes are integrated. Sensor chips were fabricated using 5.0 µm complementary metal-oxide-semiconductor (CMOS) technology. All processes including the CMOS process, postprocessing for fabricating sensor electrodes and passivation layers, and packaging were performed at Toyohashi University of Technology. The integration makes it possible to measure electrochemical signals without having to use a bulky external electrochemical system. The potential between the working electrode and the reference electrode was controlled using an on-chip potentiostat composed of CMOS transistors. The chip characteristics were verified by electrochemical measurement, namely, by cyclic voltammetry. Potassium ferricyanide solution was measured to obtain results that fit well to the theoretical formula. A clear proportional relationship between peak height and the concentration of the sample solution was obtained using the proposed sensor chip, and the dynamic range obtained was 0.10 to 8.0 mM.

  16. Quantitative Electrochemical Measurements using in situ ec-S/TEM Devices

    Energy Technology Data Exchange (ETDEWEB)

    Unocic, Raymond R [ORNL; Sacci, Robert L [ORNL; Brown, Gilbert M [ORNL; Veith, Gabriel M [ORNL; Dudney, Nancy J [ORNL; More, Karren Leslie [ORNL; Gardiner, Daniel [Protochips Inc., Raleigh, NC; Walden II, Franklin S [Protochips Inc., Raleigh, NC; Damiano, John [Protochips Inc., Raleigh, NC; Nackashi, David P. [Protochips Inc., Raleigh, NC

    2014-01-01

    Insight into dynamic electrochemical processes can be obtained with in situ ec-S/TEM, which utilizes microfluidic electrochemical cells to characterize electrochemical processes with S/TEM imaging, diffraction or spectroscopy. The microfluidic electrochemical cell is composed of microfabricated devices with glassy carbon and platinum microband electrodes in a three-electrode cell configuration. To establish the validity of this method for quantitative in situ electrochemistry research, cyclic voltammetry, choronoamperometry and electrochemical impedance spectroscopy were performed using a standard one electron transfer redox couple using a [Fe(CN)6]3-/4- based electrolyte. Established relationships of the electrode geometry and microfluidic conditions were fitted with cyclic voltammetry and chronoamperometic measurements of analyte diffusion coefficients and was found to agree with well-accepted values that are on the order of 10-5 cm2 s-1. Influence of the electron beam on electrochemical measurements was found to be negligible during CV scans where the current profile varied only within a few nA with the electron beam on and off which is well within the hysteresis between multiple CV scans. The combination of experimental results provides a validation that quantitative electrochemistry experiments can be performed with these small-scale microfluidic electrochemical cells provided that accurate geometrical electrode configurations, diffusion boundary layers and microfluidic conditions are accounted for.

  17. Assessment of the electrochemical effects of pulsed electric fields in a biological cell suspension.

    Science.gov (United States)

    Chafai, Djamel Eddine; Mehle, Andraž; Tilmatine, Amar; Maouche, Bachir; Miklavčič, Damijan

    2015-12-01

    Electroporation of cells is successfully used in biology, biotechnology and medicine. Practical problems still arise in the electroporation of cells in suspension. For example, the determination of cell electroporation is still a demanding and time-consuming task. Electric pulses also cause contamination of the solution by the metal released from the electrodes and create local enhancements of the electric field, leading to the occurrence of electrochemical reactions at the electrode/electrolyte interface. In our study, we investigated the possibility of assessing modifications to the cell environment caused by pulsed electric fields using electrochemical impedance spectroscopy. We designed an experimental protocol to elucidate the mechanism by which a pulsed electric field affects the electrode state in relation to different electrolyte conductivities at the interface. The results show that a pulsed electric field affects electrodes and its degree depends on the electrolyte conductivity. Evolution of the electrochemical reaction rate depends on the initial free charges and those generated by the pulsed electric field. In the presence of biological cells, the initial free charges in the medium are reduced. The electrical current path at low frequency is longer, i.e., conductivity is decreased, even in the presence of increased permeability of the cell membrane created by the pulsed electric field.

  18. Large magnetic field effects in electrochemically doped organic light-emitting diodes

    Science.gov (United States)

    van Reenen, S.; Kersten, S. P.; Wouters, S. H. W.; Cox, M.; Janssen, P.; Koopmans, B.; Bobbert, P. A.; Kemerink, M.

    2013-09-01

    Large negative magnetoconductance (MC) of ˜12% is observed in electrochemically doped polymer light-emitting diodes at sub-band-gap bias voltages (Vbias). Simultaneously, a positive magnetoefficiency (Mη) of 9% is observed at Vbias = 2 V. At higher bias voltages, both the MC and Mη diminish while a negative magnetoelectroluminescence (MEL) appears. The negative MEL effect is rationalized by triplet-triplet annihilation that leads to delayed fluorescence, whereas the positive Mη effect is related to competition between spin mixing and exciton formation leading to an enhanced singlet:triplet ratio at nonzero magnetic field. The resultant reduction in triplet exciton density is argued to reduce detrapping of polarons in the recombination zone at low-bias voltages, explaining the observed negative MC. Regarding organic magnetoresistance, this study provides experimental data to verify existing models describing magnetic field effects in organic semiconductors, which contribute to better understanding hereof. Furthermore, we present indications of strong magnetic field effects related to interactions between trapped carriers and excitons, which specifically can be studied in electrochemically doped organic light-emitting diodes (OLEDs). Regarding light-emitting electrochemical cells (LECs), this work shows that delayed fluorescence from triplet-triplet annihilation substantially contributes to the electroluminescence and the device efficiency.

  19. The concept of floating electrode for contact-less electrochemical measurements: Application to reinforcing steel-bar corrosion in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Keddam, M. [LISE, UPR 15 du CNRS, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05 (France); Novoa, X.R. [E.T.S.E.I, Universidade de Vigo, Campus Universitario, 36310 Vigo (Spain); Vivier, V. [LISE, UPR 15 du CNRS, Universite Pierre et Marie Curie, 4 place Jussieu, 75252 Paris Cedex 05 (France)], E-mail: vincent.vivier@upmc.fr

    2009-08-15

    The concept of floating electrode is introduced for defining the common electrochemical behaviour of any non-connected, electronically conducting, body immersed in an electrolytic medium. The emphasis is put on both its own polarisation features and its influence on the d.c. and a.c. current and potential across the cell, hence the feasibility, among others, of contact-less electrochemical measurements on floating electrodes. Application to reinforcing steel bars in concrete is investigated by numerical computation of the a.c. current and potential fields in a broad range of concrete resistivity, interfacial resistance and capacitance. Impedance defined in a 4-electrode configuration, when rationalised against the concrete resistivity, is shown to provide, within a realistic range of parameters, a practical mean to access the properties of the bar-concrete interface.

  20. An evaluation of electrochemical potentiokinetic reactivation techniques for in-service measurements on Type 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Stoner, K.J.

    1989-01-01

    Electrochemical potentiokinetic reactivation (EPR) tests can be used to measure quantitatively the sensitization of Type 304 stainless steel. The single loop (SL) and double loop (DL) EPR techniques were compared as non-destructive methods for determining sensitization under both laboratory and simulated field environments. Measurements were performed on specimens heat-treated to produce levels of sensitization from no sensitization to heavy sensitization. At temperatures of 22/degree/C and 30/degree/C testing with standard laboratory and portable field apparatus, both EPR techniques were capable of distinguishing sensitization levels at the range spanning those characterized as being non-susceptible and susceptible to intergranular stress corrosion cracking (IGSCC). Through correlations developed for the test data, it is possible to translate field results to the standard laboratory test conditions. This was demonstrated for the SL test through measurements performed on a pipe specimen containing IGSCC. 12 refs., 12 figs., 2 tabs.

  1. Probing Cellular Binding of Dendrofullerene by in-situ Electrochemical Contact Angle Measurement

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Jian; ZHANG,Ren-Yun; WU,Chun-Hui; ZHAO,Xue-Yan; ZHENG,Li-Qiang; FU,De-Gang; CHEN,Bao-An; WANG,Xue-Mei

    2008-01-01

    Dendrofullerene (C60DF) is a novel fullerene derivative with potential and promising biomedical applications.In this work, electrochemical/contact angle behavior of C60DF in the cellular system has been explored by in-situ electrochemical contact angle measurement. This measuring system is a newly developed technique which can provide electrochemical and contact angle detection simultaneously. The electrochemical results indicate that dendrofullerene may effectively bind and permeate the tumor cell membrane and then distribute into the cancer cells.Our observations of in-situ electrochemical contact angle measurement also illustrate that the permeation and interaction of C60DF with target cancer cells may lead to some variation of the configurational structure of the relative cell membrane and thus result in the change of hydrophilic/nydrophobic properties of target cellular system. Furthermore, through confocus fluorescence microscopy study we found that, upon application of C60DF, the intracellular accumulation of anticancer drug daunorubicin in leukemia K562 cells could be remarkably enhanced by C60DF.Therefore fullerene derivatives were demonstrated to be a good candidate that can play an important role in improving the intracellular drug uptake in the target cancer cells.

  2. Measuring individual overpotentials in an operating solid-oxide electrochemical cell

    CERN Document Server

    Gabaly, Farid El; McDaniel, Anthony H; Farrow, Roger L; Linne, Mark A; Hussain, Zahid; Bluhm, Hendrik; Liu, Zhi; McCarty, Kevin F

    2010-01-01

    We use photo-electrons as a non-contact probe to measure local electrical potentials in a solid-oxide electrochemical cell. We characterize the cell in operando at near-ambient pressure using spatially-resolved X-ray photoemission spectroscopy. The overpotentials at the interfaces between the Ni and Pt electrodes and the yttria-stabilized zirconia (YSZ) electrolyte are directly measured. The method is validated using electrochemical impedance spectroscopy. Using the overpotentials, which characterize the cell's inefficiencies, we compare without ambiguity the electro-catalytic efficiencies of Ni and Pt, finding that on both metals H2O splitting proceeds more rapidly than H2 oxidation.

  3. Screening of soil corrosivity by field testing: Results and design of an electrochemical soil corrosion probe

    DEFF Research Database (Denmark)

    Nielsen, Lars vendelbo; Bruun, Niels Kåre

    1996-01-01

    The corrosivity of different types of soil have been assessed by exposing carbon-steel plates at 50 different locations in Denmark for an extended period of time. The investigations included weight loss measurements and analysis of the chemical compositions of the corrosion products formed...... on the plates during exposure. An electrochemical soil corrosion probe has been designed and manufactured allowing for simultaneous measurements of several qauntities to predict corrosion. The probe consists of individual sections capable of measuring redox-potential, corrosion potential, soil resistivity...

  4. The effect of magnetic field on electrochemically deposited calcium phosphate/collagen coatings.

    Science.gov (United States)

    Zhao, Xueni; He, Jianpeng; Zhang, Jing; Wang, Xudong; Wang, Wanying

    2014-01-01

    Nanostructured calcium phosphate/collagen (CaP/COL) coatings were deposited on the carbon/carbon (C/C) composites through electrochemical deposition (ECD) under magnetic field. The effect of magnetic fields with different orientations on the morphology and composition was investigated. Both the morphology and composition of the coatings could be altered by superimposed magnetic field. Under zero magnetic field and magnetic field, three-dimensional network structure consisting of collagen fibers and CaP were formed on the C/C substrate. The applied magnetic field in the electric field helped to form nanostructured and plate-like CaP on collagen fibers. For the ECD under magnetic field, the Ca/P molar ratio of the coatings was lower than the one under B=0. This may be contributed to the decreased electrical resistance or the increased electrical conductivity of electrolyte solutions under magnetic field. The nanosized CaP/COL coatings exhibited the similar morphology to the human bone and could present excellent cell bioactivity and osteoblast functions.

  5. Electrochemical Dictionary

    OpenAIRE

    Gulaboski, Rubin

    2012-01-01

    The 1st edition of the “Electrochemical Dictionary” has received a very positive, even enthusiastic, resonance. It is one of themost successful e-books of Springer. The second edition of the “Electrochemical Dictionary” provides a considerably extended coverage of terms, especially in the fields of electrochemical energy conversion and bioelectricity. Some new authors joined the project, so that their number is now 100. All entries of the first edition were carefully revi...

  6. Magnetophoretic potential at the movement of cluster products of electrochemical reactions in an inhomogeneous magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Gorobets, O. Yu., E-mail: pitbm@ukr.net; Gorobets, Yu. I., E-mail: Gorobets@imag.kiev.ua [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine); Institute of Magnetism NAS of Ukraine and National Academy of Sciences of Ukraine, Vernadsky Avenue, 36-b, Kyiv 03142 (Ukraine); Rospotniuk, V. P. [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine)

    2015-08-21

    An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode.

  7. Rapid and sensitive measurements of nitrate ester explosives using microchip electrophoresis with electrochemical detection.

    Science.gov (United States)

    Piccin, Evandro; Dossi, Nicolò; Cagan, Avi; Carrilho, Emanuel; Wang, Joseph

    2009-03-01

    This article describes an effective microchip protocol based on electrophoretic-separation and electrochemical detection for highly sensitive and rapid measurements of nitrate ester explosives, including ethylene glycol dinitrate (EGDN), pentaerythritol tetranitrate (PETN), propylene glycol dinitrate (PGDN) and glyceryl trinitrate (nitroglycerin, NG). Factors influencing the separation and detection processes were examined and optimized. Under the optimal separation conditions obtained using a 15 mM borate buffer (pH 9.2) containing 20 mM SDS, and applying a separation voltage of 1500 V, the four nitrate ester explosives were separated within less than 3 min. The glassy-carbon amperometric detector (operated at -0.9 V vs. Ag/AgCl) offers convenient cathodic detection down to the picogram level, with detection limits of 0.5 ppm and 0.3 ppm for PGDN and for NG, respectively, along with good repeatability (RSD of 1.8-2.3%; n = 6) and linearity (over the 10-60 ppm range). Such effective microchip operation offers great promise for field screening of nitrate ester explosives and for supporting various counter-terrorism surveillance activities.

  8. Polarization Resistance Measurement in Tap Water: The Influence of Rust Electrochemical Activity

    Science.gov (United States)

    Vasyliev, Georgii

    2017-07-01

    Corrosion rate of mild steel in tap water during 4300 h was estimated by LPR and weight-loss methods coupled with OCP measurements. The LPR results were found to be overestimated compared to the weight-loss data within initial 2000 h of exposure. The electrochemical activity of the rust separated from the metal surface was studied by cycling voltammetry using a home-built powder graphite electrode. High redox currents corresponding to the initial 2000 h of exposure were detected. Rust composition was characterized with IR and XRD, and the highest amounts of electrochemically active β- and γ-FeOOH were again detected for the initial 2000 h. Current consumption in rust transformation processes during LPR measurement in the galvanostatic mode accounts for overestimation of the corrosion rate. The time dependence of rust electrochemical activity correlates with OCP variation with time. During initial 2000 h, OCP values are shifted by 50 mV to cathodic side. For the period of a higher rust electrochemical activity, the use of a reduced B is suggested to increase accuracy of LPR technique in tap water.

  9. Polarization Resistance Measurement in Tap Water: The Influence of Rust Electrochemical Activity

    Science.gov (United States)

    Vasyliev, Georgii

    2017-08-01

    Corrosion rate of mild steel in tap water during 4300 h was estimated by LPR and weight-loss methods coupled with OCP measurements. The LPR results were found to be overestimated compared to the weight-loss data within initial 2000 h of exposure. The electrochemical activity of the rust separated from the metal surface was studied by cycling voltammetry using a home-built powder graphite electrode. High redox currents corresponding to the initial 2000 h of exposure were detected. Rust composition was characterized with IR and XRD, and the highest amounts of electrochemically active β- and γ-FeOOH were again detected for the initial 2000 h. Current consumption in rust transformation processes during LPR measurement in the galvanostatic mode accounts for overestimation of the corrosion rate. The time dependence of rust electrochemical activity correlates with OCP variation with time. During initial 2000 h, OCP values are shifted by 50 mV to cathodic side. For the period of a higher rust electrochemical activity, the use of a reduced B is suggested to increase accuracy of LPR technique in tap water.

  10. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    Science.gov (United States)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  11. Alcohol Dehydrogenase of Bacillus strain for Measuring Alcohol Electrochemically

    Science.gov (United States)

    Iswantini, D.; Nurhidayat, N.; Ferit, H.

    2017-03-01

    Alcohol dehydrogenase (ADH) was applied to produce alcohol biosensor. The enzyme was collected from cultured Bacillus sp. in solid media. From 6 tested isolates, bacteria from fermented rice grain (TST.A) showed the highest oxidation current which was further applied as the bioreceptor. Various ethanol concentrations was measured based on the increase of maximum oxidation current value. However, a reduction value was happened when the ethanol concentration was higher than 5%. Comparing the result of spectrophotometry measurement, R2 value obtained from the biosensor measurement method was higher. The new proposed method resulted a wider detection range, from 0.1-5% of ethanol concentration. The result showed that biosensor method has big potency to be used as alcohol detector in foods or bevearages.

  12. Electrochemically-Modulated Separations for Material Accountability Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Arrigo, Leah M.; Liezers, Martin; Douglas, Matthew; Green, Michael A.; Farmer, Orville T.; Schwantes, Jon M.; Peper, Shane M.; Duckworth, Douglas C.

    2010-05-07

    The Safeguards community recognizes that an accurate and timely measurement of accountable material mass at the head-end of the facility is critical to a modern materials control and accountability program at fuel reprocessing plants. For material accountancy, it is critical to detect both acute and chronic diversions of nuclear materials. Therefore, both on-line nondestructive (NDA) and destructive analysis (DA) approaches are desirable. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. Direct on-line gamma measurements of Pu, while desirable, are not possible due to contributions from other actinide and fission products. A technology for simple, online separation of targeted materials would benefit both DA and NDA measurements.

  13. Long-term field test of an electrochemical method for sulfide removal from sewage.

    Science.gov (United States)

    Pikaar, Ilje; Li, Eugena; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg; Rabaey, Korneel

    2012-06-01

    Corrosion caused by hydrogen sulfide leads to significant costs for the rehabilitation or replacement of corroded sewer pipes. Conventional methods to prevent sewer corrosion normally involve the dosing of significant amounts of chemicals with the associated transport and storage costs as well as considerable maintenance and control requirement. Recently, a novel chemical free method for sulfide abatement based on electrochemical sulfide oxidation was shown to be highly effective for the removal of sulfide from synthetic and real sewage. Here, we report on the electrochemical removal of sulfide using Ta/Ir and Pt/Ir coated titanium electrodes under simulated sewer conditions during field trials. The results showed that sulfide can successfully be removed to levels below the normal target value at the end of a simulated rising main (i.e. Scaling of the electrode and the membrane was observed in the cathode compartment and as a result the cell potentials increased over time. The cathode potentials returned to their original potential after switching the polarity every two days, but a more frequent switching would be needed to reduce the energy requirements of the system. Accelerated lifetime experiments indicated that a lifetime of 6.0 ± 1.9 years can be expected under polarity switching conditions at a pH of 14 and significantly longer at lower pH values. As operating the system without switching simplifies construction as well as operation, the choice whether to switch or not will in practice depend on operational cost (higher/lower energy) versus capital cost (reactor and peripherals). Irrespective of the approach, our study demonstrates that electrochemical sulfide control in sewer systems may be an attractive new option.

  14. In situ electrochemical impedance and noise measurements of corroding stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Macak, Jan [Power Engineering Department, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)]. E-mail: macakj@vscht.cz; Sajdl, Petr [Power Engineering Department, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Kucera, Pavel [Power Engineering Department, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Novotny, Radek [Institute for Energy, Joint Research Centre, 1755ZG Petten (Netherlands); Vosta, Jan [Power Engineering Department, Institute of Chemical Technology Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2006-04-25

    An in situ corrosion study of austenitic stainless steel 08CH18N10T in high temperature water was performed. The material under study is used in the construction of steam generator of PWR (pressurized water reactor) nuclear power stations and is similar to AISI 321 stainless steel. In situ 300-h tests were performed under autoclave conditions at 280 deg. C and 8 MPa and consisted of impedance measurements, polarization measurements and electrochemical noise measurements. The experiments were performed in deionised water with the pH adjusted to 9.5, in the presence/absence of chlorides. An additional modification of corrosivity was achieved by changing oxygen concentration. A detailed analysis of the impedance data is presented identifying in the impedance spectra contributions of oxide, corrosion reaction, double layer and diffusion process. A good agreement was found between corrosion data from electrochemical impedance spectroscopy (EIS) and that from electrochemical noise (EN) measurements. It was confirmed that the oxide response cannot be attributed to the overall oxide layer but only to the part corresponding to the space charge layer, thus indicating the semi-conductive character of the oxide.

  15. On-line electrochemical measurements of cerebral hypoxanthine of freely moving rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG ZiPin; LIN YuQing; MAO LanQun

    2009-01-01

    This study demonstrates an on-line method for continuous measurements of cerebral hypoxanthine in the freely moving rats with integration of selective electrochemical biosensing with in vivo microdialysis sampling. The selective electrochemical biosensing is achieved by using xanthine oxidase (XOD) as the specific sensing element and Prussian blue (PB) as the electrocatalyst for the reduction of H_2O_2 generated from the oxidase-catalyzed reaction. The method is virtually interference-free from the coexisting electroactive species in the brain and exhibits a good stability and reproducibility. Upon integrated with in vivo microdialysis, the on-line method is well suitable for continuous measurements of cerebral hypoxanthine of freely moving rats, which is illustrated by the measurements of the microdialysates after the hypoxanthine standard was externally infused into the rat brain. This study essen-tially offers a facile on-line electrochemical approach to continuous measurements of cerebral hypoxanthine and could find some interesting applications in physiological and pathological investigations associated with hypoxanthine.

  16. On-line electrochemical measurements of cerebral hypoxanthine of freely moving rats

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This study demonstrates an on-line method for continuous measurements of cerebral hypoxanthine in the freely moving rats with integration of selective electrochemical biosensing with in vivo microdialysis sampling. The selective electrochemical biosensing is achieved by using xanthine oxidase (XOD) as the specific sensing element and Prussian blue (PB) as the electrocatalyst for the reduction of H2O2 generated from the oxidase-catalyzed reaction. The method is virtually interference-free from the co-existing electroactive species in the brain and exhibits a good stability and reproducibility. Upon integrated with in vivo microdialysis, the on-line method is well suitable for continuous measurements of cerebral hypoxanthine of freely moving rats, which is illustrated by the measurements of the microdi-alysates after the hypoxanthine standard was externally infused into the rat brain. This study essentially offers a facile on-line electrochemical approach to continuous measurements of cerebral hypoxanthine and could find some interesting applications in physiological and pathological investigations associated with hypoxanthine.

  17. Electrochemical sensor for continuous transcutaneous PCO2 measurement.

    Science.gov (United States)

    Beran, A V; Huxtable, R F; Sperling, D R

    1976-09-01

    A sensor suitable for continuous transcutaneous PCO2 measurements is described. The sensor consists of an antimony-antimony oxide electrode in combination with a silver-silver chloride reference electrode, bathed in an electrolyte and covered by a Teflon membrane. A servo-controlled heater unit was used to maintain the sensor's temperature and to produce local hyperemia. The resulting oxidation-reduction potential under constant temperature is a linear function of the logarithm PCO2. Response time (95%) to step changes in PCO2 from 27 to 70 mmHg was 2.7 +/- 0.3 min. Following a 12-h "aging" time, the electrode exhibited a minimal drift of 5.2 +/- 2.2 mV for 16 h, representing an average PCO2 drift of 0.5 mmHg/h. This sensor was applied on three rabbits and on five human volunteers, and found satisfactory under normal physiological conditions.

  18. Electromagnetic measurements in the near field

    CERN Document Server

    Bienkowski, Pawel

    2012-01-01

    This book is devoted to the specific problems of electromagnetic field (EMF) measurements in the near field and to the analysis of the main factors which impede accuracy in these measurements. It focuses on careful and accurate design of systems to measure in the near field based on a thorough understanding of the fundamental engineering principles and on an analysis of the likely system errors. Beginning with a short introduction to electromagnetic fields with an emphasis on the near field, it them presents methods of EMF measurements in near field conditions. It details the factors limiting

  19. Electrochemical reaction and oxidation of lecithin under pulsed electric fields (PEF) processing.

    Science.gov (United States)

    Zhao, Wei; Yang, Ruijin; Liang, Qi; Zhang, Wenbin; Hua, Xiao; Tang, Yali

    2012-12-12

    Pulsed electric fields (PEF) processing is a promising nonthermal food preservation technology, which is ongoing from laboratory and pilot plant scale levels to the industrial level. Currently, greater attention has been paid to side effects occurring during PEF treatment and the influences on food qualities and food components. The present study investigated the electrochemical reaction and oxidation of lecithin under PEF processing. Results showed that electrochemical reaction of NaCl solutions at different pH values occurred during PEF processing. Active chlorine, reactive oxygen, and free radicals were detected, which were related to the PEF parameters and pH values of the solution. Lecithin extracted from yolk was further selected to investigate the oxidation of food lipids under PEF processing, confirming the occurrence of oxidation of lecithin under PEF treatment. The oxidative agents induced by PEF might be responsible for the oxidation of extracted yolk lecithin. Moreover, this study found that vitamin C as a natural antioxidant could effectively quench free radicals and inhibit the oxidation of lipid in NaCl and lecithin solutions as model systems under PEF processing, representing a way to minimize the impact of PEF treatment on food qualities.

  20. Water in soybean oil microemulsions as medium for electrochemical measurements

    Directory of Open Access Journals (Sweden)

    Mendonça Carla R. B.

    2003-01-01

    Full Text Available Microemulsions of water in soybean oil (w/o ME were prepared with sodium dodecyl sulfate (SDS as surfactant and amyl or isoamyl alcohol, as co-surfactants. Microemulsions containing 40.0% oil, 43.2% alcohol, 10.8% SDS and 6.0% water in weight, in the ratio 1:4 [SDS]:[alcohol] showed the highest thermodynamic stability. The aqueous droplet size and its diffusion coefficient Dw/o in the ME were determined through dynamic light scattering (DLS. Voltammetric measurements in the ME at a Pt disk ultramicroelectrode (ume evidenced the oxidation of both water and ferrocene (Fc, and the reduction of oleic acid. The Dw/o values calculated from the limiting current being lower than the ones obtained from DLS indicate that water oxidation probably requires diffusion towards the electrode of both the droplets and the water molecules from inside the droplets. The results show that electroanalytical determinations can be carried out in w/o ME.

  1. Possibilities and limitations of ionic liquids in electrochemical and electroanalytical measurements (a review)

    OpenAIRE

    Weidlich, Tomáš; Stočes, Matěj; Švancara, Ivan

    2010-01-01

    A review (with 155 refs.) concerning the current achievements and typical trends in the chemistry of (room temperature) ionic liquids, (RT)ILs, with particular emphasis on their applicability in electrochemical and electroanalytical measurements. The latter is documented on a rapid progress of ionic liquid-modified carbon paste electrodes (IL-CPEs), the so-called carbon ionic liquid electrodes (CILEs), and related configurations in the last half-decade, within the period of 200...

  2. Impact of adsorption on scanning electrochemical microscopy voltammetry and implications for nanogap measurements

    OpenAIRE

    Tan, Sze-yin; Zhang, Jie; Bond, Alan M.; Macpherson, Julie V.; Unwin, Patrick R.

    2016-01-01

    Scanning electrochemical microscopy (SECM) is a powerful tool that enables quantitative measurements of fast electron transfer (ET) kinetics when coupled with modeling predictions from finite-element simulations. However, the advent of nanoscale and nanogap electrode geometries that have an intrinsically high surface area-to-solution volume ratio realizes the need for more rigorous data analysis procedures, as surface effects such as adsorption may play an important role. The oxidation of fer...

  3. The construction of a magnetite electrode for measurement of the electrochemical property

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myongjin; Kim, Hong Pyo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Flow accelerated corrosion (FAC) causes severe damage to secondary piping systems. An accident from FAC occurred at the Oyster Creek nuclear power plant (NPP) in 1978. Other NPPs such as Surry 2 and Mihama 3 have also experienced an FAC that induced damage to the carbon steel piping. FAC is influenced by many factors such as the water chemistry (temperature, pH, dissolved oxygen (D. O.) in a solution, and etc.), chemical composition of carbon steel, and fluid dynamics. Magnetite is formed at the inner surface of carbon steel, and protects the integrity of pipes from damage. The magnetite has a stable state at each equilibrium condition, so that it can be dissolved into the fluid under conditions that satisfy the equilibrium state. The iron solubility can be calculated by considering the reaction equilibrium constants for prediction of the change in the magnetite layer. On the other hand, it is necessary to measure the experimental solubility to compare the theoretical data and the experimental data. In addition, the solubility of magnetite can be predicted by measuring the electrochemical experiments. However, there are few studies related to the electrochemical property of magnetite owing to the difficulty of the electrode fabrication. In the present work, a magnetite electrode was prepared using a dipping method, and the electrochemical property of the magnetite electrode was measured in an alkaline solution.

  4. Shaly sand formation evaluation in tight gas sands using electrochemical potential measurements

    Science.gov (United States)

    Sharma, M. M.; Jin, M.

    1991-08-01

    Equations are developed that directly relate the shaly conductivity to the electrochemical (membrane) potential (EP). The model is applied to both fully and partially saturated sands. The relationship between the resistivity index and the water saturation is also expressed in terms of a single membrane potential measurement. The Ep measured at different salinities are compared with model prediction using a single membrane potential measurement. Sigma (sub 0) versus Sigma (sub w) curves are then generated using the model equations and compared with measured curves. Experimental results are presented for electrochemical potential measurement made in the lab on 50 tight gs sand samples. It is shown that the measurements can be correlated with CEC although the CEC measured by grinding up the samples was always higher than that estimated from Ep measurements. The Ep measurements are combined with the equations for partial saturation developed in the report to obtain water saturations in a tight gas sand well. Through the example it is shown that it is possible to determine the water saturation in Shaly sands from one membrane potential measurement at a known salinity together with a set of resistivity logs. The results clearly demonstrate the applicability of the method as a practical procedure for Shaly sand information evaluation.

  5. Characterization of prerusted steels in some Ibero-American atmospheres by electrochemical potential noise measurement

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, E. [INETI/IMP Lab. de Tintas e Revestimentos, Lisboa (Portugal); Mariaca, L.; Rodriguez, A.; Chavarin, J.U.; Veloz, M.A. [IIE Dept. de Fisicoquimica Aplicada, Cuernavaca (Mexico)

    1996-12-31

    The purpose of the MICAT project (Ibero-American Map of Atmospheric Corrosiveness) was to foster collaborative ventures between groups conducting research on atmospheric corrosion. Overall, 14 Ibero-American countries, including Spain and Portugal, are involved with a network of 71 test stations distributed throughout the region and on 4 continents. These test stations represent a broad spectrum of climatological and atmospheric pollution conditions. The objective of the MICAT electrochemical studies was to characterize the protective properties of the corrosion products formed during atmospheric exposure at the different test sites. Prerusted carbon steel specimens at different locations were immersed in a sodium sulfate solution. Some specimens were rust pretreated in phosphoric acid solution with additions of aluminum hydroxide (rust converters) electrochemically evaluated. Electrochemical noise measurements (ENM) and linear polarization resistance (LPR) measurements were performed for different times of immersion. Corrosion rates were related to the presence of the oxides that were initially formed. For specimens rusted in marine atmospheres, the presence of chlorides in the corrosion products promotes localized attack. As to the different rust-converted specimens, ENM revealed the pretreatment evolution and corrosion performance over time. ENM was able to characterize and evaluate the protective properties of oxides and pretreatments according to the nature and environmental conditions to which specimens were exposed.

  6. A compact microelectrode array chip with multiple measuring sites for electrochemical applications.

    Science.gov (United States)

    Dimaki, Maria; Vergani, Marco; Heiskanen, Arto; Kwasny, Dorota; Sasso, Luigi; Carminati, Marco; Gerrard, Juliet A; Emneus, Jenny; Svendsen, Winnie E

    2014-05-28

    In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in close proximity. The electrodes are made of gold on a silicon oxide substrate and are passivated by a silicon nitride membrane. A method for avoiding the creation of high edges at the electrodes (known as lift-off ears) is presented. The microchip design is highly symmetric to accommodate easy electronic integration and provides space for microfluidic inlets and outlets for integrated custom-made microfluidic systems on top.

  7. A Compact Microelectrode Array Chip with Multiple Measuring Sites for Electrochemical Applications

    Directory of Open Access Journals (Sweden)

    Maria Dimaki

    2014-05-01

    Full Text Available In this paper we demonstrate the fabrication and electrochemical characterization of a microchip with 12 identical but individually addressable electrochemical measuring sites, each consisting of a set of interdigitated electrodes acting as a working electrode as well as two circular electrodes functioning as a counter and reference electrode in close proximity. The electrodes are made of gold on a silicon oxide substrate and are passivated by a silicon nitride membrane. A method for avoiding the creation of high edges at the electrodes (known as lift-off ears is presented. The microchip design is highly symmetric to accommodate easy electronic integration and provides space for microfluidic inlets and outlets for integrated custom-made microfluidic systems on top.

  8. Standard practice for verification of algorithm and equipment for electrochemical impedance measurements

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1989-01-01

    1.1 This practice covers an experimental procedure which can be used to check one's instrumentation and technique for collecting and presenting electrochemical impedance data. If followed, this practice provides a standard material, electrolyte, and procedure for collecting electrochemical impedance data at the open circuit or corrosion potential that should reproduce data determined by others at different times and in different laboratories. This practice may not be appropriate for collecting impedance information for all materials or in all environments. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. Magnetic Electrochemical Finishing Machining

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    How to improve the finishing efficiency and surface roughness have been all along the objective of research in electrochemical polishing. However, the research activity, i.e. during electrochemical polishing, directly introduce the magnetic field to study how the magnetic field influences on the finishing efficiency, quality and the electrochemical process in the field of finishing machining technology, is insufficient. When introducing additional magnetic field in the traditional electrochemical pol...

  10. Defining and measuring transnational fields

    OpenAIRE

    Molina, J.; Petermann, S.; Herz, A.

    2012-01-01

    Transnational social fields and transnational social spaces are concepts used interchangeably in transnational literature. Although both of them refer to the complex of connections between borders, each of them represents a different – and complementary – perspective. In this paper, it will be argued that the adoption of the social networks approach by transnational studies actually inherited two different traditions for studying relational phenomena: the anthropological egocentric or persona...

  11. Measurement of oxidized and methylated DNA bases by HPLC with electrochemical detection.

    Science.gov (United States)

    Kaur, H; Halliwell, B

    1996-08-15

    Oxidative DNA damage is thought to be an important contributor to cancer development and to be affected by dietary constituents, so its accurate measurement is important. DNA methylation is recognized as an important mechanism affecting gene expression. In the present paper we describe an HPLC-with-electrochemical-detection procedure that allows rapid and sensitive measurement of four oxidized (2,6-diamino-4-hydroxy-5-formamidopyrimidine, 5-hydroxyuracil, 8-hydroxyguanine, 8-hydroxyadenine) and three methylated (7-methylguanine, 1-methylguanine, O6-methylguanine) bases in acid hydrolysates of DNA. Guanine was also detected, but was clearly separated from the other bases.

  12. Direct measurement of electron transfer distance decay constants of single redox proteins by electrochemical tunneling spectroscopy.

    Science.gov (United States)

    Artés, Juan M; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2011-03-22

    We present a method to measure directly and at the single-molecule level the distance decay constant that characterizes the rate of electron transfer (ET) in redox proteins. Using an electrochemical tunneling microscope under bipotentiostatic control, we obtained current−distance spectroscopic recordings of individual redox proteins confined within a nanometric tunneling gap at a well-defined molecular orientation. The tunneling current decays exponentially, and the corresponding decay constant (β) strongly supports a two-step tunneling ET mechanism. Statistical analysis of decay constant measurements reveals differences between the reduced and oxidized states that may be relevant to the control of ET rates in enzymes and biological electron transport chains.

  13. Convective heat transfer in a measurement cell for scanning electrochemical microscopy.

    Science.gov (United States)

    Novev, Javor K; Compton, Richard G

    2016-11-21

    Electrochemical experiments, especially those performed with scanning electrochemical microscopy (SECM), are often carried out without taking special care to thermostat the solution; it is usually assumed that its temperature is homogeneous and equal to the ambient. The present study aims to test this assumption via numerical simulations of the heat transfer in a particular system - the typical measurement cell for SECM. It is assumed that the temperature of the solution is initially homogeneous but different from that of its surroundings; convective heat transfer in the solution and the surrounding air is taken into account within the framework of the Boussinesq approximation. The hereby presented theoretical treatment indicates that an initial temperature difference of the order of 1 K dissipates with a characteristic time scale of ∼1000 s; the thermal equilibration is accompanied by convective flows with a maximum velocity of ∼10(-4) m s(-1); furthermore, the temporal evolution of the temperature profile is influenced by the sign of the initial difference. These results suggest that, unless the temperature of the solution is rigorously controlled, convection may significantly compromise the interpretation of data from SECM and other electrochemical techniques, which is usually done on the basis of diffusion-only models.

  14. 3-D Flow Field of Cathode Design for NC Precision Electrochemical Machining Integer Impeller Based on CFD

    Directory of Open Access Journals (Sweden)

    Rui Wu

    2011-09-01

    Full Text Available In order to achieve high efficiency and low cost cathode designing, improve stability of process in NC precision electrochemical machining of integer impeller, a method of applying Computational Fluid Dynamics (CFD to aid designing flow field structure of cathode and parameters for NC-ECM has been proposed in this study. The designing of flow field is the key point in cathode design and a suitable flow field design guarantees the process stability in electrochemical machining. A numerical model of the three-dimension flow field was built according to the geometrical model of interelectrode gap and cathode outline. Then the numerical simulation of 3-D flow field was performed by using the standard k-, turbulence model when the turbulence state in electrochemical machining had been determined. The effect of cathode’s structure and initial electrolyte pressure on the electrolyte flow field was analyzed according to the results of numerical simulation. A series of results similar to the actual experimental results are obtained. The method deduced in this paper could be used to achieve high efficiency and low cost cathode design, select of initial electrolyte pressure, and consequently a lot of “trial and error” cycles will be deduced.

  15. Electrochemical Processes

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1997-01-01

    The notes describe in detail primary and secondary galvanic cells, fuel cells, electrochemical synthesis and electroplating processes, corrosion: measurments, inhibitors, cathodic and anodic protection, details of metal dissolution reactions, Pourbaix diagrams and purification of waste water from...

  16. Electrochemical and CMT measurements of the anomalous dissolution of nickel in solutions containing oxygen

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers; de Fontenay, Frank; Poulsen, Henning

    1997-01-01

    In addition to single nickel crystals also nickel samples produced by dc and pr (pulse-reversal) plating were examined. As previously reported the true rate of dissolution of nickel in solutions containing oxygen was found to be as much as three times the electrochemical rate at the corrosion...... potential. When passivation was approached (spontaneously or by anodic polarization) the true rate of dissolution approached the rate of anodic reaction. During cathodic polarization there was still a significant rate of dissolution. The true rate of dissolution was determined by CMT measurements (Corrosion...

  17. Spatial Resolution Correction for Electrochemical Wall-shear Stress Measurements using Rectangular Sensors

    Directory of Open Access Journals (Sweden)

    Fethi Aloui

    2016-01-01

    Full Text Available This article is mainly motivated by the growing needs for highly resolved measurements for wall-bounded turbulent flows and aims to proposes a spatial correction coefficient in order to increase the wall-shear stress sensors accuracy. As it well known for the hot wire anemometry, the fluctuating streamwise velocity measurement attenuation is mainly due to the spatial resolution and the frequency response of the sensing element. The present work agrees well with this conclusion and expands it to the wall-shear stress fluctuations measurements using electrochemical sensors and suggested a correction method based on the spanwise correlation coefficient to take into account the spatial filtering effects on unresolved wall-shear stress measurements due to too large sensor spanwise size.

  18. Magnetic Field Measurement on a Refined Kicker

    CERN Document Server

    Fan, Tai-Ching; Lin, Fu-Yuan

    2005-01-01

    To prepare for the operation of top-up mode and increase the efficiency of injection at storage ring, National Synchrotron Radiation Research Center (NSRRC) has upgraded the kicker magnets and power supply. We have built up a new magnetic field measurement system to test the kicker. This system, including a search coil and a coil loop, can map the field and take the first integral of field automatically. We also simulate the trajectory of electron beam by pulsed wire method of field measurement. We analyze the performance of the kicker system in this paper.

  19. Electrochemical studies of nickel deposition from aqueous solution in super-gravity field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of super-gravity on electrochemical deposition of nickel from aqueous solution was studied. The SEM pictures show that the microstructure of nickel film deposited under the super-gravity condition is finer and more uniform compared with that obtained in normal gravity condition, and the crystal grains diminish with the increase of super-gravity coefficient. The XRD patterns indicate that the ar-rangement of crystalline grains of nickel film deposited under the super-gravity field is more regular, and the crystalline grain sizes decrease with the increase of super-gravity coefficient. Toughness, tensile stress and hardness of the nickel film are markedly raised with the increase of super-gravity coefficient, and hydrogen content in the nickel film decreases with the increase of super-gravity coefficient. From the polarization curves of hydrogen evolution reaction under the su-per-gravity condition, a significant reduction of over-potential on electrode was found when current density increased. The process of hydrogen evolution reaction was enhanced under the super-gravity condition. The electro-deposition rate, the microstructure and properties of deposited nickel film under super-gravity condi-tion were still affected by the relative orientation between inertia force and depos-iting surface. It is favorable to gain the nickel film with better mechanic properties when inertia force orientates vertically towards depositing surface.

  20. Electrochemical studies of nickel deposition from aqueous solution in super-gravity field

    Institute of Scientific and Technical Information of China (English)

    GUO ZhanCheng; GONG YingPeng; LU WeiChang

    2007-01-01

    The effect of super-gravity on electrochemical deposition of nickel from aqueous solution was studied. The SEM pictures show that the microstructure of nickel film deposited under the super-gravity condition is finer and more uniform compared with that obtained in normal gravity condition, and the crystal grains diminish with the increase of super-gravity coefficient. The XRD patterns indicate that the arrangement of crystalline grains of nickel film deposited under the super-gravity field is more regular, and the crystalline grain sizes decrease with the increase of super-gravity coefficient. Toughness, tensile stress and hardness of the nickel film are markedly raised with the increase of super-gravity coefficient, and hydrogen content in the nickel film decreases with the increase of super-gravity coefficient. From the polarization curves of hydrogen evolution reaction under the super-gravity condition, a significant reduction of over-potential on electrode was found when current density increased. The process of hydrogen evolution reaction was enhanced under the super-gravity condition. The electro-deposition rate, the microstructure and properties of deposited nickel film under super-gravity condition were still affected by the relative orientation between inertia force and depositing surface. It is favorable to gain the nickel film with better mechanic properties when inertia force orientates vertically towards depositing surface.

  1. Motion of a colloidal sphere with interfacial self-electrochemical reactions induced by a magnetic field.

    Science.gov (United States)

    Hsieh, Tzu H; Keh, Huan J

    2012-05-07

    The motion of a spherical colloidal particle with spontaneous electrochemical reactions occurring on its surface in an ionic solution subjected to an applied magnetic field is analyzed for an arbitrary zeta potential distribution. The thickness of the electric double layer adjacent to the particle surface is assumed to be much less than the particle radius. The solutions of the Laplace equations governing the magnetic scalar potential and electric potential, respectively, lead to the magnetic flux and electric current density distributions in the particle and fluid phases of arbitrary magnetic permeabilities and electric conductivities. The Stokes equations modified with the Lorentz force contribution for the fluid motion are dealt by using a generalized reciprocal theorem, and closed-form formulas for the translational and angular velocities of the colloidal sphere induced by the magnetohydrodynamic effect are obtained. The dipole and quadrupole moments of the zeta potential distribution over the particle surface cause the particle translation and rotation, respectively. The induced velocities of the particle are unexpectedly significant, and their dependence on the characteristics of the particle-fluid system is physically different from that for electromagnetophoretic particles or phoretic swimmers.

  2. Attofarad resolution potentiostat for electrochemical measurements on nanoscale biomolecular interfacial systems

    Science.gov (United States)

    Carminati, Marco; Ferrari, Giorgio; Sampietro, Marco

    2009-12-01

    We present an instrument that enables electrochemical measurements (cyclic voltammetry, impedance tracking, and impedance spectroscopy) on submicrometric samples. The system features a frequency range from dc to 1 MHz and a current resolution of 10 fA for a measurement time of 1 s, giving a sensitivity of few attofarads in terms of measurable capacitance with an applied voltage of only 100 mV. These performances are obtained using a low-noise wide-bandwidth integrator/differentiator stage to sense the input current and a modular approach to minimize the effect of input stray capacitances. A digitally implemented lock-in filter optimally extracts the impedance of the sample, providing time tracking and spectroscopy operating modes. This computer-based and flexible instrument is well suited for characterizing and tracking the electrical properties of biomolecules kept in the physiological solution down to the nanoscale.

  3. An electrochemical hydrogen meter for measuring hydrogen in sodium using a ternary electrolyte mixture

    CERN Document Server

    Sridharan, R; Nagaraj, S; Gnanasekaran, T; Periaswami, G

    2003-01-01

    An electrochemical sensor for measuring hydrogen concentration in liquid sodium that is based on a ternary mixture of LiCl, CaCl sub 2 and CaHCl as the electrolyte has been developed. DSC experiments showed the eutectic temperature of this ternary system to be approx 725 K. Impedance spectroscopic analysis of the electrolyte indicated ionic conduction through a molten phase at approx 725 K. Two electrochemical hydrogen sensors were constructed using the ternary electrolyte of composition 70 mol% LiCl:16 mol% CaHCl:14 mol% CaCl sub 2 and tested at 723 K in a mini sodium loop and at hydrogen levels of 60-250 ppb in sodium. The sensors show linear response in this concentration range and are capable of detecting a change of 10 ppb hydrogen in sodium over a background level of 60 ppb. Identification of this electrolyte system and its use in a sensor for measuring hydrogen in sodium are described in this paper.

  4. Attracting Students to the Field of Measurement

    Science.gov (United States)

    Finney, Sara J.; Pastor, Dena A.

    2012-01-01

    To address the shortage of professionals in measurement, it is essential that we make young career-seekers aware that measurement is an option as a profession. In this paper, we discuss how creating a strong pipeline of students into our field involves personal interactions between faculty representing the graduate programs in measurement and…

  5. Discernment of Possible Organic Magnetic Field Effect Mechanisms Using Polymer Light-Emitting Electrochemical Cells

    Science.gov (United States)

    Geng, R.; Subedi, R. C.; Liang, S.; Nguyen, T. D.

    2014-07-01

    We report studies of magnetic field effect (MFE) in polymer light-emitting electrochemical cells (PLEC) using the "super-yellow" poly-(phenylene vynilene) (SY-PPV) polymer in vertical and planar device configurations. The purpose is to discern the existing MFE mechanisms in organic light emitting diodes (OLEDs) where the current and electroluminescence are strongly modulated by a small applied magnetic field. In particular, we investigate the mutual relationship between magneto-conductance (MC) and magneto-electroluminescence (MEL) by studying the role of polaron density dissociated from polaron pairs (PP) on these magnetic responses. In general, the dissociated polaron density is determined by the PP dissociation rate and the PP density. For the planar PLEC, which possesses a small dissociation rate, we observe small and negative MC at all applied voltages regardless of the emission intensity, while MEL becomes positive when electroluminescence quantum efficiency increases. The MC has a much narrower width than the MEL, indicating that the MC and MEL do not share a common origin. However, MC reverses and has the same width as MEL when the device is exposed to a threshold laser power. For the vertical PLEC, characterized by a large dissociation rate, MC and MEL are positive and have the same width. We discuss the results using the existing MFE mechanism in OLEDs. We show that the PP model can explain the positive MEL and MC, while the negative MC can be explained by the bipolaron model. Finally, we present a possibility to complete an all-organic PLEC magnetic sensor by using an inkjet printer.

  6. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  7. Sensitivity Enhancement of Bead-based Electrochemical Impedance Spectroscopy (BEIS) biosensor by electric field-focusing in microwells.

    Science.gov (United States)

    Shin, Kyeong-Sik; Ji, Jae Hoon; Hwang, Kyo Seon; Jun, Seong Chan; Kang, Ji Yoon

    2016-11-15

    This paper reports a novel electrochemical impedance spectroscopy (EIS) biosensors that uses magnetic beads trapped in a microwell array to improve the sensitivity of conventional bead-based EIS (BEIS) biosensors. Unloading the previously measured beads by removing the magnetic bar enables the BEIS sensor to be used repeatedly by reloading it with new beads. Despite its recyclability, the sensitivity of conventional BEIS biosensors is so low that it has not attracted much attentions from the biosensor industry. We significantly improved the sensitivity of the BEIS system by introducing of a microwell array that contains two electrodes (a working electrode and a counter electrode) to concentrate the electric field on the surfaces of the beads. We confirmed that the performance of the BEIS sensor in a microwell array using an immunoassay of prostate specific antigen (PSA) in PBS buffer and human plasma. The experimental results showed that a low concentration of PSA (a few tens or hundreds of fg/mL) were detectable as a ratio of the changes in the impedance of the PBS buffer or in human plasma. Therefore, our BEIS sensor with a microwell array could be a promising platform for low cost, high-performance biosensors for applications that require high sensitivity and recyclability.

  8. High-field bipolar loss measurement apparatus

    Science.gov (United States)

    Weldon, D.; Thullen, P.; Wollan, J.

    1980-09-01

    An apparatus was constructed to measure dissipation in superconducting wire in high alternating fields. The circuit incorporates a pair of locomotive traction motors as the capacitive circuit element for the bipolar swing. The design, construction and operating characteristics of the field coil and the associated circuitry are described.

  9. Electrochemical Nanoparticle Sizing Via Nano-Impacts: How Large a Nanoparticle Can be Measured?

    Science.gov (United States)

    Bartlett, Thomas R; Sokolov, Stanislav V; Compton, Richard G

    2015-01-01

    The field of nanoparticle (NP) sizing encompasses a wide array of techniques, with electron microscopy and dynamic light scattering (DLS) having become the established methods for NP quantification; however, these techniques are not always applicable. A new and rapidly developing method that addresses the limitations of these techniques is the electrochemical detection of NPs in solution. The ‘nano-impacts’ technique is an excellent and qualitative in situ method for nanoparticle characterization. Two complementary studies on silver and silver bromide nanoparticles (NPs) were used to assess the large radius limit of the nano-impact method for NP sizing. Noting that by definition a NP cannot be larger than 100 nm in diameter, we have shown that the method quantitatively sizes at the largest limit, the lower limit having been previously reported as ∼6 nm.1 PMID:26491639

  10. Reactor Materials Program electrochemical potential measurements by ORNL with unirradiated and irradiated stainless steel specimens

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, E.W.; Caskey, G.R. Jr.

    1993-07-01

    Effect of irradiation of stainless steel on electrochemical potential (ECP) was investigated by measurements in dilute HNO{sub 3} and H{sub 2}O{sub 2} solutions, conditions simulating reactor moderator. The electrodes were made from unirradiated/irradiated, unsensitized/sensitized specimens from R-reactor piping. Results were inconclusive because of budgetary restrictions. The dose rate may have been too small to produce a significant radiolytic effect. Neither the earlier CERT corrosion susceptibility tests nor the present ECP measurements showed a pronounced effect of irradiation on susceptibility of the stainless steel to IGSCC; this is confirmed by the absence in the stainless steel of the SRS reactor tanks (except for the C Reactor tank knuckle area).

  11. The measurement of phosphorus in low alloy steels by electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Rahier, A.; Campsteyn, A.; Verheyen, E.; Verpoucke, G.

    2008-08-15

    The oscillo-polarographic method reported by Chen for the determination of phosphorus in silicates, iron ores, carbonates and tea leaves has been thoroughly studied and enhanced in view of the determination of P in various steels. Together with a carefully selected sample dissolution method, the chromatographic separation reported by Hanada et al. for eliminating the matrix has also been examined. The results of these investigations allowed finding out a path towards the successful electrochemical measurement of P in low alloy ferritic steels without eliminating the matrix. The limit of detection is 5.2 micro gram{sup -1} in the metal. The precision ranges between 5 and 15 % relative to the mean measured values. The finely tuned method has been successfully validated using five NIST standard steels. The chromatographic method remains an option for addressing other metals in the future, should they contain unacceptable levels of possibly interfering elements.. Detailed experimental procedures are given.

  12. Dynamic electrochemical impedance spectroscopy reconstructed from continuous impedance measurement of single frequency during charging/discharging

    Science.gov (United States)

    Huang, Jun; Li, Zhe; Zhang, Jianbo

    2015-01-01

    In this study, a novel implementation of dynamic electrochemical impedance spectroscopy (DEIS) is proposed. The method first measures the impedance continuously at a single frequency during one charging/discharging cycle, then repeats the measurement at a number of other selected frequencies. The impedance spectrum at a specific SOC is obtained by interpolating and collecting the impedance at all of the selected frequencies. The charge transfer resistance, Rct, from the DEIS is smaller than that from the steady EIS in a wide state-of-charge (SOC) range from 0.4 to 1.0, the Rct during charging is generally smaller than that during discharging for the battery chemistry used in this study.

  13. The Prediction of Long-Term Coating Performance from Short-Term Electrochemical Data. Part 2; Comparison of Electrochemical Data to Field Exposure Results for Coatings on Steel

    Science.gov (United States)

    Contu, F.; Taylor, S. R.; Calle, L. M.; Hintze, P. E.; Curran, J. P.; Li, W.

    2009-01-01

    The pace of coatings development is limited by the time required to assess their corrosion protection properties. This study takes a step f orward from Part I in that it correlates the corrosion performance of organic coatings assessed by a series of short-term electrochemical measurement with 18-month beachside exposure results of duplicate pan els. A series of 19 coating systems on A36 steel substrates were test ed in a completely blind study using the damage tolerance test (DTT). In the DTT, a through-film pinhole defect is created, and the electro chemical characteristics of the defect are then monitored over the ne xt 4 to 7 days while immersed in 0.SM NaCl. The open circuit potentia l, anodic potentiostatic polarization tests and electrochemical imped ance spectroscopy were used to study the corrosion behavior of the co ating systems. The beachside exposure tests were conducted at the Ken nedy Space Center according to ASTM D610-01. It was found that for 79 % of the coatings systems examined, the 18 month beachside exposure r esults could be predicted by two independent laboratory tests obtained within 7 days.

  14. Lightning Magnetic Field Measurements around Langmuir Laboratory

    Science.gov (United States)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Aulich, G. D.; Edens, H. E.; Sonnenfeld, R. G.

    2010-12-01

    In the absence of artificial conductors, underground lightning transients are produced by diffusion of the horizontal surface magnetic field of a return stroke vertically downward into the conducting earth. The changing magnetic flux produces an orthogonal horizontal electric field, generating a dispersive, lossy transverse electromagnetic wave that penetrates a hundred meters or more into the ground according to the skin depth of the medium. In turn, the electric field produces currents that flow toward or away from the channel to ground depending on the stroke polarity. The underground transients can produce large radial horizontal potential gradients depending on the distance from the discharge and depth below the surface. In this study we focus on the surface excitation field. The goal of the work is to compare measurements of surface magnetic field waveforms B(t) at different distances from natural lightning discharges with simple and detailed models of the return stroke fields. In addition to providing input to the diffusion mechanism, the results should aid in further understanding return stroke field generation processes. The observational data are to be obtained using orthogonal sets of straightened Rogowski coils to measure magnetic field waveforms in N-S and E-W directions. The waveforms are sampled at 500 kS/s over 1.024 second time intervals and recorded directly onto secure digital cards. The instrument operates off of battery power for several days or weeks at a time in remote, unattended locations and measures magnetic field strengths of up to several tens of amperes/meter. The observations are being made in conjunction with collocated slow electric field change measurements and under good 3-D lightning mapping array (LMA) and fast electric field change coverage.

  15. Rethinking data collection and signal processing. 2. Preserving the temporal fidelity of electrochemical measurements.

    Science.gov (United States)

    Atcherley, Christopher W; Vreeland, Richard F; Monroe, Eric B; Sanchez-Gomez, Esther; Heien, Michael L

    2013-08-20

    Direct electrochemical measurements of biological events are often challenging because of the low signal relative to the magnitude of the background and noise. When choosing a data processing approach, the frequency and phase content of the data must be considered. Here, we employ a zero-phase (infinite impulse response (IIR)) filter to remove the noise from the analytical signal, while preserving the phase content. In fast-scan cyclic voltammetry, the frequency content of the signal is a function of the scan rate of the applied waveform. Fourier analysis was used to develop a relationship between scan rate and the filter cutoff frequency to maximize the reduction in noise, while not altering the true nature of the analytical signal. The zero-phase filter has the same effect as traditional filters with regards to increasing the signal-to-noise ratio. Because the zero-phase filter does not introduce a change to ΔEpeak, the heterogeneous electron rate transfer constant (0.10 cm/s) for ferrocene is calculated accurately. The zero-phase filter also improves electrochemical analysis of signaling molecules that have their oxidation potential close to the switching potential. Lastly, a quantitative approach to filtering amperometric traces of exocytosis based on the rise time was developed.

  16. Fabrication and Characterization of Graphene-Based Electrochemical Sensors for Glucose Measurement.

    Science.gov (United States)

    Park, Minjeong; Choi, Hyonkwang; Park, Yunjae; Lee, Wookyoung; Lee, Jewon; Jeon, Minhyon

    2015-10-01

    Glucose in the blood is generally measured by electrochemical method using glucose oxidase (GOx) which acts as enzymes and reduced graphene oxide (rGO) composite. The rGO, which has low dispersibility, reduces the sensing capability of sensors. In order to solve this problem, the rGO electrodes with the addition of polyvinylpyrrolidone (PVP) have been reported. However, rGO with low electrical conductivity and mobility is not compatible to the electrochemical system. In this study, graphene with excellent electrical properties was added to PVP protected rGO. The rGO was synthesized using a Hummer and Offeman's method. Graphene was synthesized using chemical vapor deposition (CVD) with a Cu catalyst. Platinum (Pt) electrodes, Ag/AgCl, and PVP protected rGO were used as working electrode, reference electrode, and counter electrode, respectively. Surface morphology and structural properties of graphene were analyzed using atomic force microscopy (AFM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). Cyclic voltametry (CV) and I-V probe station were used to analyze the performance of the electrodes. Glucose concentration was systematically varied and the reduction current was monitored using I-V probe station.

  17. Magnetic molecularly imprinted polymer nanoparticles based electrochemical sensor for the measurement of Gram-negative bacterial quorum signaling molecules (N-acyl-homoserine-lactones).

    Science.gov (United States)

    Jiang, Hui; Jiang, Donglei; Shao, Jingdong; Sun, Xiulan

    2016-01-15

    We have developed a novel and economical electrochemical sensor to measure Gram-negative bacterial quorum signaling molecules (AHLs) using magnetic nanoparticles and molecularly imprinted polymer (MIP) technology. Magnetic molecularly imprinted polymers (MMIPs) capable of selectively absorbing AHLs were successfully synthesized by surface polymerization. The particles were deposited onto a magnetic carbon paste electrode (MGCE) surface, and characterized by electrochemical measurements. Differential Pulse Voltammetry (DPV) was utilized to record the oxidative current signal that is characteristic of AHL. The detection limit of this assay was determined to be 8×10(-10)molL(-1) with a linear detection range of 2.5×10(-9)molL(-1) to 1.0×10(-7)molL(-1). This Fe3O4@SiO2-MIP-based electrochemical sensor is a valuable new tool that allows quantitative measurement of Gram-negative bacterial quorum signaling molecules. It has potential applications in the fields of clinical diagnosis or food analysis with real-time detection capability, high specificity, excellent reproducibility, and good stability.

  18. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans;

    2012-01-01

    An alternative, quasi-empirical sampling criterion for EMC near field measurements intended for close coupling investigations is proposed. The criterion is based on maximum error caused by sub-optimal sampling of near fields in the vicinity of an elementary dipole, which is suggested as a worst......-case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...... parametrization with respect to the desired maximum error in measurements. This allows the engineer performing the near field scan to choose a suitable compromise between accuracy and measurement time....

  19. Measuring sound absorption using local field assumptions

    NARCIS (Netherlands)

    Kuipers, E.R.

    2013-01-01

    To more effectively apply acoustically absorbing materials, it is desirable to measure angle-dependent sound absorption coefficients, preferably in situ. Existing measurement methods are based on an overall model of the acoustic field in front of the absorber, and are therefore sensitive to

  20. Electrical, electrochemical and isotopic exchange measurements on lanthanum gallate based ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Bronin, D.I.; Gorelov, V.P. [RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry]|[Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Kuzin, B.L.; Kurumchin, E.Kh.; Vdovin, G.K.; Sokolova, Ju.V.; Beresnev, S.M. [RAS, Ekaterinburg (Russian Federation). Inst. of High-Temperature Electrochemistry; Keppeler, M.; Naefe, H.; Aldinger, F. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2000-07-01

    The solubility limits of Sr and Mg in La{sub 1-x}Sr{sub x}Ga{sub 1-y}Mg{sub y}O{sub 3-{delta}} (LSGM) and the electrical conductivity of LSGM and La{sub 1-x}Sr{sub x}Ga{sub 1-y-z}Mg{sub y}Co{sub z}O{sub 3-{delta}} (LSGMC) were studied. By electrochemical and isotopic exchange measurements on both LSGM material and on an LSGM pellet whose surface was modified by Co-doping, it was shown that the oxygen exchange rate between the solids and the surrounding gas phase is much higher in the case of the modified electrolyte material. A single fuel cell with an LSGM electrolyte was constructed and tested. (orig.)

  1. Nonlinear optical properties measurement of polypyrrole -carbon nanotubes prepared by an electrochemical polymerization method

    Directory of Open Access Journals (Sweden)

    Shahriari

    2017-02-01

    Full Text Available In this work, the optical properties dependence of Multi-Walled Carbon Nanotubes (MWNT on concentration was discussed. MWNT samples were prepared in polypyrrole by an electrochemical polymerization of monomers, in the presence of different concentrations of MWNTs, using Sodium Dodecyl-Benzen-Sulfonate (SDBS as surfactant at room temperature. The nonlinear refractive and nonlinear absorbtion indices were measured using a low power CW laser beam operated at 532 nm using z-scan method. The results show that nonlinear refractive and nonlinear absorbtion indices tend to be increased with increasing the concentration of carbon nanotubes. Optical properties of  carbone nanotubes indicate that they are good candidates for nonlinear optical devices

  2. Measurement of serum pralidoxime methylsulfate (Contrathion) by high-performance liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Houzé, Pascal; Borron, Stephen W; Scherninski, François; Bousquet, Bernard; Gourmel, Bernard; Baud, Frédéric

    2005-01-05

    Pralidoxime methylsulfate (Contrathion) is widely used to treat organophosphate poisoning. Despite animal and human studies, the usefulness of Contrathion therapy remains a matter of debate. Therapeutic dosage regimens need to be clarified and availability of a reliable method for plasma pralidoxime quantification would be helpful in this process. We here describe a high-performance liquid chromatography technique with electrochemical detection to measure pralidoxime concentrations in human serum using guanosine as an internal standard. The assay was linear between 0.25 and 50 microg mL(-1) with a quantification limit of 0.2 microg mL(-1). The analytical precision was satisfactory, with variation coefficients lower 10%. This assay was applied to the analysis of a serum from an organophosphorate poisoned patient and treated by Contrathion infusions (100 and 200 mg h(-1)) after a loading dose (400 mg).

  3. Electrochemical behavior and conductivity measurements of electropolymerized selenophene-based copolymers

    Directory of Open Access Journals (Sweden)

    Alakhras Fadi

    2015-03-01

    Full Text Available Electrochemical copolymerization of selenophene and thiophene was performed at a constant electrode potential. The obtained homopolymer films and copolymers were studied and characterized with cyclic voltammetry and conductivity measurements, from which conductivity values around 13.35 S · cm-1 were determined. The influence of the applied electropolymerization potential and the monomer feed ratio of selenophene and thiophene on the copolymers properties was investigated. The obtained copolymers showed good stability of the redox activity in an acetonitrile-based electrolyte solution. At higher polymerization potentials and at higher concentrations of thiophene in the feed, more thiophene units were incorporated into the copolymer chain. The conductivities of the copolymers were between those of homopolymers, implying that oxidation of both monomers was possible and the copolymer chains might accordingly be composed of both selenophene and thiophene units.

  4. Durability investigation of Calvaria Bridge and electrochemical realkalinisation as a preventive measure

    Directory of Open Access Journals (Sweden)

    Meda NEDELCU

    2014-12-01

    Full Text Available The purpose of this study is to investigate the performance of reinforced concrete structures during their service life. Environmental attacks, such as the atmospheric carbon dioxide and the deicing chloride salts ingression, may seriously affect both the concrete section and the embedded reinforcement and may lead to failure, if immediate measures are not taken. Therefore, a case study of a real structure, the Calvaria Bridge, an intense traffic node in Cluj-Napoca, Romania, was performed, with emphasis on the effects of durability aspects on the structural performance of the elements, namely in terms of deflection. A modern repair method, electrochemical realkalinisation, was also tested in the laboratory, in order to provide a proper intervention solution to the structure, for the concrete elements affected by the ingress of carbon dioxide and thus, by carbonation.

  5. Gravimetric measurements with use of a cantilever for controlling of electrochemical deposition processes

    Science.gov (United States)

    Prokaryn, Piotr; Janus, Pawel; Zajac, Jerzy; Sierakowski, Andrzej; Domanski, Krzysztof; Grabiec, Piotr

    2016-11-01

    In this paper we describe the method for monitoring the progress of electrochemical deposition process. The procedure allows to control the deposition of metals as well as conductive polymers on metallic seed layer. The method is particularly useful to very thin layers (1-10 nm) of deposited medium which mechanical or optical methods are troublesome for. In this method deposit is grown on the target and on the test silicon micro-cantilever with a metal pad. Galvanic deposition on the cantilever causes the change of its mass and consequently the change of its resonance frequency. Changes of the frequency is measured with laser vibro-meter then the layer thicknesses can be estimated basing on the cantilever calibration curve. Applying this method for controlling of gold deposition on platinum seed layer, for improving the properties of the biochemical sensors, is described in this paper.

  6. Electrochemical ion exchanger in the water circuit to measure cation conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Bernt; Ingemarsson, Rolf; Settervik, Gustav [Ringhals AB, Vaeroebacka (Sweden); Velin, Anna [Vattenfall Research and Development AB, Stockholm (Sweden)

    2011-03-15

    At Ringhals Nuclear Power Plant (NPP), more than four years of successful operation with a full-scale electrode ionization (EDI) unit for the recycling of steam generator blowdown gave the inspiration to modify and scale down this EDI process. As part of this project, the possibility of replacing the cation exchanger columns used for cation conductivity analysis with some small and integrated electrochemical ion exchange cells was explored. Monitoring the cation conductivity requires the use of a small cation resin column upstream of the conductivity probe and is one of the most important analyses at power plants. However, when operating with high alkaline treatment in the steam circuit, there is the disadvantage of rapid exhaustion of the resins, necessitating frequent replacement or regeneration. This causes interruptions in the monitoring and gives rise to a high workload for the maintenance staff. This paper reports on the optimization and testing of two different two-compartment electrochemical cells for possible replacement of the cation resin columns for analyzing cation conductivity in the secondary steam circuit at Ringhals NPP. Field tests during start-up conditions and more than four months of steady operation together with real and simulated tests for impurity influences indicate that an electrical ion exchange (ELIX) process could be successfully used to replace the resin columns in Ringhals while operating with high-pH all-volatile treatment (AVT) using hydrazine and ammonia. Installation of an ELIX system downstream of a particle filter and upstream of a small cation resin column will introduce additional safety and further reduce the maintenance and possible interruptions. Performance of the ELIX process together with other chemical additives (morpholine, ethanolamine, 3-methoxypropylamine, dimethylamine) and dispersants may be further evaluated to qualify the ELIX process as well as steam generator blowdown electrodeionization for wider use in

  7. High-field bipolar loss measurement apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Thullen, P.; Weldon, D.; Wollan, J.

    1980-01-01

    An apparatus was constructed to measure dissipation in superconducting wire in high alternating fields. The apparatus will be used to make measurements on conductors which must operate in fields up to 7.0 T and rates of field change up to 15 T/s. The magnet for this facility is wound of uninsulated, 15 strand Rutherford cable in which the strand is a 0.812 mm diameter, fully mixed matrix, Cu plus CuNi, multifilament NbTi conductor. The coil is wound in a bath cooled configuration with an overall current density of 7.8 kA/cm/sup 2/. The circuit incorporates a pair of locomotive traction motors as the capacitive circuit element for the bipolar swing. The design, construction and operating characteristics of the field coil and the associated circuitry are described.

  8. Electrochemical sensing system employing fructosamine 6-kinase enables glycated albumin measurement requiring no proteolytic digestion.

    Science.gov (United States)

    Kameya, Miho; Tsugawa, Wakako; Yamada-Tajima, Mayumi; Hatada, Mika; Suzuki, Keita; Sakaguchi-Mikami, Akane; Ferri, Stefano; Klonoff, David C; Sode, Koji

    2016-06-01

    Currently available enzymatic methods for the measurement of glycated proteins utilize fructosyl amino acid/peptide oxidases (FAOXs/FPOXs) as sensing elements. FAOXs/FPOXs oxidize glycated amino acids or glycated dipeptides but they are not able to accept longer glycated peptides or intact glycated proteins as substrates. Therefore, pretreatment via proteolytic digestion is unavoidable with the current enzymatic methods, and there remains a need for simpler measurement methods for glycated proteins. In this study, in order to develop a novel sensing system for glycated albumin (GA), a marker for diabetes, with no requirement for proteolytic digestion, we created an electrochemical sensor based on fructosamine 6-kinase (FN6K) from Escherichia coli. Uniquely, FN6K can react directly with intact GA unlike FAOXs/FPOXs. The concentration of GA in samples was measured using a carbon-printed disposable electrode upon which FN6K as well as two additional enzymes, pyruvate kinase and pyruvate dehydrogenase were overlaid. A clear correlation between the response current and the concentration of GA was observed in the range of 20-100 µM GA, which is suitable for measurement of GA in diluted blood samples from both healthy individuals and patients with diabetes. The sensing system reported here could be applied to point-of-care-testing devices for measurement of glycated proteins. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Stratospheric electric field measurements with transmediterranean balloons

    Science.gov (United States)

    de La Morena, B. A.; Alberca, L. F.; Curto, J. J.; Holzworth, R. H.

    1993-01-01

    The horizontal component of the stratospheric electric field was measured using a balloon in the ODISEA Campaign of Transmediterranean Balloon Program. The balloon flew between Trapani (Sicily) and El Arenosillo (Huelva, Spain) along the 39 deg N parallel at a height between 34 and 24 km. The high values found for the field on fair-weather and its quasi-turbulent variation, both in amplitude and direction, are difficult to explain with the classical electric field source. A new source, first described by Holzworth (1989), is considered as possibly causing them.

  10. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  11. Imaging interferometry to measure surface rotation field

    DEFF Research Database (Denmark)

    Travaillot, Thomas; Dohn, Søren; Boisen, Anja

    2013-01-01

    This paper describes a polarized-light imaging interferometer to measure the rotation field of reflecting surfaces. This setup is based on a homemade prism featuring a birefringence gradient. The arrangement is presented before focusing on the homemade prism and its manufacturing process....... The dependence of the measured optical phase on the rotation of the surface is derived, thus highlighting the key parameters driving the sensitivity. The system’s capabilities are illustrated by imaging the rotation field at the surface of a tip-loaded polymer specimen....

  12. Electric field measurements from Halley, Antarctica

    Science.gov (United States)

    Nicoll, Keri; Harrison, R. Giles

    2016-04-01

    Antarctica is a unique location for the study of atmospheric electricity. Not only is it one of the most pollutant free places on Earth, but its proximity to the south magnetic pole means that it is an ideal location to study the effects of solar variability on the atmospheric electric field. This is due to the reduced shielding effect of the geomagnetic field at the poles which leads to a greater flux of incoming Galactic Cosmic Rays (GCRs) as well as an increased probability of energetic particle precipitation from SEPs and relativistic electrons. To investigate such effects, two electric field mills of different design were installed at the British Antarctic Survey Halley base in February 2015 (75. 58 degrees south, 26.66 degrees west). Halley is situated on the Brunt Ice Shelf in the south east of the Weddell Sea and has snow cover all year round. Preliminary analysis has focused on selection of fair weather criteria using wind speed and visibility measurements which are vital to assess the effects of falling snow, blowing snow and freezing fog on the electric field measurements. When the effects of such adverse weather conditions are removed clear evidence of the characteristic Carnegie Curve diurnal cycle exists in the Halley electric field measurements (with a mean value of 50V/m and showing a 40% peak to peak variation in comparison to the 34% variation in the Carnegie data). Since the Carnegie Curve represents the variation in thunderstorm activity across the Earth, its presence in the Halley data confirms the presence of the global atmospheric electric circuit signal at Halley. The work presented here will discuss the details of the Halley electric field dataset, including the variability in the fair weather measurements, with a particular focus on magnetic field fluctuations.

  13. ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR DESTRUCTIVE AND NONDESTRUCTIVE ANALYSIS FOR PROCESS MONITORING AND SAFEGUARDS MEASURMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Duckworth, Douglas C.

    2010-05-07

    A timely, accurate, and precise analysis of uranium reprocessing streams is import for process monitoring and nuclear material accountability. For material accountancy, it is critical to detect both acute and chronic diversions of nuclear materials. Therefore, both on-line nondestructive (NDA) and destructive analysis (DA) approaches are desirable. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. Direct on-line gamma measurements of Pu, while desirable, are not possible due to contributions from other actinides and fission products. Electrochemically-modulated separation (EMS) is a straightforward, cost effective alternative technology being investigated at Pacific Northwest National Laboratory for highly selective, slip-stream sampling of U or Pu from reprocessing streams. The EMS selectivity results from simultaneous surface and redox chemistry that allows the affinity of the electrode to be turned “on” or “off” under potential control. Once isolated, the accumulated Pu can be measured by gamma spectroscopy or retained in a small quantity (nanogram-milligram) to reduce radiological concerns and to facilitate transport to laboratory based mass spectrometry instrumentation. In this study, we investigate both destructive and nondestructive applications of EMS. First, nondestructive Pu gamma analysis is performed using dissolved BWR spent fuel. Reduction factors for actinide and fission products and initial estimates of measurement uncertainties were measured. The methodology for DA sampling will also be reported for both Pu and U.

  14. Magnetic Linear Birefringence Measurements Using Pulsed Fields

    CERN Document Server

    Berceau, Paul; Battesti, Remy; Rizzo, Carlo

    2011-01-01

    In this paper we present the accomplishment of the further step towards the vacuum magnetic birefringence measurement based on pulsed fields. After describing our BMV experiment, we report the calibration of our apparatus with nitrogen gas and we discuss the precision of our measurement giving a detailed error budget. Our best present vacuum sensitivity is 2.1x 10^-19 T^-2 per 5 ms magnetic pulse. We finally discuss the perspectives to reach our final goal.

  15. Local electric field measurements by optical tweezers

    Directory of Open Access Journals (Sweden)

    G. Pesce

    2011-09-01

    Full Text Available We report a new technique to measure direction and amplitude of electric fields generated by microelectrodes embedded in polar liquid environment, as often used in microfluidic devices. The method is based on optical tweezers which act as sensitive force transducer while a trapped charged microsphere behaves as a probe. When an electric field is applied the particles moves from its equilibrium position and finishes in a new equilibrium position where electric and optical forces are balanced. A trapped bead is moved to explore the electric field in a wide region around the microelectrodes. In such way maps of electric fields with high spatial resolution can be reconstructed even for complex electrode geometries where numerical simulation approaches can fail. Experimental results are compared with calculations based on finite element analysis simulation.

  16. Quantitative local photosynthetic flux measurements at isolated chloroplasts and thylakoid membranes using scanning electrochemical microscopy (SECM).

    Science.gov (United States)

    McKelvey, Kim; Martin, Sophie; Robinson, Colin; Unwin, Patrick R

    2013-07-01

    Scanning electrochemical microscopy (SECM) offers a fast and quantitative method to measure local fluxes within photosynthesis. In particular, we have measured the flux of oxygen and ferrocyanide (Fe(CN)6(4-)), from the artificial electron acceptor ferricyanide (Fe(CN)6(3-)), using a stationary ultramicroelectrode at chloroplasts and thylakoid membranes (sourced from chloroplasts). Oxygen generation at films of chloroplasts and thylakoid membranes was detected directly during photosynthesis, but in the case of thylakoid membranes, this switched to sustained oxygen consumption at longer illumination times. An initial oxygen concentration spike was detected over both chloroplast and thylakoid membrane films, and the kinetics of the oxygen generation were extracted by fitting the experimental data to a finite element method (FEM) simulation. In contrast to previous work, the oxygen generation spike was attributed to the limited size of the plastoquinone pool, a key component in the linear electron transport pathway and a contributing factor in photoinhibition. Finally, the mobile nature of the SECM probe, and its high spatial resolution, also allowed us to detect ferrocyanide produced from a single thylakoid membrane. These results further demonstrate the power of SECM for localized flux measurements in biological processes, in this case photosynthesis, and that the high time resolution, combined with FEM simulations, allows the elucidation of quantitative kinetic information.

  17. On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater.

    Science.gov (United States)

    Herzog, Grégoire; Moujahid, Waleed; Twomey, Karen; Lyons, Conor; Ogurtsov, Vladimir I

    2013-11-15

    The fabrication and characterisation of microelectrochemical sensors for Cu(2+) and conductivity suitable for operation in the marine environment are presented. The impact of the designs on sensor performance and their adequacy to operate in real conditions are discussed. The sensors, tailored to voltammetric and impedimetric measurements, are fabricated on silicon using photolithographic and thin film deposition techniques. The impedimetric sensor is made of Pt interdigitated electrodes which are used for the measurement of conductivity. The voltammetric sensors are based on a three electrode electrochemical cell with on-chip Ag|AgCl reference and Pt counter and working electrodes, used for detection of copper by underpotential deposition-stripping voltammetry at microelectrode array. The sensors operated in the Cu(2+) concentrations ranging from 0.48 to 3.97 µM with a limit of detection of 0.115 μM. The impact of the temperature, the pH and the salinity of the artificial seawater on the sensitivity for Cu(2+) detection are also considered. Measurements of copper concentration and conductivity are validated using certified reference materials and standard solutions.

  18. A 155-dB Dynamic Range Current Measurement Front End for Electrochemical Biosensing.

    Science.gov (United States)

    Dai, Shanshan; Perera, Rukshan T; Yang, Zi; Rosenstein, Jacob K

    2016-10-01

    An integrated current measurement system with ultra wide dynamic range is presented and fabricated in a 180-nm CMOS technology. Its dual-mode design provides concurrent voltage and frequency outputs, without requiring an external clock source. An integrator-differentiator core provides a voltage output with a noise floor of 11.6 fA/ [Formula: see text] and a -3 dB cutoff frequency of 1.4 MHz. It is merged with an asynchronous current-to-frequency converter, which generates an output frequency linearly proportional to the input current. Together, the voltage and frequency outputs yield a current measurement range of 155 dB, spanning from 204 fA (100 Hz) or 1.25 pA (10 kHz) to 11.6 μA. The proposed architecture's low noise, wide bandwidth, and wide dynamic range make it ideal for measurements of highly nonlinear electrochemical and electrophysiological systems.

  19. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  20. A Mini-Electrochemical System with Integrated Micropipet Tip and Pencil Graphite Electrode for Measuring Cytotoxicity.

    Science.gov (United States)

    Wu, Dong-Mei; Guo, Xiao-Ling; Wang, Qian; Li, Jin-Lian; Cui, Ji-Wen; Zhou, Shi; Hao, Su-E

    2017-01-01

    A novel mini-electrochemical system has been developed for evaluating cytotoxicity of anticancer drugs based on trace cell samples. The mini-electrochemical system was integrated by using pencil graphite modified with threonine as working electrode, an Ag/AgCl reference electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system dramatically reduces sample volumes from 500 μL in a traditional electrochemical system to 10 μL, and exhibits excellent electrocatalytic activity toward oxidation of purine from MCF-7 cells due to increased sensitivity provided by threonine. Moreover, the relationship between peak current and the cell concentration in the range from 3.0 × l0(3) to 7.0 × l0(6) cells/mL was studied, and a nonlinear exponential relationship between them was established over a wide concentration range. In evaluating the effect of anticancer drugs on cell viability, the results of drug cytotoxicity test based on cyclophosphamide were in close agreement with classical 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assays. The proposed device is so simple, cheap, and easy to operate that it could be applied to single-use applications. The mini-electrochemical system proved to be a useful tool and can be applied to electrochemical studies of cancer cells as well as other biological samples such as proteins and DNA.

  1. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Benjamin J. [Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089-0484 (United States); El-Naggar, Mohamed Y., E-mail: mnaggar@usc.edu [Department of Physics and Astronomy, University of Southern California, 920 Bloom Walk, Los Angeles, California 90089-0484 (United States); Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0484 (United States); Department of Chemistry, University of Southern California, Los Angeles, California 90089-0484 (United States)

    2015-06-15

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  2. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces.

    Science.gov (United States)

    Gross, Benjamin J; El-Naggar, Mohamed Y

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  3. A combined electrochemical and optical trapping platform for measuring single cell respiration rates at electrode interfaces

    Science.gov (United States)

    Gross, Benjamin J.; El-Naggar, Mohamed Y.

    2015-06-01

    Metal-reducing bacteria gain energy by extracellular electron transfer to external solids, such as naturally abundant minerals, which substitute for oxygen or the other common soluble electron acceptors of respiration. This process is one of the earliest forms of respiration on earth and has significant environmental and technological implications. By performing electron transfer to electrodes instead of minerals, these microbes can be used as biocatalysts for conversion of diverse chemical fuels to electricity. Understanding such a complex biotic-abiotic interaction necessitates the development of tools capable of probing extracellular electron transfer down to the level of single cells. Here, we describe an experimental platform for single cell respiration measurements. The design integrates an infrared optical trap, perfusion chamber, and lithographically fabricated electrochemical chips containing potentiostatically controlled transparent indium tin oxide microelectrodes. Individual bacteria are manipulated using the optical trap and placed on the microelectrodes, which are biased at a suitable oxidizing potential in the absence of any chemical electron acceptor. The potentiostat is used to detect the respiration current correlated with cell-electrode contact. We demonstrate the system with single cell measurements of the dissimilatory-metal reducing bacterium Shewanella oneidensis MR-1, which resulted in respiration currents ranging from 15 fA to 100 fA per cell under our measurement conditions. Mutants lacking the outer-membrane cytochromes necessary for extracellular respiration did not result in any measurable current output upon contact. In addition to the application for extracellular electron transfer studies, the ability to electronically measure cell-specific respiration rates may provide answers for a variety of fundamental microbial physiology questions.

  4. The Use of Mobile, Electrochemical Sensor Nodes for the Measurement of Personal Exposure to Gas-Phase Air Pollutants

    Science.gov (United States)

    Stewart, G.; Popoola, O. A.; Mead, M. I.; McKeating, S. J.; Calleja, M.; Hayes, M.; Baron, R. P.; Saffell, J.; Jones, R.

    2012-12-01

    In this paper we describe how low-cost, lightweight devices, which incorporate GPS and GPRS facilities and contain electrochemical sensors for carbon monoxide (CO), nitrogen monoxide (NO) and nitrogen dioxide (NO2), have been used to collect data representative of personal exposure to these important urban air pollutants. E.U. legislation has set target levels for gases thought to have adverse impacts on human health, and consequently led to a need for a more informed air pollution control policy. With many sites in the U.K. and in the rest of the E.U. still failing to meet annual targets for NO2, a need to better understand pollutant sources and behaviour has arisen. Moreover, while traditional chemiluminescence techniques provide precise measurements, the instruments are sparsely populated around urban centres and are thus limited in their ability to account for true personal exposure. Through a series of laboratory and field studies, it has been shown that electrochemical sensor nodes, when configured suitably and after post-processing of data, can provide selective, reproducible measurements, and that the devices have appropriate detection limits (at the low parts-per-billion level), as well as fast enough response times, for urban air quality studies. Both mobile nodes and their static analogues have been deployed with different aims. Static nodes have been used in dense networks in both the urban environment and in the grounds of a major international airport, as described in the partner papers of Mead et al and Bright et al. Mobile units are easily deployed in scalable networks for short-term studies on personal exposure; these studies have been carried out in a wide range of locations including Lagos, Kuala-Lumpur, London and Valencia. Data collected by both mobile and static sensor nodes illustrate the insufficiency of the existing infrastructure in accounting for both the spatial and temporal variability in air pollutants due to road traffic emissions

  5. Measuring Propagation Speed of Coulomb Fields

    CERN Document Server

    Calcaterra, A; Finocchiaro, G; Patteri, P; Piccolo, M; Pizzella, G

    2012-01-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planets motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Li\\'enard-Weichert retarded potential leads to a formula indistinguishable from the one obtained assuming that the electric field propagates with infinite velocity. Feyman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformely moving electron beam. The results we obtain on such a finite lifetime kinema...

  6. Full-field wafer warpage measurement technique

    Science.gov (United States)

    Hsieh, H. L.; Lee, J. Y.; Huang, Y. G.; Liang, A. J.; Sun, B. Y.

    2017-06-01

    An innovative moiré technique for full-field wafer warpage measurement is proposed in this study. The wafer warpage measurement technique is developed based on moiré method, Talbot effect, scanning profiling method, stroboscopic, instantaneous phase-shift method, as well as four-step phase shift method, high resolution, high stability and full-field measurement capabilities can be easily achieved. According to the proposed full-field optical configuration, a laser beam is expanded into a collimated beam with a 2-inch diameter and projected onto the wafer surface. The beam is reflected by the wafer surface and forms a moiré fringe image after passing two circular gratings, which is then focused and captured on a CCD camera for computation. The corresponding moiré fringes reflected from the wafer surface are obtained by overlapping the images of the measuring grating and the reference grating. The moiré fringes will shift when wafer warpage occurs. The phase of the moiré fringes will change proportionally to the degree of warpage in the wafer, which can be measured by detecting variations in the phase shift of the moiré fringes in each detection points on the surface of the entire wafer. The phase shift variations of each detection points can be calculated via the instantaneous phase-shift method and the four-step phase-shift method. By adding up the phase shift variations of each detection points along the radii of the circular gratings, the warpage value and surface topography of the wafer can be obtained. Experiments show that the proposed method is capable of obtaining test results similar to that of a commercial sensor, as well as performing accurate measurements under high speed rotation of 1500rpm. As compared to current warpage measurement methods such as the beam optical method, confocal microscopy, laser interferometry, shadow moiré method, and structured light method, this proposed technique has the advantage of full-field measurement, high

  7. Measurement of the ATLAS solenoid magnetic field

    CERN Document Server

    Aleksa, M; Giudici, P-A; Kehrli, A; Losasso, M; Pons, X; Sandaker, H; Miyagawa, P S; Snow, S W; Hart, J C; Chevalier, L

    2008-01-01

    ATLAS is a general purpose detector designed to explore a wide range of physics at the Large Hadron Collider. At the centre of ATLAS is a tracking detector in a 2 T solenoidal magnetic field. This paper describes the machine built to map the field, the data analysis methods, the final results, and their estimated uncertainties. The remotely controlled mapping machine used pneumatic motors with feedback from optical encoders to scan an array of Hall probes over the field volume and log data at more than 20 000 points in a few hours. The data were analysed, making full use of the physical constraints on the field and of our knowledge of the solenoid coil geometry. After a series of small corrections derived from the data itself, the resulting maps were fitted with a function obeying Maxwell's equations. The fit residuals had an r.m.s. less than 0.5 mT and the systematic error on the measurement of track sagitta due to the field uncertainty was estimated to be in the range 0.02 % to 0.12 % depending on the track...

  8. Analysis of transport phenomena and electrochemical reactions in a micro PEM fuel cell with nature inspired flow field design

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2015-01-01

    Full Text Available Micro-fuel cells are considered as promising electrochemical power sources in portable electronic devices. The presence of microelectromechanical system (MEMS technology makes it possible to manufacture the miniaturized fuel cell systems. The majority of research on micro-scale fuel cells is aimed at micro-power applications. Performance of micro-fuel cells are closely related to many factors, such as designs and operating conditions. CFD modeling and simulation for heat and mass transport in micro PEM fuel cells are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize the micro fuel cell designs before building a prototype for engineering application. In this research, full three-dimensional, non-isothermal computational fluid dynamics model of a micro proton exchange membrane (PEM fuel cell with nature inspired flow field designs has been developed. The design inspired from the existed biological fluid flow patterns in the leaf. This comprehensive model accounts for the major transport phenomena such as convective and diffusive heat and mass transfer, electrode kinetics, transport and phase-change mechanism of water, and potential fields in a micro PEM fuel cell. The model explains many interacting, complex electrochemical, and transport phenomena that cannot be studied experimentally.

  9. Electrochemical impedance spectroscopic measurements of FCCP-induced change in membrane permeability of MDCK cells.

    Science.gov (United States)

    Zhao, Lingzhi; Li, Xianchan; Lin, Yuqing; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2012-05-07

    This study demonstrates a new electrochemical impedance spectroscopic (EIS) method for measurements of the changes in membrane permeability during the process of cell anoxia. Madin-Darby canine kidney (MDCK) cells were employed as the model cells and were cultured onto gelatin-modified glassy carbon (GC) electrodes. EIS measurements were conducted at the MDCK/gelatin-modified GC electrodes with Fe(CN)(6)(3-/4-) as the redox probe. The anoxia of the cells grown onto electrode surface was induced by the addition of carbonycyanide p-(trifluoromethoxy) phenylhydrazone (FCCP) into the cell culture, in which the MDCK/gelatin-modified GC electrodes were immersed for different times. The EIS results show that the presence of FCCP in the cell culture clearly decreases the charge-transfer resistance of the Fe(CN)(6)(3-/4-) redox probe at the MDCK/gelatin-modified GC electrodes, and the charge-transfer resistance decreases with increasing time employed for immersing the MDCK/gelatin-modified GC electrodes into the cell culture containing FCCP. These results demonstrate that the EIS method could be used to monitor the changes in the cell membrane permeability during the FCCP-induced cell anoxia. To simulate the EIS system, a rational equivalent circuit was proposed and the values of ohmic resistance of the electrolyte, charge-transfer resistance and constant phase elements for both the gelatin and the cell layers are given with the fitting error in an acceptable value. This study actually offers a new and simple approach to measuring the dynamic process of cell death induced by anoxia through monitoring the changes in the cell membrane permeability.

  10. Measurements of Photospheric and Chromospheric Magnetic Fields

    Science.gov (United States)

    Lagg, Andreas; Lites, Bruce; Harvey, Jack; Gosain, Sanjay; Centeno, Rebecca

    2017-09-01

    The Sun is replete with magnetic fields, with sunspots, pores and plage regions being their most prominent representatives on the solar surface. But even far away from these active regions, magnetic fields are ubiquitous. To a large extent, their importance for the thermodynamics in the solar photosphere is determined by the total magnetic flux. Whereas in low-flux quiet Sun regions, magnetic structures are shuffled around by the motion of granules, the high-flux areas like sunspots or pores effectively suppress convection, leading to a temperature decrease of up to 3000 K. The importance of magnetic fields to the conditions in higher atmospheric layers, the chromosphere and corona, is indisputable. Magnetic fields in both active and quiet regions are the main coupling agent between the outer layers of the solar atmosphere, and are therefore not only involved in the structuring of these layers, but also for the transport of energy from the solar surface through the corona to the interplanetary space. Consequently, inference of magnetic fields in the photosphere, and especially in the chromosphere, is crucial to deepen our understanding not only for solar phenomena such as chromospheric and coronal heating, flares or coronal mass ejections, but also for fundamental physical topics like dynamo theory or atomic physics. In this review, we present an overview of significant advances during the last decades in measurement techniques, analysis methods, and the availability of observatories, together with some selected results. We discuss the problems of determining magnetic fields at smallest spatial scales, connected with increasing demands on polarimetric sensitivity and temporal resolution, and highlight some promising future developments for their solution.

  11. Ultrasound field measurement using a binary lens

    CERN Document Server

    Clement, Gregory T; Kamakura, Tomoo

    2014-01-01

    Field characterization methods using a scattering target in the absence of a point-like receiver have been well described in which scattering is recorded by a relatively large receiver located outside the field of measurement. Unfortunately, such methods are prone to artifacts due to averaging across the receiver surface. To avoid this problem while simultaneously increasing the gain of a received signal, the present study introduces a binary plate lens designed to focus spherically-spreading waves onto a planar region having a nearly-uniform phase proportional to that of the target location. The lens is similar to a zone plate, but modified to produce a bi-convex-like behavior, such that it focuses both planar and spherically spreading waves. A measurement device suitable for characterizing narrowband ultrasound signals in air is designed around this lens by coupling it to a target and planar receiver. A prototype device is constructed and used to characterize the field of a highly-focused 400 kHz air transd...

  12. Measuring propagation speed of Coulomb fields

    Energy Technology Data Exchange (ETDEWEB)

    Sangro, R. de; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati (Italy)

    2015-03-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planet motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly moving charges. As a matter of fact the Lienard-Weichert retarded potential leads to the same formula as the one obtained assuming that the electric field propagate with infinite velocity. The Feynman explanation for this apparent paradox was based on the fact that uniform motions last indefinitely. To verify such an explanation, we performed an experiment to measure the time/space evolution of the electric field generated by an uniformly moving electron beam. The results we obtain, on a finite lifetime kinematical state, are compatible with an electric field rigidly carried by the beam itself. (orig.)

  13. Soil Water Balance Measurement in Field Scale

    Institute of Scientific and Technical Information of China (English)

    CHENZHI-XIONG

    1992-01-01

    A 5-year experiment on water balance has been conducted in a flat rainfed wheat field with an area of 66×100m2 in Fengqiu,Henan Province in China.Based on the analysis of semi-variance functions conducted with soil moisture samples taken from 77 nodes of a 10×10m2 grid,the soil moisture distribution in the field was structural with a temporal stability.According to the autocorrelation range of the semi-variance function,6 sites were selected for the determination of soil water conditions.The characteristic of probability density function of the differences of water storage in two sets of measurements showed that the distribution of these variables in the field was a normal one.The error in the estimation of the average of 5 random samples was 14% (α=0.10),and the errors of water consumption by wheat during the experiments were estimated to be 6-13%.Sime the experimental field was large enough to avoid any edge effect,the results obtained should tally with the actual situation.Yet the soil system was heterogeneous,so we must follow the principles of statistics and geostatistics when describing the system's status with the average of the samples.

  14. Electrochemical Label-Free Nucleotide Sensors.

    Science.gov (United States)

    Aoki, Hiroshi

    2015-12-01

    Numerous researchers have devoted a great deal of effort over the last few decades to the development of electrochemical oligonucleotide detection techniques, owing to their advantages of simple design, inherently small dimensions, and low power requirements. Their simplicity and rapidity of detection makes label-free oligonucleotide sensors of great potential use as first-aid screening tools in the analytical field of environmental measurements and healthcare management. This review article covers label-free oligonucleotide sensors, focusing specifically on topical electrochemical techniques, including intrinsic redox reaction of bases, conductive polymers, the use of electrochemical indicators, and highly ordered probe structures.

  15. Redox potential - field measurements - meassured vs. expected values

    Science.gov (United States)

    Stavělová, Monika; Kovář, Martin

    2016-04-01

    Oxidation and reduction (redox) potential is an important and theoretically very well defined parameter and can be calculated accurately. Its value is determinative for management of many electrochemical processes, chemical redox technologies as well as biotechnologies. To measure the redox value that would correspond with the accuracy level of theoretical calculations in field or operational conditions is however nearly impossible. Redox is in practice measured using combined argentochloride electrode with subsequent value conversion to standard hydrogen electrode (EH). Argentochloride electrode does not allow for precise calibration. Prior to the measurement the accuracy of measurement of particular electrode can only be verified in comparative/control solution with value corresponding with oxic conditions (25°C: +220 mV argentochloride electrode, i.e.. +427 mV after conversion to EH). A commercial product of stabile comparative solution for anoxic conditions is not available and therefore not used in every day practice - accuracy of negative redox is not verified. In this presentation results of two tests will be presented: a) monitoring during dynamic groundwater sampling from eight monitoring wells at a site contaminated by chlorinated ethenes (i.e. post-oxic to anoxic conditions) and b) laboratory test of groundwater contaminated by arsenic from two sites during reaction with highly oxidized compounds of iron (ferrates) - i.e. strongly oxic conditions. In both tests a simultaneous measurement by four argentochloride electrodes was implemented - all four electrodes were prior to the test maintained expertly. The redox values of testing electrodes in a comparative solution varied by max. 6 mV. The redox values measured by four electrodes in both anoxic and oxic variant varied by tens to a hundred mV, while with growing time of test the variance of measured redox values increased in both oxic and anoxic variant. Therefore the interpretation of measured redox

  16. A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement

    Science.gov (United States)

    Zhu, J. G.; Sun, Z. C.; Wei, X. Z.; Dai, H. F.

    2015-01-01

    The power battery thermal management problem in EV (electric vehicle) and HEV (hybrid electric vehicle) has been widely discussed, and EIS (electrochemical impedance spectroscopy) is an effective experimental method to test and estimate the status of the battery. Firstly, an electrochemical-based impedance matrix analysis for lithium-ion battery is developed to describe the impedance response of electrochemical impedance spectroscopy. Then a method, based on electrochemical impedance spectroscopy measurement, has been proposed to estimate the internal temperature of power lithium-ion battery by analyzing the phase shift and magnitude of impedance at different ambient temperatures. Respectively, the SoC (state of charge) and temperature have different effects on the impedance characteristics of battery at various frequency ranges in the electrochemical impedance spectroscopy experimental study. Also the impedance spectrum affected by SoH (state of health) is discussed in the paper preliminary. Therefore, the excitation frequency selected to estimate the inner temperature is in the frequency range which is significantly influenced by temperature without the SoC and SoH. The intrinsic relationship between the phase shift and temperature is established under the chosen excitation frequency. And the magnitude of impedance related to temperature is studied in the paper. In practical applications, through obtaining the phase shift and magnitude of impedance, the inner temperature estimation could be achieved. Then the verification experiments are conduced to validate the estimate method. Finally, an estimate strategy and an on-line estimation system implementation scheme utilizing battery management system are presented to describe the engineering value.

  17. A Label-Free, Sensitive, Real-Time, Semiquantitative Electrochemical Measurement Method for DNA Polymerase Amplification (ePCR).

    Science.gov (United States)

    Aydemir, Nihan; McArdle, Hazel; Patel, Selina; Whitford, Whitney; Evans, Clive W; Travas-Sejdic, Jadranka; Williams, David E

    2015-01-01

    Oligonucleotide hybridization to a complementary sequence that is covalently attached to an electrochemically active conducting polymer (ECP) coating the working electrode of an electrochemical cell causes an increase in reaction impedance for the ferro-ferricyanide redox couple. We demonstrate the use of this effect to measure, in real time, the progress of DNA polymerase chain reaction (PCR) amplification of a minor component of a DNA extract. The forward primer is attached to the ECP. The solution contains other PCR components and the redox couple. Each cycle of amplification gives an easily measurable impedance increase. Target concentration can be estimated by cycle count to reach a threshold impedance. As proof of principle, we demonstrate an electrochemical real-time quantitative PCR (e-PCR) measurement in the total DNA extracted from chicken blood of an 844 base pair region of the mitochondrial Cytochrome c oxidase gene, present at ∼1 ppm of total DNA. We show that the detection and semiquantitation of as few as 2 copies/μL of target can be achieved within less than 10 PCR cycles.

  18. Field scale measurements of NH3 emissions

    Science.gov (United States)

    Neftel, Albrecht; Ammann, Christof; Kuhn, Uwe; Sintermann, Jörg; Lehuger, Simon; Gärtner, Andrea; Hirschberger, Rainer

    2010-05-01

    The uncertainty in the ammonia emissions after application of organic manure contributes to a large extent to the overall uncertainties of the nitrogen budget of managed grassland systems (Ammann et al., 2009). Due to the sticky nature of the ammonia molecule and the variability of the emission fluxes the experimental determination is still a major challenge and a wide spread range of emission factors can be found in the literature. We report on two field experiments performed in August 2009 at the NitroEurope site in Oensingen, Switzerland. The ammonia emission flux after liquid manure application was investigated simultaneously by various micrometeorological methods: (1) a mass balance approach measuring the horizontal advection flux with open-path FTIR sensors (Gärtner et al., 2008), (2) aerodynamic gradient methods, and (3) eddy covariance measurements based on a novel fast ammonia analyser. Due to the sequential application of the manure and the fast decrease of the ammonia volatilisation, detailed footprint calculations (Neftel et al., 2008) and corrections with a high temporal resolution were crucial for obtaining representative emission fluxes. The plausibility of flux measurements has been evaluated with back trajectories simulations (WindTrax, Flesch et al., 2009). The results of all applied flux measurement methods confirmed the low emission levels found earlier by Spirig et al. (2009). A comparison of the field observations with results of process oriented models showed considerable differences in the temporal course of the ammonia emission indicating the need for improvements of the models. References: Ammann, C., Spirig, C., Leifeld, J. and Neftel, A.: Assessment of the nitrogen and carbon budget of two managed temperate grassland fields, Agric. Ecosyst. Environ., 133, 150-162, 2009. Flesch, T.K., Harper, L.A., Desjardins, R.L., Gao, Z., and Crenna, B.: Multi-Source Emission Determination Using an Inverse-Dispersion Technique. Boundary-Layer Meteorol

  19. ELECTROCHEMICAL REMEDIATION OF ARSENIC-CONTAMINATED GROUNDWATER — RESULTS OF PROTOTYPE FIELD TESTS IN BANGLADESH

    Energy Technology Data Exchange (ETDEWEB)

    Kowolik, K; Addy, S.E.A.; Gadgil, A.

    2009-01-01

    According to the World Health Organization (WHO), more than 50 million people in Bangladesh drink arsenic-laden water, making it the largest case of mass poisoning in human history. Many methods of arsenic removal (mostly using chemical adsorbents) have been studied, but most of these are too expensive and impractical to be implemented in poor countries such as Bangladesh. This project investigates ElectroChemical Arsenic Remediation (ECAR) as an affordable means of removing arsenic. Experiments were performed on site in Bangladesh using a prototype termed “sushi”. This device consists of carbon steel sheets that serve as electrodes wrapped into a cylinder, separated by plastic mesh and surrounded by a tube-like container that serves as a holding cell in which the water is treated electrochemically. During the electrochemical process, current is applied to both electrodes causing iron to oxidize to various forms of iron (hydr)oxides. These species bind to arsenic(V) with very high affi nity. ECAR also has the advantage that As(III), the more toxic form of arsenic, oxidizes to As(V) in situ. Only As(V) is known to complex with iron (hydr)oxides. One of the main objectives of this research is to demonstrate the ability of the new prototype to reduce arsenic concentrations in Bangladesh groundwater from >200 ppb to below the WHO limit of 10 ppb. In addition, varying fl ow rate and dosage and the effect on arsenic removal was investigated. Experiments showed that ECAR reduced Bangladeshi water with an initial arsenic concentration as high as 250 ppb to below 10 ppb. ECAR proved to be effective at dosages as high as 810 Coulombs/Liter (C/L) and as low as 386 C/L (current 1 A, voltage 12 V). These results are encouraging and provide great promise that ECAR is an effi cient method in the remediation of arsenic from contaminated groundwater. A preliminary investigation of arsenic removal trends with varying Coulombic dosage, complexation time and fi ltration methods is

  20. PM10 source measurement methodology: Field studies

    Energy Technology Data Exchange (ETDEWEB)

    Farthing, W.E.; Martin, R.S.; Dawes, S.S.; Williamson, A.D.

    1989-05-01

    Two candidate measurement methods, Constant Sampling Rate (CSR) and Exhaust Gas Recycle (EGR), have been developed to measure emissions of in-stack PM-10 particulate matter with aerodynamic diameter less than 10 micrometers. Two field tests were performed at the clinker cooler exhaust of a Portland cement plant to quantify precision and comparability of these techniques. In addition, accuracy was determined for total particulate measurement by comparison to Method 17. Collocated sampling trains were operated parallel with two Method 17 trains. In the second test, two CSR and one EGR trains were operated parallel to two Method 17 trains. The operating procedures used for the CSR and EGR trains are described in detail. In measurement of PM-10 and total particulate matter, the precision of both the CSR and EGR techniques was found to be of the same magnitude as Method 17 (approximately 5%). A small bias was found between CSR and EGR PM-10 results (15%) and between EGR and Method 17 total particulate matter (10%). Although small, these observed differences, combined with the results of laboratory studies reported elsewhere, led to a recommendation for an increase in the length of sampling nozzles. This modification improved cyclone performance and is incorporated into the nozzle geometries described in the application guides for CSR and EGR.

  1. Influence of experimental conditions upon the measurements of hydrogen diffusion in palladium by electrochemical permeation methods

    Energy Technology Data Exchange (ETDEWEB)

    Bucur, R.V.

    1985-01-01

    Influences of electrical parameters, surface roughness, controlled surface contamination and concentration of the electrolyte (NaOH- and H/sub 2/SO/sub 4/-solutions) upon the permeation rate of hydrogen through a palladium membrane (thickness: 5x10/sup -3/ cm) are reported. Diffusion measurements were carried out with an electrochemical permeation cell under transient conditions. The cathodic side of the membrane was subjected either to a constant hydrogen-concentration or hydrogen-flux, while the anodic side was permanently kept at negligibly low hydrogen-concentration. The diffusion coefficient was calculated from the charging and stripping current vs. time curves, by semi-log plots. Reliable and reproducible diffusion coefficient values were obtained both from the charging and stripping curves, under galvanostatic charging conditions. By contrast, reliable values were obtained only from the stripping curves, under potentiostatic charging conditions. Within the temperature range from 5 to 50/sup 0/C the following values have been calculated for hydrogen and deuterium: Dsub(H)/sup 0/=(2.48+-0.40)x10/sup -3/ cm/sup 2/s/sup -1/; Dsub(H)/sup 298/=3.8 . 10/sup -7/ cm/sup 2/s/sup -1/; Esub(H)=5210+-70 cal/mol; Dsub(D)/sup 0/=(1.67+-0.28)x10/sup -3/ cm/sup 2/s/sup -1/; Dsub(D)/sup 298/=4.8 . 10/sup -7/ cm/sup 2/s/sup -1/; Esub(D)=4830+-70 cal/mol. These values agree well with those obtained by non-electrolytical methods.

  2. Note: electrochemical etching of sharp iridium tips.

    Science.gov (United States)

    Lalanne, Jean-Benoît; Paul, William; Oliver, David; Grütter, Peter H

    2011-11-01

    We describe an etching procedure for the production of sharp iridium tips with apex radii of 15-70 nm, as determined by scanning electron microscopy, field ion microscopy, and field emission measurements. A coarse electrochemical etch followed by zone electropolishing is performed in a relatively harmless calcium chloride solution with high success rate.

  3. Plasmonic Imaging of Electrochemical Reactions of Single Nanoparticles.

    Science.gov (United States)

    Fang, Yimin; Wang, Hui; Yu, Hui; Liu, Xianwei; Wang, Wei; Chen, Hong-Yuan; Tao, N J

    2016-11-15

    systems and nanoscale materials with high throughput. The plasmonic approach has two imaging modes: electrochemical current imaging and interfacial impedance imaging. The former images local electrochemical current associated with electrochemical reactions (faradic current), and the latter maps local interfacial impedance, including nonfaradic contributions (e.g., double layer charging). The plasmonic imaging technique can perform voltammetry (cyclic or square wave) in an analogous manner to the traditional electrochemical methods. It can also be integrated with bright field, dark field, and fluorescence imaging capabilities in one optical setup to provide additional capabilities. To date the plasmonic imaging technique has found various applications, including mapping of heterogeneous surface reactions, analysis of trace substances, detection of catalytic reactions, and measurement of graphene quantum capacitance. The plasmonic and other emerging optical imaging techniques (e.g., dark field and fluorescence microscopy), together with the scanning probe-based electrochemical imaging and single nanoparticle analysis techniques, provide new capabilities for one to study single nanoparticle electrochemistry with unprecedented spatial and temporal resolutions. In this Account, we focus on imaging of electrochemical reactions at single nanoparticles.

  4. Response of electrochemical oxygen sensors to inert gas-air and carbon dioxide-air mixtures: measurements and mathematical modelling.

    Science.gov (United States)

    Walsh, P T; Gant, S E; Dowker, K P; Batt, R

    2011-02-15

    Electrochemical oxygen gas sensors are widely used for monitoring the state of inertisation of flammable atmospheres and to warn of asphyxiation risks. It is well established but not widely known by users of such oxygen sensors that the response of the sensor is affected by the nature of the diluent gas responsible for the decrease in ambient oxygen concentration. The present work investigates the response of electrochemical sensors, with either acid or alkaline electrolytes, to gas mixtures comprising air with enhanced levels of nitrogen, carbon dioxide, argon or helium. The measurements indicate that both types of sensors over-read the oxygen concentrations when atmospheres contain high levels of helium. Sensors with alkaline electrolytes are also shown to underestimate the severity of the hazard in atmospheres containing high levels of carbon dioxide. This deviation is greater for alkaline electrolyte sensors compared to acid electrolyte sensors. A Computational Fluid Dynamics (CFD) model is developed to predict the response of an alkaline electrolyte, electrochemical gas sensor. Differences between predicted and measured sensor responses are less than 10% in relative terms for nearly all of the gas mixtures tested, and in many cases less than 5%. Extending the model to simulate responses of sensors with acid electrolytes would be straightforward.

  5. Free Energies of Formation Measurements on Solid-State Electrochemical Cells

    Science.gov (United States)

    Rollino, J. A.; Aronson, S.

    1972-01-01

    A simple experiment is proposed that can provide the student with some insight into the chemical properties of solids. It also demonstrates the relationship between the Gibbs free energy of formation of an ionic solid and the emf of an electrochemical cell. (DF)

  6. The influence of a magnetic field on the non-electrochemical dissolution of iron

    DEFF Research Database (Denmark)

    Bech-Nielsen, G.; Jaskula, Marian

    2008-01-01

    The influence of magnetic field on the rate of chemical reaction with a proton transfer is explained on the basis of quantum effects and spin relaxation. A model of chemical dissolution of iron under the influence of magnetic field was proposed.......The influence of magnetic field on the rate of chemical reaction with a proton transfer is explained on the basis of quantum effects and spin relaxation. A model of chemical dissolution of iron under the influence of magnetic field was proposed....

  7. Modified methods of stellar magnetic field measurements

    CERN Document Server

    Kholtygin, A F

    2013-01-01

    The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes $V$-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator $\\hat{L}$ to the both sides of this relation. As the operator $\\hat{L}$, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter $V$. The efficiency of the method has been studied using the model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0-type star $\\alpha^2\\,$ CVn, young O-type star $\\theta^1$ Ori C and A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths for these stars calculated by our method appeared to be in a good agreement with those determined by other methods.

  8. Study on the improved reliability and safety of lithium batteries by the use of electrochemical noise measurement, volume 1

    Science.gov (United States)

    Nip, Wing S.; Patraboy, Timothy J.; Anderson, James S.; Rodgers, Geoff; Farrington, Michael D.

    1992-02-01

    Investigations were conducted into the applicability of electrochemical noise measurement as a tool for diagnosing the state of health and state of charge in lithium batteries. Electrochemical noise is understood to mean the alternating current component of an otherwise direct current measured at the external terminals of the battery, especially random or periodic fluctuations at a microscopic level. A survey of ten commercial primary lithium cell products included three chemical systems (SO2, SOCl2, and MnO2) in a variety of sizes from coin cells to D size from several manufacturers. The cells were subjected to a systematic study of the relationship between noise and rate of discharge, temperature of discharge, temperature cycling, high temperature storage, and vibration exposure. Noise measurements were paralleled with alternating current impedance measurements for comparison. It became clear during the investigations that when a noise measurement identified a cell that was significantly different from the norm, it was a bad cell that would fail to deliver its rated capacity or would present a safety hazard. Often changes in the noise from a given cell were accompanied by changes in some impedance parameters; these changes appeared to be related. Noise measurements were sensitive to many elements of the cell history.

  9. Near-field measurements of the even-order harmonics undetectable in far-field measurements

    Science.gov (United States)

    Moiseyev, Nimrod

    2016-12-01

    Even-order harmonics (EOHs) are generated for oriented molecules and for atoms under specific conditions. Here, we focus on the most common situations where EOHs are not observed in far-field measurements. We propose an experiment to show that the EOHs are produced close to the nucleus but are not detected in the far-field measurements due to destructive interferences of the propagated EOHs of the emitted radiation. However, Rydberg gas atoms (e.g., rubidium), which are out of the focus of the laser beam, are expected to be ionized due to their weak interaction with a specific EOH of helium, which is not observed by the far-field detector. The ionization energy of the Rydberg gas atoms should be in resonance with the single-photon energy of a specific EOH.

  10. New advanced electrochemical techniques for on site measurements of reinforcement corrosion

    Directory of Open Access Journals (Sweden)

    Andrade, C.

    2001-12-01

    Full Text Available Measurement techniques of reinforcement corrosion are scarcely researched if compared with the increasing number of publications in the subject. However, numerous possibilities and challenges remain without being explored. In present paper mention is made to some of the present possibilities of electrochemical techniques, either on-site or in the laboratory. Concerning on-site techniques it is commented the possibilities and limitations of present methods of measuring Polarization Resistance, Rp. Particular attention is given to the need to use a modulated guardring with sensors controlling this modulation to obtain accurate values of the corrosion rate. After, description of the basis of new techniques related to the measurements of the passivation state in cathodically protected structures, is made. The basis of a new method of measuring corrosion without the need to touch the metal is also presented. Regarding the use of embedded sensors, the experience until now shows the difficulty of interpretation of the data collected, due to the important influence of ambient temperature. Finally, some comments are presented on the need of joint work of material and structural specialists.

    Las técnicas de medida de la corrosión en hormigón armado se investigan muy poco en comparación con el creciente número de publicaciones sobre este tema. Sin embargo, existen muchas posibilidades y retos que todavía no han sido exploradas. En el presente artículo se descubren algunas de las presentes posibilidades de las técnicas electroquímicas, tanto in-situ como en laboratorio. En cuanto a las técnicas in situ se refiere, se comentan las posibilidades y limitaciones de los métodos actuales de medida de la Resistencia de Polarización, Rp. Se presta particular atención ante la necesidad de utilizar un anillo de guarda modulado con sensores que controlen esta modulación para obtener valores adecuados de velocidad de corrosión. Después se

  11. Two-Point Stretchable Electrode Array for Endoluminal Electrochemical Impedance Spectroscopy Measurements of Lipid-Laden Atherosclerotic Plaques.

    Science.gov (United States)

    Packard, René R Sevag; Zhang, XiaoXiao; Luo, Yuan; Ma, Teng; Jen, Nelson; Ma, Jianguo; Demer, Linda L; Zhou, Qifa; Sayre, James W; Li, Rongsong; Tai, Yu-Chong; Hsiai, Tzung K

    2016-09-01

    Four-point electrode systems are commonly used for electric impedance measurements of biomaterials and tissues. We introduce a 2-point system to reduce electrode polarization for heterogeneous measurements of vascular wall. Presence of endoluminal oxidized low density lipoprotein (oxLDL) and lipids alters the electrochemical impedance that can be measured by electrochemical impedance spectroscopy (EIS). We developed a catheter-based 2-point micro-electrode configuration for intravascular deployment in New Zealand White rabbits. An array of 2 flexible round electrodes, 240 µm in diameter and separated by 400 µm was microfabricated and mounted on an inflatable balloon catheter for EIS measurement of the oxLDL-rich lesions developed as a result of high-fat diet-induced hyperlipidemia. Upon balloon inflation, the 2-point electrode array conformed to the arterial wall to allow deep intraplaque penetration via alternating current (AC). The frequency sweep from 10 to 300 kHz generated an increase in capacitance, providing distinct changes in both impedance (Ω) and phase (ϕ) in relation to varying degrees of intraplaque lipid burden in the aorta. Aortic endoluminal EIS measurements were compared with epicardial fat tissue and validated by intravascular ultrasound and immunohistochemistry for plaque lipids and foam cells. Thus, we demonstrate a new approach to quantify endoluminal EIS via a 2-point stretchable electrode strategy.

  12. A ligand field series for the 4f-block from experimental and DFT computed Ce(IV/III) electrochemical potentials.

    Science.gov (United States)

    Bogart, Justin A; Lewis, Andrew J; Boreen, Michael A; Lee, Heui Beom; Medling, Scott A; Carroll, Patrick J; Booth, Corwin H; Schelter, Eric J

    2015-03-16

    Understanding of the sensitivity of the reduction potential of cerium(IV) cations to ligand field strength has yet to benefit from systematic variation of the ligand environment. Detailed analyses for a series of seven cerium(IV) tetrakis(pyridyl-nitroxide) compounds and their cerium(III) analogues in varying ligand field strengths are presented. Electrochemical, spectroscopic, and computational results reveal a close correlation of electronic properties with ligand substituents. Together with electrochemical data for reported eight-coordinate compounds, DFT calculations reveal a broad range of the cerium(IV/III) redox potentials correlated to ligand field strengths, establishing a semiempirical, predictive model for the modulation of cerium redox thermodynamics and ligand field strengths. Applications over a variety of scientific disciplines make use of the fundamental redox thermodynamics of cerium. Such applications will benefit from a combined experimental and theoretical approach for assessing redox cycling of cerium compounds.

  13. Field methods for measuring concentrated flow erosion

    Science.gov (United States)

    Castillo, C.; Pérez, R.; James, M. R.; Quinton, J. N.; Taguas, E. V.; Gómez, J. A.

    2012-04-01

    Many studies have stressed the importance of gully erosion in the overall soil loss and sediment yield of agricultural catchments, for instance in recent years (Vandaele and Poesen, 1995; De Santisteban et al., 2006; Wu el al, 2008). Several techniques have been used for determining gully erosion in field studies. The conventional techniques involved the use of different devices (i.e. ruler, pole, tape, micro-topographic profilers, total station) to calculate rill and gully volumes through the determination of cross sectional areas and length of reaches (Casalí et al, 1999; Hessel and van Asch, 2003). Optical devices (i.e. laser profilemeters) have also been designed for the purpose of rapid and detailed assessment of cross sectional areas in gully networks (Giménez et al., 2009). These conventional 2d methods provide a simple and un-expensive approach for erosion evaluation, but are time consuming to carry out if a good accuracy is required. On the other hand, remote sensing techniques are being increasingly applied to gully erosion investigation such as aerial photography used for big-scale, long-term, investigations (e.g. Martínez-Casasnovas et al., 2004; Ionita, 2006), airborne and terrestrial LiDAR datasets for gully volume evaluation (James et al., 2007; Evans and Lindsay, 2010) and recently, major advances in 3D photo-reconstruction techniques (Welty et al. 2010, James et al., 2011). Despite its interest, few studies simultaneously compare the accuracies of the range of conventional and remote sensing techniques used, or define the most suitable method for a particular scale, given and time and cost constraints. That was the reason behind the International Workshop Innovations in the evaluation and measurement of rill and gully erosion, held in Cordoba in May 2011 and from which derive part of the materials presented in this abstract. The main aim of this work was to compare the accuracy and time requirements of traditional (2D) and recently developed

  14. Method and apparatus for measuring weak magnetic fields

    DEFF Research Database (Denmark)

    1995-01-01

    When measuring weak magnetic fields, a container containing a medium, such as a solution containing a stable radical, is placed in a polarising magnetic field, which is essentially at right angles to the field to be measured. The polarising field is interrupted rapidly, the interruption being...

  15. Tissue specific electrochemical fingerprinting.

    Directory of Open Access Journals (Sweden)

    Pavlina Sobrova

    Full Text Available BACKGROUND: Proteomics and metalloproteomics are rapidly developing interdisciplinary fields providing enormous amounts of data to be classified, evaluated and interpreted. Approaches offered by bioinformatics and also by biostatistical data analysis and treatment are therefore of extreme interest. Numerous methods are now available as commercial or open source tools for data processing and modelling ready to support the analysis of various datasets. The analysis of scientific data remains a big challenge, because each new task sets its specific requirements and constraints that call for the design of a targeted data pre-processing approach. METHODOLOGY/PRINCIPAL FINDINGS: This study proposes a mathematical approach for evaluating and classifying datasets obtained by electrochemical analysis of metallothionein in rat 9 tissues (brain, heart, kidney, eye, spleen, gonad, blood, liver and femoral muscle. Tissue extracts were heated and then analysed using the differential pulse voltammetry Brdicka reaction. The voltammograms were subsequently processed. Classification models were designed making separate use of two groups of attributes, namely attributes describing local extremes, and derived attributes resulting from the level=5 wavelet transform. CONCLUSIONS/SIGNIFICANCE: On the basis of our results, we were able to construct a decision tree that makes it possible to distinguish among electrochemical analysis data resulting from measurements of all the considered tissues. In other words, we found a way to classify an unknown rat tissue based on electrochemical analysis of the metallothionein in this tissue.

  16. Giant Electric-Field-Induced Strain in PVDF-Based Battery Separator Membranes Probed by Electrochemical Strain Microscopy.

    Science.gov (United States)

    Romanyuk, Konstantin; Costa, Carlos M; Luchkin, Sergey Yu; Kholkin, Andrei L; Lanceros-Méndez, Senentxu

    2016-05-31

    Efficiency of lithium-ion batteries largely relies on the performance of battery separator membrane as it controls the mobility and concentration of Li-ions between the anode and cathode electrodes. Recent advances in electrochemical strain microscopy (ESM) prompted the study of Li diffusion and transport at the nanoscale via electromechanical strain developed under an application of inhomogeneous electric field applied via the sharp ESM tip. In this work, we observed unexpectedly high electromechanical strain developed in polymer membranes based on porous poly(vinylidene fluoride) (PVDF) and poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) and, using it, could study a dynamics of electroosmotic flow of electrolyte inside the pores. We show that, independently of the separator membrane, electric field-induced deformation observed by ESM on wetted membrane surfaces can reach up to 10 nm under a moderate bias of 1 V (i.e., more than an order of magnitude higher than that in best piezoceramics). Such a high strain is explained by the electroosmotic flow in a porous media composed of PVDF. It is shown that the strain-based ESM method can be used to extract valuable information such as average pore size, porosity, elasticity of membrane in electrolyte solvent, and membrane-electrolyte affinity expressed in terms of zeta potential. Besides, such systems can, in principle, serve as actuators even in the absence of apparent piezoelectricity in amorphous PVDF.

  17. Electrochemical measurements of diffusion coefficients and activity coefficients for MnCl2 in molten eutectic LiCl-KCl

    Science.gov (United States)

    Horvath, D.; Rappleye, D.; Bagri, P.; Simpson, M. F.

    2017-09-01

    An electrochemical study of manganese chloride in molten salt mixtures of eutectic LiCl-KCl was carried out using a variety of electrochemical methods in a high temperature cell including cyclic voltammetry (CV), chronopotentiometry (CP), chronoamperometry (CA), and open circuit potentiometry. Single step reduction from Mn2+ to Mn(0) was observed on both W and Mo working electrodes. Using a combination of these methods, measurements were made of activity coefficient and diffusion coefficient for MnCl2 in LiCl-KCl as a function of concentration (3.54 × 10-4 to 3.60 × 10-3 mol fraction of MnCl2) at 773K. From OCP measurements, values for activity coefficient varied from 0.014 to 0.0071. Diffusion coefficients varied with concentration and differed based on measurement method (CV, CA, or CP). Based on cyclic Mn(II) ranged from 1.1 to 2.8 × 10-5 cm2/s depending on concentration.

  18. Precision insolation measurement under field conditions

    Science.gov (United States)

    Reid, M. S.; Gardner, R. A.

    1977-01-01

    Work at the Jet Propulsion Laboratory had resulted in the development of a primary absolute cavity radiometer (PACRAD), which was recently accepted as an international standard of irradiance. The development of an wall-weather, field-worthy solar radiometer based on the PACRAD is discussed, and its calibration stability over a two-year period in the field is described.

  19. Field Emission Measurements from Niobium Electrodes

    Energy Technology Data Exchange (ETDEWEB)

    M. BastaniNejad, P.A. Adderley, J. Clark, S. Covert, J. Hansknecht, C. Hernandez-Garcia, R. Mammei, M. Poelker

    2011-03-01

    Increasing the operating voltage of a DC high voltage photogun serves to minimize space charge induced emittance growth and thereby preserve electron beam brightness, however, field emission from the photogun cathode electrode can pose significant problems: constant low level field emission degrades vacuum via electron stimulated desorption which in turn reduces photocathode yield through chemical poisoning and/or ion bombardment and high levels of field emission can damage the ceramic insulator. Niobium electrodes (single crystal, large grain and fine grain) were characterized using a DC high voltage field emission test stand at maximum voltage -225kV and electric field gradient > 10MV/m. Niobium electrodes appear to be superior to diamond-paste polished stainless steel electrodes.

  20. Measuring vector magnetic fields in solar prominences

    CERN Document Server

    Suárez, D Orozco; Bueno, J Trujillo

    2012-01-01

    We present spectropolarimetric observations in the He I 1083.0 nm multiplet of a quiescent, hedgerow solar prominence. The data were taken with the Tenerife Infrared Polarimeter attached to the German Vacuum Tower Telescope at the Observatorio del Teide (Tenerife; Canary Islands; Spain). The observed He I circular and linear polarization signals are dominated by the Zeeman effect and by atomic level polarization and the Hanle effect, respectively. These observables are sensitive to the strength and orientation of the magnetic field vector at each spatial point of the field of view. We determine the magnetic field vector of the prominence by applying the HAZEL inversion code to the observed Stokes profiles. We briefly discuss the retrieved magnetic field vector configuration.

  1. Electrochemical noise measurements of steel corrosion in the molten NaCl-K2SO4 system

    DEFF Research Database (Denmark)

    Cappeln, Frederik Vilhelm; Bjerrum, Niels; Petrushina, Irina

    2005-01-01

    Electrochemical noise measurements have been carried out on AISI347, 10CrMo910, 15Mo3, and X20CrMoV121 steels in molten NaCl-K2SO4 at 630 degrees C. Different types of current noise have been identified for pitting, intergranular and peeling corrosion. The corrosion mechanism was the so-called ac......Electrochemical noise measurements have been carried out on AISI347, 10CrMo910, 15Mo3, and X20CrMoV121 steels in molten NaCl-K2SO4 at 630 degrees C. Different types of current noise have been identified for pitting, intergranular and peeling corrosion. The corrosion mechanism was the so......-called active corrosion (i.e., the corrosion proceeds with no passivation due to the influence of chlorine), characterized by the formation of volatile metal chlorides as a primary corrosion product. It was found possible to obtain an empirical separation of general and intergranular corrosion using kurtosis (a...... on this basis. Approximate values of polarization resistances of AISI347 and 15Mo3 steels were determined to be 250 and 100 Omega cm(2), respectively....

  2. Gravimetric Measurement of Magnetic Field Gradient Spatial Distribution

    CERN Document Server

    Arutunian, S G; Egiazarian, S L; Mailian, M R; Sinenko, I G; Sinjavski, A V; Vasiniuk, I E

    1999-01-01

    Magnetic interaction between a weighing sample and an external magnetic field allows to measure characteristics of magnetic field (a sample with known magnetic characteristics), as well as the magnetic properties of a sample (a known magnetic field). Measurement of materials magnetic permeability is a well known application of this method. In this paper we restrict ourselves to the measurement of magnetic field spatial distribution, which was achieved by scanning of samples from known materials along the vertical axis. Field measurements by Hall detector were done to calibrate obtained data. Such measurements are of great interest in some branches of physics, in particular, in accelerator physics, where the quality of magnetic system parts eventually determine the quality of accelerated bunches. Development of a simple and cheep device for measurement of magnetic field spatial distribution is an urgent problem. The developed system for gravimetric measurement of magnetic field gradients partially solves this ...

  3. Straightforward prediction of the Ni1-x O layers stoichiometry by using optical and electrochemical measurements

    Science.gov (United States)

    Manceriu, Laura Maria; Colson, Pierre; Maho, Anthony; Eppe, Gauthier; Duy Nguyen, Ngoc; Labrugere, Christine; Rougier, Aline; Cloots, Rudi; Henrist, Catherine

    2017-06-01

    In this study, we propose a straightforward method for x determination in sub-stoichiometric nickel oxide (Ni1-x O) films prepared by ultrasonic spray pyrolysis on fluor-tin oxide (FTO) substrates by varying the post-deposition thermal treatment. The Ni3+ concentration, the flat band potential (Φfb) and the open circuit potential (V oc) were determined by electrochemical impedance analysis in aqueous media and correlated to the transmission of Ni1-x O films. An x-ray photoelectron spectroscopy study was also performed to quantify the amount of Ni3+ in the films and compare it with the one determined by electrochemical analysis. The electrochromic behavior of the Ni1-x O films in non-aqueous electrolyte was investigated as well. With increasing Ni3+ concentration the films became more brownish and more conductive, both V oc and Φfb values increased. Calibration curves of transmission at 550 nm or open circuit potential versus carrier concentration were plotted and allowed the prediction of x in an unknown Ni1-x O sample. The Ni1-x O films characterized by the highest Ni3+ concentration have a darker colored state but lower transmission modulation, due to their reduced specific surface and increased crystallinity.

  4. Multiplexed Electrochemical Immunoassay of Phosphorylated Proteins Based on Enzyme-Functionalized Gold Nanorod Labels and Electric Field-Driven Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Du, Dan; Wang, Jun; Lu, Donglai; Dohnalkova, Alice; Lin, Yuehe

    2011-09-09

    A multiplexed electrochemical immunoassay integrating enzyme amplification and electric field-driven strategy was developed for fast and sensitive quantification of phosphorylated p53 at Ser392 (phospho-p53 392), Ser15 (phospho-p53 15), Ser46 (phospho-p53 46) and total p53 simultaneously. The disposable sensor array has four spatially separated working electrodes and each of them is modified with different capture antibody, which enables simultaneous immunoassay to be conducted without cross-talk between adjacent electrodes. The enhanced sensitivity was achieved by multi-enzymes amplification strategy using gold nanorods (AuNRs) as nanocarrier for co-immobilization of horseradish peroxidase (HRP) and detection antibody (Ab2) at high ratio of HRP/Ab2, which produced an amplified electrocatalytic response by the reduction of HRP oxidized thionine in the presence of hydrogen peroxide. The immunoreaction processes were accelerated by applying +0.4 V for 3 min and then -0.2 V for 1.5 min, thus the whole sandwich immunoreactions could be completed in less than 5 min. The disposable immunosensor array shows excellent promise for clinical screening of phosphorylated proteins and convenient point-of-care diagnostics.

  5. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    Science.gov (United States)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.

  6. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  7. Field of Temperature Measurement by Virtual Instrumentation

    Directory of Open Access Journals (Sweden)

    Libor HARGAŠ

    2009-01-01

    Full Text Available This paper introduces about temperature determination for given dot of picture through image analysis. Heat transfer is the transition of thermal energy from a heated item to a cooler item. Main method of measurement of temperature in image is Pattern Matching, color scale detection and model detection. We can measure temperature dependency at time for selected point of thermo vision images. This measurement gives idea about the heat transfer at time dependences.

  8. Measurement of the SC magnetic field

    CERN Multimedia

    CERN PhotoLab

    1973-01-01

    The 3.5-metre-arm carrying 100 Hall plates used for the measurmeent of the SC magnetic field. The arm rotates in a horizontal plane, its positioning and the data read-out are controlled by an on-line computer.

  9. Techniques to measure complex-plane fields

    CSIR Research Space (South Africa)

    Dudley, Angela L

    2014-09-25

    Full Text Available In this work we construct coherent superpositions of Gaussian and vortex modes which can be described to occupy the complex-plane. We demonstrate how these fields can be experimentally constructed in a digital, controllable manner with a spatial...

  10. Sampling Criterion for EMC Near Field Measurements

    DEFF Research Database (Denmark)

    Franek, Ondrej; Sørensen, Morten; Ebert, Hans

    2012-01-01

    -case representative of a signal trace on a typical printed circuit board. It has been found that the sampling density derived in this way is in fact very similar to that given by the antenna near field sampling theorem, if an error less than 1 dB is required. The principal advantage of the proposed formulation is its...

  11. Test report for measurement of performance vs temperature of Whittaker Electrochemical Cell

    Energy Technology Data Exchange (ETDEWEB)

    Vargo, G.F., Fluor Daniel Hanford

    1997-02-13

    This document is the test report that summarizes the results of the tests on the Whittaker cells between the temperatures of -20{degrees}F and +120{degrees}F. These sensors are used on the Rotary Mode Core Sampling (RMCS) flammable gas interlock (FGI), to detect and quantify hydrogen gas. The test consisted of operating five Whittaker electrochemical cells in an environmental chamber that was varied in temperature from -20{degrees}F to +120{degrees}F. As the rate rise of the voltage from the cells changed, after exposure to a gas concentration of 1% hydrogen at the different temperatures, the voltage was recorded on a computer controlled data acquisition system. Analysis of the data was made to determine if the cells maximum output voltages and rise times were effected by temperature.

  12. Electrochemical Impedance Spectroscopic Measurements of Sexithiophene-Effect of the Electrode Nature and the Dopant (CuCl2) Content

    Institute of Scientific and Technical Information of China (English)

    NESSARK,Belkacem; MAOUCHE,Na(i)ma

    2009-01-01

    Electrochemical impedance spectroscopic (EIS) measurements of sexithiophene (6T) were carried out according to the Pt/6T/M sandwich structure configuration,for various electrode materials (M=GC,ITO,Ag,Cu,AI) and for different doping levels of copper chloride (CuCl2).The results demonstrate that two types of charge transport are involved in the redox process at the electrode/6T interface and inside the bulk oligomer.The complex-plane impedance plots obtained for various doping levels of CuCl2 exhibit arc shapes.The charge-transfer resistance measured from the diagrams decreases systematically with the addition of the salt,leading to an increase of the oligothiophene conductivity.

  13. Boron-doped cadmium oxide composite structures and their electrochemical measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, B.J., E-mail: bjlokhande@yahoo.com [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Ambare, R.C. [Lab of Smart Mtrls Supercapacitive and Energy Studies, School of Physical Sciences, Solapur University, Solapur 413255, Maharashtra (India); Mane, R.S. [School of Physical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606 (India); Bharadwaj, S.R. [Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2013-08-01

    Graphical abstract: Conducting nano-fibrous 3% boron doped cadmium oxide thin films were prepared by SILAR and its super capacitive properties were studied. - Highlights: • Samples are of nanofibrous nature. • All samples shows pseudocapacitive behavior. • 3% B doped CdO shows good specific capacitance. • 3% B doped CdO shows maximum 74.93% efficiency at 14 mA/cm{sup 2}. • 3% B doped CdO shows 0.8 Ω internal resistance. - Abstract: Boron-doped and undoped cadmium oxide composite nanostructures in thin film form were prepared onto stainless steel substrates by a successive ionic layer adsorption and reaction method using aqueous solutions of cadmium nitrate, boric acid and 1% H{sub 2}O{sub 2}. As-deposited films were annealed at 623 K for 1 h. The X-ray diffraction study shows crystalline behavior for both doped and undoped films with a porous topography and nano-wires type architecture, as observed in SEM image. Wettability test confirms the hydrophilic surface with 58° contact angle value. Estimated band gap energy is around 1.9 eV. Electrochemical behavior of the deposited films is attempted in 1 M KOH electrolyte using cyclic voltammetry (CV), electrochemical impedance spectroscopy and galvanostatic charge–discharge tests. Maximum values of the specific capacitance, specific energy and specific power obtained for 3% B doped CdO film at 2 mV/s scan rate are 20.05 F/g, 1.22 Wh/kg and 3.25 kW/kg, respectively.

  14. Laboratory Measurements of Astrophysical Magnetic Fields

    Science.gov (United States)

    Murphy, C. D.; Miniati, F.; Edwards, M.; Mithen, J.; Bell, A. R.; Constantin, C.; Everson, E.; Schaeffer, D.; Niemann, C.; Ravasio, A.; Brambrink, E.; Benuzzi-Mounaix, A.; Koenig, M.; Gregory, C.; Woolsey, N.; Park, H.-S.; Remington, B.; Ryutov, D.; Bingham, R.; Gargate, L.; Spitkovsky, A.; Gregori, G.

    2010-11-01

    It has been proposed that high Mach number collisionless shocks propagating in an initially unmagnetized plasma play a major role in the magnetization of large scale structures in the Universe. A detailed study of the experimental configuration necessary to scale such environments down to laboratory dimensions will be presented. We will show initial results from preliminary experiments conducted at the Phoenix laser (UCLA) and the LULI laser (Ecole Polytechnique) where collisionless shocks are generated by the expansion of exploding foils driven by energetic laser beams. The time evolution of the magnetic field is probed with induction coils placed at 10 cm from the laser focus. We will discuss various mechanisms of magnetic field generation and compare them with the experimental results.

  15. Measurement Methods in the field of benchmarking

    Directory of Open Access Journals (Sweden)

    István Szűts

    2004-05-01

    Full Text Available In benchmarking we often come across with parameters being difficultto measure while executing comparisons or analyzing performance, yet they haveto be compared and measured so as to be able to choose the best practices. Thesituation is similar in the case of complex, multidimensional evaluation as well,when the relative importance and order of different dimensions, parameters to beevaluated have to be determined or when the range of similar performanceindicators have to be decreased with regard to simpler comparisons. In suchcases we can use the ordinal or interval scales of measurement elaborated by S.S.Stevens.

  16. Measuring Propagation Speed of Coulomb Fields

    OpenAIRE

    De Sangro, R.; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Pizzella, G.

    2012-01-01

    The problem of gravity propagation has been subject of discussion for quite a long time: Newton, Laplace and, in relatively more modern times, Eddington pointed out that, if gravity propagated with finite velocity, planets motion around the sun would become unstable due to a torque originating from time lag of the gravitational interactions. Such an odd behavior can be found also in electromagnetism, when one computes the propagation of the electric fields generated by a set of uniformly movi...

  17. Wave directional spreading from point field measurements

    Science.gov (United States)

    McAllister, M. L.; Venugopal, V.; Borthwick, A. G. L.

    2017-04-01

    Ocean waves have multidirectional components. Most wave measurements are taken at a single point, and so fail to capture information about the relative directions of the wave components directly. Conventional means of directional estimation require a minimum of three concurrent time series of measurements at different spatial locations in order to derive information on local directional wave spreading. Here, the relationship between wave nonlinearity and directionality is utilized to estimate local spreading without the need for multiple concurrent measurements, following Adcock & Taylor (Adcock & Taylor 2009 Proc. R. Soc. A 465, 3361-3381. (doi:10.1098/rspa.2009.0031)), with the assumption that directional spreading is frequency independent. The method is applied to measurements recorded at the North Alwyn platform in the northern North Sea, and the results compared against estimates of wave spreading by conventional measurement methods and hindcast data. Records containing freak waves were excluded. It is found that the method provides accurate estimates of wave spreading over a range of conditions experienced at North Alwyn, despite the noisy chaotic signals that characterize such ocean wave data. The results provide further confirmation that Adcock and Taylor's method is applicable to metocean data and has considerable future promise as a technique to recover estimates of wave spreading from single point wave measurement devices.

  18. Analysis of the measurement field of the optical klystron

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The measured fields of the optical klystron in NSRL (National Sychrotron Radiation Laboratory) are given, including the distribution on the axis, and the integrated field distribution. The harmonic magnet field and the spectra of the spontaneous emission are analyzed, and the multiple field is presented by fitting the diagram. The influence of the integrated field on the close orbit of the beam and on the operation parameters of the storage ring, and the compensation in the experiment are also discussed.

  19. Gradio - Earth gravity field measurement on Aristoteles

    Science.gov (United States)

    Pawlak, D.; Meyer, Ph.; Bernard, A.; Touboul, P.

    1991-10-01

    The design and operation of Gradio, the instrument that was specifically designed for precise gradiometry measurements during the Aristoteles mission, are described. The Gradio is based on simultaneous measurements by four three-axis ultrasensitive accelerometers performed in several locations on a rigid stable structure, called gradio plate, which are then used to compute g gradients. The operational phase of Gradio will last 6 months; the orbit will be circular, near polar, and heliosynchronous, at an altitude of 200 km. It is estimated that Gradio will measure the two main components T(yy) and T(zz) of the gravity gradient tensor in the (0.005, 0.125) Hz frequency bandwidth with an accuracy of 0.01 E.U.

  20. Table 1. Summary of Field Testing and Measurement Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Key performance parameters measured during the field demonstration such as lining thickness, compressive strength, Flexural Strength, Modulus of Elasticity, bond...

  1. Measuring the effect of field viability on wheat yield

    DEFF Research Database (Denmark)

    Olsen, Jakob Vesterlund; Schou, Jesper Sølver

    showing a significant effect on yields. Further research may involve estimating the effect of field characteristics on the aggregated economic farm performance. The field viability index has multiple applications in e.g. benchmarking, leasing or buying arrangements, and for identifying potential land...... contributes by introducing a new joint index for field shape and field size, field viability index (FVI), aiming at measuring the effect of land fragmentation on farm performance based on field characteristics. The index is calculated for Danish wheat fields and is tested on a large sample of Danish farmers...

  2. Identification of Non-Faradaic Processes by Measurement of the Electrochemical Peltier Heat during the Silver Underpotential Deposition on Au(111).

    Science.gov (United States)

    Frittmann, Stefan; Halka, Vadym; Schuster, Rolf

    2016-04-04

    We measured the heat which is reversibly exchanged during the course of an electrochemical surface reaction, i.e., the deposition/dissolution of the first two monolayers of Ag on a Au(111) surface in (bi)sulfate and perchlorate containing electrolytes. The reversibly exchanged heat corresponds to the Peltier heat of the reaction and is linearly related to its entropy change, including also non-Faradaic side processes. Hence, the measurement of the Peltier heat provides thermodynamic information on the electrochemical processes which is complementary to the current-potential relations usually obtained by conventional electrochemical methods. From the variation of the molar Peltier heat during the various stages of the deposition reaction we inferred that co-adsorption processes of anions and Ag do not play a prominent role, while we find strong indications for a charge neutral substitution reaction of adsorbed anions by hydroxide, which would not show up in cyclic voltammetry.

  3. Highly sensitive assay for the measurement of serotonin in microdialysates using capillary high-performance liquid chromatography with electrochemical detection.

    Science.gov (United States)

    Parrot, Sandrine; Lambás-Señas, Laura; Sentenac, Sabine; Denoroy, Luc; Renaud, Bernard

    2007-05-01

    A highly sensitive isocratic capillary high-performance liquid chromatographic (HPLC) method with electrochemical detection (ED) for the simultaneous measurement of serotonin (5-hydroxytryptamine, 5-HT) and its metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) in microdialysates has been developed using a 0.5 mm i.d. capillary column and a 11-nL detection cell. This method, validated on both pharmacological and analytical bases, can be performed using injection volumes as low as 1 microL. The limits of detection were 5.6 x 10(-11)mol/L and 3.0 x 10(-9)mol/L for 5-HT and 5-HIAA. Several applications of the present method are given on microdialysates from rodent brain and human spinal cord.

  4. Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate

    Science.gov (United States)

    Chen, Qianwei; Sun, Tai; Song, Xuefen; Ran, Qincui; Yu, Chongsheng; Yang, Jun; Feng, Hua; Yu, Leyong; Wei, Dapeng

    2017-08-01

    We demonstrate a flexible biosensor for lactate detection based on l-lactate oxidase immobilized by chitosan film cross-linked with glutaraldehyde on the surface of a graphene nanowall (GNW) electrode. The oxygen-plasma technique was developed to enhance the wettability of the GNWs, and the strength of the sensor’s oxidation response depended on the concentration of lactate. First, in order to eliminate interference from other substances, biosensors were primarily tested in deionized water and displayed good electrochemical reversibility at different scan rates (20-100 mV s-1), a large index range (1.0 μM to 10.0 mM) and a low detection limit (1.0 μM) for lactate. Next, these sensors were further examined in phosphate buffer solution (to mimick human body fluids), and still exhibited high sensitivity, stability and flexibility. These results show that the GNW-based lactate biosensors possess important potential for application in clinical analysis, sports medicine and the food industry.

  5. Principles of planar near-field antenna measurements

    CERN Document Server

    Gregson, Stuart; Parini, Clive

    2007-01-01

    This single volume provides a comprehensive introduction and explanation of both the theory and practice of 'Planar Near-Field Antenna Measurement' from its basic postulates and assumptions, to the intricacies of its deployment in complex and demanding measurement scenarios.

  6. Field measurement and analysis of harmonic levels

    Energy Technology Data Exchange (ETDEWEB)

    Karunakara, K.; Muthu Kumar, E.; Rajesh Kumar, O.; Nambudiri, P.V.V.; Srinivasan, K.N. [Central Power Research Institute, Bangalore (India)

    1999-07-01

    The level of harmonics on the transmission and distribution network is rising over the years, due to the rapid development and usage of electronic and semiconductor devices in the industries, as these devices produce harmonic currents. As the harmonic currents produced by these devices are unproductive and affect the ideal sinusoidal waveshapes, these have to be limited to a tolerable limit at the Point of Common Coupling (PCC). Before setting a tolerable limit on harmonics it is necessary to know the level of harmonics already present in the system, so that the limits suggested are comprehensive and practicable. To have a fair idea about the current and voltage harmonics on the Indian system, Central Power Research Institute (CPRI) has carried out a lot of measurements both on the distribution network and transmission network over the past 13 years. This paper discusses the harmonic measurements carried out by CPRI on different loads and voltage levels on the Indian network. The methodology adopted for measurement and results are also discussed in this paper. (author)

  7. Side abutment pressure distribution by field measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Lian-guo; SONG Yang; HE Xing-hua; ZHANG Jian

    2008-01-01

    Given the 7123 working face in the Qidong Coal Mine of the Wanbei Mining Group, nine dynamic roof monitors were installed in the crossheading to measure the amount and velocity of roof convergence in different positions and at different times and three steel bored stress sensors were installed in the return airway to measure rock stress at depth. On the basis of this arrangement, the rule of change of the distribution of the side abutment pressure with the advance of the working face and movement of overlying strata was studied. The rule of change and the stability of rock stress at depth were measured. Secondly, the affected area and stability time of the side abutment pressure were also studied. The results show that: 1) During working, the face advanced distance was from 157 m to 99 m, the process was not effected by mining induced pressure. When the distance was 82 m, the position of peak stress was 5 m away from the coal wall. When the distance was 37 m, the position of peak stress away from the coal wall was about 15 m to 20 m and finally reached a steady state; 2) the time and the range of the peak of side rock pressure obtained from stress sensors were consistent with the results from the dynamic roof monitors; 3) the position of the peak pressure was 25 m away from the coal wall.

  8. Lamb-shift and electric field measurements in plasmas

    Science.gov (United States)

    Doveil, F.; Chérigier-Kovacic, L.; Ström, P.

    2017-01-01

    The electric field is a quantity of particular relevance in plasma physics. Indeed, its fluctuations are responsible for different macroscopic phenomena such as anomalous transport in fusion plasmas. Answering a long-standing challenge, we offer a new method to locally and non-intrusively measure weak electric fields and their fluctuations in plasmas, by means of a beam of hydrogen ions or atoms. We present measurements of the electric field in vacuum and in a plasma where Debye shielding is measured. For the first time, we have used the Lamb-shift resonance to measure oscillating electric fields around 1 GHz and observed the strong enhancement of the Lyman-α signal. The measurement is both direct and non-intrusive. This method provides sensitivity (mV cm-1) and temporal resolution (ns) that are three orders higher compared to current diagnostics. It thus allows measuring fluctuations of the electric field at scales not previously reached experimentally.

  9. Measurement of Small Molecule Binding Kinetics on a Protein Microarray by Plasmonic-Based Electrochemical Impedance Imaging

    Science.gov (United States)

    2015-01-01

    We report on a quantitative study of small molecule binding kinetics on protein microarrays with plasmonic-based electrochemical impedance microscopy (P-EIM). P-EIM measures electrical impedance optically with high spatial resolution by converting a surface charge change to a surface plasmon resonance (SPR) image intensity change, and the signal is not scaled to the mass of the analyte. Using P-EIM, we measured binding kinetics and affinity between small molecule drugs (imatinib and SB202190) and their target proteins (kinases Abl1 and p38-α). The measured affinity values are consistent with reported values measured by an indirect competitive binding assay. We also found that SB202190 has weak bindings to ABL1 with KD > 10 μM, which is not reported in the literature. Furthermore, we found that P-EIM is less prone to nonspecific binding, a long-standing issue in SPR. Our results show that P-EIM is a novel method for high-throughput measurement of small molecule binding kinetics and affinity, which is critical to the understanding of small molecules in biological systems and discovery of small molecule drugs. PMID:25153794

  10. Measuring the Earth's Magnetic Field in a Laboratory

    Science.gov (United States)

    Cartacci, A.; Straulino, S.

    2008-01-01

    Two methods for measuring the Earth's magnetic field are described. In the former, according to Gauss, the Earth's magnetic field is compared with that of a permanent magnet; in the latter, a well-known method, the comparison is made with the magnetic field generated by a current. As all the used instruments are available off the shelf, both…

  11. Microwave field measurement via Rabi resonances in Cs atoms

    CERN Document Server

    Sun, Fuyu; Bai, Qingsong; Huang, Xianhe; Ma, Jie; Li, Xiaofeng

    2016-01-01

    We present a technique for measuring microwave (MW) field based on Rabi resonances induced by the interaction of atoms with a phase-modulated MW field. A theoretical model of field measurement is used to calculate Rabi frequency. Single-peak feature of the measurement model makes the technique a valuable tool for simple and fast field measurement. As an example, we use the technique to determine the MW field strength inside a Cs vapor cell in the X-band rectangular cavity for applied power in the range of -21 dBm to 20 dBm. The results show that this proposed technique is capable for detecting the field over a broad dynamical range.

  12. Measurement of Temperature Fields in Long Span Concrete Bridges

    Directory of Open Access Journals (Sweden)

    J. Římal

    2001-01-01

    Full Text Available This paper deals with assesing of the influence of climate temperatures on deformations and stresses in a cross section of the Nusle Bridge. The main purpose is to describe the measurement of the thermal fields, to compare measured and computed temperature fields, and to provide a real estimation of the stresses that occur.

  13. Infrared measurement and simulation of magnesium alloy welding temperature field

    Institute of Scientific and Technical Information of China (English)

    LIU Liming; CHI Mingsheng; HUANG Ruisheng; SONG Gang; ZHOU Yang

    2005-01-01

    The welding temperature field of magnesium alloy AZ31 welded by TIG was measured with the uncooled infrared (IR) thermal imaging technology. The variables in the mathematic mode of welding temperature fields were revised by IR temperature data. Based on the results of simulation, the loss of temperature fields caused by arc interfered was compensated, and a whole temperature field was achieved, which provided a precise and powerful foundation for the investigation of microstructure of the joints.

  14. Measurement of electric fields and estimation of dielectric susceptibility

    Science.gov (United States)

    Nogi, Yasuyuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori

    2013-05-01

    We describe a method of measuring the spatial structures of electric fields produced by charge distributions such as those on strip electrodes, small disk electrodes, and long double-plate electrodes. An electric-field sensor with high sensitivity to ac fields is fabricated for the measurement using a thin copper sheet. The reliability of the sensor is confirmed using a parallel-plate capacitor. The electric fields are oscillated at a frequency of 300 kHz to operate the electric-field sensor successfully. The structures of the measured fields coincide well with those of theoretical fields derived from Coulomb's law. When a dielectric is inserted in an electric field, polarization charges appear on the surface of the dielectric and modify the electric field in empty space. We measure the modified field and confirm the well-known linear relation between the polarization of a dielectric and the electric field. Dielectric susceptibilities are estimated from the linear relation for four types of dielectric.

  15. p-Si(1 1 1):H/ionic liquid interface investigated through a combination of electrochemical measurements and reflection high energy electron diffraction surface analysis in vacuum

    Science.gov (United States)

    Watanabe, Ko; Maruyama, Shingo; Matsumoto, Yuji

    2016-07-01

    A combination study of electrochemical measurements and reflection high energy electron diffraction (RHEED) surface analysis experiments in a vacuum was first demonstrated to characterize a p-Si(1 1 1):H/ionic liquid interface. Mott-Schottky plot analysis was made to successfully not only evaluate the acceptor density and flat band potential of the p-Si(1 1 1):H, but also get some insight into its surface states. Furthermore, the electric double layer capacitance and specific adsorption properties at the IL/Si(1 1 1):H interface as well as the electrochemical interface stability will be discussed in this paper.

  16. Early detection of corrosion of reinforcement: Potential field measurement and galvano-static pulse technique. Frueherkennung von Bewehrungskorrosion: Potentialfeldmessung und galvanostatische Impulstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Boehni, H.; Elsener, B. (ETH Zurich (Switzerland))

    1991-01-01

    Early detection of corrosion damage in reinforced concrete buildings is not only with regard to savety of great importance but also economically. Electrochemical methods largely comply with the requirements. The focus is put on potential field measurements as nondestructive method for locating corroded areas of reinforcement in theory and with concrete examples of application. Galvanostatic pulse techniques can be used as valuable complement to potential measurements. (BWI).

  17. New Limits on Extragalactic Magnetic Fields from Rotation Measures

    Science.gov (United States)

    Pshirkov, M. S.; Tinyakov, P. G.; Urban, F. R.

    2016-05-01

    We take advantage of the wealth of rotation measures data contained in the NRAO VLA Sky Survey catalog to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic magnetic field contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-α clouds. Based on the observation that rotation measures from distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Jeans' length coherence length to be below 1.7 nG at the 2 σ level, and fields coherent across the entire observable Universe below 0.65 nG. These limits do not depend on the particular origin of these cosmological fields.

  18. Forced convection during feedback approach curve measurements in scanning electrochemical microscopy: maximal displacement velocity with a microdisk.

    Science.gov (United States)

    Cornut, R; Poirier, S; Mauzeroll, Janine

    2012-04-17

    In scanning electrochemical microscopy (SECM), an approach curve performed in feedback mode involves the downward displacement of a microelectrode toward a substrate while applying a bias to detect dissolved electroactive species at a diffusion-limited rate. The resulting measured current is said to be at steady state. In order to reduce the required measurement time, the approach velocity can be increased. In this paper, we investigate experimentally and theoretically the combination of diffusion and convection processes related to a moving microdisk electrode during feedback approaches. Transient modeling and numerical simulations with moving boundaries are performed, and the results are compared to the experimental approach curves obtained in aqueous solution. The geometry and misalignment of the microelectrode influence the experimental approach curves recorded at high approach velocities. The effects are discussed through the decomposition of the current into transient diffusional, radial convectional, and axial convectional contributions. Finally a ready-to-use expression is provided to rapidly evaluate the maximal approach velocity for steady state measurements as a function of the microelectrode geometry and the physical properties of the media. This expression holds for the more restrictive case of negative feedback as well as other modes, such as SECM approach curves performed at substrates displaying first order kinetics.

  19. [A focused sound field measurement system by LabVIEW].

    Science.gov (United States)

    Jiang, Zhan; Bai, Jingfeng; Yu, Ying

    2014-05-01

    In this paper, according to the requirement of the focused sound field measurement, a focused sound field measurement system was established based on the LabVIEW virtual instrument platform. The system can automatically search the focus position of the sound field, and adjust the scanning path according to the size of the focal region. Three-dimensional sound field scanning time reduced from 888 hours in uniform step to 9.25 hours in variable step. The efficiency of the focused sound field measurement was improved. There is a certain deviation between measurement results and theoretical calculation results. Focal plane--6 dB width difference rate was 3.691%, the beam axis--6 dB length differences rate was 12.937%.

  20. Magnetic field measurements of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-01-15

    Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.

  1. Measures and dimensions of fractal sets in local fields

    Institute of Scientific and Technical Information of China (English)

    QIU Hua; SU Weiyi

    2006-01-01

    The study of fractal analysis over the local fields as underline spaces is very important since it can motivate new approaches and new ideas, and discover new techniques in the study of fractals. To study fractal sets in a local field K, in this paper, we define several kinds of fractal measures and dimensions of subsets in K. Some typical fractal sets in K are constructed. We also give out the Hausdorff dimensions and measures, Box-counting dimensions and Packing dimensions, and stress that there exist differences between fractal analysis on local fields and Euclidean spaces. Consequently, the theoretical foundation of fractal analysis on local fields is established.

  2. Strain Measurement on the Toroidal Field (TF) Coil Cases

    Institute of Scientific and Technical Information of China (English)

    Chen Zhuomin; Long Feng; Wu Hao

    2005-01-01

    The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.

  3. Electrochemical force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  4. Measurement of the Waveguide Near-field Optical Spot

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The characteristic of near-field spots is analyzed.The size of the near field and the heat response time of the hybrid record medium to overcome super paramagnetic effect are calculated based on the heat transfer theory. A novel measuring method for the diameter of near-field recording spot is also presented. Since the grain of the recording media is tiny enough,near-field optical lithography can be accomplished with the aid of atomic force microscope (AFM).The diameter of near-field recording spot can be obtained by specifically designed computer.So the relationship between the near-field recording spot diameter and the probe size of near-field recording system, the near field recording distance coupling between head and disc can be got.

  5. Measuring Oscillatory Velocity Fields Due to Swimming Algae

    CERN Document Server

    Guasto, Jeffrey S; Gollub, J P

    2010-01-01

    In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.

  6. Electro-optic probe measurements of electric fields in plasmas

    Science.gov (United States)

    Nishiura, M.; Yoshida, Z.; Mushiake, T.; Kawazura, Y.; Osawa, R.; Fujinami, K.; Yano, Y.; Saitoh, H.; Yamasaki, M.; Kashyap, A.; Takahashi, N.; Nakatsuka, M.; Fukuyama, A.

    2017-02-01

    The direct measurements of high-frequency electric fields in a plasma bring about significant advances in the physics and engineering of various waves. We have developed an electro-optic sensor system based on the Pockels effect. Since the signal is transmitted through an optical fiber, the system has high tolerance for electromagnetic noises. To demonstrate its applicability to plasma experiments, we report the first result of measurement of the ion-cyclotron wave excited in the RT-1 magnetosphere device. This study compares the results of experimental field measurements with simulation results of electric fields in plasmas.

  7. Magnetic rotation imaging method to measure the geomagnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new imaging method for measuring the geomagnetic field based on the magnetic rotation effect is put forward. With the help of polarization property of the sunlight reflected from the ground and the magnetic rotation of the atmosphere, the geomagnetic field can be measured by an optical system installed on a satellite. According to its principle, the three-dimensional image of the geomagnetic field can be obtained. The measuring speed of this method is very high, and there is no blind spot and distortion. In this paper, the principle of this method is presented, and some key problems are discussed.

  8. Direct analysis of dispersive wave fields from near-field pressure measurements

    NARCIS (Netherlands)

    Horchens, L.

    2011-01-01

    Flexural waves play a significant role for the radiation of sound from plates. The analysis of flexural wave fields enables the detection of sources and transmission paths in plate-like structures. The measurement of these wave fields can be carried out indirectly by means of near-field acoustic hol

  9. Dynamics measured in a non-Archimedean field

    NARCIS (Netherlands)

    Kool, J.

    2012-01-01

    We study dynamical systems using measures taking values in a non-Archimedean field. The underlying space for such measure is a zero-dimensional topological space. In this paper we elaborate on the natural translation of several notions, e.g., probability measures, isomorphic transformations, entropy

  10. Electrochemical Dictionary-Second Edition

    OpenAIRE

    Gulaboski, Rubin

    2012-01-01

    The 1st edition of the “Electrochemical Dictionary” has received a very positive, even enthusiastic, resonance. It is one of themost successful e-books of Springer. The second edition of the “Electrochemical Dictionary” provides a considerably extended coverage of terms, especially in the fields of electrochemical energy conversion and bioelectricity. Some new authors joined the project, so that their number is now 100. All entries of the first edition were carefully revised, and ref...

  11. Spatial distribution and dynamics of proton conductivity in fuel cell membranes: potential and limitations of electrochemical atomic force microscopy measurements.

    Science.gov (United States)

    Aleksandrova, E; Hink, S; Hiesgen, R; Roduner, E

    2011-06-15

    The proton conductivity of a Nafion 112 membrane is measured with a high spatial resolution using electrochemical atomic force microscopy. Image analysis reveals an inhomogeneous conductivity distribution which is attributed to the limited connectivity of hydrophilic domains. This information relates to the micro-morphology which is due to phase separation of the hydrophobic polymer backbone and the hydrophilic pendant groups. The direct images relate to a different length scale and are complementary to the x-ray diffraction investigations which provide only average information. Furthermore, the measured current values reveal an interesting correlation with the size of the conductive areas. A bimodal conductivity distribution suggests that there are different mechanisms which contribute to the proton current in Nafion. Additionally, time dependence in local conductivity is found and interpreted in terms of redistribution of water in the membrane. A statistical analysis of the current distribution is performed and compared with theoretical simulations. Evidence is found for the existence of a critical current density. On a timescale of seconds the response of the conductive network is probed by applying voltage steps to the atomic force microscope tip.

  12. New limits on extragalactic magnetic fields from rotation measures

    CERN Document Server

    Pshirkov, Maxim S; Urban, Federico R

    2015-01-01

    We take advantage of the wealth of rotation measures data contained in the NVSS catalogue to derive new, statistically robust, upper limits on the strength of extragalactic magnetic fields. We simulate the extragalactic contribution to the rotation measures for a given field strength and correlation length, by assuming that the electron density follows the distribution of Lyman-$\\alpha$ clouds. Based on the observation that rotation measures from low-luminosity distant radio sources do not exhibit any trend with redshift, while the extragalactic contribution instead grows with distance, we constrain fields with Mpc coherence length to be below 1.2 nG at the $2\\sigma$ level, and fields coherent across the entire observable Universe below 0.5 nG. These limits do not depend on the particular origin of these cosmological fields.

  13. A method for longitudinal relaxation time measurement in inhomogeneous fields

    Science.gov (United States)

    Chen, Hao; Cai, Shuhui; Chen, Zhong

    2017-08-01

    The spin-lattice relaxation time (T1) plays a crucial role in the study of spin dynamics, signal optimization and data quantification. However, the measurement of chemical shift-specific T1 constants is hampered by the magnetic field inhomogeneity due to poorly shimmed external magnetic fields or intrinsic magnetic susceptibility heterogeneity in samples. In this study, we present a new protocol to determine chemical shift-specific T1 constants in inhomogeneous fields. Based on intermolecular double-quantum coherences, the new method can resolve overlapped peaks in inhomogeneous fields. The measurement results are in consistent with the measurements in homogeneous fields using the conventional method. Since spatial encoding technique is involved, the experimental time for the new method is very close to that for the conventional method. With the aid of T1 knowledge, some concealed information can be exploited by T1 weighting experiments.

  14. Integrated optical waveguide sensor for lighting impulse electric field measurement

    Science.gov (United States)

    Zhang, Jiahong; Chen, Fushen; Sun, Bao; Chen, Kaixin

    2014-09-01

    A Lithium niobate (LiNbO3) based integrated optical E-field sensor with an optical waveguide Mach-Zehnder interferometer (MZI) and a tapered antenna has been designed and fabricated for the measurement of the pulsed electric field. The minimum detectable E-field of the sensor was 10 kV/m. The sensor showed a good linear characteristic while the input E-fields varied from 10 kV/m to 370 kV/m. Furthermore, the maximum detectable E-field of the sensor, which could be calculated from the sensor input/output characteristic, was approximately equal to 1000 kV/m. All these results suggest that such sensor can be used for the measurement of the lighting impulse electric field.

  15. Simultaneous Measurement of Nonlinearity and Electrochemical Impedance for Protein Sensing Using Two-Tone Excitation

    Science.gov (United States)

    Daniels, Jonathan S.; Anderson, Erik P.; Lee, Thomas H.; Pourmand, Nader

    2009-01-01

    Impedance biosensors detect the binding of a target to an immobilized probe by quantifying changes in the impedance of the electrode-electrolyte interface. The interface's I-V relationship is inherently nonlinear, varying with DC bias, and target binding can alter the degree of nonlinearity. We propose and demonstrate a method to simultaneously measure the nonlinearity and conventional small-signal impedance using intermodulation products from a two-tone input. Intermodulation amplitudes accurately reflect the impedance's manually-measured voltage dependence. We demonstrate that changes in nonlinearity can discriminate protein binding. Our measurements suggest that target binding can alter nonlinearity via the voltage dependence of the ionic double layer. PMID:19164024

  16. The measurement of the modal strain fields using digital shearography

    Science.gov (United States)

    Lopes, H.; Ribeiro, J. E.; Vaz, M.; Gomes, J. M.

    2010-06-01

    This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields on a clamped circular aluminium plate. The speckle pattern is frozen by the synchronization between the LASER illumination and the modal vibration of the object. The quantitative evaluation is performed for each digital shearogram using a time modulation technique. The setup of double illumination LASER with out-of-plane opposite sensitivity allows the two phase maps measurement of the modal spatial gradient. The modal rotation and strain fields are extracted by the combination of this two digital phase maps. Image processing techniques are applied on the phase maps to obtain full-field measurements using a dedicated post-processing algorithm. Finally, is presented a comparison between the experimental measurement and the numerical solution.

  17. The measurement of the modal strain fields using digital shearography

    Directory of Open Access Journals (Sweden)

    Gomes J.M.

    2010-06-01

    Full Text Available This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields on a clamped circular aluminium plate. The speckle pattern is frozen by the synchronization between the LASER illumination and the modal vibration of the object. The quantitative evaluation is performed for each digital shearogram using a time modulation technique. The setup of double illumination LASER with out-of-plane opposite sensitivity allows the two phase maps measurement of the modal spatial gradient. The modal rotation and strain fields are extracted by the combination of this two digital phase maps. Image processing techniques are applied on the phase maps to obtain full-field measurements using a dedicated post-processing algorithm. Finally, is presented a comparison between the experimental measurement and the numerical solution.

  18. System for controllable magnetic measurement with direct field determination

    Science.gov (United States)

    Stupakov, O.

    2012-02-01

    This work describes a specially designed setup for magnetic hysteresis and Barkhausen noise measurements. The setup combines two main elements: an improved fast algorithm to control the waveform of magnetic induction and simultaneous direct determination of the magnetic field. The digital feedback algorithm uses only the previous measurement cycle to correct the magnetization voltage without any additional correlation parameter; it usually converges after several tens of cycles. The magnetic field is measured at the sample surface using a vertically mounted array of sensitive Hall sensors. Linear extrapolation of the tangential field profile to the sample surface determines the true waveform of the magnetic field. This unique combination of physically based control for both parameters of the magnetization process provides stable and reliable results, which are independent of a specified experimental configuration. This is illustrated for the industrially attractive measurements of non-oriented electrical steels with a 50 Hz sinusoidal induction waveform.

  19. 47 CFR 73.686 - Field strength measurements.

    Science.gov (United States)

    2010-10-01

    ..., or a graph on which the distribution of measured field strength values is plotted. (vi) A list of... be submitted. (iv) A list of calibrated equipment used in the field strength survey, which, for each... equipment calibration and elevation of the antenna, a check is made to determine whether the...

  20. Antenna gain measurements in the intermediate-field zone

    Science.gov (United States)

    Anchidin, Liliana; Bari, Farida; Dumitrascu, Ana; Paun, Mirel; Deacu, Daniela; Tasu, Sorin; Danisor, Alin; Tamas, Razvan D.

    2016-12-01

    Antenna gain is usually evaluated under far-field conditions. Furthermore, Friis transmission formula can solely be applied when antenna size can be neglected with respect to the distance between the measuring antenna and the antenna under test. In this paper, we show that by applying the distance averaging technique the far-field and antenna size constraints can be overcome. Our method was validated by measuring a monopole antenna and a Vivaldi antenna in an open area test site (OATS).

  1. The Virtual Fields Method Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements

    CERN Document Server

    Pierron, Fabrice

    2012-01-01

    The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first book on the Virtual Fields Method (VFM), a technique to identify materials mechanical properties from full-field measurements. Firmly rooted with extensive theoretical description of the method, the book presents numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials) and situations (static, vibration, high strain rate). The authors give a detailed training section with examples of progressive difficulty to lead the reader to program the VFM and include a set of commented Matlab programs as well as GUI Matlab-based software for more general situations. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is an ideal book for researchers, engineers, and students interested in applying the VFM to new situations motivated by their research.  

  2. Thermodynamic Properties of Liquid Silver-Antimony-Tin Alloys Determined from Electrochemical and Calorimetric Measurements

    Science.gov (United States)

    Łapsa, Joanna; Onderka, Bogusław

    2016-08-01

    The thermodynamic properties of liquid Ag-Sb-Sn alloys were obtained through use of the drop solution calorimetric method and electromotive force (emf) measurements of galvanic cells with a yttria stabilized zirconia (YSZ) solid electrolyte. The experiments were carried out along Ag0.25Sb0.75, Ag0.5Sb0.5 and Ag0.75Sb0.25 sections of the ternary system in the temperature range from 973 K to 1223 K. From the measured emf, the tin activity in liquid solutions of Ag-Sb-Sn was determined for the first time. The partial and integral enthalpy of mixing were determined from calorimetric measurements at two temperatures. These measurements were performed along two cross-sections: Sb0.5Sn0.5 at 912 K and 1075 K, and Ag0.75Sb0.25 at 1075 K. Both experimental data sets were used to find ternary interaction parameters by applying the Redlich-Kister-Muggianu model of the substitutional solution. Consequently, the set of parameters describing the thermodynamic properties of the liquid phase was derived.

  3. Measurement of velocity field in parametrically excited solitary waves

    CERN Document Server

    Gordillo, Leonardo

    2014-01-01

    Paramerically excited solitary waves emerge as localized structures in high-aspect-ratio free surfaces subject to vertical vibrations. Herein, we provide the first experimental characterization of the hydrodynamics of thess waves using Particle Image Velocimetry. We show that the underlying velocity field of parametrically excited solitary waves is mainly composed by an oscillatory velocity field. Our results confirm the accuracy of Hamiltonian models with added dissipation in describing this field. Remarkably, our measurements also uncover the onset of a streaming velocity field which is shown to be as important as other crucial nonlinear terms in the current theory. The observed streaming pattern is particularly interesting due to the presence of oscillatory meniscii.

  4. Selective label-free electrochemical impedance measurement of glycated haemoglobin on 3-aminophenylboronic acid-modified eggshell membranes.

    Science.gov (United States)

    Boonyasit, Yuwadee; Heiskanen, Arto; Chailapakul, Orawan; Laiwattanapaisal, Wanida

    2015-07-01

    We propose a novel alternative approach to long-term glycaemic monitoring using eggshell membranes (ESMs) as a new immobilising platform for the selective label-free electrochemical sensing of glycated haemoglobin (HbA1c), a vital clinical index of the glycaemic status in diabetic individuals. Due to the unique features of a novel 3-aminophenylboronic acid-modified ESM, selective binding was obtained via cis-diol interactions. This newly developed device provides clinical applicability as an affinity membrane-based biosensor for the identification of HbA1c over a clinically relevant range (2.3 - 14 %) with a detection limit of 0.19%. The proposed membrane-based biosensor also exhibited good reproducibility. When analysing normal and abnormal HbA1c levels, the within-run coefficients of variation were 1.68 and 1.83%, respectively. The run-to-run coefficients of variation were 1.97 and 2.02%, respectively. These results demonstrated that this method achieved the precise and selective measurement of HbA1c. Compared with a commercial HbA1c kit, the results demonstrated excellent agreement between the techniques (n = 15), demonstrating the clinical applicability of this sensor for monitoring glycaemic control. Thus, this low-cost sensing platform using the proposed membrane-based biosensor is ideal for point-of-care diagnostics.

  5. Local self-field measurements in Tl-2223 polycrystalline superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Saenz, A. [Univ. de Costa Rica, San Jose (Costa Rica). Escuela de Fisica; Niculescu, H. [Florida Agricultural and Mechanical Univ., Tallahassee, FL (United States). Dept. of Physics; Gielisse, P.J. [Dept. of Mechanical Engineering, Florida State Univ., Tallahassee, FL (United States)

    2000-07-01

    We report local self-field measurements on superconducting (Tl-2223) disks in an applied field. The axial components of the self-field generated by polycrystalline superconductors, have been measured at points above the sample using a Hall probe. The measurements were conducted with a computer controlled precision x-y scanning assembly, at liquid nitrogen temperatures. Single point and two- dimensional distributions of the local self-field above the samples immersed in a homogeneous applied field up to 16 mT, were recorded. In an increasing/decreasing magnetic field the magnetic response of the superconductors traverses hysteresis loops due to inter- and intragranular flux pinning. The field for full flux penetration and the maximum shielded field have been identified from characteristic points on the hysteresis loops. Evaluation of the average intergrain current density j{sub c}, assuming a uniform critical current density, resulted in the value 2.7 x 10{sup 6} A/m{sup 2}. (orig.)

  6. The FORS1 catalogue of stellar magnetic field measurements

    CERN Document Server

    Bagnulo, S; Landstreet, J D; Izzo, C

    2015-01-01

    The FORS1 instrument on the ESO Very Large Telescope was used to obtain low-resolution circular polarised spectra of nearly a thousand different stars, with the aim of measuring their mean longitudinal magnetic fields. A catalogue of FORS1 magnetic measurements would provide a valuable resource with which to better understand the strengths and limitations of this instrument and of similar low-dispersion, Cassegrain spectropolarimeters. However, FORS1 data reduction has been carried out by a number of different groups using a variety of reduction and analysis techniques. Our understanding of the instrument and our data reduction techniques have both improved over time. A full re-analysis of FORS1 archive data using a consistent and fully documented algorithm would optimise the accuracy and usefulness of a catalogue of field measurements. Based on the ESO FORS pipeline, we have developed a semi-automatic procedure for magnetic field determinations, which includes self-consistent checks for field detection relia...

  7. Electrochemical gating in scanning electrochemical microscopy

    NARCIS (Netherlands)

    Ahonen, P.; Ruiz, V.; Kontturi, K.; Liljeroth, P.; Quinn, B.M.

    2008-01-01

    We demonstrate that scanning electrochemical microscopy (SECM) can be used to determine the conductivity of nanoparticle assemblies as a function of assembly potential. In contrast to conventional electron transport measurements, this method is unique in that electrical connection to the film is not

  8. Electrochemical Analysis of Neurotransmitters.

    Science.gov (United States)

    Bucher, Elizabeth S; Wightman, R Mark

    2015-01-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  9. Electrochemical Analysis of Neurotransmitters

    Science.gov (United States)

    Bucher, Elizabeth S.; Wightman, R. Mark

    2015-07-01

    Chemical signaling through the release of neurotransmitters into the extracellular space is the primary means of communication between neurons. More than four decades ago, Ralph Adams and his colleagues realized the utility of electrochemical methods for the study of easily oxidizable neurotransmitters, such as dopamine, norepinephrine, and serotonin and their metabolites. Today, electrochemical techniques are frequently coupled to microelectrodes to enable spatially resolved recordings of rapid neurotransmitter dynamics in a variety of biological preparations spanning from single cells to the intact brain of behaving animals. In this review, we provide a basic overview of the principles underlying constant-potential amperometry and fast-scan cyclic voltammetry, the most commonly employed electrochemical techniques, and the general application of these methods to the study of neurotransmission. We thereafter discuss several recent developments in sensor design and experimental methodology that are challenging the current limitations defining the application of electrochemical methods to neurotransmitter measurements.

  10. Free-field calibration of measurement microphones at high frequencies

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Torras Rosell, Antoni;

    2011-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most of sound measurement applications related with noise assessment. However, other applications such as assessment of the noise emitted by ultrasound clean...

  11. Research on intensity measurement in room impulse field

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yueying; SHENG Shengwo; ZHAO Songling

    2008-01-01

    A new system of sound intensity measurement for impulse field in the room was proposed.This measurement system consists of a repeatable inspiriting sound source and a microphone fixed on a slowly rotating platform,which is equivalent to a circle microphone array composed of many perfectly matched microphones.The test principle was presented and typical application was described.Based upon this system the sound intensity measurement for impulse field in the room Was realized.Therefore,not only time but also spatial information of room impulse response can be obtained.

  12. Field quality measurements of a 2-Tesla transmission line magnet

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Foster, W.; Kashikhin, V.; Mazur, P.; Oleck, A.; Piekarz, H.; Schlabach, P.; Sylvester, C.; /Fermilab; Wake, M.; /KEK, Tsukuba

    2005-09-01

    A prototype 2-Tesla superconducting transmission line magnet for future hadron colliders was designed, built and tested at Fermilab. The 1.5 m long, combined-function gradient-dipole magnet has a vertical pole aperture of 20 mm. To measure the magnetic field quality in such a small magnet aperture, a specialized rotating coil of 15.2 mm diameter, 0.69 m long was fabricated. Using this probe, a program of magnetic field quality measurements was successfully performed. Results of the measurements are presented and discussed.

  13. Field Measurement for Superconducting Magnets of ADS Injector I

    CERN Document Server

    Yang, Xiangchen

    2013-01-01

    The superconducting solenoid magnet prototype for ADS injection-I had been fabricated in Beijing Qihuan Mechanical and Electric Engineer Company and tested in Haerbin Institute of Technology (HIT) in Nov, 2012. Batch magnet production was processed after some major revision from the magnet prototype, they include: removing off the perm-alloy shield, extending the iron yoke, using thin superconducting cable, etc. The first one of the batch magnets was tested in the vertical Dewar in HIT in Sept. 2013. Field measurement was carried out at the same time by the measurement platform that seated on the top of the vertical Dewar. This paper will present the field measurement system design, measurement results and discussion on the residual field from the persistent current effect.

  14. Auditory evoked field measurement using magneto-impedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K., E-mail: o-kabou@echo.nuee.nagoya-u.ac.jp; Tajima, S.; Song, D.; Uchiyama, T. [Graduate School of Engineering, Nagoya University, Nagoya (Japan); Hamada, N.; Cai, C. [Aichi Steel Corporation, Tokai (Japan)

    2015-05-07

    The magnetic field of the human brain is extremely weak, and it is mostly measured and monitored in the magnetoencephalography method using superconducting quantum interference devices. In this study, in order to measure the weak magnetic field of the brain, we constructed a Magneto-Impedance sensor (MI sensor) system that can cancel out the background noise without any magnetic shield. Based on our previous studies of brain wave measurements, we used two MI sensors in this system for monitoring both cerebral hemispheres. In this study, we recorded and compared the auditory evoked field signals of the subject, including the N100 (or N1) and the P300 (or P3) brain waves. The results suggest that the MI sensor can be applied to brain activity measurement.

  15. Adaptive framework for uncertainty analysis in electromagnetic field measurements.

    Science.gov (United States)

    Prieto, Javier; Alonso, Alonso A; de la Rosa, Ramón; Carrera, Albano

    2015-04-01

    Misinterpretation of uncertainty in the measurement of the electromagnetic field (EMF) strength may lead to an underestimation of exposure risk or an overestimation of required measurements. The Guide to the Expression of Uncertainty in Measurement (GUM) has internationally been adopted as a de facto standard for uncertainty assessment. However, analyses under such an approach commonly assume unrealistic static models or neglect relevant prior information, resulting in non-robust uncertainties. This study proposes a principled and systematic framework for uncertainty analysis that fuses information from current measurements and prior knowledge. Such a framework dynamically adapts to data by exploiting a likelihood function based on kernel mixtures and incorporates flexible choices of prior information by applying importance sampling. The validity of the proposed techniques is assessed from measurements performed with a broadband radiation meter and an isotropic field probe. The developed framework significantly outperforms GUM approach, achieving a reduction of 28% in measurement uncertainty.

  16. Measuring interstellar magnetic fields by radio synchrotron emission

    CERN Document Server

    Beck, Rainer

    2009-01-01

    Radio synchrotron emission, its polarization and its Faraday rotation are powerful tools to study the strength and structure of interstellar magnetic fields. The total intensity traces the strength and distribution of total magnetic fields. Total fields in gas-rich spiral arms and bars of nearby galaxies have strengths of 20-30 $\\mu$Gauss, due to the amplification of turbulent fields, and are dynamically important. In the Milky Way, the total field strength is about 6 $\\mu$G near the Sun and several 100 $\\mu$G in filaments near the Galactic Center. -- The polarized intensity measures ordered fields with a preferred orientation, which can be regular or anisotropic fields. Ordered fields with spiral structure exist in grand-design, barred, flocculent and even in irregular galaxies. The strongest ordered fields are found in interarm regions, sometimes forming "magnetic spiral arms" between the optical arms. Halo fields are X-shaped, probably due to outflows. -- The Faraday rotation of the polarization vectors tr...

  17. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    Science.gov (United States)

    Jones, T. G.; Hinshelwood, D. D.; Neri, J. M.; Ottinger, P. F.; Noonan, W. A.

    1997-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 1--100 mTorr gas, produce Δ λZ larger than Δ λ. These Δ λZ will be resolved using an etalon as a narrowband, high-throughput optical filter. Available results from benchtop experiments using calibrated B-fields for both the small- and large-field techniques, and progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will be presented. Work supported by DOE through Sandia National Laboratories. ^ National Research Council Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., Rev. Sci. Instrum. 68, 1032 (1997).

  18. Magnetic-Field-Response Measurement-Acquisition System

    Science.gov (United States)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  19. Alpha-Glucosidase Enzyme Biosensor for the Electrochemical Measurement of Antidiabetic Potential of Medicinal Plants

    Science.gov (United States)

    Mohiuddin, M.; Arbain, D.; Islam, A. K. M. Shafiqul; Ahmad, M. S.; Ahmad, M. N.

    2016-02-01

    A biosensor for measuring the antidiabetic potential of medicinal plants was developed by covalent immobilization of α-glucosidase (AG) enzyme onto amine-functionalized multi-walled carbon nanotubes (MWCNTs-NH2). The immobilized enzyme was entrapped in freeze-thawed polyvinyl alcohol (PVA) together with p-nitrophenyl-α- d-glucopyranoside (PNPG) on the screen-printed carbon electrode at low pH to prevent the premature reaction between PNPG and AG enzyme. The enzymatic reaction within the biosensor is inhibited by bioactive compounds in the medicinal plant extracts. The capability of medicinal plants to inhibit the AG enzyme on the electrode correlates to the potential of the medicinal plants to inhibit the production of glucose from the carbohydrate in the human body. Thus, the inhibition indicates the antidiabetic potential of the medicinal plants. The performance of the biosensor was evaluated to measure the antidiabetic potential of three medicinal plants such as Tebengau ( Ehretis laevis), Cemumar ( Micromelum pubescens), and Kedondong ( Spondias dulcis) and acarbose (commercial antidiabetic drug) via cyclic voltammetry, amperometry, and spectrophotometry. The cyclic voltammetry (CV) response for the inhibition of the AG enzyme activity by Tebengau plant extracts showed a linear relation in the range from 0.423-8.29 μA, and the inhibition detection limit was 0.253 μA. The biosensor exhibited good sensitivity (0.422 μA/mg Tebengau plant extracts) and rapid response (22 s). The biosensor retains approximately 82.16 % of its initial activity even after 30 days of storage at 4 °C.

  20. Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zistler, M.; Wachter, P.; Gores, H.J. [Institut fuer Physikalische und Theoretische Chemie der Universitaet Regensburg, Regensburg (Germany); Wasserscheid, P.; Gerhard, D. [Institut fuer Chemische Reaktionstechnik, Friedrich-Alexander-Universitaet, Erlangen-Nuernberg (Germany); Hinsch, A. [Fraunhofer Institute for Solar Energy Systems ISE, Freiburg (Germany). Department of Materials Research and Applied Optics; Sastrawan, R. [Freiburg Materials Research Center, Freiburg (Germany)

    2006-10-05

    Results of diffusion coefficient measurements of triiodide in a mixture of two ionic liquids (1-methyl-3-propylimidazolium iodide and 1-butyl-3-methylimidazolium tetrafluoroborate) at 25{sup o}C are described in this paper. Four electrochemical methods for measuring diffusion coefficients of triiodide were evaluated for their reliability and performance, including impedance spectroscopy and polarization measurements at thin layer cells as well as cyclic voltammetry and chronoamperometry at microelectrodes of different radii. Viscosities of the blends were measured to investigate the transport behaviour of triiodide ions used in Gratzel-type dye-sensitized solar cells. (author)

  1. Verification of Electromagnetic Field Measurements via Inter-laboratory Comparison Measurements

    OpenAIRE

    Mann, M.; H. Brüggemeyer; Weiß, P.

    2005-01-01

    An inter-laboratory comparison of field strength measurements was conducted in order to verify the comparability of high-frequency electromagnetic field measurements. For this purpose, 17 participating teams hosted by the working group "procedures of exposure determination" of the LAI (Länderausschuss für Immissionsschutz, state committee on immission control) determined the field strength at given stations around a hospital situation. At those stations very diffe...

  2. Spherical near-field antenna measurements — The most accurate antenna measurement technique

    DEFF Research Database (Denmark)

    Breinbjerg, Olav

    2016-01-01

    The spherical near-field antenna measurement technique combines several advantages and generally constitutes the most accurate technique for experimental characterization of radiation from antennas. This paper/presentation discusses these advantages, briefly reviews the early history and present...... status, and addresses future challenges for spherical near-field antenna measurements; in particular, from the viewpoint of the DTU-ESA Spherical Near-Field Antenna Test Facility....

  3. PIV MEASUREMENTS FOR GAS FLOW UNDER GRADIENT MAGNETIC FIELDS

    Institute of Scientific and Technical Information of China (English)

    RUAN Xiaodong; WU Feng; F.YAMAMOTO

    2004-01-01

    Particle Image Velocimetry (PIV) techniques were developed to measure the convective N2-air flow under gradient magnetic fields. The velocity fields were calculated by the Minimum Quadratic Difference (MQD) algorithm and spurious vectors were eliminated by Delaunay Tessellation.The N2-air flow was measured as the magnetic flux density varying from 0 ~ 1.5 T. A strengthened vortex flow of air was observed under the condition that the magnetic field was applied, and the velocity of N2 jet rose with the increase of the magnetic density. The experimental results show that the magnetic force will induce a vortex flow and cause a convection flow of the air mixture when both gradients of the O2 concentration and the magnetic field intensity exist.

  4. Measurement of field-free molecular alignment by balanced weak field polarization technique

    Directory of Open Access Journals (Sweden)

    Peng Peng

    2015-12-01

    Full Text Available We demonstrate the measurement of field-free molecular alignment of air can be realized by combining the weak field polarization technique (WFPT with a balanced detection system. The measured signal is proportional to the alignment parameter. Periodic revival structures of the transient alignment and permanent alignment between revivals can be detected clearly by a single measurement with high sensitivity. Fourier transform spectrum of the measured signal agrees well with the calculation result and provides information of the populations of different J states in the rotational wave packet.

  5. Magnetic field, closed orbit, and energy measurement in the Bevatron

    Energy Technology Data Exchange (ETDEWEB)

    Crebbin, K.C.

    1981-11-01

    This report provides the information necessary for a better evaluation of particle energy in the Bevatron. Previously, the nominal magnetic field value and radius were used to calculate the value for the kinetic energy of the particle. This value was good to a few percent. Today, more and more experimenters would like to know the energy to a more precise value. To this end, corrections to the measured magnetic field values and the radial closed orbit are provided.

  6. Fifth generation lithospheric magnetic field model from CHAMP satellite measurements

    OpenAIRE

    Maus, S.; Hermann Lühr; Martin Rother; Hemant, K.; Balasis, G.; Patricia Ritter; Claudia Stolle

    2007-01-01

    Six years of low-orbit CHAMP satellite magnetic measurements have provided an exceptionally high-quality data resource for lithospheric magnetic field modeling and interpretation. Here we describe the fifth-generation satellite-only magnetic field model MF5. The model extends to spherical harmonic degree 100. As a result of careful data selection, extensive corrections, filtering, and line leveling, the model has low noise levels, even if evaluated at the Earth's surface. The model is particu...

  7. submitter Generalized Harmonic Analysis of Computed and Measured Magnetic Fields

    CERN Document Server

    Auchmann, B; Petrone, C; Russenschuck, S

    2016-01-01

    In this paper, we present a generalized approach for the harmonic analysis of the magnetic field in accelerator magnets. This analysis is based on the covariant components of the computed or measured magnetic flux density. The multipole coefficients obtained in this way can be used for magnet optimization and field reconstruction in the interior of circular and elliptical boundaries in the bore of straight magnets.

  8. Field Measurements of Black Carbon Yields from Gas Flaring.

    Science.gov (United States)

    Conrad, Bradley M; Johnson, Matthew R

    2017-02-07

    Black carbon (BC) emissions from gas flaring in the oil and gas industry are postulated to have critical impacts on climate and public health, but actual emission rates remain poorly characterized. This paper presents in situ field measurements of BC emission rates and flare gas volume-specific BC yields for a diverse range of flares. Measurements were performed during a series of field campaigns in Mexico and Ecuador using the sky-LOSA optical measurement technique, in concert with comprehensive Monte Carlo-based uncertainty analyses. Parallel on-site measurements of flare gas flow rate and composition were successfully performed at a subset of locations enabling direct measurements of fuel-specific BC yields from flares under field conditions. Quantified BC emission rates from individual flares spanned more than 4 orders of magnitude (up to 53.7 g/s). In addition, emissions during one notable ∼24-h flaring event (during which the plume transmissivity dropped to zero) would have been even larger than this maximum rate, which was measured as this event was ending. This highlights the likely importance of superemitters to global emission inventories. Flare gas volume-specific BC yields were shown to be strongly correlated with flare gas heating value. A newly derived correlation fitting current field data and previous lab data suggests that, in the context of recent studies investigating transport of flare-generated BC in the Arctic and globally, impacts of flaring in the energy industry may in fact be underestimated.

  9. Using optical soliton stability for magnetic field measurement

    Science.gov (United States)

    Şchiopu, IonuÅ£ Romeo; ǎgulinescu, Andrei, Dr; Marinescu, Andrei

    2015-02-01

    In this paper we propose a novel optical method for measuring the circular magnetic field. In practice, many situations may appear in which there are difficulties in measuring the magnetic field, as inside coils, motors etc., where the magnetic field lines are circular or elliptical. The proposed method, applied for measuring the current on high voltage lines, strongly benefits from the advantages that it offers as compared to classical solutions based on the inductive principle. Some of the advantages of optoelectronic and optic measurement methods have a real importance. These advantages consist in: avoiding the use of energy intensive materials (Cu, Fe etc.), reducing the weight of the measuring system, reducing at the minimum the fire danger due to the use of paper-oil insulation in high voltage devices etc. The novelty of our proposed method consists in using the electromagnetic radiation in ultrashort pulses, having a relatively large frequency band and a much improved resistance to external perturbations, for measuring the circular magnetic field generated from the current of high voltage lines, inside power transformers or high power motors.

  10. Magnetopause Reconnection Impact Parameters from Multiple Spacecraft Magnetic Field Measurements

    Science.gov (United States)

    Wendel, Deirdre E.; Reiff, Patricia H.

    2009-01-01

    We present a novel technique that exploits multiple spacecraft data to determine the impact parameters of the most general form of magnetic reconnection at the magnetopause. The method consists of a superposed epoch of multiple spacecraft magnetometer measurements that yields the instantaneous magnetic spatial gradients near a magnetopause reconnection site. The gradients establish the instantaneous positions of the spacecraft relative to the reconnection site. The analysis is well suited to evaluating the spatial scales of singular field line reconnection, which is characterized by a two-dimensional x-type topology adjacent and perpendicular to a reconnecting singular field line. Application of the method to Cluster data known to lie in the vicinity of a northward IMF reconnection site establishes a field topology consistent with singular field line reconnection and a normal magnetic field component of 20 nT. The corresponding current structure consists of a 130 km sheet possibly embedding a thinner. bifurcated sheet.

  11. Full-field measurements and identification in solid mechanics

    CERN Document Server

    Grediac, Michel

    2008-01-01

    This timely book presents cutting-edge developments by experts in the field on the rapidly developing and scientifically challenging area of full-field measurement techniques used in solid mechanics - including photoelasticity, grid methods, deflectometry, holography, speckle interferometry and digital image correlation. The evaluation of strains and the use of the measurements in subsequent parameter identification techniques to determine material properties are also presented. Since parametric identification techniques require a close coupling of theoretical models and experimental measurements, the book focuses on specific modeling approaches that include finite element model updating, the equilibrium gap method, constitutive equation gap method, virtual field method and reciprocity gap method. In the latter part of the book, the authors discuss two particular applications of selected methods that are of special interest to many investigators: the analysis of localized phenomenon and connections between mi...

  12. Remote optical sensor system for E-field measurements

    Science.gov (United States)

    Heinzelmann, Robert; Stoehr, Andreas; Alder, Thomas; Kalinowski, D.; Schmidt, Manuel; Gross, Matthias; Jaeger, Dieter

    1998-12-01

    The concept of a remote optical sensor system for frequency selective electric field measurements will be presented. The system will be applicable to field measurement problems up to frequencies in the microwave regime. Additionally, it will provide minimum interference with the measured field, due to the optical fiber coupled sensor head. The electrooptic key components within the head of this sensor system are an array of photovoltaic cells and an electroabsorption waveguide modulator. Based on experimental results these components will be discussed and evaluated for the application within the sensor system. Furthermore, a novel fiber modulator coupling technique employing the monolithic integration of the device with InP V-grooves will be presented.

  13. Pulsed neutron fields measurements around a synchrotron storage ring

    Science.gov (United States)

    Caresana, Marco; Ballerini, Marcello; Ulfbeck, David Garf; Hertel, Niels; Manessi, Giacomo Paolo; Søgaard, Carsten

    2017-09-01

    A measurement campaign was performed for characterizing the neutron ambient dose equivalent, H*(10), in selected positions at ISA, Aarhus, Denmark, around the ASTRID and ASTRID2 storage rings. The neutron stray radiation field is characterized here by very intense radiation bursts with a low repetition rate, which result in a comparatively low average H*(10) rate. As a consequence, devices specifically conceived for operating in pulsed neutron fields must be employed for efficiently measuring in this radiation environment, in order to avoid severe underestimations of the H*(10) rate. The measurements were performed with the ELSE NUCLEAR LUPIN 5401 BF3-NP rem counter, a detector characterized by an innovative working principle that is not affected by dead time losses. This allowed characterizing both the H*(10) and the time structure of the radiation field in the pre-selected positions.

  14. Characterization of the activity of ultrasound emitted in a perpendicular liquid flow using Particle Image Velocimetry (PIV) and electrochemical mass transfer measurements.

    Science.gov (United States)

    Barthès, Magali; Mazue, Gerald; Bonnet, Dimitri; Viennet, Remy; Hihn, Jean-Yves; Bailly, Yannick

    2015-05-01

    The present work is dedicated to the study of the interactions between a liquid circulation and a perpendicular acoustic wave propagation. A specific experimental setup was designed to study one transducer operating at 20 kHz, with the help of electrochemical mass transfer measurements combined with Particle Image Velocimetry (PIV) determination. Electrodes were located on the wall opposite to the acoustic emission. Experiments were performed for various Reynolds numbers: from 0 to 21700 (different liquid flow rates and viscosities). Both PIV and electrochemical measurements methods were found to be relevant, and had delivered complementary information. Even if PIV showed that the plume due to streaming was highly deflected by the additional flow, electrochemical measurements showed that there was still an activity, higher than in silent conditions, on the wall facing the transducer. Thus the ultrasound contribution remained noticeable on the surface opposite to the transducer even for a disturbed hydrodynamic environment due to the presence of a liquid circulation perpendicular to the wave propagation.

  15. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes.

    Science.gov (United States)

    Holoubek, Ales; Vecer, Jaroslav; Sigler, Karel

    2007-03-01

    Proteoliposomes carrying reconstituted yeast plasma membrane H(+)-ATPase in their lipid membrane or plasma membrane vesicles are model systems convenient for studying basic electrochemical processes involved in formation of the proton electrochemical gradient (Deltamicro(H) (+)) across the microbial or plant cell membrane. Deltapsi- and pH-sensitive fluorescent probes were used to monitor the gradients formed between inner and outer volume of the reconstituted vesicles. The Deltapsi-sensitive fluorescent ratiometric probe oxonol VI is suitable for quantitative measurements of inside-positive Deltapsi generated by the reconstituted H(+)-ATPase. Its Deltapsi response can be calibrated by the K(+)/valinomycin method and ratiometric mode of fluorescence measurements reduces undesirable artefacts. In situ pH-sensitive fluorescent probe pyranine was used for quantitative measurements of pH inside the proteoliposomes. Calibration of pH-sensitive fluorescence response of pyranine entrapped inside proteoliposomes was performed with several ionophores combined in order to deplete the gradients passively formed across the membrane. Presented model system offers a suitable tool for simultaneous monitoring of both components of the proton electrochemical gradient, Deltapsi and DeltapH. This approach should help in further understanding how their formation is interconnected on biomembranes and even how transport of other ions is combined to it.

  16. Pulsed beams as field probes for precision measurement

    OpenAIRE

    Hudson, J. J.; Ashworth, H. T.; Kara, D. M.; Tarbutt, M. R.; Sauer, B.E.; Hinds, E. A.

    2007-01-01

    We describe a technique for mapping the spatial variation of static electric, static magnetic, and rf magnetic fields using a pulsed atomic or molecular beam. The method is demonstrated using a beam designed to measure the electric dipole moment of the electron. We present maps of the interaction region, showing sensitivity to (i) electric field variation of 1.5 V/cm at 3.3 kV/cm with a spatial resolution of 15 mm; (ii) magnetic field variation of 5 nT with 25 mm resolution; (iii) radio-frequ...

  17. Estimating of pulsed electric fields using optical measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Timothy McGuire; Chantler, Gary.

    2013-09-01

    We performed optical electric field measurements ion nanosecond time scales using the electrooptic crystal beta barium borate (BBO). Tests were based on a preliminary bench top design intended to be a proofofprinciple stepping stone towards a modulardesign optical Efield diagnostic that has no metal in the interrogated environment. The long term goal is to field a modular version of the diagnostic in experiments on large scale xray source facilities, or similarly harsh environments.

  18. Out-of-field dose measurements in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kaderka, Robert

    2011-07-13

    This thesis describes the results from measurements of the out-of-field dose in radiotherapy. The dose outside the treatment volume has been determined in a water phantom and an anthropomorphic phantom. Measurements were performed with linac photons, passively delivered protons, scanned protons, passively delivered carbon ions as well as scanned carbon ions. It was found that the use of charged particles for radiotherapy reduces the out-of-field dose by up to three orders of magnitude compared to conventional radiotherapy with photons.

  19. Direct field measurement of the dynamic amplification in a bridge

    Science.gov (United States)

    Carey, Ciarán; OBrien, Eugene J.; Malekjafarian, Abdollah; Lydon, Myra; Taylor, Su

    2017-02-01

    In this paper, the level of dynamics, as described by the Assessment Dynamic Ratio (ADR), is measured directly through a field test on a bridge in the United Kingdom. The bridge was instrumented using fiber optic strain sensors and piezo-polymer weigh-in-motion sensors were installed in the pavement on the approach road. Field measurements of static and static-plus-dynamic strains were taken over 45 days. The results show that, while dynamic amplification is large for many loading events, these tend not to be the critical events. ADR, the allowance that should be made for dynamics in an assessment of safety, is small.

  20. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...

  1. A Diagnostic for Electric Field Measurements in the Near/Far-Field Regions of ICRF Antenna

    Science.gov (United States)

    Martin, E. H.; Caughman, J. B. O.; Isler, R. C.

    2015-11-01

    The physics mechanisms of wave heating and current drive processes in the bulk hot plasma are generally well identified. However, details of the wave-plasma interaction with a material surface in the cold plasma edge are still not fully understood. The driver behind this interaction is the time-periodic wave electric field and is referred to as the near/far-field depending on the location with respect to the antenna. Various models have been formulated to capture the near/far-field physics but have not been tested experimentally. Thus, a diagnostic capable of measuring the electric field with temporal and 3D-spatial resolution is critical for confidence in the codes used to design next generation ICRF antennas. This research is focused on the development of a laser based spectroscopic technique, Doppler-free saturation spectroscopy (DFSS), and its implementation to study near/far-field physics. Using DFSS the spectra line profile of various electronic transitions are measured and fit to a quantum mechanical model incorporating both magnetic and dynamic electric field operators. The electric field direction and magnitude are extracted from the fit. The experimental setup and planned experiments will be discussed. Additionally, initial measurements of fitted Hδ spectrum under the influence of known electric and magnetic fields will be presented.

  2. Analyzing Extragalactic Magnetic Fields Using Faraday Rotation Measure Synthesis

    Science.gov (United States)

    Pare, Dylan; Wang, Q. Daniel; Kamieneski, Patrick; Sullivan, Kendall

    2017-01-01

    Extragalactic magnetic fields are a poorly understood element of galaxies that are likely to play an important role in galaxy formation and evolution. Until recently, however, there was no way to observe these fields to a high level of detail, making it difficult to map the spatial distribution of these fields to any high degree of accuracy. Fortunately, a new technique known as Faraday Rotation Measure Synthesis allows for a more precise analysis of galactic magnetism. This technique uses the observed Faraday rotation of polarized emission from background sources to map the magnetic field of a foreground galaxy. This Faraday rotation occurs when the polarized emission encounters ionized, magnetized gas within the galaxy, causing the emission to be rotated by an amount proportional the magnetic field subjected to the ionized gas. Working as part of CHANG-ES (Continuum HAlos in Nearby Galaxies - an EVLA Survey), we have applied this technique in order to learn about the distribution of magnetic fields in the disks and halos of edge-on spiral galaxies. We will present maps of the galactic magnetic fields of CHANG-ES galaxies using this technique, indicating the potential of this technique in successfully mapping these distant fields.

  3. Micro analysis of fringe field formed inside LDA measuring volume

    Science.gov (United States)

    Ghosh, Abhijit; Nirala, A. K.

    2016-05-01

    In the present study we propose a technique for micro analysis of fringe field formed inside laser Doppler anemometry (LDA) measuring volume. Detailed knowledge of the fringe field obtained by this technique allows beam quality, alignment and fringe uniformity to be evaluated with greater precision and may be helpful for selection of an appropriate optical element for LDA system operation. A complete characterization of fringes formed at the measurement volume using conventional, as well as holographic optical elements, is presented. Results indicate the qualitative, as well as quantitative, improvement of fringes formed at the measurement volume by holographic optical elements. Hence, use of holographic optical elements in LDA systems may be advantageous for improving accuracy in the measurement.

  4. Full-field laser vibration measurement in NDT techniques

    Science.gov (United States)

    Yue, Kaiduan; Li, Zhongke; Yi, Yaxing; Zhang, Fei

    2008-12-01

    Research of Non Destructive Testing (NDT) methodology has developed rapidly in recent years[1][2]. But it is rarely used for small objects such as Micro-electronic Mechanics System. Due to the small size of the MEMS, the traditional method of contact measurement seriously affects the parameter of the object measured. So a high accuracy non-contact measurement is required for optimization of MEMS designs and improvement of its reliability[3][4]. With recent advances in photonics, electronics, and computer technology, a Non Destructive Testing (NDT) laser time average interferometry is proposed in the paper. Laser interferometry has the advantages of non-contact, high accuracy, full-field and fast speed, so it can be used to detect cracks in MEMS. A time average measurement method of digital speckle pattern interferometry is proposed to measure the vibration mode of the MEMS in the paper. According to the sudden change of amplitude of vibration mode, a crack can be measured. With the speckle average technology, high accuracy phase-shift, continuous phase scanning technology, combined with optical amplification technology, the resolution of the amplitude reaches 1nm, and the resolution of the crack reaches 5μm. The measurement system being full-field, the measuring speed of the measurement system can reach 512*512 points per one minute.

  5. Electrochemical Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang; Lin, Yuehe

    2008-07-20

    Sensitive and selective detection techniques are of crucial importance for capillary electrophoresis (CE), microfluidic chips, and other microfluidic systems. Electrochemical detectors have attracted considerable interest for microfluidic systems with features that include high sensitivity, inherent miniaturization of both the detection and control instrumentation, low cost and power demands, and high compatibility with microfabrication technology. The commonly used electrochemical detectors can be classified into three general modes: conductimetry, potentiometry, and amperometry.

  6. Planetary science. Low-altitude magnetic field measurements by MESSENGER reveal Mercury's ancient crustal field.

    Science.gov (United States)

    Johnson, Catherine L; Phillips, Roger J; Purucker, Michael E; Anderson, Brian J; Byrne, Paul K; Denevi, Brett W; Feinberg, Joshua M; Hauck, Steven A; Head, James W; Korth, Haje; James, Peter B; Mazarico, Erwan; Neumann, Gregory A; Philpott, Lydia C; Siegler, Matthew A; Tsyganenko, Nikolai A; Solomon, Sean C

    2015-05-22

    Magnetized rocks can record the history of the magnetic field of a planet, a key constraint for understanding its evolution. From orbital vector magnetic field measurements of Mercury taken by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft at altitudes below 150 kilometers, we have detected remanent magnetization in Mercury's crust. We infer a lower bound on the average age of magnetization of 3.7 to 3.9 billion years. Our findings indicate that a global magnetic field driven by dynamo processes in the fluid outer core operated early in Mercury's history. Ancient field strengths that range from those similar to Mercury's present dipole field to Earth-like values are consistent with the magnetic field observations and with the low iron content of Mercury's crust inferred from MESSENGER elemental composition data. Copyright © 2015, American Association for the Advancement of Science.

  7. Work function measurements by the field emission retarding potential method.

    Science.gov (United States)

    Strayer, R. W.; Mackie, W.; Swanson, L. W.

    1973-01-01

    Description of the theoretical foundation of the field electron retarding potential method, and review of its experimental application to the measurement of single crystal face work functions. The results obtained from several substrates are discussed. An interesting and useful fallout from the experimental approach described is the ability to accurately measure the elastic and inelastic reflection coefficient for impinging electrons to near zero-volt energy.

  8. Measurement of hadronic shower punchthrough in magnetic field

    CERN Document Server

    Albajar, C; Arefev, A; Bacci, Cesare; Bencze, G L; Bergman, R; Bizzeti, A; Brouwer, C; Cardarelli, R; Casoli, P; Centro, Sandro; Ceradini, F; Choumilov, E; Chrisman, D; Ciapetti, G; Civinini, C; Cline, D; D'Alessandro, R; Della Negra, Michel; Dénes, E; Di Ciaccio, Anna; Dominik, Wojciech; Faissner, Helmut; Ferrando, A; Fouz-Iglesias, M C; Gorn, W; Górski, M; Hervé, A; Iglesias, A; Juntunen, M; Karimäki, V; Kinnunen, Ritva; Kluge, A; Kolotaev, Yu; Konecki, M; König, A C; Kólikowski, J; Lacava, F; Layter, J G; Le Coultre, P; Lyndon, C; Malinin, A; Margutti, G; Martinelli, R; Martínez-Laso, L; McNeil, R R; Meneguzzo, Anna Teresa; Meschini, M; Moers, T; Mohammadi-Baarmand, M; Nisati, A; Orestano, D; Österberg, K; Otwinowski, S; Petrolo, E; Pimiä, M; Pozhidaev, V; Pols, C L A; Pontecorvo, L; Porth, Paul; Radermacher, E; Razen, B; Reithler, H; Ribeiro, R; Rojkov, A; Sanjari, A H; Santonico, R; Sartori, P; Shank, J T; Schwarthoff, H; Seez, Christopher J; Shen, B C; Szeptycka, M; Szoncsó, F; Teykal, H F; Tolsma, H; Tuchscherer, H; Tuominiemi, Jorma; Tuuva, T; van der Graaf, H; Veneziano, Stefano; Verzocchi, M; Vesztergombi, G; Wagner, H; Walzel, G; Wijnen, T A M; Wilson, G W; Wrochna, G; Wulz, Claudia Elisabeth; Zanello, L; Zotto, P L

    1996-01-01

    The total punchthrough probability of showers produced by negative pions, positive pions, positive kaons and protons, has been measured as a function of depth in an absorber in a magnetic field ranging from 0 to 3 Tesla. The incident particle momentum varied from 10 to 300 GeV/c. The lateral shower development and particle multiplicity at several absorber depths have been determined. The measurements are compared with the predictions of Monte Carlo simulation programs.

  9. MEASUREMENTS OF STELLAR MAGNETIC FIELDS USING AUTOCORRELATION OF SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Borra, E. F.; Deschatelets, D. [Département de physique, de génie physique et d’optique. Université Laval (Canada)

    2015-11-15

    We present a novel technique that uses the autocorrelation of the spectrum of a star to measure the line broadening caused by the modulus of its average surface magnetic field. The advantage of the autocorrelation comes from the fact that it can detect very small spectral line broadening effects because it averages over many spectral lines and therefore gives an average with a very high signal-to-noise ratio. We validate the technique with the spectra of known magnetic stars and obtain autocorrelation curves that are in full agreement with published magnetic curves obtained with Zeeman splitting. The autocorrelation also gives less noisy curves so that it can be used to obtain very accurate curves. We degrade the resolution of the spectra of these magnetic stars to lower spectral resolutions where the Zeeman splitting is undetectable. At these resolutions, the autocorrelation still gives good quality curves, thereby showing that it can be used to measure magnetic fields in spectra where the Zeeman splitting is significantly smaller than the width of the spectral line. This would therefore allow observing magnetic fields in very faint Ap stars with low-resolution spectrographs, thereby greatly increasing the number of known magnetic stars. It also demonstrates that the autocorrelation can measure magnetic fields in rapidly rotating stars as well as weak magnetic fields that give a Zeeman splitting smaller than the intrinsic width of the spectral lines. Finally, it shows that the autocorrelation can be used to find unknown magnetic stars in low-resolution spectroscopic surveys.

  10. MESSENGER Measurements of Mercury's Magnetic Field during the First Flyby

    Science.gov (United States)

    Slavin, James A.; Boardsen, S. A.; Acuna, M. H.; Anderson, B. J.; Johnson, C. L.; Korth, H.; Krimigis, S. M.; McNutt, R. L., Jr.; Purucker, M. E.; Solomon, S. C.

    2008-01-01

    On 14 January 2008 the MESSENGER spacecraft will encounter Mercury for the first time. Depending upon the solar wind conditions, this initial flyby will return Magnetometer measurements of Mercury's magnetic field over a time interval lasting between - 30 md 60 min. Closest approach for MESSENGER is targeted for an altitude of 200 km as compared with the 707 krn and 327 km attained by Mariner 10 on 29 March 1974 and 16 March 1975, respectively. Furthermore, the differences in the MESSENGER and Mariner 10 encounter trajectories, with respect both to magnetospheric and body-fixed coordinates are highly complementary and expected to lead to significant improvements in our knowledge of Mercury's magnetic field. We present an overview of the MESSENGER magnetic field observations, an initial subtraction of the magnetic fields attributable to magnetospheric current systems from the total measured magnetic field, and an improved model of Mercury's intrinsic magnetic field. We also discuss the expected advances afforded by the two additional MESSENGER flybys, which occur in October 2008 and September 2009, as well as the orbital phase that will begin in March 201 1.

  11. A System for Acoustic Field Measurement Employing Cartesian Robot

    Directory of Open Access Journals (Sweden)

    Szczodrak Maciej

    2016-09-01

    Full Text Available A system setup for measurements of acoustic field, together with the results of 3D visualisations of acoustic energy flow are presented in the paper. Spatial sampling of the field is performed by a Cartesian robot. Automatization of the measurement process is achieved with the use of a specialized control system. The method is based on measuring the sound pressure (scalar and particle velocity(vector quantities. The aim of the system is to collect data with a high precision and repeatability. The system is employed for measurements of acoustic energy flow in the proximity of an artificial head in an anechoic chamber. In the measurement setup an algorithm for generation of the probe movement path is included. The algorithm finds the optimum path of the robot movement, taking into account a given 3D object shape present in the measurement space. The results are presented for two cases, first without any obstacle and the other - with an artificial head in the sound field.

  12. Microspacecraft and Earth observation: Electrical Field (ELF) measurement project

    Science.gov (United States)

    1990-01-01

    There is a need for an inexpensive, extensive, long-lasting global electric field measurement system (ELF). The primary performance driver of this mission is the need to measure the attitude of each spacecraft in the Earth's electric field very accurately. In addition, it is necessary to know the electric charge generated by the satellite as it crosses the magnetic field lines (E equals V times B). In order to achieve the desired global coverage, a constellation of about 50 satellites in at least 18 different orbits will be used. To reduce the cost of each satellite, off-the-shelf, proven technology will be used whenever possible. Researchers have set a limit of $500,000 per satellite. Researchers expect the program cost, including the deployment of the entire constellation, to be less than $100 million. The minimum projected mission life is five years.

  13. Hybrid spherical particle field measurement based on interference technology

    Science.gov (United States)

    Sun, Jinlu; Zhang, Hongxia; Li, Jiao; Zhou, Ye; Jia, Dagong; Liu, Tiegen

    2017-03-01

    Interferometric particle imaging is widely used in particle size measurement. Conventional algorithms, which focus on single size particle fields, have difficulties in extracting each interference fringe in a hybrid spherical particle field due to the noise. To solve this problem, an iterative mean filter (IMF) algorithm is proposed. Instead of the specific mean filter template coefficient, the noise is reduced by iterating the calculation results under different template coefficients. The average value of the calculation results excluding the gross error is output as the final result. The effect of different template coefficients are simulated, furthermore, the value range of template coefficients has been analyzed. The interferogram of the hybrid spherical particle field from 21.3 µm to 57.9 µm is processed by the conventional algorithms with specific template coefficients of 2, 8, 12 and the IMF algorithm. The corresponding measurement errors are 17.22%, 10.69%, 9.04% and 5.11%. The experimental results show that the IMF algorithm would reduce measurement error, and could be potentially applied in particle field measurement.

  14. A.c. magnetic-field measurements using the fluxgate

    DEFF Research Database (Denmark)

    Ripka, Pavel; Primdahl, Fritz; Nielsen, Otto V

    1995-01-01

    Fluxgate sensors are mostly used in closed-loop d.c. magnetometer systems; they can also measure alternating fields up to severalkilohertz, either in open-loop mode or from an error signal in the slow-feedback loop as in the Thunderstorm rocket magnetometer, which has 0.1 nT resolution up to 3 k...

  15. Wideband scalable probe for Spherical Near-Field Antenna measurements

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The paper presents a design of an open-boundary quad-ridged horn to be used as a wideband scalable dual-linearly polarized probe for spherical near-field antenna measurements. With a new higher-order probe correction technique developed at the Technical University of Denmark, the probe will enabl...

  16. Simple System to Measure the Earth's Magnetic Field

    Science.gov (United States)

    Akoglu, R.; Halilsoy, M.; Mazharimousavi, S. Habib

    2010-01-01

    Our aim in this proposal is to use Faraday's law of induction as a simple lecture demonstration to measure the Earths magnetic field (B). This will also enable the students to learn about how electric power is generated from rotational motion. Obviously the idea is not original, yet it may be attractive in the sense that no sophisticated devices…

  17. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse and the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit area...

  18. 47 CFR 73.314 - Field strength measurements.

    Science.gov (United States)

    2010-10-01

    ..., or a graph on which the distribution of measured field strength values is plotted. (vi) A list of... and vertical plane patterns of the transmitting antenna should be submitted. (iv) A list of calibrated... location, after equipment calibration and elevation of the antenna, a check is made to determine...

  19. Functional Measurement in the Field of Empirical Bioethics

    Science.gov (United States)

    Mullet, Etienne; Sorum, Paul C.; Teysseire, Nathalie; Nann, Stephanie; Martinez, Guadalupe Elizabeth Morales; Ahmed, Ramadan; Kamble, Shanmukh; Olivari, Cecilia; Sastre, Maria Teresa Munoz

    2012-01-01

    We present, in a synthetic way, some of the main findings from five studies that were conducted in the field of empirical bioethics, using the Functional Measurement framework. These studies were about (a) the rationing of rare treatments, (b) adolescents' abortions, (c) end-of-life decision-making regarding damaged neonates, (d) end-of-life…

  20. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...

  1. Spherical wave rotation in spherical near-field antenna measurements

    DEFF Research Database (Denmark)

    Wu, Jian; Larsen, Flemming Holm; Lemanczyk, J.

    1991-01-01

    The rotation of spherical waves in spherical near-field antenna measurement is discussed. Considering the many difficult but interesting features of the rotation coefficients, an efficient rotation scheme is derived. The main feature of the proposed scheme is to ignore the calculation of the very...

  2. Electric and magnetic field measurements. Annual report 80

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, R.H.; Kotter, F.R.; Misakian, M.; Ortiz, P.

    1981-02-01

    The NBS program is concerned with developing methods for evaluating and calibrating instrumentation for use in measuring the electric field and various ion-related electrical quantities in the vicinity of high-voltage direct current (HVDC) transmission lines and in apparatus designed to simulate the transmission line environment.

  3. Preliminary field measurement of cotton fiber micronaire by portable NIR

    Science.gov (United States)

    The decline of the U.S. textile industry has led to the dramatic increase in the export of U.S. cotton. Improved quality measurement systems are needed to successfully compete in the global marketplace. One key need is the development of new breeder/producer quality tools for field and at-line mea...

  4. In-situ measurements in Vesivehmaa air field - STUK team

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, M.; Honkamaa, T.; Niskala, P. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1997-12-31

    Nineteen in-situ gamma-ray spectrometric measurements were performed in Vesivehmaa air field on 17th August 1995. The results for {sup 137}Cs and natural radionuclides are in good agreement with the results from soil sampling and laboratory analyses. (au).

  5. Landslide hazard assessment and mitigation measures in Philippine geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Leynes, R.D.; Pioquinto, W.P.C.; Caranto, J.A. [PNOC Energy Development Corporation, Fort Bonifacio (Philippines)

    2005-04-01

    Simple, yet reliable, field criteria have been developed and are being used to qualitatively assess slope instability and slope failure potential in Philippine geothermal fields. Based on a hazard assessment classification of slopes along corridor facilities, sites for implementation of engineering measures are selected. Two case studies are presented. In Mindanao field, the ''very high-risk'' classification of an area resulted in the installation of pipe shelters, which subsequently shielded a section of a pipeline from landslides. Follow-up monitoring is also conducted using cheap, locally fabricated tools, such as surface extensometers. This is being done in Leyte field, where a landslide has threatened a transmission line tower. (author)

  6. Project Vanguard Magnetic-Field Instrumentation and Measurements

    Science.gov (United States)

    Heppner, J. P.; Storarik, J. D.; Shapiro, I. R.; Cain, J. C.

    1960-01-01

    The Vanguard III Satellite, 1959 Eta, placed in orbit on September 18, 1959, contained a proton precessional magnetometer for magnetic-field studies of exceptional accuracy. Throughout the 85 days of battery life, the instrumentation functioned according to plan. Measurements of the absolute total field were obtained in the meridian belts of Minitrack stations at altitudes 510 to 3750 kilometers and at latitudes +/- 33.4 degrees. Surface magnetic observatories were operated at eight of the Minitrack stations to furnish correlative information. This paper reviews briefly the instrumentation employed in these experiments, and the data collection and reduction procedures. Emphasis is given to results from a preliminary analysis. Specifically, this analysis bears on the accuracy of computed fields, the stability of the earth's field in space, the Capetown anomaly, and magnetic-storm effects.

  7. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    Science.gov (United States)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  8. LIDAR Wind Speed Measurements of Evolving Wind Fields

    Energy Technology Data Exchange (ETDEWEB)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  9. Selective label-free electrochemical impedance measurement of glycated haemoglobin on 3-aminophenylboronic acid-modified eggshell membranes

    DEFF Research Database (Denmark)

    Boonyasit, Yuwadee; Heiskanen, Arto; Chailapakul, Orawan

    2015-01-01

    We propose a novel alternative approach to long-term glycaemic monitoring using eggshell membranes (ESMs) as a new immobilising platform for the selective label-free electrochemical sensing of glycated haemoglobin (HbA1c), a vital clinical index of the glycaemic status in diabetic individuals. Du...

  10. Microscopic Faraday rotation measurement system using pulsed magnetic fields.

    Science.gov (United States)

    Egami, Shigeki; Watarai, Hitoshi

    2009-09-01

    Microscopic Faraday rotation measurement system using a pulsed magnetic field has been constructed, which can be applied to micron sized diamagnetic and paramagnetic materials. A pulsed magnetic coil could generate a maximum magnetic flux density of about 12 T. The performance of the microscopic Faraday rotation apparatus was demonstrated by the measurement of the Verdet constant V of a polystyrene particle, after the calibration of the pulsed magnetic flux density using a glass plate as a standard material. Also, the magneto-optical rotation dispersion of some diamagnetic substances have been measured and analyzed with V=alambda(-2)+b. The values of a and b were compared to their magnetic susceptibilities.

  11. Measuring cosmic magnetic fields by rotation measure-galaxy cross-correlations in cosmological simulations

    CERN Document Server

    Stasyszyn, F; Dolag, K; Beck, R; Donnert, J

    2010-01-01

    Using cosmological MHD simulations of the magnetic field in galaxy clusters and filaments we evaluate the possibility to infer the magnetic field strength in filaments by measuring cross-correlation functions between Faraday Rotation Measures (RM) and the galaxy density field. We also test the reliability of recent estimates considering the problem of data quality and Galactic foreground (GF) removal in current datasets. Besides the two self-consistent simulations of cosmological magnetic fields based on primordial seed fields and galactic outflows analyzed here, we also explore a larger range of models scaling up the resulting magnetic fields of one of the simulations. We find that, if an unnormalized estimator for the cross-correlation functions and a GF removal procedure is used, the detectability of the cosmological signal is only possible for future instruments (e.g. SKA and ASKAP). However, mapping of the observed RM signal to the underlying magnetization of the Universe (both in space and time) is an e...

  12. Assessing Counter-Terrorism field training with multiple behavioral measures.

    Science.gov (United States)

    Spiker, V Alan; Johnston, Joan H

    2013-09-01

    Development of behavioral pattern recognition and analysis skills is an essential element of Counter-Terrorism training, particularly in the field. Three classes of behavioral measures were collected in an assessment of skill acquisition during a US Joint Forces Command-sponsored course consisting of Combat Tracking and Combat Profiling segments. Measures included situational judgment tests, structured behavioral observation checklists, and qualitative assessments of the emergence of specific knowledge-skills-attitudes over the course of the training. The paper describes statistical evidence across the three types of measures that indicate that behavioral pattern recognition and analysis skills were successfully acquired by most students (a mix of Army and civilian law enforcement personnel) during the field training exercises. Implications for broader training of these critical skills are also discussed.

  13. Adhesion Force Measurements of Polymer Particles by Detachment Field Method

    Institute of Scientific and Technical Information of China (English)

    Masashi Nagayama; Nobuyasu Sakurai; Tatsuaki Wada; Manabu Takeuchi

    2004-01-01

    The adhesion force distributions of polymer particles to aluminum substrates were measured by the detachment field method. Polymer particles with conducting surface treatment were used for the measurements.Further the conventional detachment field method was modified to be applicable to the adhesion force measurements of a single particle. The adhesion force of the polymer particles increased with an increase in relative humidity. The surface roughness of the substrate influenced the adhesion forces of particles significantly. The influence of the CF4 plasma treatment of the polymer particles and thin layer coating of the substrate surface on the adhesion forces of the polymer particles was also studied, and factors affecting adhesion forces of polymer particles are discussed.

  14. Measurement of incident sound power using near field acoustic holography

    DEFF Research Database (Denmark)

    Jacobsen, Finn; Tiana Roig, Elisabet

    2009-01-01

    ; and it has always been regarded as impossible to measure the sound power that is incident on a wall directly. This paper examines a new method of determining this quantity from sound pressure measurements at positions on the wall using ‘statistically optimised near field acoustic holography’ (SONAH......The conventional method of measuring the insertion loss of a partition relies on an assumption of the sound field in the source room being diffuse and the classical relation between the spatial average of the mean square pressure in the source room and the incident sound power per unit area......). The purpose is to examine whether one should use a correction similar to the well-known ‘Waterhouse correction’ when the incident sound power is deduced from the sound pressure in the source room....

  15. New insights into chromospheric structures from vector magnetic field measurements

    Science.gov (United States)

    Lagg, A.

    During the last decade advances in instrumentation atomic physics and modeling have greatly improved the access to the chromospheric magnetic field vector High sensitivity polarimeters like the Tenerife Infrared Polarimeter TIP2 VTT or the Spectro-Polarimeter for Infrared and Optical Regions SPINOR HAO lead to reliable Zeeman measurements using the He I 10830 nm triplet Theoretical modeling of the Hanle and the Paschen Back effect helped to significantly improve the analysis of polarization measurements in this triplet allowing to directly visualize the magnetic structure of spicules polar prominences and active regions In this presentation I will summarize the results of chromospheric magnetic field measurements using this interesting triplet obtained in the last couple of years and discuss the great potential it has to further uncover the complex structure of the chromosphere

  16. Magnetic field measurements near stand-alone transformer stations.

    Science.gov (United States)

    Kandel, Shaiela; Hareuveny, Ronen; Yitzhak, Nir-Mordechay; Ruppin, Raphael

    2013-12-01

    Extremely low-frequency (ELF) magnetic field (MF) measurements around and above three stand-alone 22/0.4-kV transformer stations have been performed. The low-voltage (LV) cables between the transformer and the LV switchgear were found to be the major source of strong ELF MFs of limited spatial extent. The strong fields measured above the transformer stations support the assessment method, to be used in future epidemiological studies, of classifying apartments located right above the transformer stations as highly exposed to MFs. The results of the MF measurements above the ground around the transformer stations provide a basis for the assessment of the option of implementing precautionary procedures.

  17. A Comprehensive Method of Estimating Electric Fields from Vector Magnetic Field and Doppler Measurements

    CERN Document Server

    Kazachenko, Maria D; Welsch, Brian T

    2014-01-01

    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal (PTD) decomposition of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the "{\\bf P}TD-{\\bf D}oppler-{\\bf F}LCT {\\bf I}deal" (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the \\texttt{FISHPACK} software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (\\te...

  18. Measuring the Earth's gravity field with cold atom interferometers

    CERN Document Server

    Carraz, Olivier; Massotti, Luca; Haagmans, Roger; Silvestrin, Pierluigi

    2015-01-01

    The scope of the paper is to propose different concepts for future space gravity missions using Cold Atom Interferometers (CAI) for measuring the diagonal elements of the gravity gradient tensor, the spacecraft angular velocity and the spacecraft acceleration. The aim is to achieve better performance than previous space gravity missions due to a very low white noise spectral behaviour of the CAI instrument and a very high common mode rejection, with the ultimate goals of determining the fine structures of the gravity field with higher accuracy than GOCE and detecting time-variable signals in the gravity field.

  19. Automated cyclotron magnetic field measurement at the University of Manitoba

    Science.gov (United States)

    Derenchuk, V.; Bruckshaw, J.; Gusdal, I.; Lancaster, J.; McIlwain, A.; Oh, S.; Pogson, R.; McKee, J. S. C.

    The magnetic field of the University of Manitoba compact cyclotron has been measured in high vacuum by polar scanning with 52 flip coils. This was a unique invacuo operation was required because the Curie effect on invar material is used to trim the field. The data acquisition controller was a Digital Equipment Corporation LSI-11 with CAMAC and IEEE-488 interfaces. Filtering, display and conventional equilibrium orbit analysis were performed off-line by means of a VAX-11/750 computer. A description of the apparatus and software is given.

  20. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  1. Low magnetic Johnson noise electric field plates for precision measurement

    CERN Document Server

    Rabey, I M; Hinds, E A; Sauer, B E

    2016-01-01

    We describe a parallel pair of high voltage electric field plates designed and constructed to minimise magnetic Johnson noise. They are formed by laminating glass substrates with commercially available polyimide (Kapton) tape, covered with a thin gold film. Tested in vacuum, the outgassing rate is less than $5\\times10^{-5}$ mbar.l/s. The plates have been operated at electric fields up to 8.3 kV/cm, when the leakage current is at most a few hundred pA. The design is discussed in the context of a molecular spin precession experiment to measure the permanent electric dipole moment of the electron.

  2. Field Geologist: An Android App for Measuring Rock Outcroppings

    Science.gov (United States)

    Baird, J.; Chiu, M. T.; Huang, X.; de Lanerolle, T. R.; Morelli, R.; Gourley, J. R.

    2011-12-01

    Field geologist is a mobile Android app that measures, plots, and exports strike and data in the field. When the phone is placed on the steepest part of the rock, it automatically detects dip, string, latitude and longitude. It includes a drop-down menu to record the type of rock. The app's initial screen displays a compass with an interior dip/strike symbol that always points toward the dip direction. Tapping the compass stores a data point in the phone's database. The points can be displayed on a Google map and uploaded to a server, from where they can be retrieved in CSV format and imported into a spreadsheet.

  3. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1the field map of BEBC, which in itself is uniform to within 3 191332nside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.723420f the maximum recorded field values at the chamber center. (7 refs).

  4. Measurement and reconstruction of the BEBC magnetic field map

    CERN Document Server

    Häbel, E; Wittgenstein, F

    1973-01-01

    The superconducting magnet of the Big European Bubble Chamber (BEBC) has been excited with currents up to 5035 A corresponding to a magnetic induction of 3.1 Tesla at the center of the chamber. Since one expected that during the charging of the magnet coils long time constant eddy currents would be induced by the varying radial field components, a system of 181 Hall-probes was installed on the boundary of the chamber body allowing to survey the magnetic field map. This Hall-probe system together with an NMR-probe (nuclear magnetic resonance) enabled us to measure and reconstruct to an accuracy of better than 0.1% the field map of BEBC, which in itself is uniform to within 3% inside the visible fiducial volume of the Chamber. Direct evidence was also given for field map distortions due to the eddy current field which amounted to about 0.7% of the maximum recorded field values at the chamber center. (7 refs).

  5. Methods to homogenize electrochemical concentration cell (ECC) ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer

    Science.gov (United States)

    Deshler, Terry; Stübi, Rene; Schmidlin, Francis J.; Mercer, Jennifer L.; Smit, Herman G. J.; Johnson, Bryan J.; Kivi, Rigel; Nardi, Bruno

    2017-06-01

    Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP) and ENSCI (EN), and differences in recommended sensor solution concentrations, 1.0 % potassium iodide (KI) and the one-half dilution: 0.5 %. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5 % (10 %) in the stratosphere (troposphere). Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1) differences in sensor solution composition for a single ozonesonde type, (2) differences in ozonesonde type for a single sensor solution composition, and (3) the World Meteorological Organization's (WMO) and manufacturers' recommendations of 1.0 % KI solution for Science Pump and 0.5 % KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0 % KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures ≥ 30 hPa, and thus the transfer

  6. Methods to homogenize electrochemical concentration cell (ECC ozonesonde measurements across changes in sensing solution concentration or ozonesonde manufacturer

    Directory of Open Access Journals (Sweden)

    T. Deshler

    2017-06-01

    Full Text Available Ozone plays a significant role in the chemical and radiative state of the atmosphere. For this reason there are many instruments used to measure ozone from the ground, from space, and from balloons. Balloon-borne electrochemical cell ozonesondes provide some of the best measurements of the ozone profile up to the mid-stratosphere, providing high vertical resolution, high precision, and a wide geographic distribution. From the mid-1990s to the late 2000s the consistency of long-term records from balloon-borne ozonesondes has been compromised by differences in manufacturers, Science Pump (SP and ENSCI (EN, and differences in recommended sensor solution concentrations, 1.0 % potassium iodide (KI and the one-half dilution: 0.5 %. To investigate these differences, a number of organizations have independently undertaken comparisons of the various ozonesonde types and solution concentrations, resulting in 197 ozonesonde comparison profiles. The goal of this study is to derive transfer functions to allow measurements outside of standard recommendations, for sensor composition and ozonesonde type, to be converted to a standard measurement and thus homogenize the data to the expected accuracy of 5 % (10 % in the stratosphere (troposphere. Subsets of these data have been analyzed previously and intermediate transfer functions derived. Here all the comparison data are analyzed to compare (1 differences in sensor solution composition for a single ozonesonde type, (2 differences in ozonesonde type for a single sensor solution composition, and (3 the World Meteorological Organization's (WMO and manufacturers' recommendations of 1.0 % KI solution for Science Pump and 0.5 % KI for ENSCI. From the recommendations it is clear that ENSCI ozonesondes and 1.0 % KI solution result in higher amounts of ozone sensed. The results indicate that differences in solution composition and in ozonesonde type display little pressure dependence at pressures

  7. Field Measurements and Pullout Tests of Reinforced Earth Retaining Wall

    Institute of Scientific and Technical Information of China (English)

    陈群; 何昌荣; 朱分清

    2004-01-01

    In this paper, field measurements and pullout tests of a new type of reinforced earth retaining wall, which is reinforced by trapezoid concrete blocks connected by steel bar, are described. Field measurements included settlements of the earth fill, tensile forces in the ties and earth pressures on the facing panels during the construction and at completion. Based on the measurements, the following statements can be made: ( 1 ) the tensile forces in the ties increased with the height of backfill above the tie and there is a tensile force crest in most ties; (2) at completion, the measured earth pressures along the wall face were between the values of the active earth pressures and the pressures at rest; (3) larger settlements occurred near the face of the wall where a zone of drainage sand and gravel was not compacted properly and smaller settlements occurred in the well-compacted backfill. The results of field pullout tests indicated that the magnitudes of pullout resistances as well as tensile forces induced in the ties were strongly influenced by the relative displacements between the ties and the backfill, and pullout resistances increased with the height of backfill above the ties and the length of ties.

  8. Field Measurements of Terrestrial and Martian Dust Devils

    Science.gov (United States)

    Murphy, Jim; Steakley, Kathryn; Balme, Matt; Deprez, Gregoire; Esposito, Francesca; Kahanpää, Henrik; Lemmon, Mark; Lorenz, Ralph; Murdoch, Naomi; Neakrase, Lynn; Patel, Manish; Whelley, Patrick

    2016-11-01

    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types.

  9. Measuring the Earth’s Magnetic Field from Space

    DEFF Research Database (Denmark)

    Olsen, Nils; Hulot, G.; Sabaka, T. J.

    2010-01-01

    Observations of the Earth’s magnetic field from low-Earth orbiting (LEO) satellites started very early on, more than 50 years ago. Continuous such observations, relying on more advanced technology and mission concepts, have however only been available since 1999. The unprecedented time......-space coverage of this recent data set opened revolutionary new possibilities for monitoring, understanding and exploring the Earth’s magnetic field. In the near future, the three-satellite Swarm constellation concept to be launched by ESA, will not only ensure continuity of such measurements, but also provide...... enhanced possibilities to improve on our ability to characterize and understand the many sources that produce this field. In the present paper we review and discuss the advantages and drawbacks of the various LEO space magnetometry concepts that have been used so far, and report on the motivations that led...

  10. Calculation and measurement of electric field under HVDC transmission lines

    Science.gov (United States)

    Kasdi, A.; Zebboudj, Y.; Yala, H.

    2007-03-01

    A stable corona discharge in a two conductors-to-plane configuration is analysed in this paper. A linear biased probe, without end-effect, has been adapted to a linear geometry and is used for the first time to measure the ground-plane current density and electric field during the bipolar corona. The values of the electric field and the current density are maximum under the two coronating conductors and decrease when moving away from them. Furthermore, a hybrid technique is developed to obtain a general solution of the governing equations of the coupled space-charge and electric field problem. The technique is to use the finite-element method (FEM) to solve Poisson's equation, and the method of characteristic (MOC) to find the charge density from a current-continuity relation. The model avoids resorting to the Deutsch assumption. The computed values are in good agreement with experimental data.

  11. Calculated and measured fields in superferric wiggler magnets

    Energy Technology Data Exchange (ETDEWEB)

    Blum, E.B.; Solomon, L. [Brookhaven National Lab., Upton, NY (United States)

    1995-02-01

    Although Klaus Halbach is widely known and appreciated as the originator of the computer program POISSON for electromagnetic field calculation, Klaus has always believed that analytical methods can give much more insight into the performance of a magnet than numerical simulation. Analytical approximations readily show how the different aspects of a magnet`s design such as pole dimensions, current, and coil configuration contribute to the performance. These methods yield accuracies of better than 10%. Analytical methods should therefore be used when conceptualizing a magnet design. Computer analysis can then be used for refinement. A simple model is presented for the peak on-axis field of an electro-magnetic wiggler with iron poles and superconducting coils. The model is applied to the radiator section of the superconducting wiggler for the BNL Harmonic Generation Free Electron Laser. The predictions of the model are compared to the measured field and the results from POISSON.

  12. Generation and measurement of pulsed high magnetic field

    CERN Document Server

    Jana, S

    2000-01-01

    Pulsed magnetic field has been generated by discharging a capacitor bank through a 5-layer air-core solenoid. The strength of the magnetic field at its peak has been measured using the voltage induced in various pick-up coils, and also from the Zeeman splitting of an ion having a known g value. Synchronizing a xenon flash at the peak of the magnetic field, this lab-made instrument has been made well suited to study the Zeeman effect, etc. at a temperature of 25 K. As an application of this setup, we have investigated the Zeeman splitting of the sup 4 I sub 9 sub / sub 2-> sup 4 G sub 5 sub / sub 2 transition of the Nd sup 3 sup + -doped CsCdCl sub 3 crystal at 7.8 T, and determined the splitting factors.

  13. Mean field limit for bosons and propagation of Wigner measures

    CERN Document Server

    Ammari, Z

    2008-01-01

    We consider the N-body Schr\\"{o}dinger dynamics of bosons in the mean field limit with a bounded pair-interaction potential. According to the previous work \\cite{AmNi}, the mean field limit is translated into a semiclassical problem with a small parameter $\\epsilon\\to 0$, after introducing an $\\epsilon$-dependent bosonic quantization. The limit is expressed as a push-forward by a nonlinear flow (e.g. Hartree) of the associated Wigner measures. These object and their basic properties were introduced in \\cite{AmNi} in the infinite dimensional setting. The additional result presented here states that the transport by the nonlinear flow holds for rather general class of quantum states in their mean field limit.

  14. The BOES spectropolarimeter for Zeeman measurements of stellar magnetic fields

    CERN Document Server

    Kim, Kang-Min; Valyavin, Gennady G; Plachinda, Sergei; Jang, Jeong Gyun; Jang, Be-Ho; Seong, Hyeon Cheol; Lee, Byeong-Cheol; Kang, Dong-Il; Park, Byeong-Gon; Yoon, Tae Seog; Vogt, Steven S

    2007-01-01

    We introduce a new polarimeter installed on the high-resolution fiber-fed echelle spectrograph (called BOES) of the 1.8-m telescope at the Bohyunsan Optical Astronomy Observatory, Korea. The instrument is intended to measure stellar magnetic fields with high-resolution (R $\\sim$ 60000) spectropolarimetric observations of intrinsic polarization in spectral lines. In this paper we describe the spectropolarimeter and present test observations of the longitudinal magnetic fields in some well-studied F-B main sequence magnetic stars (m_v < 8.8^m). The results demonstrate that the instrument has a high precision ability of detecting the fields of these stars with typical accuracies ranged from about 2G to a few tens of gauss.

  15. Measurement of electrochemical noise for the study of corrosion processes of metallic alloys; Medida de ruido electroquimico para el estudio de rocesoso de corrosion de aleaciones metalicas

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Amaya, J. M.; Bethencourt, M.; Gonzalez-Rovira, L.; Botana, F. J.

    2009-07-01

    Electrochemical noise (EN) is a technique that allows the estimation of both the rate and the corrosion mechanism of different metallic alloys by means of the measurement and the analysis of the fluctuations of current and voltage. Its main advantage against other electrochemical techniques is that during the measurement process, the corrosive systems under study are not instrumentally disturbed, and therefore, the systems are kept at their natural corrosion potential. Two steps are necessary to use this technique: measurement and analysis of the EN signals. In this paper, the most important concepts related only to the measurement of EN are revised. The parameters most employed in the literature to analyse the EN signals will be described in another paper. In the present article, the experimental devices normally used to measure EN signals are firstly analysed. Subsequently, the most important properties of the EN signals are studied. Finally, the external sources of instrumental noise that can affect to the EN signals are described. (Author) 65 refs.

  16. Electric Field Measurement of the Living Human Body for Biomedical Applications: Phase Measurement of the Electric Field Intensity

    Directory of Open Access Journals (Sweden)

    Ichiro Hieda

    2013-01-01

    Full Text Available The authors are developing a technique for conducting measurements inside the human body by applying a weak electric field at a radio frequency (RF. Low RF power is fed to a small antenna, and a similar antenna located 15–50 cm away measures the electric field intensity. Although the resolution of the method is low, it is simple, safe, cost-effective, and able to be used for biomedical applications. One of the technical issues suggested by the authors' previous studies was that the signal pattern acquired from measurement of a human body was essentially different from that acquired from a phantom. To trace the causes of this difference, the accuracy of the phase measurements was improved. This paper describes the new experimental system that can measure the signal phase and amplitude and reports the results of experiments measuring a human body and a phantom. The results were analyzed and then discussed in terms of their contribution to the phase measurement.

  17. Comparison between the corrosion forecast based on the potential measurement and the determination of the corrosion rate of the reinforcement bar by means of electrochemical techniques

    Directory of Open Access Journals (Sweden)

    Castaneda, A.

    2003-12-01

    Full Text Available The ASTA4 876-91 standard establishes a corrosion forecast of concrete reinforced bar by measuring the electrochemical potential. This forecast is based on thermodynamic considerations without taking into account the kinetic of the corrosion process. A comparison was made between the results obtained based on this standard and others using electrochemical techniques (Tafel, Rp, EIS, Electrochemical Noise. These techniques allows to obtain the corrosion rate in samples having 0.4, 0.5 and 0.66 water/cement ratios submitted to salt spray outdoors and by immersion in 3% saline solution during a test time of 20 months. Differences were detected between the results obtained using the ASTM standard and the electrochemical techniques used. The main difference is that samples submitted to immersion shows a higher probability of corrosion than samples submitted to salt spray; however, the electrochemical techniques showed the contrary concerning the corrosion kinetic process .A comparison respecting corrosion rate was also made between the results obtained by the different electrochemical techniques. It is very well known that all electrochemical techniques supposed always general corrosion except electrochemical noise. Using the technique the pitting index can be calculated. It shows that localized corrosion is the most predominant

    La norma ASTM 876-91 establece un pronóstico de corrosión de la barra de refuerzo del hormigón armado mediante la determinación de potenciales electroquímicos. Este pronóstico se basa en consideraciones termodinámicas, sin tener en cuenta la cinética del proceso de corrosión. Se comparan los resultados obtenidos aplicando esta norma con técnicas electroquímicas (Tafel, Rp, EIS, Ruido Electroquímico que permiten calcular la velocidad de corrosión en probetas con relaciones agua/cemento 0,4, 0,5 y 0,66 sometidas a niebla salina en condiciones naturales y en inmersión en solución salina al 3% durante un

  18. The laser measurement technology of combustion flow field

    Science.gov (United States)

    Wang, Mingdong; Wang, Guangyu; Qu, Dongsheng

    2014-07-01

    The parameters of combustion flow field such as temperature, velocity, pressure and mole-fraction are of significant value in engineering application. The laser spectroscopy technology which has the non-contact and non- interference properties has become the most important method and it has more advantages than conventionally contacting measurement. Planar laser induced fluorescence (PLIF/LIF) is provided with high sensibility and resolution. Filtered Rayleigh scattering (FRS) is a good measurement method for complex flow field .Tunable diode laser absorption spectroscopy (TDLAS) is prosperity on development and application. This article introduced the theoretical foundation, technical principle, system structure, merits and shortages. It is helpful for researchers to know about the latest development tendency and do the related research.

  19. Torque measurements on ferrofluid cylinders in rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Carlos [Department of Chemical Engineering, University of Puerto Rico, PO Box 9046, Mayagueez, PR 00680 (United States)]. E-mail: crinaldi@uprm.edu; Gutman, Fernando [Department of Chemical Engineering, University of Puerto Rico, PO Box 9046, Mayagueez, PR 00680 (United States); He Xiaowei [Laboratory for Electromagnetic and Electronic Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Rosenthal, Adam D. [Laboratory for Electromagnetic and Electronic Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States); Zahn, Markus [Laboratory for Electromagnetic and Electronic Systems, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139 (United States)

    2005-03-15

    We study the response of magnetic nanoparticle suspensions (ferrofluids) to uniform rotating magnetic fields generated by a two-pole three-phase magnetic induction motor stator winding. Measurements of the torque required to rotate a polycarbonate spindle submerged in ferrofluid subjected to co-rotating and counter-rotating fields yield experimental observations of negative magnetoviscosity in a cylindrical Couette geometry, conceptually similar to the observations of Bacri et al. (Phys. Rev. Lett. 75 (1995) 2128) in a Poiseuille flow under an oscillating magnetic field. Further measurements are presented for the torque required to restrain a spindle when it is (i) entirely filled with ferrofluid (ii) entirely surrounded with ferrofluid, and (iii) both entirely filled and surrounded with ferrofluid. Some of the results for the spindle either entirely filled or entirely surrounded with ferrofluid are compared to theoretical expressions obtained from the ferrohydrodynamic equations using a rigorous regular perturbation expansion in the small parameter {omega}{tau}, where {omega} is the applied field frequency and {tau} is the effective magnetic relaxation time of the suspension.

  20. Experimental studies on near-field holographic antenna measurement

    Science.gov (United States)

    Zuo, Yingxi; Xu, Linfen; An, Hongye; Sun, Jixian; Lou, Zheng; Yang, Ji; Zhang, Xuguo; Li, Zhenqiang; Lu, Dengrong; Pang, Xinghai; Li, Yang

    2016-07-01

    A near-field millimeter-wave holography system operating in the 3-mm waveband have been developed as a prototype for DATE5, a 5-m terahertz telescope proposed to be deployed at Dome A, Antarctica. Experimental measurements at 92 GHz have been made on a 1.45-m test antenna. During the night time at which the ambient temperature doesn't vary rapidly, a 75-minute repeatability (repeating measurement 3 times) of 2.3 μm rms has been achieved with an aperture resolution of 46 mm. A local surface change of known value is correctly detected. After long-time repeating measurements, thermal-induced feed displacement is also detected with an accuracy of approximately 20 μm. Random error factors of the experiment system are evaluated and their contributions to the derived surface error are also simulated, showing that relative poor pointing of the test antenna is the major factor limiting the measurement repeatability.

  1. Electrochemical reduction of NOx

    DEFF Research Database (Denmark)

    Traulsen, Marie Lund

    NO and NO2 (collectively referred to as NOx) are air pollutants, and the largest single contributor to NOx pollution is automotive exhaust. This study investigates electrochemical deNOx, a technology which aims to remove NOx from automotive diesel exhaust by electrochemical reduction of NOx to N2...... and O2. The focus in this study is on improving the activity and selectivity of solid oxide electrodes for electrochemical deNOx by addition of NOx storage compounds to the electrodes. Two different composite electrodes, La0.85Sr0.15MnO3-δ-Ce0.9Gd0.1O1.95 (LSM15-CGO10) and La0.85Sr0.15FeO3-δ-Ce0.9Gd0.1O......1.95 (LSF15-CGO10), have been investigated in combination with three different NOx storage compounds: BaO, K2O and MnOx. The main focus in the investigation has been on conversion measurements and electrochemical characterization, the latter by means of electrochemical impedance spectroscopy...

  2. Analysis and measurement of the 3D magnetic field in a rotating magnetic field driven FRC

    Science.gov (United States)

    Velas, K. M.; Milroy, R. D.

    2012-10-01

    A translatable three-axis probe was installed on TCSU shortly before its shutdown. The probe has 90 windings that simultaneously measure Br, Bθ, and Bz at 30 radial positions. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Probe measurements are used to calculate the end-shorting torque and the rotating magnetic field (RMF) torque. The torque applied to the plasma is the RMF torque reduced by the shorting torque. An estimate of the plasma resistivity is made based on the steady state balance between the applied torque and the resistive torque. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Data from even- and odd-parity experiments will be presented. The NIMROD code has been adapted to simulate the TCSU experiment using boundary conditions adjusted to match both even- and odd-parity experimental conditions. A comparison of the n=0 components of the calculated fields to the 3-axis probe measurements shows agreement in the magnetic field structure of the FRC as well as in the jet region.

  3. Neutron Field Measurements in Phantom with Foil Activation Methods.

    Science.gov (United States)

    1986-11-29

    jI25 Ii III uumu ullli~ S....- - Lb - w * .qJ’ AD-A 192 122 ulJ. IL (pj DNA-TR-87- 10 N EUTRON FIELD MEASUREMENTS IN PHANTOM WITH FOIL ACTIVATION...SAND II Measurements in Phantom 6 4 The 5-Foil Neutron Dosimetry Method 29 5 Comparison of SAND II and Simple 5-Foil Dosimetry Method 34 6 Thermal ...quite reasonable. The monkey phantom spectrum differs from the NBS U-235 fission spectrum in that the former has a I/E tail plus thermal -neutron peak

  4. Planar Near-Field Measurements of Ground Penetrating Radar Antennas

    DEFF Research Database (Denmark)

    Meincke, Peter; Hansen, Thorkild

    2004-01-01

    Planar near-field measurements are formulated for a general ground penetrating radar (GPR) antenna. A total plane-wave scattering matrix is defined for the system consisting of the GPR antenna and the planar air-soil interface. The transmitting spectrum of the GPR antenna is expressed in terms...... of measurements obtained with a buried probe as the GPR antenna moves over a scan plane on the ground. A numerical example in which the scan plane is finite validates the expressions for the spectrum of the GPR antenna....

  5. Improved Reconstruction of Dipole Directions from Spherical Magnetic Field Measurements

    CERN Document Server

    Gerhards, Christian

    2016-01-01

    Reconstructing magnetizations from measurements of the generated magnetic potential is highly non-unique. The matter of uniqueness can be improved, but not entirely resolved, by the assumption that the magnetization is locally supported. Here, we focus on the case that the magnetization is additionally assumed to be induced by an ambient magnetic dipole field, i.e., the task is to reconstruct the dipole direction as well as the susceptibility of the magnetic material. We investigate uniqueness issues and provide a reconstruction procedure from given magnetic potential measurements on a spherical surface.

  6. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  7. Verifying a Simplified Fuel Oil Field Measurement Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Hugh [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States); Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States); Doty, Chris [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States)

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  8. FUNCTIONAL MEASUREMENT IN THE FIELD OF ETHICS IN POLITICS

    OpenAIRE

    Mullet, Etienne; Institute of Advanced Studies (EPHE); López López, Wilson; Pontificia Universidad Javeriana; Kpanake, Lonzozou; Open University of Quebec at Montreal; Mukashema, Immaculée; University of Rwanda; Armange, Roseline; Institute of Advanced Studies; Kamble, Shanmukh; University of Karnataka; Guedez, Ana Gabriela; Jean-Jaurès University; Munoz Sastre, Maria Teresa; Jean-Jaurès University; Sorum, Paul C.; Albany Medical College; Nieto, Félix; University of Oporto; Pineda, Claudia

    2016-01-01

    We present, in a synthetic way, some of the main findings from ten studies that were conducted in the field of ethics in politics, using the Functional Measurement framework. These studies were about (a) Angolan and Mozambican people’s views about the legitimacy of military-humanitarian interventions, (b) French people’s perspectives regarding the government’s responsibility for the health of consumers of illicit substances, (c) Togolese people’s views about the acceptability of political amn...

  9. The IMCA: A field instrument for uranium enrichment measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, G.H.; Koskelo, M.; Moeslinger, M. [Canberra Industries, Meriden, CT (United States); Mayer, R.L. II; McGinnis, B.R. [Lockheed Martin Utility Services, Piketon, OH (United States). Portsmouth Gaseous Diffusion Plant; Wishard, B. [International Atomic Energy Agency, Vienna (Austria)

    1996-12-31

    The IMCA (Inspection Multi-Channel Analyzer) is a portable gamma-ray spectrometer designed to measure the enrichment of uranium either in a laboratory or in the field. The IMCA consists of a Canberra InSpector Multi-Channel Analyzer, sodium iodide or a planar germanium detector, and special application software. The system possesses a high degree of automation. The IMCA uses the uranium enrichment meter principle, and is designed to meet the International Atomic Energy Agency (IAEA) requirements for the verification of enriched uranium materials. The IMCA is available with MGA plutonium isotopic analysis software or MGAU uranium analysis software as well. In this paper, the authors present a detailed description of the hardware and software of the IMCA system, as well as results from preliminary measurements testing compliance of IMCA with IAEA requirements using uranium standards and UF6 cylinders. Measurements performed on UF6 cylinders in the field under variable environmental conditions (temperatures ranging from 0 to 35 C) have shown that good results can be achieved. The enrichment of UF6 contained in the cylinder is determined by using calibration constants generated from an instrument calibration, using traceable uranium oxide standards, performed in the laboratory under controlled environmental conditions. The IMCA software is designed to make the necessary matrix and container corrections to ensure that accurate results are achieved in the field.

  10. Standard target sets for field sensor performance measurements

    Science.gov (United States)

    O'Connor, John D.; O'Shea, Patrick; Palmer, John E.; Deaver, Dawne M.

    2006-05-01

    The US Army Night Vision and Electronic Sensors Directorate (NVESD) Modeling and Simulation Division develops sensors models (FLIR 92, NV Therm, NV Therm IP) that predict the comparative performance of electro-optical sensors. The NVESD modeling branch developed a 12-vehicle, 12-aspect target signature set in 1998 with a known cycle criteria. It will be referred to as the 12-target set. This 12-target set has and will continue to be the modeling "gold standard" for laboratory human perception experiments supporting sensor performance modeling, and has been employed in dozens of published experiments. The 12-target set is, however, too costly for most acquisition field tests and evaluations. The authors developed an 8-vehicle 3-aspect target set, referred to as the 8- target set, and measured its discrimination task difficulty, (N50 and V50). Target identification (ID) range performance predictions for several sensors were made based on those V50/N50 values. A field collection of the 8-target set using those sensors provided imagery for a human perception study. The human perception study found excellent agreement between predicted and measured range performance. The goal of this development is to create a "silver standard" target set that is as dependable in measuring sensor performance as the "gold standard", and is affordable for Milestone A and other field trials.

  11. Gravitational spectra from direct measurements. [of surface field

    Science.gov (United States)

    Wagner, C. A.; Colombo, O. L.

    1979-01-01

    A simple rapid method is described for determining the spectrum of a surface field (in spherical harmonics) from harmonic analysis of direct (in situ) measurements along great circle arcs. The method is shown to give excellent overall trends (smoothed spectra) to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point masses using (1) altimetric heights from a low-orbiting spacecraft, (2) velocity (range rate) residuals between a low and a high satellite in circular orbits, and (3) range rate data between a station at infinity and a satellite in a highly eccentric orbit. In particular, the smoothed spectrum of the earth's gravitational field is determined to about degree 400(50-km half wavelength) from 1 x 1 deg gravimetry and the equivalent of 11 revolutions of GEOS 3 and Skylab altimetry. This measurement shows that there is about 46 cm of geoid height (rms worldwide) remaining in the field beyond degree 180.

  12. Real-time temperature field measurement based on acoustic tomography

    Science.gov (United States)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-07-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution.

  13. Facile and controllable one-step fabrication of molecularly imprinted polymer membrane by magnetic field directed self-assembly for electrochemical sensing of glutathione

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wanying; Jiang, Guoyi; Xu, Lei; Li, Bingzhi; Cai, Qizhi; Jiang, Huijun; Zhou, Xuemin, E-mail: xueminzhou001_001@hotmail.com

    2015-07-30

    Based on magnetic field directed self-assembly (MDSA) of the ternary Fe{sub 3}O{sub 4}@PANI/rGO nanocomposites, a facile and controllable molecularly imprinted electrochemical sensor (MIES) was fabricated through a one-step approach for detection of glutathione (GSH). The ternary Fe{sub 3}O{sub 4}@PANI/rGO nanocomposites were obtained by chemical oxidative polymerization and intercalation of Fe{sub 3}O{sub 4}@PANI into the graphene oxide layers via π–π stacking interaction, followed by reduction of graphene oxide in the presence of hydrazine hydrate. In molecular imprinting process, the pre-polymers, including GSH as template molecule, Fe{sub 3}O{sub 4}@PANI/rGO nanocomposites as functional monomers and pyrrole as both cross-linker and co-monomer, was assembled through N–H hydrogen bonds and the electrostatic interaction, and then was rapidly oriented onto the surface of MGCE under the magnetic field induction. Subsequently, the electrochemical GSH sensor was formed by electropolymerization. In this work, the ternary Fe{sub 3}O{sub 4}@PANI/rGO nanocomposites could not only provide available functionalized sites in the matrix to form hydrogen bond and electrostatic interaction with GSH, but also afford a promoting network for electron transfer. Moreover, the biomimetic sensing membrane could be controlled more conveniently and effectively by adjusting the magnetic field strength. The as-prepared controllable sensor showed good stability and reproducibility for the determination of GSH with the detection limit reaching 3 nmol L{sup −1} (S/N = 3). In addition, the highly sensitive and selective biomimetic sensor has been successfully used for the clinical determination of GSH in biological samples. - Highlights: • The ternary composites exhibited great conductivity and electrocatalytical activity. • By magnetic field induction, the orderly film was fabricated on the surface of MGCE. • The microstructure of the sensing membrane could be controlled

  14. High frequency electric field levels: An example of determination of measurement uncertainty for broadband measurements

    Directory of Open Access Journals (Sweden)

    Vulević Branislav

    2016-01-01

    Full Text Available Determining high frequency electromagnetic field levels in urban areas represents a very complex task, having in mind the exponential growth of the number of sources embodied in public cellular telephony systems in the past twenty years. The main goal of this paper is a representation of a practical solution in the evaluation of measurement uncertainty for in-situ measurements in the case of spatial averaging. An example of the estimation of the uncertainty for electric field strength broadband measurements in the frequency range from 3 MHz to 18 GHz is presented.

  15. Voltage equilibration for reactive atomistic simulations of electrochemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Onofrio, Nicolas; Strachan, Alejandro, E-mail: strachan@purdue.edu [School of Materials Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47906 (United States)

    2015-08-07

    We introduce electrochemical dynamics with implicit degrees of freedom (EChemDID), a model to describe electrochemical driving force in reactive molecular dynamics simulations. The method describes the equilibration of external electrochemical potentials (voltage) within metallic structures and their effect on the self-consistent partial atomic charges used in reactive molecular dynamics. An additional variable assigned to each atom denotes the local potential in its vicinity and we use fictitious, but computationally convenient, dynamics to describe its equilibration within connected metallic structures on-the-fly during the molecular dynamics simulation. This local electrostatic potential is used to dynamically modify the atomic electronegativities used to compute partial atomic changes via charge equilibration. Validation tests show that the method provides an accurate description of the electric fields generated by the applied voltage and the driving force for electrochemical reactions. We demonstrate EChemDID via simulations of the operation of electrochemical metallization cells. The simulations predict the switching of the device between a high-resistance to a low-resistance state as a conductive metallic bridge is formed and resistive currents that can be compared with experimental measurements. In addition to applications in nanoelectronics, EChemDID could be useful to model electrochemical energy conversion devices.

  16. GHz measurements of correlated electron systems in high magnetic fields

    CERN Document Server

    Edwards, R S

    2002-01-01

    This Thesis presents experiments performed on the high-frequency conductivity of materials in high magnetic fields. The angle dependence of resonances measured in the millimetre-wave absorption is studied using a rotating resonant cavity system, and the frequency dependence is measured using transmission techniques and a tuneable resonant cavity. Chapter 1 introduces the materials. These include the crystalline organic metals, the layered superconductor Sr sub 2 RUO sub 4 and the quantum Ising ferromagnet LiHoF sub 4. In Chapters 2 and 3, the necessary physics and experimental techniques for their investigation are outlined. Chapters 4 to 6 present measurements of cyclotron resonance in layered materials. Chapter 4 describes several models for the origin of cyclotron resonance harmonics, and describes the first definite measurement of the harmonics of a cyclotron resonance in an organic molecular metal, namely beta sup - (BEDT-TTF) sub 2 SF sub 5 CH sub 2 CF sub 2 SO sub 3. The angle dependence of the field p...

  17. Comparison of field emissivities with laboratory measurements and ASTER data

    Science.gov (United States)

    Mira, M.; Schmugge, T.; Valor, E.; Caselles, V.; Coll, C.

    2008-10-01

    Surface emissivity in the thermal infrared (TIR) region is an important parameter for determining the land surface temperature from remote sensing measurements. This work compares the emissivities measured by different field methods (the Box method and the Temperature and Emissivity Separation, TES, algorithm) as well as emissivity data from ASTER scenes and the spectra obtained from the ASTER Spectral Library. The study was performed with a field radiometer having TIR bands with central wavelengths at 11.3 μm, 10.6 μm, 9.1 μm, 8.7 μm and 8.4 μm, similar to the ASTER TIR bands. The measurements were made at two sites in southern New Mexico. The first was in the White Sands National Monument, and the second was an open shrub land in the Jornada Experimental Range, in the northern Chihuahuan Desert, New Mexico, USA. The measurements show that, in general, emissivities derived with the Box method agree within 3% with those derived with the TES method for the spectral bands centered at 10.6 μm and 11.3 μm. However, the emissivities for the shorter wavelength bands are higher when derived with the Box method than those with the TES algorithm (differences range from 2% to 7%). The field emissivities agree within 2% with the laboratory spectrum for the 8-13 μm, 11.3 μm and 10.6 μm bands. However, the field and laboratory measurements in general differ from 3% to 16% for the shorter wavelength bands, i.e., 9.1 μm, 8.6 μm and 8.4 μm. A good agreement between the experimental measurements and the ASTER TIR emissivity data is observed for White Sands, especially over the 9 - 12 μm range (agreement within 4%). The study showed an emissivity increase up to 17% in the 8 to 9 μm range and an increase of 8% in emissivity ratio of average channels (8.4 μm, 8.6 μm, 9.1 μm):(10.6 μm, 11.3 μm) for two gypsum samples with different water content.

  18. Lorentz force electrical impedance tomography using magnetic field measurements.

    Science.gov (United States)

    Zengin, Reyhan; Gençer, Nevzat Güneri

    2016-08-21

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from [Formula: see text] to [Formula: see text] at intervals of [Formula: see text]. The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 d

  19. Lorentz force electrical impedance tomography using magnetic field measurements

    Science.gov (United States)

    Zengin, Reyhan; Güneri Gençer, Nevzat

    2016-08-01

    In this study, magnetic field measurement technique is investigated to image the electrical conductivity properties of biological tissues using Lorentz forces. This technique is based on electrical current induction using ultrasound together with an applied static magnetic field. The magnetic field intensity generated due to induced currents is measured using two coil configurations, namely, a rectangular loop coil and a novel xy coil pair. A time-varying voltage is picked-up and recorded while the acoustic wave propagates along its path. The forward problem of this imaging modality is defined as calculation of the pick-up voltages due to a given acoustic excitation and known body properties. Firstly, the feasibility of the proposed technique is investigated analytically. The basic field equations governing the behaviour of time-varying electromagnetic fields are presented. Secondly, the general formulation of the partial differential equations for the scalar and magnetic vector potentials are derived. To investigate the feasibility of this technique, numerical studies are conducted using a finite element method based software. To sense the pick-up voltages a novel coil configuration (xy coil pairs) is proposed. Two-dimensional numerical geometry with a 16-element linear phased array (LPA) ultrasonic transducer (1 MHz) and a conductive body (breast fat) with five tumorous tissues is modeled. The static magnetic field is assumed to be 4 Tesla. To understand the performance of the imaging system, the sensitivity matrix is analyzed. The sensitivity matrix is obtained for two different locations of LPA transducer with eleven steering angles from -{{25}\\circ} to {{25}\\circ} at intervals of {{5}\\circ} . The characteristics of the imaging system are shown with the singular value decomposition (SVD) of the sensitivity matrix. The images are reconstructed with the truncated SVD algorithm. The signal-to-noise ratio in measurements is assumed 80 dB. Simulation studies

  20. International Accounting Convergence in the Field of Fair Value Measurement

    Directory of Open Access Journals (Sweden)

    Diana Cozma Ighian

    2015-09-01

    Full Text Available The investors’ desire for high-quality, internationally comparable financial information that is useful for decision-making in increasingly global capital markets imposed an international convergence, the ultimate goal of which is a single set of international accounting standards that companies worldwide would use for both domestic and cross-border financial reporting. The guidance, set out in IFRS 13 Fair Value Measurement and the update to Topic 820 (formerly referred to as SFAS 157, completes a major project of the boards’ joint work to improve IFRSs and US GAAP and to bring about their convergence. This article describes the controversial history of fair value measurement and the main novelties in the field of fair value measurement, arising from the international convergence process.

  1. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...... and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance...... pressure-velocity method, although it requires an additional measurement surface. On the whole, the separation methods can be useful when the disturbance of the incoming field is significant. Otherwise the direct reconstruction is more accurate and straightforward. © 2012 Acoustical Society of America....

  2. Electrochemical device

    Science.gov (United States)

    Grimes, Patrick G.; Einstein, Harry; Bellows, Richard J.

    1988-01-12

    A tunnel protected electrochemical device features channels fluidically communicating between manifold, tunnels and cells. The channels are designed to provide the most efficient use of auxiliary power. The channels have a greater hydraulic pressure drop and electrical resistance than the manifold. This will provide a design with the optimum auxiliary energy requirements.

  3. Electrochemical construction

    Science.gov (United States)

    Einstein, Harry; Grimes, Patrick G.

    1983-08-23

    An electrochemical cell construction features a novel co-extruded plastic electrode in an interleaved construction with a novel integral separator-spacer. Also featured is a leak and impact resistant construction for preventing the spill of corrosive materials in the event of rupture.

  4. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0

  5. Measurements of insolation variation over a solar collector field

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-30

    The experiment described in this report makes observations to determine the direct insolation every 16 sec at corners of a quadrilateral approximately 600 meters in size located near Barstow, California. This size approximates the collector field of the solar power plant to be built near Barstow. Data from the first three months of operation of this experiment indicate cloudy conditions, capable of affecting the operation of a solar power plant, occurred during 15% of the daylight hours of some months. Patterns of insolation variation over the experiment area indicate shadows often exist with dimensions less than the projected size of the collection field for the 10 MW/sub e/ solar thermal power plant. Detailed statistical summaries of four partly cloudy events are included. Rates of insolation change on an individual sensor greater than or equal to 30 Wm/sup -2/ sec/sup -1/ have been observed, but these rate measurements have probably been limited by the response time of the experimental system. Spatial averaging of the measured insolation over the sensor field lowers the rate of insolation change.

  6. Corrosion Measurements by Titration, (CMT). Alone or Combined With Electrochemical Measurements(EC). Examples: Corrosion of Zinc, Nickel, Aluminium and Iron

    DEFF Research Database (Denmark)

    Bech-Nielsen, Gregers

    1998-01-01

    species or non-electrochemical dissolution reactions.A great number of examinations of corrosion has been made with the following metals: Zinc, nickel, aluminium and iron, as pure metals or alloys and also, with zinc, as post-treated electrodeposits.Limitations and restrictions in the use of CMT...

  7. Probe measurements of the three-dimensional magnetic field structure in a rotating magnetic field sustained field-reversed configuration

    Science.gov (United States)

    Velas, K. M.; Milroy, R. D.

    2014-01-01

    A translatable three-axis probe was constructed and installed on the translation, confinement, and sustainment upgrade (TCSU) experiment. With ninety windings, the probe can simultaneously measure Br, Bθ, and Bz at 30 radial positions, and can be placed at any desired axial position within the field reversed configuration (FRC) confinement chamber. Positioning the probe at multiple axial positions and taking multiple repeatable shots allows for a full r-z map of the magnetic field. Measurements were made for odd-parity rotating magnetic field (RMF) antennas and even-parity RMF. The steady state data from applying a 10 kHz low pass filter used in conjunction with data at the RMF frequency yields a map of the full 3D rotating field structure. Comparisons will be made to the 3D magnetic structure predicted by NIMROD simulations, with parameters adjusted to match that of the TCSU experiments. The probe provides sufficient data to utilize a Maxwell stress tensor approach to directly measure the torque applied to the FRC's electrons, which combined with a resistive torque model, yields an estimate of the average FRC resistivity.

  8. A new two-dimensional experimental apparatus for electrochemical remediation processes☆

    Institute of Scientific and Technical Information of China (English)

    Yingying Gu; Rongbing Fu; Hongjiang Li; Hui An

    2015-01-01

    Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electro-chemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional (2D) apparatus that can better simulate the field application of the technology and ac-curately monitor the most important electrochemical parameters to understand the process. The innovative fea-tures of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical re-sults from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for elec-trochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization.

  9. REVIEW OF HIGH FIELD Q SLOPE, CAVITY MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati

    2008-01-23

    One of the most interesting phenomenon occurring in superconducting radio-frequency (SRF) cavities made of bulk niobium is represented by a sharp decrease of the quality factor above peak surface magnetic field of about 90 mT and is referred to as "high field Q-slope" or "Q-drop". This phenomenon was observed first in 1997 and since then some effort was devoted to the understanding of the causes behind it. Still, no clear physical interpretation of the Q-drop has emerged, despite several attempts. In this contribution, I will review the experimental results for various cavities measured in many laboratories and I will try to identify common features and differences related to the Q-drop.

  10. Measurement of Electromagnetic Fields Emitted from Some Medical Devices

    Directory of Open Access Journals (Sweden)

    Shaker Faisel

    2013-04-01

    Full Text Available     New medical devices such as surgery devices, physiotherapy devices, cosmetological devices and Magnetic Resonance Imaging (MRI systems generate a complex electromagnetic fields, so they consider as a potential   hazard for medical personnel during surgical procedures. The aim of this research is to detect the EMFs emitted from medical devices and determine the safety ranges from these devices which emit EMF radiations in order to protect Medical staff from its risks. The research has been performed in two parts, numerical calculation and practical measurement. Practical measurements are done in Dijlah hospital at Tikrit city. Obtaining results shows that the practical measurements are consistent with the mathematical calculation results. Comparison of these results with the safety standard guideline limits shows that they   are within the acceptable exposure limits recommended by the International Commission on Non-Ionizing Radiation Protection (ICNIRP and that means there is no health risk from exposure to these fields if the exposure is for a short and not continued periods and lay within the acceptable limits.    

  11. Boom accomodation effects on plasma and field measurements with RPWI

    Science.gov (United States)

    Cervantes Correa, P.; Eriksson, A. I.; Wahlund, J.-E.; Odelstad, E.; Vaivads, A.; Bergman, J.

    2013-09-01

    While the JUICE spacecraft configuration and main contractor are yet to be decided, it is still possible to investigate general issues on the impact of various boom accomodation alternatives for measurements of plasma and electric fields using the Langmuir probe system of the Radio and Plasma Waves Investigation. These probes can be used as classical Langmuir probes, as electric field probes, or for mutual impedance measurements, and the impact of e.g. varying illumination and wake interference are different for each type of measurement. While there is a nominal JUICE trajectory for the main science mission, we have to do assumptions on the spacecraft pointing, e.g. nadir pointing during flybys of the various moons. The detailed spacecraft layout is not known, but we can arrive at general conclusions on the suitability of various boom accomodations by assuming a cube-like spacecraft with solar panels as rectangular wings. For disturbing structures like wakes and photoelectron clouds we use simple models based on previous simulations. Even though the detailed pointing and spacecraft design will quite certainly deviate from our assumptions, and the model has uncertainties also in other respects, we can still give some general conclusions on boom accomodation alternatives.

  12. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  13. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents.

    Science.gov (United States)

    Roser, Katharina; Schoeni, Anna; Struchen, Benjamin; Zahner, Marco; Eeftens, Marloes; Fröhlich, Jürg; Röösli, Martin

    2017-02-01

    Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. Main contributors to the total personal RF-EMF measurements of 63.2μW/m(2) (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Optical Field Measurement of Nano-Apertures with a Scanning Near-Field Optical Microscope

    Institute of Scientific and Technical Information of China (English)

    XU Tie-Jun; XU Ji-Ying; WANG Jia; TIAN Qian

    2004-01-01

    @@ We investigate optical near-field distributions of the unconventional C-apertures and the conventional square apertures in preliminary experiment with an aperture scanning near-field optical microscope. These nano-apertures are fabricated in Au film on a glass substrate with focused ion beam technology. The experimental results indicate the uptrend of output light intensity that a C-aperture enables the intensity maximum to increase at least 10times more than a square aperture with same unit length. The measured near-field light spot sizes of C-apertureand square aperture with 200-nm unit length are 439nm × 500nm and 245nm × 216nm, respectively.

  15. Electrochemical biosensors and nanobiosensors.

    Science.gov (United States)

    Hammond, Jules L; Formisano, Nello; Estrela, Pedro; Carrara, Sandro; Tkac, Jan

    2016-06-30

    Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking.

  16. Fabrication Of YSZ Thin Film By Electrochemical Deposition Method And The Effect Of The Pulsed Electrical Fields For Morphology Control

    Directory of Open Access Journals (Sweden)

    Fujita T.

    2015-06-01

    Full Text Available In this study, surface morphology control ions in a precursor solution and patterning the YSZ film has been carried out during deposition of thin film from a precursor solution by applying the electrical field for deposition and the pulsed electrical field. The precursor solution was mixed them of ZrO(NO34, Y(NO33-6H2O into deionized water, and then was controlled nearly pH3 by adding NH3(aq. The thin film was deposited on the glass substrate of the minus electrode side by applying the electrical field of 3.0 V for 20 min. In addition, another pulsed voltage was applied to the electrical field along the perdicular direction to the film deposition direction. After annealing samples at 773 K for 6 h in air, the film was crystallized and obtained YSZ film. In the limited condition, the linear patterns of YSZ films due to the frequency of the applied electrical field were observed. It is expected that ions in a precursor solution are controlled by applying the pulsed voltage and the YSZ film is patterned on the substrate.

  17. Measuring the complex field scattered by single submicron particles

    Directory of Open Access Journals (Sweden)

    Marco A. C. Potenza

    2015-11-01

    Full Text Available We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  18. Spectral reflectance measurement methodologies for TUZ Golu field campaign

    CSIR Research Space (South Africa)

    Boucher, Y

    2011-07-01

    Full Text Available MEASUREMENT METHODOLOGIES FOR TUZ GOLU FIELD CAMPAIGN Y. Bouchera, F. Viallefonta, A. Deadmanb, N. Foxb , I. Behnertb, D. Griffithc, P. Harrisb, D. Helderd, E. Knaepse, L. Leighd, Y. Lif, H. Ozeng, F. Ponzonih, S. Sterckxe a Onera - The French Aerospace... A uncertainty [4]. Thus, the variation of the reflectance between the different points is a combination of the variation at small scale and at the scale of the sampling grid, typically between 20 m and 40 m. This strategy has been chosen by Onera...

  19. Measuring the complex field scattered by single submicron particles

    Energy Technology Data Exchange (ETDEWEB)

    Potenza, Marco A. C., E-mail: marco.potenza@unimi.it; Sanvito, Tiziano [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); CIMAINA, University of Milan, via Celoria, 16 – I-20133 Milan (Italy); EOS s.r.l., viale Ortles 22/4, I-20139 Milan (Italy); Pullia, Alberto [Department of Physics, University of Milan, via Celoria, 16 – I-20133 Milan (Italy)

    2015-11-15

    We describe a method for simultaneous measurements of the real and imaginary parts of the field scattered by single nanoparticles illuminated by a laser beam, exploiting a self-reference interferometric scheme relying on the fundamentals of the Optical Theorem. Results obtained with calibrated spheres of different materials are compared to the expected values obtained through a simplified analytical model without any free parameters, and the method is applied to a highly polydisperse water suspension of Poly(D,L-lactide-co-glycolide) nanoparticles. Advantages with respect to existing methods and possible applications are discussed.

  20. Full-field optical coherence tomography apply in sphere measurements

    Science.gov (United States)

    Shi, Wei; Li, Weiwei; li, Juncheng; Wang, Jingyu; Wang, Jianguo

    2016-10-01

    The geometry of a spherical surface, for example that of a precision optic, is completely determined by the radius -of-curvature at one point and the deviation from the perfect spherical form at all other points of the sphere. Full-field Optical Coherence Tomography (FF-OCT) is a parallel detection OCT technique that utilizes a 2D detector array. This technique avoids mechanical scanning in imaging optics, thereby speeding up the imaging process and enhancing the quality of images. The current paper presents an FF-OCT instrument that is designed to be used in sphere measurement with the principle of multiple delays (MD) OCT to evaluate the curvature and radius of curved objects in single-shot imaging. The optimum combination of the MD principle with the FF-OCT method was evaluated, and the radius of a metal ball was measured with this method. The generated 2n-1 contour lines were obtained by using an MDE with n delays in a single en-face OCT image. This method of measurement, it engaged in the measurement accuracy of spherical and enriches the means of measurement, to make a spherical scan techniques flexible application.

  1. Development of a Microelectrode Array Sensing Platform for Combination Electrochemical and Spectrochemical Aqueous Ion Testing.

    Science.gov (United States)

    Gardner, Robert D; Zhou, Anhong; Zufelt, Nephi A

    2009-02-02

    A microelectrode array sensor platform was designed and fabricated to increase diversity, flexibility, and versatility of testing capabilities over that of traditionally reported sensor platforms. These new sensor platforms consist of 18 individual addressable microelectrodes, photolithography fabricated, that employ a glass base substrate and a resist polymer layer that acts as an insulating agent to protect the circuitry and wiring of the sensor from undesired solution interactions. Individually addressable microelectrodes increase diversity by allowing isolated electrochemical testing between electrodes, global array testing, or some combination of electrodes to perform electrochemical methods. Furthermore, because of the optical transparency of the glass base substrate and the resist mask layer, along with the small size of the electrode array, spectrochemical analysis is possible within the sample area that acts as electrochemical cell and cuvette, while the microelectrode array passively resides within the optical path length during spectrochemical testing. This unique arrangement offers improved testing possibilities for various applications, including simultaneous electrochemical and spectrochemical analysis in environmental testing, identification or quantification of possible species for bioavailability in the biotechnology field, and process control in industrial applications. Electrochemical characteristics and spectrochemcial use of the sensor platform are proven with potassium ferricyanide, an electrochemical standard analyte, and electrochemical measurements are compared against a commercially available working electrode of similar size. Additionally, the electrochemical method of differential pulse anodic stripping voltammetry is performed with the sensor platform to detect copper and lead heavy metal ions in aqueous solution, demonstrating the potential for use with environmental samples.

  2. Electrochemical corrosion studies

    Science.gov (United States)

    Knockemus, W. W.

    1986-01-01

    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel.

  3. Trapped field measurements of Gd-Ba-Cu-O bulk superconductor in controlled pulse field magnetizing

    Energy Technology Data Exchange (ETDEWEB)

    Ida, T [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Y; Sano, T; Yamaguchi, K; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Miki, M [Kitano Seiki Co. Ltd., 7-13-7, Chuo, Ohta-ku, Tokyo 143-0024 (Japan)], E-mail: ida@hiroshima-cmt.ac.jp

    2008-02-01

    For large-scale electric power application of the melt-processed high temperature superconductor (HTS) bulks, especially at rotating machine, development of trapping much higher magnetic fields by using pulsed magnetization technique is essential. It is difficult to use static field cooling (FCM) technique that is most effective magnetizing method for the general industrial HTS applications, because the FCM requires large-scale superconducting magnets. Because the rise in temperature due to the magnetic flux motion decreases the pinning force, we controlled the magnetic flux penetrating to the bulk for the effective magnetization. A couple of vortex-type copper coils applied a magnetic field to a Gd-Ba-Cu-O bulk, which dimension was 45mm in diameter and 19 mm in thickness. HTS bulk was magnetized by the controlled pulse field without passive LCR pulse. We controlled waveform by using the discharge current that IGBT chopper in pulse magnetizer intermitted. We applied the pulse magnetic field with the various risetime to the HTS bulk in liquid nitrogen. The various conditions of the controlled waveform pulse to trap well-dressed profile magnetized the Gd-Ba-Cu-O bulk, strongly at 77K. In the present study, we show several properties which was measured in the PFM of the HTS bulk.

  4. Pulse electrochemical machining on Invar alloy: Optical microscopic/SEM and non-contact 3D measurement study of surface analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Choi, S.G.; Choi, W.K.; Yang, B.Y. [School of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of); Lee, E.S., E-mail: leees@dreamwiz.com [Department of Mechanical Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-09-30

    Highlights: • Invar alloy was electrochemically polished and then subjected to PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. • Optical microscopic/SEM and non-contact 3D measurement study of Invar surface analyses. • Analysis result shows that applied voltage and electrode shape are factors that affect the surface conditions. - Abstract: In this study, Invar alloy (Fe 63.5%, Ni 36.5%) was electrochemically polished by PECM (Pulse Electro Chemical Machining) in a mixture of NaCl, glycerin, and distilled water. A series of PECM experiments were carried out with different voltages and different electrode shapes, and then the surfaces of polished Invar alloy were investigated. The polished Invar alloy surfaces were investigated by optical microscope, scanning electron microscope (SEM), and non-contact 3D measurement (white light microscopes) and it was found that different applied voltages produced different surface characteristics on the Invar alloy surface because of the locally concentrated applied voltage on the Invar alloy surface. Moreover, we found that the shapes of electrode also have an effect on the surface characteristics on Invar alloy surface by influencing the applied voltage. These experimental findings provide fundamental knowledge for PECM of Invar alloy by surface analysis.

  5. Results from a Novel Method for Corrosion Studies of Electroplated Lithium Metal Based on Measurements with an Impedance Scanning Electrochemical Quartz Crystal Microbalance

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-07-01

    Full Text Available A new approach to study the chemical stability of electrodeposited lithium on a copper metal substrate via measurements with a fast impedance scanning electrochemical quartz crystal microbalance is presented. The corrosion of electrochemically deposited lithium was compared in two different electrolytes, based on lithium difluoro(oxalato borate (LiDFOB and lithium hexafluorophosphate, both salts being dissolved in solvent blends of ethylene carbonate and diethyl carbonate. For a better understanding of the corrosion mechanisms, scanning electron microscopy images of electrodeposited lithium were also consulted. The results of the EQCM experiments were supported by AC impedance measurements and clearly showed two different corrosion mechanisms caused by the different salts and the formed SEIs. The observed mass decrease of the quartz sensor of the LiDFOB-based electrolyte is not smooth, but rather composed of a series of abrupt mass fluctuations in contrast to that of the lithium hexafluorophosphate-based electrolyte. After each slow decrease of mass a rather fast increase of mass is observed several times. The slow mass decrease can be attributed to a consolidation process of the SEI or to the partial dissolution of the SEI leaving finally lithium metal unprotected so that a fast film formation sets in entailing the observed fast mass increases.

  6. Local natural electric fields - the electrochemical factor of formation of placers and the criterion of prospectings of oil and gas deposits on the Arctic shelf

    Science.gov (United States)

    Kholmiansky, Mikhail; Anokhin, Vladimir; Kholmianskaia, Galina

    2014-05-01

    On the basis litologo-facial, geo- and hydrochemical characteristics of a cross-section lito - and shelf hydrospheres, the estimation of structural features modern and paleostatic local electric fields and their influence on transportation of the suspended mineral material is made. The formula of dynamic carrying over of the ore material which is in a subcolloidal condition under the influence of natural electric field of a shelf is deduced. On a structure of a friable cover and its features on G.I. Teodorovicha's method position of oxidation-reduction border, sign Eh was reconstructed. On the basis of the established dependence between Eh and local substatic electric field of a shelf it was reconstructed paleostatic a field and its influence on the weighed mineral particles was estimated. Influence of local electric field on lithodynamic moving of ore minerals is estimated for a shelf of the Arctic seas of Russia. On the basis of this estimation and data on structure of a friable cover the map of influence of local electric field on sedimentation and transportation of ore minerals for water area of the East Arctic seas of Russia is constructed. For Laptev seas and East-Siberian the areas in which limits local electric field promoted are revealed and promotes formation Holocene placers of an ilmenite, a cassiterite and gold. For Chukchi and the Bering Seas such estimation is made for all friable cover. hydrocarbonic deposits located on water area of the Arctic shelf of the Russian Federation, initiate occurrence of jet auras of dispersion of heavy metals in ground deposits and in a layer of the sea water, blocking these deposits. Intensity of auras and their spatial position is caused by a geological structure of deposits of breeds containing them, lithodynamic and oceanologic factors. On the basis of the theoretical representations developed by M.A.Holmjansky and O.F.Putikova (Holmjansky, Putikov, 2000, 2006, 2008) application of electrochemical updating of

  7. Oxidation state-differentiated measurement of aqueous inorganic arsenic by continuous flow electrochemical arsine generation coupled to gas-phase chemiluminescence detection.

    Science.gov (United States)

    Sengupta, Mrinal K; Dasgupta, Purnendu K

    2011-12-15

    The electrochemical reduction of inorganic As on a graphite cathode depends on the current density. We observed that while only inorganic As(III) is reduced to AsH(3) at low current densities, at high current densities both forms of inorganic As are reduced. We describe a unique electrochemical reactor in which the cylindrical anode compartment is isolated from the outer concentric cathode compartment by a Nafion tube in which a hole is deliberately made and the entire anode compartment is inside the cylindrical cavity of a small volume (∼115 μL) cathode chamber. The evolved arsine is then quantitated by gas-phase chemiluminescence (GPCL) reaction with ozone; the latter is generated from oxygen formed during electrolysis. For the dimensions used, inorganic As(III) can be selectively determined at a current of 0.1 A while total inorganic As (both As(III) and As(V)) respond equally at an applied electrolysis current at 0.85 A, without any sample treatment. For a 1-mL sample, the system provides a limit of detection (LOD, S/N = 3) of 0.09 μg/L for total As (i = 0.85 A) and an LOD of 0.76 μg/L for As(III) (i = 0.10 A); As(V) is obtained by difference. Comparison of ICP-MS results for total As in groundwater samples that span a large range of concentration and total inorganic As determined by the present method showed a high correlation (r(2) = 0.9975) and a near unity slope. The basic electrochemical arsine generation technique and current-differentiated oxidation state speciation should be applicable as the front end to many other arsenic measurements techniques, including atomic spectrometry.

  8. Normalized velocity profiles of field-measured turbidity currents

    Science.gov (United States)

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  9. Measuring marine oil spill extent by Markov Random Fields

    Science.gov (United States)

    Moctezuma, Miguel; Parmiggiani, Flavio; Lopez Lopez, Ludwin

    2014-10-01

    The Deepwater Horizon oil spill of the Gulf of Mexico in the spring of 2010 was the largest accidental marine oil spill in the history of the petroleum industry. An immediate request, after the accident, was to detect the oil slick and to measure its extent: SAR images were the obvious tool to be employed for the task. This paper presents a processing scheme based on Markov Random Fields (MRF) theory. MRF theory describes the global information by probability terms involving local neighborhood representations of the SAR backscatter data. The random degradation introduced by speckle noise is dealt with a pre-processing stage which applies a nonlinear diffusion filter. Spatial context attributes are structured by the Bayes equation derived from a Maximum-A-Posteriori (MAP) estimation. The probability terms define an objective function of a MRF model whose goal is to detect contours and fine structures. The markovian segmentation problem is solved with a numerical optimization method. The scheme was applied to an Envisat/ASAR image over the Gulf of Mexico of May 9, 2010, when the oil spill was already fully developed. The final result was obtained with 51 recursion cycles, where, at each step, the segmentation consists of a 3-class label field (open sea and two oil slick thicknesses). Both the MRF model and the parameters of the stochastic optimization procedure will be provided, together with the area measurement of the two kinds of oil slick.

  10. Evaluation of occupational cold environments: field measurements and subjective analysis.

    Science.gov (United States)

    Oliveira, A Virgílio M; Gaspar, Adélio R; Raimundo, António M; Quintela, Divo A

    2014-01-01

    The present work is dedicated to the study of occupational cold environments in food distribution industrial units. Field measurements and a subjective assessment based on an individual questionnaire were considered. The survey was carried out in 5 Portuguese companies. The field measurements include 26 workplaces, while a sample of 160 responses was considered for the subjective assessment. In order to characterize the level of cold exposure, the Required Clothing Insulation Index (IREQ) was adopted. The IREQ index highlights that in the majority of the workplaces the clothing ensembles worn are inadequate, namely in the freezing chambers where the protection provided by clothing is always insufficient. The questionnaires results show that the food distribution sector is characterized by a female population (70.6%), by a young work force (60.7% are less than 35 yr old) and by a population with a medium-length professional career (80.1% in this occupation for less than 10 yr). The incidence of health effects which is higher among women, the distribution of protective clothing (50.0% of the workers indicate one garment) and the significant percentage of workers (>75%) that has more difficulties in performing the activity during the winter represent other important results of the present study.

  11. Warm Magnetic Field Measurements of LARP HQ Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S; Cheng, D; Deitderich, D; Felice, H; Ferracin, P; Hafalia, R; Joseph, J; Lizarazo, J; Martchevskii, M; Nash, C; Sabbi, G L; Vu, C; Schmalzle, J; Ambrosio, G; Bossert, R; Chlachidze, G; DiMarco, J; Kashikhin, V

    2011-03-28

    The US-LHC Accelerator Research Program is developing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb{sub 3}Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b{sub 6} ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.

  12. Characterization of fracture aperture field heterogeneity by electrical resistance measurement.

    Science.gov (United States)

    Boschan, A; Ippolito, I; Chertcoff, R; Hulin, J P; Auradou, H

    2011-04-01

    We use electrical resistance measurements to characterize the aperture field in a rough fracture. This is done by performing displacement experiments using two miscible fluids of different electrical resistivity and monitoring the time variation of the overall fracture resistance. Two fractures have been used: their complementary rough walls are identical but have different relative shear displacements which create "channel" or "barrier" structures in the aperture field, respectively parallel or perpendicular to the mean flow velocity U(→). In the "channel" geometry, the resistance displays an initial linear variation followed by a tail part which reflects the velocity contrast between slow and fast flow channels. In the "barrier" geometry, a change in the slope between two linear zones suggests the existence of domains of different characteristic aperture along the fracture. These variations are well reproduced analytically and numerically using simple flow models. For each geometry, we present then a data inversion procedure that allows one to extract the key features of the heterogeneity from the resistance measurement. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Measurements of stellar magnetic fields with the autocorrelation of spectra

    CERN Document Server

    Borra, Ermanno F

    2015-01-01

    We present a novel technique that uses the autocorrelation of the spectrum of a star to measure the line broadening caused by the modulus of its average surface magnetic field. The advantage of the autocorrelation comes from the fact that it can detect very small spectral line broadening effects because it averages over many spectral lines and therefore gives an average with a very high signal to noise ratio. We validate the technique with the spectra of known magnetic stars and obtain autocorrelation curves that are in full agreement with published magnetic curves obtained with Zeeman splitting. The autocorrelation also gives less noisy curves so that it can be used to obtain very accurate curves. We degrade the resolution of spectra of these magnetic stars to lower spectral resolutions where the Zeeman splitting is undetectable. At these resolutions, the autocorrelation still gives good quality curves, thereby showing that it can be used to measure magnetic fields in spectra where the Zeeman splitting is si...

  14. Lacunarity Measures of Potential Fields in Covered Lithology Identification

    Science.gov (United States)

    Gettings, M. E.

    2013-12-01

    Measure distributions, both multifractal and other kinds, are not unique, so spatial patterns with the same measure may have different appearances. Lacunarity analysis is a method of description of dispersion in spatial patterns across a range of scales, and is one way of descriminating clustering of similar values. Lacunarity of an image was calculated using a moving window across a range of scales as the ratio of the second moment divided by the square of the first moment for values within the window. This gives a curve of lacunarity versus resolution (scale); the curve is concave for highly clustered data, pseudolinear or convex for data with clusters at many scales such as multifractal simulations, and constant for uniformly spaced data. Breaks in slope of the curve indicate scales that are important in the structure of the spatial pattern. Gravity and magnetic field anomaly data are well known to be multifractal and thus calculated lacunarities of gridded datasets have been investigated to determine if the resulting curves are a useful measure of texture of the potential field data and helpful in identifying likely lithologies at depth beneath cover. Lacunarity is often calculated on binary data, but it can also be calculated using quantitative data. The quantitative data case lacunarity measure was computed for grids using a 25 by 25 km window moving over the grid, each window overlapping the previous one by 12.5 km. The data were the aeromagnetic and isostatic gravity anomaly grids for the state of Arizona at 0.5 km grid-interval, resulting in a lacunarity curves for gravity and aeromagnetic anomaly for each of approximately 2500 windows. The open-source software R was used for plotting a map of window center locations and lacunarity curves, and the map was loaded into Google Earth, together with maps of the gravity and magnetic field anomaly, porphyry copper deposit locations, and the geological map of Arizona. Windows were selected to compare lacunarity

  15. Why should we apply more metrological knowledge to field measurements?

    Science.gov (United States)

    Buchholz, B.; Kraemer, M.; Rolf, C.; Wagner, S.; Zondlo, M. A.; Ebert, V.

    2016-12-01

    Metrology, the science of measurement, defines the SI, the international system of measurement units, their realization and aims to provide a traceable linkage of measurements to the SI. Primary standards at the national metrology institutes (NMIs) provide the highest achievable accuracy levels linked to the SI and thus are ideal scale reference points to establish long-term comparability between instruments in large networks e.g. in global atmospheric monitoring. However, NMIs offer much more than traceable standards. Metrological communities share internally a large valuable knowledge about "how to measure", e.g. how to calculate, assess and estimate impacts which deteriorate measurements or how to minimize negative impacts and address them in a systematic way with a scientific approach. Over the last years WMO, the world meteorological organization, as well as sub communities in the environmental sciences (e.g. the TCCON or GRUAN network), have greatly increased their efforts to integrate metrological principles and improved the comparability across the network. Prominent examples are airborne water vapor measurements, which, despite the well validated global metrological water scale for industry applications, are only very rarely linked to it, mainly due to the lack of established transfer standards. During the last years our group at PTB developed a new class of optical hygrometers and related validation strategies, in order to reduce deviations of up to 20% found in AquaVIT, a large scale, lab based comparison of leading airborne field hygrometers (Fahey et al, AMT, 7, 3159-3251, 2014) down to a long-term stability over 18 month of 0.35%, making this instrument (SEALDH-II) the first dTDLAS-based airborne transfer standards for atmospheric humidity. These and other examples lead to the conclusion that scientific communities starting to enroll metrological principles significantly improve their measurements and eventually the validity as well as interpretation

  16. Magnetic Field Measurements in Wire-Array Z-Pinches

    Science.gov (United States)

    Syed, Wasif; Hammer, David; Lipson, Michal

    2006-10-01

    Understanding the evolution of the magnetic field topology and magnitude in the high energy density plasmas produced by wire-array Z-pinches is of critical importance for their ultimate application to stockpile stewardship and inertial confinement fusion^1. A method to determine the magnetic field profile in megampere level wire-array Z-pinches with high spatial and temporal resolution is under development. An ideal method would be passive and non-perturbing, such as Faraday rotation of laser light. We are developing a method involving temporally-resolved Faraday rotation through a sensing waveguide placed in the vicinity of, and eventually in, a wire-array Z-pinch^2. We present measurements of the magnetic field outside of a wire-array, and progress on measurements within the array. Our ideal device is a ``thin film waveguide'' coupled to an optical fiber system. While these sensing devices may not survive for long in a dense Z-pinch, they may provide useful information for a significant fraction of the current pulse. We present preliminary theoretical and experimental results. 1. M. Keith Matzen, M. A. Sweeney, R. G. Adams et al., Phys. Plasmas 12, 055503 (2005). 2. W. Syed, D. A. Hammer, M. Lipson, R. B. van Dover, AIP Proceedings of the 6th International Conference on Dense Z-Pinches, University of Oxford, UK, July 25-28, 2005. *This research was sponsored by the National Nuclear Security Administration under the Stockpile Stewardship Academic Alliances program through DOE Cooperative Agreement DE-F03-02NA00057.

  17. Assessment of pressure field calculations from particle image velocimetry measurements

    Science.gov (United States)

    Charonko, John J.; King, Cameron V.; Smith, Barton L.; Vlachos, Pavlos P.

    2010-10-01

    This paper explores the challenges associated with the determination of in-field pressure from DPIV (digital particle image velocimetry)-measured planar velocity fields for time-dependent incompressible flows. Several methods that have been previously explored in the literature are compared, including direct integration of the pressure gradients and solution of different forms of the pressure Poisson equations. Their dependence on grid resolution, sampling rate, velocity measurement error levels and off-axis recording was quantified using artificial data of two ideal sample flow fields—a decaying vortex flow and pulsatile flow between two parallel plates, and real DPIV and pressure data from oscillating flow through a diffuser. The need for special attention to mitigate the velocity error propagation in the pressure estimation is also addressed using a physics-preserving approach based on proper orthogonal decomposition (POD). The results demonstrate that there is no unique or optimum method for estimating the pressure field and the resulting error will depend highly on the type of the flow. However, the virtual boundary, omni-directional pressure integration scheme first proposed by Liu and Katz (2006 Exp. Fluids 41 227-40) performed consistently well in both synthetic and experimental flows. Estimated errors can vary from less than 1% to over 100% with respect to the expected value, though in contrast to more traditional smoothing algorithms, the newly proposed POD-based filtering approach can reduce errors for a given set of conditions by an order of magnitude or more. This analysis offers valuable insight that allows optimizing the choice of methods and parameters based on the flow under consideration.

  18. Buffered Electrochemical Polishing of Niobium

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Tian, Hui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Corcoran, Sean [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-03-01

    The standard preparation of superconducting radio-frequency (SRF) cavities made of pure niobium include the removal of a 'damaged' surface layer, by buffered chemical polishing (BCP) or electropolishing (EP), after the cavities are formed. The performance of the cavities is characterized by a sharp degradation of the quality factor when the surface magnetic field exceeds about 90 mT, a phenomenon referred to as 'Q-drop.' In cavities made of polycrystalline fine grain (ASTM 5) niobium, the Q-drop can be significantly reduced by a low-temperature (? 120 °C) 'in-situ' baking of the cavity if the chemical treatment was EP rather than BCP. As part of the effort to understand this phenomenon, we investigated the effect of introducing a polarization potential during buffered chemical polishing, creating a process which is between the standard BCP and EP. While preliminary results on the application of this process to Nb cavities have been previously reported, in this contribution we focus on the characterization of this novel electrochemical process by measuring polarization curves, etching rates, surface finish, electrochemical impedance and the effects of temperature and electrolyte composition. In particular, it is shown that the anodic potential of Nb during BCP reduces the etching rate and improves the surface finish.

  19. Electrochemical cell

    Science.gov (United States)

    Nagy, Zoltan; Yonco, Robert M.; You, Hoydoo; Melendres, Carlos A.

    1992-01-01

    An electrochemical cell has a layer-type or sandwich configuration with a Teflon center section that houses working, reference and counter electrodes and defines a relatively narrow electrolyte cavity. The center section is surrounded on both sides with thin Teflon membranes. The membranes are pressed in place by a pair of Teflon inner frames which are in turn supported by a pair of outer metal frames. The pair of inner and outer frames are provided with corresponding, appropriately shaped slits that are in plane generally transverse to the plane of the working electrode and permit X-ray beams to enter and exit the cell through the Teflon membranes that cover the slits so that the interface between the working electrode and the electrolyte within the cell may be analyzed by transmission geometry. In one embodiment, the center section consists of two parts, one on top of the other. Alternatively, the center section of the electrochemical cell may consist of two intersliding pieces or may be made of a single piece of Teflon sheet material. The electrolyte cavity is shaped so that the electrochemical cell can be rotated 90.degree. in either direction while maintaining the working and counter electrodes submerged in the electrolyte.

  20. Continuous measurements of N2O emissions from arable fields

    Science.gov (United States)

    Wallman, Magdalena; Lammirato, Carlo; Rütting, Tobias; Delin, Sofia; Weslien, Per; Klemedtsson, Leif

    2017-04-01

    Agriculture represents 59 % of the anthropogenic nitrous oxide (N2O) emissions, according to the IPCC (Ciais et al. 2013). N2O emissions are typically irregular and vary widely in time and space, which makes it difficult to get a good representation of the emissions (Henault et al. 2012), particularly if measurements have low frequency and/or cover only a short time period. Manual measurements are, for practical reasons, often short-term and low-frequent, or restricted to periods where emissions are expected to be high, e.g. after fertilizing. However, the nature of N2O emissions, being largely unpredictable, calls for continuous or near-continuous measurements over long time periods. So far, rather few long-term, high resolution measurements of N2O emissions from arable fields are reported; among them are Flessa et al. (2002) and Senapati et al. (2016). In this study, we have a two-year data set (2015-2017) with hourly measurements from ten automatic chambers, covering unfertilized controls as well as different nitrogen fertilizer treatments. Grain was produced on the field, and effects of tillage, harvest and other cropping measures were covered. What we can see from the experiment is that (a) the unfertilized control plots seem to follow the same emission pattern as the fertilized plots, at a level similar to the standard mineral fertilized plots (120 kg N ha-1 yr-1) and (b) freeze/thaw emissions are comparable in size to emissions after fertilizing. These two findings imply that the importance of fertilizing to the overall N2O emissions from arable soils may be smaller than previously expected. References: Ciais, P., C. Sabine, G. Bala, L. Bopp, V. Brovkin, J. Canadell et al. 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung et

  1. Fabrication of Micro Components by Electrochemical Deposition

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    The main issue of this thesis is the combination of electrochemical deposition of metals and micro machining. Processes for electroplating and electroless plating of nickel and nickel alloys have been developed and optimised for compatibility with microelectronics and silicon based micromechanics...... of electrochemical machining and traditional machining is compared to micro machining techniques as performed in the field of microelectronics. Various practical solutions and equipment for electrochemical deposition of micro components are demonstrated, as well as the use and experience obtained utilising...

  2. Measurement of two-dimensional Doppler wind fields using a field widened Michelson interferometer.

    Science.gov (United States)

    Langille, Jeffery A; Ward, William E; Scott, Alan; Arsenault, Dennis L

    2013-03-10

    An implementation of the field widened Michelson concept has been applied to obtain high resolution two-dimensional (2D) images of low velocity (<50 m/s) Doppler wind fields in the lab. Procedures and techniques have been developed that allow Doppler wind and irradiance measurements to be determined on a bin by bin basis with an accuracy of less than 2.5 m/s from CCD images over the observed field of view. The interferometer scanning mirror position is controlled to subangstrom precision with subnanometer repeatability using the multi-application low-voltage piezoelectric instrument control electronics developed by COM DEV Ltd.; it is the first implementation of this system as a phase stepping Michelson. In this paper the calibration and characterization of the Doppler imaging system is described and the planned implementation of this new technique for imaging 2D wind and irradiance fields using the earth's airglow is introduced. Observations of Doppler winds produced by a rotating wheel are reported and shown to be of sufficient precision for buoyancy wave observations in airglow in the mesopause region of the terrestrial atmosphere.

  3. Electrochemical synthesis of electroconducting polymers

    Directory of Open Access Journals (Sweden)

    Gvozdenović Milica M.

    2014-01-01

    Full Text Available Electroconducting polymers from the group of synthetic metals are extensively investigated due to numerous properties perspective in practical application. These materials may be synthesized by both chemical and electrochemical procedures. Chemical synthesis is suitable when bulk quantities of the polymer are needed and up to date it presents dominant commercial method of producing electroconducting polymers. Nevertheless, electrochemical synthesis has its advantages; it avoids usage of oxidants since conducting polymeric material is obtained at anode upon application of positive potential, leading to increased purity. On the other hand, since the polymer is deposited onto electrode, further electrochemical characterization is facilitated. Owing to actuality of the research in the field this texts aims to describe important aspects of electrochemical synthesis of electroconducting polymers, with special emphasis to polyaniline and polypyrrole. [Projekat Ministarstva nauke Republike Srbije, br. 172046

  4. Electrochemical biofilm control: a review.

    Science.gov (United States)

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are: (1) to present the current status of knowledge regarding electrochemical biofilm control; (2) to establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it; (3) to discuss current proposed mechanisms; and (4) to introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing datasets across the literature and generating comparable datasets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use.

  5. Measurements of Electric Field Fluctuations Using a Capacitive Probe on the MST Reversed Field Pinch

    Science.gov (United States)

    Tan, Mingsheng; Almagri, A. F.; Sarff, J. S.; McCollam, K. J.; Triana, J. C.; Li, H.; Ding, W. X.; Liu, W.

    2015-11-01

    Experimental measurements and extended MHD computation reveal that both flow and current density fluctuations are important for the magnetic relaxation of RFP plasmas via tearing fluctuations. Motivated by these results, we have developed a multi-electrode capacitive probe for radial profile measurements of the electrostatic potential deep in the plasma. The capacitive probe measures the ac plasma potential via electrodes insulated from the plasma using an annular boron nitride dielectric (also the particle shield), provided the secondary emission is sufficiently large (Te>20 eV). The probe has ten sets of four capacitors with 1.5 cm radial separation. At each radius, four capacitors are arranged on a 1.3 cm square grid. This probe has been inserted up to 15 cm from the wall in 200 kA deuterium plasmas. The fluctuation amplitudes increase during the sawtooth crash and the power spectrum broadens (similar to the behavior of magnetic field fluctuations). The frequency bandwidth allows measurements of the radial coherence and phase of the fluctuations associated with rotating tearing modes up to the Alfvénic range. A next-step goal is measurement of the total dynamo emf, ~ /B0 , to complement ongoing measurements of the Hall dynamo emf, / ne , using a deep-insertion magnetic probe. M. Tan is supported by ITER-China Program. Work is supported by US DOE.

  6. Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: effect of substrate concentration.

    Science.gov (United States)

    Chandrasekhar, K; Venkata Mohan, S

    2012-04-01

    Remediation of real-field petroleum sludge was studied under self-induced electrogenic microenvironment with the function of variable organic loads (OLs) in bio-electrochemical treatment (BET) systems. Operation under various OLs documented marked influence on both electrogenic activity and remediation efficiency. Both total petroleum hydrocarbons (TPH) and its aromatic fraction documented higher removal with OL4 operation followed by OL3, OL2, OL1 and control. Self-induced biopotential and associated multiple bio-electrocatalytic reactions during BET operation facilitated biotransformation of higher ring aromatics (5-6) to lower ring aromatic (2-3) compounds. Asphaltenes and NSO fractions showed negligible removal during BET operation. Higher electrogenic activity was recorded at OL1 (343mV; 53.11mW/m(2), 100Ω) compared to other three OLs operation. Bioaugmentation to anodic microflora with anaerobic culture documented enhanced electrogenic activity at OL4 operation. Voltammetric profiles, Tafel analysis and VFA generation were in agreement with the observed power generation and degradation efficiency.

  7. Self-assembled monolayers of stearic imidazoline on copper electrodes detected using electrochemical measurements, XPS, molecular simulation and FTIR

    Institute of Scientific and Technical Information of China (English)

    LIU XiuYu; MA HouYi; MIAO Shuai; ZHOU Min

    2009-01-01

    A type of imidazoline inhibitor was synthesized using stearic acid and diethylenetriamine (DETA) as raw materials. Self-assembled monolayers (SAMs) of stearic imidazoline (IM) were prepared on copper surface. The copper electrode modified by IM was detected by electrochemical impedance spectros-copy (EIS), Tafel polarization curves, X-ray photoelectron spectroscopy (XPS) and Fourial transform reflection spectroscopy (FTIR). The biggest inhibition efficiency for copper corrosion of IM was 99% in NaCI solution according to EIS results. The XPS results provided evidence that the IM was adsorbed on copper surface. The theoretical calculations of molecular simulation supported the experimental re-sults and showed that the IM molecules were tilted at an angle to the copper surface.

  8. Field temperature measurements at Erta'Ale Lava Lake, Ethiopia

    Science.gov (United States)

    Burgi, Pierre-Yves; Caillet, Marc; Haefeli, Steven

    2002-06-01

    The shield volcano Erta'Ale, situated in the Danakil Depression, Ethiopia, is known for its active lava lake. In February 2001, our team visited this lake, located inside an 80-m-deep pit, to perform field temperature measurements. The distribution and variation of temperature inside the lake were obtained on the basis of infrared radiation measurements performed from the rim of the pit and from the lake shores. The crust temperature was also determined from the lake shores with a thermocouple to calibrate the pyrometer. We estimated an emissivity of the basalt of 0.74 from this experiment. Through the application of the Stefan-Boltzmann law, we then obtained an estimate of the total radiative heat flux, constrained by pyrometer measurements of the pit, and visual observations of the lake activity. Taking into account the atmospheric convective heat flux, the convected magma mass flux needed to balance the energy budget was subsequently derived and found to represent between 510 and 580 kg s-1. The surface circulation of this mass flux was also analyzed through motion processing techniques applied to video images of the lake. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00445-002-0224-3.

  9. Verification of Electromagnetic Field Measurements via Inter-laboratory Comparison Measurements

    Directory of Open Access Journals (Sweden)

    M. Mann

    2005-01-01

    Full Text Available An inter-laboratory comparison of field strength measurements was conducted in order to verify the comparability of high-frequency electromagnetic field measurements. For this purpose, 17 participating teams hosted by the working group "procedures of exposure determination" of the LAI (Länderausschuss für Immissionsschutz, state committee on immission control determined the field strength at given stations around a hospital situation. At those stations very different signals were generated, such as sine wave signals at 27MHz and 433MHz, signals from a diathermy device in Continuous-Wave (CW and Pulse-Width-Modulation (PWM mode, from a GSM base station at 900MHz and 1800MHz, from a UMTS base station, from a babyphone device and from a DECT cordless phone. This contribution describes the evaluation of the measured values and the approach to the computation of a reference value. Considering various sources of electromagnetic fields in the areas of personal safety at work and of immission control, the most important results are presented and the conclusions drawn are discussed.

  10. Verification of Electromagnetic Field Measurements via Inter-laboratory Comparison Measurements

    Science.gov (United States)

    Mann, M.; Brüggemeyer, H.; Weiß, P.

    2005-05-01

    An inter-laboratory comparison of field strength measurements was conducted in order to verify the comparability of high-frequency electromagnetic field measurements. For this purpose, 17 participating teams hosted by the working group "procedures of exposure determination" of the LAI (Länderausschuss für Immissionsschutz, state committee on immission control) determined the field strength at given stations around a hospital situation. At those stations very different signals were generated, such as sine wave signals at 27MHz and 433MHz, signals from a diathermy device in Continuous-Wave (CW) and Pulse-Width-Modulation (PWM) mode, from a GSM base station at 900MHz and 1800MHz, from a UMTS base station, from a babyphone device and from a DECT cordless phone. This contribution describes the evaluation of the measured values and the approach to the computation of a reference value. Considering various sources of electromagnetic fields in the areas of personal safety at work and of immission control, the most important results are presented and the conclusions drawn are discussed.

  11. Working electrode holder and electrochemical cell

    DEFF Research Database (Denmark)

    2016-01-01

    The present disclosure relates to a holder for a test object, more specifically to a holder for measuring electrochemical properties of the test object. One embodiment relates to a working electrode holder for measuring electrochemical properties of a front surface of a test object in a liquid...... in the bottom surface and configured for passage of said liquid, such that liquid is able to pass onto the electrically contacted front surface. The holder may be used in an electrochemical cell....

  12. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.

    Science.gov (United States)

    Ki, Dongwon; Parameswaran, Prathap; Popat, Sudeep C; Rittmann, Bruce E; Torres, César I

    2015-11-01

    The aim of this study was to investigate the combination of two technologies - pulsed electric field (PEF) pre-treatment and semi-continuous pre-fermentation of primary sludge (PS) - to produce volatile fatty acids (VFAs) as the electron donor for microbial electrolysis cells (MECs). Pre-fermentation with a 3-day solids retention time (SRT) led to the maximum generation of VFAs, with or without pretreatment of the PS through pulsed-electric-fields (PEF). PEF treatment before fermentation enhanced the accumulation of the preferred VFA, acetate, by 2.6-fold. Correspondingly, MEC anodes fed with centrate from 3-day pre-fermentation of PEF-treated PS had a maximum current density ∼3.1 A/m(2), which was 2.4-fold greater than the control pre-fermented centrate. Over the full duration of batch MEC experiments, using pre-fermented centrate led to successful performance in terms of Coulombic efficiency (95%), Coulombic recovery (80%), and COD-removal efficiency (85%).

  13. Polymer based biosensor for rapid electrochemical detection of virus infection of human cells

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine; Poulsen, Claus R.; Jain, Titoo

    2011-01-01

    The demand in the field of medical diagnostics for simple, cost efficient and disposable devices is growing. Here, we present a label free, all-polymer electrochemical biosensor for detection of acute viral disease. The dynamics of a viral infection in human cell culture was investigated in a micro...... fluidic system on conductive polymer PEDOT:TsO microelectrodes by electrochemical impedance spectroscopy and video time lapse microscopy.Employing this sensitive, real time electrochemical technique, we could measure the immediate cell response to cytomegalovirus, and detect an infection within 3h, which...... is several hours before the cytopathic effect is apparent with conventional imaging techniques. Atomic force microscopy and scanning ion conductance microscopy imaging consolidate the electrochemical measurements by demonstrating early virus induced changes in cell morphology of apparent programmed cell...

  14. First measurements of cosmic muons with magnetic field in CMS

    Energy Technology Data Exchange (ETDEWEB)

    Biallass, P; Hebbeker, T; Hoepfner, K [Physics Institute IIIA, RWTH Aachen, Physikzentrum, 52056 Aachen (Germany)], E-mail: biallass@cern.ch

    2008-05-15

    The reconstruction of cosmic muons is important for testing and aligning the Compact Muon Solenoid experiment (CMS). In this context the Magnet Test and Cosmic Challenge (MTCC) with its comprehensive cosmic data taking periods including the presence of the 4 Tesla magnetic field has been like a dress rehearsal of detector hardware and software for the upcoming startup of the CMS detector. In addition to data taking also the comparison with simulated events is a crucial part of physics analyses. With respect to these tasks a dedicated cosmic muon generator, CMSCGEN, has been developed and compared with data from MTCC. As an example results from a reconstruction study using the barrel muon system are shown, comparing data and Monte Carlo prediction at the level of single chambers up to reconstructed tracks including momentum measurements.

  15. Chemical telemetry of OH observed to measure interstellar magnetic fields

    CERN Document Server

    Viti, S; Myers, P C

    2005-01-01

    We present models for the chemistry in gas moving towards the ionization front of an HII region. When it is far from the ionization front, the gas is highly depleted of elements more massive than helium. However, as it approaches the ionization front, ices are destroyed and species formed on the grain surfaces are injected into the gas phase. Photodissociation removes gas phase molecular species as the gas flows towards the ionization front. We identify models for which the OH column densities are comparable to those measured in observations undertaken to study the magnetic fields in star forming regions and give results for the column densities of other species that should be abundant if the observed OH arises through a combination of the liberation of H2O from surfaces and photodissociation. They include CH3OH, H2CO, and H2S. Observations of these other species may help establish the nature of the OH spatial distribution in the clouds, which is important for the interpretation of the magnetic field results.

  16. Chemical, Biological, and Explosive Sensors for Field Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Kyle, Manuel Manard, Stephan Weeks

    2009-01-31

    Special Technologies Laboratory (STL) is developing handheld chemical, biological, and explosive (CBE) detection systems and sensor motes for wireless networked field operations. The CBE sensors are capable of detecting and identifying multiple targeted toxic industrial chemicals (TICs) and high-explosive vapor components. The CBE devices are based on differential mobility spectrometry (DMS) coupled with fast gas chromatography (GC) or mass spectrometry. The systems all include the concepts of: 1. Direct air/particulate “smart” sampling 2. Selective, continuous real-time (~1 sec) alert monitoring using DMS 3. Highly selective, rapid dual technology separation/verification analysis The biosensor technology is based on Raman aerosol particle flow cytometry for target detection and identification. Monitoring and identifying trace level chemical vapors directly from ambient air will allow First Responders to quickly adapt situational response strategies and personal protective equipment needs to the specific response scenario being encountered. First Responders require great confidence in the measurements and ability of a given system to detect CBE below threshold levels without interferences. The concept of determining the background matrix in near real-time to allow subsequent automated field-programmable method selection and cueing of high-value assets in a wide range of environs will be presented. This provides CBE information for decisions prior to First Responders entering the response site or sending a portable mobile unit for a remote site survey of the hazards. The focus is on real-time information needed by those responsible for emergency response and national security.

  17. Comparison of magnetic field meters used for Elf exposure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Magne, I. [Electricite de France (EDF/RD), 77 - Moret sur Loing (France); Azoulay, A. [Supelec, 91 - Gif sur Yvette (France); Lambrozo, J.; Souques, M. [Gaz de France (EDF/GDF), SEM, 75 - Paris (France)

    2006-07-01

    Objective The question of the biological effects of E.L.F. electromagnetic fields (50/60 Hz) has lead to many experimental and epidemiological works, in occupational exposure and in residential exposure. One of the main difficulties is to integrate the maximum of information about the environmental exposures during the everyday life without limitation to the exposure of the home. The objective of this study is to analyse experimentally the metrology associated with human exposure to 50 Hz magnetic field, in the optic of a study of the French population exposure. Method 4 meters were tested: the E.M.D.E.X. II, currently used in epidemiological studies, the E.M.D.E.X. L.I.T.E., which is more recent, the H.T.300, an Italian meter, and the F.D.3, which is made by Combinova A calibration was performed with an Helmoltz coil. The immunity of these meters to GSM signal was also tested. The influence of the sample rate was evaluated. Results and conclusion The meter chosen for performing the measurements of the exposure study will be selected in function of the following criteria: - easiness of use - precision - low sample rate - memory size and reliability of data stocking - immunity to GSM perturbations. (authors)

  18. A comprehensive method of estimating electric fields from vector magnetic field and Doppler measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kazachenko, Maria D.; Fisher, George H.; Welsch, Brian T., E-mail: kazachenko@ssl.berkeley.edu [Space Sciences Laboratory, UC Berkeley, CA 94720 (United States)

    2014-11-01

    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal decomposition (PTD) of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the 'PTD-Doppler-FLCT Ideal' (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the FISHPACK software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (ANMHD) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 1% error in the total Poynting flux and a 10% error in the helicity flux rate at a normal viewing angle (θ = 0) and less than 25% and 10% errors, respectively, at large viewing angles (θ < 60°). We compare our results with other inversion methods at zero viewing angle and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.

  19. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  20. Electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Heuts, J.J.F.G.; Willems, J.J.G.S.A.

    1987-10-13

    An electrochemical cell is described comprising a negative electrode. The electrochemically active material of which consists of an intermetallic compound forming a hydride with hydrogen, which compound has the CaCu/sub 5/-structure and the compositional formula AB/sub m/C/sub n/, where m+n is between 4.8 and 5.4, where n is between 0.05 and 0.6, in which A consists of Misch-metal or of one or more elements selected from the group consisting of Y, Ti, Hf, Zr, Ca, Th, La and the remaining rare earth metals, in which the total atomic quantities of the elements Y, Ti, Hf and Zr may not be more than 40% of A. B consists of two or more elements selected from the group formed by Ni, Co, Cu, Fe and Mn, where the maximum atomic quantity per gram atom of A is for Ni: 3.5, for Co:3.5, for Cu:3.5, for Fe:2.0 and for Mn:1.0, and C consists of one or more elements selected from the group formed by Al, Cr and Si in the indicated atomic quantities: Al:0.05-0.6, Cr:0.05-0.5 and Si:0.05-0.5, characterized in that the electrochemically active material additionally comprises one or more metals selected from the group formed by Pd, Pt, Ir and Rh, the atomic quantity per gram atom of A being from 0.001 to 0.5.

  1. Measurement of the velocity field behind the automotive vent

    Directory of Open Access Journals (Sweden)

    Jedelský Jan

    2012-04-01

    Full Text Available Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  2. Measurement of the velocity field behind the automotive vent

    Science.gov (United States)

    Ležovič, Tomáš; Lízal, František; Jedelský, Jan; Jícha, Miroslav

    2012-04-01

    Passenger comfort in a personal vehicle cabin strongly depends on the appropriate function of the cabin ventilation system. Great attention is therefore paid to the effective functioning of the automotive vents. Various techniques can be employed to evaluate the proper formation of the flow behind the ventilation outlet. Constant Temperature Anemometry (CTA) was used in our case for accurate measurement of the velocity field and consequent assessment of jet boundaries and jet axis. A novel methodology has been developed for the simulation of realistic conditions when using just a single vent under laboratory conditions instead of the complete vehicle ventilation system. A special technique has also been developed for determination of the terminal inclination angles of vent vanes for the particular vent type, which can be completely closed by the adjustable horizontal vanes. A two wire CTA probe was used for measurement of the actual velocity over predefined planes, which were specified according to smoke visualization. Mean velocities and the turbulence intensity were evaluated on the basis of the obtained data and are presented in a form of charts. Both jet boundary and orientation of the jet for a given setup of the vent are important characteristics of particular vent type. Effectiveness of different vents could be compared using our methodology and hence contribute to development of advanced ventilation system.

  3. A measurement system applicable for landslide experiments in the field

    Science.gov (United States)

    Guo, Wen-Zhao; Xu, Xiang-Zhou; Wang, Wen-Long; Yang, Ji-Shan; Liu, Ya-Kun; Xu, Fei-Long

    2016-04-01

    Observation of gravity erosion in the field with strong sunshine and wind poses a challenge. Here, a novel topography meter together with a movable tent addresses the challenge. With the topography meter, a 3D geometric shape of the target surface can be digitally reconstructed. Before the commencement of a test, the laser generator position and the camera sightline should be adjusted with a sight calibrator. Typically, the topography meter can measure the gravity erosion on the slope with a gradient of 30°-70°. Two methods can be used to obtain a relatively clear video, despite the extreme steepness of the slopes. One method is to rotate the laser source away from the slope to ensure that the camera sightline remains perpendicular to the laser plane. Another way is to move the camera farther away from the slope in which the measured volume of the slope needs to be corrected; this method will reduce distortion of the image. In addition, installation of tent poles with concrete columns helps to surmount the altitude difference on steep slopes. Results observed by the topography meter in real landslide experiments are rational and reliable.

  4. Stable isotope measurements of evapotranspiration partitioning in a maize field

    Science.gov (United States)

    Hogan, Patrick; Parajka, Juraj; Oismüller, Markus; Strauss, Peter; Heng, Lee; Blöschl, Günter

    2017-04-01

    Evapotranspiration (ET) is one of the most important processes in describing land surface - atmosphere interactions as it connects the energy and water balances. Furthermore knowledge of the individual components of evapotranspiration is important for ecohydrological modelling and agriculture, particularly for irrigation efficiency and crop productivity. In this study, we tested the application of the stable isotope method for evapotranspiration partitioning to a maize crop during the vegetative stage, using sap flow sensors as a comparison technique. Field scale ET was measured using an eddy covariance device and then partitioned using high frequency in-situ measurements of the isotopic signal of the canopy water vapor. The fraction of transpiration (Ft) calculated with the stable isotope method showed good agreement with the sap flow method. High correlation coefficient values were found between the two techniques, indicating the stable isotope method can successfully be applied in maize. The results show the changes in transpiration as a fraction of evapotranspiration after rain events and during the subsequent drying conditions as well as the relationship between transpiration and solar radiation and vapor pressure deficit.

  5. Statistical analysis of personal radiofrequency electromagnetic field measurements with nondetects.

    Science.gov (United States)

    Röösli, Martin; Frei, Patrizia; Mohler, Evelyn; Braun-Fahrländer, Charlotte; Bürgi, Alfred; Fröhlich, Jürg; Neubauer, Georg; Theis, Gaston; Egger, Matthias

    2008-09-01

    Exposimeters are increasingly applied in bioelectromagnetic research to determine personal radiofrequency electromagnetic field (RF-EMF) exposure. The main advantages of exposimeter measurements are their convenient handling for study participants and the large amount of personal exposure data, which can be obtained for several RF-EMF sources. However, the large proportion of measurements below the detection limit is a challenge for data analysis. With the robust ROS (regression on order statistics) method, summary statistics can be calculated by fitting an assumed distribution to the observed data. We used a preliminary sample of 109 weekly exposimeter measurements from the QUALIFEX study to compare summary statistics computed by robust ROS with a naïve approach, where values below the detection limit were replaced by the value of the detection limit. For the total RF-EMF exposure, differences between the naïve approach and the robust ROS were moderate for the 90th percentile and the arithmetic mean. However, exposure contributions from minor RF-EMF sources were considerably overestimated with the naïve approach. This results in an underestimation of the exposure range in the population, which may bias the evaluation of potential exposure-response associations. We conclude from our analyses that summary statistics of exposimeter data calculated by robust ROS are more reliable and more informative than estimates based on a naïve approach. Nevertheless, estimates of source-specific medians or even lower percentiles depend on the assumed data distribution and should be considered with caution. Copyright 2008 Wiley-Liss, Inc.

  6. Field Measurements and Modeling of the Southeast Greenland Firn Aquifer

    Science.gov (United States)

    Miller, O. L.; Solomon, D. K.; Miège, C.; Voss, C. I.; Koenig, L.; Forster, R. R.; Schmerr, N. C.; Montgomery, L. N.; Legchenko, A.; Ligtenberg, S.

    2016-12-01

    An extensive firn aquifer forms in southeast Greenland as surface meltwater percolates through the upper seasonal snow and firn layers to depth and saturates open pore spaces. The firn aquifer is found at depths from about 10 to 35 m below the snow surface in areas with high accumulation rates and high melt rates. The firn aquifer retains significant volume of meltwater and heat within the ice sheet. The first-ever hydrologic and geochemical measurements from several boreholes drilled into the aquifer have been made 50 km upstream of Helheim Glacier terminus in SE Greenland. This field data is used with a version of the SUTRA groundwater simulator that represents the freeze/thaw process to model the hydrologic and thermal conditions of the ice sheet, including aquifer water recharge, lateral flow, and discharge. Meltwater generation during the summer season is modeled using degree day methods, and meltwater recharge to the aquifer (10-70 cm/year) is calculated using water level fluctuations and volumetric flow measurements (3e-7 to 5e-6 m3/s). Aquifer hydrologic parameters, including hydraulic conductivity (2e-5 to 4e -4 m/s), storativity, and specific discharge (3e-7 to 5e-6 m/s), are estimated from aquifer pumping tests and tracer experiments. In situ measurements were obtained using a novel heated piezometer, which advances downward through the unsaturated and saturated zones of the aquifer by melting the surrounding firn. Innovative modeling approaches blending unsaturated and saturated groundwater flow modeling and ice thermodynamics indicate the importance of surface topography controls on fluid flow within the aquifer, and forecast the nature and volume of aquifer water discharge into crevasses at the edge of the ice sheet. This pioneering study is crucial to understanding the aquifer's influence on mass balance estimates of the ice sheet.

  7. Signal amplification in electrochemical detection of buckwheat allergenic protein using field effect transistor biosensor by introduction of anionic surfactant

    Directory of Open Access Journals (Sweden)

    Sho Hideshima

    2016-03-01

    Full Text Available Food allergens, especially buckwheat proteins, sometimes induce anaphylactic shock in patients after ingestion. Development of a simple and rapid screening method based on a field effect transistor (FET biosensor for food allergens in food facilities or products is in demand. In this study, we achieved the FET detection of a buckwheat allergenic protein (BWp16, which is not charged enough to be electrically detected by FET biosensors, by introducing additional negative charges from anionic surfactants to the target proteins. A change in the FET characteristics reflecting surface potential caused by the adsorption of target charged proteins was observed when the target sample was coupled with the anionic surfactant (sodium dodecyl sulfate; SDS, while no significant response was detected without any surfactant treatment. It was suggested that the surfactant conjugated with the protein could be useful for the charge amplification of the target proteins. The surface plasmon resonance analysis revealed that the SDS-coupled proteins were successfully captured by the receptors immobilized on the sensing surface. Additionally, we obtained the FET responses at various concentrations of BWp16 ranging from 1 ng/mL to 10 μg/mL. These results suggest that a signal amplification method for FET biosensing is useful for allergen detection in the food industry.

  8. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  9. Measurements of flux pumping activation of trapped field magnets

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, Roy; Parks, Drew; Sawh, Ravi-Persad [Texas Center for Superconductivity, 202 Houston Science Center, University of Houston, Houston, TX 77204-5002 (United States); Davey, Kent [Physics Department, 617 Science and Research Building I, University of Houston, Houston, TX 77204-5005 (United States)

    2010-11-15

    Large grains of high temperature superconducting (HTS) material can be utilized as trapped field magnets (TFMs). Persistent currents are set up in the HTS when it is cooled in a magnetic field, or exposed to a magnetic field after cooling. TFMs have been improved over the past two decades by the efforts of a large number of worldwide research groups. However, applications using TFMs have lagged, in part due to the problem of high fields needed for activation. We describe herein experiments designed to observe the behaviour of TFM activation using repeated applications of low fields (called 'pumping'). Significant partial activation is obtained using a non-uniform pumping field (e.g., a small permanent magnet) which is higher in the centre of the HTS than at the periphery. Cooling in zero field followed by pumping with such a field results in trapping the full applied field, in comparison to half of the applied field being trapped by cooling in zero field followed by application of a uniform field. We find that for partial activation by cooling in a field and subsequent activation by pumping, the resulting fields are additive. We also conclude that for activation by fluxoid pumping, creep assists the process.

  10. Forecasting auroras from regional and global magnetic field measurements

    Science.gov (United States)

    Kauristie, Kirsti; Myllys, Minna; Partamies, Noora; Viljanen, Ari; Peitso, Pyry; Juusola, Liisa; Ahmadzai, Shabana; Singh, Vikramjit; Keil, Ralf; Martinez, Unai; Luginin, Alexej; Glover, Alexi; Navarro, Vicente; Raita, Tero

    2016-06-01

    We use the connection between auroral sightings and rapid geomagnetic field variations in a concept for a Regional Auroral Forecast (RAF) service. The service is based on statistical relationships between near-real-time alerts issued by the NOAA Space Weather Prediction Center and magnetic time derivative (dB/dt) values measured by five MIRACLE magnetometer stations located in Finland at auroral and sub-auroral latitudes. Our database contains NOAA alerts and dB/dt observations from the years 2002-2012. These data are used to create a set of conditional probabilities, which tell the service user when the probability of seeing auroras exceeds the average conditions in Fennoscandia during the coming 0-12 h. Favourable conditions for auroral displays are associated with ground magnetic field time derivative values (dB/dt) exceeding certain latitude-dependent threshold values. Our statistical analyses reveal that the probabilities of recording dB/dt exceeding the thresholds stay below 50 % after NOAA alerts on X-ray bursts or on energetic particle flux enhancements. Therefore, those alerts are not very useful for auroral forecasts if we want to keep the number of false alarms low. However, NOAA alerts on global geomagnetic storms (characterized with Kp values > 4) enable probability estimates of > 50 % with lead times of 3-12 h. RAF forecasts thus rely heavily on the well-known fact that bright auroras appear during geomagnetic storms. The additional new piece of information which RAF brings to the previous picture is the knowledge on typical storm durations at different latitudes. For example, the service users south of the Arctic Circle will learn that after a NOAA ALTK06 issuance in night, auroral spotting should be done within 12 h after the alert, while at higher latitudes conditions can remain favourable during the next night.

  11. Measurement of surface resistivity/conductivity of different organic thin films by a combination of optical shearography and electrochemical impedance spectroscopy

    Science.gov (United States)

    Habib, Khaled

    2013-11-01

    Shearography techniques were applied again to measure the surface resistivity/conductivity of different organic thin films on a metallic substrate. The coatings were ACE premium-grey enamel (spray coating), a yellow Acrylic lacquer, and a gold nail polish on a carbon steel substrate. The investigation was focused on determining the in-plane displacement of the coatings by shearography between 20 and 60 °C. Then, the alternating current (AC) impedance (resistance) of the same coated samples was determined by electrochemical impedance spectroscopy (EIS) in 3.0% NaCl solution at room temperature. As a result, the proportionality constant (resistivity or conductivity = 1/surface resistivity) between the determined AC impedance and the in-plane displacement was obtained. The obtained resistivity of all investigated coatings, 40:15 × 106-24:6 × 109Ωcm, was found in the insulator range.

  12. Oil Spill Field Trial at Sea: Measurements of Benzene Exposure.

    Science.gov (United States)

    Gjesteland, Ingrid; Hollund, Bjørg Eli; Kirkeleit, Jorunn; Daling, Per; Bråtveit, Magne

    2017-07-01

    Characterize personal exposure to airborne hydrocarbons, particularly carcinogenic benzene, during spill of two different fresh crude oils at sea. The study included 22 participants taking part in an «oil on water» field trial in the North Sea. Two types of fresh crude oils (light and heavy) were released six times over two consecutive days followed by different oil spill response methods. The participants were distributed on five boats; three open sampling boats (A, B, and C), one release ship (RS), and one oil recovery (OR) vessel. Assumed personal exposure was assessed a priori, assuming high exposure downwind and close to the oil slick (sampling boats), low exposure further downwind (100-200 m) and upwind from the oil slick (main deck of RS and OR vessel), and background exposure indoors (bridge of RS/OR vessel). Continuous measurements of total volatile organic compounds in isobutylene equivalents were performed with photoionization detectors placed in all five boats. Full-shift personal exposure to benzene, toluene, ethylbenzene, xylenes, naphthalene, and n-hexane was measured with passive thermal desorption tubes. Personal measurements of benzene, averaged over the respective sample duration, on Day 1 showed that participants in the sampling boats (A, B, and C) located downwind and close to the oil slick were highest exposed (0.14-0.59 ppm), followed by participants on the RS main deck (0.02-0.10 ppm) and on the bridge (0.004-0.03 ppm). On Day 2, participants in sampling boat A had high benzene exposure (0.87-1.52 ppm) compared to participants in sampling boat B (0.01-0.02 ppm), on the ships (0.06-0.10 ppm), and on the bridge (0.004-0.01 ppm). Overall, the participants in the sampling boats had the highest exposure to all of the compounds measured. The light crude oil yielded a five times higher concentration of total volatile organic compounds in air in the sampling boats (max 510 ppm) than the heavy crude oil (max 100 ppm) but rapidly declined to

  13. Three dimensional electrochemical system for neurobiological studies

    DEFF Research Database (Denmark)

    Vazquez, Patricia; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    In this work we report a novel three dimensional electrode array for electrochemical measurements in neuronal studies. The main advantage of working with these out-of-plane structures is the enhanced sensitivity of the system in terms of measuring electrochemical changes in the environment...

  14. Measurements of weak localization of graphene in inhomogeneous magnetic fields

    DEFF Research Database (Denmark)

    Lindvall, N.; Shivayogimath, Abhay; Yurgens, A.

    2015-01-01

    Weak localization in graphene is studied in inhomogeneous magnetic fields. To generate the inhomogeneous field, a thin film of type-II superconducting niobium is put in close proximity to graphene. A deviation from the ordinary quadratic weak localization behavior is observed at low fields. We...

  15. Results from laboratory and field testing of nitrate measuring spectrophotometers

    Science.gov (United States)

    Snazelle, Teri T.

    2015-01-01

    Five ultraviolet (UV) spectrophotometer nitrate analyzers were evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) during a two-phase evaluation. In Phase I, the TriOS ProPs (10-millimeter (mm) path length), Hach NITRATAX plus sc (5-mm path length), Satlantic Submersible UV Nitrate Analyzer (SUNA, 10-mm path length), and S::CAN Spectro::lyser (5-mm path length) were evaluated in the HIF Water-Quality Servicing Laboratory to determine the validity of the manufacturer's technical specifications for accuracy, limit of linearity (LOL), drift, and range of operating temperature. Accuracy specifications were met in the TriOS, Hach, and SUNA. The stock calibration of the S::CAN required two offset adjustments before the analyzer met the manufacturer's accuracy specification. Instrument drift was observed only in the S::CAN and was the result of leaching from the optical path insert seals. All tested models, except for the Hach, met their specified LOL in the laboratory testing. The Hach's range was found to be approximately 18 milligrams nitrogen per liter (mg-N/L) and not the manufacturer-specified 25 mg-N/L. Measurements by all of the tested analyzers showed signs of hysteresis in the operating temperature tests. Only the SUNA measurements demonstrated excessive noise and instability in temperatures above 20 degrees Celsius (°C). The SUNA analyzer was returned to the manufacturer at the completion of the Phase II field deployment evaluation for repair and recalibration, and the performance of the sensor improved significantly.

  16. Velocity field measurements in the wake of a propeller model

    Science.gov (United States)

    Mukund, R.; Kumar, A. Chandan

    2016-10-01

    Turboprop configurations are being revisited for the modern-day regional transport aircrafts for their fuel efficiency. The use of laminar flow wings is an effort in this direction. One way to further improve their efficiency is by optimizing the flow over the wing in the propeller wake. Previous studies have focused on improving the gross aerodynamic characteristics of the wing. It is known that the propeller slipstream causes early transition of the boundary layer on the wing. However, an optimized design of the propeller and wing combination could delay this transition and decrease the skin friction drag. Such a wing design would require the detailed knowledge of the development of the slipstream in isolated conditions. There are very few studies in the literature addressing the requirements of transport aircraft having six-bladed propeller and cruising at a high propeller advance ratio. Low-speed wind tunnel experiments have been conducted on a powered propeller model in isolated conditions, measuring the velocity field in the vertical plane behind the propeller using two-component hot-wire anemometry. The data obtained clearly resolved the mean velocity, the turbulence, the ensemble phase averages and the structure and development of the tip vortex. The turbulence in the slipstream showed that transition could be close to the leading edge of the wing, making it a fine case for optimization. The development of the wake with distance shows some interesting flow features, and the data are valuable for flow computation and optimization.

  17. Wake Vortex Field Measurement Program at Memphis, Tennessee: Data Guide

    Science.gov (United States)

    Campbell, S. D.; Dasey, T. J.; Freehart, R. E.; Heinrichs, R. M.; Mathews, M. P.; Perras, G. H.; Rowe, G. S.

    1997-01-01

    Eliminating or reducing current restrictions in the air traffic control system due to wake vortex considerations would yield increased capacity, decreased delays, and cost savings. Current wake vortex separation standards are widely viewed as very conservative under most conditions. However, scientific uncertainty about wake vortex behavior under different atmospheric conditions remains a barrier to development of an adaptive vortex spacing system. The objective of the wake vortex field measurement efforts during December, 1994 and August, 1995 at Memphis, TN were to record wake vortex behavior for varying atmospheric conditions and types of aircraft. This effort is part of a larger effort by the NASA Langley Research Center to develop an Aircraft Vortex Spacing System (AVOSS) as an element of the Terminal Area Productivity (TAP) program. The TAP program is being performed in concert with the FAA Terminal Air Traffic Control Automation (TATCA) program and ATC Automation. Wake vortex behavior was observed using a mobile continuous-wave (CW) coherent laser Doppler radar (lidar) developed at Lincoln Laboratory. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm.

  18. Distance measurement based on light field geometry and ray tracing.

    Science.gov (United States)

    Chen, Yanqin; Jin, Xin; Dai, Qionghai

    2017-01-09

    In this paper, we propose a geometric optical model to measure the distances of object planes in a light field image. The proposed geometric optical model is composed of two sub-models based on ray tracing: object space model and image space model. The two theoretic sub-models are derived on account of on-axis point light sources. In object space model, light rays propagate into the main lens and refract inside it following the refraction theorem. In image space model, light rays exit from emission positions on the main lens and subsequently impinge on the image sensor with different imaging diameters. The relationships between imaging diameters of objects and their corresponding emission positions on the main lens are investigated through utilizing refocusing and similar triangle principle. By combining the two sub-models together and tracing light rays back to the object space, the relationships between objects' imaging diameters and corresponding distances of object planes are figured out. The performance of the proposed geometric optical model is compared with existing approaches using different configurations of hand-held plenoptic 1.0 cameras and real experiments are conducted using a preliminary imaging system. Results demonstrate that the proposed model can outperform existing approaches in terms of accuracy and exhibits good performance at general imaging range.

  19. Simultaneous electric-field measurements on nearby balloons.

    Science.gov (United States)

    Mozer, F. S.

    1972-01-01

    Electric-field payloads were flown simultaneously on two balloons from Great Whale River, Canada, on September 21, 1971, to provide data at two points in the upper atmosphere that differed in altitude by more than one atmospheric density scale height and in horizontal position by 30-140 km. The altitude dependences in the two sets of data prove conclusively that the vertical electric field at balloon altitudes stems from fair-weather atmospheric electricity sources and that the horizontal fields are mapped down ionospheric fields, since the weather-associated horizontal fields were smaller than 2 mV/m.

  20. The determination of field usability of method measuring temperature fields in the air using an infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek Martin

    2014-03-01

    Full Text Available The article deals with the field usability determination of the method for measuring temperature fields in the air using an infrared camera. This method is based on the visualization of temperature fields on an auxiliary material, which is inserted into the non-isothermal air flow. In this article the field usability is determined from time constants of this method, which define borders of usability for low temperature differences (between air flow temperature and surrounding temperature and for low air flow velocities. The field usability determination for measuring temperature fields in the air can be used in many various applications such as air-heating and air-conditioning where the method of measuring temperature fields in the air by infrared camera can be used.

  1. Magnetic-field sensing coil embedded in ceramic for measuring ambient magnetic field

    Science.gov (United States)

    Takahashi, Hironori

    2004-02-10

    A magnetic pick-up coil for measuring magnetic field with high specific sensitivity, optionally with an electrostatic shield (24), having coupling elements (22) with high winding packing ratio, oriented in multiple directions, and embedded in ceramic material for structural support and electrical insulation. Elements of the coil are constructed from green ceramic sheets (200) and metallic ink deposited on surfaces and in via holes of the ceramic sheets. The ceramic sheets and the metallic ink are co-fired to create a monolithic hard ceramic body (20) with metallized traces embedded in, and placed on exterior surfaces of, the hard ceramic body. The compact and rugged coil can be used in a variety of environments, including hostile conditions involving ultra-high vacuum, high temperatures, nuclear and optical radiation, chemical reactions, and physically demanding surroundings, occurring either individually or in combinations.

  2. Electrochemical characterization of electrolytes and electrodes for lithium-ion batteries. Development of a new measuring method for electrochemical investigations on electrodes with the electrochemical quartz crystal microbalance (EQCM); Elektrochemische Charakterisierung von Elektrolyten und Elektroden fuer Lithium-Ionen-Batterien. Entwicklung einer neuen Messmethode fuer elektrochemische Untersuchungen an Elektroden mit der EQCM

    Energy Technology Data Exchange (ETDEWEB)

    Moosbauer, Dominik Johann

    2010-11-09

    In this work the conductivities of four different lithium salts, LiPF6, LiBF4, LiDFOB, and LiBOB in the solvent mixture EC/DEC (3/7) were investigated. Furthermore, the influence of eight ionic liquids (ILs) as additives on the conductivity and electrochemical stability of lithium salt-based electrolytes was studied. The investigated salts were the well-known lithium LiPF6 and LiDFOB. Conductivity studies were performed over the temperature range (238.15 to 333.15) K. The electrochemical stabilities of the solutions were determined at aluminum electrodes. The salt solubility of LiBF4 and LiDFOB in EC/DEC (3/7) was measured with the quartz crystal microbalance (QCM), a method developed in our group. Moreover, a method to investigate interactions between the electrolyte and electrode components with the electrochemical quartz crystal microbalance (EQCM) was developed. First, investigations of corrosion and passivation effects on aluminum with different lithium salts were performed and masses of deposited products estimated. Therefore, the quartzes were specially prepared with foils. Active materials of cathodes, in this work lithium iron phosphate (LiFePO4), were also investigated with the EQCM by a new method. [German] In dieser Arbeit wurden die Leitfaehigkeiten von vier unterschiedlichen Salzen, LiPF6, LiBF4, LiDFOB und LiBOB in dem Loesemittelgemisch EC/DEC (3/7) untersucht. Des Weiteren wurde der Einfluss von acht Ionischen Fluessigkeiten (ILs) als Additive fuer Lithium-Elektrolyte auf die elektrochemische Stabilitaet und die Leitfaehigkeit studiert. Die untersuchten Salze waren LiPF6 und LiDFOB. Die Leitfaehigkeitsmessungen wurden in einem Temperaturbereich von (238,15 bis 333,15) K durchgefuehrt. Die elektrochemischen Stabilitaeten der Elektrolyte fanden an Aluminium statt. Mit einer an der Arbeitsgruppe entwickelten neuen Methode wurden zudem die Salzloeslichkeiten von LiBF4 und LiDFOB in EC/DEC (3/7) mit der Quarzmikrowaage (QCM) bestimmt. Weiterhin wurden

  3. Performance and Electrochemical Characterisation of Thin Electrolyte SOFCs

    DEFF Research Database (Denmark)

    Ramos, Tania; Hjelm, Johan; Wandel, Marie Emilie

    2008-01-01

    The performance and electrochemical behavior of two anode-supported thin electrolyte cells, with different manufacturing parameters, is determined by polarization measurements and electrochemical impedance spectroscopy (EIS). In addition to characterization, a previously suggested equivalent...

  4. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients.

    Science.gov (United States)

    Glover, P M; Bowtell, R

    2008-01-21

    A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s(-1) near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s(-1) rate of change of magnetic field were 0.15+/-0.02, 0.077+/-0.003 and 0.015+/-0.002 V m(-1) respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m(-1) s(-1) the measured rate-of-change of magnetic field was 2.2+/-0.1 T s(-1) and the peak electric field was 0.30+/-0.01 V m(-1) on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.

  5. Measurement of electric fields induced in a human subject due to natural movements in static magnetic fields or exposure to alternating magnetic field gradients

    Science.gov (United States)

    Glover, P. M.; Bowtell, R.

    2008-01-01

    A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s-1 near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s-1 rate of change of magnetic field were 0.15 ± 0.02, 0.077 ± 0.003 and 0.015 ± 0.002 V m-1 respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m-1 s-1 the measured rate-of-change of magnetic field was 2.2 ± 0.1 T s-1 and the peak electric field was 0.30 ± 0.01 V m-1 on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.

  6. Synthesis and electrochemical properties of polyaniline nanofibers by interfacial polymerization.

    Science.gov (United States)

    Manuel, James; Ahn, Jou-Hyeon; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Kim, Jae-Kwang; Jacobsson, Per

    2012-04-01

    Polyaniline nanofibers were prepared by interfacial polymerization with different organic solvents such as chloroform and carbon tetrachloride. Field emission scanning electron microscopy and transmission electron microscopy were used to study the morphological properties of polyaniline nanofibers. Chemical characterization was carried out using Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and X-ray diffraction spectroscopy and surface area was measured using BET isotherm. Polyaniline nanofibers doped with lithium hexafluorophosphate were prepared and their electrochemical properties were evaluated.

  7. Effect of size of Fe3O4 magnetic nanoparticles on electrochemical performance of screen printed electrode using sedimentation field-flow fractionation

    Science.gov (United States)

    Dou, Haiyang; Kim, Beom-Ju; Choi, Seong-Ho; Jung, Euo Chang; Lee, Seungho

    2014-10-01

    Fe3O4 magnetic nanoparticles (MNPs) and Fe3O4-deposited multi-walled carbon nanotubes (Fe3O4@MWCNTs) were synthesized by ultrasonic co-precipitation method. The surface and structural properties of Fe3O4 MNPs and Fe3O4@MWCNTs were characterized by X-ray diffraction, field emission transmission electron microscopy (FE-TEM), X-ray photoelectron spectroscopy, and dynamic light scattering (DLS). Sedimentation field-flow fractionation (SdFFF) was, for the first time, employed to study the influence of synthesis parameters on size distribution of Fe3O4 MNPs. A reasonable resolution for SdFFF analysis of Fe3O4 MNPs was obtained by a combination of 1,600 RPM, flow rate of 0.3 mL min-1, and Triton X-100. The results suggest that lower pH and higher reaction temperature tend to yield smaller Fe3O4 MNPs size. The size distribution of Fe3O4 MNPs obtained from SdFFF was compared with those obtained from TEM and DLS. Also the effect of the particle size of Fe3O4 MNPs on electrochemical property of Fe3O4@MWCNTs-treated screen printed electrode (SPE) was studied. Cyclic voltammetry revealed that SPE treated with MWCNTs yields a significantly enhanced signal than that with no treatment. The SPE signal was even further enhanced with addition of Fe3O4 MNPs. For SPE analysis of dopamine, a liner range of 0.005-0.1 mM with a correlation coefficient of 0.986 was observed. Results revealed that (1) SdFFF is a useful tool for size-based separation and characterization of MNPs; (2) Proposed methods for synthesis of Fe3O4 nanoparticles and Fe3O4@MWCNTs are mild and fast (about 30 min); (3) SPE treated with Fe3O4@MWCNTs shows potential applicability for biosensing.

  8. Characterization of Electrochemically Generated Silver

    Science.gov (United States)

    Adam, Niklas; Martinez, James; Carrier, Chris

    2014-01-01

    Silver biocide offers a potential advantage over iodine, the current state of the art in US spacecraft disinfection technology, in that silver can be safely consumed by the crew. Low concentrations of silver (Silver does not require hardware to remove it from a water system, and therefore can provide a simpler means for disinfecting water. The Russian segment of the International Space Station has utilized an electrochemically generated silver solution, which is colloidal in nature. To be able to reliably provide a silver biocide to drinking water by electrochemical means would reduce mass required for removing another biocide such as iodine from the water. This would also aid in crew time required to replace iodine removal cartridges. Future long term missions would benefit from electrochemically produced silver as the biocide could be produced on demand and requires only a small concentration to be effective. Since it can also be consumed safely, there is less mass in removal hardware and little consumables required for production. The goal of this project initially is to understand the nature of the electrochemically produced silver, the particle sizes produced by the electrochemical cell and the effect that voltage adjustment has on the particle size. In literature, it has been documented that dissolved oxygen and pH have an effect on the ionization of the electrochemical silver so those parameters would be measured and possibly adjusted to understand their effect on the silver.

  9. Influence of nitrogen hetero-substitution on the electrochemical performance of coal-based activated carbons measured in non-aqueous electrolyte

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chuan-xiang; DUAN Yu-ling; XING Bao-lin; ZHAN Liang; QIAO Wen-ming; LING Li-cheng

    2009-01-01

    Nitrogen-containing carbons were prepared by modification of activated carbons. The modified carbons were used as electrode materials with improved electrochemical performance. Precursor anthracite was activated by KOH (KOH: anthracite= 1:1), modified by melamine or urea and then treated at 1173 K to obtain the modified carbons. The porous structure, the chemical composition and the electrochemical characteristics of the carbons were investigated by nitrogen sorption, XPS and electrochemical methods respectively. Electrochemical experiments were performed in an organic electrolytic solution of 1 M (C2H5)4NBF4/PC.The samples modified by the different methods showed differences in chemical composition that introduced varying degrees of electrochemical performance enhancement. The presence of nitrogen enhanced the electron donor properties and the surface wettability of the activated carbons: this ensured a sufficient utilization of the exposed surface for charge storage.

  10. Electrochemical Biosensors - Sensor Principles and Architectures

    Directory of Open Access Journals (Sweden)

    Erik Reimhult

    2008-03-01

    Full Text Available Quantification of biological or biochemical processes are of utmost importancefor medical, biological and biotechnological applications. However, converting the biologicalinformation to an easily processed electronic signal is challenging due to the complexity ofconnecting an electronic device directly to a biological environment. Electrochemical biosensorsprovide an attractive means to analyze the content of a biological sample due to thedirect conversion of a biological event to an electronic signal. Over the past decades severalsensing concepts and related devices have been developed. In this review, the most commontraditional techniques, such as cyclic voltammetry, chronoamperometry, chronopotentiometry,impedance spectroscopy, and various field-effect transistor based methods are presented alongwith selected promising novel approaches, such as nanowire or magnetic nanoparticle-basedbiosensing. Additional measurement techniques, which have been shown useful in combinationwith electrochemical detection, are also summarized, such as the electrochemical versionsof surface plasmon resonance, optical waveguide lightmode spectroscopy, ellipsometry,quartz crystal microbalance, and scanning probe microscopy.The signal transduction and the general performance of electrochemical sensors are often determinedby the surface architectures that connect the sensing element to the biological sampleat the nanometer scale. The most common surface modification techniques, the various electrochemicaltransduction mechanisms, and the choice of the recognition receptor moleculesall influence the ultimate sensitivity of the sensor. New nanotechnology-based approaches,such as the use of engineered ion-channels in lipid bilayers, the encapsulation of enzymesinto vesicles, polymersomes, or polyelectrolyte capsules provide additional possibilities forsignal amplification.In particular, this review highlights the importance of the precise control over the

  11. Toward a direct comparison of field and laboratory goniometer measurements

    NARCIS (Netherlands)

    Dangel, S.; Verstraete, M.; Schopfer, J.; Kneubuehler, M.; Schaepman, M.E.; Itten, K.I.

    2005-01-01

    Field and laboratory goniometers are widely used in the remote sensing community to assess spectrodirectional reflection properties of selected targets. Even when the same target and goniometer system are used, field and laboratory results cannot directly be compared due to inherent differences, mai

  12. Through-the-Wall Imaging from Electromagnetic Scattered Field Measurements

    Science.gov (United States)

    2007-03-01

    the transmission Greens function. This simplified model is then used in a Lippman- Schwinger integral equation to predict the scattered field associated...model is then used in a Lippman- Schwinger integral equation to predict the scattered field associated with interrogating THz waves. We investigate the...59 B. LIPPMAN- SCHWINGER EQUATION . . . . . . . . . . . . . . 59 C. BORN APPROXIMATION

  13. Conductivity measurements with trapezoidal a.c. magnetic fields

    NARCIS (Netherlands)

    Gijsbertse, E.A.; Klundert, van de L.J.M.

    1981-01-01

    The inductive response of normal metals to trapezoidal a.c. fields is studied theoretically as well as experimentally. A method is presented to determine the conductivity and its magnetic induction dependence from the decay of the induced voltage during periods of constant field. The correctness of

  14. Magnetic Field Measurements Based on Terfenol Coated Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    Carla C. Kato

    2011-11-01

    Full Text Available A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  15. Magnetic field measurements based on Terfenol coated photonic crystal fibers.

    Science.gov (United States)

    Quintero, Sully M M; Martelli, Cicero; Braga, Arthur M B; Valente, Luiz C G; Kato, Carla C

    2011-01-01

    A magnetic field sensor based on the integration of a high birefringence photonic crystal fiber and a composite material made of Terfenol particles and an epoxy resin is proposed. An in-fiber modal interferometer is assembled by evenly exciting both eigenemodes of the HiBi fiber. Changes in the cavity length as well as the effective refractive index are induced by exposing the sensor head to magnetic fields. The magnetic field sensor has a sensitivity of 0.006 (nm/mT) over a range from 0 to 300 mT with a resolution about ±1 mT. A fiber Bragg grating magnetic field sensor is also fabricated and employed to characterize the response of Terfenol composite to the magnetic field.

  16. Measurements of magnetic field strength on T Tauri stars

    Science.gov (United States)

    Guenther, Eike W.; Lehmann, Holger; Emerson, James P.; Staude, Jürgen

    1999-01-01

    We have investigated the magnetic field strength of one weak-line and four classical T Tauri stars. The magnetic field strength is derived from the differential change of the equivalent width of photospheric Fe I lines in the presence of a magnetic field, calculated using a full radiative transfer code. The method was successfully tested by applying it to a non-magnetic solar-type star, and to VY Ari which is believed to have a strong magnetic field. For two of the classical T Tauri stars, we find a product of magnetic field strength and filling factor B * f = (2.35+/- 0.15) kG for T Tau, and B * f = (1.1+/- 0.2) kG for LkCa 15. For the classical T Tauri star UX Tau A and the weak-line T Tauri star LkCa 16 the detection is only marginal, indicating magnetic field strengths of the order of 1 kG and possibly of more than 2 kG, respectively. No field could be detected for the classical T Tauri star GW Ori. For the two classical T Tauri stars for which we have detected a field, we find the filling factors to be larger than ~ 0.5, which indicates that the magnetic field covers most of the photosphere. We also show that ignoring a magnetic field can, depending on the lines used, result in errors in effective temperature and underestimates of veiling. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Royal Greenwich Observatory in the Spanish Observatorio de los Roque de los Muchachos of the Instituto de Astrofisica de Canarias

  17. Vector Magnetic Field Measurement of NOAA AR 10197

    Institute of Scientific and Technical Information of China (English)

    Hong-Fei Liang; Hai-Juan Zhao; Fu-Yuan Xiang

    2006-01-01

    A set of two-dimensional Stokes spectral data of NOAA AR 10197 obtained by the Solar Stokes Spectral Telescope (S3T) at the Yunnan Observatory are qualitatively analyzed.The three components of the vector magnetic field, the strength H, inclination γ and azimuth x, are derived. Based on the three components, we contour the distributions of the longitudinal magnetic field and transverse magnetic field. The active region (AR) has two different magnetic polarities apparent in the longitudinal magnetic map due to projection effect. There is a basic agreement on the longitudinal magnetic fields between the S3T and SOHO/MDI magnetograms, with a correlation coefficient ρBl = 0.911. The transverse magnetic field of the AR has a radial distribution from a center located in the southwest of the AR. It is also found that the transverse magnetic fields obtained by Huairou Solar Observing Station (HRSOS) have a similar radial distribution. The distributions of transverse magnetic field obtained by S3T and HRSOS have correlation coefficients, ρAzimu = 0.86 and ρBt = 0.883,in regard to the azimuthal angle and intensity.

  18. Electrochemical Discharge Machining Process

    Directory of Open Access Journals (Sweden)

    Anjali V. Kulkarni

    2007-09-01

    Full Text Available Electrochemical discharge machining process is evolving as a promising micromachiningprocess. The experimental investigations in the present work substantiate this trend. In the presentwork, in situ, synchronised, transient temperature and current measurements have been carriedout. The need for the transient measurements arose due to the time-varying nature of the dischargeformation and time varying circuit current. Synchronised and transient measurements revealedthe discrete nature of the process. It also helped in formulating the basic mechanism for thedischarge formation and the material removal in the process. Temperature profile on workpieceand in electrochemical discharge machining cell is experimentally measured using pyrometer,and two varieties of K-type thermocouples. Surface topography of the discharge-affected zoneson the workpiece has been carried out using scanning electron microscope. Measurements andsurface topographical studies reveal the potential use of this process for machining in micronregime. With careful experimental set-up design, suitable supply voltage and its polarity, theprocess can be applied for both micromachining and micro-deposition. It can be extended formachining and or deposition of wide range of materials.

  19. 变截面异型螺旋型腔电解加工流场分析%Simulation of Flow Field in Electrochemical Machining of Helix Cavity with Variable Cross-section

    Institute of Scientific and Technical Information of China (English)

    范植坚; 穆倩; 李清良; 范庆明

    2014-01-01

    In order to solve the problem of irregular distributing of flow field in electrochemical machining gap of the closed integral structure ,based on the regular distributing of electrochemical machining gap flow field ,a hole working face of cathode is designed ,then the electrochemical machining gap flow field under different back pressure conditions is compared ,and any vortexes or cavities in the gap flow field are examined .The results indicate that by changing the distributions ,sizes ,shapes of these holes and increasing the back pressure ,the low flow velocity area is basically eliminated and the minimum electrolyte flow velocity is increased from 0 .2397m/s to 05085m/s , the occurrence of any vortex and cavity is reduced and the cathode structure is optimized .%针对闭式整体构件电解加工间隙流场分布不均匀的,基于电解加工间隙流场,设计了阴极过水孔工作端面,比较了不同背压条件下电解加工间隙流场,分析了间隙流场空穴、涡流现象.研究结果表明,通过改变过水孔分的疏密,孔径的大小和形状,增加背压,消除了间隙流场中低流速区域,电解液较低流速区域的速度由0.2397 m/s提升至0.5085 m/s ,减少了空穴和涡流现象的发生,优化了阴极结构.

  20. Assessing herbicide leaching from field measurements and laboratory experiments

    OpenAIRE

    Cuevas Sánchez, Mª Victoria; Calderón, M.J.; Fernández Luque, José Enrique; Hermosín, M.C.; Moreno Lucas, Félix; Cornejo, J.

    2001-01-01

    Field and laboratory experiments with undisturbed soil columns were performed for assessing the mobility and persistence of chloridazon and lenacil in a clayey soil in the marshes of Lebrija, southwest Spain. In the laboratory we tried to evaluate the herbicides fate when applied with doses greater than normal, as it happens by overlap when spraying the herbicides. Thus, the herbicides doses in the field experiments were similar to those applied by the growers in the area, while the doses app...

  1. 纳米线材料及其在电化学储能方面的应用%Nanowire material and its application in electrochemical energy storage field

    Institute of Scientific and Technical Information of China (English)

    任文皓; 赵康宁; 郑志平; 麦立强

    2014-01-01

    It was still a worldwide challenge to improve capacity,cycling stability and rate performance in con-sideration of the intrinsic properties and structure of material.Compared with other nanostructure,nanowire have demonstrated better electrochemical performance in regard of electrochemical energy storage devices such as Li-ion battery,Li-air battery and supercapacitor,since it has unique anisotropy,large specific surface area, facile strain relaxation,fast axial electron transport and radial ion diffusion.Moreover,nanowire have shown the advantages in facile assembly and in-situ characterization of electrochemical energy storage devices.Based on the latest progress in nanowire materials,we mainly summarize the design,assembly and characterization of single nanowire electrochemical energy storage device and the optimization strategy of nanowire materials.In this article,we review the strategy in improving the electrochemical performance of one-dimensional structure. This article lays a foundation for the development and applications of nanowire materials in electrochemical en-ergy storage field.%从材料本征性能和结构的控制入手来提高其容量发挥、循环性能、倍率性能至今仍是亟待解决的一大难题,而纳米线材料因其具有独特的各向异性、大的比表面积、优异的张力适应性、快速的轴向电子传输和径向离子扩散等特性使其在锂离子电池、锂空气电池以及超级电容器储能器件的组装、原位表征等方面相较于其它简单结构纳米材料有着独特优势。结合当前纳米线材料的最新研究进展,主要讨论了单根纳米线电化学储能器件及纳米线材料的优化策略,包括新型纳米线材料的设计构筑、合成以及电化学性能表征。概括了纳米线材料的形貌控制、性能改善以及应用的前景,为其在电化学储能方面的应用奠定基础。

  2. FIA-automated system used to electrochemically measure nitrite and its interfering chemicals through a 1-2 DAB / Au electrode: gain of sensitivity at upper potentials

    Science.gov (United States)

    Almeida, F. L.; dos Santos Filho, S. G.; Fontes, M. B. A.

    2013-03-01

    The measurement of nitrite and its interfering-chemicals (paracetamol, ascorbic acid and uric acid) was performed employing a Flow-injection Analysis (FIA) system, which was automated using solenoid valves and air-pump. It is very important to quantify nitrite from river water, food and biologic fluids due to its antibacterial capacity in moderated concentrations, or its toxicity for human health even at low concentrations (> 20 μmol L-1 in blood fluids). Electrodes of the electrochemical planar sensor were defined by silk-screen technology. The measuring electrode was made from gold paste covered with 1-2 cis Diaminobenzene (DAB), which allowed good selectivity, linearity, repeatability, stability and optimized gain of sensitivity at 0.5 VAg/AgCl Nafion®117 (6.93 μA mol-1 L mm-2) compared to 0.3 VAg/AgCl Nafion® 117. The reference electrode was obtained from silver/palladium paste modified with chloride and covered with Nafion® 117. The auxiliary electrode was made from platinum paste. It was noteworthy that nitrite response adds to the response of the studied interfering-chemicals and it is predominant for concentrations lower than 175 μmol L-1.

  3. M(o)ssbauer study and magnetic properties of electrochemical material LiFePO4

    Institute of Scientific and Technical Information of China (English)

    Luo Zhi; Di Nai-Li; Kou Zhi-Qi; Cheng Zhao-Hua; Liu Li-Jun; Chen Li-Quan; Huang Xue-Jie

    2004-01-01

    Magnetic properties and crystal symmetry of electrochemical material LiFePO4 have been investigated by Mossbauer spectroscopy and magnetization measurement. Magnetization reveals the antiferromagnetic nature of LiFePO4. Temperature dependence of inverse susceptibility and that of hyperfine field confirm that there is an antiferromagnetic-paramagnetic transition at about 50K.

  4. Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films

    Institute of Scientific and Technical Information of China (English)

    Xue-tong ZHANG; Wen-hui SONG

    2009-01-01

    Polypyirole/multiwalled carbon nanotube (MWNT) composite fihns were electrochemically depos-ited in the presence of an ionic surfactant, sodium dodecyl sulfate (SDS), acting as both supporting electrolyte and dispersant. The effects of the surfactant and the MWNT concentrations on the structure at the resulting composite films were investigated. The electrochemical behavior of the resulting polypyrrole/MWNT composite film was investigated aS well bv cyclic voltammogram. The effect of the additional alternating electric field applied during the constant direct potential electrochemical deposition on the morphology and electrochemical behavior of the resulting composite film was also investigated in this study.

  5. Third Wave of Measurement in the Self-Regulated Learning Field: When Measurement and Intervention Come Hand in Hand

    Science.gov (United States)

    Panadero, Ernesto; Klug, Julia; Järvelä, Sanna

    2016-01-01

    Measurement is a central issue for the self-regulated learning (SRL) field as SRL is a phenomenon difficult to measure in a reliable and valid way. Here, 3 waves in the history of SRL measurement are identified and profiled. Our focus lies on the third and newest one, which combines measurement and intervention within the same tools. The basis for…

  6. Estimate of Coronal Magnetic Field Strength Using Plasmoid Acceleration Measurement

    Science.gov (United States)

    Choe, G.; Lee, K.; Jang, M.

    2010-12-01

    A method of estimating the lower bound of coronal magnetic field strength in the neighborhood of an ejecting plasmoid is presented. Based on the assumption that the plasma ejecta is within a magnetic island, an analytical expression for the force acting on the ejecta is derived. A rather simple calculation shows that the vertical force acting on a cylinder-like volume, whose lateral surface is a flux surface and whose magnetic axis is parallel to the horizontal, is just the difference in total pressure (magnetic pressure plus plasma pressure) below and above the volume. The method is applied to a limb coronal mass ejection event, and a lower bound of the magnetic field strength just below the CME core is estimated. The method is expected to provide useful information on the strength of reconnecting magnetic field if applied to X-ray plasma ejecta.

  7. LPFG based fiber optic sensor for magnetic field measurement

    Science.gov (United States)

    Gouveia, Carlos A. J.; Coelho, Luís.; Franco, Marcos A. R.

    2017-04-01

    The design and modelling of a novel magnetic field sensor based on a long period fiber grating coated with a thin film of N doped ZnO is reported. The parameters of both, the grating and the thin film were carefully chosen to operate in the transition mode and near to the dispersion turning point. At this point, an LPFG shows its maximum sensitivity to external refractive index variations. The magnetic field induces variations in the coating refractive index, which changes the effective refractive index of the cladding mode and the consequent spectral response. In this work a sensitivity to the surrounding magnetic field of 2.9 nm/mT is reported with a maximum theoretical resolution of 2 μT.

  8. Research on Nonlinear Characteristics of Image Measurement System for Instantaneous Concentration Field

    Directory of Open Access Journals (Sweden)

    Wu Jing

    2013-06-01

    Full Text Available Quantitative measurement on instantaneous concentration field not only can provide scientific methods for people measuring environment wind tunnel, but also can provide important data for solving convection--diffusion problem in practical project. The established large environment and wind engineering wind tunnel needs to develop the measurement system of instantaneous concentration field in order to study concentration field of environmental pollution diffusion. Based on collecting, analyzing and selecting a large number of literatures, the paper comprehensively studies the image measurement of instantaneous concentration field, and develops the complete software and hardware system. And the developed measurement system is used to measure the results, and the nonlinear characteristics of instable concentration field are studied. Combined with experimental fluid mechanics, information technology, optical scattering and imaging theory, the paper makes quantitative calculation on instability of concentration field from an experimental point of view, which provides an important experimental result for using numerical method to explore the instability of concentration field.

  9. Hazard surveillance for workplace magnetic fields. 1: Walkaround sampling method for measuring ambient field magnitude; 2: Field characteristics from waveform measurements

    Energy Technology Data Exchange (ETDEWEB)

    Methner, M.M.; Bowman, J.D.

    1998-03-01

    Recent epidemiologic research has suggested that exposure to extremely low frequency (ELF) magnetic fields (MF) may be associated with leukemia, brain cancer, spontaneous abortions, and Alzheimer`s disease. A walkaround sampling method for measuring ambient ELF-MF levels was developed for use in conducting occupational hazard surveillance. This survey was designed to determine the range of MF levels at different industrial facilities so they could be categorized by MF levels and identified for possible subsequent personal exposure assessments. Industries were selected based on their annual electric power consumption in accordance with the hypothesis that large power consumers would have higher ambient MFs when compared with lower power consumers. Sixty-two facilities within thirteen 2-digit Standard Industrial Classifications (SIC) were selected based on their willingness to participate. A traditional industrial hygiene walkaround survey was conducted to identify MF sources, with a special emphasis on work stations.

  10. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  11. Internal magnetic field measurement on C-2 field-reversed configuration plasmas.

    Science.gov (United States)

    Gota, H; Thompson, M C; Knapp, K; Van Drie, A D; Deng, B H; Mendoza, R; Guo, H Y; Tuszewski, M

    2012-10-01

    A long-lived field-reversed configuration (FRC) plasma has been produced in the C-2 device by dynamically colliding and merging two oppositely directed, highly supersonic compact toroids (CTs). The reversed-field structure of the translated CTs and final merged-FRC state have been directly verified by probing the internal magnetic field structure using a multi-channel magnetic probe array near the midplane of the C-2 confinement chamber. Each of the two translated CTs exhibits significant toroidal fields (B(t)) with opposite helicity, and a relatively large B(t) remains inside the separatrix after merging.

  12. [Welding arc temperature field measurements based on Boltzmann spectrometry].

    Science.gov (United States)

    Si, Hong; Hua, Xue-Ming; Zhang, Wang; Li, Fang; Xiao, Xiao

    2012-09-01

    Arc plasma, as non-uniform plasma, has complicated energy and mass transport processes in its internal, so plasma temperature measurement is of great significance. Compared with absolute spectral line intensity method and standard temperature method, Boltzmann plot measuring is more accurate and convenient. Based on the Boltzmann theory, the present paper calculates the temperature distribution of the plasma and analyzes the principle of lines selection by real time scanning the space of the TIG are measurements.

  13. Electromagnetic Near Field Measurements of Two Critical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Goettee, Jeffrey David [Los Alamos National Laboratory

    2015-11-03

    The reactors employed, Godiva IV and WSMR Fast Burst Reactor, are described first. Then the point reactor kinetics model, electromagnetic potential, and the measurement of kinetics quantities are successively discussed. In summary, reactor power produces measurable electric energy. The electric signal mimics power curve for prompt burst operations - features in logarithmic derivatives match. The electric signature should be dependent on the power and not the derivative; therefore, steady-state modes should be measurable.

  14. 电化学光整加工极间流场特性研究思路的探讨%Discussion on Research Thinking of Flow Field Characteristics between Electrodes of Electrochemical Finishing

    Institute of Scientific and Technical Information of China (English)

    叶尔麦古丽; 阿达依·谢尔亚孜旦

    2013-01-01

    电化学光整加工技术与其他加工技术相比,在提高零件使用性能方面具有优势,因而受到关注并得到广泛应用。影响电化学光整加工整平效果的因素很多,其中极间流场是重要因素之一,但是近年来在极间间隙流场特性方面还缺乏研究。分析了电化学光整加工中极间间隙流场的特性,结合气、液两相流在国内外的研究现状,提出了极间电解液流场的研究思路,为极间流场的进一步深入研究提供参考。%Compared with other processing techniques,electrochemical finish machining has advantages in improving the service performance of parts,so it is getting more and more attention and widely used. There are several factors influencing electrochemical fin-ish machining,among which the gap between electrodes is one of the most important factor. But recently there is lack of research in in-terelectrode flow field characteristics. The characters of inter-electrode gap flow field in electrochemical finishing were analyzed. Com-bining with present status of research on gas-liquid two phase flow both in China and abroad,the research thought of electrolyte flow field between electrodes was put forward. It provides a reference for further research.

  15. Can dust emission mechanisms be determined from field measurements?

    Science.gov (United States)

    Field observations are needed to develop and test theories on dust emission for use in dust modeling systems. The dust emission mechanism (aerodynamic entrainment, saltation bombardment, aggregate disintegration) as well as the amount and particle-size distribution of emitted dust may vary under sed...

  16. An EIRP Measurement Method for Base-Station Antennas Using Field Strengths Measured along a Single Straight Line

    OpenAIRE

    Soon-Soo Oh; Young-Hwan Lee

    2013-01-01

    We describe an EIRP measurement technique for a base-station antenna. The proposed method especially can be applied to the base-station antenna installed in real environments. Fresnel region measurement method is an optimal technique to avoid the far-field multipath interference, and, furthermore, it could shorten the measurement time. For detecting only the field strengths along a single straight line, we also propose a simple phase-retrieval method. For verification, a simulation and experi...

  17. Investigating Call Drops with Field Measurements on Commercial Mobile Phones

    DEFF Research Database (Denmark)

    Messina, Alessandro; Caragea, Gabriel; Compta, Pol Torres

    2013-01-01

    can be done per day. In this paper we present a new methodology to investigate call drops by using mobile phones to do the measurements following the concept of citizen sensing. Therefore, a mobile application for Android is made that collects all necessary data and dumps the measurement results......One of the biggest problems nowadays for network operators are occurring call drops. This problem has been increasing in the last years specially since the advent of 3G. The investigation in the operator's network is very time intensive and due to the highly priced hardware only a few measurements...... in a centralized database where the measurements are evaluated and represented on Google Maps. With a post analysis of the measurements, a classification of the call drops results is made. The collected data is also used to show some statistics related to the battery level and the received signal strength between...

  18. Monte Carlo study of the influence of magnetic field on energy measurements in calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, V.V. [Institute for High Energy Physics (IHEP), Protvino (Russian Federation)

    1996-05-11

    The influence of magnetic field on energy measurements in calorimeters is studied by Monte Carlo methods. It is shown that magnetic field influence depends on type of incident particles and on material and thickness of absorber plates. (orig.).

  19. Monte Carlo study of the influence of magnetic field on energy measurements in calorimeters

    Science.gov (United States)

    Abramov, V. V.

    1996-02-01

    The influence of magnetic field on energy measurements in calorimeters is studied by Monte Carlo methods. It is shown that magnetic field influence depends on type of incident particles and on material and thickness of absorber plates.

  20. Measurement of Wave Electric Fields in Plasmas by Electro-Optic Probe

    CERN Document Server

    Nishiura, M; Mushiake, T; Kawazura, Y; Osawa, R; Fujinami, K; Yano, Y; Saitoh, H; Yamasaki, M; Kashyap, A; Takahashi, N; Nakatsuka, M; Fukuyama, A

    2016-01-01

    Electric field measurement in plasmas permits quantitative comparison between the experiment and the simulation in this study. An electro-optic (EO) sensor based on Pockels effect is demonstrated to measure wave electric fields in the laboratory magnetosphere of the RT-1 device with high frequency heating sources. This system gives the merits that electric field measurements can detect electrostatic waves separated clearly from wave magnetic fields, and that the sensor head is separated electrically from strong stray fields in circumference. The electromagnetic waves are excited at the double loop antenna for ion heating in electron cyclotron heated plasmas. In the air, the measured wave electric fields are in good absolute agreement with those predicted by the TASK/WF2 code. In inhomogeneous plasmas, the wave electric fields in the peripheral region are enhanced compared with the simulated electric fields. The potential oscillation of the antenna is one of the possible reason to explain the experimental resu...

  1. Electrochemical Oxygen Sensor Development for Liquid Sodium

    Science.gov (United States)

    Nollet, Billy K.

    Safe operation of a sodium-cooled fast reactor (SFR) requires in-depth understanding of the corrosion implications of liquid sodium coolant on reactor materials. Dissolved oxygen concentration is of particular importance in characterizing sodium attack, so an accurate means of measuring and controlling oxygen is crucial. There is significant room for improvement in current oxygen sensing technology, so extensive research has been conducted at the University of Wisconsin-Madison to address this issue. Experimental facilities and electrochemical oxygen sensors have been developed, tested, and analyzed. This research is discussed in detail in this report. The oxygen sensors tested in this research were developed using a yttria stabilized zirconia (YSZ) electrolyte whereas many of the past research in this field was conducted with yttria doped thoria (YDT or YST) electrolytes. Thorium, an alpha emitter, is expensive and increasingly difficult to acquire, so motivation to switch to a new material exists. YSZ is commonly used as the electrolyte for solid oxide fuel cells, and ample data is available for high temperature ionic conduction of this material. While some work has been done with YSZ in oxygen sensors (the automotive field, for example, uses YSZ O2 sensors), research on YSZ sensors in sodium is limited. A thorough study of YSZ-based electrochemical oxygen sensors must include detailed corrosion testing and analysis of YSZ in liquid sodium, careful oxygen sensor development and testing, and finally, a comprehensive analysis of the acquired sensor data. The research presented in this report describes the design and development of an electrochemical oxygen sensor for use in sodium using a YSZ electrolyte through the previously-mentioned steps. The designed sensors were subjected to a series of hypotheses which advance common understanding of oxygen sensor signal. These results were used in conjunction with past research to form reliable conclusions.

  2. The 2-degree Field Lensing Survey: design and clustering measurements

    Science.gov (United States)

    Blake, Chris; Amon, Alexandra; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R.; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A.; Parkinson, David; Poole, Gregory B.; Wolf, Christian

    2016-11-01

    We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70 079 redshifts in the range z relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40 531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28 269 redshifts form a magnitude-limited (r values are consistent with those obtained from LRGs in the Baryon Oscillation Spectroscopic Survey. 2dFLenS data products will be released via our website http://2dflens.swin.edu.au.

  3. Linear algebraic theory of partial coherence: continuous fields and measures of partial coherence.

    Science.gov (United States)

    Ozaktas, Haldun M; Gulcu, Talha Cihad; Alper Kutay, M

    2016-11-01

    This work presents a linear algebraic theory of partial coherence for optical fields of continuous variables. This approach facilitates use of linear algebraic techniques and makes it possible to precisely define the concepts of incoherence and coherence in a mathematical way. We have proposed five scalar measures for the degree of partial coherence. These measures are zero for incoherent fields, unity for fully coherent fields, and between zero and one for partially coherent fields.

  4. MEASURING OF COMPLEX STRUCTURE TRANSFER FUNCTION AND CALCULATING OF INNER SOUND FIELD

    Institute of Scientific and Technical Information of China (English)

    Chen Yuan; Huang Qibai; Shi Hanmin

    2005-01-01

    In order to measure complex structure transfer function and calculate inner sound field, transfer function of integration is mentioned. By establishing virtual system, transfer function of integration can be measured and the inner sound field can also be calculated. In the experiment, automobile body transfer function of integration is measured and experimental method of establishing virtual system is very valid.

  5. Meteorological field measurements at potential and actual wind turbine sites

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

    1982-09-01

    An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

  6. The Evolving Field of Wound Measurement Techniques: A Literature Review.

    Science.gov (United States)

    Khoo, Rachel; Jansen, Shirley

    2016-06-01

    Wound healing is a complex and multifactorial process that requires the involvement of a multidisciplinary approach. Methods of wound measurement have been developed and continually refined with the purpose of ensuring precision in wound measurement and documentation as the primary indicator of healing. This review aims to ascertain the efficacies of current wound area measurement techniques, and to highlight any perceived gaps in the literature so as to develop suggestions for future studies and practice. Med- line, PubMed, CliniKey, and CINAHL were searched using the terms "wound/ulcer measurement techniques," "wound assessment," "digi- tal planimetry," and "structured light." Articles between 2000 and 2014 were selected, and secondary searches were carried out by exam- ining the references of relevant articles. Only papers written in English were included. A universal, standardized method of wound as- sessment has not been established or proposed. At present, techniques range from the simple to the more complex - most of which have char- acteristics that allow for applicability in both rural and urban settings. Techniques covered are: ruler measurements, acetate tracings/contact planimetry, digital planimetry, and structured light devices. Conclu- sion. In reviewing the literature, the precision and reliability of digital planimetry over the more conventional methods of ruler measurements and acetate tracings are consistently demonstrated. The advent and utility of the laser or structured light approach, however, is promising, has only been analyzed by a few, and opens up the scope for further evaluation of this technique.

  7. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...... of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  8. Cyclodextrins based electrochemical sensors for biomedical and pharmaceutical analysis.

    Science.gov (United States)

    Lenik, Joanna

    2016-12-12

    Electrochemical sensors are very convenient devices, as they may be used in a lot of fields starting from the food industry to environmental monitoring and medical diagnostics. They offer the values of simple design, reversible and reproducible measurements as well as ensuring precise and accurate analytical information. Compared with other methods, electrochemical sensors are relatively simple as well as having low costs, which has led to intensive development, especially in the field of medicine and pharmacy within the last decade. Recently, the number of publications covering the determination of amino-acids, dopamine, cholesterol, uric acid, biomarkers, vitamins and other pharmaceutical and biological compounds have significantly increased. Many possible types of such sensors and biosensors have been proposed: owing to the kind of the detection-potentiometric voltametric, amperometry, and the materials they can be used for, e.g. designing molecular architecture of the electrode/solution interface, carbon paste, carbon nanotubes, glass carbon, graphite, graphene, PVC, conductive polymers and/or nanoparticles. The active compounds which provide the complex formation with analyte (in the case of non-current techniques) or activate biomolecules electrochemically by particle recognition and selective preconcentration of analyte on the electrode surface (in the case of current techniques) are the most recently used cyclodextrins. These macrocyclic compounds have the ability to interact with a large diversity of guest particles to form complexes of type guest host, for example with particles from drugs, biomolecules, through their hydrophilic outer surface and lipophilic inner cavities. Cyclodextrins have been the subject of frequent electrochemical studies that focused mostly on both their interactions in a solid state and in solution. The process of preparing of CDs modified electrodes would, consequently, open new avenues for new electrochemical sensors and

  9. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  10. Electrochemical analysis of microdroplet formation

    NARCIS (Netherlands)

    Fukuyama, M.; Yoshida, Y.; Eijkel, J.C.T.; Berg, van den A.; Hibara, A.; Fujii, T.; Hibara, A.; Takeuchi, S.; Fukuba, T.

    2012-01-01

    This paper reports an electrochemical measurement system with a high-speed camera for observation of molecular transport phenomena at a water-oil (W/O) interface during microfluidic droplet formation. For demonstration of the system, currents corresponding to the transport of electrolyte ions to for

  11. Electrochemical kinetics theoretical aspects

    CERN Document Server

    Vetter, Klaus J

    1967-01-01

    Electrochemical Kinetics: Theoretical Aspects focuses on the processes, methodologies, reactions, and transformations in electrochemical kinetics. The book first offers information on electrochemical thermodynamics and the theory of overvoltage. Topics include equilibrium potentials, concepts and definitions, electrical double layer and electrocapillarity, and charge-transfer, diffusion, and reaction overvoltage. Crystallization overvoltage, total overvoltage, and resistance polarization are also discussed. The text then examines the methods of determining electrochemical reaction mechanisms

  12. Particle sizing of airborne radioactivity field measurements at Olympic Dam

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B.; Wilkis, M.; O`Brein, R.; Ganakas, G.

    1993-12-01

    On July 1, 1991 the Australian Radiation Laboratory (ARL) commenced a two year project entitled - Particle sizing of airborne radioactivity, funded by a Mining and Quarrying Occupational Health and Safety Committee - grant (submission No. 9138). This study was set out to measure airborne radioactivity size distributions in an underground uranium mine, in order to provide better estimates of the health risks associated with inhalation of airborne radiation in the work place. These measurements included both active and passive measurement of radon gas, continuous and spot sample of radon daughter levels, as well as wire screen diffusion battery measurements of the radon daughter size distributions. The results of measurements at over 50 sites within the mine are reported, together with the calculated dose conversion factors derived from the older dosimetric models and from the new ICRP lung model using the computer code RADEP. The results showed that the ventilation is relatively uniform within the mine and the radon daughter concentrations are kept to less than 20% of the equilibrium concentration. The radon and radon daughter concentrations showed marked variability with both time and position within the mine. It is concluded that the present radiation protection methods and dose conversion factors used in Australia provide a good estimate of the radiation risk for the inhalation of radon progeny. 29 refs., 8 tabs., 9 figs.

  13. Electric field measurements in a nanosecond pulse discharge in atmospheric air

    Science.gov (United States)

    Simeni Simeni, Marien; Goldberg, Benjamin M.; Zhang, Cheng; Frederickson, Kraig; Lempert, Walter R.; Adamovich, Igor V.

    2017-05-01

    The paper presents the results of temporally and spatially resolved electric field measurements in a nanosecond pulse discharge in atmospheric air, sustained between a razor edge high-voltage electrode and a plane grounded electrode covered by a thin dielectric plate. The electric field is measured by picosecond four-wave mixing in a collinear phase-matching geometry, with time resolution of approximately 2 ns, using an absolute calibration provided by measurements of a known electrostatic electric field. The results demonstrate electric field offset on the discharge center plane before the discharge pulse due to surface charge accumulation on the dielectric from the weaker, opposite polarity pre-pulse. During the discharge pulse, the electric field follows the applied voltage until ‘forward’ breakdown occurs, after which the field in the plasma is significantly reduced due to charge separation. When the applied voltage is reduced, the field in the plasma reverses direction and increases again, until the weak ‘reverse’ breakdown occurs, producing a secondary transient reduction in the electric field. After the pulse, the field is gradually reduced on a microsecond time scale, likely due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Spatially resolved electric field measurements show that the discharge develops as a surface ionization wave. Significant surface charge accumulation on the dielectric surface is detected near the end of the discharge pulse. Spatially resolved measurements of electric field vector components demonstrate that the vertical electric field in the surface ionization wave peaks ahead of the horizontal electric field. Behind the wave, the vertical field remains low, near the detection limit, while the horizontal field is gradually reduced to near the detection limit at the discharge center plane. These results are consistent with time-resolved measurements of electric field

  14. Gamma neutron method applied to field measurement of hydrodynamic dispersion

    Science.gov (United States)

    Brissaud, F.; Pappalardo, A.; Couchat, Ph.

    1983-06-01

    The gamma neutron method is applied to the study of solute movements during field irrigations under steady-state and transient hydrodynamic conditions. Two different types of behavior are discussed. In the first, the labeled water pulse velocity matches the conservation of the vertical rate of water and, when the deuterated water concentration profiles are mass-conservative, the experimental results are accurately described by the equation of dispersion. In the second, the pore water velocity differs considerably from that of strictly vertical displacements and the concentration profiles are not massconservative.

  15. Low impedance pH sensitive electrochemical devices that are potentially applicable to transcutaneous PCO2 measurements.

    Science.gov (United States)

    Yeung, H N; Beran, A V; Huxtable, R F

    1978-01-01

    Two cases of low impedance, non-glass membrane electrodes for pH measurement were evaluated: (I) Metal--metal oxide electrodes and (II) Reduction-oxidation electrodes. The fundamental cause of oxygen sensitivity of metal-metal oxide electrodes were examined and three approaches for its suppression were proposed. For the case of Sb--Sb2Ox electordes, oxygen sensitivity can be attenuated partially by cell loading, either directly across the reference electrode or indirectly across a third slave electrode. In a PO2 range of 8--54 kPa, more than 95% of the PO2 response can be suppressed by loading the cell emf to half of tis open-circuit value. The oxygen sensitivity also was observed to diminished by grinding the metal-metal oxide and pressing it under high pressure into a pellet electrode. Other metal-metal oxide electrodes that have promise in transcutaneous measurement are the Pd-PdO2 electrodes. The redox electrodes are typified by the Quinhydrone electrode. A membrane Quinhydrome electrode showed a sensitivity of 56 mV/Decade at 37 degree C and no oxygen sensitivity up to 50 kPa and a drift of 1 mV/h over a 24-h period. However, the stability deteriorated over a long-term period.

  16. Electrochemical measurements of cathodic protection for reinforced concrete piles in a marine environment using embedded corrosion monitoring sensors

    Science.gov (United States)

    Jeong, Jin-A.; Chung, Won-Sub; Kim, Yong-Hwan

    2013-05-01

    This study developed a sensor to monitor the corrosion of reinforced concrete structures. Concrete pile specimens with embedded sensors were used to obtain data on corrosion and cathodic protection for bridge columns in a real marine environment. Corrosion potential, cathodic protection current density, concrete resistivity, and the degree of depolarization potential were measured with the embedded sensors in concrete pile specimens. The cathodic protection (CP) state was accurately monitored by sensors installed in underwater, tidal, splash, and atmospheric zones. The protection potential measurements confirmed that the CP by Zn-mesh sacrificial anode was fairly effective in the marine pile environment. The protection current densities in the tidal, splash zones were 2-3 times higher than those in underwater and atmospheric zones. The concrete resistivity in the tidal and splash zones was decreased through the installation of both mortar-embedded Zn-mesh (sacrificial anode) and outside an FRP jacket (cover). Considering the CP, the cathodic prevention was more effective than cathodic protection.

  17. Exploring the origin of magnetic fields in massive stars: II. New magnetic field measurements in cluster and field stars

    CERN Document Server

    Hubrig, S; Ilyin, I; Kharchenko, N V; Oskinova, L M; Langer, N; Gonzalez, J F; Kholtygin, A F; Briquet, M

    2013-01-01

    Theories on the origin of magnetic fields in massive stars remain poorly developed, because the properties of their magnetic field as function of stellar parameters could not yet be investigated. To investigate whether magnetic fields in massive stars are ubiquitous or appear only in stars with a specific spectral classification, certain ages, or in a special environment, we acquired 67 new spectropolarimetric observations for 30 massive stars. Among the observed sample, roughly one third of the stars are probable members of clusters at different ages, whereas the remaining stars are field stars not known to belong to any cluster or association. Spectropolarimetric observations were obtained during four different nights using the low-resolution spectropolarimetric mode of FORS2 (FOcal Reducer low dispersion Spectrograph) mounted on the 8-m Antu telescope of the VLT. Furthermore, we present a number of follow-up observations carried out with the high-resolution spectropolarimeters SOFIN mounted at the Nordic O...

  18. Statistical analysis of lightning electric field measured under Malaysian condition

    Science.gov (United States)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  19. The 2-degree Field Lensing Survey: design and clustering measurements

    CERN Document Server

    Blake, Chris; Childress, Michael; Erben, Thomas; Glazebrook, Karl; Harnois-Deraps, Joachim; Heymans, Catherine; Hildebrandt, Hendrik; Hinton, Samuel R; Janssens, Steven; Johnson, Andrew; Joudaki, Shahab; Klaes, Dominik; Kuijken, Konrad; Lidman, Chris; Marin, Felipe A; Parkinson, David; Poole, Gregory B; Wolf, Christian

    2016-01-01

    We present the 2-degree Field Lensing Survey (2dFLenS), a new galaxy redshift survey performed at the Anglo-Australian Telescope. 2dFLenS is the first wide-area spectroscopic survey specifically targeting the area mapped by deep-imaging gravitational lensing fields, in this case the Kilo-Degree Survey. 2dFLenS obtained 70,079 redshifts in the range z < 0.9 over an area of 731 sq deg, and is designed to extend the datasets available for testing gravitational physics and promote the development of relevant algorithms for joint imaging and spectroscopic analysis. The redshift sample consists first of 40,531 Luminous Red Galaxies (LRGs), which enable analyses of galaxy-galaxy lensing, redshift-space distortion, and the overlapping source redshift distribution by cross-correlation. An additional 28,269 redshifts form a magnitude-limited (r < 19.5) nearly-complete sub-sample, allowing direct source classification and photometric-redshift calibration. In this paper, we describe the motivation, target selection...

  20. Model electrochemical interfaces in ultra-high vacuum: solvent-induced surface potential profiles on Pt(111) from work-function measurements and infrared Stark effects

    Science.gov (United States)

    Kizhakevariam, Naushad; Villegas, Ignacio; Weaver, Michael J.

    1995-08-01

    The influence of various solvents upon the interfacial-potential profile on Pt(111) has been investigated by means of work-function changes and infrared frequency Stark shifts attending sequential-molecular dosing in ultra-high vacuum (UHV) at a suitably low temperature (ca. 100 K) with the primary objective of assessing the role of surface solvation in related electrochemical systems. The solvents examined — dichloromethane, benzene, acetone, acetonitrile, methanol, and ammonia — span a range of polarity and other solvating properties. These species were dosed onto both clean and CO-saturated Pt(111), the Stark shifts being evaluated for the CO stretching mode of terminally co-ordinated carbon monoxide. Marked decreases (≥ 1 eV) in the work function, Φ, and hence in the surface potential, φ, are observed on the addition of most solvents onto clean Pt(111). Milder yet still substantial Φ decreases are also observed for solvent dosage upon CO-saturated Pt(111). These latter Φ changes correlate approximately with the observed vCO frequency downshifts, suggesting that the latter property is also sensitive to the solvent-induced electrostatic interfacial field. The functional form of both the Φ decreases and the corresponding vCO frequency downshifts induced by solvent dosage provide insight into the dosage-dependent potential profile and its relationship to both the monolayer and multilayer solvent structure. The present findings are also briefly compared with corresponding vtCO - Φ data obtained for potassium atom dosing, where the surface potential is altered instead by varying the surface electronic charge in the presence of a given solvent. The underlying factors responsible for the surprisingly large solvent-induced surface potential shifts are discussed in detail, and the likely importance of the surface electronic charge distribution as well as solvent dipole orientation and adsorbate-metal charge sharing is pointed out.

  1. Activities of titanium in molten copper at dilute concentrations measured by solid- state electrochemical cells at 1373 K

    Science.gov (United States)

    Hoshino, H.; Shimada, T.; Yamamoto, M.; Iwase, M.

    1992-03-01

    In order to obtain the activities of titanium in molten copper at dilute concentrations, i.e., between 5 x 10-6 and 3.4 x 10-3 titanium mole fractions, liquid copper was brought into equilibrium with molten {CaCl2 + Ti2O3} slag saturated with Ti2O3 (s) at 1373 K and the equilibrium oxygen partial pressures were measured by means of a solid-oxide galvanic cell of the type Mo/Mo + MoO2/ZrO2(MgO)/(Cu + Ti)alloy + Ti2O3 + CaCl2 + Ti2O3 slag/Mo The free energy change for the dissolution of solid titanium in molten copper at infinite dilution referred to 1 wt pet was determined as Ti (s) = Ti(1 wt pet in Cu) ΔG°/J = -86,100 ± 8900 at 1373 K

  2. Data Modeling for Measurements in the Metrology and Testing Fields

    CERN Document Server

    Pavese, Franco

    2009-01-01

    Offers a comprehensive set of modeling methods for data and uncertainty analysis. This work develops methods and computational tools to address general models that arise in practice, allowing for a more valid treatment of calibration and test data and providing an understanding of complex situations in measurement science

  3. Field Evaluation of Ocean Wave Measurement With GPS Buoys

    Science.gov (United States)

    2010-09-01

    surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and prototype GPS buoys were...receivers to measure ocean surface waves. In the experiment, conducted off the coast of California near Bodega Bay, clusters off Datawell and...the coast near Bodega Bay, CA. .............................................................................................17 Figure 4. R/P FLIP

  4. Measurements of high-contrast starshade performance in the field

    Science.gov (United States)

    Smith, Daniel; Warwick, Steven; Glassman, Tiffany M.; Novicki, Megan C.; Richards, Michael C.; Harness, Anthony; Patterson, Keith D.

    2016-07-01

    The external starshade is a method for the direct detection and spectral characterization of terrestrial planets around other stars, a key goal identified in ASTRO2010. In an effort to validate the starlight-suppression performance of the starshade, we have measured contrast better than 1×10-9 using 60 cm starshades at points just beyond the starshade tips. These measurements were made over a 50% spectral bandpass, using an incoherent light source (a white LED), and in challenging outdoor test environments. Our experimental setup is designed to provide starshade to telescope separation and telescope aperture size that are scaled as closely as possible to the flight system. The measurements confirm not only the overall starlight-suppression capability of the starshade concept but also the robustness of the setup to optical disturbances such as atmospheric effects at the test site. The spectral coverage is limited only by the optics and detectors in our test setup, not by the starshade itself. Here we describe our latest results as well as detailed comparisons of the measured results to model predictions. Plans and status of the next phase of ground testing are also discussed.

  5. Advanced spherical near-field antenna measurement techniques

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Majlund; Pivnenko, Sergey; Breinbjerg, Olav

    2011-01-01

    The DTU-ESA facility has since the 1980es provided highly accurate antenna radiation pattern measurements and gain calibration by use of the probe corrected spherical nearfield technique, both for ESA (the European Space Agency) and other customers and continues to do so. Recent years activities ...

  6. Detecting Damage Using Electric Field Measurements: A Computational Sensitivity Study

    Science.gov (United States)

    2014-02-06

    on a range or in the Physical Scale Model ( PSM ) environment, the smallest area of damage that is detectable would depend upon measurement...sensitivities or errors along with the ability to physically create small pieces of bare metal on the PSM model. Figure 6-4. Comparison of calculated

  7. An EIRP Measurement Method for Base-Station Antennas Using Field Strengths Measured along a Single Straight Line

    Directory of Open Access Journals (Sweden)

    Soon-Soo Oh

    2013-01-01

    Full Text Available We describe an EIRP measurement technique for a base-station antenna. The proposed method especially can be applied to the base-station antenna installed in real environments. Fresnel region measurement method is an optimal technique to avoid the far-field multipath interference, and, furthermore, it could shorten the measurement time. For detecting only the field strengths along a single straight line, we also propose a simple phase-retrieval method. For verification, a simulation and experiment have been performed. An anechoic chamber was utilized in this paper before the real environment test with the outdoor measurement system. The transformed far-field pattern and EIRP agree closely with the reference data within a valid angle. The proposed method can be applied for the EIRP in situ measurements without moving a vehicle loading the EIRP measurement apparatus.

  8. Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors

    Science.gov (United States)

    Giridharagopal, R.; Flagg, L. Q.; Harrison, J. S.; Ziffer, M. E.; Onorato, J.; Luscombe, C. K.; Ginger, D. S.

    2017-07-01

    Ionic transport phenomena in organic semiconductor materials underpin emerging technologies ranging from bioelectronics to energy storage. The performance of these systems is affected by an interplay of film morphology, ionic transport and electronic transport that is unique to organic semiconductors yet poorly understood. Using in situ electrochemical strain microscopy (ESM), we demonstrate that we can directly probe local variations in ion transport in polymer devices by measuring subnanometre volumetric expansion due to ion uptake following electrochemical oxidation of the semiconductor. The ESM data show that poly(3-hexylthiophene) electrochemical devices exhibit voltage-dependent heterogeneous swelling consistent with device operation and electrochromism. Our data show that polymer semiconductors can simultaneously exhibit field-effect and electrochemical operation regimes, with the operation modality and its distribution varying locally as a function of nanoscale film morphology, ion concentration and potential. Importantly, we provide a direct test of structure-function relationships by correlating strain heterogeneity with local stiffness maps. These data indicate that nanoscale variations in ion uptake are associated with local changes in polymer packing that may impede ion transport to different extents within the same macroscopic film and can inform future materials optimization.

  9. Physical and electrochemical study of platinum thin films deposited by sputtering and electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, C. [Universidad de Cartagena, Cartagena de Indias (Colombia); Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 No 45-03, Bogota (Colombia); Vallejo, W., E-mail: wavallejol@unal.edu.co [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 No 45-03, Bogota (Colombia); Mesa, F. [Departamento de Ciencias Basicas, Universidad Libre, Carrera 70 No 53-40, Bogota (Colombia)

    2011-06-15

    In this work platinum thin films deposited by sputtering and electrochemical methods were characterized through physical and electrochemical analysis. The as-grown platinum thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM); scanning electronic microscopy (SEM) and through electrochemical impedance spectroscopy (EIS) measurements. Structural studies indicated that platinum thin films were polycrystalline. Morphological characteristics were significantly affected by the substrate type and synthesis method. Finally the EIS analysis indicated that platinum films were electrochemically stable and present both low resistance of charge transfer and low series resistance; the equivalent circuit of platinum interface has been proposed.

  10. Trapped magnetic field measurements on HTS bulk by peak controlled pulsed field magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Tetsuya; Watasaki, Masahiro [Department of Electronic Control Engineering, Hiroshima National College of Maritime Technology, 4272-1, Higashino, Ohsakikamijima-cho, Toyota-gun, Hiroshima 725-0231 (Japan); Kimura, Yosuke [Kawasaki Heavy Industries, Ltd. Technical Institute System Technology Development Centre 1-1, Kawasaki-cho, Akashi-shi, Hyogo 673-8666 (Japan); Miki, Motohiro; Izumi, Mitsuru, E-mail: ida@hiroshima-cmt.ac.j [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan)

    2010-06-01

    For the past several years, we have studied the high-temperature superconducting (HTS) synchronous motor assembled with melt-textured Gd-Ba-Cu-O bulk magnets. If the single pulse field magnetizes a bulk effectively, size of electrical motor will become small for the strong magnetic field of the HTS magnets without reducing output power of motor. In the previous study, we showed that the HTS bulk was magnetized to excellent cone-shape magnetic field distribution by using the waveform control pulse magnetization (WCPM) method. The WCPM technique made possible the active control of the waveform on which magnetic flux motion depended. We generated the pulse waveform with controlled risetime for HTS bulk magnetization to suppress the magnetic flux motion which decreases magnetization efficiency. The pulsed maximum magnetic flux density with slow risetime is not beyond the maximum magnetic flux density which is trapped by the static field magnetization. But, as for applying the pulse which has fast risetime, the magnetic flux which exceed greatly the threshold penetrates the bulk and causes the disorder of the trapped magnetic distribution. This fact suggests the possibility that the threshold at pulsed magnetization influences the dynamic magnetic flux motion. In this study, Gd-Ba-Cu-O bulk is magnetized by the controlled arbitrary trapezoidal shape pulse, of which the maximum magnetic flux density is controlled not to exceed the threshold. We will present the trapped magnetic characteristics and the technique to generate the controlled pulsed field.

  11. Three-dimensional temperature field measurement of flame using a single light field camera.

    Science.gov (United States)

    Sun, Jun; Xu, Chuanlong; Zhang, Biao; Hossain, Md Moinul; Wang, Shimin; Qi, Hong; Tan, Heping

    2016-01-25

    Compared with conventional camera, the light field camera takes the advantage of being capable of recording the direction and intensity information of each ray projected onto the CCD (charge couple device) sensor simultaneously. In this paper, a novel method is proposed for reconstructing three-dimensional (3-D) temperature field of a flame based on a single light field camera. A radiative imaging of a single light field camera is also modeled for the flame. In this model, the principal ray represents the beam projected onto the pixel of the CCD sensor. The radiation direction of the ray from the flame outside the camera is obtained according to thin lens equation based on geometrical optics. The intensities of the principal rays recorded by the pixels on the CCD sensor are mathematically modeled based on radiative transfer equation. The temperature distribution of the flame is then reconstructed by solving the mathematical model through the use of least square QR-factorization algorithm (LSQR). The numerical simulations and experiments are carried out to investigate the validity of the proposed method. The results presented in this study show that the proposed method is capable of reconstructing the 3-D temperature field of a flame.

  12. Precise Measurement of a Magnetic Field Generated by the Electromagnetic Flux Compression Technique

    CERN Document Server

    Nakamura, D; Matsuda, Y H; Takeyama, S

    2013-01-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure an extremely high magnetic fields.

  13. Electric field measurement of organic photovoltaic cell model using electrooptic probe

    Science.gov (United States)

    Saito, Ryo; Yabe, Yoko; Suzuki, Akito; Shinagawa, Mitsuru; Sugino, Hiroyuki; Katsuyama, Jun; Matsumoto, Yoshinori

    2016-09-01

    In this paper, we describe the use of a transverse electrooptic probe to measure the electric field of an organic photovoltaic (OPV) cell model. It is necessary to measure the voltage of each OPV cell in order to diagnose failure of the OPV. An electric field is generated by the OPV cell voltage, so measuring the electric field is effective for obtaining a failure diagnosis of the OPV. We use a transverse electrooptic probe as an instrumentation tool for measuring the electric field over the OPV. We confirmed the principle of superposition for the electric field strength from each OPV cell model. These results show that the calibration of each OPV cell voltage can be accomplished by measuring the electric field strength over the OPV cells.

  14. Precise measurement of a magnetic field generated by the electromagnetic flux compression technique.

    Science.gov (United States)

    Nakamura, D; Sawabe, H; Matsuda, Y H; Takeyama, S

    2013-04-01

    The precision of the values of a magnetic field generated by electromagnetic flux compression was investigated in ultra-high magnetic fields of up to 700 T. In an attempt to calibrate the magnetic field measured by pickup coils, precise Faraday rotation (FR) measurements were conducted on optical (quartz and crown) glasses. A discernible "turn-around" phenomenon was observed in the FR signal as well as the pickup coils before the end of a liner implosion. We found that the magnetic field measured by pickup coils should be corrected by taking into account the high-frequency response of the signal transmission line. Near the peak magnetic field, however, the pickup coils failed to provide reliable values, leaving the FR measurement as the only method to precisely measure extremely high magnetic fields.

  15. Systematic Review of Uit Parameters on Residual Stresses of Sensitized AA5456 and Field Based Residual Stress Measurements for Predicting and Mitigating Stress Corrosion Cracking

    Science.gov (United States)

    2014-03-01

    significant amount of grinding and other sorts of damage marks that may have influenced the measurements. These measurements will be repeated on non...Mech. Eng., Naval Postgraduate School, Monterey, CA, 2012. 107 [24] M. Pourbaix, Atlas of Electrochemical Equilibria, Houston, TX: National...Journal of Electrochemical Science and Technology, vol. 129, no. 12, pp. 2660–2665, Dec. 1982. [26] H. L. Logan, "Film rupture mechanism of stress

  16. Building micro and nanosystems with electrochemical discharges

    Energy Technology Data Exchange (ETDEWEB)

    Wuethrich, Rolf, E-mail: wuthrich@encs.concordia.c [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada); Allagui, Anis [Department of Mechanical and Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC (Canada)

    2010-11-30

    Since the discovery of the electrochemical discharge phenomenon by Fizeau and Foucault, several contributions have expanded the wide range of applications associated with this high current density electrochemical process. The complexity of the phenomenon, from the macroscopic to the microscopic scales, led since then to experimental and theoretical studies from different research fields. This contribution reviews the chemical and electrochemical perspectives where a mechanistic model based on results from radiation chemistry of aqueous solutions is proposed. In addition applications to micro-machining and fabrication of nanoparticles are discussed.

  17. Process for electrochemically gasifying coal using electromagnetism

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.

    1987-01-01

    A process for electrochemically gasifying coal by establishing a flowing stream of coal particulate slurry, electrolyte and electrode members through a transverse magnetic field that has sufficient strength to polarize the electrode members, thereby causing them to operate in combination with the electrolyte to electrochemically reduce the coal particulate in the slurry. Such electrochemical reduction of the coal produces hydrogen and carbon dioxide at opposite ends of the polarized electrode members. Gas collection means are operated in conjunction with the process to collect the evolved gases as they rise from the slurry and electrolyte solution.

  18. Kinetic measurements using EPR imaging with a modulated field gradient.

    Science.gov (United States)

    Herrling, Thomas; Fuchs, Jürgen; Groth, Norbert

    2002-01-01

    EPR imaging with modulated field gradient was applied for the investigation of fast diffusion processes. Three different imaging methods are possible: spectral-temporal, spatio-temporal, and spectral-spatial imaging. The time resolution is on the order of seconds and the spatial resolution is in the micrometer region. The efficiency of this imaging technique is demonstrated for the penetration of the spin probe Tempol in the skin of hairless mice biopsies. The skin is normally protected against the penetration of water soluble substances by the horny layer, a resistive thin lipophilic layer. Overcoming this horny layer for water soluble ingredients is one of the main practical problems for the topical application of pharmaceutics which could be investigated by EPR imaging. Different images represent the penetration behavior of the water soluble Tempol in the skin after treatment with the penetration enhancer DMSO (Dimethylsulfoxide) and after removing the horny layer.

  19. Kinetic Measurements Using EPR Imaging with a Modulated Field Gradient

    Science.gov (United States)

    Herrling, Thomas; Fuchs, Jürgen; Groth, Norbert

    2002-01-01

    EPR imaging with modulated field gradient was applied for the investigation of fast diffusion processes. Three different imaging methods are possible: spectral-temporal, spatio-temporal, and spectral-spatial imaging. The time resolution is on the order of seconds and the spatial resolution is in the micrometer region. The efficiency of this imaging technique is demonstrated for the penetration of the spin probe Tempol in the skin of hairless mice biopsies. The skin is normally protected against the penetration of water soluble substances by the horny layer, a resistive thin lipophilic layer. Overcoming this horny layer for water soluble ingredients is one of the main practical problems for the topical application of pharmaceutics which could be investigated by EPR imaging. Different images represent the penetration behavior of the water soluble Tempol in the skin after treatment with the penetration enhancer DMSO (Dimethylsulfoxide) and after removing the horny layer.

  20. Hanford 67-series: a volume of atmospheric field diffusion measurements

    Energy Technology Data Exchange (ETDEWEB)

    Nickola, P.W.

    1977-11-01

    This volume documents atmospheric diffusion experiments carried out at the Hanford reservation during the period 1967 to 1973. A total of 103 tracer releases during 54 release periods is tabulated. Multi-tracer releases (generally from different elevations) were made during most of the experimental periods. Release heights varied from ground level to an elevation of 111 m. Tracers were sampled simultaneously on as many as 10 arcs at distances of up to 12.8 km from the tracer release point. As many as 718 field sampling locations were employed during some of the experiments. Vertical profiles of concentration were monitored on towers during 23 of the 54 release periods. Concurrent vertical profiles of mean temperature, of mean wind speed and direction, and of direction standard deviation are also tabled for elevations up to 122 m.