WorldWideScience

Sample records for field echo method

  1. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    Science.gov (United States)

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences.

  2. A Field Method for Backscatter Calibration Applied to NOAA's Reson 7125 Multibeam Echo-Sounders

    Science.gov (United States)

    Welton, Briana

    Acoustic seafloor backscatter measurements made by multiple Reson multibeam echo-sounders (MBES) used for hydrographic survey are observed to be inconsistent, affecting the quality of data products and impeding large-scale processing efforts. A method to conduct a relative inter and intea sonar calibration in the field using dual frequency Reson 7125 MBES has been developed, tested, and evaluated to improve the consistency of backscatter measurements made from multiple MBES systems. The approach is unique in that it determines a set of corrections for power, gain, pulse length, and an angle dependent calibration term relative to a single Reson 7125 MBES calibrated in an acoustic test tank. These corrections for each MBES can then be applied during processing for any acquisition setting combination. This approach seeks to reduce the need for subjective and inefficient manual data or data product manipulation during post processing, providing a foundation for improved automated seafloor characterization using data from more than one MBES system.

  3. Geometric spin echo under zero field

    Science.gov (United States)

    Sekiguchi, Yuhei; Komura, Yusuke; Mishima, Shota; Tanaka, Touta; Niikura, Naeko; Kosaka, Hideo

    2016-01-01

    Spin echo is a fundamental tool for quantum registers and biomedical imaging. It is believed that a strong magnetic field is needed for the spin echo to provide long memory and high resolution, since a degenerate spin cannot be controlled or addressed under a zero magnetic field. While a degenerate spin is never subject to dynamic control, it is still subject to geometric control. Here we show the spin echo of a degenerate spin subsystem, which is geometrically controlled via a mediating state split by the crystal field, in a nitrogen vacancy centre in diamond. The demonstration reveals that the degenerate spin is protected by inherent symmetry breaking called zero-field splitting. The geometric spin echo under zero field provides an ideal way to maintain the coherence without any dynamics, thus opening the way to pseudo-static quantum random access memory and non-invasive biosensors. PMID:27193936

  4. Chemical exchange saturation transfer MR imaging of articular cartilage glycosaminoglycans at 3 T: Accuracy of B0 Field Inhomogeneity corrections with gradient echo method.

    Science.gov (United States)

    Wei, Wenbo; Jia, Guang; Flanigan, David; Zhou, Jinyuan; Knopp, Michael V

    2014-01-01

    Glycosaminoglycan Chemical Exchange Saturation Transfer (gagCEST) is an important molecular MRI methodology developed to assess changes in cartilage GAG concentrations. The correction for B0 field inhomogeneity is technically crucial in gagCEST imaging. This study evaluates the accuracy of the B0 estimation determined by the dual gradient echo method and the effect on gagCEST measurements. The results were compared with those from the commonly used z-spectrum method. Eleven knee patients and three healthy volunteers were scanned. Dual gradient echo B0 maps with different ∆TE values (1, 2, 4, 8, and 10 ms) were acquired. The asymmetry of the magnetization transfer ratio at 1 ppm offset referred to the bulk water frequency, MTRasym(1 ppm), was used to quantify cartilage GAG levels. The B0 shifts for all knee patients using the z-spectrum and dual gradient echo methods are strongly correlated for all ∆TE values used (r = 0.997 to 0.786, corresponding to ∆TE = 10 to 1 ms). The corrected MTRasym(1 ppm) values using the z-spectrum method (1.34% ± 0.74%) highly agree only with those using the dual gradient echo methods with ∆TE = 10 ms (1.72% ± 0.80%; r = 0.924) and 8 ms (1.50% ± 0.82%; r = 0.712). The dual gradient echo method with longer ∆TE values (more than 8 ms) has an excellent correlation with the z-spectrum method for gagCEST imaging at 3T.

  5. Direct magnetic field estimation based on echo planar raw data.

    Science.gov (United States)

    Testud, Frederik; Splitthoff, Daniel Nicolas; Speck, Oliver; Hennig, Jürgen; Zaitsev, Maxim

    2010-07-01

    Gradient recalled echo echo planar imaging is widely used in functional magnetic resonance imaging. The fast data acquisition is, however, very sensitive to field inhomogeneities which manifest themselves as artifacts in the images. Typically used correction methods have the common deficit that the data for the correction are acquired only once at the beginning of the experiment, assuming the field inhomogeneity distribution B(0) does not change over the course of the experiment. In this paper, methods to extract the magnetic field distribution from the acquired k-space data or from the reconstructed phase image of a gradient echo planar sequence are compared and extended. A common derivation for the presented approaches provides a solid theoretical basis, enables a fair comparison and demonstrates the equivalence of the k-space and the image phase based approaches. The image phase analysis is extended here to calculate the local gradient in the readout direction and improvements are introduced to the echo shift analysis, referred to here as "k-space filtering analysis." The described methods are compared to experimentally acquired B(0) maps in phantoms and in vivo. The k-space filtering analysis presented in this work demonstrated to be the most sensitive method to detect field inhomogeneities.

  6. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    OpenAIRE

    2011-01-01

    Objective We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Materials and Methods Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD...

  7. Echo

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, Dustin Yewell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-25

    This document is a white paper marketing proposal for Echo™ is a data analysis platform designed for efficient, robust, and scalable creation and execution of complex workflows. Echo’s analysis management system refers to the ability to track, understand, and reproduce workflows used for arriving at results and decisions. Echo improves on traditional scripted data analysis in MATLAB, Python, R, and other languages to allow analysts to make better use of their time. Additionally, the Echo platform provides a powerful data management and curation solution allowing analysts to quickly find, access, and consume datasets. After two years of development and a first release in early 2016, Echo is now available for use with many data types in a wide range of application domains. Echo provides tools that allow users to focus on data analysis and decisions with confidence that results are reported accurately.

  8. An Improved Susceptibility Weighted Imaging Method using Multi-Echo Acquisition

    Science.gov (United States)

    Oh, Sung Suk; Oh, Se-Hong; Nam, Yoonho; Han, Dongyeob; Stafford, Randall B.; Hwang, Jinyoung; Kim, Dong-Hyun; Park, HyunWook; Lee, Jongho

    2013-01-01

    Purpose To introduce novel acquisition and post-processing approaches for susceptibility weighted imaging (SWI) to remove background field inhomogeneity artifacts in both magnitude and phase data. Method The proposed method acquires three echoes in a 3D gradient echo (GRE) sequence, with a field compensation gradient (z-shim gradient) applied to the third echo. The artifacts in the magnitude data are compensated by signal estimation from all three echoes. The artifacts in phase signals are removed by modeling the background phase distortions using Gaussians. The method was applied in vivo and compared with conventional SWI. Results The method successfully compensates for background field inhomogeneity artifacts in magnitude and phase images, and demonstrated improved SWI images. In particular, vessels in frontal lobe, which were not observed in conventional SWI, were identified in the proposed method. Conclusion The new method improves image quality in SWI by restoring signal in the frontal and temporal regions. PMID:24105838

  9. Neutron resonance spin echo with longitudinal DC fields

    Science.gov (United States)

    Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang

    2016-12-01

    We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.

  10. Mean-field theory of echo state networks

    Science.gov (United States)

    Massar, Marc; Massar, Serge

    2013-04-01

    Dynamical systems driven by strong external signals are ubiquitous in nature and engineering. Here we study “echo state networks,” networks of a large number of randomly connected nodes, which represent a simple model of a neural network, and have important applications in machine learning. We develop a mean-field theory of echo state networks. The dynamics of the network is captured by the evolution law, similar to a logistic map, for a single collective variable. When the network is driven by many independent external signals, this collective variable reaches a steady state. But when the network is driven by a single external signal, the collective variable is non stationary but can be characterized by its time averaged distribution. The predictions of the mean-field theory, including the value of the largest Lyapunov exponent, are compared with the numerical integration of the equations of motion.

  11. LRS data processing methods for detection of lunar subsurface echoes

    Science.gov (United States)

    Oshigami, Shoko; Mochizuki, Kengo; Watanabe, Shiho; Watanabe, Toshiki; Yamaguchi, Yasushi; Yamaji, Atsushi; Ono, Takayuki; Kumamoto, Atsushi; Nakagawa, Hiromu; Kobayashi, Takao; Kasahara, Yoshiya

    , KAGUYA- onboard apparatus and airwave from the Earth. Subsurface echoes might be obliterated by these noises and other echoes. In order to detect subsurface echoes in the LRS data, we are currently investigating the data processing methods, including data stacking in the flight direction, contrast enhancement, and the migration technique. Characteristics of LRS data differ considerably between mare and highland regions. We could detect subsurface echoes in mare regions with simple procedure. We stack ten A-scope data in the flight direction in order to suppress random noises in B-scan images. Then we enhance contrast of the B-scan images. As a result, subsurface discontinuities are found at several hundreds meters deep in the mare regions such as Mare Serenitatis. On the other hand, subsurface echoes in highland regions might be hidden by numerous echoes from the surface craters. ‘Clutters' from craters appear as obvious hyperbolic patterns in LRS B-scan images. We apply the migration technique to LRS data for the purpose of suppressing these surface clutters. The migration is a popular technique in seismic refraction surveys to analyze signals from the subsurface interfaces in the Earth. We adopted the migration programs of Seismic Unix (SU) which is a software package for seismic waveform data processing. First, we stacked 10 pulse data and then enhanced amplitude of the echo signals. And second, we perform offset calibration by prepending dummy data to the LRS data. By specifying a time sampling interval, pulse transmission interval, and a propagation velocity of transmitted electromagnetic wave in free space as parameters, each hyperbolic pattern in B-scan images is focused on a point that corresponds to a surface reflector. We conclude that the migration technique is an effective to suppress the hyperbolic clutter patterns and thus to enhance subsurface echoes in LRS B-scan images.

  12. A high success rate full-waveform lidar echo decomposition method

    Science.gov (United States)

    Xu, Lijun; Li, Duan; Li, Xiaolu

    2016-01-01

    A full-waveform Light detection and ranging (LiDAR) echo decomposition method is proposed in this paper. In this method, the peak points are used to detect the separated echo components, while the inflection points are combined with corresponding peak points to detect the overlapping echo components. The detected echo components are then sorted according to their energies in a descending order. The sorted echo components are one by one added into the decomposition model according to their orders. For each addition, the parameters of all echo components already added into the decomposition model are iteratively renewed. After renewing, the amplitudes and full width at half maximums of the echo components are compared with pre-set thresholds to determine and remove the false echo components. Both simulation and experiment were carried out to evaluate the proposed method. In simulation, 4000 full-waveform echoes with different numbers and parameters of echo components were generated and decomposed using the proposed and three other commonly used methods. Results show that the proposed method is of the highest success rate, 91.43%. In experiment, 9549 Geoscience Laser Altimeter System (GLAS) echoes for Shennongjia forest district in south China were employed as test echoes. The test echoes were first decomposed using the four methods and the decomposition results were also compared with those provided by the National Snow and Ice Data Center. Comparison results show that the determination coefficient ({{R}2} ) of the proposed method is of the largest mean, 0.6838, and the smallest standard deviation, 0.3588, and the distribution of the number of the echo components decomposed from the GLAS echoes is the most satisfied with the situation of full-waveform echoes from the forest area, implying that the superposition of the echo components decomposed from a full-waveform echo by using the proposed method can best approximate the full-waveform echo.

  13. Quench echo and work statistics in integrable quantum field theories.

    Science.gov (United States)

    Pálmai, T; Sotiriadis, S

    2014-11-01

    We propose a boundary thermodynamic Bethe ansatz calculation technique to obtain the Loschmidt echo and the statistics of the work done when a global quantum quench is performed on an integrable quantum field theory. We derive an analytic expression for the lowest edge of the probability density function and find that it exhibits universal features, in the sense that its scaling form depends only on the statistics of excitations. We perform numerical calculations on the sinh-Gordon model, a deformation of the free boson theory, and we obtain that by turning on the interaction the density function develops fermionic properties. The calculations are facilitated by a previously unnoticed property of the thermodynamic Bethe ansatz construction.

  14. The geometrical acoustic method for calculating the echo of targets submerged in a shallow water waveguide

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan; TANG Weilin; FAN Wei; FAN Jun

    2012-01-01

    A geometrical acoustic method based on image-source method and physicM acoustic method was developed to calculate the echo of targets submerged in the shallow water waveguide. The incident rays and the scattering rays are reflected by two boundaries for many times, and then the back rays become countless. The total backscattering field is obtained through summing up the scattering field produced by each combination of incident rays and back rays. The echo of the 10m-radius pressure release sphere in Pekeris waveguide with the range is calculated by the geometrical acoustic method. Compared with the results calculated by the wave acoustic method in the available literature, it shows that both are in accordance on average value and descend trend. The following results indicate that the difference between Effective Target Strength (ETS) in shallow water and the Target Strength (TS) in free space for spheres and certain other rounded objects is small. However, the ETS of some targets such as cone-shaped is quite different from TS in free space, which can lead to large errors in estimating a target's scattering property using traditional sonar equation. Compared with the method of wave acoustics, the geometrical acoustic method not only has the definite physical meaning but also can calculate the echo of complex objects in shallow water waveguide.

  15. Spin Dynamics Simulations of Multiple Echo Spacing Pulse Sequences in Grossly Inhomogeneous Fields

    Science.gov (United States)

    Heidler, R.; Bachman, H. N.; Johansen, Y.

    2008-12-01

    Pulse sequences with multiple lengths of echo spacings are used in oilfield NMR logging for diffusion-based NMR applications such as rock and fluid characterization. One specific implementation is the so-called diffusion editing sequence comprising two long echo spacings followed by a standard CPMG at a shorter echo spacing. The echoes in the CPMG portion contain signal from both the direct and stimulated echoes. Modern oilfield NMR logging tools are designed for continuous depth logging of earth formations by projecting both the static (B0) and dynamic (B1) fields into the formation. Both B0 and B1 profiles are grossly inhomogeneous which results in non-steady-state behavior in the early echoes. The spin dynamics effects present a challenge for processing the echo amplitudes to measure porosity (amplitude extrapolated to zero time) and attenuations for fluid or pore size characterization. In this work we describe a calculation of the spin dynamics of the diffusion editing sequence with two long echo spacings. The calculation takes into account full B1 and B0 field maps, and comparisons will be made for sensors and parameters typical of oilfield logging tools and environments.

  16. Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging.

    Science.gov (United States)

    Holland, Dominic; Kuperman, Joshua M; Dale, Anders M

    2010-03-01

    Single-shot Echo Planar Imaging (EPI) is one of the most efficient magnetic resonance imaging (MRI) acquisition schemes, producing relatively high-definition images in 100 ms or less. These qualities make it desirable for Diffusion Tensor Imaging (DTI), functional MRI (fMRI), and Dynamic Susceptibility Contrast MRI (DSC-MRI). However, EPI suffers from severe spatial and intensity distortion due to B(0) field inhomogeneity induced by magnetic susceptibility variations. Anatomically accurate, undistorted images are essential for relating DTI and fMRI images with anatomical MRI scans, and for spatial registration with other modalities. We present here a fast, robust, and accurate procedure for correcting EPI images from such spatial and intensity distortions. The method involves acquisition of scans with opposite phase encoding polarities, resulting in opposite spatial distortion patterns, and alignment of the resulting images using a fast nonlinear registration procedure. We show that this method, requiring minimal additional scan time, provides superior accuracy relative to the more commonly used, and more time consuming, field mapping approach. This method is also highly computationally efficient, allowing for direct "real-time" implementation on the MRI scanner. We further demonstrate that the proposed method can be used to recover dropouts in gradient echo (BOLD and DSC-MRI) EPI images.

  17. Self-diffusion imaging by spin echo in Earth's magnetic field.

    Science.gov (United States)

    Mohoric, A; Stepisnik, J; Kos, M; Planinsi

    1999-01-01

    The NMR of the Earth's magnetic field is used for diffusion-weighted imaging of phantoms. Due to a weak Larmor field, care needs to be taken regarding the use of the usual high field assumption in calculating the effect of the applied inhomogeneous magnetic field. The usual definition of the magnetic field gradient must be replaced by a generalized formula valid when the strength of a nonuniform magnetic field and a Larmor field are comparable (J. Stepisnik, Z. Phys. Chem. 190, 51-62 (1995)). It turns out that the expression for spin echo attenuation is identical to the well-known Torrey formula only when the applied nonuniform field has a proper symmetry. This kind of problem may occur in a strong Larmor field as well as when the slow diffusion rate of particles needs an extremely strong gradient to be applied. The measurements of the geomagnetic field NMR demonstrate the usefulness of the method for diffusion and flow-weighted imaging.

  18. Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor

    Science.gov (United States)

    Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.

    2017-06-01

    We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.

  19. Electric field and electron density thresholds for coherent auroral echo onset

    Energy Technology Data Exchange (ETDEWEB)

    Kustov, A.V.; Uspensky, M.V.; Sofko, G.J.; Koehler, J.A. (Univ. of Saskatchewan, Saskatoon (Canada)); Jones, G.O.L.; Williams, P.J.S. (University College of Wales, Aberystwyth (United Kingdom))

    1993-05-01

    The authors study the threshold dependence of electron density and electric field for the observation of coherent auroral echo onset. They make use of Polar Geophysical Institute 83 MHz auroral radar and the EISCAT facility in Scandanavia, to simultaneously get plasma parameter information and coherent scatter observations. They observe an electron density threshold of roughly 2.5[times]10[sup 11] m[sup [minus]3] for electric fields of 15 - 20 mV/m (near the Farley-Buneman instability threshold). For electric fields of 5 - 10 mV/m echos are not observed for even twice the previous electron density. Echo strength is observed to have other parametric dependences.

  20. MRI measurement of blood-brain barrier transport with a rapid acquisition refocused echo (RARE) method

    Science.gov (United States)

    Walton, Jeffrey H; Ng, Kit Fai; Anderson, Steven E; Rutledge, John C

    2015-01-01

    Dynamic Contrast Enhanced (DCE) MRI is increasingly being used to assess changes in capillary permeability. Most quantitative techniques used to measure capillary permeability are based on the Fick equation that requires measurement of signal reflecting both plasma and tissue concentrations of the solute being tested. To date, most Magnetic Resonance Imaging (MRI) methods for acquiring appropriate data quickly rely on gradient recalled echo (GRE) type acquisitions, which work well in clinical low field settings. However, acquiring this type of data on high field small animal preclinical MRIs is problematic due to geometrical distortions from susceptibility mismatch. This problem can be exacerbated when using small animal models to measure blood brain barrier (BBB) permeability, where precise sampling from the superior sagittal sinus (SSS) is commonly used to determine the plasma concentration of the contrast agent. Here we present results demonstrating that a standard saturation recovery rapid acquisition refocused echo (RARE) method is capable of acquiring T1 maps with good spatial and temporal resolution for Patlak analysis (Patlak, 1983) to assess changes in BBB Gd-DTPA permeability following middle cerebral artery occlusion with reperfusion in the rat. This method limits known problems with magnetic susceptibility mismatch and may thus allow greater accuracy in BBB permeability measurement in small animals. PMID:25998382

  1. Neutron spin echo spectroscopy under 17 T magnetic field at RESEDA

    Directory of Open Access Journals (Sweden)

    Kindervater J.

    2015-01-01

    Full Text Available We report proof-of-principle measurements at the neutron resonance spin echo spectrometer RESEDA (MLZ under large magnetic fields by means of Modulation of IntEnsity with Zero Effort (MIEZE. Our study demonstrates the feasibility of applying strong magnetic fields up to 17 T at the sample while maintaining unchanged sub-μeV resolution. We find that the MIEZE-spin-echo resolution curve remains essentially unchanged as a function of magnetic field up to the highest fields available, promising access to high fields without need for additional fine-tuning of the instrument. This sets the stage for the experimental investigations of subtle field dependent phenomena, such as magnetic field-driven phase transitions in hard and soft condensed matter physics.

  2. Transmit and receive RF fields determination from a single low-tip-angle gradient-echo scan by scaling of SVD data.

    Science.gov (United States)

    Sbrizzi, Alessandro; Raaijmakers, Alexander J E; Hoogduin, Hans; Lagendijk, Jan J W; Luijten, Peter R; van den Berg, Cornelis A T

    2014-07-01

    A new method, called Transmit and Receive Patterns from Low-Tip-angle gradient-Echo Images (TRIPLET), is described which simultaneously maps the B1+ and B1- fields of a transmit/receive radiofrequency coil array. The input data are low-tip-angle gradient-echo images, which can be acquired in a relatively short scanning time. For each voxel in the field of view, a matrix can be assembled with the low-tip-angle gradient-echo image values of the radiofrequency coil array. Applying the singular value decomposition to those matrices, datasets are obtained which show a high resemblance with the true B1+ and B1- fields. These datasets are a voxel-wise scaled version of the true radiofrequency maps. The channel independent scaling parameters can be found by implicitly forcing the reconstructed fields to be solutions of the Maxwell equations. This is achieved by introducing a multipole expansion consisting of Bessel/Fourier functions. Two FDTD simulated radiofrequency fields for two coil array combinations at 7 T and a measured, in vivo dataset at 7 T are investigated to illustrate the singular value decomposition analysis of the low-tip-angle gradient-echo images and to show how the B1+ and B1- fields can be reconstructed by Transmit and Receive Patterns from Low-Tip-angle gradient-Echo Images. The Transmit and Receive Patterns from Low-Tip-angle gradient-Echo Images algorithm can convert the datasets from singular value decomposition analysis of low-tip-angle gradient-echo images to true B1+ and B1- fields. Copyright © 2013 Wiley Periodicals, Inc.

  3. Sub-piexl methods for improving vector quality in echo PIV flow, imaging technology.

    Science.gov (United States)

    Niu, Lili; Wang, Jing; Qian, Ming; Zheng, Hairong

    2009-01-01

    Developments of many cardiovascular problems have been shown to have a close relationship with arterial flow conditions. An ultrasound-based particle image velocimetry technique(Echo PIV) was recently developed to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. To improve the measurement accuracy, sub-pixel calculation method was adopted in this paper to maximize the ultrasound RF signal and B mode image correlation accuracy and increase the image spatial resolution. This algorithm is employed in processing both computer-generated particle image patterns and the B-mode images of microbubbles in rotating flows obtained by a high frame rate (up to 1000 frames per second) ultrasound imaging system. The results show the correlation of particle patterns and individual flow vector quality are improved and the overall flow mappings are also improved significantly. This would help the Echo PIV system to provide better multi-component velocity accuracy.

  4. Composite NDE using full-field pulse-echo ultrasonic propagation imaging system

    Science.gov (United States)

    Hong, Seung-Chan; Lee, Jung-Ryul; Park, Jongwoon

    2016-04-01

    In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is presented. The coincided laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. The system nondestructively inspected targets with two-axis translation stages. Various structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are an aluminum honeycomb sandwich, ailerons and carbon fiber reinforced plastic (CFRP) honeycomb sandwich structures including various defects.

  5. Localization of the cortical motor area by functional magnetic resonance imaging with gradient echo and echo-planar methods, using clinical 1.5 Tesla MR imaging systems.

    Science.gov (United States)

    Nakayama, K

    1997-06-01

    Functional magnetic resonance imaging (MRI) with gradient echo and echo-planar sequences was applied to healthy volunteers and neurological patients to evaluate the feasibility of detecting and localizing the motor cortex. Time course of the change in signal intensity by an alternate repetition of motor task (squeezing hand) and rest periods was also examined. The motor cortex was localized as the area of signal increase in 88.9% of 45 healthy volunteers by gradient echo method, which mainly reflected the cortical vein, and 83.3% of 30 healthy volunteers by echo-planar method, which mainly reflected the cerebral gyrus. Among 21 volunteers who participated in the both studies, success rate in the localization for the motor cortex was 90.5% (21 volunteers) by gradient echo method and 81% (17 volunteers) by echo-planar method. It was also shown from the time course of the change in signal intensity that signal increase in the most significantly activated area generally corresponded with the periods of the motor task, and the latency between the onset of signal increase and the onset of motor task was usually about 4 seconds. In four of 6 patients with brain tumor, the motor cortex was localized, although activated areas were displaced or distorted. The results indicate that fMRI, either with gradient echo or echo-planar sequence, is a useful method for localizing the primary motor area activated during the motor task and clinically available for noninvasive evaluation of the anatomical relation between brain tumors and the motor area before surgical therapy.

  6. Methodical and clinical aspects of the echo-oculography.

    Science.gov (United States)

    Thijssen, J M; Gommers, P A

    1975-01-01

    The pros and cons of the various B-scan modes are discussed, and the preferences of the combination of the linear scan and the arc scan is eludicated with experimental results. Some techniques of modulation of the intensity of the B-scan oscilloscope are compared, the starting point being an A-scan equipment with a logarithmic gain amplifier. It is concluded that either a differentiated video signal, or a system employing standard pulses are differentiation of the video signal, or a system employing standard pulses after differentiation of the video signal enhances the anatomical outlining of the B-scan pictures. In order to provide quantitative information of the echo-pattern, A-scan pictures have to be made. These pictures are taken at positions with the B-scan display.

  7. Multi-gradient echo MR thermometry for monitoring of the near-field area during MR-guided high intensity focused ultrasound heating

    NARCIS (Netherlands)

    Lam-De Wit, Miekee; De Greef, Martijn; Bouwman, Job G.; Moonen, Chrit T W; Viergever, Max A.; Bartels, LW

    2015-01-01

    The multi-gradient echo MR thermometry (MGE MRT) method is proposed to use at the interface of the muscle and fat layers found in the abdominal wall, to monitor MR-HIFU heating. As MGE MRT uses fat as a reference, it is field-drift corrected. Relative temperature maps were reconstructed by subtracti

  8. Fast method of NMR imaging based on trains of spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Hennel, F.

    1993-12-31

    A theoretical introduction to Fourier NMR imaging and a discussion of fast methods are presented. Then an application of the method of echo-planar imaging (EPI) with spin echoes in a micro-imaging system is described together with introduced modifications of the sequence. A new technique for the measurement of flow profiles in liquids which results from a modification of x-pulsed EPI is presented. The development of new software for a NMR micro-imaging system is described, too. 51 refs, 29 refs.

  9. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  10. Localization Methods of Weighted Centroid of dBZ on Weather-Radar Echo Maps in Vector Format

    Directory of Open Access Journals (Sweden)

    Xue-tao Yu

    2013-02-01

    Full Text Available Fast generation of weather-radar echo maps in vector format and accurate localization of weighted centroid of dBZ (dBZ stands for decibels of reflectivity of a radar signal reflected off a remote object are the basis of studying the characteristic tracking algorithms which are based on the vector echoes. The authors principally studied the approach to generating the vector echo map, and discussed the localization methods of weighted centroid of dBZ on vector echo maps. First, based on the traditional calculation method on raster echo data, some new localization methods of weighted centroid of dBZ on vector echo data were proposed by considering the weights of features’ area and distance from their location to radar center. Second, taking the base reflectivity products of CINRAD/SA weather radar in Meizhou city of China as data sources, they illustrated the storage structure of this type of echo data and studied the drawing mode of changing this type of data into vector format files under the polar coordinate system in detail. Third, using the same vector echo maps created by the above method, the weighted centroid of the same area was calculated by the above localization methods. In the end, Compared with the calculated value of the same area by traditional method which is based on raster echo maps, the three new calculated results and the sources of error were analyzed in detail and two conclusions were drawn: the echo’s precision in vector format is much higher than that in raster format and it is more accurate to take the features’ area and distance to radar center as weights during the calculation of weighted centroid of dBZ on echo maps in vector format.

  11. Detection-Discrimination Method for Multiple Repeater False Targets Based on Radar Polarization Echoes

    Directory of Open Access Journals (Sweden)

    Z. W. ZONG

    2014-04-01

    Full Text Available Multiple repeat false targets (RFTs, created by the digital radio frequency memory (DRFM system of jammer, are widely used in practical to effectively exhaust the limited tracking and discrimination resource of defence radar. In this paper, common characteristic of radar polarization echoes of multiple RFTs is used for target recognition. Based on the echoes from two receiving polarization channels, the instantaneous polarization radio (IPR is defined and its variance is derived by employing Taylor series expansion. A detection-discrimination method is designed based on probability grids. By using the data from microwave anechoic chamber, the detection threshold of the method is confirmed. Theoretical analysis and simulations indicate that the method is valid and feasible. Furthermore, the estimation performance of IPRs of RFTs due to the influence of signal noise ratio (SNR is also covered.

  12. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Joo; Lee, Sang Hoon; Kang, Chang Ho; Ryu, Jeong Ah; Shin, Myung Jin; Cho, Kyung Ja; Cho, Woo Shin [University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2011-02-15

    We wanted to compare the two-dimensional (2D) fast spin echo (FSE) techniques and the three-dimensional (3D) fast field echo techniques for the evaluation of the chondromalacia patella using a microscopy coil. Twenty five patients who underwent total knee arthroplasty were included in this study. Preoperative MRI evaluation of the patella was performed using a microscopy coil (47 mm). The proton density-weighted fast spin echo images (PD), the fat-suppressed PD images (FS-PD), the intermediate weighted-fat suppressed fast spin echo images (iw-FS-FSE), the 3D balanced-fast fi eld echo images (B-FFE), the 3D water selective cartilage scan (WATS-c) and the 3D water selective fluid scan (WATS-f) were obtained on a 1.5T MRI scanner. The patellar cartilage was evaluated in nine areas: the superior, middle and the inferior portions that were subdivided into the medial, central and lateral facets in a total of 215 areas. Employing the Noyes grading system, the MRI grade 0-I, II and III lesions were compared using the gross and microscopic findings. The sensitivity, specificity and accuracy were evaluated for each sequence. The significance of the differences for the individual sequences was calculated using the McNemar test. The gross and microscopic findings demonstrated 167 grade 0-I lesions, 40 grade II lesions and eight grade III lesions. Iw-FS-FSE had the highest accuracy (sensitivity/specificity/accuracy = 88%/98%/96%), followed by FSPD (78%/98%/93%, respectively), PD (76%/98%/93%, respectively), B-FFE (71%/100%/93%, respectively), WATS-c (67%/100%/92%, respectively) and WATS-f (58%/99%/89%, respectively). There were statistically significant differences for the iw-FS-FSE and WATS-f and for the PD-FS and WATS-f (p < 0.01). The iw-FS-FSE images obtained with a microscopy coil show best diagnostic performance among the 2D and 3D GRE images for evaluating the chondromalacia patella

  13. 1H stray-field long spin-echo trains and MRI: novel studies on the photopolymerization of a commercial dental resin

    Science.gov (United States)

    Nunes, Teresa G.; Guillot, Geneviève; Pereira, Sónia G.; Pires, Ricardo

    2002-06-01

    Photopolymerization of a commercial dental resin has been investigated by 1H stray-field (STRAFI) magnetic resonance. The resin is a visible light-cured system, included in a new generation adhesive, which is used to bond the restorative material to enamel or dentin. Different methods were used to follow the curing reaction, which involve long and short spin-echo train acquisitions to obtain one-slice and one-dimensional data, respectively. The echo attenuation, in the limit of very short time delays, could be described as the sum of two exponentials. While the intensity of the early echoes in the train appeared mainly governed by spin-spin relaxation, the decay of the last echoes seemed to depend also on spin-lattice relaxation in the rotating frame. The relative amplitude of the long-time component was found to decrease from 84% to 10% with the photopolymerization progress, and a STRAFI degree of conversion of 74% could thus be suggested. The influence of the curing protocol was observed in STRAFI profiles.

  14. {sup 1}H stray-field long spin-echo trains and MRI: novel studies on the photopolymerization of a commercial dental resin

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Teresa G.; Pereira, Sonia G.; Pires, Ricardo [IST/ICTPOL, Departamento de Engenharia de Materiais, Lisbon (Portugal); Guillot, Genevieve [U2R2M CNRS UMR8081 Bat. 220, Universite Paris-Sud, Orsay (France)

    2002-06-07

    Photopolymerization of a commercial dental resin has been investigated by {sup 1}H stray-field (STRAFI) magnetic resonance. The resin is a visible light-cured system, included in a new generation adhesive, which is used to bond the restorative material to enamel or dentin. Different methods were used to follow the curing reaction, which involve long and short spin-echo train acquisitions to obtain one-slice and one-dimensional data, respectively. The echo attenuation, in the limit of very short time delays, could be described as the sum of two exponentials. While the intensity of the early echoes in the train appeared mainly governed by spin-spin relaxation, the decay of the last echoes seemed to depend also on spin-lattice relaxation in the rotating frame. The relative amplitude of the long-time component was found to decrease from 84% to 10% with the photopolymerization progress, and a STRAFI degree of conversion of 74% could thus be suggested. The influence of the curing protocol was observed in STRAFI profiles. (author)

  15. Use of earth field spin echo NMR to search for liquid minerals

    Science.gov (United States)

    Stoeffl, Wolfgang

    2001-01-01

    An instrument for measuring the spatial, qualitative and quantitative parameters of an underground nuclear magnetic resonance (NMR) active liquid mineral deposit, including oil and water. A phased array of excitation and receiver antennas on the surface and/or in a borehole excites the NMR active nuclei in the deposit, and using known techniques from magnetic resonance imaging (MRI), the spatial and quantitative distribution of the deposit can be measured. A surface array may utilize, for example, four large (50-500 diameter) diameter wire loops laid on the ground surface, and a weak (1.5-2.5 kHz) alternating current (AC) field applied, matching the NMR frequency of hydrogen in the rather flat and uniform earth magnetic field. For a short duration (a few seconds) an additional gradient field can be generated, superimposed to the earth field, by applying direct current (DC) to the grid (wire loops), enhancing the position sensitivity of the spin-echo and also suppressing large surface water signals by shifting them to a different frequency. The surface coil excitation can be combined with downhole receivers, which are much more radio-quiet compared to surface receivers, and this combination also enhances the position resolution of the MRI significantly. A downhole receiver module, for example, may have a 5.5 inch diameter and fit in a standard six inch borehole having a one-quarter inch thick stainless steel casing. The receiver module may include more than one receiver units for improved penetration and better position resolution.

  16. Balanced Turbo Field Echo with Extended k-space Sampling: A Fast Technique for the Thoracic Ductography.

    Science.gov (United States)

    Nomura, Takakiyo; Niwa, Tetsu; Kazama, Toshiki; Sekiguchi, Tatsuya; Okazaki, Takashi; Shibukawa, Shuhei; Nishio, Hiroaki; Obara, Makoto; Imai, Yutaka

    2016-10-11

    We evaluated the visibility of the thoracic duct by fast balanced turbo field echo with extended k-space sampling (bTFEe). The thoracic duct of 10 healthy volunteers was scanned by bTFEe using a 1.5-T magnetic resonance imaging (MRI), which was acquired in approximately 2 minutes. Three-dimensional (3D) turbo spin-echo (TSE) was obtained for comparison. The thoracic duct including draining location of the venous system was overall well visualized on bTFEe, compared to TSE.

  17. Mixed model phase evolution for correction of magnetic field inhomogeneity effects in 3D quantitative gradient echo-based MRI

    DEFF Research Database (Denmark)

    Fatnassi, Chemseddine; Boucenna, Rachid; Zaidi, Habib

    2017-01-01

    and at the paranasal sinuses, however, this assumption is often broken. Herein, we explored a novel model that considers both linear and stochastic dependences of the phase evolution with echo time in the presence of weak and strong macroscopic field inhomogeneities. We tested the performance of the model at large...

  18. 《区域人文地理野外方法》对建构主义理论的呼应%Regional Human Geographical Field Method Echoes the Theory of Constructivism

    Institute of Scientific and Technical Information of China (English)

    周尚意

    2012-01-01

    区域地理是大学地理学的重要课程,各学校开展区域地理野外实践的基地不同,实习方案也有很大差异。本文采用认知心理学的建构主义理论,用以剖析区域地理野外教学的特征。%Regional geography is an important curriculum of university geography, and universities have different bases to carry out regional geographical field practice, and their internship projects are also very different. The paper applies the theory of constructivism of cognitive psychology to analyze the characteristic of regional geographical field teaching.

  19. A Method for the Removal of Ray Refraction Effects in Multibeam Echo Sounder Systems

    Institute of Scientific and Technical Information of China (English)

    DING Jisheng; ZHOU Xinghua; TANG Qiuhua

    2008-01-01

    To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measure-ment accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other pa-rameters, such as t (sound pulse propagation time), 0 (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.

  20. A method for the removal of ray refraction effects in multibeam echo sounder systems

    Science.gov (United States)

    Ding, Jisheng; Zhou, Xinghua; Tang, Qiuhua

    2008-05-01

    To a multibeam echo sounder system (MBES), under water sound refraction plays an important role in depth measurement accuracy, and errors in sound velocity profile lead to inaccuracies in the measured depth (especially for outer beams). A method is developed to estimate the sound velocity profile based on the depth measured by vertical beam. Using this depth and other parameters, such as t (sound pulse propagation time), θ (beam inclination angle), etc. We can estimate a simple sound velocity profile with which the depth error has been reduced. This method has been tested with a real dataset acquired in the East China Sea.

  1. Retrospective comparison of gradient recalled echo R2* and spin-echo R2 magnetic resonance analysis methods for estimating liver iron content in children and adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Serai, Suraj D.; Fleck, Robert J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, MLC 5031, Cincinnati, OH (United States); Quinn, Charles T. [Cincinnati Children' s Hospital Medical Center, Division of Hematology, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH (United States); Podberesky, Daniel J. [Nemours Children' s Health System Nemours Children' s Hospital, Department of Radiology, Orlando, FL (United States)

    2015-10-15

    Serial surveillance of liver iron concentration (LIC) provides guidance for chelation therapy in patients with iron overload. The diagnosis of iron overload traditionally relies on core liver biopsy, which is limited by invasiveness, sampling error, cost and general poor acceptance by pediatric patients and parents. Thus noninvasive diagnostic methods such as MRI are highly attractive for quantification of liver iron concentration. To compare two MRI-based methods for liver iron quantification in children. 64 studies on 48 children and young adults (age range 4-21 years) were examined by gradient recalled echo (GRE) R2* and spin-echo R2 MRI at 1.5T to evaluate liver iron concentration. Scatter plots and Bland-Altman difference plots were generated to display and assess the relationship between the methods. With the protocols used in this investigation, Bland-Altman agreement between the methods is best when LIC is <20 mg/g dry tissue. Scatter plots show that all values with LIC <20 mg/g dry tissue fall within the 95% prediction limits. Liver iron concentration as determined by the R2* and R2 MR methods is statistically comparable, with no statistical difference between these methods for LIC <20 mg/g. (orig.)

  2. The diagnostic value of magnetic resonance urography using a balanced turbo field echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Cifci, Egemen; Coban, Goekcen [Baskent University Faculty of Medicine, Department of Radiology, Konya (Turkey); Cicek, Tufan; Goenuelalan, Umut [Baskent University Faculty of Medicine, Department of Urology, Konya (Turkey)

    2016-12-15

    The aim of the study was to compare the inter-observer variability and the accuracy of magnetic resonance urography (MRU) using a thin sectional balanced-turbo field echo (B-TFE) sequence for detecting ureteral calculi and to determine the effect of additional factors (size, density and location of the calculus) on the sensitivity and specificity of the MRU. MRU and CT images were evaluated independently by two radiologists according to presence, density and localization of calculi. The degrees of inter-rater agreement for categorical items were evaluated by the Kappa coefficient. According to the 1st and 2nd observers, the sensitivity of MRU was 65.9 %, 71.8 % and the specificity of MRU was 95.9 %, 100 %, respectively. Inter-observer agreement was 84.6 % for stone detection. The larger size had a better effect on detectability (p < 0.05). Also, the higher density had a better impact on detectability (p < 0.05). Our study has shown that B-TFE MRU was useful to detect ureteral calculi. However, B-TFE MRU has low sensitivity and high specificity in comparison with CT images. MRU is a reasonable alternative imaging technique for follow-up periods of selective groups like patients with large urinary stones, children or pregnant patients when ionizing radiation is undesirable. (orig.)

  3. A Volterra series-based method for extracting target echoes in the seafloor mining environment.

    Science.gov (United States)

    Zhao, Haiming; Ji, Yaqian; Hong, Yujiu; Hao, Qi; Ma, Liyong

    2016-09-01

    The purpose of this research was to evaluate the applicability of the Volterra adaptive method to predict the target echo of an ultrasonic signal in an underwater seafloor mining environment. There is growing interest in mining of seafloor minerals because they offer an alternative source of rare metals. Mining the minerals cause the seafloor sediments to be stirred up and suspended in sea water. In such an environment, the target signals used for seafloor mapping are unable to be detected because of the unavoidable presence of volume reverberation induced by the suspended sediments. The detection of target signals in reverberation is currently performed using a stochastic model (for example, the autoregressive (AR) model) based on the statistical characterisation of reverberation. However, we examined a new method of signal detection in volume reverberation based on the Volterra series by confirming that the reverberation is a chaotic signal and generated by a deterministic process. The advantage of this method over the stochastic model is that attributions of the specific physical process are considered in the signal detection problem. To test the Volterra series based method and its applicability to target signal detection in the volume reverberation environment derived from the seafloor mining process, we simulated the real-life conditions of seafloor mining in a water filled tank of dimensions of 5×3×1.8m. The bottom of the tank was covered with 10cm of an irregular sand layer under which 5cm of an irregular cobalt-rich crusts layer was placed. The bottom was interrogated by an acoustic wave generated as 16μs pulses of 500kHz frequency. This frequency is demonstrated to ensure a resolution on the order of one centimetre, which is adequate in exploration practice. Echo signals were collected with a data acquisition card (PCI 1714 UL, 12-bit). Detection of the target echo in these signals was performed by both the Volterra series based model and the AR model

  4. Multiplexing Effect Due to Exposure of the Working Substance of a Spin Echo Processor to Magnetic Field Pulses

    Science.gov (United States)

    Pleshakov, I. V.; Popov, P. S.; Kuzmin, Yu. I.; Dudkin, V. I.

    2016-07-01

    We consider a spin echo processor that uses a magnetically ordered material (ferrite) as a working substance. It is shown that it is possible to achieve suppression of the crosstalk (spurious signals) excited by radio-frequency pulses from different chains arriving at the system if the working substance is affected by sufficiently long magnetic field pulses. Thus, time-division multiplexing of the information processes can be carried out.

  5. An estimation method for echo signal energy of pipe inner surface longitudinal crack detection by 2-D energy coefficients integration

    Science.gov (United States)

    Zhou, Shiyuan; Sun, Haoyu; Xu, Chunguang; Cao, Xiandong; Cui, Liming; Xiao, Dingguo

    2015-03-01

    The echo signal energy is directly affected by the incident sound beam eccentricity or angle for thick-walled pipes inner longitudinal cracks detection. A method for analyzing the relationship between echo signal energy between the values of incident eccentricity is brought forward, which can be used to estimate echo signal energy when testing inside wall longitudinal crack of pipe, using mode-transformed compression wave adaptation of shear wave with water-immersion method, by making a two-dimension integration of "energy coefficient" in both circumferential and axial directions. The calculation model is founded for cylinder sound beam case, in which the refraction and reflection energy coefficients of different rays in the whole sound beam are considered different. The echo signal energy is calculated for a particular cylinder sound beam testing different pipes: a beam with a diameter of 0.5 inch (12.7mm) testing a φ279.4mm pipe and a φ79.4mm one. As a comparison, both the results of two-dimension integration and one-dimension (circumferential direction) integration are listed, and only the former agrees well with experimental results. The estimation method proves to be valid and shows that the usual method of simplifying the sound beam as a single ray for estimating echo signal energy and choosing optimal incident eccentricity is not so appropriate.

  6. The diagnostic value of magnetic resonance urography using a balanced turbo field echo sequence.

    Science.gov (United States)

    Çifçi, Egemen; Çoban, Gökçen; Çiçek, Tufan; Gönülalan, Umut

    2016-12-01

    The aim of the study was to compare the inter-observer variability and the accuracy of magnetic resonance urography (MRU) using a thin sectional balanced-turbo field echo (B-TFE) sequence for detecting ureteral calculi and to determine the effect of additional factors (size, density and location of the calculus) on the sensitivity and specificity of the MRU. MRU and CT images were evaluated independently by two radiologists according to presence, density and localization of calculi. The degrees of inter-rater agreement for categorical items were evaluated by the Kappa coefficient. According to the 1st and 2nd observers, the sensitivity of MRU was 65.9 %, 71.8 % and the specificity of MRU was 95.9 %, 100 %, respectively. Inter-observer agreement was 84.6 % for stone detection. The larger size had a better effect on detectability (p MRU was useful to detect ureteral calculi. However, B-TFE MRU has low sensitivity and high specificity in comparison with CT images. MRU is a reasonable alternative imaging technique for follow-up periods of selective groups like patients with large urinary stones, children or pregnant patients when ionizing radiation is undesirable. • According to 1st and 2nd observers, sensitivity of MRU was 65.9 %, 71.8 %, respectively. • According to 1st and 2nd observers, MRU specificity was 95.9 %, 100 %, respectively. • Interobserver agreement was found to be over 84 % for stone detection. • B-TFE sequence provides calculus follow-up without radiation. • Larger calculi and more dense calculi individually have the better effect on detectability.

  7. Echoes in Space and Time

    Science.gov (United States)

    Lin, Kang; Lu, Peifen; Ma, Junyang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Zeng, Heping; Wu, Jian; Karras, Gabriel; Siour, Guillaume; Hartmann, Jean-Michel; Faucher, Olivier; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2016-10-01

    Echo in mountains is a well-known phenomenon, where an acoustic pulse is mirrored by the rocks, often with reverberating recurrences. For spin echoes in magnetic resonance and photon echoes in atomic and molecular systems, the role of the mirror is played by a second, time-delayed pulse that is able to reverse the flow of time and recreate the original impulsive event. Recently, alignment and orientation echoes were discussed in terms of rotational-phase-space filamentation, and they were optically observed in laser-excited molecular gases. Here, we observe hitherto unreported fractional echoes of high order, spatially rotated echoes, and the counterintuitive imaginary echoes at negative times. Coincidence Coulomb explosion imaging is used for a direct spatiotemporal analysis of various molecular alignment echoes, and the implications to echo phenomena in other fields of physics are discussed.

  8. ECHO virus

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  9. Fractional Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Siour, G; Hartmann, J -M; Faucher, O; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  10. Numerical simulation of the detection of crack in reinforced concrete structures of NPP due to expansion of reinforcing corrosive products using Impact-Echo method

    Directory of Open Access Journals (Sweden)

    Morávka Š.

    2008-12-01

    Full Text Available Nuclear energy boom is starting nowadays. But also current nuclear power plants (NPP are duty to certify their security for regular renewal of their operating licenses. NPP security can be significantly affected by defects of large amount of ageing reinforced concrete structures. Advanced Impact-Echo method seams to be very hopeful to cooperate at performing in-service inspections such structures. Just these in-service inspections are included in the first priority group of specific technical issues according to the recommendations of OECD-Nuclear Energy Agency, Commission on Safety of Nuclear Installation in the field of ageing management.This paper continues of extensive project dealing with Impact-Echo method application. It will present method description and main results of numerical modeling of detection and localization of crack caused by corrosive product expansion. Steel reinforcing rods are subjected to corrosion due to diffusion of corrosive agents from structure surface. Corrosive products have up to 7-times larger volume than pure steel. Raised strain can cad lead up to concrete failure and crack development. We investigate whether it is possible to detect these growing cracks by Impact-Echo method in time.Experimental verification of our numerical predictions is prepared on Civil Faculty in Brno.

  11. Non-destructive testing of concrete structures with the impact-echo method; Zerstoerungsfreie Pruefung von Betonbauteilen mit dem Impact-Echo-Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Algernon, Daniel; Feistkorn, Sascha; Scherrer, Michael [SVTI Schweizerischer Verein fuer technische Inspektionen, Wallisellen (Switzerland). Nuklearinspektorat

    2016-05-01

    The impact-echo method is based on the use of elastic waves. It was developed in the 1980 for the testing of concrete structures and is currently widespread. Main application areas are the component and coating thickness measurement and detection of delaminations, voids and other defects. Specifically, the method is also used to check the injection faults of clamping channels. Another application is the determination of mechanical material parameters such as the modulus of elasticity. Since the original development of the method has undergone several enhancements. The conversion of a single-point measurement method towards a area component testing, the use by the optimized measurement data acquisition and evaluation enlarged and delivered an important prerequisite for increasing the efficiency. The use of air-coupled sensors not only increases the measurement speed but also provides advantages in rough component surfaces. The imaging analysis in conjunction with signal processing algorithms simplifies the interpretation and allows statistical evaluation. [German] Das Impact-Echo-Verfahren beruht auf der Nutzung elastischer Wellen. Es wurde in den 1980er Jahren fuer die Pruefung von Stahlbetonbauteilen entwickelt und ist derzeit weit verbreitet. Haupteinsatzgebiete sind die Bauteil- und Schichtdickenmessung sowie die Detektion von Delaminationen, Hohl- und anderen Fehlstellen. Insbesondere wird das Verfahren auch zur Pruefung des Verpresszustandes von Spannkanaelen herangezogen. Eine weitere Anwendung ist die Bestimmung mechanischer Materialparameter wie dem Elastizitaetsmodul. Seit der urspruenglichen Entwicklung hat das Verfahren verschiedene Weiterentwicklungen erfahren. Die Ueberfuehrung von einem Einzelpunktmessverfahren hin zu einer flaechigen Bauteilpruefung hat die Einsatzmoeglichkeiten durch die optimierte Messdatenaufnahme und -auswertung vergroessert und eine wichtige Voraussetzung zur Erhoehung der Leistungsfaehigkeit geliefert. Der Einsatz

  12. Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Jing-Kui Zhang

    2016-03-01

    Full Text Available The impact-echo (IE method is a popular non-destructive testing (NDT technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location, because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures.

  13. Concrete Condition Assessment Using Impact-Echo Method and Extreme Learning Machines.

    Science.gov (United States)

    Zhang, Jing-Kui; Yan, Weizhong; Cui, De-Mi

    2016-03-26

    The impact-echo (IE) method is a popular non-destructive testing (NDT) technique widely used for measuring the thickness of plate-like structures and for detecting certain defects inside concrete elements or structures. However, the IE method is not effective for full condition assessment (i.e., defect detection, defect diagnosis, defect sizing and location), because the simple frequency spectrum analysis involved in the existing IE method is not sufficient to capture the IE signal patterns associated with different conditions. In this paper, we attempt to enhance the IE technique and enable it for full condition assessment of concrete elements by introducing advanced machine learning techniques for performing comprehensive analysis and pattern recognition of IE signals. Specifically, we use wavelet decomposition for extracting signatures or features out of the raw IE signals and apply extreme learning machine, one of the recently developed machine learning techniques, as classification models for full condition assessment. To validate the capabilities of the proposed method, we build a number of specimens with various types, sizes, and locations of defects and perform IE testing on these specimens in a lab environment. Based on analysis of the collected IE signals using the proposed machine learning based IE method, we demonstrate that the proposed method is effective in performing full condition assessment of concrete elements or structures.

  14. A Frequency-Domain Adaptive Filter (FDAF) Prediction Error Method (PEM) Framework for Double-Talk-Robust Acoustic Echo Cancellation

    DEFF Research Database (Denmark)

    Gil-Cacho, Jose M.; van Waterschoot, Toon; Moonen, Marc

    2014-01-01

    In this paper, we propose a new framework to tackle the double-talk (DT) problem in acoustic echo cancellation (AEC). It is based on a frequency-domain adaptive filter (FDAF) implementation of the so-called prediction error method adaptive filtering using row operations (PEM-AFROW) leading...... to the FDAF-PEM-AFROW algorithm. We show that FDAF-PEM-AFROW is by construction related to the best linear unbiased estimate (BLUE) of the echo path. We depart from this framework to show an improvement in performance with respect to other adaptive filters minimizing the BLUE criterion, namely the PEM...

  15. MRI of soft-tissue masses; Clinical application of T sub 2 sup * -weighted gradient-field-echo images

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Hajime; Murakami, Koji; Ichikawa, Tomoaki (Numazu City Hospital, Shizuoka (Japan)) (and others)

    1990-10-01

    Twenty-four patients with soft-tissue masses underwent magnetic resonance imaging (MRI). In addition to conventional T{sub 1}-weighted spin-echo images and T{sub 2}-weighted spin-echo (T{sub 2} SE) images, T{sub 2}{sup *}-weighted gradient-field-echo (T{sub 2}{sup *}FE) images were obtained. T{sub 2}{sup *}FE images were similar to T{sub 2} SE images with respect to the internal architecture of the masses. T{sub 2}{sup *}FE images were superior to T{sub 2} SE images in delineating the masses and adjacent fat tissues. Shorter (about one-third or two-thirds) scanning time was required to obtain T{sub 2}{sup *}FE images than to obtain T{sub 2} SE images. It is concluded that T{sub 2}{sup *}FE images are advantageous to demonstrate soft-tissue masses especially for ones within fat tissue. (author).

  16. Qualitative and quantitative assessment of wrist MRI at 3.0T: comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo.

    Science.gov (United States)

    Jung, Jee Young; Yoon, Young Cheol; Jung, Jin Young; Choe, Bong-Keun

    2013-04-01

    Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P = 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for TFCC to 3D FFE and the visibility for scapholunate ligament

  17. Suitability of the echo-time-shift method as laboratory standard for thermal ultrasound dosimetry

    Science.gov (United States)

    Fuhrmann, Tina; Georg, Olga; Haller, Julian; Jenderka, Klaus-Vitold

    2017-03-01

    Ultrasound therapy is a promising, non-invasive application with potential to significantly improve cancer therapies like surgery, viro- or immunotherapy. This therapy needs faster, cheaper and more easy-to-handle quality assurance tools for therapy devices as well as possibilities to verify treatment plans and for dosimetry. This limits comparability and safety of treatments. Accurate spatial and temporal temperature maps could be used to overcome these shortcomings. In this contribution first results of suitability and accuracy investigations of the echo-time-shift method for two-dimensional temperature mapping during and after sonication are presented. The analysis methods used to calculate time-shifts were a discrete frame-to-frame and a discrete frame-to-base-frame algorithm as well as a sigmoid fit for temperature calculation. In the future accuracy could be significantly enhanced by using continuous methods for time-shift calculation. Further improvements can be achieved by improving filtering algorithms and interpolation of sampled diagnostic ultrasound data. It might be a comparatively accurate, fast and affordable method for laboratory and clinical quality control.

  18. Seafloor classification using echo- waveforms: A method employing hybrid neural network architecture

    Digital Repository Service at National Institute of Oceanography (India)

    Chakraborty, B.; Mahale, V.; DeSouza, C.; Das, P.

    This letter presents seafloor classification study results of a hybrid artificial neural network architecture known as learning vector quantization. Single beam echo-sounding backscatter waveform data from three different seafloors of the western...

  19. Flow angle dependence of 1-m ionospheric plasma wave turbulence for near-threshold radar echo electric fields

    Science.gov (United States)

    Timofeev, E. E.; Vallinkoski, M. K.; Pollari, P.; Kangas, J.; Virdi, T.; Williams, P. J. S.; Nielsen, E.

    2002-10-01

    Coordinated STARE-EISCAT data from the E-region Rocket and Radar Instability Study (ERRRIS) campaign are used to study the flow angle distributions of threshold (signal-to-noise ratio [SNR] ≤ 1 dB) ionospheric parameters controlling the STARE radar echo appearance for either radar above Tromsø. Altogether, there are 64 measurements for the Finnish radar and 128 for the Norwegian radar. For the Finnish radar, the threshold E-field strength is drift-aligned with minimum-to-maximum ratio of the electron drift velocities of about 3. The strengths tend to decrease when going from positive to negative flow angles. For the Norwegian radar, the threshold electric fields are practically independent of flow angle. For the Finnish radar, the STARE line-of-sight Doppler velocities are exclusively positive, large, and well correlated with the corresponding EISCAT plasma velocity components. The Norwegian radar Doppler velocities are randomly distributed around zero and are practically uncorrelated. For either radar, the N(h) profiles have permanent upward vertical density gradients within the echo layers. The jet averaged threshold E-fields are lower in the westjet than within the eastjet, but the averaged threshold electron densities are higher in the westjet than in the eastjet. For the Norwegian radar, the jet averaged turbulence level is about two times higher within the eastjet. The flow angle distributions of the plasma wave turbulence level are different. The westjet distribution is of the equilibrium type with a maximum at small flow angles and a minimum at large angles. The eastjet distribution is consistent with a flat one and can be kept stationary only if there is a damping of the turbulence for small flow angles and an enhancement for large angles. It is then conjectured that Finnish radar threshold echoes are generated by the Farley-Buneman instability, but the Norwegian echoes by a nonlinear gradient drift or/and wind-driven mechanism. The gradient drift

  20. Basic Investigation on Medical Ultrasonic Echo Image Compression by JPEG2000 - Availability of Wavelet Transform and ROI Method

    Science.gov (United States)

    2007-11-02

    be approved in the near future. The main features of JPEG2000 are use of wavelet transform and ROI (Region of Interest) method. It is expected that... wavelet transform is more effective than Fourier transform for ultrasonic echo signal/image processing. Furthermore, ROI method seems to be appropriate...compression method of medical images. The purpose of this paper is to investigate the effectiveness of wavelet transform compared with DCT (JPEG) and

  1. Improved Echo cancellation in VOIP

    Directory of Open Access Journals (Sweden)

    Patrashiya Magdolina Halder

    2011-11-01

    Full Text Available VoIP (voice over internet protocol is very popular communication technology of this century and has played tremendous role in communication system. It is preferred by all because it deploys many benefits it uses Internet protocol (IP networks to deliver multimedia information such as speech over a data network. VoIP system can be configured in these connection modes respectively; PC to PC, Telephony to Telephony and PC to Telephony. Echo is very annoying problem which occurs in VoIP and echo reduces the voice quality of VoIP. It is not possible to remove echo 100% from echoed signal because if echo is tried to be eliminated completely then the attempt may distort the main signal. That is why echo cannot be eliminated echo perfectly but the echo to a tolerable range. Clipping is not a good solution to suppress echo because part of speech may erroneously removed. Besides an NLP does not respond rapidly enough and also confuses the fading of the voice level at the end of a sentence with a residual echo. This paper has proposed echo cancellation in VoIP that has been tested and verified by MATLAB. The goal was to suppress echo without clipping and distorting the main signal. By the help of MATLAB program the echo is minimized to enduring level so that the received signal seems echo free. The percentage of suppressing echo varies with the amplitude of the main signal. With regarding the amplitude variation in received (echo free signal the proposed method performs better in finding the echo free signal than the other conventional system.

  2. Magnetic-field control of photon echo from the electron-trion system in a CdTe quantum well: shuffling coherence between optically accessible and inaccessible states.

    Science.gov (United States)

    Langer, L; Poltavtsev, S V; Yugova, I A; Yakovlev, D R; Karczewski, G; Wojtowicz, T; Kossut, J; Akimov, I A; Bayer, M

    2012-10-12

    We report on magnetic field-induced oscillations of the photon echo signal from negatively charged excitons in a CdTe/(Cd,Mg)Te semiconductor quantum well. The oscillatory signal is due to Larmor precession of the electron spin about a transverse magnetic field and depends sensitively on the polarization configuration of the exciting and refocusing pulses. The echo amplitude can be fully tuned from the maximum down to zero depending on the time delay between the two pulses and the magnetic-field strength. The results are explained in terms of the optical Bloch equations accounting for the spin level structure of electrons and trions.

  3. Impact-Echo for the evaluation of concrete structures, In : Non-destructive evaluation of reinforced concrete structures, Volume 2: Non-destructive testing methods

    OpenAIRE

    Abraham, Odile; Popovics, John

    2010-01-01

    This chapter describes the impact echo non-destructive test method. After a summary of the history of the development of the method, the basic physical phenomena underlying the method are presented. Then data analysis approaches and signal processing techniques, including time and frequency domain processing, are described. A description of the needed equipment and classical measurement configurations are reviewed. Finally classical applications of the impact echo method are summarized.

  4. Retrospective correction of B0-field-induced geometric distortions in multislice echo planar images: a 3D solution

    Science.gov (United States)

    McColl, Roderick W.; Coburn, Edward A.

    2000-04-01

    A method has been developed to utilize a 3D B0 fieldmap, with a multi-volume-of-interest segmentation map, to quantify and correct geometric distortions in echo-planar images. The purpose is to provide accurate co-registration of anatomical MRI to functional MRI time course sequences. A data structure capable of extracting and reporting the necessary information forms a central part of the solution. Images were obtained from a 1.5 Tesla scanner with an experimental y-gradient insert coil. Two 3D-gradient echo sequences supply the data needed to calculate the B0 map across the volume. Segmentation of the volume into brain/background produces the data needed for the phase unwrapping and volume(s) of interest generation, from which the global B0 variation map is obtained. Subsequent EPI acquisition yields the fMRI time- course information. Tests were carried out on a phantom and a human volunteer engaged in a motor task (finger-tapping). Strong distortions were measured, and subsequently corrected, particularly near the petrous bone/mastoid air cells and in the frontal and maxillary sinuses. Additionally, a strong eddy current resulting from the unshielded y-gradient was detected. The method facilitates geometric distortion correction through an imaging volume, containing multiple regions of interest within a slice, starting from a single starting point.

  5. Graffiti echoes

    National Research Council Canada - National Science Library

    Purcell, John

    2014-01-01

      Graffiti and street art are a kind of "voice" of the city. From the street-tagged neighborhoods to the grand billboards high in the air, graffiti seems to always echo what is happening in Los Angeles...

  6. A Fast Motion Parameters Estimation Method Based on Cross-Correlation of Adjacent Echoes for Wideband LFM Radars

    Directory of Open Access Journals (Sweden)

    Yi-Xiong Zhang

    2017-05-01

    Full Text Available In wideband radar systems, the performance of motion parameters estimation can significantly affect the performance of object detection and the quality of inverse synthetic aperture radar (ISAR imaging. Although the traditional motion parameters estimation methods can reduce the range migration (RM and Doppler frequency migration (DFM effects in ISAR imaging, the computational complexity is high. In this paper, we propose a new fast non-parameter-searching method for motion parameters estimation based on the cross-correlation of adjacent echoes (CCAE for wideband LFM signals. A cross-correlation operation is carried out for two adjacent echo signals, then the motion parameters can be calculated by estimating the frequency of the correlation result. The proposed CCAE method can be applied directly to the stretching system, which is commonly adopted in wideband radar systems. Simulation results demonstrate that the new method can achieve better estimation performances, with much lower computational cost, compared with existing methods. The experimental results on real radar datasets are also evaluated to verify the effectiveness and superiority of the proposed method compared to the state-of-the-art existing methods.

  7. Electric field measurements of DC and long wavelength structures associated with sporadic-E layers and QP radar echoes

    Directory of Open Access Journals (Sweden)

    S. Ohtsuki

    2005-10-01

    Full Text Available Electric field and plasma density data gathered on a sounding rocket launched from Uchinoura Space Center, Japan, reveal a complex electrodynamics associated with sporadic-E layers and simultaneous observations of quasi-periodic radar echoes. The electrodynamics are characterized by spatial and temporal variations that differed considerably between the rocket's upleg and downleg traversals of the lower ionosphere. Within the main sporadic-E layer (95–110 km on the upleg, the electric fields were variable, with amplitudes of 2–4 mV/m that changed considerably within altitude intervals of 1–3 km. The identification of polarization electric fields coinciding with plasma density enhancements and/or depletions is not readily apparent. Within this region on the downleg, however, the direction of the electric field revealed a marked change that coincided precisely with the peak of a single, narrow sporadic-E plasma density layer near 102.5 km. This shear was presumably associated with the neutral wind shear responsible for the layer formation. The electric field data above the sporadic-E layer on the upleg, from 110 km to the rocket apogee of 152 km, revealed a continuous train of distinct, large scale, quasi-periodic structures with wavelengths of 10–15 km and wavevectors oriented between the NE-SW quadrants. The electric field structures had typical amplitudes of 3–5 mV/m with one excursion to 9 mV/m, and in a very general sense, were associated with perturbations in the plasma density. The electric field waveforms showed evidence for steepening and/or convergence effects and presumably had mapped upwards along the magnetic field from the sporadic-E region below. Candidate mechanisms to explain the origin of these structures include the Kelvin-Helmholtz instability and the Es-layer instability. In both cases, the same shear that formed the sporadic-E layer would provide the energy to generate the km-scale structures. Other possibilities

  8. Multi-gradient echo MR thermometry for monitoring of the near-field area during MR-guided high intensity focused ultrasound heating.

    Science.gov (United States)

    Lam, Mie K; de Greef, Martijn; Bouwman, Job G; Moonen, Chrit T W; Viergever, Max A; Bartels, Lambertus W

    2015-10-07

    The multi-gradient echo MR thermometry (MGE MRT) method is proposed to use at the interface of the muscle and fat layers found in the abdominal wall, to monitor MR-HIFU heating. As MGE MRT uses fat as a reference, it is field-drift corrected. Relative temperature maps were reconstructed by subtracting absolute temperature maps. Because the absolute temperature maps are reconstructed of individual scans, MGE MRT provides the flexibility of interleaved mapping of temperature changes between two arbitrary time points. The method's performance was assessed in an ex vivo water bath experiment. An ex vivo HIFU experiment was performed to show the method's ability to monitor heating of consecutive HIFU sonications and to estimate cooling time constants, in the presence of field drift. The interleaved use between scans of a clinical protocol was demonstrated in vivo in a patient during a clinical uterine fibroid treatment. The relative temperature measurements were accurate (mean absolute error 0.3 °C) and provided excellent visualization of the heating of consecutive HIFU sonications. Maps were reconstructed of estimated cooling time constants and mean ROI values could be well explained by the applied heating pattern. Heating upon HIFU sonication and subsequent cooling could be observed in the in vivo demonstration.

  9. Spin-echo spectroscopy with ultracold neutrons

    CERN Document Server

    Afach, S; Ban, G; Bison, G; Bodek, K; Chowdhuri, Z; Daum, M; Fertl, M; Franke, B; Griffith, W C; Grujić, Z D; Harris, P G; Heil, W; Hélaine, V; Kasprzak, M; Kermaidic, Y; Kirch, K; Knowles, P; Koch, H -C; Komposch, S; Kozela, A; Krempel, J; Lauss, B; Lefort, T; Lemière, Y; Mtchedlishvili, A; Musgrave, M; Naviliat-Cunic, O; Pendlebury, J M; Piegsa, F M; Pignol, G; Plonka-Spehr, C; Prashanth, P N; Quéméner, G; Rawlik, M; Rebreyend, D; Ries, D; Roccia, S; Rozpedzik, D; Schmidt-Wellenburg, P; Severijns, N; Thorne, J A; Weis, A; Wursten, E; Wyszynski, G; Zejma, J; Zenner, J; Zsigmond, G

    2015-01-01

    We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B_0 | = 1uT magnetic field. We demonstrate a gravity-dependent spin dephasing by applying small vertical magnetic field gradients. The method gives access to the energy spectrum of stored UCNs, which can be crucial for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron.

  10. Defect visualization of aircraft UHF antenna radome using full-field pulse-echo ultrasonic propagation imaging system

    Science.gov (United States)

    Shin, H. J.; Hong, S. C.; Lee, J. R.; Kim, J. H.

    2016-10-01

    Most of aircraft antennas usually have various types of radome made of composite materials for protecting antenna structures. However, these antenna radome structures, which are installed on the outside of airplane, are easy to be damaged by external forces such as drag, foreign object, bird strike and others. In this study, full-field pulse-echo ultrasonic propagation imaging (PE UPI) system is proposed as the non-destructive inspection technique to visualize manufacturing defects in composite antenna radome. Based on the results of the sample case study, it is shown that the ultrasonic wave propagation imaging (UWPI) that is generated by the proposed full-field PE UPI system is able to highlight the intact internal condition of antenna structure and its defect area. Additional damage visualization techniques like ultrasonic energy mapping (UEM), variable time window amplitude map (VTWAM) and also ultrasonic spectral imaging (USI) algorithms are applied to improve the reliability of the damage visualization. It can be concluded that the proposed PE UPI system is an effective non-destructive inspection technique for the composite radome structures.

  11. Echo-time and field strength dependence of BOLD reactivity in veins and parenchyma using flow-normalized hypercapnic manipulation.

    Directory of Open Access Journals (Sweden)

    Christina Triantafyllou

    Full Text Available While the BOLD (Blood Oxygenation Level Dependent contrast mechanism has demonstrated excellent sensitivity to neuronal activation, its specificity with regards to differentiating vascular and parenchymal responses has been an area of ongoing concern. By inducing a global increase in Cerebral Blood Flow (CBF, we examined the effect of magnetic field strength and echo-time (TE on the gradient-echo BOLD response in areas of cortical gray matter and in resolvable veins. In order to define a quantitative index of BOLD reactivity, we measured the percent BOLD response per unit fractional change in global gray matter CBF induced by inhaling carbon dioxide (CO(2. By normalizing the BOLD response to the underlying CBF change and determining the BOLD response as a function of TE, we calculated the change in R(2(* (ΔR(2(* per unit fractional flow change; the Flow Relaxation Coefficient, (FRC for 3T and 1.5T in parenchymal and large vein compartments. The FRC in parenchymal voxels was 1.76±0.54 fold higher at 3T than at 1.5T and was 2.96±0.66 and 3.12±0.76 fold higher for veins than parenchyma at 1.5T and 3T respectively, showing a quantitative measure of the increase in specificity to parenchymal sources at 3T compared to 1.5T. Additionally, the results allow optimization of the TE to prioritize either maximum parenchymal BOLD response or maximum parenchymal specificity. Parenchymal signals peaked at TE values of 62.0±11.5 ms and 41.5±7.5 ms for 1.5T and 3T, respectively, while the response in the major veins peaked at shorter TE values; 41.0±6.9 ms and 21.5±1.0 ms for 1.5T and 3T. These experiments showed that at 3T, the BOLD CNR in parenchymal voxels exceeded that of 1.5T by a factor of 1.9±0.4 at the optimal TE for each field.

  12. Comparison of multi-echo dixon methods with volume interpolated breath-hold gradient magnetic resonance imaging in fat-signal fraction quantification of paravaertebral muscle

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Yeon Hwa; Kim, Hak Sun; Lee, Young Han [Dept. of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); and others

    2015-10-15

    To assess whether multi-echo Dixon magnetic resonance (MR) imaging with simultaneous T2{sup *} estimation and correction yields more accurate fat-signal fraction (FF) measurement of the lumbar paravertebral muscles, in comparison with non-T2{sup *}-corrected two-echo Dixon or T2{sup *}-corrected three-echo Dixon, using the FF measurements from single-voxel MR spectroscopy as the reference standard. Sixty patients with low back pain underwent MR imaging with a 1.5T scanner. FF mapping images automatically obtained using T2{sup *}-corrected Dixon technique with two (non-T2{sup *}-corrected), three, and six echoes, were compared with images from single-voxel MR spectroscopy at the paravertebral muscles on levels L4 through L5. FFs were measured directly by two radiologists, who independently drew the region of interest on the mapping images from the three sequences. A total of 117 spectroscopic measurements were performed either bilaterally (57 of 60 subjects) or unilaterally (3 of 60 subjects). The mean spectroscopic FF was 14.3 ± 11.7% (range, 1.9-63.7%). Interobserver agreement was excellent between the two radiologists. Lin's concordance correlation between the spectroscopic findings and all the imaging-based FFs were statistically significant (p < 0.001). FFs obtained from the T2*-corrected six-echo Dixon sequences showed a significantly better concordance with the spectroscopic data, with its concordance correlation coefficient being 0.99 and 0.98 (p < 0.001), as compared with two- or three-echo methods. T2{sup *}-corrected six-echo Dixon sequence would be a better option than two- or three-echo methods for noninvasive quantification of lumbar muscle fat quantification.

  13. Lateral diffusion of PEG-Lipid in magnetically aligned bicelles measured using stimulated echo pulsed field gradient 1H NMR.

    Science.gov (United States)

    Soong, Ronald; Macdonald, Peter M

    2005-01-01

    Lateral diffusion measurements of PEG-lipid incorporated into magnetically aligned bicelles are demonstrated using stimulated echo (STE) pulsed field gradient (PFG) proton (1H) nuclear magnetic resonance (NMR) spectroscopy. Bicelles were composed of dimyristoyl phosphatidylcholine (DMPC) plus dihexanoyl phosphatidylcholine (DHPC) (q = DMPC/DHPC molar ratio = 4.5) plus 1 mol % (relative to DMPC) dimyristoyl phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000] (DMPE-PEG 2000) at 25 wt % lipid. 1H NMR STE spectra of perpendicular aligned bicelles contained only resonances assigned to residual HDO and to overlapping contributions from a DMPE-PEG 2000 ethoxy headgroup plus DHPC choline methyl protons. Decay of the latter's STE intensity in the STE PFG 1H NMR experiment (g(z) = 244 G cm(-1)) yielded a DMPE-PEG 2000 (1 mol %, 35 degrees C) lateral diffusion coefficient D = 1.35 x 10(-11) m2 s(-1). Hence, below the "mushroom-to-brush" transition, DMPE-PEG 2000 lateral diffusion is dictated by its DMPE hydrophobic anchor. D was independent of the diffusion time, indicating unrestricted lateral diffusion over root mean-square diffusion distances of microns, supporting the "perforated lamellae" model of bicelle structure under these conditions. Overall, the results demonstrate the feasibility of lateral diffusion measurements in magnetically aligned bicelles using the STE PFG NMR technique.

  14. 冲击回波法检测混凝土板厚度%Detecting Thickness of Concrete Structures by Impact-Echo Method

    Institute of Scientific and Technical Information of China (English)

    崇金玲

    2015-01-01

    This paper introduced the advantages and disadvantages of the domestic and foreign impact-echo test instrument and system,described the basic principle of testing the thickness of concrete slab by impact-echo method,analyzed the main influence factors of impact-echo method through the model experimental research by scanning impact-echo test system,provided the basis for improving the accuracy and reliability of the impact-echo method to test the thickness of concrete slab.%介绍了国内外冲击回波检测仪器及测试系统的优缺点,阐述了冲击回波法检测混凝土板厚度的基本原理,并采用扫描式冲击回波检测系统,通过对模型的试验研究,分析冲击回波法检测混凝土板厚度的主要影响因素,对提高冲击回波法检测混凝土板厚度的准确度和可靠性提供了依据。

  15. Characteristic analysis of underwater acoustic scattering echoes in the wavelet transform domain

    Science.gov (United States)

    Yang, Mei; Li, Xiukun; Yang, Yang; Meng, Xiangxia

    2017-01-01

    Underwater acoustic scattering echoes have time-space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.

  16. Echo project

    DEFF Research Database (Denmark)

    Gfader, Verina; Carson, Rebecca; Kraus, Chris

    2016-01-01

    team to both present the printed matter in the format of running a book stall, and stage a discursive event at the Classroom. Echo reverberates some of the encounters and debates there, with new commissioned chapters propelling a ongoing correspondence across urban environs: An essay on the General...... Intellect and Financialization sets a conceptual ground for rethinking subjective freedom; an encounter with Another LA opens out a multitude of cartographies - revealing more discreet and politically dynamic movements in the urban grid; there are glimpses of Machine Project’s events, a visual story around...

  17. Echo project

    DEFF Research Database (Denmark)

    Gfader, Verina; Carson, Rebecca; Kraus, Chris

    Echo project (ed. by Verina Gfader and Ruth Höflich) is an online publication and community board that developed from a visit to the Los Angeles Art Book fair in January 2014. It was on the occasion of a prior book project, titled Prospectus, that the editorial team had been invited by the LAABF...... Intellect and Financialization sets a conceptual ground for rethinking subjective freedom; an encounter with Another LA opens out a multitude of cartographies - revealing more discreet and politically dynamic movements in the urban grid; there are glimpses of Machine Project’s events, a visual story around...

  18. Visualization of the 12th Cranial Nerve with MRI: Value of Balanced Fast-Field Echo and 3D-Drive Sequences Among the T2 TSE Post-Contrast T1 Sequences

    OpenAIRE

    2010-01-01

    Background/Objective: Our aim was to optimize the most effective MR imaging sequence for visualization of the 12th cranial nerve (hypoglossal nerve) through its cisternal course."nPatients and Methods: We applied balanced fast-field echo (B-FFE), 3D-T2 weighted Driven Equilibrium RF Reset Pulse (DRIVE), T2 weighted 2D TSE and post-contrast T1 weighted sequences and tried to find out the best sequence for the perfect visualization of the 12th cranial nerve. One-hundred patients without an...

  19. SAR 雷达目标回波模拟系统构建方法研究磁%Construction Method of SAR Radar Target Echo Simulation System

    Institute of Scientific and Technical Information of China (English)

    顾振杰; 刘宇

    2016-01-01

    论文针对 SAR 雷达测试需求,对 SAR 雷达回波模拟系统的构建方法进行了分析,并对关键技术进行了深入研究,以数字高程图(DEM )为基准源,并采用距离时域相干法进行目标回波的仿真;应用 DSP + FPGA 阵列实现目标回波系统函数的实时计算;对雷达发射信号和目标回波系统函数进行傅里叶变换后,进行卷积和数字正交混频,实现回波信号的相关性模拟。论文所提出的方法,可实现 SAR 成像雷达较大场景目标回波模拟,并可有效提高目标回波模拟的实时性。%Aimed to the requirement of the SAR radar testing ,the construction method of SAR Radar target echo simu‐lation system is analyzed ,and the key technology is researched deeply .The target echo is simulated by using the coherence method of distance time domain based on standard source .The target echo system functionrealizes real‐time calculating by u‐sing DSP + FPGA array .The echo signal correlation simulation is realized by convolved and digital quadrature down‐convert after radar transmit signal and target echo system function in Fourier transform .The simulation of the large scene of SAR imaging radar is realized ,and the real‐time performance of target echo simulation is improved effectively .

  20. Hybrid echo and x-ray image guidance for cardiac catheterization procedures by using a robotic arm: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yingliang; Penney, Graeme P; Razavi, Reza; Rhode, Kawal S [Division of Imaging Sciences, King' s College, London SE1 7EH (United Kingdom); Bos, Dennis; Frissen, Peter [Philips Applied Technologies, High Tech. Campus 7, 5656 AE Eindhoven (Netherlands); Rinaldi, C Aldo, E-mail: y.ma@kcl.ac.u [Department of Cardiology, Guy' s and St Thomas' NHS Foundation Trust, London SE1 7EH (United Kingdom)

    2010-07-07

    We present a feasibility study on hybrid echocardiography (echo) and x-ray image guidance for cardiac catheterization procedures. A self-tracked, remotely operated robotic arm with haptic feedback was developed that attached to a standard x-ray table. This was used to safely manipulate a three-dimensional (3D) trans-thoracic echo probe during simultaneous x-ray fluoroscopy and echo acquisitions. By a combination of calibration and tracking of the echo and x-ray systems, it was possible to register the 3D echo images with the 2D x-ray images. Visualization of the combined data was achieved by either overlaying triangulated surfaces extracted from segmented echo data onto the x-ray images or by overlaying volume rendered 3D echo data. Furthermore, in order to overcome the limited field of view of the echo probe, it was possible to create extended field of view (EFOV) 3D echo images by co-registering multiple tracked echo data to generate larger roadmaps for procedure guidance. The registration method was validated using a cross-wire phantom and showed a 2D target registration error of 3.5 mm. The clinical feasibility of the method was demonstrated during two clinical cases for patients undergoing cardiac pacing studies. The EFOV technique was demonstrated using two healthy volunteers. (note)

  1. A model-based method for reducing the sound speed induced errors in multi-beam echo-sounder bathymetric measurements

    NARCIS (Netherlands)

    Snellen, M.; Siemes, K.; Simons, D.G.

    2009-01-01

    We present a method for accurately estimating the bathymetry from multi-beam echo-sounder (MBES) travel-time measurements in environments with large variations in the water column sound speeds (both temporally and spatially). In this type of environments the water column sound speeds at the time of

  2. Minimum complexity echo state network.

    Science.gov (United States)

    Rodan, Ali; Tino, Peter

    2011-01-01

    Reservoir computing (RC) refers to a new class of state-space models with a fixed state transition structure (the reservoir) and an adaptable readout form the state space. The reservoir is supposed to be sufficiently complex so as to capture a large number of features of the input stream that can be exploited by the reservoir-to-output readout mapping. The field of RC has been growing rapidly with many successful applications. However, RC has been criticized for not being principled enough. Reservoir construction is largely driven by a series of randomized model-building stages, with both researchers and practitioners having to rely on a series of trials and errors. To initialize a systematic study of the field, we concentrate on one of the most popular classes of RC methods, namely echo state network, and ask: What is the minimal complexity of reservoir construction for obtaining competitive models and what is the memory capacity (MC) of such simplified reservoirs? On a number of widely used time series benchmarks of different origin and characteristics, as well as by conducting a theoretical analysis we show that a simple deterministically constructed cycle reservoir is comparable to the standard echo state network methodology. The (short-term) MC of linear cyclic reservoirs can be made arbitrarily close to the proved optimal value.

  3. Field testing of a remote controlled robotic tele-echo system in an ambulance using broadband mobile communication technology.

    Science.gov (United States)

    Takeuchi, Ryohei; Harada, Hiroshi; Masuda, Kohji; Ota, Gen-ichiro; Yokoi, Masaki; Teramura, Nobuyasu; Saito, Tomoyuki

    2008-06-01

    We report the testing of a mobile Robotic Tele-echo system that was placed in an ambulance and successfully transmitted clear real time echo imaging of a patient's abdomen to the destination hospital from where this device was being remotely operated. Two-way communication between the paramedics in this vehicle and a doctor standing by at the hospital was undertaken. The robot was equipped with an ultrasound probe which was remotely controlled by the clinician at the hospital and ultrasound images of the patient were transmitted wirelessly. The quality of the ultrasound images that were transmitted over the public mobile telephone networks and those transmitted over the Multimedia Wireless Access Network (a private networks) were compared. The transmission rate over the public networks and the private networks was approximately 256 Kbps, 3 Mbps respectively. Our results indicate that ultrasound images of far higher definition could be obtained through the private networks.

  4. The Plastic Tension Field Method

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    . The emphasis is attached to the presentation of a design method based on the diagonal tension field theory. Also, how to determine the load-carrying capacity of a given steel plate girder with transverse web stiffeners, is briefly presented. The load-carrying capacity may be predicted by applying both...... method. The method is based on the theory of plasticity and is analogous to the so-called diagonal compression field method developed for reinforced concrete beams with transverse stirrups, which is adopted in the common European concrete code (Eurocode 2). Many other theories have been developed......, but the method presented differs from these theories by incorporating the strength of the transverse stiffeners and by the assumption that the tensile bands may pass the transverse stiffeners, which often is observed in tests. Other methods have only dealt with a single web field between two stiffeners...

  5. The Application of Impact Echo Scanning on Nondestructive Test of Pavement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new nondestructive test method-Impact Echo Scanning was introduced. Application of this method on pavement structure test was discussed. A method to increase the measurement accuracy of the test on multi-layers was proposed, and was verified by field test. The test results show that the basic structural information can obtained rapidly and accurately by 3-D scanning of the impact echo system.

  6. Target echo strength modelling at FOI, including results from the BeTSSi II workshop

    CERN Document Server

    Östberg, Martin

    2016-01-01

    An overview of the target echo strength (TS) modelling capacity at the Swedish Defense Research Agency (FOI) is presented. The modelling methods described range from approximate ones, such as raytracing and Kirchhoff approximation codes, to high accuracy full field codes including boundary integral equation methods and finite elements methods. Illustrations of the applicability of the codes are given for a few simple cases tackled during the BeTTSi II (Benchmark Target Echo Strength Simulation) workshop held in Kiel 2014.

  7. Variational methods for field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  8. An Imaging Method of MIMO-SAR with Compressed Echo Data%基于回波数据压缩的MIMO-SAR成像方法

    Institute of Scientific and Technical Information of China (English)

    谢矿生

    2015-01-01

    The amount of echo data is huge in multiple input multiple output synthetic aperture radar( MI-MO-SAR) imaging with high resolution. To solve this problem,an imaging method of MIMO-SAR based on compressed echo data is proposed. Firstly,the echo signal model of MIMO-SAR system is analyzed and the phase error induced by MIMO radar is compensated. Secondly,the echo signal is preprocessed by the Range Migration Algorithm( RMA) ,and also the sparsity of the processed data is analyzed. Then the pre-processed data is compressed and transmitted. In the ground receiver,the sparse expression of echo data in Range-Doppler( RD) domain is reconstructed. Finally,the simulation result shows that the amount of the transmitted data by the proposed method is less than that by the conventional MIMO-SAR imaging method.%针对多发多收合成孔径雷达( MIMO-SAR)高分辨成像的回波数据量过大问题,提出了一种基于数据压缩的MIMO-SAR成像方法。通过对MIMO-SAR回波数据的分析,补偿了由于MIMO雷达收发分置导致的相位误差;其次利用距离徙动算法( RMA)对回波数据进行预处理并分析了其稀疏性;然后针对预处理后的回波数据进行压缩传输,在接收端利用压缩感知重构算法获得回波数据在距离多普勒域的稀疏表示并进行成像处理。仿真结果表明,所提方法可以在大幅压缩MIMO-SAR回波数据的基础上实现准确成像。

  9. Cardiac-respiratory self-gated cine ultra-short echo time (UTE) cardiovascular magnetic resonance for assessment of functional cardiac parameters at high magnetic fields.

    Science.gov (United States)

    Hoerr, Verena; Nagelmann, Nina; Nauerth, Arno; Kuhlmann, Michael T; Stypmann, Jörg; Faber, Cornelius

    2013-07-04

    To overcome flow and electrocardiogram-trigger artifacts in cardiovascular magnetic resonance (CMR), we have implemented a cardiac and respiratory self-gated cine ultra-short echo time (UTE) sequence. We have assessed its performance in healthy mice by comparing the results with those obtained with a self-gated cine fast low angle shot (FLASH) sequence and with echocardiography. 2D self-gated cine UTE (TE/TR = 314 μs/6.2 ms, resolution: 129 × 129 μm, scan time per slice: 5 min 5 sec) and self-gated cine FLASH (TE/TR = 3 ms/6.2 ms, resolution: 129 × 129 μm, scan time per slice: 4 min 49 sec) images were acquired at 9.4 T. Volume of the left and right ventricular (LV, RV) myocardium as well as the end-diastolic and -systolic volume was segmented manually in MR images and myocardial mass, stroke volume (SV), ejection fraction (EF) and cardiac output (CO) were determined. Statistical differences were analyzed by using Student t test and Bland-Altman analyses. Self-gated cine UTE provided high quality images with high contrast-to-noise ratio (CNR) also for the RV myocardium (CNRblood-myocardium = 25.5 ± 7.8). Compared to cine FLASH, susceptibility, motion, and flow artifacts were considerably reduced due to the short TE of 314 μs. The aortic valve was clearly discernible over the entire cardiac cycle. Myocardial mass, SV, EF and CO determined by self-gated UTE were identical to the values measured with self-gated FLASH and showed good agreement to the results obtained by echocardiography. Self-gated UTE allows for robust measurement of cardiac parameters of diagnostic interest. Image quality is superior to self-gated FLASH, rendering the method a powerful alternative for the assessment of cardiac function at high magnetic fields.

  10. Diffusion measurement from observed transverse beam echoes

    Science.gov (United States)

    Sen, Tanaji; Fischer, Wolfram

    2017-01-01

    We study the measurement of transverse diffusion through beam echoes. We revisit earlier observations of echoes in the Relativistic Heavy Ion Collider and apply an updated theoretical model to these measurements. We consider three possible models for the diffusion coefficient and show that only one is consistent with measured echo amplitudes and pulse widths. This model allows us to parameterize the diffusion coefficients as functions of the bunch charge. We demonstrate that echoes can be used to measure diffusion much quicker than present methods and could be useful to a variety of hadron synchrotrons.

  11. Orientation and Alignment Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Hartmann, J -M; Faucher, O; Gershnabel, E; Prior, Y; Averbukh, I Sh

    2015-01-01

    We present what is probably the simplest classical system featuring the echo phenomenon - a collection of randomly oriented free rotors with dispersed rotational velocities. Following excitation by a pair of time-delayed impulsive kicks, the mean orientation/alignment of the ensemble exhibits multiple echoes and fractional echoes. We elucidate the mechanism of the echo formation by kick-induced filamentation of phase space, and provide the first experimental demonstration of classical alignment echoes in a thermal gas of CO_2 molecules excited by a pair of femtosecond laser pulses.

  12. Ultrasonic inspection method for billet using time-of-flight deviation of bottom echo and its performance evaluation in numerical simulations

    Science.gov (United States)

    Miyamoto, Ryusuke; Mizutani, Koichi; Ebihara, Tadashi; Wakatsuki, Naoto

    2017-07-01

    In this study, defect detection and size estimation in a billet by a single transducer using time-of-flight deviation of an ultrasonic bottom echo were carried out, and the validity of the method was evaluated by numerical simulation. As a result, a defect can be detected regardless of the defect position, even when the defect is near the surface of a billet. Defect size can be estimated by our proposed method when the defect is not near the surface of a billet.

  13. Ultrasonic echo signal fetures of dissimilar material bonding joints

    Institute of Scientific and Technical Information of China (English)

    GANG Tie(刚铁); Yasuo TAKAHASHI

    2004-01-01

    An ultrasonic evaluation method of echo feature of diffusion bond joint between two dissimilar materials is presented. The echo signal was acquired by an automatic ultrasonic C-scan test system. It is found that the intensity of echo and its phase can be used to evaluate the joint quality, and interface products of dissimilar materials bonding can be evaluated by ultrasonic method.

  14. Phase matching method for echo detection in direct data domain%直接数据域的相位匹配回波检测

    Institute of Scientific and Technical Information of China (English)

    幸高翔; 艾锐峰; 蔡志明; 虢应华

    2013-01-01

    提出了一种利用相位匹配直接提取接收数据中的目标回波以进行主动声纳混响抑制、回波检测的新方法.该方法首先构造子阵化的直接数据域波束形成,得到期望信号方向的若干波束输出序列;然后利用序列中信号相位与目标方位的依从性,直接解算出回波序列;再通过设计对应的检测量进行目标检测.区别于传统相关接收和空时自适应处理(space-time adaptive processing,STAP)的方法,该方法无需考虑混响与信号的相关性和统计特性.通过试验分析,新方法较传统方法具备更好的检测性能.%A new method is proposed to extract the echo of targets from the receiving data with phase matching for the case of reverberation suppression and echo detection of active sonars. First, the sub-arrayed direct data domain beam-forming is constructed to obtain the output time sequences in signal orientation. Second, the echo of targets is calculated by using the relationship between signal phase and object orientation from output sequences. Then, some special functions are designed for detection in this scene. Unlike the traditional correlation techniques and space-time adaptive processing (STAP) methods, the proposed method does not need to know the statistical properties and correlation between signals and reverberation. By the analysis of experimental data, it is verified to be more efficient than the conventional process.

  15. Decoherence of spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Prosen, Tomaz [Physics Department, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia)]. E-mail: prosen@fiz.uni-lj.si; Seligman, Thomas H. [Centro de Ciencias Fisicas, University of Mexico (UNAM), Cuernavaca (Mexico)]. E-mail: seligman@fis.unam.mx

    2002-06-07

    We define a quantity, the so-called purity fidelity, which measures the rate of dynamical irreversibility due to decoherence, observed e.g. in echo experiments, in the presence of an arbitrary small perturbation of the total (system + environment) Hamiltonian. We derive a linear response formula for the purity fidelity in terms of integrated time correlation functions of the perturbation. Our relation predicts, similar to the case of fidelity decay, that the faster the decay of purity fidelity the slower is the decay of time correlations. In particular, we find exponential decay in quantum mixing regime and faster, initially quadratic and later typically Gaussian decay in the regime of non-ergodic, e.g. integrable quantum dynamics. We illustrate our approach by an analytical calculation and numerical experiments in the Ising spin 1/2 chain kicked with tilted homogeneous magnetic field where part of the chain is interpreted as a system under observation and part as an environment. (author)

  16. A new gradient shimming method based on undistorted field map of B0 inhomogeneity.

    Science.gov (United States)

    Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang

    2016-04-01

    Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method.

  17. A new gradient shimming method based on undistorted field map of B0 inhomogeneity

    Science.gov (United States)

    Bao, Qingjia; Chen, Fang; Chen, Li; Song, Kan; Liu, Zao; Liu, Chaoyang

    2016-04-01

    Most existing gradient shimming methods for NMR spectrometers estimate field maps that resolve B0 inhomogeneity spatially from dual gradient-echo (GRE) images acquired at different echo times. However, the distortions induced by B0 inhomogeneity that always exists in the GRE images can result in estimated field maps that are distorted in both geometry and intensity, leading to inaccurate shimming. This work proposes a new gradient shimming method based on undistorted field map of B0 inhomogeneity obtained by a more accurate field map estimation technique. Compared to the traditional field map estimation method, this new method exploits both the positive and negative polarities of the frequency encoded gradients to eliminate the distortions caused by B0 inhomogeneity in the field map. Next, the corresponding automatic post-data procedure is introduced to obtain undistorted B0 field map based on knowledge of the invariant characteristics of the B0 inhomogeneity and the variant polarity of the encoded gradient. The experimental results on both simulated and real gradient shimming tests demonstrate the high performance of this new method.

  18. Fields from point sources using the aperture field method

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1991-01-01

    It is shown that the field of arbitrary point sources can be found from the aperture field method. It is demonstrated that the exact result in the far field is easily obtained for an electric Hertzian dipole in free space.......It is shown that the field of arbitrary point sources can be found from the aperture field method. It is demonstrated that the exact result in the far field is easily obtained for an electric Hertzian dipole in free space....

  19. Single-shot echo-planar imaging with Nyquist ghost compensation: interleaved dual echo with acceleration (IDEA) echo-planar imaging (EPI).

    Science.gov (United States)

    Poser, Benedikt A; Barth, Markus; Goa, Pål-Erik; Deng, Weiran; Stenger, V Andrew

    2013-01-01

    Echo planar imaging (EPI) is most commonly used for blood oxygen level-dependent fMRI, owing to its sensitivity and acquisition speed. A major problem with EPI is Nyquist (N/2) ghosting, most notably at high field. EPI data are acquired under an oscillating readout gradient and hence vulnerable to gradient imperfections such as eddy current delays and off-resonance effects, as these cause inconsistencies between odd and even k-space lines after time reversal. We propose a straightforward and pragmatic method herein termed "interleaved dual echo with acceleration (IDEA) EPI": two k-spaces (echoes) are acquired under the positive and negative readout lobes, respectively, by performing phase encoding blips only before alternate readout gradients. From these two k-spaces, two almost entirely ghost free images per shot can be constructed, without need for phase correction. The doubled echo train length can be compensated by parallel imaging and/or partial Fourier acquisition. The two k-spaces can either be complex averaged during reconstruction, which results in near-perfect cancellation of residual phase errors, or reconstructed into separate images. We demonstrate the efficacy of IDEA EPI and show phantom and in vivo images at both 3 T and 7 T.

  20. Diffusion-Weighted Imaging with Dual-Echo Echo-Planar Imaging for Better Sensitivity to Acute Stroke

    Science.gov (United States)

    Holdsworth, S.J.; Yeom, K.W.; Antonucci, M.U.; Andre, J.B.; Rosenberg, J.; Aksoy, M.; Straka, M.; Fischbein, N.J.; Bammer, R.; Moseley, M.E.; Zaharchuk, G.; Skare, S.

    2015-01-01

    BACKGROUND AND PURPOSE Parallel imaging facilitates the acquisition of echo-planar images with a reduced TE, enabling the incorporation of an additional image at a later TE. Here we investigated the use of a parallel imaging–enhanced dual-echo EPI sequence to improve lesion conspicuity in diffusion-weighted imaging. MATERIALS AND METHODS Parallel imaging–enhanced dual-echo DWI data were acquired in 50 consecutive patients suspected of stroke at 1.5T. The dual-echo acquisition included 2 EPI for 1 diffusion-preparation period (echo 1 [TE = 48 ms] and echo 2 [TE = 105 ms]). Three neuroradiologists independently reviewed the 2 echoes by using the routine DWI of our institution as a reference. Images were graded on lesion conspicuity, diagnostic confidence, and image quality. The apparent diffusion coefficient map from echo 1 was used to validate the presence of acute infarction. Relaxivity maps calculated from the 2 echoes were evaluated for potential complementary information. RESULTS Echo 1 and 2 DWIs were rated as better than the reference DWI. While echo 1 had better image quality overall, echo 2 was unanimously favored over both echo 1 and the reference DWI for its high sensitivity in detecting acute infarcts. CONCLUSIONS Parallel imaging–enhanced dual-echo diffusion-weighted EPI is a useful method for evaluating lesions with reduced diffusivity. The long TE of echo 2 produced DWIs that exhibited superior lesion conspicuity compared with images acquired at a shorter TE. Echo 1 provided higher SNR ADC maps for specificity to acute infarction. The relaxivity maps may serve to complement information regarding blood products and mineralization. PMID:24763417

  1. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  2. Morphology and flow fields of three-dimensional dunes, Rio Paraná, Argentina: Results from simultaneous multibeam echo sounding and acoustic Doppler current profiling

    Science.gov (United States)

    Parsons, D. R.; Best, J. L.; Orfeo, O.; Hardy, R. J.; Kostaschuk, R.; Lane, S. N.

    2005-12-01

    Most past studies of river dune dynamics have concentrated on two-dimensional (2-D) bed forms, with constant heights and straight crest lines transverse to the flow, and their associated turbulent flow structure. This morphological simplification imposes inherent limitations on the interpretation and understanding of dune form and flow dynamics in natural channels, where dune form is predominantly three-dimensional. For example, studies over 2-D forms neglect the significant influence that lateral flows and secondary circulation may have on the flow structure and thus dune morphology. This paper details a field study of a swath of 3-D dunes in the Rio Paraná, Argentina. A large (0.35 km wide, 1.2 km long) area of dunes was surveyed using a multibeam echo sounder (MBES) that provided high-resolution 3-D detail of the river bed. Simultaneous with the MBES survey, 3-D flow information was obtained with an acoustic Doppler current profiler (ADCP), revealing a complicated pattern of dune morphology and associated flow structure within the swath. Dune three-dimensionality appears intimately connected to the morphology of the upstream dune, with changes in crest line curvature and crest line bifurcations/junctions significantly influencing the downstream dune form. Dunes with lobe or saddle-shaped crest lines were found to have larger, more structured regions of vertical velocity with smaller separation zones than more 2-D straight-crested dunes. These results represent the first integrated study of 3-D dune form and mean flow structure from the field and show several similarities to recent laboratory models of flow over 3-D dunes.

  3. Echo particle image velocimetry.

    Science.gov (United States)

    DeMarchi, Nicholas; White, Christopher

    2012-12-27

    The transport of mass, momentum, and energy in fluid flows is ultimately determined by spatiotemporal distributions of the fluid velocity field.(1) Consequently, a prerequisite for understanding, predicting, and controlling fluid flows is the capability to measure the velocity field with adequate spatial and temporal resolution.(2) For velocity measurements in optically opaque fluids or through optically opaque geometries, echo particle image velocimetry (EPIV) is an attractive diagnostic technique to generate "instantaneous" two-dimensional fields of velocity.(3,4,5,6) In this paper, the operating protocol for an EPIV system built by integrating a commercial medical ultrasound machine(7) with a PC running commercial particle image velocimetry (PIV) software(8) is described, and validation measurements in Hagen-Poiseuille (i.e., laminar pipe) flow are reported. For the EPIV measurements, a phased array probe connected to the medical ultrasound machine is used to generate a two-dimensional ultrasound image by pulsing the piezoelectric probe elements at different times. Each probe element transmits an ultrasound pulse into the fluid, and tracer particles in the fluid (either naturally occurring or seeded) reflect ultrasound echoes back to the probe where they are recorded. The amplitude of the reflected ultrasound waves and their time delay relative to transmission are used to create what is known as B-mode (brightness mode) two-dimensional ultrasound images. Specifically, the time delay is used to determine the position of the scatterer in the fluid and the amplitude is used to assign intensity to the scatterer. The time required to obtain a single B-mode image, t, is determined by the time it take to pulse all the elements of the phased array probe. For acquiring multiple B-mode images, the frame rate of the system in frames per second (fps) = 1/δt. (See 9 for a review of ultrasound imaging.) For a typical EPIV experiment, the frame rate is between 20-60 fps

  4. Impact echo scanning of concrete and wood

    Science.gov (United States)

    Sack, Dennis A.; Olson, Larry D.; Aouad, Marwan F.

    1995-05-01

    This paper presents an overview of a new nondestructive testing (NDT) system that allows rapid nondestructive assessment of many types of structural materials. The new system is based on scanning impact echo (IE), using a rolling receiver, digitally controlled impact source, and a distance measurement wheel integrated into a system that is capable of performing over 3000 IE tests per hour. The system has been successfully used on both concrete and wood for condition assessment. Previously, impact echo testing has been limited to point-by-point testing at rates of typically 30 - 60 points per hour. The new system is usable on any flat, relatively smooth surface such as floor slabs, pavements, walls, columns, beams, etc. In addition to IE scanning, the new system has recently been expanded to allow the performance of spectral analysis of surface waves (SASW) scanning on concrete and wood. The SASW method allows the measurement of material stiffness (modulus) versus depth, and therefore can give a profile of the material condition versus depth. Included in this paper are brief discussions of the IE and SASW methods, the scanner system hardware, and the software which was developed to enable efficient processing, analysis, and display of the test data and results. Also included are sample data plots and a case history presentation of the use of the system in the field, including one in which 23,000 IE tests were performed on an elevated floor slab in approximately 16 hours of testing time.

  5. Challenges in neutron spin echo spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C., E-mail: c.pappas@tudelft.n [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Lelievre-Berna, E.; Falus, P.; Farago, B. [Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Institut Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Krist, Th. [Helmholtz-Zentrum Berlin for Materials and Energy, Glienicker Str. 100, 14109 Berlin (Germany); Grigoriev, S. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)

    2009-09-01

    With the new brilliant neutron sources and the developments of novel optical elements, neutron spin echo (NSE) spectroscopy evolves to tackle new problems and scientific fields. The new developments pave the way to complex experimental set-ups such as the intensity modulated variant of NSE (IMNSE), a powerful technique which was introduced some 20 years ago but found limited use up to now. With the new compact supermirror or He{sup 3} polarizers IMNSE becomes attractive for a broad range of applications in magnetism, soft matter and biology. A novel development along this line is the polarimetric NSE technique, which combines IMNSE and the zero-field polarimeter Cryopad to access components of the scattered polarization that are transverse to the incoming polarization. Polarimetric NSE is the method of choice for studying chiral fluctuations, as illustrated by new results on the reference helimagnet MnSi.

  6. The EChO science case

    Science.gov (United States)

    Tinetti, Giovanna; Drossart, Pierre; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Swinyard, Bruce; Allard, France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Zapatero-Osorio, Mariarosa; Beaulieu, Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Swain, Mark; Banaszkiewicz, Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; du Foresto, Vincent Coudé; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Ramos Zapata, Gonzalo; Adriani, Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Winter, Berend; Abe, L.; Abreu, M.; Achilleos, N.; Ade, P.; Adybekian, V.; Affer, L.; Agnor, C.; Agundez, M.; Alard, C.; Alcala, J.; Allende Prieto, C.; Alonso Floriano, F. J.; Altieri, F.; Alvarez Iglesias, C. A.; Amado, P.; Andersen, A.; Aylward, A.; Baffa, C.; Bakos, G.; Ballerini, P.; Banaszkiewicz, M.; Barber, R. J.; Barrado, D.; Barton, E. J.; Batista, V.; Bellucci, G.; Belmonte Avilés, J. A.; Berry, D.; Bézard, B.; Biondi, D.; Błęcka, M.; Boisse, I.; Bonfond, B.; Bordé, P.; Börner, P.; Bouy, H.; Brown, L.; Buchhave, L.; Budaj, J.; Bulgarelli, A.; Burleigh, M.; Cabral, A.; Capria, M. T.; Cassan, A.; Cavarroc, C.; Cecchi-Pestellini, C.; Cerulli, R.; Chadney, J.; Chamberlain, S.; Charnoz, S.; Christian Jessen, N.; Ciaravella, A.; Claret, A.; Claudi, R.; Coates, A.; Cole, R.; Collura, A.; Cordier, D.; Covino, E.; Danielski, C.; Damasso, M.; Deeg, H. J.; Delgado-Mena, E.; Del Vecchio, C.; Demangeon, O.; De Sio, A.; De Wit, J.; Dobrijévic, M.; Doel, P.; Dominic, C.; Dorfi, E.; Eales, S.; Eiroa, C.; Espinoza Contreras, M.; Esposito, M.; Eymet, V.; Fabrizio, N.; Fernández, M.; Femenía Castella, B.; Figueira, P.; Filacchione, G.; Fletcher, L.; Focardi, M.; Fossey, S.; Fouqué, P.; Frith, J.; Galand, M.; Gambicorti, L.; Gaulme, P.; García López, R. J.; Garcia-Piquer, A.; Gear, W.; Gerard, J.-C.; Gesa, L.; Giani, E.; Gianotti, F.; Gillon, M.; Giro, E.; Giuranna, M.; Gomez, H.; Gomez-Leal, I.; Gonzalez Hernandez, J.; González Merino, B.; Graczyk, R.; Grassi, D.; Guardia, J.; Guio, P.; Gustin, J.; Hargrave, P.; Haigh, J.; Hébrard, E.; Heiter, U.; Heredero, R. L.; Herrero, E.; Hersant, F.; Heyrovsky, D.; Hollis, M.; Hubert, B.; Hueso, R.; Israelian, G.; Iro, N.; Irwin, P.; Jacquemoud, S.; Jones, G.; Jones, H.; Justtanont, K.; Kehoe, T.; Kerschbaum, F.; Kerins, E.; Kervella, P.; Kipping, D.; Koskinen, T.; Krupp, N.; Lahav, O.; Laken, B.; Lanza, N.; Lellouch, E.; Leto, G.; Licandro Goldaracena, J.; Lithgow-Bertelloni, C.; Liu, S. J.; Lo Cicero, U.; Lodieu, N.; Lognonné, P.; Lopez-Puertas, M.; Lopez-Valverde, M. A.; Lundgaard Rasmussen, I.; Luntzer, A.; Machado, P.; MacTavish, C.; Maggio, A.; Maillard, J.-P.; Magnes, W.; Maldonado, J.; Mall, U.; Marquette, J.-B.; Mauskopf, P.; Massi, F.; Maurin, A.-S.; Medvedev, A.; Michaut, C.; Miles-Paez, P.; Montalto, M.; Montañés Rodríguez, P.; Monteiro, M.; Montes, D.; Morais, H.; Morales, J. C.; Morales-Calderón, M.; Morello, G.; Moro Martín, A.; Moses, J.; Moya Bedon, A.; Murgas Alcaino, F.; Oliva, E.; Orton, G.; Palla, F.; Pancrazzi, M.; Pantin, E.; Parmentier, V.; Parviainen, H.; Peña Ramírez, K. Y.; Peralta, J.; Perez-Hoyos, S.; Petrov, R.; Pezzuto, S.; Pietrzak, R.; Pilat-Lohinger, E.; Piskunov, N.; Prinja, R.; Prisinzano, L.; Polichtchouk, I.; Poretti, E.; Radioti, A.; Ramos, A. A.; Rank-Lüftinger, T.; Read, P.; Readorn, K.; Rebolo López, R.; Rebordão, J.; Rengel, M.; Rezac, L.; Rocchetto, M.; Rodler, F.; Sánchez Béjar, V. J.; Sanchez Lavega, A.; Sanromá, E.; Santos, N.; Sanz Forcada, J.; Scandariato, G.; Schmider, F.-X.; Scholz, A.; Scuderi, S.; Sethenadh, J.; Shore, S.; Showman, A.; Sicardy, B.; Sitek, P.; Smith, A.; Soret, L.; Sousa, S.; Stiepen, A.; Stolarski, M.; Strazzulla, G.; Tabernero, H. M.; Tanga, P.; Tecsa, M.; Temple, J.; Terenzi, L.; Tessenyi, M.; Testi, L.; Thompson, S.; Thrastarson, H.; Tingley, B. W.; Trifoglio, M.; Martín Torres, J.; Tozzi, A.; Turrini, D.; Varley, R.; Vakili, F.; de Val-Borro, M.; Valdivieso, M. L.; Venot, O.; Villaver, E.; Vinatier, S.; Viti, S.; Waldmann, I.; Waltham, D.; Ward-Thompson, D.; Waters, R.; Watkins, C.; Watson, D.; Wawer, P.; Wawrzaszk, A.; White, G.; Widemann, T.; Winek, W.; Wiśniowski, T.; Yelle, R.; Yung, Y.; Yurchenko, S. N.

    2015-12-01

    The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune—all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10-4 relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength

  7. Happy birthday Echo!

    CERN Multimedia

    Staff Association

    2010-01-01

    You are reading the number hundred and one (no. 101) edition of our bulletin Echo. Just over four years ago, on 27th March 2006, the first untitled edition was published (Fig. 1 on the left). The title Echo appeared on the second edition on 10th April 2006 (Fig. 1 in the centre). Today (see Fig. 1 on the right), the layout is slightly different, but the structure of each edition has remained more or less the same: an editorial informing you of the important issues, followed by articles on club life, cultural activities (exhibitions and conferences), information from GAC-EPA, and special offers for our members.     Fig. 1 : Nos. 1, 2 and 100 of our twice-monthly publication Echo Echo was created in March 2006 when, much to our regret, CERN official communication and that of your representatives were separated. November 2009 saw a return to normal practice, and since then the CERN st...

  8. Hyper-mobility of water around actin filaments revealed using pulse-field gradient spin-echo {sup 1}H NMR and fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wazawa, Tetsuichi [Department of Materials Processing, Graduate School of Tohoku University, 6-6-02 Aobayama, Aoba-Ku, Sendai, Miyagi 980-8579 (Japan); CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Sagawa, Takashi; Ogawa, Tsubasa; Morimoto, Nobuyuki [Department of Materials Processing, Graduate School of Tohoku University, 6-6-02 Aobayama, Aoba-Ku, Sendai, Miyagi 980-8579 (Japan); Kodama, Takao [Immunology Frontier Research Center, Osaka University, 3-1 Yamada-Oka, Suita, Osaka 565-0871 (Japan); Suzuki, Makoto, E-mail: msuzuki@material.tohoku.ac.jp [Department of Materials Processing, Graduate School of Tohoku University, 6-6-02 Aobayama, Aoba-Ku, Sendai, Miyagi 980-8579 (Japan); CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012 (Japan)

    2011-01-28

    Research highlights: {yields} Translationally hyper-mobile water has been detected around actin filaments. {yields} Translationally hyper-mobile water is formed upon polymerization of actin. {yields} Low water viscosity was found around F-actin using fluorescence anisotropy. {yields} Formation of hyper-mobile water may explain endothermic actin polymerization. -- Abstract: This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo {sup 1}H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by {approx}5%, whereas that in G-actin solution was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.

  9. Facilities | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  10. Field Test Results on Natural Field IP Method

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper the authors propose the natural field induced polarization (IP) method and present the way to pick up IP effect. The relations between the object and anomaly are studied by taking field experiments as examples. The effectiveness and usability of the method are testified.

  11. Echo state property linked to an input: exploring a fundamental characteristic of recurrent neural networks.

    Science.gov (United States)

    Manjunath, G; Jaeger, H

    2013-03-01

    The echo state property is a key for the design and training of recurrent neural networks within the paradigm of reservoir computing. In intuitive terms, this is a passivity condition: a network having this property, when driven by an input signal, will become entrained by the input and develop an internal response signal. This excited internal dynamics can be seen as a high-dimensional, nonlinear, unique transform of the input with a rich memory content. This view has implications for understanding neural dynamics beyond the field of reservoir computing. Available definitions and theorems concerning the echo state property, however, are of little practical use because they do not relate the network response to temporal or statistical properties of the driving input. Here we present a new definition of the echo state property that directly connects it to such properties. We derive a fundamental 0-1 law: if the input comes from an ergodic source, the network response has the echo state property with probability one or zero, independent of the given network. Furthermore, we give a sufficient condition for the echo state property that connects statistical characteristics of the input to algebraic properties of the network connection matrix. The mathematical methods that we employ are freshly imported from the young field of nonautonomous dynamical systems theory. Since these methods are not yet well known in neural computation research, we introduce them in some detail. As a side story, we hope to demonstrate the eminent usefulness of these methods.

  12. Reduced susceptibility effects in perfusion fMRI with single-shot spin-echo EPI acquisitions at 1.5 Tesla.

    Science.gov (United States)

    Wang, Jiongjiong; Li, Lin; Roc, Anne C; Alsop, David C; Tang, Kathy; Butler, Norman S; Schnall, Mitchell D; Detre, John A

    2004-01-01

    Arterial spin labeling (ASL) perfusion contrast is not based on susceptibility effects and can therefore be used to study brain function in regions of high static inhomogeneity. As a proof of concept, single-shot spin-echo echo-planar imaging (EPI) acquisition was carried out with a multislice continuous ASL (CASL) method at 1.5T. A bilateral finger tapping paradigm was used in the presence of an exogenously induced susceptibility artifact over left motor cortex. The spin-echo CASL technique was compared with a regular gradient-echo EPI sequence with the same slice thickness, as well as other imaging methods using thin slices and spin-echo acquisitions. The results demonstrate improved functional sensitivity and efficiency of the spin-echo CASL approach as compared with gradient-echo EPI techniques, and a trend of improved sensitivity as compared with spin-echo EPI approach in the brain regions affected by the susceptibility artifact. ASL images, either with or without subtraction of the control, provide a robust alternative to blood oxygenation level dependant (BOLD) methods for activation imaging in regions of high static field inhomogeneity.

  13. Time Delay Estimation Algoritms for Echo Cancellation

    Directory of Open Access Journals (Sweden)

    Kirill Sakhnov

    2011-01-01

    Full Text Available The following case study describes how to eliminate echo in a VoIP network using delay estimation algorithms. It is known that echo with long transmission delays becomes more noticeable to users. Thus, time delay estimation, as a part of echo cancellation, is an important topic during transmission of voice signals over packetswitching telecommunication systems. An echo delay problem associated with IP-based transport networks is discussed in the following text. The paper introduces the comparative study of time delay estimation algorithm, used for estimation of the true time delay between two speech signals. Experimental results of MATLab simulations that describe the performance of several methods based on cross-correlation, normalized crosscorrelation and generalized cross-correlation are also presented in the paper.

  14. An inter-comparison of sediment classification methods based on multi-beam echo-sounder backscatter and sediment natural radioactivity data.

    Science.gov (United States)

    Snellen, Mirjam; Eleftherakis, Dimitrios; Amiri-Simkooei, Alireza; Koomans, Ronald L; Simons, Dick G

    2013-08-01

    This contribution presents sediment classification results derived from different sources of data collected at the Dordtse Kil river, the Netherlands. The first source is a multi-beam echo-sounder (MBES). The second source is measurements taken with a gamma-ray scintillation detector, i.e., the Multi-Element Detection System for Underwater Sediment Activity (Medusa), towed over the sediments and measuring sediment natural radioactivity. Two analysis methods are employed for sediment classification based on the MBES data. The first is a Bayesian estimation method that uses the average backscatter data per beam and, therefore, is independent of the quality of the MBES calibration. The second is a model-based method that matches the measured backscatter curves to theoretical curves, predicted by a physics-based model. Medusa provides estimates for the concentrations of potassium, uranium, thorium, and cesium, known to be indicative for sediment properties, viz. mean grain size, silt content, and the presence of organic matter. In addition, a hydrophone attached to the Medusa system provides information regarding the sediment roughness. This paper presents an inter-comparison between the sediment classification results using the above-mentioned methods. It is shown that although originating from completely different sources, the MBES and Medusa provide similar information, revealing the same sediment distribution.

  15. Diffusion imaging with stimulated echoes: signal models and experiment design

    CERN Document Server

    Alexander, Daniel C

    2013-01-01

    Purpose: Stimulated echo acquisition mode (STEAM) diffusion MRI can be advantageous over pulsed-gradient spin-echo (PGSE) for diffusion times that are long compared to $\\ttwo$. It is important therefore for biomedical diffusion imaging applications at 7T and above where $\\ttwo$ is short. However, imaging gradients in the STEAM sequence contribute much greater diffusion weighting than in PGSE, but are often ignored during post-processing. We demonstrate here that this can severely bias parameter estimates. Method: We present models for the STEAM signal for free and restricted diffusion that account for crusher and slice-select (butterfly) gradients to avoid such bias. The butterfly gradients also disrupt experiment design, typically by skewing gradient-vectors towards the slice direction. We propose a simple compensation to the diffusion gradient vector specified to the scanner that counterbalances the butterfly gradients to preserve the intended experiment design. Results: High-field data fixed monkey brain e...

  16. On the Search for Quasar Light Echoes

    CERN Document Server

    Visbal, Eli

    2007-01-01

    The UV radiation from a quasar leaves a characteristic pattern in the distribution of ionized hydrogen throughout the surrounding space. This pattern or light echo propagates through the intergalactic medium at the speed of light, and can be observed by its imprint on the Ly-alpha forest spectra of background sources. As the echo persists after the quasar has switched off, it offers the possibility of searching for dead quasars, and constraining their luminosities and lifetimes. We outline a technique to search for and characterize these light echoes. To test the method, we create artificial Ly-alpha forest spectra from cosmological simulations at z=3, apply light echoes and search for them. We show how the simulations can also be used to quantify the significance level of any detection. We find that light echoes from the brightest quasars could be found in observational data. With absorption line spectra of 100 redshift z~3-3.5 quasars or galaxies in a 1 square degree area, we expect that ~10 echoes from qua...

  17. Comparison of dB/dt between EPI and spin-echo pulse sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Akio [Kyoto City Hospital (Japan); Hongoh, Takaharu; Inoue, Hiroshi; Yamazaki, Masaru; Higashida, Mitsuharu

    2001-04-01

    In MR imaging, the time-varying magnetic field associated with gradients induces electric fields in the human body and may stimulate nerves and even the heart. The time rate of change in gradient magnetic fields on echo planar imaging (EPI) needs to exceed 20 mT/ms. EPI has recently become more widely used in the clinical field, and the protection of patient safety during MR scans has become an issue. However dB/dt as an index of the time-varying magnetic field is not displayed on the operating monitor. Therefore dB/dt of various scan techniques was measured using a search coil and storage oscilloscope, according to the IEC standard method. The results demonstrated that dB/dt of EPI, spin-echo, and field-echo techniques are much the same. Thus, the possibility of a risk to health resulting from EPI scanning is the same as that for other scanning techniques that use a high-performance MRI system. Therefore, even with spin-echo scanning, it is necessary to consider biological change in patients. (author)

  18. Motion estimation in wide band synthetic aperture sonar based on the raw echo data using the method of displaced phase center antenna

    Institute of Scientific and Technical Information of China (English)

    JIANG Xiaokui; SUN Chao; FANG Jie

    2003-01-01

    Phase errors in synthetic aperture sonar (SAS) imaging must be reduced to less than one eighth of a wavelength so as to avoid image destruction. Most of the phase errors occur as a result of platform motion errors, for example, sway yaw and surge that are the most important error sources. The phase error of a wide band synthetic aperture sonar is modeled and solutions to sway yaw and surge motion estimation based on the raw sonar echo data with a Displaced Phase Center Antenna (DPCA) method are proposed and their implementations are detailed in this paper. It is shown that the sway estimates can be obtained from the correlation lag and phase difference between the returns at coincident phase centers. An estimate of yaw is also possible if such a technique is applied to more than one overlapping phase center positions. Surge estimates can be obtained by identifying pairs of phase centers with a maximum correlation coefficient. The method works only if the platform velocity is low enough such that a number of phase centers from adjacent pings overlap.

  19. Experimental observation of fractional echoes

    Science.gov (United States)

    Karras, G.; Hertz, E.; Billard, F.; Lavorel, B.; Siour, G.; Hartmann, J.-M.; Faucher, O.; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh.

    2016-09-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes, which appear periodically at delays which are integer multiples of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  20. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-01-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection…

  1. Historic Methods for Capturing Magnetic Field Images

    Science.gov (United States)

    Kwan, Alistair

    2016-03-01

    I investigated two late 19th-century methods for capturing magnetic field images from iron filings for historical insight into the pedagogy of hands-on physics education methods, and to flesh out teaching and learning practicalities tacit in the historical record. Both methods offer opportunities for close sensory engagement in data-collection processes.

  2. Geostatistical methods applied to field model residuals

    DEFF Research Database (Denmark)

    Maule, Fox; Mosegaard, K.; Olsen, Nils

    consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...

  3. Teaching Geographic Field Methods Using Paleoecology

    Science.gov (United States)

    Walsh, Megan K.

    2014-01-01

    Field-based undergraduate geography courses provide numerous pedagogical benefits including an opportunity for students to acquire employable skills in an applied context. This article presents one unique approach to teaching geographic field methods using paleoecological research. The goals of this course are to teach students key geographic…

  4. Electromagnetic field computation by network methods

    CERN Document Server

    Felsen, Leopold B; Russer, Peter

    2009-01-01

    This monograph proposes a systematic and rigorous treatment of electromagnetic field representations in complex structures. The book presents new strong models by combining important computational methods. This is the last book of the late Leopold Felsen.

  5. Visualization of the 12th Cranial Nerve with MRI: Value of Balanced Fast-Field Echo and 3D-Drive Sequences Among the T2 TSE Post-Contrast T1 Sequences

    Directory of Open Access Journals (Sweden)

    H Aydin

    2010-10-01

    Full Text Available Background/Objective: Our aim was to optimize the most effective MR imaging sequence for visualization of the 12th cranial nerve (hypoglossal nerve through its cisternal course."nPatients and Methods: We applied balanced fast-field echo (B-FFE, 3D-T2 weighted Driven Equilibrium RF Reset Pulse (DRIVE, T2 weighted 2D TSE and post-contrast T1 weighted sequences and tried to find out the best sequence for the perfect visualization of the 12th cranial nerve. One-hundred patients without any hypoglossal nerve paralysis were examined via these sequences. Imaging analysis was graded as follows: certain visualization of nerves (score 2, partially visualized nerves (score 1, non-visualized nerves (score 0."nResults: The hypoglossal nerve was visualized exactly in only eight cases and partially depicted in only six cases with the post-contrast T1 series. In B-FFE sequence; 56% of the nerves were properly seen and 8% of the nerves were partially identified, using T2 weighted DRIVE sequences; 30% of the nerves were clearly visualized, the nerves were partially depicted in 15 patients. Regarding the T2 weighted TSE sequence, 15% of the nerves were certainly depicted and in seven patients the nerves were partially depicted."nConclusion: The most diagnostic sequence for the exact visualization of the cisternal course of hypoglossal nerve is B-FFE revealing a 64% visualization rate for the cisternal parts (112 exactly, 16 partially. T2W DRIVE sequence is shown to be more diagnostic than the T2W TSE for visualization of the cisternal part of the hypoglossal nerve.    

  6. Echo: skin stress test

    Science.gov (United States)

    1960-01-01

    Skin Stress Test of the 12-foot satellite built as a prototype of the full-scale Echo satellite. The 12-foot diameter of the sphere was chosen because that was the ceiling height in the Langley model shop. The proposal to build the 12-foot satellite was made in November 1957. - Published in James R. Hansen, Spaceflight Revolution: NASA Langley Research Center From Sputnik to Apollo, NASA SP-4308, pp. 170-171.

  7. An inter-comparison of sediment classification methods based on multi-beam echo-sounder backscatter and sediment natural radioactivity data

    NARCIS (Netherlands)

    Snellen, M.; Eleftherakis, S.; Amiri-Simkooei, A.; Koomans, R.L.; Simons, D.G.

    2013-01-01

    This contribution presents sediment classification results derived from different sources of data collected at the Dordtse Kil river, the Netherlands. The first source is a multi-beam echo-sounder (MBES). The second source is measurements taken with a gamma-ray scintillation detector, i.e., the Mult

  8. An inter-comparison of sediment classification methods based on multi-beam echo-sounder backscatter and sediment natural radioactivity data

    NARCIS (Netherlands)

    Snellen, M.; Eleftherakis, S.; Amiri-Simkooei, A.; Koomans, R.L.; Simons, D.G.

    2013-01-01

    This contribution presents sediment classification results derived from different sources of data collected at the Dordtse Kil river, the Netherlands. The first source is a multi-beam echo-sounder (MBES). The second source is measurements taken with a gamma-ray scintillation detector, i.e., the

  9. Lattice methods and effective field theory

    CERN Document Server

    Nicholson, Amy N

    2016-01-01

    Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.

  10. Spin echo in synchrotrons

    Science.gov (United States)

    Chao, Alexander W.; Courant, Ernest D.

    2007-01-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency Δνspin of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time τ between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference-overlap effect and a spin echo effect. This paper is to address these two effects. The interference-overlap effect occurs when Δνspin is too small, or when τ is too short, to complete the smearing process. In this case, the two resonance crossings overlap each other, and the final polarization exhibits constructive or destructive interference patterns depending on the exact value of τ. Typically, the beam’s energy spread is large and this interference-overlap effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time τ after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when τ is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving an analysis

  11. Spin Echo in Synchrotrons

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alexander W.; /SLAC; Courant, Ernest D.; /Brookhaven

    2006-12-01

    As a polarized beam is accelerated through a depolarization resonance, its polarization is reduced by a well-defined calculable reduction factor. When the beam subsequently crosses a second resonance, the final beam polarization is considered to be reduced by the product of the two reduction factors corresponding to the two crossings, each calculated independently of the other. This is a good approximation when the spread of spin precession frequency {Delta}{nu}{sub spin} of the beam (particularly due to its energy spread) is sufficiently large that the spin precession phases of individual particles smear out completely during the time {tau} between the two crossings. This approximate picture, however, ignores two spin dynamics effects: an interference effect and a spin echo effect. This paper is to address these two effects. The interference effect occurs when {Delta}{nu}{sub spin} is too small, or when {tau} is too short, to complete the smearing process. In this case, the two resonance crossings interfere with each other, and the final polarization exhibits constructive or destructive patterns depending on the exact value of {tau}. Typically, the beam's energy spread is large and this interference effect does not occur. To study this effect, therefore, it is necessary to reduce the beam energy spread and to consider two resonance crossings very close to each other. The other mechanism, also due to the interplay between two resonance crossings, is spin echo. It turns out that even when the precession phases appear to be completely smeared between the two crossings, there will still be a sudden and short-lived echo signal of beam polarization at a time {tau} after the second crossing; the magnitude of which can be as large as 57%. This echo signal exists even when the beam has a sizable energy spread and when {tau} is very large, and could be a sensitive (albeit challenging) way to experimentally test the intricate spin dynamics in a synchrotron. After giving

  12. A method for quantifying visual field inhomogeneities.

    Science.gov (United States)

    Anderson, Jennifer E; Leslie Cameron, E; Levine, Michael W

    2014-12-01

    It is well known that performance is not homogeneous across the visual field, even at isoeccentric locations. Several inhomogeneities in particular have been identified - a Horizontal-Vertical Anisotropy (HVA - better performance in the horizontal than in the vertical direction); a Vertical Asymmetry (VA - better performance in the lower than the upper visual field); and a Vertical Meridian Asymmetry (VMA - better performance below than above the point of fixation on the vertical meridian). Performance has also been reported to be particularly poor at the location directly above the point of fixation, i.e., the "North" (N) location and sometimes at the location directly below the point of fixation, i.e., the "South" (S) location. These phenomena are typically characterized by statistics that compare performance across the visual field to a homogeneous (circular) model. Here we propose an alternative method for assessing visual field inhomogeneities, which involves comparing performance to an elliptical model of the visual field. We maintain that this method provides a more robust analysis of visual field inhomogeneities because it does not overestimate the North and South effects.

  13. Dual-pathway multi-echo sequence for simultaneous frequency and T2 mapping

    Science.gov (United States)

    Cheng, Cheng-Chieh; Mei, Chang-Sheng; Duryea, Jeffrey; Chung, Hsiao-Wen; Chao, Tzu-Cheng; Panych, Lawrence P.; Madore, Bruno

    2016-04-01

    Purpose: To present a dual-pathway multi-echo steady state sequence and reconstruction algorithm to capture T2, T2∗ and field map information. Methods: Typically, pulse sequences based on spin echoes are needed for T2 mapping while gradient echoes are needed for field mapping, making it difficult to jointly acquire both types of information. A dual-pathway multi-echo pulse sequence is employed here to generate T2 and field maps from the same acquired data. The approach might be used, for example, to obtain both thermometry and tissue damage information during thermal therapies, or susceptibility and T2 information from a same head scan, or to generate bonus T2 maps during a knee scan. Results: Quantitative T2, T2∗ and field maps were generated in gel phantoms, ex vivo bovine muscle, and twelve volunteers. T2 results were validated against a spin-echo reference standard: A linear regression based on ROI analysis in phantoms provided close agreement (slope/R2 = 0.99/0.998). A pixel-wise in vivo Bland-Altman analysis of R2 = 1/T2 showed a bias of 0.034 Hz (about 0.3%), as averaged over four volunteers. Ex vivo results, with and without motion, suggested that tissue damage detection based on T2 rather than temperature-dose measurements might prove more robust to motion. Conclusion: T2, T2∗ and field maps were obtained simultaneously, from the same datasets, in thermometry, susceptibility-weighted imaging and knee-imaging contexts.

  14. ON PROGNOSTICS OF PSYCHODIAGNOSTIC METHOD CREATIVE FIELD

    OpenAIRE

    2011-01-01

    This paper reports on the results of the 40-year longitudinal studies based on the authors conception of creativity as generation of activity at ones own initiative and pursued by the method Creative Field, which has been developed by the author purposely to explore this particular phenomenon. The method allows dividing people with high abilities into those who attain profi ciency and those who push the boundaries and move to the level of art even in science, which characterizes the higher fo...

  15. Low-field MR imaging of the spine. A comparative study of a traditional and a new, completely balanced gradient-echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Drejer, J. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Thomsen, H.S. [Dept. of Diagnostic Radiology, Herlev Hospital, Univ. Copenhagen (Denmark); Tanttu, J. [Picker Nordstar, Helsinki (Finland)

    1995-09-01

    49 patients underwent 53 examinations with both a traditional T1-weighted gradient-echo (PS) sequence and a new completely balanced steady-state 3-D (CBASS3D) sequence; 20 examinations included the cervical spine, 8 the thoracic spine and 25 the lumbar spine. All 106 examinations were reviewed twice regarding visibility of selected structures in the spinal region and diagnostic usefulness. The CBASS3D sequence delineated the medulla, nerve roots, CSF, the intervertebral discs and the posterior longitudinal ligament significantly better than the PS sequence. Disc hernia was also better visualised (p<0.01). There were significantly more artefacts on images obtained with the CBASS3D sequence, but they were usually outside the region of interest and occurred less frequently over time due to increased experience of the staff. Both reviewers found the diagnostic usefulness of CBASS3D to be superior compared to that of PS and excellent for diagnostic purposes. (orig./MG).

  16. A Continuous Clustering Method for Vector Fields

    NARCIS (Netherlands)

    Garcke, H.; Preußer, T.; Rumpf, M.; Telea, A.; Weikard, U.; Wijk, J. van

    2000-01-01

    A new method for the simplification of flow fields is presented. It is based on continuous clustering. A well-known physical clustering model, the Cahn Hillard model which describes phase separation, is modified to reflect the properties of the data to be visualized. Clusters are defined implicitly

  17. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  18. Analysis of Acoustic Feedback/Echo Cancellation in Multiple-Microphone and Single-Loudspeaker Systems Using a Power Transfer Function Method

    DEFF Research Database (Denmark)

    Guo, Meng; Bo Elmedyb, Thomas; Jensen, Søren Holdt;

    2011-01-01

    In this work, we analyze a general multiple-microphone and single-loudspeaker audio processing system, where a multichannel adaptive system is used to cancel the effect of acoustic feedback/echo, and a beamformer processes the feedback/echo canceled signals. We introduce and derive an accurate...... approximation of a frequency domain measure - the power transfer function - and show how it can be used to predict the convergence rate, system stability bound and the steady-state behavior of the entire cancellation system across frequency and time. We consider three example adaptive algorithms...... in the cancellation system: the least mean square, normalized least mean square, and the recursive least squares algorithms. Furthermore, we derive expressions to determine the step size parameter in the adaptive algorithms to achieve a desired system behavior, e.g., convergence rate at a specific frequency. Finally...

  19. Saddle Points in the Auxiliary Field Method

    CERN Document Server

    Aono, Hiroki

    2009-01-01

    Investigations are made on the saddle point calculations (SPC) under the auxiliary field method in path integrations. Two different ways of SPC are considered, Method(I) and Method(II), to be checked in an integral representation of the Gamma function, \\Gamma (N), as a bosonic example and in a four-fermi type of Grassmann integral where one "fermion mass" \\omega_0 differs from the other N-degenerate species. The recipe of Method(I) seems rather complicated than that of (II) superficially, but the case turns out to be opposite in the actual situation. A general formalism allows us to calculate for \\Gamma (N) up to O(1/N^{14}). It is found that both happen to coincide in the bosonic case but in the fermionic case Method(II) shows a huge deviation in the weak coupling region where \\omega_0 \\ll 1.

  20. Dissecting a Light Echo

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for audio animation This animation illustrates how a light echo works, and how an optical illusion of material moving outward is created. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The animation starts by showing the explosion of a star, which results in a flash of light that moves outward in all directions. The direction of our line of sight from Earth is indicated by the blue arrow. When the light flash reaches surrounding dust, shown here as three dark clouds, the dust is heated up, creating infrared light that begins to travel toward Earth (indicated by the red arrows). Dust closest to the explosion lights up first, while the explosion's shock wave takes longer to reach more distant material. This results in light from different parts of the cloud reaching Earth at different times, creating the illusion of motion over time. As the animation shows, the inclination of the cloud toward our line of sight can result in the material seeming to move both away from and toward the central star.

  1. Modified methods of stellar magnetic field measurements

    CERN Document Server

    Kholtygin, A F

    2013-01-01

    The standard methods of the magnetic field measurement, based on an analysis of the relation between the Stokes $V$-parameter and the first derivative of the total line profile intensity, were modified by applying a linear integral operator $\\hat{L}$ to the both sides of this relation. As the operator $\\hat{L}$, the operator of the wavelet transform with DOG-wavelets is used. The key advantage of the proposed method is an effective suppression of the noise contribution to the line profile and the Stokes parameter $V$. The efficiency of the method has been studied using the model line profiles with various noise contributions. To test the proposed method, the spectropolarimetric observations of the A0-type star $\\alpha^2\\,$ CVn, young O-type star $\\theta^1$ Ori C and A0 supergiant HD 92207 were used. The longitudinal magnetic field strengths for these stars calculated by our method appeared to be in a good agreement with those determined by other methods.

  2. 星载探地雷达成像算法与回波模拟研究%Imaging method and echo simulation for the space borne ground-penetrating radar

    Institute of Scientific and Technical Information of China (English)

    吴海涵; 于丹茹; 李巍

    2011-01-01

    Ground-penetration Radar(GPR) is a kind of detection radar using high frequency electromagnetic waves to determine the distribution of the internal structure of the material. In the field of deep space exploration, the utilization of space borne GPR to explore the subsurface structure of the planet has become a important way to understand the planet. However, due to the velocity of the satellite, the space borne GPR has a Doppler effect in its images, much different with images imaging by the static GPR. European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) have been using space borne GPR to explore Mars successfully. However, related researches in China are few, still on the initial stage. In this paper, we will begin with the discussion of the differences between the imaging method of the general GPR and the space borne GPR. Then the imaging method and echo simulation in both fields and the interpretation and analysis of the echo simulation will also be discussed. These conclusions can also be used for airborne platforms and other motion platform situations.%探地雷达(GPR)是利用高频电磁波来确定介质内部物质分布规律的一种探测雷达。在深空探测领域中,利用星载探地雷达进行星球次表层探测,已经成为了解星球次表层结构的重要途径。但是,由于卫星运行速度的影响,使得星载探地雷达的成像具有多普勒效应,与静止平台下的成像有很大不同。欧洲航天局(ESA)与美国航天局(NASA)都已经利用星载探地雷达对火星进行了成功探测,但在国内该方面的研究还不多,尚处于起步阶段。本文从一般探地雷达与星载探地雷达的成像区别入手,在两种背景下对分层介质的探测进行了成像算法研究与回波仿真模拟,并对结果进行了解释和分析。本文的结论也可以用于机载平台等其它运动平台的情况。

  3. Study of turbulent flow using Half-Fourier Echo-Planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, A.O. [Universidad Autonoma Metropolitana Iztapalapa, Mexico, D.F. (Mexico). Centro de Investigacion en Imagenologia e Instrumentacion Medica

    2006-03-15

    The Echo-Planar Imaging technique combined with a partial Fourier acquisition method was used to obtain velocity images for liquid flows in a circular cross-section pipe at Reynolds number of up to 8000. This partial-Fourier imaging scheme is able to generate shorter echo times than the full-Fourier Echo-Planar Imaging methods, reducing the signal attenuation due to T2{sup *} and flow. Velocity images along the z axis were acquired with a time-scale of 80 ms thus obtaining a real-time description of flow in both the laminar and turbulent regimes. Velocity values and velocity fluctuations were computed with the flow image data. A comparison plot of NMR velocity and bulk velocity and a plot of velocity fluctuations were calculated to investigate the feasibility of this imaging technique. Flow encoded Echo-Planar Imaging together with a reduced data acquisition method can provide us with a real-time technique to capture instantaneous images of the flow field for both laminar and turbulent regimes. (author)

  4. Two-dimensional Nutation Echo Nuclear Quadrupole Resonance Spectroscopy

    Science.gov (United States)

    Harbison, Gerard S.; Slokenbergs, Andris

    1990-04-01

    We discuss two new two-dimensional nuclear quadrupole resonance experiments, both based on the principle of nutation spectroscopy, which can be used to determine the asymmetry parameter, and thus the full quadrupolar tensor, of spin-3/2 nuclei at zero applied magnetic field. The first experiment is a simple nutation pulse sequence in which the first time period (t1) is the duration of the radiofrequency exciting pulse; and the second (t2) is the normal free-precession of a quadrupolar nucleus at zero-field. After double Fourier-transformation, the result is a 2 D spectrum in which the first frequency dimension is the nutation spectrum for the quadrupolar nucleus at zero-field. For polycrystalline samples this sequence generates powder lineshapes; the position of the singularities, in these lineshapes can be used to determine the asymmetry parameters η in a very straightforward manner, η has previously only been obtainable using Zeeman perturbed NQR methods. The second sequence is the same nutation experiment with a spin-echo pulse added. The virtue of this refocussing pulse is that it allows acquisition of nutation spectra from samples with arbitrary inhomogeneous linewidth; thus, asymmetry parameters can be determined even where the quadrupolar resonance is wider than the bandwidth of the spectrometer. Experimental examples of 35Cl, 81Br and 63Cu nutation and nutation-echo spectra are presented.

  5. Segmental dynamics of polyethylene-alt-propylene studied by NMR spin echo techniques

    Science.gov (United States)

    Lozovoi, A.; Mattea, C.; Hofmann, M.; Saalwaechter, K.; Fatkullin, N.; Stapf, S.

    2017-06-01

    Segmental dynamics of a highly entangled melt of linear polyethylene-alt-propylene with a molecular weight of 200 kDa was studied with a novel proton nuclear magnetic resonance (NMR) approach based upon 1H → 2H isotope dilution as applied to a solid-echo build-up function ISE(t), which is constructed from the NMR spin echo signals arising from the Hahn echo (HE) and two variations of the solid-echo pulse sequence. The isotope dilution enables the separation of inter- and intramolecular contributions to this function and allows one to extract the segmental mean-squared displacements in the millisecond time range, which is hardly accessible by other experimental methods. The proposed technique in combination with time-temperature superposition yields information about segmental translation in polyethylene-alt-propylene over 6 decades in time from 10-6 s up to 1 s. The time dependence of the mean-squared displacement obtained in this time range clearly shows three regimes of power law with exponents, which are in good agreement with the tube-reptation model predictions for the Rouse model, incoherent reptation and coherent reptation regimes. The results at short times coincide with the fast-field cycling relaxometry and neutron spin echo data, yet, significantly extending the probed time range. Furthermore, the obtained data are verified as well by the use of the dipolar-correlation effect on the Hahn echo, which was developed before by the co-authors. At the same time, the amplitude ratio of the intermolecular part of the proton dynamic dipole-dipole correlation function over the intramolecular part obtained from the experimental data is not in agreement with the predictions of the tube-reptation model for the regimes of incoherent and coherent reptation.

  6. Wind Shear Target Echo Modeling and Simulation

    Directory of Open Access Journals (Sweden)

    Xiaoyang Liu

    2015-01-01

    Full Text Available Wind shear is a dangerous atmospheric phenomenon in aviation. Wind shear is defined as a sudden change of speed or direction of the wind. In order to analyze the influence of wind shear on the efficiency of the airplane, this paper proposes a mathematical model of point target rain echo and weather target signal echo based on Doppler effect. The wind field model is developed in this paper, and the antenna model is also studied by using Bessel function. The spectrum distribution of symmetric and asymmetric wind fields is researched by using the mathematical model proposed in this paper. The simulation results are in accordance with radial velocity component, and the simulation results also confirm the correctness of the established model of antenna.

  7. Analysis of MR image quality of echo planar diffusion -weighted imaging. Investigations at 1.5 Tesla with higher gradient field strength; Analyse der Bildqualitaet einer diffusionsgewichteten (EPI DWI) Sequenz. Untersuchungen an einem 1,5 T MRT mit hoeherer Gradientenfeldstaerke

    Energy Technology Data Exchange (ETDEWEB)

    Dorenbeck, U. [Universitaetsklinik Bonn (Germany). Radiologische Klinik, FE Neuroradiologie; Universitaetsklinikum Regensburg (Germany). Inst. fuer diagnostische Radiologie; Zorger, N.; Feuerbach, S. [Universitaetsklinikum Regensburg (Germany). Inst. fuer diagnostische Radiologie

    2006-07-01

    Purpose: Single - shot echo planar Diffusion - weighted - Imaging (EPI DWI) requires extended gradient facilities with strong, fast switching gradients. Up to now the image quality of EPI DWI is enormously influenced by some kinds of artifacts. Therefore we evaluated the image quality of EPI DWI in demonstrating anatomical structures using a 1.5 T MR scanner with a higher gradient field strength of 40 mt/m, a risetime of 200 {mu}s and a slewrate of 200T/m/s. Materials and methods: Using an evaluation scale with four categories two independent readers evaluated 12 different infra - and supratentorial anatomic regions of the brain in 50 DWI images and compared them with the corresponding T2 turbospin echo image. Results: No region was judged to be undistinguishable. On axial DWI images the assessment of the brain stem was poor. In the level of the putamen and thalamus the image quality of DWI was judged to be from adequate to excellent. The central sulcus and the boundary of the white and grey matter was assessed to be adequately visible. The interobserver variability showed a good agreement between the two readers. Conclusion: The image quality of EPI DWI improves from a higher gradient field strength. The shortening rise time of 200 {mu}s and the slewrate of 200T/m/s will lead to a faster gradient switching. Single shot EPI DWI is less influenced by image artefacts and the presentation of different anatomical structures profits when a MR scanner with higher gradient field strength is used. (orig.)

  8. The low temperature oxidation of Athabasca oil sand asphaltene observed from {sup 13}C, {sup 19}F, and pulsed field gradient spin-echo proton n.m.r. spectra

    Energy Technology Data Exchange (ETDEWEB)

    Desando, M.A.; Lahanjar, G.; Ripmeester, J.A.; Zupancic, I. [National Research Council of Canada, Ottawa, ON (Canada). Division of Chemistry

    1999-01-01

    Carbon-13 and fluorine-19 nuclear magnetic resonance spectra of chemically derivatized, by phase transfer methylation and trifluoroacetylation, Athabasca oil sand asphaltene, reveal a broad site distribution of different types of hydroxyl-containing functional groups, viz., carboxylic acids, phenols, and alcohols. The low temperature air oxidation of asphaltene, at ca. 130{degree}C for 3 days, generates a few additional carboxyl and phenolic groups. These results are consistent with a mechanism in which diaryl methylene and ether moieties react with oxygen. Self-diffusion coefficients, from the pulsed field gradient spin-echo proton magnetic resonance technique, suggest that low temperature oxidation does not appreciably alter the average particle size and diffusion properties of asphaltene in deuterochloroform. 55 refs., 9 figs., 3 tabs.

  9. Eldor spin echoes and slow motions

    Science.gov (United States)

    Hornak, Joseph P.; Freed, Jack H.

    1983-10-01

    It is shown how an ELDOR technique based upon spin echoes and rapid stepping of the magnetic field may be employed to measure rotational correlation times, τ R for very slow motions. Experiments on PD-Tempone in 85% glycerol/ D 2O at low temperatures led to τ R values of 10 -4 to 10 -5 s obtained with a simple analysis of the data.

  10. A local Echo State Property through the largest Lyapunov exponent.

    Science.gov (United States)

    Wainrib, Gilles; Galtier, Mathieu N

    2016-04-01

    Echo State Networks are efficient time-series predictors, which highly depend on the value of the spectral radius of the reservoir connectivity matrix. Based on recent results on the mean field theory of driven random recurrent neural networks, enabling the computation of the largest Lyapunov exponent of an ESN, we develop a cheap algorithm to establish a local and operational version of the Echo State Property.

  11. Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method.

    Science.gov (United States)

    Hayamizu, Kikuko; Matsuda, Yasuaki; Matsui, Masaki; Imanishi, Nobuyuki

    2015-09-01

    The garnet-type solid conductor Li7-xLa3Zr2-xTaxO12 is known to have high ionic conductivity. We synthesized a series of compositions of this conductor and found that cubic Li6.6La3Zr1.6Ta0.4O12 (LLZO-Ta) has a high ionic conductivity of 3.7×10(-4)Scm(-1) at room temperature. The (7)Li NMR spectrum of LLZO-Ta was composed of narrow and broad components, and the linewidth of the narrow component varied from 0.69kHz (300K) to 0.32kHz (400K). We carried out lithium ion diffusion measurements using pulsed-field spin-echo (PGSE) NMR spectroscopy and found that echo signals were observed at T≥313K with reasonable sensitivity. The lithium diffusion behavior was measured by varying the observation time and pulsed-field gradient (PFG) strength between 313 and 384K. We found that lithium diffusion depended significantly on the observation time and strength of the PFG, which is quite different from lithium ion diffusion in liquids. It was shown that lithium ion migration in the solid conductor was distributed widely in both time and space.

  12. Theory of Quantum Loschmidt Echoes

    Science.gov (United States)

    Prosen, T.; Seligman, T. H.; Žnidarič, M.

    In this paper we review our recent work on the theoretical approach to quantum Loschmidt echoes, i.e., various properties of the so-called echo dynamics -- the composition of forward and backward time evolutions generated by two slightly different Hamiltonians, such as the state autocorrelation function (fidelity) and the purity of a reduced density matrix traced over a subsystem (purity fidelity). Our main theoretical result is a linear response formalism, expressing the fidelity and purity fidelity in terms of integrated time autocorrelation function of the generator of the perturbation. Surprisingly, this relation predicts that the decay of fidelity is the slower the faster the decay of correlations. In particular for a static (time-independent) perturbation, and for non-ergodic and non-mixing dynamics where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale ∝ 1/δ as opposed to mixing dynamics where the fidelity is found to decay exponentially on a time-scale ∝ 1/δ2, where δ is a strength of perturbation. A detailed discussion of a semi-classical regime of small effective values of Planck constant hbar is given where classical correlation functions can be used to predict quantum fidelity decay. Note that the correct and intuitively expected classical stability behavior is recovered in the classical limit hbarto 0, as the two limits δto 0 and hbarto 0 do not commute. The theoretical results are demonstrated numerically for two models, the quantized kicked top and the multi-level Jaynes Cummings model. Our method can for example be applied to the stability analysis of quantum computation and quantum information processing.

  13. A sixth order averaged vector field method

    OpenAIRE

    Li, Haochen; Wang, Yushun; Qin, Mengzhao

    2014-01-01

    In this paper, based on the theory of rooted trees and B-series, we propose the concrete formulas of the substitution law for the trees of order =5. With the help of the new substitution law, we derive a B-series integrator extending the averaged vector field (AVF) method to high order. The new integrator turns out to be of order six and exactly preserves energy for Hamiltonian systems. Numerical experiments are presented to demonstrate the accuracy and the energy-preserving property of the s...

  14. Free-electron lasers: Echoes of photons past

    Science.gov (United States)

    Campbell, Lawrence T.; McNeil, Brian W. J.

    2016-08-01

    High-harmonic generation is an established method to significantly upshift laser photon energies. Now, researchers at the SLAC National Accelerator Laboratory have used echo concepts to generate coherent high-harmonic output from an electron-beam light source.

  15. On Prognostics of Psychodiagnostic Method Creative Field

    Directory of Open Access Journals (Sweden)

    Diana B. Bogoyavlenskaya

    2011-01-01

    Full Text Available This paper reports on the results of the 40-year longitudinal studies based on the author's conception of creativity as generation of activity at one's own initiative and pursued by the method Creative Field, which has been developed by the au-thor purposely to explore this particular phenomenon. The method allows dividing people with high abilities into those attain proficiency and those who push the boundaries and move to the level of art even in science, which characterizes the higher forms of creativity. The universality of the method as a diagnostic instrument proves the possibility to identify creative abilities on samples of seemingly alternative professions: in exact sciences and in art. The validity of this method is confirmed by the absolute coincidence of the diagnostic findings and the life course of the subjects in the given samples. Moreover, the diagnostic findings in children of school age have been sustained for a period of over 40 years, which speaks for the apparent prognostics of the method.

  16. Quantum Reversibility: Is there an Echo?

    CERN Document Server

    Hiller, M; Cohen, D; Geisel, T; Hiller, Moritz; Kottos, Tsampikos; Cohen, Doron; Geisel, Theo

    2004-01-01

    We study the possibility to undo the quantum mechanical evolution in a time reversal experiment. The naive expectation, as reflected in the common terminology ("Loschmidt echo"), is that maximum compensation results if the reversed dynamics extends to the same time as the forward evolution. We challenge this belief, and demonstrate that the time $t_r$ for maximum return probability is in general shorter. We find that $t_r$ depends on $lambda = eps_evol/eps_prep$, being the ratio of the error in setting the parameters (fields) for the time reversed evolution to the perturbation which is involved in the preparation process. Our results should be observable in spin-echo experiments where the dynamical irreversibility of quantum phases is measured.

  17. Stark echo modulation for quantum memories

    Science.gov (United States)

    Arcangeli, A.; Ferrier, A.; Goldner, Ph.

    2016-06-01

    Quantum memories for optical and microwave photons provide key functionalities in quantum processing and communications. Here we propose a protocol well adapted to solid-state ensemble-based memories coupled to cavities. It is called Stark echo modulation memory (SEMM) and allows large storage bandwidths and low noise. This is achieved in an echo-like sequence combined with phase shifts induced by small electric fields through the linear Stark effect. We investigated the protocol for rare-earth nuclear spins and found a high suppression of unwanted collective emissions that is compatible with single-photon-level operation. Broadband storage together with high fidelity for the Stark retrieval process is also demonstrated. SEMM could be used to store optical or microwave photons in ions and/or spins. This includes nitrogen-vacancy centers in diamond and rare-earth-doped crystals, which are among the most promising solid-state quantum memories.

  18. E-region echo characteristics governed by auroral arc electrodynamics

    Directory of Open Access Journals (Sweden)

    S. E. Milan

    Full Text Available Observations of a pair of auroral arc features by two imagers, one ground- and one space-based, allows the associated field-aligned current (FAC and electric field structure to be inferred. Simultaneous observations of HF radar echoes provide an insight into the irregularity-generating mechanisms. This is especially interesting for the E-region echoes observed, which form the focus of our analysis, and from which several conclusions can be drawn, summarized as follows. Latitudinal variations in echo characteristics are governed by the FAC and electric field background. Particularly sharp boundaries are found at the edges of auroral arcs. Within regions of auroral luminosity, echoes have Doppler shifts below the ion-acoustic speed and are proportional to the electric field, suggesting scatter from gradient drift waves. Regions of downward FAC are associated with mixed high and low Doppler shift echoes. The high Doppler shift component is greatly in excess of the ion-acoustic speed, but seems to be commensurate with the driving electric field. The low Doppler shift component appears to be much depressed below expectations.

    Key words. Ionosphere (ionospheric irregularities; electric fields and currents

  19. Loschmidt echo and time reversal in complex systems.

    Science.gov (United States)

    Goussev, Arseni; Jalabert, Rodolfo A; Pastawski, Horacio M; Wisniacki, Diego A

    2016-06-13

    Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years.

  20. Evaluation of Field Map and Nonlinear Registration Methods for Correction of Susceptibility Artifacts in Diffusion MRI

    Science.gov (United States)

    Wang, Sijia; Peterson, Daniel J.; Gatenby, J. C.; Li, Wenbin; Grabowski, Thomas J.; Madhyastha, Tara M.

    2017-01-01

    Correction of echo planar imaging (EPI)-induced distortions (called “unwarping”) improves anatomical fidelity for diffusion magnetic resonance imaging (MRI) and functional imaging investigations. Commonly used unwarping methods require the acquisition of supplementary images during the scanning session. Alternatively, distortions can be corrected by nonlinear registration to a non-EPI acquired structural image. In this study, we compared reliability using two methods of unwarping: (1) nonlinear registration to a structural image using symmetric normalization (SyN) implemented in Advanced Normalization Tools (ANTs); and (2) unwarping using an acquired field map. We performed this comparison in two different test-retest data sets acquired at differing sites (N = 39 and N = 32). In both data sets, nonlinear registration provided higher test-retest reliability of the output fractional anisotropy (FA) maps than field map-based unwarping, even when accounting for the effect of interpolation on the smoothness of the images. In general, field map-based unwarping was preferable if and only if the field maps were acquired optimally.

  1. A new method of field MRTD test

    Science.gov (United States)

    Chen, Zhibin; Song, Yan; Liu, Xianhong; Xiao, Wenjian

    2014-09-01

    MRTD is an important indicator to measure the imaging performance of infrared camera. In the traditional laboratory test, blackbody is used as simulated heat source which is not only expensive and bulky but also difficult to meet field testing requirements of online automatic infrared camera MRTD. To solve this problem, this paper introduces a new detection device for MRTD, which uses LED as a simulation heat source and branded plated zinc sulfide glass carved four-bar target as a simulation target. By using high temperature adaptability cassegrain collimation system, the target is simulated to be distance-infinite so that it can be observed by the human eyes to complete the subjective test, or collected to complete objective measurement by image processing. This method will use LED to replace blackbody. The color temperature of LED is calibrated by thermal imager, thereby, the relation curve between the LED temperature controlling current and the blackbody simulation temperature difference is established, accurately achieved the temperature control of the infrared target. Experimental results show that the accuracy of the device in field testing of thermal imager MRTD can be limited within 0.1K, which greatly reduces the cost to meet the project requirements with a wide application value.

  2. X-ray Echo Spectroscopy

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-01

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.

  3. X-ray echo spectroscopy

    CERN Document Server

    Shvyd'ko, Yuri

    2015-01-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1--0.02-meV ultra-high-resolution IXS applications (resolving power $> 10^8$) with broadband $\\simeq$~5--13~meV dispersing systems are introduced featuring more than $10^3$ signal e...

  4. X-ray Echo Spectroscopy.

    Science.gov (United States)

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  5. Field methods for measuring concentrated flow erosion

    Science.gov (United States)

    Castillo, C.; Pérez, R.; James, M. R.; Quinton, J. N.; Taguas, E. V.; Gómez, J. A.

    2012-04-01

    Many studies have stressed the importance of gully erosion in the overall soil loss and sediment yield of agricultural catchments, for instance in recent years (Vandaele and Poesen, 1995; De Santisteban et al., 2006; Wu el al, 2008). Several techniques have been used for determining gully erosion in field studies. The conventional techniques involved the use of different devices (i.e. ruler, pole, tape, micro-topographic profilers, total station) to calculate rill and gully volumes through the determination of cross sectional areas and length of reaches (Casalí et al, 1999; Hessel and van Asch, 2003). Optical devices (i.e. laser profilemeters) have also been designed for the purpose of rapid and detailed assessment of cross sectional areas in gully networks (Giménez et al., 2009). These conventional 2d methods provide a simple and un-expensive approach for erosion evaluation, but are time consuming to carry out if a good accuracy is required. On the other hand, remote sensing techniques are being increasingly applied to gully erosion investigation such as aerial photography used for big-scale, long-term, investigations (e.g. Martínez-Casasnovas et al., 2004; Ionita, 2006), airborne and terrestrial LiDAR datasets for gully volume evaluation (James et al., 2007; Evans and Lindsay, 2010) and recently, major advances in 3D photo-reconstruction techniques (Welty et al. 2010, James et al., 2011). Despite its interest, few studies simultaneously compare the accuracies of the range of conventional and remote sensing techniques used, or define the most suitable method for a particular scale, given and time and cost constraints. That was the reason behind the International Workshop Innovations in the evaluation and measurement of rill and gully erosion, held in Cordoba in May 2011 and from which derive part of the materials presented in this abstract. The main aim of this work was to compare the accuracy and time requirements of traditional (2D) and recently developed

  6. Magnetization transfer prepared gradient echo MRI for CEST imaging.

    Directory of Open Access Journals (Sweden)

    Zhuozhi Dai

    Full Text Available Chemical exchange saturation transfer (CEST is an emerging MRI contrast mechanism that is capable of noninvasively imaging dilute CEST agents and local properties such as pH and temperature, augmenting the routine MRI methods. However, the routine CEST MRI includes a long RF saturation pulse followed by fast image readout, which is associated with high specific absorption rate and limited spatial resolution. In addition, echo planar imaging (EPI-based fast image readout is prone to image distortion, particularly severe at high field. To address these limitations, we evaluated magnetization transfer (MT prepared gradient echo (GRE MRI for CEST imaging. We proved the feasibility using numerical simulations and experiments in vitro and in vivo. Then we optimized the sequence by serially evaluating the effects of the number of saturation steps, MT saturation power (B1, GRE readout flip angle (FA, and repetition time (TR upon the CEST MRI, and further demonstrated the endogenous amide proton CEST imaging in rats brains (n = 5 that underwent permanent middle cerebral artery occlusion. The CEST images can identify ischemic lesions in the first 3 hours after occlusion. In summary, our study demonstrated that the readily available MT-prepared GRE MRI, if optimized, is CEST-sensitive and remains promising for translational CEST imaging.

  7. Classification of Underwater Target Echoes Based on Auditory Perception Characteristics

    Institute of Scientific and Technical Information of China (English)

    Xiukun Li; Xiangxia Meng; Hang Liu; Mingye Liu

    2014-01-01

    In underwater target detection, the bottom reverberation has some of the same properties as the target echo, which has a great impact on the performance. It is essential to study the difference between target echo and reverberation. In this paper, based on the unique advantage of human listening ability on objects distinction, the Gammatone filter is taken as the auditory model. In addition, time-frequency perception features and auditory spectral features are extracted for active sonar target echo and bottom reverberation separation. The features of the experimental data have good concentration characteristics in the same class and have a large amount of differences between different classes, which shows that this method can effectively distinguish between the target echo and reverberation.

  8. High resolution, large dynamic range field map estimation

    Science.gov (United States)

    Dagher, Joseph; Reese, Timothy; Bilgin, Ali

    2013-01-01

    Purpose We present a theory and a corresponding method to compute high resolution field maps over a large dynamic range. Theory and Methods We derive a closed-form expression for the error in the field map value when computed from two echoes. We formulate an optimization problem to choose three echo times which result in a pair of maximally distinct error distributions. We use standard field mapping sequences at the prescribed echo times. We then design a corresponding estimation algorithm which takes advantage of the optimized echo times to disambiguate the field offset value. Results We validate our method using high resolution images of a phantom at 7T. The resulting field maps demonstrate robust mapping over both a large dynamic range, and in low SNR regions. We also present high resolution offset maps in vivo using both, GRE and MEGE sequences. Even though the proposed echo time spacings are larger than the well known phase aliasing cutoff, the resulting field maps exhibit a large dynamic range without the use of phase unwrapping or spatial regularization techniques. Conclusion We demonstrate a novel 3-echo field map estimation method which overcomes the traditional noise-dynamic range trade-off. PMID:23401245

  9. Multiple photon-echo rephasing of coherent matter waves

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Ruizhi; Yue, Xuguang; Xu, Xia; Lu, Haichang; Zhou, Xiaoji, E-mail: xjzhou@pku.edu.cn

    2015-03-20

    We investigate the multiple photon echo processes in a Bose–Einstein condensate (BEC) with inhomogeneous momentum broadening. By applying Bragg pulses with adjusted frequency mismatch to induce multiple rephasing, the BEC satisfies the coherence condition for successive superradiance. The atomic system can be efficiently transferred to a high momentum state step by step and emits multiple photon echo signals. These echo signals as a sequence show increasing widths and descending peaks, reflecting a residual dephasing effect due to kinetic-energy phase discrepancy during the population inversions. Our work may contribute to the coherence maintenance for ultracold atomic gas in the quantum information area and the high-precision measurement of atomic momentum width. - Highlights: • A multipulse protocol to induce multiple photon echo rephasing of a BEC is proposed. • Our method is a new and efficient way to transfer the BEC to high momentum modes. • Our method can extend a BEC's coherence time. • The echo sequence is analyzed to study the residual dephasing effect. • The echo decaying is useful in high-precision measurement of BEC's momentum width.

  10. Efficient Calculation of Near Fields in the FDTD Method

    DEFF Research Database (Denmark)

    Franek, Ondrej

    2011-01-01

    When calculating frequency-domain near fields by the FDTD method, almost 50 % reduction in memory and CPU operations can be achieved if only E-fields are stored during the main time-stepping loop and H-fields computed later. An improved method of obtaining the H-fields from Faraday's Law...

  11. A comparison of multi-echo spin-echo and triple-echo steady-state T2 mapping for in vivo evaluation of articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Juras, Vladimir; Szomolanyi, Pavol [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Institute of Measurement Science, Department of Imaging Methods, Bratislava (Slovakia); Bohndorf, Klaus; Kronnerwetter, Claudia; Hager, Benedikt; Zbyn, Stefan [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Heule, Rahel; Bieri, Oliver [University of Basel Hospital, Division of Radiological Physics, Department of Radiology, Basel (Switzerland); Trattnig, Siegfried [Medical University of Vienna, High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna (Austria); Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna (Austria)

    2016-06-15

    To assess the clinical relevance of T{sub 2} relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T{sub 2}-mapping. Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T{sub 2} mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T{sub 2} values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. The mean quantitative T{sub 2} values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B{sub 1} and B{sub 0} changes. (orig.)

  12. Stellar Echo Imaging of Exoplanets

    Science.gov (United States)

    Mann, Chris; Lerch, Kieran; Lucente, Mark; Meza-Galvan, Jesus; Mitchell, Dan; Ruedin, Josh; Williams, Spencer; Zollars, Byron

    2016-01-01

    All stars exhibit intensity fluctuations over several timescales, from nanoseconds to years. These intensity fluctuations echo off bodies and structures in the star system. We posit that it is possible to take advantage of these echoes to detect, and possibly image, Earth-scale exoplanets. Unlike direct imaging techniques, temporal measurements do not require fringe tracking, maintaining an optically-perfect baseline, or utilizing ultra-contrast coronagraphs. Unlike transit or radial velocity techniques, stellar echo detection is not constrained to any specific orbital inclination. Current results suggest that existing and emerging technology can already enable stellar echo techniques at flare stars, such as Proxima Centauri, including detection, spectroscopic interrogation, and possibly even continent-level imaging of exoplanets in a variety of orbits. Detection of Earth-like planets around Sun-like stars appears to be extremely challenging, but cannot be fully quantified without additional data on micro- and millisecond-scale intensity fluctuations of the Sun. We consider survey missions in the mold of Kepler and place preliminary constraints on the feasibility of producing 3D tomographic maps of other structures in star systems, such as accretion disks. In this report we discuss the theory, limitations, models, and future opportunities for stellar echo imaging.

  13. GESTATIONAL ECHO BIOMETRY IN BRACHYCEPHALIC PREGNANT BITCHES

    Directory of Open Access Journals (Sweden)

    Marcus Antônio Rossi Feliciano

    2015-07-01

    Full Text Available Ultrasonography is an accurate pregnancy diagnostic method, besides being completely innocuous for female and fetuses evaluation. The objective of this paper was to determine the reference values for gestational echo biometry of different breeds of bitches. A total of 25 multiparous females were included in the experiment, five English Bulldog bitches, five Pugs and 15 Shih Tzu, weighing 4-25 kg and aged 4-6 years. The echo biometric assessments were performed during the 2nd, 5th, 6th, 7th and 8th weeks of pregnancy, including gestational vesicle diameter, femur length, placenta thickness, parietal diameter, liver, heart and abdominal diameter and area. Early echo biometric study started at the second week of gestation. Measurements like fetal heart and liver diameter and area are still poorly studied, but can provide useful information for early detection of congenital anomalies that may reduce the viability of pregnancy. The significant results (P < 0.001 obtained for biometrics (P < 0.001 of the parietal (r2 = 81% and abdominal diameter (r2 = 86%, abdominal area (r2 = 80%, femur length (r2 = 84%, cardiac length (r2 = 79%, width (r2 = 79%, area (r2 = 82% and volume (r2 = 72% and liver area (r2 = 71% in brachycephalic conceptus may help to assess the development of fetuses, complementing the conventional gestational ultrasound of bitches and become a model for the study in other breeds of dogs and alternative animal species.

  14. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  15. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  16. Identification of pulse echo impulse responses for multi source transmission

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2004-01-01

    transmitter and receiver pair, using a least squares estimator. The decoding is done instantaneously, making information from several transmitters available after only one transmission. This limits the influence of motion artifacts both in the decoding step and when the STA focusing scheme is applied...... is a mixture of the information corresponding to several transmitters. There is, thus, no direct way of determining which information corresponds to which transmitter, preventing proper focusing. In this paper we decode the received signal by estimating the pulse echo impulse responses between every....... The method is evaluated using the simulation tool Field II. Three point spread functions are simulated where axial movement of 1 m/s is present. The axial resolution for the moving scatterer is 0.249 mm (-3dB) and 0.291 mm (-6dB), which is compared to a standard STA transmission scheme with sequential...

  17. Fluid echoes in a pure electron plasma.

    Science.gov (United States)

    Yu, J H; O'Neil, T M; Driscoll, C F

    2005-01-21

    Experimental observations of diocotron wave echoes on a magnetized electron column are reported, representing Kelvin wave echoes on a rotating near-ideal fluid. The echoes occur by reversal of an inviscid wave damping process, and the phase-space mixing and unmixing are directly imaged. The basic echo characteristics agree with a simple nonlinear ballistic theory. At late times, the echo is degraded, and the maximal observed echo times agree with a theory of electron-electron collisions acting on separately evolving velocity classes.

  18. Power-Budget Equations and Calibration Factors for Fish Abundance Estimation Using Scientific Echo Sounder and Sonar Systems

    Directory of Open Access Journals (Sweden)

    Per Lunde

    2016-07-01

    Full Text Available Acoustic methods used in fish abundance estimation constitute a key part of the analytic assessment that makes the basis for abundance estimation of marine resources. The methods rely on power-budget equations and calibrated systems. Different formulations of power-budget equations and calibration factors have been proposed for use in scientific echo sounder and sonar systems. There are unresolved questions and apparent inconsistencies in prior literature related to this field. A generic (instrument independent and unifying theory is presented that attempts to explain the different power-budget and calibration factor formulations proposed and used in prior literature, and how these are mutually related. Deviations and apparent inconsistencies in this literature appear to be explained and corrected. This also includes different (instrument specific formulations employed in important modern scientific echo sounder systems, and their relationship to the generic theory of abundance estimation. Prior literature is extended to provide more complete power-budget equations for fish abundance estimation and species identification, by accounting for echo integration, electrical termination, and the full range of electrical and acoustical echo sounder parameters. The expressions provide a consistent theoretical basis for improved understanding of conventional methods and instruments used today, also enabling improved sensitivity and error analyses, and correction possibilities.

  19. Simple approximation method for determining field factors and tissue-peap ratios of irregularly shaped fields

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Fujio; Kumagai, Kozo; Iseri, Takumi; Kawano, Tsutomu (National Hospital of Kumamoto (Japan))

    1991-04-01

    Dose calculation of irregularly shaped fields can be made by the Clarkson technique, which however requires considerable time and is thus not practical. We investigated a simple approximation method for determining field factors (F{sub A}) and tissue-peak ratios (TPRs) for irregularly shaped fields. By this method, we approximated scatter dose by the ratio of area for an irregularly shaped field to that for the overall field (without blocking). Maximum error of equivalent square fields as determined by this method for irregularly shaped fields was -1.3% for field factors, +2.1% for TPRs and +1.4% for the F{sub A} x TPRs. (author).

  20. Dynamic rayed aurora and enhanced ion-acoustic radar echoes

    Directory of Open Access Journals (Sweden)

    E. M. Blixt

    2005-01-01

    Full Text Available The generation mechanism for naturally enhanced ion-acoustic echoes is still debated. One important issue is how these enhancements are related to auroral activity. All events of enhanced ion-acoustic echoes observed simultaneously with the EISCAT Svalbard Radar (ESR and with high-resolution narrow field-of-view auroral imagers have been collected and studied. Characteristic of all the events is the appearance of very dynamic rayed aurora, and some of the intrinsic features of these auroral displays are identified. Several of these identified features are directly related to the presence of low energy (10-100eV precipitating electrons in addition to the higher energy population producing most of the associated light. The low energy contribution is vital for the formation of the enhanced ion-acoustic echoes. We argue that this type of aurora is sufficient for the generation of naturally enhanced ion-acoustic echoes. In one event two imagers were used to observe the auroral rays simultaneously, one from the radar site and one 7km away. The data from these imagers shows that the auroral rays and the strong backscattering filaments (where the enhanced echoes are produced are located on the same field line, which is in contrast to earlier statements in the litterature that they should be separated.

  1. All-Electromagnetic Control of Broadband Quantum Excitations using Gradient Photon Echoes

    CERN Document Server

    Liao, Wen-Te; Pálffy, Adriana

    2014-01-01

    A broadband quantum echo effect in a three level $\\varLambda$-type system interacting with two laser fields is investigated theoretically. Inspired by the emerging field of nuclear quantum optics which typically deals with very narrow resonances, we consider broadband probe pulses that couple to the system in the presence of an inhomogeneous control field. We show that such a setup provides an all-electromagnetic-field solution to implement high bandwidth photon echoes, which are easy to control, store and shape on a short time scale and therefore may speed up future photonic information processing. The time compression of the echo signal and possible applications for quantum memories are discussed.

  2. Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals.

    Science.gov (United States)

    Kundu, Prantik; Voon, Valerie; Balchandani, Priti; Lombardo, Michael V; Poser, Benedikt A; Bandettini, Peter A

    2017-07-01

    In recent years the field of fMRI research has enjoyed expanded technical abilities related to resolution, as well as use across many fields of brain research. At the same time, the field has also dealt with uncertainty related to many known and unknown effects of artifact in fMRI data. In this review we discuss an emerging fMRI technology, called multi-echo (ME)-fMRI, which focuses on improving the fidelity and interpretability of fMRI. Where the essential problem of standard single-echo fMRI is the indeterminacy of sources of signals, whether BOLD or artifact, this is not the case for ME-fMRI. By acquiring multiple echo images per slice, the ME approach allows T2* decay to be modeled at every voxel at every time point. Since BOLD signals arise by changes in T2* over time, an fMRI experiment sampling the T2* signal decay can be analyzed to distinguish BOLD from artifact signal constituents. While the ME approach has a long history of use in theoretical and validation studies, modern MRI systems enable whole-brain multi-echo fMRI at high resolution. This review covers recent multi-echo fMRI acquisition methods, and the analysis steps for this data to make fMRI at once more principled, straightforward, and powerful. After a brief overview of history and theory, T2* modeling and applications will be discussed. These applications include T2* mapping and combining echoes from ME data to increase BOLD contrast and mitigate dropout artifacts. Next, the modeling of fMRI signal changes to detect signal origins in BOLD-related T2* versus artifact-related S0 changes will be reviewed. A focus is on the use of ME-fMRI data to extract and classify components from spatial ICA, called multi-echo ICA (ME-ICA). After describing how ME-fMRI and ME-ICA lead to a general model for analysis of fMRI signals, applications in animal and human imaging will be discussed. Applications include removing motion artifacts in resting state data at subject and group level. New imaging methods such

  3. Manifestation of the geometric phase in neutron spin-echo experiments

    NARCIS (Netherlands)

    Kraan, W.H.; Grigoriev, S.V.; Rekveldt, M.T.

    2010-01-01

    We show how the geometric (Berry’s) phase becomes manifest on adiabatic rotation of the polarization vector in the magnetic field configuration in the arms in a neutron spin echo (NSE) experiment.When the neutron beam used is monochromatic, a geometric phase collected in one spin-echo arm can be exa

  4. Wide-field TCSPC: methods and applications

    Science.gov (United States)

    Hirvonen, Liisa M.; Suhling, Klaus

    2017-01-01

    Time-correlated single photon counting (TCSPC) is a widely used, robust and mature technique to measure the photon arrival time in applications such as fluorescence spectroscopy and microscopy, LIDAR and optical tomography. In the past few years there have been significant developments with wide-field TCSPC detectors, which can record the position as well as the arrival time of the photon simultaneously. In this review, we summarise different approaches used in wide-field TCSPC detection, and discuss their merits for different applications, with emphasis on fluorescence lifetime imaging.

  5. Displacement fields denoising and strains extraction by finite element method

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are preferred.To extract strain fields from noisy displacement fields is always a challenging topic.In this study,a finite element method for smoothing displacement fields and calculating strain fields is proposed.An experimental test case on a holed aluminum specimen under tension is applied to vali...

  6. Dance of the Light Echoes

    Science.gov (United States)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger poster version This composite image from NASA's Spitzer Space Telescope shows the remnant of a star that exploded, called Cassiopeia A (center) and its surrounding 'light echoes' -- dances of light through dusty clouds, created when stars blast apart. The light echoes are colored and the surrounding clouds of dust are gray. In figure 1, dramatic changes are highlighted in phenomena referred to as light echoes (colored areas) around the Cassiopeia A supernova remnant (center). Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. A light echo occurs when a star explodes, acting like a cosmic flashbulb. The light from this explosion zips through nearby dust clumps, illuminating and heating them up slightly. This brief period of warming causes them to glow in infrared, like a chain of Christmas bulbs lighting up one by one. The result is an optical illusion, in which the dust appears to be flying outward at the speed of light. In figure 1, this apparent motion can be seen here by the shift in colored dust clumps Cassiopeia A is the remnant of a once massive star that died in a violent supernova explosion. It consists of a dead star, called a neutron star, and a surrounding shell of material that was blasted off as the star died. This remnant is located 11,000 light-years away in the northern constellation Cassiopeia. This composite consists of six processed images taken over a time span of three years. Dust features that have not changed over time appear gray, while those that have changed are colored blue or orange. Bluer colors represent an earlier time and redder ones, a later time. The progression of the light echo through the dust can be seen here by the shift in colored dust clumps. This light echo is the largest ever seen

  7. Reduced field-of -view diffusion-weighted magnetic resonance imaging of the pancreas: Comparison with conventional single-shot echo-planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jin; Lee, Jeong Min; Yoon, Jeong Hee; Jang, Jin Young; Kim, Sun Whe; Ryu, Ji Kon; Han, Joon Koo; Choi, Byung Ihn [Seoul National University Hospital, Seoul (Korea, Republic of); Kannengiesser, Stephan [Siemens Healthcare, Erlangen (Germany)

    2015-12-15

    To investigate the image quality (IQ) and apparent diffusion coefficient (ADC) of reduced field-of-view (FOV) diffusion-weighted imaging (DWI) of pancreas in comparison with full FOV DWI. In this retrospective study, 2 readers independently performed qualitative analysis of full FOV DWI (FOV, 38 × 38 cm; b-value, 0 and 500 s/mm{sup 2}) and reduced FOV DWI (FOV, 28 × 8.5 cm; b-value, 0 and 400 s/mm{sup 2}). Both procedures were conducted with a two-dimensional spatially selective radiofrequency excitation pulse, in 102 patients with benign or malignant pancreatic diseases (mean size, 27.5 ± 14.4 mm). The study parameters included 1) anatomic structure visualization, 2) lesion conspicuity, 3) artifacts, 4) IQ score, and 5) subjective clinical utility for confirming or excluding initially considered differential diagnosis on conventional imaging. Another reader performed quantitative ADC measurements of focal pancreatic lesions and parenchyma. Wilcoxon signed-rank test was used to compare qualitative scores and ADCs between DWI sequences. Mann Whitney U-test was used to compare ADCs between the lesions and parenchyma. On qualitative analysis, reduced FOV DWI showed better anatomic structure visualization (2.76 ± 0.79 at b = 0 s/mm{sup 2} and 2.81 ± 0.64 at b = 400 s/mm{sup 2}), lesion conspicuity (3.11 ± 0.99 at b = 0 s/mm{sup 2} and 3.15 ± 0.79 at b = 400 s/mm{sup 2}), IQ score (8.51 ± 2.05 at b = 0 s/mm{sup 2} and 8.79 ± 1.60 at b = 400 s/mm{sup 2}), and higher clinical utility (3.41 ± 0.64), as compared to full FOV DWI (anatomic structure, 2.18 ± 0.59 at b = 0 s/mm{sup 2} and 2.56 ± 0.47 at b = 500 s/mm{sup 2}; lesion conspicuity, 2.55 ± 1.07 at b = 0 s/mm{sup 2} and 2.89 ± 0.86 at b = 500 s/mm{sup 2}; IQ score, 7.13 ± 1.83 at b = 0 s/mm{sup 2} and 8.17 ± 1.31 at b = 500 s/mm{sup 2}; clinical utility, 3.14 ± 0.70) (p < 0.05). Artifacts were significantly improved on reduced FOV DWI (2.65 ± 0.68) at b = 0 s/mm{sup 2} (full FOV DWI, 2.41 ± 0.63) (p

  8. The Diagonal Compression Field Method using Circular Fans

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2005-01-01

    This paper presents a new design method, which is a modification of the diagonal compression field method, the modification consisting of the introduction of circular fan stress fields. The traditional method does not allow changes of the concrete compression direction throughout a given beam...... fields may be used whenever changes in the concrete compression direction are desired. To illustrate the new design method, a specific example of a prestressed concrete beam is calculated....

  9. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases with the stren...... cortex. Finally, an extension of the model to describe an orientation hypercolumn provides understanding of how cortical interactions sharpen orientation tuning, in a way that is consistent with observed firing statistics...

  10. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  11. An Adaptive Objective Function for Evaporation Duct Estimations from Radar Sea Echo

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Peng; WU Zhen-Sen; WANG Bo

    2011-01-01

    In the process of atmospheric refractivity estimation from radar sea echo, the objective function that calculates the match between the predicted and observed field plays an important role. To reduce the effect of noises from long ranges on the objective function, we present a selection method of final ranges for inversion. An adaptive objective function is introduced with a linear distance weight added to the least squares error function(LSEF).Through an evaporation duct height(EDH) retrieving process, the performance of the adaptive objective function is evaluated. The result illustrates that the present method performs better than the LSEF in EDH inversions from clutters with different clutter-to-noise ratios.

  12. Quantum memory in an orthogonal geometry of silenced echo retrieval

    Science.gov (United States)

    Gerasimov, K. I.; Minnegaliev, M. M.; Moiseev, S. A.; Urmancheev, R. V.; Chanelière, T.; Louchet-Chauvet, A.

    2017-08-01

    We experimentally realize a quantum-memory protocol based on retrieval of silenced echo (ROSE) in Tm3+:Y3Al5O12 crystal in an orthogonal geometry of the signal and control light fields. The silenced echo signal revival efficiency of 13% with 36 μs storage time is demonstrated. To achieve that we implemented a high-precision atomic coherence control via amplitude- and phase-modulated laser pulses. We also discuss capabilities of this configuration, ways to increase quantum efficiency and to combine it with a single-mode optical cavity.

  13. Research on adaptive acoustic echo cancellation algorithm in digital hearing aids

    Science.gov (United States)

    Ma, Min; Wang, Mingjiang; Hu, Jiebin

    2017-08-01

    At present, the study of acoustic echo cancellation (AEC) is mainly based on the adaptive acoustic echo cancellation algorithm. It is proved that the echo signal of the near-end microphone must be compensated by the time delay to achieve the purpose of echo cancellation, and the accuracy of the delay estimation affecting the final effect of echo cancellation. This paper proposes a combination of the normalized minimum mean square algorithm (NLMS) and the time delay estimation model to solve the echo problem in hearing aids. In this paper, using generalized cross correlation (GCC) to estimate time delay. In addition, using the energy, Teager-Kaiser Energy Operator (TKEO) and the signal correlation coefficient as the threshold value to detect the howling signal in digital hearing aids. Finally, the simulation and experimental results are given. The experiment proves that the method has good effect.

  14. LEGUS Discovery of a Light Echo Around Supernova 2012aw

    NARCIS (Netherlands)

    Van Dyk, S.D.; Lee, J.C.; Anderson, J.; Andrews, J.E.; Calzetti, D.; Bright, S.N.; Ubeda, L.; Smith, L.J.; Sabbi, E.; Grebel, E.K.; Herrero, A.; de Mink, S.E.

    2015-01-01

    We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on board the Hubble Space Telescope by the Legacy ExtraGalactic

  15. RESPECT: Neutron Resonance Spin-Echo Spectrometer for Extreme Studies

    CERN Document Server

    Georgii, Robert; Pfleiderer, Christian; Böni, Peter

    2016-01-01

    We propose the design of a Resonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 microsecond can be reached if the divergence and the correction elemen...

  16. Mean field methods for cortical network dynamics

    DEFF Research Database (Denmark)

    Hertz, J.; Lerchner, Alexander; Ahmadi, M.

    2004-01-01

    We review the use of mean field theory for describing the dynamics of dense, randomly connected cortical circuits. For a simple network of excitatory and inhibitory leaky integrate- and-fire neurons, we can show how the firing irregularity, as measured by the Fano factor, increases...... with the strength of the synapses in the network and with the value to which the membrane potential is reset after a spike. Generalizing the model to include conductance-based synapses gives insight into the connection between the firing statistics and the high- conductance state observed experimentally in visual...

  17. Dispersion Method Using Focused Ultrasonic Field

    Science.gov (United States)

    Kim, Jungsoon; Kim, Moojoon; Ha, Kanglyel; Chu, Minchul

    2010-07-01

    The dispersion of powders into liquids has become one of the most important techniques in high-tech industries and it is a common process in the formulation of various products, such as paint, ink, shampoo, beverages, and polishing media. In this study, an ultrasonic system with a cylindrical transducer is newly introduced for pure nanoparticle dispersion. The acoustics pressure field and the characteristics of the shock pulse caused by cavitation are investigated. The frequency spectrum of the pulse from the collapse of air bubbles in the cavitation is analyzed theoretically. It was confirmed that a TiO2 water suspension can be dispersed effectively using the suggested system.

  18. Efficient Fast Stereo Acoustic Echo Cancellation Based on Pairwise Optimal Weight Realization Technique

    Directory of Open Access Journals (Sweden)

    Yukawa Masahiro

    2006-01-01

    Full Text Available In stereophonic acoustic echo cancellation (SAEC problem, fast and accurate tracking of echo path is strongly required for stable echo cancellation. In this paper, we propose a class of efficient fast SAEC schemes with linear computational complexity (with respect to filter length. The proposed schemes are based on pairwise optimal weight realization (POWER technique, thus realizing a "best" strategy (in the sense of pairwise and worst-case optimization to use multiple-state information obtained by preprocessing. Numerical examples demonstrate that the proposed schemes significantly improve the convergence behavior compared with conventional methods in terms of system mismatch as well as echo return loss enhancement (ERLE.

  19. Investigating the Group-Level Impact of Advanced Dual-Echo fMRI Combinations

    Directory of Open Access Journals (Sweden)

    Adam Kettinger

    2016-12-01

    Full Text Available Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate how these advance echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1 simple arithmetic averaging, (2 BOLD sensitivity weighting, (3 temporal-signal-to-noise ratio weighting and (4 temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e. group-level t-values compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned.

  20. Nuclear quadrupole resonance echoes from hexamethylenetetramine.

    Science.gov (United States)

    Ota, Go; Itozaki, Hideo

    2006-10-01

    We investigated the echo phenomenon of nuclear quadrupole resonance (NQR) from hexamethylenetetramine (HMT). We detected the pure NQR echo signal of HMT with a short pulse interval. The intensity of the echo signal increased as the pulse interval time was decreased. We observed that a clean echo signal was generated even when the pulse interval was shorter than the decay time constant T(2)(*). Since the short interval time gives a strong echo, our result insists that shorter interval time is preferred for the NQR detection.

  1. Theory of electron spin echoes in solids

    CERN Document Server

    Asadullina, N Y; Asadullin, Y Y

    2002-01-01

    We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published resul...

  2. Efficient Training Methods for Conditional Random Fields

    Science.gov (United States)

    2008-02-01

    Learning (ICML), 2007. [63] Bruce G. Lindsay. Composite likelihood methods. Contemporary Mathematics, pages 221–239, 1988. 189 [64] Yan Liu, Jaime ...Conference on Machine Learning (ICML), pages 737–744, 2005. [107] Erik F. Tjong Kim Sang and Sabine Buchholz. Introduction to the CoNLL-2000 shared task

  3. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance.

    Science.gov (United States)

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller--advanced fuzzy potential field method (AFPFM)--that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot.

  4. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    Science.gov (United States)

    Park, Jong-Wook; Kwak, Hwan-Joo; Kang, Young-Chang; Kim, Dong W.

    2016-01-01

    An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM)—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot. PMID:27123001

  5. Advanced Fuzzy Potential Field Method for Mobile Robot Obstacle Avoidance

    Directory of Open Access Journals (Sweden)

    Jong-Wook Park

    2016-01-01

    Full Text Available An advanced fuzzy potential field method for mobile robot obstacle avoidance is proposed. The potential field method primarily deals with the repulsive forces surrounding obstacles, while fuzzy control logic focuses on fuzzy rules that handle linguistic variables and describe the knowledge of experts. The design of a fuzzy controller—advanced fuzzy potential field method (AFPFM—that models and enhances the conventional potential field method is proposed and discussed. This study also examines the rule-explosion problem of conventional fuzzy logic and assesses the performance of our proposed AFPFM through simulations carried out using a mobile robot.

  6. Light Echoes of Transients and Variables

    Science.gov (United States)

    Rest, Armin

    2012-04-01

    abstract-type="normal">SummaryTycho Brahe's observations of a supernova in 1572 challenged the contemporaneous European view of the cosmos that the celestial realm was unchanging. 439 years later we have once again seen the light that Tycho saw, as some of the light from the 1572 supernova is reflected off dust and is only now reaching Earth. These light echoes, as well as ones detected from other transients and variables, give us a very rare opportunity in astronomy: direct observation of the cause (the supernova explosion) and the effect (the supernova remnant) of the same astronomical event. Furthermore, in some cases we can compare light echoes at different angles around a supernova remnant, and thus investigate possible asymmetry in the supernova explosion. In addition, in cases where the scattering dust is favorably positioned, the geometric distance to the SN remnant can be determined using polarization measurements. These techniques have been successfully applied to various transients in the last decade, and the talk gave an overview of the scientific results and techniques, with a particular focus on the challenges we will face in the current and upcoming wide-field time-domain surveys.

  7. Molecular echoes in space and time

    CERN Document Server

    Lin, Kang; Ma, Junyang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Zeng, Heping; Wu, Jian; Karras, Gabriel; Siour, Guillaume; Hartmann, Jean-Michel; Faucher, Olivier; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    Mountain echoes are a well-known phenomenon, where an impulse excitation is mirrored by the rocks to generate a replica of the original stimulus, often with reverberating recurrences. For spin echoes in magnetic resonance and photon echoes in atomic and molecular systems the role of the mirror is played by a second, time delayed pulse which is able to reverse the ow of time and recreate the original event. Recently, laser-induced rotational alignment and orientation echoes were introduced for molecular gases, and discussed in terms of rotational-phase-space filamentation. Here we present, for the first time, a direct spatiotemporal analysis of various molecular alignment echoes by means of coincidence Coulomb explosion imaging. We observe hitherto unreported spatially rotated echoes, that depend on the polarization direction of the pump pulses, and find surprising imaginary echoes at negative times.

  8. Fast Echo Canceller in IP Telephony Gateway

    Institute of Scientific and Technical Information of China (English)

    黄永峰; 李星

    2003-01-01

    The length of the echo path in the IP telephony system is very long. Generally, the echo canceller is implemented on the IP telephony gateway which needs to perform concurrently multi-channel echo cancellation and voice compression. Hence, the most key technique to design the echo canceller is to reduce greatly the computational requirement. For this reason a number of innovative features to implement a fast echo canceller are presented. The key components of this canceller include: the separation of adaptive and cancel filters, non-real-time adaptation and real-time cancellation, sharing VAD algorithms with the speech codec, the incorporation of delay indexing with zero coefficients, and windowing the adaptive filter coefficients to reduce the cost of DSP during the cancellation. Finally, the performance of the echo canceller is summarized; the results of evaluation show that the performance gains for echo cancellation are significant.

  9. Longitudinal collective echoes in coasting particle beams

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Khateeb

    2003-01-01

    Full Text Available Longitudinal ballistic and collective beam echoes with diffusion effects are investigated theoretically. In the presence of the space-charge impedance, the collective echo amplitude is obtained as a closed form expression. In contrast to the ballistic case, the collective echo amplitude consists of one maximum at time t_{echo}. The echo amplitude grows up and damps down with a rate proportional to the Landau damping rate of space-charge waves. The effect of weak diffusion is found to modify the ballistic and the collective echo amplitudes in the same manner. This effect of diffusion was confirmed using a “noiseless,” grid-based simulation code. As a first application the amount of numerical diffusion in our simulation code was determined using the echo effect.

  10. Correction of phase errors in quantitative water-fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence.

    Science.gov (United States)

    Ruschke, Stefan; Eggers, Holger; Kooijman, Hendrik; Diefenbach, Maximilian N; Baum, Thomas; Haase, Axel; Rummeny, Ernst J; Hu, Houchun H; Karampinos, Dimitrios C

    2017-09-01

    To propose a phase error correction scheme for monopolar time-interleaved multi-echo gradient echo water-fat imaging that allows accurate and robust complex-based quantification of the proton density fat fraction (PDFF). A three-step phase correction scheme is proposed to address a) a phase term induced by echo misalignments that can be measured with a reference scan using reversed readout polarity, b) a phase term induced by the concomitant gradient field that can be predicted from the gradient waveforms, and c) a phase offset between time-interleaved echo trains. Simulations were carried out to characterize the concomitant gradient field-induced PDFF bias and the performance estimating the phase offset between time-interleaved echo trains. Phantom experiments and in vivo liver and thigh imaging were performed to study the relevance of each of the three phase correction steps on PDFF accuracy and robustness. The simulation, phantom, and in vivo results showed in agreement with the theory an echo time-dependent PDFF bias introduced by the three phase error sources. The proposed phase correction scheme was found to provide accurate PDFF estimation independent of the employed echo time combination. Complex-based time-interleaved water-fat imaging was found to give accurate and robust PDFF measurements after applying the proposed phase error correction scheme. Magn Reson Med 78:984-996, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Theory of quantum Loschmidt echoes

    CERN Document Server

    Prosen, T; Znidaric, M; Prosen, Tomaz; Seligman, Thomas H.; Znidaric, Marko

    2003-01-01

    In this paper we review our recent work on the theoretical approach to quantum Loschmidt echoes, i.e. various properties of the so called echo dynamics -- the composition of forward and backward time evolutions generated by two slightly different Hamiltonians, such as the state autocorrelation function (fidelity) and the purity of a reduced density matrix traced over a subsystem (purity fidelity). Our main theoretical result is a linear response formalism, expressing the fidelity and purity fidelity in terms of integrated time autocorrelation function of the generator of the perturbation. Surprisingly, this relation predicts that the decay of fidelity is the slower the faster the decay of correlations. In particular for a static (time-independent) perturbation, and for non-ergodic and non-mixing dynamics where asymptotic decay of correlations is absent, a qualitatively different and faster decay of fidelity is predicted on a time scale 1/delta as opposed to mixing dynamics where the fidelity is found to decay...

  12. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  13. Echo-Enabled Harmonic Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  14. Methods in Model Order Reduction (MOR) field

    Institute of Scientific and Technical Information of China (English)

    刘志超

    2014-01-01

    Nowadays, the modeling of systems may be quite large, even up to tens of thousands orders. In spite of the increasing computational powers, direct simulation of these large-scale systems may be impractical. Thus, to industry requirements, analytically tractable and computationally cheap models must be designed. This is the essence task of Model Order Reduction (MOR). This article describes the basics of MOR optimization, various way of designing MOR, and gives the conclusion about existing methods. In addition, it proposed some heuristic footpath.

  15. Examining the robustness of automated aural classification of active sonar echoes.

    Science.gov (United States)

    Murphy, Stefan M; Hines, Paul C

    2014-02-01

    Active sonar systems are used to detect underwater man-made objects of interest (targets) that are too quiet to be reliably detected with passive sonar. Performance of active sonar can be degraded by false alarms caused by echoes returned from geological seabed structures (clutter) in shallow regions. To reduce false alarms, a method of distinguishing target echoes from clutter echoes is required. Research has demonstrated that perceptual-based signal features similar to those employed in the human auditory system can be used to automatically discriminate between target and clutter echoes, thereby reducing the number of false alarms and improving sonar performance. An active sonar experiment on the Malta Plateau in the Mediterranean Sea was conducted during the Clutter07 sea trial and repeated during the Clutter09 sea trial. The dataset consists of more than 95,000 pulse-compressed echoes returned from two targets and many geological clutter objects. These echoes were processed using an automatic classifier that quantifies the timbre of each echo using a number of perceptual signal features. Using echoes from 2007, the aural classifier was trained to establish a boundary between targets and clutter in the feature space. Temporal robustness was then investigated by testing the classifier on echoes from the 2009 experiment.

  16. Test-field method for mean-field coefficients with MHD background

    CERN Document Server

    Rheinhardt, M

    2010-01-01

    Aims: The test-field method for computing turbulent transport coefficients from simulations of hydromagnetic flows is extended to the regime with a magnetohydrodynamic (MHD) background. Methods: A generalized set of test equations is derived using both the induction equation and a modified momentum equation. By employing an additional set of auxiliary equations, we derive linear equations describing the response of the system to a set of prescribed test fields. Purely magnetic and MHD backgrounds are emulated by applying an electromotive force in the induction equation analogously to the ponderomotive force in the momentum equation. Both forces are chosen to have Roberts flow-like geometry. Results: Examples with an MHD background are studied where the previously used quasi-kinematic test-field method breaks down. In cases with homogeneous mean fields it is shown that the generalized test-field method produces the same results as the imposed-field method, where the field-aligned component of the actual electr...

  17. Identification of heterogeneous elastic material characteristics by virtual fields method

    Science.gov (United States)

    Sato, Yuya; Arikawa, Shuichi; Yoneyama, Satoru

    2015-03-01

    In this study, a method for identifying the elastic material characteristics of a heterogeneous material from measured displacements is proposed. The virtual fields method is employed for determining the elastic material characteristics. The solid propellant is considered as heterogeneous materials for the test subject. An equation representing the distribution of the material properties of the solid propellant is obtained by Fick's law, and the distribution is applied to the virtual fields method. The effectiveness of the proposed method is demonstrated by applying to displacement fields obtained using finite element analysis. Results show that the heterogeneous material properties can be obtained by the proposed method.

  18. Independence of echo-threshold and echo-delay in the barn owl.

    Directory of Open Access Journals (Sweden)

    Brian S Nelson

    Full Text Available Despite their prevalence in nature, echoes are not perceived as events separate from the sounds arriving directly from an active source, until the echo's delay is long. We measured the head-saccades of barn owls and the responses of neurons in their auditory space-maps while presenting a long duration noise-burst and a simulated echo. Under this paradigm, there were two possible stimulus segments that could potentially signal the location of the echo. One was at the onset of the echo; the other, after the offset of the direct (leading sound, when only the echo was present. By lengthening the echo's duration, independently of its delay, spikes and saccades were evoked by the source of the echo even at delays that normally evoked saccades to only the direct source. An echo's location thus appears to be signaled by the neural response evoked after the offset of the direct sound.

  19. Modelling transoesophageal echo

    Directory of Open Access Journals (Sweden)

    Susan Wright

    2011-04-01

    Full Text Available Background: Achieving competence in transoesophageal echocardiography (TOE requires a clear understanding of cardiac anatomy as well as an ability to correlate two-dimensional (2D echocardiographic images with the three-dimensional (3D structures which they represent. Training in the technique is a long process, which may also be hampered by insufficient access to teaching in the clinical environment. These challenges would be met by a simulator which demonstrates detailed cardiac anatomy with a previously unavailable degree of accuracy. Methods: A TOE simulator system was created by collaboration with a wide range of clinical specialists and a post-production company skilled in the generation of computer graphics and special effects for the film industry. The core of the system is an animated, accurate and detailed virtual heart. Echocardiographic simulation was developed to provide a real-time display of ultrasound images alongside the 3D anatomical correlate of the imaging plane. Results: A freely interactive animated model of the heart was created as the basis for ultrasound simulation. Creation of a mannequin simulator which drives the software allowed reproduction of the practical experience of the TOE procedure. Conclusions: Partnership with groups with a wide diversity of skills can result in a simulator teaching tool of high fidelity.

  20. 29Si NMR spin-echo decay in YbRh2Si2

    Science.gov (United States)

    Kambe, S.; Sakai, H.; Tokunaga, Y.; Hattori, T.; Lapertot, G.; Matsuda, T. D.; Knebel, G.; Flouquet, J.; Walstedt, R. E.

    2016-02-01

    29Si nuclear magnetic resonance (NMR) has been measured in a 29Si-enriched single crystal sample of YbRh2Si2. The spin-echo decay for applied field H ∥, ⊥ the c-axes has been measured at 100 K. A clear spin-echo decay oscillation is observed for both cases, possibly reflecting the Ruderman-Kittel (RK) interaction. Since the observed oscillation frequency depends on the direction of applied magnetic field, anisotropic RK coupling and pseudo-dipolar (PD) interactions may not be negligible in this compound. The origin of spin-echo decay oscillations is discussed.

  1. Dependence of the time of the appearance of a Stark echo response on irreversible relaxation of a system

    Science.gov (United States)

    Akhmedshina, E. N.; Nefed'ev, L. A.; Garnaeva, G. I.

    2016-09-01

    The dependence of the time of the appearance of a Stark (gradient) echo response on the irreversible transverse relaxation time of a system in the nanosecond range and on the width of the excitation region of an inhomogeneously broadened line has been investigated. It has been shown that the use of nonresonant laser pulses with an artificially created spatial inhomogeneity makes it possible to determine the relaxation time in the nanosecond range from the time of the appearance of a Stark (gradient) echo response, which is a more accurate method than the method of determining the relaxation time from the decay of the intensity by varying time intervals of the exposure to inhomogeneous electromagnetic fields.

  2. Scaling up Echo-State Networks with multiple light scattering

    CERN Document Server

    Dong, Jonathan; Krzakala, Florent; Wainrib, Gilles

    2016-01-01

    Echo-State Networks and Reservoir Computing have been studied for more than a decade. As they provide an elegant yet powerful alternative to traditional computing, researchers have tried to implement them using physical systems, in particular non-linear optical elements, achieving high bandwidth and low power consumption. Here we present a completely different optical implementation of Echo-State Networks using light-scattering materials. As a proof of concept, binary networks have been successfully trained to perform non-linear operations on time series and memory of such networks has been evaluated. This new method is fast, power efficient and easily scalable to very large networks.

  3. Dual-rail optical gradient echo memory

    CERN Document Server

    Higginbottom, Daniel B; Campbell, Geoff T; Hosseini, Mahdi; Cao, Ming Tao; Sparkes, Ben M; Bernu, Julian; Robins, Nick P; Lam, Ping Koy; Buchler, Ben C

    2016-01-01

    We introduce a scheme for the parallel storage of frequency separated signals in an optical memory and demonstrate that this dual-rail storage is a suitable memory for high fidelity frequency qubits. The two signals are stored simultaneously in the Zeeman-split Raman absorption lines of a cold atom ensemble using gradient echo memory techniques. Analysis of the split-Zeeman storage shows that the memory can be configured to preserve the relative amplitude and phase of the frequency separated signals. In an experimental demonstration dual-frequency pulses are recalled with 35% efficiency, 82% interference fringe visibility, and 6 degrees phase stability. The fidelity of the frequency-qubit memory is limited by frequency-dependent polarisation rotation and ambient magnetic field fluctuations, our analysis describes how these can be addressed in an alternative configuration.

  4. A method for longitudinal relaxation time measurement in inhomogeneous fields

    Science.gov (United States)

    Chen, Hao; Cai, Shuhui; Chen, Zhong

    2017-08-01

    The spin-lattice relaxation time (T1) plays a crucial role in the study of spin dynamics, signal optimization and data quantification. However, the measurement of chemical shift-specific T1 constants is hampered by the magnetic field inhomogeneity due to poorly shimmed external magnetic fields or intrinsic magnetic susceptibility heterogeneity in samples. In this study, we present a new protocol to determine chemical shift-specific T1 constants in inhomogeneous fields. Based on intermolecular double-quantum coherences, the new method can resolve overlapped peaks in inhomogeneous fields. The measurement results are in consistent with the measurements in homogeneous fields using the conventional method. Since spatial encoding technique is involved, the experimental time for the new method is very close to that for the conventional method. With the aid of T1 knowledge, some concealed information can be exploited by T1 weighting experiments.

  5. Low Field Squid MRI Devices, Components and Methods

    Science.gov (United States)

    Penanen, Konstantin I. (Inventor); Eom, Byeong H. (Inventor); Hahn, Inseob (Inventor)

    2014-01-01

    Low field SQUID MRI devices, components and methods are disclosed. They include a portable low field (SQUID)-based MRI instrument and a portable low field SQUID-based MRI system to be operated under a bed where a subject is adapted to be located. Also disclosed is a method of distributing wires on an image encoding coil system adapted to be used with an NMR or MRI device for analyzing a sample or subject and a second order superconducting gradiometer adapted to be used with a low field SQUID-based MRI device as a sensing component for an MRI signal related to a subject or sample.

  6. The Virtual Fields Method Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements

    CERN Document Server

    Pierron, Fabrice

    2012-01-01

    The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first book on the Virtual Fields Method (VFM), a technique to identify materials mechanical properties from full-field measurements. Firmly rooted with extensive theoretical description of the method, the book presents numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials) and situations (static, vibration, high strain rate). The authors give a detailed training section with examples of progressive difficulty to lead the reader to program the VFM and include a set of commented Matlab programs as well as GUI Matlab-based software for more general situations. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is an ideal book for researchers, engineers, and students interested in applying the VFM to new situations motivated by their research.  

  7. Is Echo a complex adaptive system?

    Science.gov (United States)

    Smith, R M; Bedau, M A

    2000-01-01

    We evaluate whether John Holland's Echo model exemplifies his theory of complex adaptive systems. After reviewing Holland's theory of complex adaptive systems and describing his Escho model, we describe and explain the characteristic evolutionary behavior observed in a series of Echo model runs. We conclude that Echo lacks the diversity of hierarchically organized aggregates that typify complex adaptive systems, and we explore possible explanations for this failure.

  8. Analysis of tissue changes, measurement system effects, and motion artifacts in echo decorrelation imaging.

    Science.gov (United States)

    Hooi, Fong Ming; Nagle, Anna; Subramanian, Swetha; Douglas Mast, T

    2015-02-01

    Echo decorrelation imaging, a method for mapping ablation-induced ultrasound echo changes, is analyzed. Local echo decorrelation is shown to approximate the decoherence spectrum of tissue reflectivity. Effects of the ultrasound measurement system, echo signal windowing, electronic noise, and tissue motion on echo decorrelation images are determined theoretically, leading to a method for reduction of motion and noise artifacts. Theoretical analysis is validated by simulations and experiments. Simulated decoherence of the scattering medium was recovered with root-mean-square error less than 10% with accuracy dependent on the correlation window size. Motion-induced decorrelation measured in an ex vivo pubovisceral muscle model showed similar trends to theoretical motion-induced decorrelation for a 2.1 MHz curvilinear array with decorrelation approaching unity for 3-4 mm elevational displacement or 1-1.6 mm range displacement. For in vivo imaging of porcine liver by a 7 MHz linear array, theoretical decorrelation computed using image-based motion estimates correlated significantly with measured decorrelation (r = 0.931, N = 10). Echo decorrelation artifacts incurred during in vivo radiofrequency ablation in the same porcine liver were effectively compensated based on the theoretical echo decorrelation model and measured pre-treatment decorrelation. These results demonstrate the potential of echo decorrelation imaging for quantification of heat-induced changes to the scattering tissue medium during thermal ablation.

  9. Magnetic rotation imaging method to measure the geomagnetic field

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new imaging method for measuring the geomagnetic field based on the magnetic rotation effect is put forward. With the help of polarization property of the sunlight reflected from the ground and the magnetic rotation of the atmosphere, the geomagnetic field can be measured by an optical system installed on a satellite. According to its principle, the three-dimensional image of the geomagnetic field can be obtained. The measuring speed of this method is very high, and there is no blind spot and distortion. In this paper, the principle of this method is presented, and some key problems are discussed.

  10. Loschmidt echo for quantum metrology

    Science.gov (United States)

    Macrı, Tommaso; Smerzi, Augusto; Pezzè, Luca

    2016-07-01

    We propose a versatile Loschmidt echo protocol to detect and quantify multiparticle entanglement. It allows us to extract the quantum Fisher information for arbitrary pure states, and finds direct application in quantum metrology. In particular, the protocol applies to states that are generally difficult to characterize, as non-Gaussian states, and states that are not symmetric under particle exchange. We focus on atomic systems, including trapped ions, polar molecules, and Rydberg atoms, where entanglement is generated dynamically via long-range interaction, and show that the protocol is stable against experimental detection errors.

  11. Theoretical aspects of nonlinear echo image system

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ruiquan; FENG Shaosong

    2003-01-01

    In order to develop the nonlinear echo image system to diagnose pathological changes in biological tissue , a simple physical model to analyse the character of nonlinear reflected wave in biological medium is postulated. The propagation of large amplitude plane sound wave in layered biological media is analysed for the one dimensional case by the method of successive approximation and the expression for the second order wave reflected from any interface of layered biological media is obtained. The relations between the second order reflection coefficients and the nonlinear parameters of medium below the interface are studied in three layers interfaces. Finally, the second order reflection coefficients of four layered media are calculated numerically. The results indicate that the nonlinear parameter B/A of each layer of biological media can be determined by the reflection method.

  12. A component compensation method for magnetic interferential field

    Science.gov (United States)

    Zhang, Qi; Wan, Chengbiao; Pan, Mengchun; Liu, Zhongyan; Sun, Xiaoyong

    2017-04-01

    A new component searching with scalar restriction method (CSSRM) is proposed for magnetometer to compensate magnetic interferential field caused by ferromagnetic material of platform and improve measurement performance. In CSSRM, the objection function for parameter estimation is to minimize magnetic field (components and magnitude) difference between its measurement value and reference value. Two scalar compensation method is compared with CSSRM and the simulation results indicate that CSSRM can estimate all interferential parameters and external magnetic field vector with high accuracy. The magnetic field magnitude and components, compensated with CSSRM, coincide with true value very well. Experiment is carried out for a tri-axial fluxgate magnetometer, mounted in a measurement system with inertial sensors together. After compensation, error standard deviation of both magnetic field components and magnitude are reduced from more than thousands nT to less than 20 nT. It suggests that CSSRM provides an effective way to improve performance of magnetic interferential field compensation.

  13. Baryon magnetic moments in the background field method

    CERN Document Server

    Lee, F X; Zhou, L; Wilcox, W

    2005-01-01

    We present a calculation of the magnetic moments for the baryon octet and decuplet using the background-field method and standard Wilson gauge and fermion actions in the quenched approximation of lattice QCD. Progressively smaller static magnetic fields are introduced on a $24^4$ lattice at beta=6.0 and the pion mass is probed down to about 500 MeV. Magnetic moments are extracted from the linear response of the masses to the background field.

  14. Two numerical methods for mean-field games

    KAUST Repository

    Gomes, Diogo A.

    2016-01-09

    Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.

  15. Auxiliary-field quantum Monte Carlo methods in nuclei

    CERN Document Server

    Alhassid, Y

    2016-01-01

    Auxiliary-field quantum Monte Carlo methods enable the calculation of thermal and ground state properties of correlated quantum many-body systems in model spaces that are many orders of magnitude larger than those that can be treated by conventional diagonalization methods. We review recent developments and applications of these methods in nuclei using the framework of the configuration-interaction shell model.

  16. Overlay control methodology comparison: field-by-field and high-order methods

    Science.gov (United States)

    Huang, Chun-Yen; Chiu, Chui-Fu; Wu, Wen-Bin; Shih, Chiang-Lin; Huang, Chin-Chou Kevin; Huang, Healthy; Choi, DongSub; Pierson, Bill; Robinson, John C.

    2012-03-01

    Overlay control in advanced integrated circuit (IC) manufacturing is becoming one of the leading lithographic challenges in the 3x and 2x nm process nodes. Production overlay control can no longer meet the stringent emerging requirements based on linear composite wafer and field models with sampling of 10 to 20 fields and 4 to 5 sites per field, which was the industry standard for many years. Methods that have emerged include overlay metrology in many or all fields, including the high order field model method called high order control (HOC), and field by field control (FxFc) methods also called correction per exposure. The HOC and FxFc methods were initially introduced as relatively infrequent scanner qualification activities meant to supplement linear production schemes. More recently, however, it is clear that production control is also requiring intense sampling, similar high order and FxFc methods. The added control benefits of high order and FxFc overlay methods need to be balanced with the increased metrology requirements, however, without putting material at risk. Of critical importance is the proper control of edge fields, which requires intensive sampling in order to minimize signatures. In this study we compare various methods of overlay control including the performance levels that can be achieved.

  17. Infrasound - the cause of strong Polar Mesosphere Winter Echoes?

    Directory of Open Access Journals (Sweden)

    S. Kirkwood

    2006-03-01

    Full Text Available The ESRAD 52-MHz and the EISCAT 224-MHz radars in northern Scandinavia observed thin layers of strongly enhanced radar echoes from the mesosphere (Polar Mesosphere Winter Echoes - PMWE during a solar proton event in November 2004. Using the interferometric capabilities of ESRAD it was found that the scatterers responsible for PMWE show very high horizontal travel speeds, up to 500 ms-1 or more, and high aspect sensitivity, with echo arrival angles spread over as little as 0.3°. ESRAD also detected, on some occasions, discrete scattering regions moving across the field of view with periodicities of a few seconds. The very narrow, vertically directed beam of the more powerful EISCAT radar allowed measurements of the spectral widths of the radar echoes both inside the PMWE and from the background plasma above and below the PMWE. Spectral widths inside the PMWE were found to be indistinguishable from those from the background plasma. We propose that scatter from highly-damped ion-acoustic waves generated by partial reflection of infrasonic waves provides a reasonable explanation of the characteristics of the very strong PMWE reported here.

  18. LEGUS Discovery of a Light Echo Around Supernova 2012aw

    CERN Document Server

    Van Dyk, Schuyler D; Anderson, Jay; Andrews, Jennifer E; Calzetti, Daniela; Bright, Stacey N; Ubeda, Leonardo; Smith, Linda J; Sabbi, Elena; Grebel, Eva K; Herrero, Artemio; de Mink, Selma E

    2015-01-01

    We have discovered a luminous light echo around the normal Type II-Plateau Supernova (SN) 2012aw in Messier 95 (M95; NGC 3351), detected in images obtained approximately two years after explosion with the Wide Field Channel 3 on-board the Hubble Space Telescope (HST) by the Legacy ExtraGalactic Ultraviolet Survey (LEGUS). The multi-band observations span from the near-ultraviolet through the optical (F275W, F336W, F438W, F555W, and F814W). The apparent brightness of the echo at the time was ~21--22 mag in all of these bands. The echo appears circular, although less obviously as a ring, with an inhomogeneous surface brightness, in particular, a prominent enhanced brightness to the southeast. The SN itself was still detectable, particularly in the redder bands. We are able to model the light echo as the time-integrated SN light scattered off of diffuse interstellar dust in the SN environment. We have assumed that this dust is analogous to that in the Milky Way with R_V=3.1. The SN light curves that we consider ...

  19. Method of lines for temperature field of functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    DAI Yao; SUN Qi; HAO Gui-xiang; YAN Xiu-fa; LI Yong-dong

    2005-01-01

    The finite element method (FEM) and the boundary element method (BEM) are often adopted. Howev er, they are not convenient to spatially vary thermal properties of functionally graded material (FGM). Therefore, the method of lines (MOL) is introduced to solve the temperature field of FGM. The basic idea of the method is to semi-discretize the governing equation into a system of ordinary differential equations (ODEs) defined on discrete lines by means of the finite difference method. The temperature field of FGM can be obtained by solving the ODEs. The functions of thermal properties are directly embodied in these equations and these properties are not discretized in the domain. Thus, difficulty of FEM and BEM is overcome by the method. As a numerical example, the temperature field of a plane problem is analyzed for FGMs through varying thermal conductivity coefficient by the MOL.

  20. The Monte Carlo method in quantum field theory

    CERN Document Server

    Morningstar, C

    2007-01-01

    This series of six lectures is an introduction to using the Monte Carlo method to carry out nonperturbative studies in quantum field theories. Path integrals in quantum field theory are reviewed, and their evaluation by the Monte Carlo method with Markov-chain based importance sampling is presented. Properties of Markov chains are discussed in detail and several proofs are presented, culminating in the fundamental limit theorem for irreducible Markov chains. The example of a real scalar field theory is used to illustrate the Metropolis-Hastings method and to demonstrate the effectiveness of an action-preserving (microcanonical) local updating algorithm in reducing autocorrelations. The goal of these lectures is to provide the beginner with the basic skills needed to start carrying out Monte Carlo studies in quantum field theories, as well as to present the underlying theoretical foundations of the method.

  1. Methods of quantum field theory in statistical physics

    CERN Document Server

    Abrikosov, A A; Gorkov, L P; Silverman, Richard A

    1975-01-01

    This comprehensive introduction to the many-body theory was written by three renowned physicists and acclaimed by American Scientist as ""a classic text on field theoretic methods in statistical physics."

  2. A novel time series analysis approach for prediction of dialysis in critically ill patients using echo-state networks

    Directory of Open Access Journals (Sweden)

    De Turck F

    2010-01-01

    Full Text Available Abstract Background Echo-state networks (ESN are part of a group of reservoir computing methods and are basically a form of recurrent artificial neural networks (ANN. These methods can perform classification tasks on time series data. The recurrent ANN of an echo-state network has an 'echo-state' characteristic. This 'echo-state' functions as a fading memory: samples that have been introduced into the network in a further past, are faded away. The echo-state approach for the training of recurrent neural networks was first described by Jaeger H. et al. In clinical medicine, until this moment, no original research articles have been published to examine the use of echo-state networks. Methods This study examines the possibility of using an echo-state network for prediction of dialysis in the ICU. Therefore, diuresis values and creatinine levels of the first three days after ICU admission were collected from 830 patients admitted to the intensive care unit (ICU between May 31th 2003 and November 17th 2007. The outcome parameter was the performance by the echo-state network in predicting the need for dialysis between day 5 and day 10 of ICU admission. Patients with an ICU length of stay Results The AUC's in the three developed echo-state networks were 0.822, 0.818, and 0.817. These results were comparable to the results obtained by the SVM and the NB algorithm. Conclusions This proof of concept study is the first to evaluate the performance of echo-state networks in an ICU environment. This echo-state network predicted the need for dialysis in ICU patients. The AUC's of the echo-state networks were good and comparable to the performance of other classification algorithms. Moreover, the echo-state network was more easily configured than other time series modeling technologies.

  3. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  4. How to misuse echo contrast

    Directory of Open Access Journals (Sweden)

    Missios Anna

    2009-01-01

    Full Text Available Abstract Background Primary intracardiac tumours are rare, there are however several entities that can mimic tumours. Contrast echocardiography has been suggested to aid the differentiation of various suspected masses. We present a case where transthoracic echocardiography completely misdiagnosed a left atrial mass, partly due to use of echo contrast. Case presentation An 80 year-old woman was referred for transthoracic echocardiography because of one-month duration of worsening of dyspnoea. Transthoracic echocardiography displayed a large echodense mass in the left atrium. Intravenous injection of contrast (SonoVue, Bracco Inc., It indicated contrast-enhancement of the structure, suggesting tumour. Transesophageal echocardiography revealed, however, a completely normal finding in the left atrium. Subsequent gastroscopy examination showed a hiatal hernia. Conclusion It is noteworthy that the transthoracic echocardiographic exam completely misdiagnosed what seemed like a left atrial mass, which in part was an effect of the use of echo contrast. This example highlights that liberal use of transoesophageal echocardiography is often warranted if optimal display of cardiac structures is desired.

  5. CUTLASS HF radar observations of high-velocity E-region echoes

    Directory of Open Access Journals (Sweden)

    M. V. Uspensky

    Full Text Available A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms1 , while the other group had significantly larger velocities, of the order of 700 ms1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm1 and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere

  6. Physicochemical methods for enhancing oil recovery from oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Altunina, L K; Kuvshinov, V A [Institute of Petroleum Chemistry, Siberian Branch of the Russian Academy of Sciences, Tomsk (Russian Federation)

    2007-10-31

    Physicochemical methods for enhancing oil recovery from oil fields that are developed using water flooding and thermal steam treatment are considered. The results of pilot testing of processes based on these methods carried out at West Siberian and Chinese oil fields are analysed. The attention is focused on the processes that make use of surfactant blends and alkaline buffer solutions and thermotropic gel-forming systems.

  7. Physicochemical methods for enhancing oil recovery from oil fields

    Science.gov (United States)

    Altunina, L. K.; Kuvshinov, V. A.

    2007-10-01

    Physicochemical methods for enhancing oil recovery from oil fields that are developed using water flooding and thermal steam treatment are considered. The results of pilot testing of processes based on these methods carried out at West Siberian and Chinese oil fields are analysed. The attention is focused on the processes that make use of surfactant blends and alkaline buffer solutions and thermotropic gel-forming systems.

  8. Total Field and Scattered Field Technique for Fourth-Order Symplectic Finite Difference Time Domain Method

    Institute of Scientific and Technical Information of China (English)

    SHA Wei; HUANG Zhi-Xiang; WU Xian-Liang; CHEN Ming-Sheng

    2006-01-01

    Using symplectic integrator propagator, a three-dimensional fourth-order symplectic finite difference time domain (SFDTD) method is studied, which is of the fourth order in both the time and space domains. The method is nondissipative and can save more memory compared with the traditional FDTD method. The total field and scattered field (TF-SF) technique is derived for the SFDTD method to provide the incident wave source conditions. The bistatic radar cross section (RCS) of a dielectric sphere is computed by using the SFDTD method for the first time. Numerical results suggest that the SFDTD algorithm acquires better stability and accuracy compared with the traditional FDTD method.

  9. RESPECT: Neutron resonance spin-echo spectrometer for extreme studies

    Science.gov (United States)

    Georgii, R.; Kindervater, J.; Pfleiderer, C.; Böni, P.

    2016-11-01

    We propose the design of a REsonance SPin-echo spECtrometer for exTreme studies, RESPECT, that is ideally suited for the exploration of non-dispersive processes such as diffusion, crystallization, slow dynamics, tunneling processes, crystal electric field excitations, and spin fluctuations. It is a variant of the conventional neutron spin-echo technique (NSE) by (i) replacing the long precession coils by pairs of longitudinal neutron spin-echo coils combined with RF-spin flippers and (ii) by stabilizing the neutron polarization with small longitudinal guide fields that can in addition be used as field subtraction coils thus allowing to adjust the field integrals over a range of 8 orders of magnitude. Therefore, the dynamic range of RESPECT can in principle be varied over 8 orders of magnitude in time, if neutrons with the required energy are made available. Similarly as for existing NSE-spectrometers, spin echo times of up to approximately 1 μs can be reached if the divergence and the correction elements are properly adjusted. Thanks to the optional use of neutron guides and the fact that the currents for the correction coils are much smaller than in standard NSE, intensity gains of at least one order of magnitude are expected, making the concept of RESPECT also competitive for operation at medium flux neutron sources. RESPECT can also be operated in a MIEZE configuration allowing the investigation of relaxation processes in depolarizing environments as they occur when magnetic fields are applied at the sample position, i.e. for the investigation of the dynamics of flux lines in superconductors, magnetic fluctuations in ferromagnetic materials, and samples containing hydrogen.

  10. Simultaneous perfusion and permeability measurements using combined spin- and gradient-echo MRI.

    Science.gov (United States)

    Schmiedeskamp, Heiko; Andre, Jalal B; Straka, Matus; Christen, Thomas; Nagpal, Seema; Recht, Lawrence; Thomas, Reena P; Zaharchuk, Greg; Bammer, Roland

    2013-05-01

    The purpose of this study was to estimate magnetic resonance imaging-based brain perfusion parameters from combined multiecho spin-echo and gradient-echo acquisitions, to correct them for T₁₋, T₂₋, and T₂₋*-related contrast agent (CA) extravasation effects, and to simultaneously determine vascular permeability. Perfusion data were acquired using a combined multiecho spin- and gradient-echo (SAGE) echo-planar imaging sequence, which was corrected for CA extravasation effects using pharmacokinetic modeling. The presented method was validated in simulations and brain tumor patients, and compared with uncorrected single-echo and multiecho data. In the presence of CA extravasation, uncorrected single-echo data resulted in underestimated CA concentrations, leading to underestimated single-echo cerebral blood volume (CBV) and mean transit time (MTT). In contrast, uncorrected multiecho data resulted in overestimations of CA concentrations, CBV, and MTT. The correction of CA extravasation effects resulted in CBV and MTT estimates that were more consistent with the underlying tissue characteristics. Spin-echo perfusion data showed reduced large-vessel blooming effects, facilitating better distinction between increased CBV due to active tumor progression and elevated CBV due to the presence of cortical vessels in tumor proximity. Furthermore, extracted permeability parameters were in good agreement with elevated T1-weighted postcontrast signal values.

  11. Consistent interactions in terms of the generalized fields method

    CERN Document Server

    Dayi, O F

    1996-01-01

    The interactions which preserve the structure of the gauge interactions of the free theory are introduced in terms of the generalized fields method of solving the Batalin--Vilkovisky master equation. It is shown that by virtue of this method the solution of the descent equations resulting from the cohomological analysis is provided straightforwardly. The general scheme is illustrated by applying it to spin--1 gauge field in 3 and 4 dimensions, to free BF theory in 2--d and to the antisymmetric tensor field in any dimension. It is shown that it reproduces the results obtained by cohomological techniques.

  12. Using force fields methods for locating transition structures

    Science.gov (United States)

    Jensen, Frank

    2003-11-01

    A previously proposed strategy of using force field methods for generating approximations to the geometry of transition structures is extended to also estimating an approximate Hessian matrix. These two components allow an automated method for locating first order saddle points, which is an essential requisite for studying chemical reactions of systems with many degrees of freedom. The efficiency of using an approximate force field Hessian matrix for initiating the geometry optimization is compared with the use of an exact Hessian. The force field Hessian in general requires more geometry steps to converge, but the additional computational cost is offset by the savings from not calculating the exact Hessian at the initial geometry.

  13. Numerical Simulations of Equiaxed Dendrite Growth Using Phase Field Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Phase field method offers the prospect of being able to perform realistic numerical experiments on dendrite growthin a metallic system. In this paper, the equiaxed dendrite evolution during the solidification of a pure material wasnumerically simulated using the phase field model. The equiaxed dendrite growth in a two-dimensional square domainof undercooled melt (nickel) with four-fold anisotropy was simulated. The phase field model equations was solvedusing the explicit finite difference method on a uniform mesh. The formation of various equiaxed dendrite patternswas shown by a series of simulations, and the effect of anisotropy on equiaxed dendrite morphology was investigated.

  14. Examination of the Spatial Correlation of Statistics Information in the Ultrasonic Echo from Diseased Liver

    Science.gov (United States)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki; Kamiyama, Naohisa; Moriyasu, Fuminori

    2002-05-01

    To realize a quantitative diagnosis of liver cirrhosis, we have been analyzing the characteristics of echo amplitude in B-mode images. Realizing the distinction between liver diseases such as liver cirrhosis and chronic hepatitis is required in the field of medical ultrasonics. In this study, we examine the spatial correlation, with the coefficient of correlation between the frames and the amplitude characteristics of each frame, using the volumetric data of RF echo signals from normal and diseased liver. It is found that there is a relationship between the tissue structure of liver and the spatial correlation of echo information.

  15. Field Method for Integrating the First Order Differential Equation

    Institute of Scientific and Technical Information of China (English)

    JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

    2007-01-01

    An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

  16. A Liquid Level Measurement Technique Outside a Sealed Metal Container Based on Ultrasonic Impedance and Echo Energy

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-01-01

    Full Text Available The proposed method for measuring the liquid level focuses on the ultrasonic impedance and echo energy inside a metal wall, to which the sensor is attached directly, not on ultrasonic waves that penetrate the gas–liquid medium of a container. Firstly, by analyzing the sound field distribution characteristics of the sensor in a metal wall, this paper proposes the concept of an "energy circle" and discusses how to calculate echo energy under three different states in detail. Meanwhile, an ultrasonic transmitting and receiving circuit is designed to convert the echo energy inside the energy circle into its equivalent electric power. Secondly, in order to find the two critical states of the energy circle in the process of liquid level detection, a program is designed to help with calculating two critical positions automatically. Finally, the proposed method is evaluated through a series of experiments, and the experimental results indicate that the proposed method is effective and accurate in calibration of the liquid level outside a sealed metal container.

  17. A Liquid Level Measurement Technique Outside a Sealed Metal Container Based on Ultrasonic Impedance and Echo Energy.

    Science.gov (United States)

    Zhang, Bin; Wei, Yue-Juan; Liu, Wen-Yi; Zhang, Yan-Jun; Yao, Zong; Zhao, Li-Hui; Xiong, Ji-Jun

    2017-01-19

    The proposed method for measuring the liquid level focuses on the ultrasonic impedance and echo energy inside a metal wall, to which the sensor is attached directly, not on ultrasonic waves that penetrate the gas-liquid medium of a container. Firstly, by analyzing the sound field distribution characteristics of the sensor in a metal wall, this paper proposes the concept of an "energy circle" and discusses how to calculate echo energy under three different states in detail. Meanwhile, an ultrasonic transmitting and receiving circuit is designed to convert the echo energy inside the energy circle into its equivalent electric power. Secondly, in order to find the two critical states of the energy circle in the process of liquid level detection, a program is designed to help with calculating two critical positions automatically. Finally, the proposed method is evaluated through a series of experiments, and the experimental results indicate that the proposed method is effective and accurate in calibration of the liquid level outside a sealed metal container.

  18. Impact echo data from bridge deck testing: Visualization and interpretation

    OpenAIRE

    Gucunski, N.; Slabaugh, G.G.; Wang, Z; Fang, T.; A. Maher

    2008-01-01

    Accurate assessment of the condition of bridges leads to their economic management. Ultrasonic seismic methods can be successfully used for this purpose through evaluation of changes in material characteristics and detection of the development of defects and zones of deterioration. The impact echo (IE) method is of special benefit in evaluation of corrosion-induced deck delamination, due to the method's nondestructive nature, speed of evaluation, and ability to detect delaminated zones at var...

  19. Photon echo relaxation in molecular mixed crystals

    NARCIS (Netherlands)

    Aartsma, Thijs Jitse

    1978-01-01

    In dit proefschrift worden foton-echo experimenten beschreven, toegepast op molekulaire mengkristallen. De primaire doelstelling van het onderzoek was om met behulp van foton-echo experimenten nieuwe informatie te verkrijgen over de relaxatie processen die optreden in molekulaire mengkristallen bij

  20. Polarimetric neutron spin echo: Feasibility and first results

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, C. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany)], E-mail: pappas@hmi.de; Lelievre-Berna, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Bentley, P. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); Bourgeat-Lami, E. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Moskvin, E. [Hahn-Meitner Institut Berlin, Glienickerstr. 100, 14109 Berlin (Germany); PNPI, 188300 Gatchina, Leningrad District (Russian Federation); Thomas, M. [Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble (France); Grigoriev, S.; Dyadkin, V. [PNPI, 188300 Gatchina, Leningrad District (Russian Federation)

    2008-07-21

    Neutron Spin Echo (NSE) spectroscopy uses polarized neutrons and accordingly polarization analysis is an intrinsic feature of NSE. However, the multifaceted dynamics of antiferromagnets and helimagnets require more than the classical NSE set-up. Here we present the feasibility test and first results of a new and powerful technique: Polarimetric NSE, obtained by combining the wide angle NSE spectrometer SPAN, developed at HMI with the zero-field polarimeter Cryopad developed at ILL.

  1. Analysis of physical parameter field and echo characteristics of Doppler radar in a thunderstorm process%一次雷暴大风的物理环境场和多普勒雷达回波特征

    Institute of Scientific and Technical Information of China (English)

    阎访; 陈静; 卞韬; 廖颖慧; 张翠华

    2013-01-01

    A thunderstorm disaster appeared in Shijiazhuang region from 15:00 to 18:00 on August 27,2009. The mesoscale synoptic systems of this process such as gust front, squall line and mesocyclone and so on were detected by a Doppler radar at Xinle county of Shijiazhuang. The characteristics of physical parameter field of this process and Doppler radar product were analyzed. The results show that unstable stratification of temperature inversion in the low level and vertical wind shear in the middle and low levels provide favorable conditions for strong convec-tive development. Gust front has feedback action on the development of convective storm intensity. When gust front is moving away from the convective storm,the convective storm weakens or even dies out; when both are gradually close to each other,the convective storm strengthens or even develops into a supercell convective storm. Multiple single convective storm belt arrangement constitutes a squall line system, which brings wind speed spurt, wind zag,pressure upwelling and temperature falling. The supercell convective storm has the typical features of echoes with a "hook" shape,a "herringbone" shape,a "bow" shape,and deep lasting mesocyclone. The ground destructive wind is mainly brought by supercell convective storms.%2009年8月27日15-18时,石家庄地区出现雷暴大风灾害性强对流天气过程,石家庄北部新乐县多普勒雷达探测到了完整的阵风锋、飑线和中气旋等中尺度天气系统,对此次雷暴大风的环境场和多普勒雷达产品进行分析.结果表明:低层逆温、中低层垂直风切变较强的不稳定层结为强对流天气的发生发展提供了有利环境条件.阵风锋对对流风暴发展强度具有反馈作用,当二者逐渐远离时,对流风暴强度减弱甚至消亡;当二者逐渐靠近时,对流风暴发展加强,甚至发展为超级单体对流风暴.多单体对流风暴带状排列构成飑线系统,所经测站出现风速突增、风

  2. High temporal resolution functional MRI using parallel echo volumar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Rabrait, C.; Ciuciu, P.; Ribes, A.; Poupon, C.; Dehaine-Lambertz, G.; LeBihan, D.; Lethimonnier, F. [CEA Saclay, DSV, I2BM, Neurospin, F-91191 Gif Sur Yvette (France); Le Roux, P. [GEHC, Buc (France); Dehaine-Lambertz, G. [Unite INSERM 562, Gif Sur Yvette (France)

    2008-07-01

    Purpose: To combine parallel imaging with 3D single-shot acquisition (echo volumar imaging, EVI) in order to acquire high temporal resolution volumar functional MRI (fMRI) data. Materials and Methods: An improved EVI sequence was associated with parallel acquisition and field of view reduction in order to acquire a large brain volume in 200 msec. Temporal stability and functional sensitivity were increased through optimization of all imaging parameters and Tikhonov regularization of parallel reconstruction. Two human volunteers were scanned with parallel EVI in a 1.5 T whole-body MR system, while submitted to a slow event-related auditory paradigm. Results: Thanks to parallel acquisition, the EVI volumes display a low level of geometric distortions and signal losses. After removal of low-frequency drifts and physiological artifacts,activations were detected in the temporal lobes of both volunteers and voxel-wise hemodynamic response functions (HRF) could be computed. On these HRF different habituation behaviors in response to sentence repetition could be identified. Conclusion: This work demonstrates the feasibility of high temporal resolution 3D fMRI with parallel EVI. Combined with advanced estimation tools,this acquisition method should prove useful to measure neural activity timing differences or study the nonlinearities and non-stationarities of the BOLD response. (authors)

  3. Liver fat quantification: Comparison of dual-echo and triple-echo chemical shift MRI to MR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Satkunasingham, Janakan; Besa, Cecilia [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Bane, Octavia [Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Shah, Ami [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Oliveira, André de; Gilson, Wesley D.; Kannengiesser, Stephan [Siemens AG, Healthcare Sector, Erlangen (Germany); Taouli, Bachir, E-mail: bachir.taouli@mountsinai.org [Department of Radiology, Body MRI, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States); Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029 (United States)

    2015-08-15

    Highlights: • We present a large cohort of patients who underwent dual and triple echo chemical shift imaging against multi-echo T{sub 2} corrected MR spectroscopy (MRS) for liver fat quantification. • Our data suggests that a triple-echo sequence is highly accurate for detection of liver fat, even in the presence of T{sub 2}{sup *} shortening, with minor discrepancies when compared with the advanced fat quantification method. - Abstract: Purpose: To assess the diagnostic value of MRI using dual-echo (2PD) and triple-echo (3PD) chemical shift imaging for liver fat quantification against multi-echo T{sub 2} corrected MR spectroscopy (MRS) used as the reference standard, and examine the effect of T{sub 2}{sup *} imaging on accuracy of MRI for fat quantification. Materials and methods: Patients who underwent 1.5 T liver MRI that incorporated 2PD, 3PD, multi-echo T{sub 2}{sup *} and MRS were included in this IRB approved prospective study. Regions of interest were placed in the liver to measure fat fraction (FF) with 2PD and 3PD and compared with MRS-FF. A random subset of 25 patients with a wide range of MRS-FF was analyzed with an advanced FF calculation method, to prove concordance with the 3PD. The statistical analysis included correlation stratified according to T{sub 2}{sup *}, Bland-Altman analysis, and calculation of diagnostic accuracy for detection of MRS-FF > 6.25%. Results: 220 MRI studies were identified in 217 patients (mean BMI 28.0 ± 5.6). 57/217 (26.2%) patients demonstrated liver steatosis (MRS-FF > 6.25%). Bland-Altman analysis revealed strong agreement between 3PD and MRS (mean ± 1.96 SD: −0.5% ± 4.6%) and weaker agreement between 2PD and MRS (4.7% ± 16.0%). Sensitivity of 3PD for diagnosing FF> 6.25% was higher than that of 2PD. 3PD-FF showed minor discrepancies (coefficient of variation <10%) from FF measured with the advanced method. Conclusion: Our large series study validates the use of 3PD chemical shift sequence for detection of

  4. Non perturbative methods in two dimensional quantum field theory

    CERN Document Server

    Abdalla, Elcio; Rothe, Klaus D

    1991-01-01

    This book is a survey of methods used in the study of two-dimensional models in quantum field theory as well as applications of these theories in physics. It covers the subject since the first model, studied in the fifties, up to modern developments in string theories, and includes exact solutions, non-perturbative methods of study, and nonlinear sigma models.

  5. FIELD ANALYTICAL SCREENING PROGRAM: PCP METHOD - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    The Field Analytical Screening Program (FASP) pentachlorophenol (PCP) method uses a gas chromatograph (GC) equipped with a megabore capillary column and flame ionization detector (FID) and electron capture detector (ECD) to identify and quantify PCP. The FASP PCP method is design...

  6. Multi-Center Vector Field Methods for Wave Equations

    Science.gov (United States)

    Soffer, Avy; Xiao, Jianguo

    2016-12-01

    We develop the method of vector-fields to further study Dispersive Wave Equations. Radial vector fields are used to get a-priori estimates such as the Morawetz estimate on solutions of Dispersive Wave Equations. A key to such estimates is the repulsiveness or nontrapping conditions on the flow corresponding to the wave equation. Thus this method is limited to potential perturbations which are repulsive, that is the radial derivative pointing away from the origin. In this work, we generalize this method to include potentials which are repulsive relative to a line in space (in three or higher dimensions), among other cases. This method is based on constructing multi-centered vector fields as multipliers, cancellation lemmas and energy localization.

  7. Geochemical field method for determination of nickel in plants

    Science.gov (United States)

    Reichen, L.E.

    1951-01-01

    The use of biogeochemical data in prospecting for nickel emphasizes the need for a simple, moderately accurate field method for the determination of nickel in plants. In order to follow leads provided by plants of unusual nickel content without loss of time, the plants should be analyzed and the results given to the field geologist promptly. The method reported in this paper was developed to meet this need. Speed is acquired by elimination of the customary drying and controlled ashing; the fresh vegetation is ashed in an open dish over a gasoline stove. The ash is put into solution with hydrochloric acid and the solution buffered. A chromograph is used to make a confined spot with an aliquot of the ash solution on dimethylglyoxime reagent paper. As little as 0.025% nickel in plant ash can be determined. With a simple modification, 0.003% can be detected. Data are given comparing the results obtained by an accepted laboratory procedure. Results by the field method are within 30% of the laboratory values. The field method for nickel in plants meets the requirements of biogeochemical prospecting with respect to accuracy, simplicity, speed, and ease of performance in the field. With experience, an analyst can make 30 determinations in an 8-hour work day in the field.

  8. Field: A Program for Simulating Ultrasound Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1997-01-01

    A program for the simulation of ultrasound systems is presented.It is based on the Tupholme-Stepanishen method, and is fastbecause of the use of a far-field approximation. Any kind oftransducer geometry and excitation can be simulated, and bothpulse-echo and continuous wave fields can be calculated...... for bothtransmit and pulse-echo. Dynamic apodization and focusing arehandled through time lines, and different focusingschemes can be simulated. The versatility of the program isensured by interfacing it to Matlab. All routines are calleddirectly from Matlab, and all Matlab features can be used. Thismakes...

  9. Subband Affine Projection Algorithm for Acoustic Echo Cancellation System

    Directory of Open Access Journals (Sweden)

    Choi Hun

    2007-01-01

    Full Text Available We present a new subband affine projection (SAP algorithm for the adaptive acoustic echo cancellation with long echo path delay. Generally, the acoustic echo canceller suffers from the long echo path and large computational complexity. To solve this problem, the proposed algorithm combines merits of the affine projection (AP algorithm and the subband filtering. Convergence speed of the proposed algorithm is improved by the signal-decorrelating property of the orthogonal subband filtering and the weight updating with the prewhitened input signal of the AP algorithm. Moreover, in the proposed algorithms, as applying the polyphase decomposition, the noble identity, and the critical decimation to subband the adaptive filter, the sufficiently decomposed SAP updates the weights of adaptive subfilters without a matrix inversion. Therefore, computational complexity of the proposed method is considerably reduced. In the SAP, the derived weight updating formula for the subband adaptive filter has a simple form as ever compared with the normalized least-mean-square (NLMS algorithm. The efficiency of the proposed algorithm for the colored signal and speech signal was evaluated experimentally.

  10. Wideband Radar Echo Frequency-domain Simulation and Analysis for High Speed Moving Targets

    Directory of Open Access Journals (Sweden)

    Ning Chao

    2014-04-01

    Full Text Available A frequency-domain method is proposed for wideband radar echo simulation of high-speed moving targets. Based on the physical process of electromagnetic waves observing a moving target, a frequency-domain echo model of wideband radar is constructed, and the block diagram of the radar echo simulation in frequency-domain is presented. Then, the impacts of radial velocity and slant range on the matching filtering of LFM radar are analyzed, and some quantitative conclusions on the shift and expansion of the radar profiles are obtained. Simulation results illustrate the correctness and efficiency of the proposed method.

  11. Assessment of changes in liver blood flow after food intake—comparison of ICG clearance and echo-Doppler

    OpenAIRE

    Burggraaf, J; Schoemaker, H C; Cohen, A F

    1996-01-01

    Echo-Doppler measurements of portal venous blood flow in intrahepatic branches and indocyanine green (ICG) clearance after continuous i.v. infusion as measure for liver blood flow were compared to evaluate the increase in splanchnic blood flow after food intake. It was shown that both methods assessed the changes in flow in a similar manner. Changes in blood flow in intrahepatic portal vein branches measured with echo-Doppler adequately predicted the change in ICG concentrations. Hence, echo-...

  12. Direct field method for root biomass quantification in agroecosystems.

    Science.gov (United States)

    Frasier, Ileana; Noellemeyer, Elke; Fernández, Romina; Quiroga, Alberto

    2016-01-01

    The present article describes a field auger sampling method for row-crop root measurements. In agroecosystems where crops are planted in a specific design (row crops), sampling procedures for root biomass quantification need to consider the spatial variability of the root system. This article explains in detail how to sample and calculate root biomass considering the sampling position in the field and the differential weight of the root biomass in the inter-row compared to the crop row when expressing data per area unit. This method is highly reproducible in the field and requires no expensive equipment and/or special skills. It proposes to use a narrow auger thus reducing field labor with less destructive sampling, and decreases laboratory time because samples are smaller. The small sample size also facilitates the washing and root separation with tweezers. This method is suitable for either winter- or summer crop roots. •Description of a direct field method for row-crop root measurements.•Description of data calculation for total root-biomass estimation per unit area.•The proposed method is simple, less labor- and less time consuming.

  13. A regularization method for extrapolation of solar potential magnetic fields

    Science.gov (United States)

    Gary, G. A.; Musielak, Z. E.

    1992-01-01

    The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.

  14. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi;

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  15. Mimetic Methods for Lagrangian Relaxation of Magnetic Fields

    CERN Document Server

    Candelaresi, Simon; Hornig, Gunnar

    2014-01-01

    We present a new code that performs a relaxation of a magnetic field towards a force-free state (Beltrami field) using a Lagrangian numerical scheme. Beltrami fields are of interest for the dynamics of many technical and astrophysical plasmas as they are the lowest energy states that the magnetic field can reach. The numerical method strictly preserves the magnetic flux and the topology of magnetic field lines. In contrast to other implementations we use mimetic operators for the spatial derivatives in order to improve accuracy for high distortions of the grid. Compared with schemes using direct derivatives we find that the final state of the simulation approximates a force-free state with a significantly higher accuracy. We implement the scheme in a code which runs on graphical processing units (GPU), which leads to an enhanced computing speed compared to previous relaxation codes.

  16. Bone quantitative susceptibility mapping using a chemical species-specific R2* signal model with ultrashort and conventional echo data.

    Science.gov (United States)

    Dimov, Alexey V; Liu, Zhe; Spincemaille, Pascal; Prince, Martin R; Du, Jiang; Wang, Yi

    2017-03-05

    To develop quantitative susceptibility mapping (QSM) of bone using an ultrashort echo time (UTE) gradient echo (GRE) sequence for signal acquisition and a bone-specific effective transverse relaxation rate ( R2*) to model water-fat MR signals for field mapping. Three-dimensional radial UTE data (echo times ≥ 40 μs) was acquired on a 3 Tesla scanner and fitted with a bone-specific signal model to map the chemical species and susceptibility field. Experiments were performed ex vivo on a porcine hoof and in vivo on healthy human subjects (n = 7). For water-fat separation, a bone-specific model assigning R2* decay mostly to water was compared with the standard models that assigned the same decay for both fat and water. In the ex vivo experiment, bone QSM was correlated with CT. Compared with standard models, the bone-specific R2* method significantly reduced errors in the fat fraction within the cortical bone in all tested data sets, leading to reduced artifacts in QSM. Good correlation was found between bone CT and QSM values in the porcine hoof (R(2)  = 0.77). Bone QSM was successfully generated in all subjects. The QSM of bone is feasible using UTE with a conventional echo time GRE acquisition and a bone-specific R2* signal model. Magn Reson Med 000:000-000, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  17. A Comprehensive Method of Estimating Electric Fields from Vector Magnetic Field and Doppler Measurements

    CERN Document Server

    Kazachenko, Maria D; Welsch, Brian T

    2014-01-01

    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal (PTD) decomposition of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the "{\\bf P}TD-{\\bf D}oppler-{\\bf F}LCT {\\bf I}deal" (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the \\texttt{FISHPACK} software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (\\te...

  18. Interleaving Gradient Magnetic Field Method for Diffusion Weighted Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    GAO Song; ZU Zhong-Liang; BAO Shang-Lian

    2008-01-01

    Diffusion-weighted magnetic resonance spectroscopy(DWS)has considerable potential in clinical and research applications.However.it is seldom implemented in conventional magnetic resonance imaging(MRI)scanners due to the strict hardware requirements.We propose an interleaving gradient magnetic field(IGMF)method based on point resolved spectroscopy(PRESS).Four interlaced powerful diffusion sensitive gradient magnetic fields are positioned around the two πrefocusing rf pulses in the PRESS sequence.This method utilizes the interval time in the PRESS pulse sequence,doubles the duration time of the diffusion sensitive gradient magnetic field and decreases the detrimental effect of the induced eddy current.The results of theoretical analysis and experimental observation demonstrate that the IGMF method is suitable for conventional MRI scanners.

  19. Theory of electron spin echoes in solids

    Energy Technology Data Exchange (ETDEWEB)

    Asadullina, N.Ya.; Asadullin, T.Ya.; Asadullin, Ya.Ya. [Kazan State Technical University, Department of General Physics, Karl Marx Street 10, Kazan (Russian Federation)

    2002-11-04

    We propose modified Bloch equations (MBEs) with specific power-dependent relaxation and dispersion parameters characteristic for two-pulse excitation and when the magnetic dipole-dipole interactions in the electron spin system control the dephasing. We discriminate between the 'active' (excited by both pulses) and 'passive' (excited by the second pulse only) spins: it is shown that the 'active' spins participate in a new effect, an active spin frequency modulation effect giving rise to the power-dependent dispersion and multiple electron spin echoes (ESEs); the 'passive' spins contribute to the power-dependent relaxation. The MBEs are solved and a general expression for the two-pulse ESEs is obtained. Detailed numerical analysis of this expression gives results in good quantitative agreement with the recent experiments on the two-pulse ESEs at conventional low applied fields. The developed theory is applied also to high field ESEs, which are promising for future investigations. On the basis of published results it is deduced that the instantaneous diffusion mechanism is ineffective.

  20. Air-coupled impact-echo damage detection in reinforced concrete using wavelet transforms

    Science.gov (United States)

    Epp, Tyler; Cha, Young-Jin

    2017-02-01

    Internal damage detection of reinforced concrete (RC) structures is a challenging field that has garnered increasing attention over the past decades due to a decline in the state of infrastructure in North America. As a nondestructive testing mode, the impact-echo method is currently a promising approach. However, it requires intensive testing to cover large-scale civil RC structures with point-by-point inspection. In order to partially overcome this limitation, this study proposes a new impact-echo analysis method using wavelet transforms with dual microphones with 20 kHz resolution to improve damage detection capability. The signals recorded from the microphones are processed to recover spectral data that are further analyzed using percentage of energy information to determine the condition of the specimen and detect in situ damages. In order to validate the performance of the proposed method, the results from traditional signal processing using FFT and wavelet transforms are compared. The proposed wavelet transform based approach showed better accuracy when covering broader areas, which can contribute to reduce testing time significantly when monitoring large-scale civil RC structures.

  1. A Method for Evaluating the Magnetic Field Homogeneity of a Radiofrequency Coil by Its Field Histogram

    Science.gov (United States)

    Yang, Q. X.; Li, S. H.; Smith, M. B.

    The magnetic field homogeneity of a radiofrequency coil is very important in both magnetic resonance imaging and spectroscopy. In this report, a method is proposed for quantitatively evaluating the RF magnetic field homogeneity from its histogram, which is obtained by either experimental measurement or theoretical calculation. The experimental histogram and theoretical histogram can be compared directly to verify the theoretical findings. The RF field homogeneities of the bird-cage coil, slotted-tube resonator, cosine wire coil, and a new radial plate coil design were evaluated using this method. The results showed that the experimental histograms and the corresponding theoretical histograms are consistent. This method provides an easy and sensitive way of evaluating the magnetic field homogeneity and facilitates the design and evaluation of new RF coil configurations.

  2. Hybrid inversion method for equivalent electric charge of thunder cloud based on multi-station atmospheric electric field

    Institute of Scientific and Technical Information of China (English)

    XING; Hongyan; ZHANG; Qiang; JI; Xinyuan; XU; wei

    2015-01-01

    This article proposes the hybrid method to inverse the equivalent electric charge of thunder cloud based on the data of multi-station atmospheric electric field. Firstly,the method combines the genetic algorithm( GA) and New ton method through the mosaic hybrid structure. In addition,the thunder cloud equivalent charge is inversed based on the forw ard modeling results by giving the parameters of the thunder cloud charge structure. Then an ideal model is built to examine the performance compared to the nonlinear least squares method. Finally,a typical thunderstorms process in Nanjing is analyzed by Genetic-New ton algorithm with the help of weather radar. The results show the proposed method has the strong global searching capability so that the problem of initial value selection can be solved effectively,as well as gets the better inversion results. Furthermore,the mosaic hybrid structure can absorb the advantages of tw o algorithms better,and the inversion position is consistent with the strongest radar echo.The inversion results find the upper negative charge is small and can be ignored,w hich means the triple-polarity charge structure is relatively scientific,w hich could give some references to the research like lightning forecasting,location tracking.

  3. Multigrid Methods for the Computation of Propagators in Gauge Fields

    Science.gov (United States)

    Kalkreuter, Thomas

    Multigrid methods were invented for the solution of discretized partial differential equations in order to overcome the slowness of traditional algorithms by updates on various length scales. In the present work generalizations of multigrid methods for propagators in gauge fields are investigated. Gauge fields are incorporated in algorithms in a covariant way. The kernel C of the restriction operator which averages from one grid to the next coarser grid is defined by projection on the ground-state of a local Hamiltonian. The idea behind this definition is that the appropriate notion of smoothness depends on the dynamics. The ground-state projection choice of C can be used in arbitrary dimension and for arbitrary gauge group. We discuss proper averaging operations for bosons and for staggered fermions. The kernels C can also be used in multigrid Monte Carlo simulations, and for the definition of block spins and blocked gauge fields in Monte Carlo renormalization group studies. Actual numerical computations are performed in four-dimensional SU(2) gauge fields. We prove that our proposals for block spins are “good”, using renormalization group arguments. A central result is that the multigrid method works in arbitrarily disordered gauge fields, in principle. It is proved that computations of propagators in gauge fields without critical slowing down are possible when one uses an ideal interpolation kernel. Unfortunately, the idealized algorithm is not practical, but it was important to answer questions of principle. Practical methods are able to outperform the conjugate gradient algorithm in case of bosons. The case of staggered fermions is harder. Multigrid methods give considerable speed-ups compared to conventional relaxation algorithms, but on lattices up to 184 conjugate gradient is superior.

  4. Sparse adaptive filters for echo cancellation

    CERN Document Server

    Paleologu, Constantin

    2011-01-01

    Adaptive filters with a large number of coefficients are usually involved in both network and acoustic echo cancellation. Consequently, it is important to improve the convergence rate and tracking of the conventional algorithms used for these applications. This can be achieved by exploiting the sparseness character of the echo paths. Identification of sparse impulse responses was addressed mainly in the last decade with the development of the so-called ``proportionate''-type algorithms. The goal of this book is to present the most important sparse adaptive filters developed for echo cancellati

  5. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...... of this variation is due to changes in the enzyme structure at distances more than 5 Å from the active site. There are significant differences between the results obtained by pure quantum methods and those from mixed quantum and molecular mechanics methods....

  6. Displacement of Building Cluster Using Field Analysis Method

    Institute of Scientific and Technical Information of China (English)

    Al Tinghua

    2003-01-01

    This paper presents a field based method to deal with the displacement of building cluster,which is driven by the street widening. The compress of street boundary results in the force to push the building moving inside and the force propagation is a decay process. To describe the phenomenon above, the field theory is introduced with the representation model of isoline. On the basis of the skeleton of Delaunay triangulation,the displacement field is built in which the propagation force is related to the adjacency degree with respect to the street boundary. The study offers the computation of displacement direction and offset distance for the building displacement. The vector operation is performed on the basis of grade and other field concepts.

  7. Field Science Ethnography: Methods For Systematic Observation on an Expedition

    Science.gov (United States)

    Clancey, William J.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The Haughton-Mars expedition is a multidisciplinary project, exploring an impact crater in an extreme environment to determine how people might live and work on Mars. The expedition seeks to understand and field test Mars facilities, crew roles, operations, and computer tools. I combine an ethnographic approach to establish a baseline understanding of how scientists prefer to live and work when relatively unemcumbered, with a participatory design approach of experimenting with procedures and tools in the context of use. This paper focuses on field methods for systematically recording and analyzing the expedition's activities. Systematic photography and time-lapse video are combined with concept mapping to organize and present information. This hybrid approach is generally applicable to the study of modern field expeditions having a dozen or more multidisciplinary participants, spread over a large terrain during multiple field seasons.

  8. Coupled computation method of physics fields in aluminum reduction cells

    Institute of Scientific and Technical Information of China (English)

    周乃君; 梅炽; 姜昌伟; 周萍; 李劼

    2003-01-01

    Considering importance of study on physics fields and computer simulation for aluminum reduction cells so as to optimize design on aluminum reduction cells and develop new type of cells, based on analyzing coupled relation of physics fields in aluminum reduction cells, the mathematics and physics models were established and a coupled computation method on distribution of electric current and magnetic field, temperature profile and metal velocity in cells was developed. The computational results in 82kA prebaked cells agree well with the measured results, and the errors of maxium value calculated for three main physics property fields are less than 10%, which proves that the model and arithmetic are available. So the software developed can be not only applied to optimization design on traditional aluminum reduction cells, but also to establishing better technology basis to develop new drained aluminum reduction cells.

  9. Hyperspectral Imaging and Related Field Methods: Building the Science

    Science.gov (United States)

    Goetz, Alexander F. H.; Steffen, Konrad; Wessman, Carol

    1999-01-01

    The proposal requested funds for the computing power to bring hyperspectral image processing into undergraduate and graduate remote sensing courses. This upgrade made it possible to handle more students in these oversubscribed courses and to enhance CSES' summer short course entitled "Hyperspectral Imaging and Data Analysis" provided for government, industry, university and military. Funds were also requested to build field measurement capabilities through the purchase of spectroradiometers, canopy radiation sensors and a differential GPS system. These instruments provided systematic and complete sets of field data for the analysis of hyperspectral data with the appropriate radiometric and wavelength calibration as well as atmospheric data needed for application of radiative transfer models. The proposed field equipment made it possible to team-teach a new field methods course, unique in the country, that took advantage of the expertise of the investigators rostered in three different departments, Geology, Geography and Biology.

  10. Submarine Magnetic Field Extrapolation Based on Boundary Element Method

    Institute of Scientific and Technical Information of China (English)

    GAO Jun-ji; LIU Da-ming; YAO Qiong-hui; ZHOU Guo-hua; YAN Hui

    2007-01-01

    In order to master the magnetic field distribution of submarines in the air completely and exactly and study the magnetic stealthy performance of submarine, a mathematic model of submarine magnetic field extrapolation is built based on the boundary element method (BEM). An experiment is designed to measure three components of magnetic field on the envelope surface surrounding a model submarine. The data in differentheights above the model submarine are obtained by use of tri-axial magnetometers. The results show that this extrapolation model has good stabilities and high accuracies compared the measured data with the extrapolated data. Moreover, the model can reflect the submarine magnetic field distribution in the air exactly, and is valuable in practical engineering.

  11. A novel background field removal method for MRI using projection onto dipole fields (PDF).

    Science.gov (United States)

    Liu, Tian; Khalidov, Ildar; de Rochefort, Ludovic; Spincemaille, Pascal; Liu, Jing; Tsiouris, A John; Wang, Yi

    2011-11-01

    For optimal image quality in susceptibility-weighted imaging and accurate quantification of susceptibility, it is necessary to isolate the local field generated by local magnetic sources (such as iron) from the background field that arises from imperfect shimming and variations in magnetic susceptibility of surrounding tissues (including air). Previous background removal techniques have limited effectiveness depending on the accuracy of model assumptions or information input. In this article, we report an observation that the magnetic field for a dipole outside a given region of interest (ROI) is approximately orthogonal to the magnetic field of a dipole inside the ROI. Accordingly, we propose a nonparametric background field removal technique based on projection onto dipole fields (PDF). In this PDF technique, the background field inside an ROI is decomposed into a field originating from dipoles outside the ROI using the projection theorem in Hilbert space. This novel PDF background removal technique was validated on a numerical simulation and a phantom experiment and was applied in human brain imaging, demonstrating substantial improvement in background field removal compared with the commonly used high-pass filtering method. Copyright © 2011 John Wiley & Sons, Ltd.

  12. Intermediate electrostatic field for the generalized elongation method.

    Science.gov (United States)

    Liu, Kai; Korchowiec, Jacek; Aoki, Yuriko

    2015-05-18

    An intermediate electrostatic field is introduced to improve the accuracy of fragment-based quantum-chemical computational methods by including long-range polarizations of biomolecules. The point charge distribution of the intermediate field is generated by a charge sensitivity analysis that is parameterized for five different population analyses, namely, atoms-in-molecules, Hirshfeld, Mulliken, natural orbital, and Voronoi population analysis. Two model systems are chosen to demonstrate the performance of the generalized elongation method (ELG) combined with the intermediate electrostatic field. The calculations are performed for the STO-3G, 6-31G, and 6-31G(d) basis sets and compared with reference Hartree-Fock calculations. It is shown that the error in the total energy is reduced by one order of magnitude, independently of the population analyses used. This demonstrates the importance of long-range polarization in electronic-structure calculations by fragmentation techniques.

  13. Field and laboratory methods in human milk research.

    Science.gov (United States)

    Miller, Elizabeth M; Aiello, Marco O; Fujita, Masako; Hinde, Katie; Milligan, Lauren; Quinn, E A

    2013-01-01

    Human milk is a complex and variable fluid of increasing interest to human biologists who study nutrition and health. The collection and analysis of human milk poses many practical and ethical challenges to field workers, who must balance both appropriate methodology with the needs of participating mothers and infants and logistical challenges to collection and analysis. In this review, we address various collection methods, volume measurements, and ethical considerations and make recommendations for field researchers. We also review frequently used methods for the analysis of fat, protein, sugars/lactose, and specific biomarkers in human milk. Finally, we address new technologies in human milk research, the MIRIS Human Milk Analyzer and dried milk spots, which will improve the ability of human biologists and anthropologists to study human milk in field settings.

  14. Mathematical methods of many-body quantum field theory

    CERN Document Server

    Lehmann, Detlef

    2004-01-01

    Mathematical Methods of Many-Body Quantum Field Theory offers a comprehensive, mathematically rigorous treatment of many-body physics. It develops the mathematical tools for describing quantum many-body systems and applies them to the many-electron system. These tools include the formalism of second quantization, field theoretical perturbation theory, functional integral methods, bosonic and fermionic, and estimation and summation techniques for Feynman diagrams. Among the physical effects discussed in this context are BCS superconductivity, s-wave and higher l-wave, and the fractional quantum Hall effect. While the presentation is mathematically rigorous, the author does not focus solely on precise definitions and proofs, but also shows how to actually perform the computations.Presenting many recent advances and clarifying difficult concepts, this book provides the background, results, and detail needed to further explore the issue of when the standard approximation schemes in this field actually work and wh...

  15. Far-field method for the characterisation of three-dimensional fields: vectorial polarimetry

    Directory of Open Access Journals (Sweden)

    Dainty C.

    2010-06-01

    Full Text Available The first attempt to completely characterise a three-dimensional field was done by Ellis and Dogariu with excellent results reported [1] . However, their method is based on near-field techniques, which limits its range of applications. In this work, we present an alternative far-field method for the characterisation of the three-dimensional field that results from the interaction of a tightly focused three-dimensional field [2] with a sub-resolution specimen. Our method is based on the analysis of the scattering-angle-resolved polarisation state distribution across the exit pupil of a high numerical aperture (NA collector lens using standard polarimetry techniques. Details of the method, the experimental setup built to verify its capabilities, and numerical and first experimental evidence demonstrating that the method allows for high sensitivit y on sub-resolution displacements of a sub-resolution specimen shall be presented [3]. This work is funded by Science Foundation Ireland grant No. 07/IN.1/I906 and Shimadzu Corporation, Japan. Oscar Rodríguez is grateful to the National Council for Science and Technology (CONACYT, Mexico for the Ph D scholarship 177627.

  16. Far-field method for the characterisation of three-dimensional fields: vectorial polarimetry

    Science.gov (United States)

    Rodríguez, O.; Lara, D.; Dainty, C.

    2010-06-01

    The first attempt to completely characterise a three-dimensional field was done by Ellis and Dogariu with excellent results reported [1] . However, their method is based on near-field techniques, which limits its range of applications. In this work, we present an alternative far-field method for the characterisation of the three-dimensional field that results from the interaction of a tightly focused three-dimensional field [2] with a sub-resolution specimen. Our method is based on the analysis of the scattering-angle-resolved polarisation state distribution across the exit pupil of a high numerical aperture (NA) collector lens using standard polarimetry techniques. Details of the method, the experimental setup built to verify its capabilities, and numerical and first experimental evidence demonstrating that the method allows for high sensitivit y on sub-resolution displacements of a sub-resolution specimen shall be presented [3]. This work is funded by Science Foundation Ireland grant No. 07/IN.1/I906 and Shimadzu Corporation, Japan. Oscar Rodríguez is grateful to the National Council for Science and Technology (CONACYT, Mexico) for the Ph D scholarship 177627.

  17. A field theoretical approach to the quasi-continuum method

    Science.gov (United States)

    Iyer, Mrinal; Gavini, Vikram

    2011-08-01

    The quasi-continuum method has provided many insights into the behavior of lattice defects in the past decade. However, recent numerical analysis suggests that the approximations introduced in various formulations of the quasi-continuum method lead to inconsistencies—namely, appearance of ghost forces or residual forces, non-conservative nature of approximate forces, etc.—which affect the numerical accuracy and stability of the method. In this work, we identify the source of these errors to be the incompatibility of using quadrature rules, which is a local notion, on a non-local representation of energy. We eliminate these errors by first reformulating the extended interatomic interactions into a local variational problem that describes the energy of a system via potential fields. We subsequently introduce the quasi-continuum reduction of these potential fields using an adaptive finite-element discretization of the formulation. We demonstrate that the present formulation resolves the inconsistencies present in previous formulations of the quasi-continuum method, and show using numerical examples the remarkable improvement in the accuracy of solutions. Further, this field theoretic formulation of quasi-continuum method makes mathematical analysis of the method more amenable using functional analysis and homogenization theories.

  18. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...

  19. On the field method in non-holonomic mechanics

    Institute of Scientific and Technical Information of China (English)

    Ivana Kovacic

    2005-01-01

    This paper deals with the generalization of the field method to non-holonomic systems whose motion is subject to either non-linear constraints or those of a higher order, while their motion is modeled by the generalized Lagrange equations of the second kind. Two examples are given to illustrate the theory.

  20. The virtual fields method applied to spalling tests on concrete

    Science.gov (United States)

    Pierron, F.; Forquin, P.

    2012-08-01

    For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s-1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula) remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM). First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative `load cell'. This method applied to three spalling tests allowed to identify Young's modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.

  1. Non magnetic neutron spin quantum precession using multilayer spin splitter and a phase-spin echo interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Ebisawa, T.; Tasaki, S.; Kawai, T.; Akiyoshi, T. [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.; Achiwa, N.; Hino, M.; Otake, Y.; Funahashi, H.

    1996-08-01

    The authors have developed cold neutron optics and interferometry using multilayer mirrors. The advantages of the multilayer mirrors are their applicability to long wavelength neutrons and a great variety of the mirror performance. The idea of the present spin interferometry is based on nonmagnetic neutron spin quantum precession using multilayer spin splitters. The equation for polarized neutrons means that the polarized neutrons are equivalent to the coherent superposition of two parallel spin eigenstates. The structure and principle of a multilayer spin splitter are explained, and the nonmagnetic gap layer of the multilayer spin splitter gives rise to neutron spin quantum precession. The performance test of the multilayer spin splitter were made with a new spin interferometer, which is analogous optically to a spin echo system with vertical precession field. The spin interferometers were installed at Kyoto University research reactor and the JRR-3. The testing method and the results are reported. The performance tests on a new phase-spin echo interferometer are described, and its applications to the development of a high resolution spin echo system and a Jamin type cold neutron interferometer are proposed. (K.I.)

  2. Evaluation of ECHO PS Positioning System in a Porcine Model of Simulated Laparoscopic Ventral Hernia Repair.

    Science.gov (United States)

    Hanna, Erin M; Voeller, Guy R; Roth, J Scott; Scott, Jeffrey R; Gagne, Darcy H; Iannitti, David A

    2013-01-01

    Purpose. Operative efficiency improvements for laparoscopic ventral hernia repair (LVHR) have focused on reducing operative time while maintaining overall repair efficacy. Our objective was to evaluate procedure time and positioning accuracy of an inflatable mesh positioning device (Echo PS Positioning System), as compared to a standard transfascial suture technique, using a porcine model of simulated LVHR. Methods. The study population consisted of seventeen general surgeons (n = 17) that performed simulated LVHR on seventeen (n = 17) female Yorkshire pigs using two implantation techniques: (1) Ventralight ST Mesh + Echo PS Positioning System (Echo PS) and (2) Ventralight ST Mesh + transfascial sutures (TSs). Procedure time and mesh centering accuracy overtop of a simulated surgical defect were evaluated. Results. Echo PS demonstrated a 38.9% reduction in the overall procedure time, as compared to TS. During mesh preparation and positioning, Echo PS demonstrated a 60.5% reduction in procedure time (P Echo PS (16.2%), this was not significantly different than TS. Conclusions. Echo PS demonstrated a significant reduction in overall simulated LVHR procedure time, particularly during mesh preparation/positioning. These operative time savings may translate into reduced operating room costs and improved surgeon/operating room efficiency.

  3. Evaluating cover depth of steel fiber reinforced concrete using impact-echo testing

    Science.gov (United States)

    Lin, Yu-Feng

    2014-04-01

    The purpose of this research is to estimate of the cover depth of steel fiber reinforced concrete using the impact-echo testing. In order to evaluate the security of the construction, usually need to estimate the cover depth of the reinforced concrete. At present, the examination technique of the cover depth of the reinforced concrete without the steel fiber is mainly applied in the magnetic and electrical methods, its rapid detection and good results. But the research of the reactive powder concrete be gradually progress, with the steel fiber concrete structure will be increased, if should still operate the examination with the magnetic and electrical methods, theoretically the steel fiber will have the interference to its electromagnetism field. Therefore, this research designs four kinds of reinforced concrete plate that include different steel fiber contents, to evaluate test results of estimate of the cover depth of the reinforcing bar. The results showed that: estimate of the cover depth of steel fiber reinforced concrete reinforcing bar using the impact-echo testing, the variety of the steel fiber content does not have much influence, the test measurement error within ± 10%, and the most important source of uncertainty is the velocity of concrete.

  4. FPGA-based High-precision Measurement Algorithm for the Ultrasonic Echo Time of Flight

    Institute of Scientific and Technical Information of China (English)

    Bo-xiong WANG; Jin ZHANG

    2010-01-01

    Based on the evaluation of advantages and disadvantages of high-precision digital time interval measuring algorithms, and combined with the principle of the typical time-difference ultrasonic flow measurement,the requirements far the measurement of echo time of flight put forward by the ultrasonic flow measurement are an-alyzed.A new high-precision time interval measurement algorithm is presented, which combines the pulse counting method with the phase delay interpolation. The pulse counting method is used to ensure a large dynamic measuring range, and a double-edge triggering counter is designed to improve the accuracy and reduce the counting quantiza-tion error.The phase delay interpolation is used to reduce the quanti-zation error of pulse counting for further improving the time measure-ment resolution.Test data show that the system for the measurement of the ultrasonic echo time of flight based on this algorithm and im-plemented on an Field Programmable Gate Array(FPGA) needs a rel-atively short time for measurement,and has a measurement error of less than 105 ps.

  5. Roller Profile Online Measurement Based on Ultrasonic Circulation Pulse-echo Technology

    Institute of Scientific and Technical Information of China (English)

    WEN Shu-hui; XU Feng-rong

    2007-01-01

    In order to meet the high precision requirement of wide steel strip in industry field, a novel online measurement of roller profile based on sonic circulation and pulse-echo technology was introduced. All kinds of the factors influencing the accuracy of roller profile online measurement were analyzed in detail and error compensation analysis of system was accordingly presented. In order to reduce count error, field program gate array(FPGA) was introduced and a highprecision data acquisition system was designed based on digital phase-shift technology. Experiments indicate that the standard deviation of measure data was 7.27 μm, which showed the feasibility and validity of the proposed method, and realized the roll profile measurement with high precision.

  6. Field enhancement analysis of an apertureless near field scanning optical microscope probe with finite element method

    Institute of Scientific and Technical Information of China (English)

    Weibin Chen; Qiwen Zhan

    2007-01-01

    Plasmonic field enhancement in a fully coated dielectric near field scanning optical microscope (NSOM)probe under radial polarization illumination is analyzed using an axially symmetric three-dimensional (3D)finite element method (FEM) model. The enhancement factor strongly depends on the illumination spot size, taper angle of the probe, and the metal film thickness. The tolerance of the alignment angle is investigated. Probe designs with different metal coatings and their enhancement performance are studied as well. The nanometric spot size at the tip apex and high field enhancement of the apertureless NSOM probe have important potential application in semiconductor metrology.

  7. All-optical pulse-echo ultrasound probe for intravascular imaging (Conference Presentation)

    Science.gov (United States)

    Colchester, Richard J.; Noimark, Sacha; Mosse, Charles A.; Zhang, Edward Z.; Beard, Paul C.; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.

    2016-02-01

    High frequency ultrasound probes such as intravascular ultrasound (IVUS) and intracardiac echocardiography (ICE) catheters can be invaluable for guiding minimally invasive medical procedures in cardiology such as coronary stent placement and ablation. With current-generation ultrasound probes, ultrasound is generated and received electrically. The complexities involved with fabricating these electrical probes can result in high costs that limit their clinical applicability. Additionally, it can be challenging to achieve wide transmission bandwidths and adequate wideband reception sensitivity with small piezoelectric elements. Optical methods for transmitting and receiving ultrasound are emerging as alternatives to their electrical counterparts. They offer several distinguishing advantages, including the potential to generate and detect the broadband ultrasound fields (tens of MHz) required for high resolution imaging. In this study, we developed a miniature, side-looking, pulse-echo ultrasound probe for intravascular imaging, with fibre-optic transmission and reception. The axial resolution was better than 70 microns, and the imaging depth in tissue was greater than 1 cm. Ultrasound transmission was performed by photoacoustic excitation of a carbon nanotube/polydimethylsiloxane composite material; ultrasound reception, with a fibre-optic Fabry-Perot cavity. Ex vivo tissue studies, which included healthy swine tissue and diseased human tissue, demonstrated the strong potential of this technique. To our knowledge, this is the first study to achieve an all-optical pulse-echo ultrasound probe for intravascular imaging. The potential for performing all-optical B-mode imaging (2D and 3D) with virtual arrays of transmit/receive elements, and hybrid imaging with pulse-echo ultrasound and photoacoustic sensing are discussed.

  8. Interferometric methods for mapping static electric and magnetic fields

    Science.gov (United States)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2014-02-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity Equation. Among these approaches, image-plane off-axis electron holography in the transmission electron microscope has acquired a prominent role thanks to its quantitative capabilities and broad range of applicability. After a brief overview of the main ideas and methods behind field mapping, we focus on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p-n junctions in semiconductors, quantized magnetic flux in superconductors and magnetization topographies in nanoparticles and other magnetic materials) and electron-optical geometries (including multiple biprism, amplitude and mixed-type set-ups). We conclude by highlighting the emerging perspectives of (i) three-dimensional field mapping using electron holographic tomography and (ii) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.

  9. IA/DA waves and polar mesospheric summer echoes

    Energy Technology Data Exchange (ETDEWEB)

    D' Angelo, N. [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States)]. E-mail: nicola-dangelo@uiowa.edu

    2005-03-07

    Excitation of ion-acoustic (IA) and dust-acoustic (DA) waves in the Earth's mesosphere, at altitudes of {approx} 85 km, is considered as a possible cause of polar mesospheric summer echoes (PMSE). Although electric fields of a few tens of mV/m appear to be capable of producing IA waves, these fields are too small for exciting DA waves. Since some of the observed features of PMSE conform to the expected properties of DA waves, alternative mechanisms for DA wave excitation should be considered, such as excitation by velocity shear.

  10. EChO - Exoplanet Characterisation Observatory

    CERN Document Server

    Tinetti, G; Henning, T; Meyer, M; Micela, G; Ribas, I; Stam, D; Swain, M; Krause, O; Ollivier, M; Pace, E; Swinyard, B; Aylward, A; van Boekel, R; Coradini, A; Encrenaz, T; Snellen, I; Zapatero-Osorio, M R; Bouwman, J; Cho, J Y-K; Foresto, V Coudé du; Guillot, T; Lopez-Morales, M; Mueller-Wodarg, I; Palle, E; Selsis, F; Sozzetti, A; Ade, P A R; Achilleos, N; Adriani, A; Agnor, C B; Afonso, C; Prieto, C Allende; Bakos, G; Barber, R J; Barlow, M; Bernath, P; Bezard, B; Bordé, P; Brown, L R; Cassan, A; Cavarroc, C; Ciaravella, A; Cockell, C O U; Coustenis, A; Danielski, C; Decin, L; De Kok, R; Demangeon, O; Deroo, P; Doel, P; Drossart, P; Fletcher, L N; Focardi, M; Forget, F; Fossey, S; Fouqué, P; Frith, J; Galand, M; Gaulme, P; Hernández, J I González; Grasset, O; Grassi, D; Grenfell, J L; Griffin, M J; Griffith, C A; Grözinger, U; Guedel, M; Guio, P; Hainaut, O; Hargreaves, R; Hauschildt, P H; Heng, K; Heyrovsky, D; Hueso, R; Irwin, P; Kaltenegger, L; Kervella, P; Kipping, D; Koskinen, T T; Kovács, G; La Barbera, A; Lammer, H; Lellouch, E; Leto, G; Morales, M Lopez; Valverde, M A Lopez; Lopez-Puertas, M; Lovis, C; Maggio, A; Maillard, J P; Prado, J Maldonado; Marquette, J B; Martin-Torres, F J; Maxted, P; Miller, S; Molinari, S; Montes, D; Moro-Martin, A; Moses, J I; Mousis, O; Tuong, N Nguyen; Nelson, R; Orton, G S; Pantin, E; Pascale, E; Pezzuto, S; Pinfield, D; Poretti, E; Prinja, R; Prisinzano, L; Rees, J M; Reiners, A; Samuel, B; Sanchez-Lavega, A; Forcada, J Sanz; Sasselov, D; Savini, G; Sicardy, B; Smith, A; Stixrude, L; Strazzulla, G; Tennyson, J; Tessenyi, M; Vasisht, G; Vinatier, S; Viti, S; Waldmann, I; White, G J; Widemann, T; Wordsworth, R; Yelle, R; Yung, Y; Yurchenko, S N

    2011-01-01

    A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life. EChO -the Exoplanet Characterisation Observatory- is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. EChO will build on observations by Hubble, Spitzer and groundbased telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. EChO will simultaneously observe a broad enough spectral region -from the visible to the mid-IR- to constrain from one single spectrum the temperature structure of the atmosphere and the abundances of the major molecular species. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules to retrieve the composition and temperature str...

  11. Air Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Air Act (CAA).

  12. Echo State Condition at the Critical Point

    Directory of Open Access Journals (Sweden)

    Norbert Michael Mayer

    2016-12-01

    Full Text Available Recurrent networks with transfer functions that fulfil the Lipschitz continuity with K = 1 may be echo state networks if certain limitations on the recurrent connectivity are applied. It has been shown that it is sufficient if the largest singular value of the recurrent connectivity is smaller than 1. The main achievement of this paper is a proof under which conditions the network is an echo state network even if the largest singular value is one. It turns out that in this critical case the exact shape of the transfer function plays a decisive role in determining whether the network still fulfills the echo state condition. In addition, several examples with one-neuron networks are outlined to illustrate effects of critical connectivity. Moreover, within the manuscript a mathematical definition for a critical echo state network is suggested.

  13. Hazardous Waste Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Resource Conservation and Recovery Act (RCRA).

  14. Enforcement and Compliance History Online (ECHO) Facilities

    Data.gov (United States)

    U.S. Environmental Protection Agency — ECHO provides integrated compliance and enforcement information for about 800,000 regulated facilities nationwide. Its features range from simple to advanced,...

  15. Water Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Clean Water Act (CWA).

  16. Extending methods: using Bourdieu's field analysis to further investigate taste

    Science.gov (United States)

    Schindel Dimick, Alexandra

    2015-06-01

    In this commentary on Per Anderhag, Per-Olof Wickman and Karim Hamza's article Signs of taste for science, I consider how their study is situated within the concern for the role of science education in the social and cultural production of inequality. Their article provides a finely detailed methodology for analyzing the constitution of taste within science education classrooms. Nevertheless, because the authors' socially situated methodology draws upon Bourdieu's theories, it seems equally important to extend these methods to consider how and why students make particular distinctions within a relational context—a key aspect of Bourdieu's theory of cultural production. By situating the constitution of taste within Bourdieu's field analysis, researchers can explore the ways in which students' tastes and social positionings are established and transformed through time, space, place, and their ability to navigate the field. I describe the process of field analysis in relation to the authors' paper and suggest that combining the authors' methods with a field analysis can provide a strong methodological and analytical framework in which theory and methods combine to create a detailed understanding of students' interest in relation to their context.

  17. Phase Locked Photon Echoes for Extended Storage Time

    CERN Document Server

    Ham, B S

    2009-01-01

    We report a quantum optical storage time-extended near perfect photon echo protocol using a phase locking method via an auxiliary spin state, where the phase locking acts as a conditional stopper of the rephasing process resulting in extension of storage time determined by the spin dephasing process. The near perfect retrieval efficiency is owing to phase conjugate scheme, which gives the important benefit of aberration corrections when dealing with quantum images.

  18. Determination of the optimal method for the field-in-field technique in breast tangential radiotherapy.

    Science.gov (United States)

    Tanaka, Hidekazu; Hayashi, Shinya; Hoshi, Hiroaki

    2014-07-01

    Several studies have reported the usefulness of the field-in-field (FIF) technique in breast radiotherapy. However, the methods for the FIF technique used in these studies vary. These methods were classified into three categories. We simulated a radiotherapy plan with each method and analyzed the outcomes. In the first method, a pair of subfields was added to each main field: the single pair of subfields method (SSM). In the second method, three pairs of subfields were added to each main field: the multiple pairs of subfields method (MSM). In the third method, subfields were alternately added: the alternate subfields method (ASM). A total of 51 patients were enrolled in this study. The maximum dose to the planning target volume (PTV) (Dmax) and the volumes of the PTV receiving 100% of the prescription dose (V100%) were calculated. The thickness of the breast between the chest wall and skin surface was measured, and patients were divided into two groups according to the median. In the overall series, the average V100% with ASM (60.3%) was significantly higher than with SSM (52.6%) and MSM (48.7%). In the thin breast group as well, the average V100% with ASM (57.3%) and SSM (54.2%) was significantly higher than that with MSM (43.3%). In the thick breast group, the average V100% with ASM (63.4%) was significantly higher than that with SSM (51.0%) and MSM (54.4%). ASM resulted in better dose distribution, regardless of the breast size. Moreover, planning for ASM required a relatively short time. ASM was considered the most preferred method.

  19. Air Pollutant Report | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. Air Pollutant Report Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Drinking Water Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Analyze Trends: State Hazardous Waste Dashboard | ECHO ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. Analyze Trends: Pesticide Dashboard | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Water Pollution Search | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  5. Criminal Enforcement Case Report Data Dictionary | ECHO ...

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  6. The Rhythms of Echo. Variations on Repetition

    Directory of Open Access Journals (Sweden)

    Rosa María Aradra Sánchez

    2015-04-01

    Full Text Available This paper presents a study on the echo as metric and rhetorical procedure. It makes a brief tour through some of the poetic manifestations of echo in the Spanish literary tradition, and a brief tour through the attention that metric theory has paid to this phenomenon. Then it stops at the possibilities that rhetoric offers for its analysis from the generic approach of the discursive repetition phenomena.

  7. FAST TRACK COMMUNICATION: Relativistic echo dynamics and the stability of a beam of Landau electrons

    Science.gov (United States)

    Sadurní, E.; Seligman, T. H.

    2008-03-01

    We extend the concepts of echo dynamics and fidelity decay to relativistic quantum mechanics, specifically in the context of Klein-Gordon and Dirac equations under external electromagnetic fields. In both cases, we define similar expressions for the fidelity amplitude under perturbations of these fields and a covariant version of the echo operator. Transformation properties under the Lorentz group are established. An alternate expression for fidelity is given in the Dirac case in terms of a 4-current. As an application, we study a beam of Landau electrons perturbed by field inhomogeneities.

  8. Relativistic echo dynamics and the stability of a beam of Landau electrons

    Energy Technology Data Exchange (ETDEWEB)

    SadurnI, E; Seligman, T H [Instituto de Ciencias Fisicas, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)], E-mail: sadurni@fis.unam.mx, E-mail: seligman@fis.unam.mx

    2008-03-14

    We extend the concepts of echo dynamics and fidelity decay to relativistic quantum mechanics, specifically in the context of Klein-Gordon and Dirac equations under external electromagnetic fields. In both cases, we define similar expressions for the fidelity amplitude under perturbations of these fields and a covariant version of the echo operator. Transformation properties under the Lorentz group are established. An alternate expression for fidelity is given in the Dirac case in terms of a 4-current. As an application, we study a beam of Landau electrons perturbed by field inhomogeneities. (fast track communication)

  9. A comprehensive method of estimating electric fields from vector magnetic field and Doppler measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kazachenko, Maria D.; Fisher, George H.; Welsch, Brian T., E-mail: kazachenko@ssl.berkeley.edu [Space Sciences Laboratory, UC Berkeley, CA 94720 (United States)

    2014-11-01

    Photospheric electric fields, estimated from sequences of vector magnetic field and Doppler measurements, can be used to estimate the flux of magnetic energy (the Poynting flux) into the corona and as time-dependent boundary conditions for dynamic models of the coronal magnetic field. We have modified and extended an existing method to estimate photospheric electric fields that combines a poloidal-toroidal decomposition (PTD) of the evolving magnetic field vector with Doppler and horizontal plasma velocities. Our current, more comprehensive method, which we dub the 'PTD-Doppler-FLCT Ideal' (PDFI) technique, can now incorporate Doppler velocities from non-normal viewing angles. It uses the FISHPACK software package to solve several two-dimensional Poisson equations, a faster and more robust approach than our previous implementations. Here, we describe systematic, quantitative tests of the accuracy and robustness of the PDFI technique using synthetic data from anelastic MHD (ANMHD) simulations, which have been used in similar tests in the past. We find that the PDFI method has less than 1% error in the total Poynting flux and a 10% error in the helicity flux rate at a normal viewing angle (θ = 0) and less than 25% and 10% errors, respectively, at large viewing angles (θ < 60°). We compare our results with other inversion methods at zero viewing angle and find that our method's estimates of the fluxes of magnetic energy and helicity are comparable to or more accurate than other methods. We also discuss the limitations of the PDFI method and its uncertainties.

  10. X-ray echo spectroscopy (Conference Presentation)

    Science.gov (United States)

    Shvyd'ko, Yuri V.

    2016-09-01

    X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.

  11. Field methods to measure surface displacement and strain with the Video Image Correlation method

    Science.gov (United States)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  12. Demonstration of improved sensitivity of echo interferometers to gravitational acceleration

    CERN Document Server

    Mok, C; Carew, A; Berthiaume, R; Beattie, S; Kumarakrishnan, A

    2013-01-01

    We have developed two configurations of an echo interferometer that rely on standing wave excitation of a laser-cooled sample of rubidium atoms that measures acceleration. For a two-pulse configuration, the interferometer signal is modulated at the recoil frequency and exhibits a sinusoidal frequency chirp as a function of pulse spacing. For a three-pulse stimulated echo configuration, the signal is observed without recoil modulation and exhibits a modulation at a single frequency. The three-pulse configuration is less sensitive to effects of vibrations and magnetic field curvature leading to a longer experimental timescale. For both configurations of the atom interferometer (AI), we show that a measurement of acceleration with a statistical precision of 0.5% can be realized by analyzing the shape of the echo envelope that has a temporal duration of a few microseconds. Using the two-pulse AI, we obtain measurements of acceleration that are statistically precise to 6 parts per million (ppm) on a 25 ms timescal...

  13. Mono-Exponential Fitting in T2-Relaxometry: Relevance of Offset and First Echo.

    Directory of Open Access Journals (Sweden)

    David Milford

    Full Text Available T2 relaxometry has become an important tool in quantitative MRI. Little focus has been put on the effect of the refocusing flip angle upon the offset parameter, which was introduced to account for a signal floor due to noise or to long T2 components. The aim of this study was to show that B1 imperfections contribute significantly to the offset. We further introduce a simple method to reduce the systematic error in T2 by discarding the first echo and using the offset fitting approach.Signal curves of T2 relaxometry were simulated based on extended phase graph theory and evaluated for 4 different methods (inclusion and exclusion of the first echo, while fitting with and without the offset. We further performed T2 relaxometry in a phantom at 9.4T magnetic resonance imaging scanner and used the same methods for post-processing as in the extended phase graph simulated data. Single spin echo sequences were used to determine the correct T2 time.The simulation data showed that the systematic error in T2 and the offset depends on the refocusing pulse, the echo spacing and the echo train length. The systematic error could be reduced by discarding the first echo. Further reduction of the systematic T2 error was reached by using the offset as fitting parameter. The phantom experiments confirmed these findings.The fitted offset parameter in T2 relaxometry is influenced by imperfect refocusing pulses. Using the offset as a fitting parameter and discarding the first echo is a fast and easy method to minimize the error in T2, particularly for low to intermediate echo train length.

  14. Transplanckian inflation as gravity echoes

    Energy Technology Data Exchange (ETDEWEB)

    Barenboim, G., E-mail: Gabriela.Barenboim@uv.es; Vives, O.

    2015-09-02

    In this work, we show that, in the presence of non-minimal coupling to gravity, it is possible to generate sizeable tensor modes in single-field models without transplanckian field values. These transplanckian field values apparently needed in Einstein gravity to accommodate the experimental results may only be due to our insistence of imposing a minimal coupling of the inflaton field to gravity in a model with non-minimal couplings. We present three simple single-field models that prove that it is possible to accommodate a large tensor-to-scalar ratio without requiring transplanckian field values within the slow-roll regime.

  15. Echoes from a Dying Star

    Science.gov (United States)

    Kohler, Susanna

    2017-06-01

    When a passing star is torn apart by a supermassive black hole, it emits a flare of X-ray, ultraviolet, and optical light. What can we learn from the infrared echo of a violent disruption like this one?Stellar DestructionOptical (black triangles) and infrared (blue circles and red squares) observations of F010042237. Day 0 marks the day the optical emission peaked. The infrared emission rises steadily through the end of the data. [Dou et al. 2017]Tidal disruption events occur when a star passes within the tidal radius of a supermassive black hole. After tidal forces pull the star apart, much of the stellar matter falls onto the black hole, radiating briefly in X-ray, ultraviolet and optical as it accretes. This signature rise and gradual fall of emission has allowed us to detect dozens of tidal disruption events thus far.One of the recently discovered candidate events is a little puzzling. Not only does the candidate in ultraluminous infrared galaxy F010042237 have an unusual host most disruptions occur in galaxies that are no longer star-forming, in contrast to this one but its optical light curve also shows an unusually long decay time.Now mid-infrared observations of this event have beenpresented by a team of scientists led by Liming Dou (Guangzhou University and Department of Education, Guangdong Province, China), revealing why this disruption is behaving unusually.Schematic of a convex dusty ring (red bows) that absorbs UV photons and re-emits in the infrared. It simultaneously scatters UV and optical photons into our line of sight. The dashed lines illustrate the delays at lags of 60 days, 1, 2, 3, 4, and 5 years. [Adapted from Dou et al. 2017]A Dusty Solution?The optical flare from F010042237s nucleus peaked in 2010, so Dou and collaborators obtained archival mid-infrared data from the WISE and NEOWISE missions from 2010 to 2016. The data show that the galaxy is quiescent in mid-infrared in 2010 but in data from three years later, the infrared emission has

  16. Adhesion Force Measurements of Polymer Particles by Detachment Field Method

    Institute of Scientific and Technical Information of China (English)

    Masashi Nagayama; Nobuyasu Sakurai; Tatsuaki Wada; Manabu Takeuchi

    2004-01-01

    The adhesion force distributions of polymer particles to aluminum substrates were measured by the detachment field method. Polymer particles with conducting surface treatment were used for the measurements.Further the conventional detachment field method was modified to be applicable to the adhesion force measurements of a single particle. The adhesion force of the polymer particles increased with an increase in relative humidity. The surface roughness of the substrate influenced the adhesion forces of particles significantly. The influence of the CF4 plasma treatment of the polymer particles and thin layer coating of the substrate surface on the adhesion forces of the polymer particles was also studied, and factors affecting adhesion forces of polymer particles are discussed.

  17. Bringing the Field into the Classroom: A Field Methods Course on Saudi Arabian Sign Language

    Science.gov (United States)

    Stephen, Anika; Mathur, Gaurav

    2012-01-01

    The methodology used in one graduate-level linguistics field methods classroom is examined through the lens of the students' experiences. Four male Deaf individuals from the Kingdom of Saudi Arabia served as the consultants for the course. After a brief background information about their country and its practices surrounding deaf education, both…

  18. Nuclear Spin Echo Decay for the Walstedt-Cheong Mechanism

    Science.gov (United States)

    Coleman, Todd; Recchia, Charles; Seber, Derek; Pennington, Charles

    1997-03-01

    We present calculations of nuclear spin echo decay for the Walstedt-Cheong mechanism(R. E. Walstedt and S. -W. Cheong, Phys. Rev. B 51, 3163 (1995)) in which observed A nuclei are coupled to B nuclei that are experiencing magnetic spin lattice re laxation effects. It has been shown that this mechanism must be taken into account when NMR transverse relaxation rates are being analyzed to provide information on vortex dynamics and electronic spin susceptibility in cuprate superconductors.(R ecchia et al, submitted 1996) We report a method of computing spin echo decays which eliminates the need for numerical simulations and phase distribution approximations(C. H. Recchia, K. Gorny, and C. H. Pennington, Phys. Rev. B 54, 4207 (1996)) and involves the time evolution of normal modes of a relaxation matrix.

  19. Elasticity reconstructive imaging by means of stimulated echo MRI.

    Science.gov (United States)

    Chenevert, T L; Skovoroda, A R; O'Donnell, M; Emelianov, S Y

    1998-03-01

    A method is introduced to measure internal mechanical displacement and strain by means of MRI. Such measurements are needed to reconstruct an image of the elastic Young's modulus. A stimulated echo acquisition sequence with additional gradient pulses encodes internal displacements in response to an externally applied differential deformation. The sequence provides an accurate measure of static displacement by limiting the mechanical transitions to the mixing period of the simulated echo. Elasticity reconstruction involves definition of a region of interest having uniform Young's modulus along its boundary and subsequent solution of the discretized elasticity equilibrium equations. Data acquisition and reconstruction were performed on a urethane rubber phantom of known elastic properties and an ex vivo canine kidney phantom using elastic properties are well represented on Young's modulus images. The long-term objective of this work is to provide a means for remote palpation and elasticity quantitation in deep tissues otherwise inaccessible to manual palpation.

  20. Inaudible functional MRI using a truly mute gradient echo sequence

    Energy Technology Data Exchange (ETDEWEB)

    Marcar, V.L. [University of Zurich, Department of Psychology, Neuropsychology, Treichlerstrasse 10, 8032 Zurich (Switzerland); Girard, F. [GE Medical Systems SA, 283, rue de la Miniere B.P. 34, 78533 Buc Cedex (France); Rinkel, Y.; Schneider, J.F.; Martin, E. [University Children' s Hospital, Neuroradiology and Magnetic Resonance, Department of Diagnostic Imaging, Steinwiesstrasse 75, 8032 Zurich (Switzerland)

    2002-11-01

    We performed functional MRI experiments using a mute version of a gradient echo sequence on adult volunteers using either a simple visual stimulus (flicker goggles: 4 subjects) or an auditory stimulus (music: 4 subjects). Because the mute sequence delivers fewer images per unit time than a fast echo planar imaging (EPI) sequence, we explored our data using a parametric ANOVA test and a non-parametric Wilcoxon-Mann-Whitney test in addition to performing a cross-correlation analysis. All three methods were in close agreement regarding the location of the BOLD contrast signal change. We demonstrated that, using appropriate statistical analysis, functional MRI using an MR sequence that is acoustically inaudible to the subject is feasible. Furthermore compared with the ''silent'' event-related procedures involving an EPI protocol, our mGE protocol compares favourably with respect to experiment time and the BOLD signal. (orig.)

  1. Work function measurements by the field emission retarding potential method.

    Science.gov (United States)

    Strayer, R. W.; Mackie, W.; Swanson, L. W.

    1973-01-01

    Description of the theoretical foundation of the field electron retarding potential method, and review of its experimental application to the measurement of single crystal face work functions. The results obtained from several substrates are discussed. An interesting and useful fallout from the experimental approach described is the ability to accurately measure the elastic and inelastic reflection coefficient for impinging electrons to near zero-volt energy.

  2. The virtual fields method applied to spalling tests on concrete

    Directory of Open Access Journals (Sweden)

    Forquin P.

    2012-08-01

    Full Text Available For one decade spalling techniques based on the use of a metallic Hopkinson bar put in contact with a concrete sample have been widely employed to characterize the dynamic tensile strength of concrete at strain-rates ranging from a few tens to two hundreds of s−1. However, the processing method mainly based on the use of the velocity profile measured on the rear free surface of the sample (Novikov formula remains quite basic and an identification of the whole softening behaviour of the concrete is out of reach. In the present paper a new processing method is proposed based on the use of the Virtual Fields Method (VFM. First, a digital high speed camera is used to record the pictures of a grid glued on the specimen. Next, full-field measurements are used to obtain the axial displacement field at the surface of the specimen. Finally, a specific virtual field has been defined in the VFM equation to use the acceleration map as an alternative ‘load cell’. This method applied to three spalling tests allowed to identify Young’s modulus during the test. It was shown that this modulus is constant during the initial compressive part of the test and decreases in the tensile part when micro-damage exists. It was also shown that in such a simple inertial test, it was possible to reconstruct average axial stress profiles using only the acceleration data. Then, it was possible to construct local stress-strain curves and derive a tensile strength value.

  3. Neutron Field Measurements in Phantom with Foil Activation Methods.

    Science.gov (United States)

    1986-11-29

    jI25 Ii III uumu ullli~ S....- - Lb - w * .qJ’ AD-A 192 122 ulJ. IL (pj DNA-TR-87- 10 N EUTRON FIELD MEASUREMENTS IN PHANTOM WITH FOIL ACTIVATION...SAND II Measurements in Phantom 6 4 The 5-Foil Neutron Dosimetry Method 29 5 Comparison of SAND II and Simple 5-Foil Dosimetry Method 34 6 Thermal ...quite reasonable. The monkey phantom spectrum differs from the NBS U-235 fission spectrum in that the former has a I/E tail plus thermal -neutron peak

  4. Numerical results for extended field method applications. [thin plates

    Science.gov (United States)

    Donaldson, B. K.; Chander, S.

    1973-01-01

    This paper presents the numerical results obtained when a new method of analysis, called the extended field method, was applied to several thin plate problems including one with non-rectangular geometry, and one problem involving both beams and a plate. The numerical results show that the quality of the single plate solutions was satisfactory for all cases except those involving a freely deflecting plate corner. The results for the beam and plate structure were satisfactory even though the structure had a freely deflecting corner.

  5. Breast tissue characterization using FARMA modeling of ultrasonic RF echo.

    Science.gov (United States)

    Alacam, Burak; Yazici, Birsen; Bilgutay, Nihat; Forsberg, Flemming; Piccoli, Catherine

    2004-10-01

    A number of empirical and analytical studies demonstrated that the ultrasound RF echo reflected from tissue exhibits 1/f characteristics. In this paper, we propose to model 1/f characteristics of the ultrasonic RF echo by a novel parsimonious model, namely the fractional differencing auto regressive moving average (FARMA) process, and evaluated diagnostic value of model parameters for breast cancer malignancy differentiation. FARMA model captures the fractal and long term correlated nature of the backscattered speckle texture and facilitates robust efficient estimation of fractal parameters. In our study, in addition to the computer generated FARMA model parameters, we included patient age and radiologist's prebiopsy level of suspicion (LOS) as potential indicators of malignant and benign masses. We evaluated the performance of the proposed set of features using various classifiers and training methods using 120 in vivo breast images. Our study shows that the area under the receiver operating characteristics (ROC) curve of FARMA model parameters alone is superior to the area under the ROC curve of the radiologist's prebiopsy LOS. The area under the ROC curve of the three sets of features yields a value of 0.87, with a confidence interval of [0.85, 0.89], at a significance level of 0.05. Our results suggest that the proposed method of ultrasound RF echo model leads to parameters that can differentiate breast tumors with a relatively high precision. This set of RF echo features can be incorporated into a comprehensive computer-aided diagnostic system to aid physicians in breast cancer diagnosis.

  6. Grassmann phase space methods for fermions. II. Field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, B.J., E-mail: bdalton@swin.edu.au [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia); Jeffers, J. [Department of Physics, University of Strathclyde, Glasgow G4ONG (United Kingdom); Barnett, S.M. [School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-02-15

    In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, though fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.

  7. Echoes in X-ray Binaries

    CERN Document Server

    O'Brien, K; Hynes, R; Chen, W; Haswell, C; Still, M

    2002-01-01

    We present a method of analysing the correlated X-ray and optical/UV variability in X-ray binaries, using the observed time delays between the X-ray driving lightcurves and their reprocessed optical echoes. This allows us to determine the distribution of reprocessing sites within the binary. We model the time-delay transfer functions by simulating the distribution of reprocessing regions, using geometrical and binary parameters. We construct best-fit time-delay transfer functions, showing the regions in the binary responsible for the reprocessing of X-rays. We have applied this model to observations of the Soft X-ray Transient, GRO j1655-40. We find the optical variability lags the X-ray variability with a mean time delay of 19.3$pm{2.2}$ seconds. This means that the outer regions of the accretion disc are the dominant reprocessing site in this system. On fitting the data to a simple geometric model, we derive a best-fit disk half-opening angle of 13.5$^{+2.1}_{-2.8}$ degrees, which is similar to that observe...

  8. Numerical methods for the sign problem in Lattice Field Theory

    CERN Document Server

    Bongiovanni, Lorenzo

    2016-01-01

    The great majority of algorithms employed in the study of lattice field theory are based on Monte Carlo's importance sampling method, i.e. on probability interpretation of the Boltzmann weight. Unfortunately in many theories of interest one cannot associated a real and positive weight to every configuration, that is because their action is explicitly complex or because the weight is multiplied by some non positive term. In this cases one says that the theory on the lattice is affected by the sign problem. An outstanding example of sign problem preventing a quantum field theory to be studied, is QCD at finite chemical potential. Whenever the sign problem is present, standard Monte Carlo methods are problematic to apply and, in general, new approaches are needed to explore the phase diagram of the complex theory. Here we will review three of the main candidate methods to deal with the sign problem, namely complex Langevin dynamics, Lefschetz thimbles and density of states method. We will first study complex Lan...

  9. Herrmann Method of Analyzing Structure Design Velocity Field

    Institute of Scientific and Technical Information of China (English)

    邹文胜; 左正兴; 冯慧华; 廖日东; 张红光

    2001-01-01

    探讨了基于变分法的敏度分析在形状优化设计中的应用,提出敏度分析过程中提高速度场求解效率和有限元网格质量的新方法.在形状优化设计中采用基于变分法的敏度分析方法,设计速度场采用Hermann网格均匀化法进行求解.算例表明优化过程中采用Herrmann网格均匀化法求解设计速度场,可以提高优化过程中网格的质量,速度场的求解效率也得到极大的提高从而优化的效果和效率都有明显提高.在形状优化过程中,采用基于变分法的敏度分析,可以使敏度分析成为单独模块,在进行设计速度场求解时采用Herrmann法,使速度场求解的效率和优化过程的质量得到保证.%The shape optimization is studied by adopting the domainintegrated method which is based on the calculus of variations during the shape design sensitivity analysis. A new method of improving the efficiency of the design velocity field analysis and the quality of the finite element method (FEM) mesh is put forward. The sensitivity analysis which is based on the calculus of variations is used in the shape optimization. The design velocity field is solved by Herrmann method. An example shows that both the quality of the FEM mesh and the efficiency of the computing of the design velocity field are improved by Herrmann method. So the effect and the efficiency of the shape optimization are guaranteed. If using sensitivity analysis which is based on the calculus of variations in the shape optimization, the sensitivity analysis can be a relatively independent module. The efficiency of computing the design velocity field and the quality of mesh will be improved by using Herrmann method.

  10. Pre-ejection period by radial artery tonometry supplements echo doppler findings during biventricular pacemaker optimization

    Directory of Open Access Journals (Sweden)

    Qamruddin Salima

    2011-07-01

    Full Text Available Abstract Background Biventricular (Biv pacemaker echo optimization has been shown to improve cardiac output however is not routinely used due to its complexity. We investigated the role of a simple method involving computerized pre-ejection time (PEP assessment by radial artery tonometry in guiding Biv pacemaker optimization. Methods Blinded echo and radial artery tonometry were performed simultaneously in 37 patients, age 69.1 ± 12.8 years, left ventricular (LV ejection fraction (EF 33 ± 10%, during Biv pacemaker optimization. Effect of optimization on echo derived velocity time integral (VTI, ejection time (ET, myocardial performance index (MPI, radial artery tonometry derived PEP and echo-radial artery tonometry derived PEP/VTI and PEP/ET indices was evaluated. Results Significant improvement post optimization was achieved in LV ET (286.9 ± 37.3 to 299 ± 34.6 ms, p Conclusion An acute shortening of PEP by radial artery tonometry occurs post Biv pacemaker optimization and correlates with improvement in hemodynamics by echo Doppler and may provide a cost-efficient approach to assist with Biv pacemaker echo optimization.

  11. On the factors controlling occurrence of F-region coherent echoes

    Directory of Open Access Journals (Sweden)

    D. W. Danskin

    Full Text Available Several factors are known to control the HF echo occurrence rate, including electron density distribution in the ionosphere (affecting the propagation path of the radar wave, D-region radio wave absorption, and ionospheric irregularity intensity. In this study, we consider 4 days of CUTLASS Finland radar observations over an area where the EISCAT incoherent scatter radar has continuously monitored ionospheric parameters. We illustrate that for the event under consideration, the D-region absorption was not the major factor affecting the echo appearance. We show that the electron density distribution and the radar frequency selection were much more significant factors. The electron density magnitude affects the echo occurrence in two different ways. For small F-region densities, a minimum value of 1 × 1011 m-3 is required to have sufficient radio wave refraction so that the orthogonality (with the magnetic field lines condition is met. For too large densities, radio wave strong "over-refraction" leads to the ionospheric echo disappearance. We estimate that the over-refraction is important for densities greater than 4 × 1011 m-3. We also investigated the backscatter power and the electric field magnitude relationship and found no obvious relationship contrary to the expectation that the gradient-drift plasma instability would lead to stronger irregularity intensity/echo power for larger electric fields.

    Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; auroral ionosphere

  12. A telluric method for natural field induced polarization studies

    Science.gov (United States)

    Zorin, Nikita; Epishkin, Dmitrii; Yakovlev, Andrey

    2016-12-01

    Natural field induced polarization (NFIP) is a branch of low-frequency electromagnetics designed for detection of buried polarizable objects from magnetotelluric (MT) data. The conventional approach to the method deals with normalized MT apparent resistivity. We show that it is more favorable to extract the IP effect from solely electric (telluric) transfer functions instead. For lateral localization of polarizable bodies it is convenient to work with the telluric tensor determinant, which does not depend on the rotation of the receiving electric dipoles. Applicability of the new method was verified in the course of a large-scale field research. The field work was conducted in a well-explored area in East Kazakhstan known for the presence of various IP sources such as graphite, magnetite, and sulfide mineralization. A new multichannel processing approach allowed the determination of the telluric tensor components with very good accuracy. This holds out a hope that in some cases NFIP data may be used not only for detection of polarizable objects, but also for a rough estimation of their spectral IP characteristics.

  13. A novel colorimetric method for field arsenic speciation analysis

    Institute of Scientific and Technical Information of China (English)

    Shan Hu; Jinsuo Lu; Chuanyong Jing

    2012-01-01

    Accurate on-site determination of arsenic (As) concentration as well as its speciation presents a great environmental challenge especially to developing countries.To meet the need of routine field monitoring,we developed a rapid colorimetric method with a wide dynamic detection range and high precision.The novel application of KMnO4 and CH4N2S as effective As(Ⅲ) oxidant and As(Ⅴ) reductant,respectively,in the formation of molybdenum blue complexes enabled the differentiation of As(Ⅲ) and As(Ⅴ).The detection limit of the method was 8 μg/L with a linear range (R2 =0.998) of four orders of magnitude in total As concentrations.The As speciation in groundwater samples determined with the colorimetric method in the field were consistent with the results using the high performance liquid chromatography atomic fluorescence spectrometry,as evidenced by a linear correlation in paired analysis with a slope of 0.9990-0.9997 (p < 0,0001,n =28).The recovery of 96%-116% for total As,85%-122% for As(Ⅲ),and 88%-127% for As(Ⅴ) were achieved for groundwater samples with a total As concentration range 100-800 μg/L,The colorimetric result showed that 3.61 g/L As(Ⅲ) existed as the only As species in a real industrial wastewater,which was in good agreement with the HPLC-AFS result of 3.56 g/L As(Ⅲ),No interference with the color development was observed in the presence of sulfate,phosphate,silicate,humic acid,and heavy metals from complex water matrix.This accurate,sensitive,and easy-to-use method is especially suitable for field As determination.

  14. The Diagonal Compression Field Method using Circular Fans

    DEFF Research Database (Denmark)

    Hansen, Thomas

    2006-01-01

    In a concrete beam with transverse stirrups the shear forces are carried by inclined compression in the concrete. Along the tensile zone and the compression zone of the beam the transverse components of the inclined compressions are transferred to the stirrups, which are thus subjected to tension....... Since the eighties the diagonal compression field method has been used to design transverse shear reinforcement in concrete beams. The method is based on the lower-bound theorem of the theory of plasticity, and it has been adopted in Eurocode 2. The paper presents a new design method, which...... with low shear stresses. The larger inclination (the smaller -value) of the uniaxial concrete stress the more transverse shear reinforcement is needed; hence it would be optimal if the -value for a given beam could be set to a low value in regions with high shear stresses and thereafter increased...

  15. A novel framework of multi-channel acoustic echo cancellation

    Institute of Scientific and Technical Information of China (English)

    HE Zhaoshui; XIE Shengli; FU Yuli

    2006-01-01

    Conventionally, multi-channel acoustic echo cancellation (AEC) achieves the goal by estimating the impulse responses of the local room. However, generally, conventional AEC methods have no unique solutions. Due to the strong correlation of the input signals, conventional methods are with many disadvantages. To overcome this problem, a new framework is proposed in this paper based on SIMO(single input multiple output) blind deconvolution. Under the new framework, we achieve the goal by identifying the impulse responses of distant room and avoiding the disadvantages of the conventional methods.

  16. Magnetic irreversibility: An important amendment in the zero-field-cooling and field-cooling method

    Science.gov (United States)

    Teixeira Dias, Fábio; das Neves Vieira, Valdemar; Esperança Nunes, Sabrina; Pureur, Paulo; Schaf, Jacob; Fernanda Farinela da Silva, Graziele; de Paiva Gouvêa, Cristol; Wolff-Fabris, Frederik; Kampert, Erik; Obradors, Xavier; Puig, Teresa; Roa Rovira, Joan Josep

    2016-02-01

    The present work reports about experimental procedures to correct significant deviations of magnetization data, caused by magnetic relaxation, due to small field cycling by sample transport in the inhomogeneous applied magnetic field of commercial magnetometers. The extensively used method for measuring the magnetic irreversibility by first cooling the sample in zero field, switching on a constant applied magnetic field and measuring the magnetization M(T) while slowly warming the sample, and subsequently measuring M(T) while slowly cooling it back in the same field, is very sensitive even to small displacement of the magnetization curve. In our melt-processed YBaCuO superconducting sample we observed displacements of the irreversibility limit up to 7 K in high fields. Such displacements are detected only on confronting the magnetic irreversibility limit with other measurements, like for instance zero resistance, in which the sample remains fixed and so is not affected by such relaxation. We measured the magnetic irreversibility, Tirr(H), using a vibrating sample magnetometer (VSM) from Quantum Design. The zero resistance data, Tc0(H), were obtained using a PPMS from Quantum Design. On confronting our irreversibility lines with those of zero resistance, we observed that the Tc0(H) data fell several degrees K above the Tirr(H) data, which obviously contradicts the well known properties of superconductivity. In order to get consistent Tirr(H) data in the H-T plane, it was necessary to do a lot of additional measurements as a function of the amplitude of the sample transport and extrapolate the Tirr(H) data for each applied field to zero amplitude.

  17. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  18. Gamma neutron method applied to field measurement of hydrodynamic dispersion

    Science.gov (United States)

    Brissaud, F.; Pappalardo, A.; Couchat, Ph.

    1983-06-01

    The gamma neutron method is applied to the study of solute movements during field irrigations under steady-state and transient hydrodynamic conditions. Two different types of behavior are discussed. In the first, the labeled water pulse velocity matches the conservation of the vertical rate of water and, when the deuterated water concentration profiles are mass-conservative, the experimental results are accurately described by the equation of dispersion. In the second, the pore water velocity differs considerably from that of strictly vertical displacements and the concentration profiles are not massconservative.

  19. Transient Loschmidt echo in quenched Ising chains

    Science.gov (United States)

    Lupo, Carla; Schiró, Marco

    2016-07-01

    We study the response to sudden local perturbations of highly excited quantum Ising spin chains. The key quantity encoding this response is the overlap between time-dependent wave functions, which we write as a transient Loschmidt Echo. Its asymptotics at long time differences contain crucial information about the structure of the highly excited nonequilibrium environment induced by the quench. We compute the echo perturbatively for a weak local quench but for arbitrarily large global quench, using a cumulant expansion. Our perturbative results suggest that the echo decays exponentially, rather than power law as in the low-energy orthogonality catastrophe, a further example of quench-induced decoherence already found in the case of quenched Luttinger liquids. The emerging decoherence scale is set by the strength of the local potential and the bulk excitation energy.

  20. Increased BOLD sensitivity in the orbitofrontal cortex using slice-dependent echo times at 3 T.

    Science.gov (United States)

    Domsch, Sebastian; Linke, Julia; Heiler, Patrick M; Kroll, Alexander; Flor, Herta; Wessa, Michèle; Schad, Lothar R

    2013-02-01

    Functional magnetic resonance imaging (fMRI) exploits the blood oxygenation level dependent (BOLD) effect to detect neuronal activation related to various experimental paradigms. Some of these, such as reversal learning, involve the orbitofrontal cortex and its interaction with other brain regions like the amygdala, striatum or dorsolateral prefrontal cortex. These paradigms are commonly investigated with event-related methods and gradient echo-planar imaging (EPI) with short echo time of 27 ms. However, susceptibility-induced signal losses and image distortions in the orbitofrontal cortex are still a problem for this optimized sequence as this brain region consists of several slices with different optimal echo times. An EPI sequence with slice-dependent echo times is suitable to maximize BOLD sensitivity in all slices and might thus improve signal detection in the orbitofrontal cortex. To test this hypothesis, we first optimized echo times via BOLD sensitivity simulation. Second, we measured 12 healthy volunteers using a standard EPI sequence with an echo time of 27 ms and a modified EPI sequence with echo times ranging from 22 ms to 47 ms. In the orbitofrontal cortex, the number of activated voxels increased from 87 ± 44 to 549 ± 83 and the maximal t-value increased from 4.4 ± 0.3 to 5.4 ± 0.3 when the modified EPI was used. We conclude that an EPI with slice-dependent echo times may be a valuable tool to mitigate susceptibility artifacts in event-related whole-brain fMRI studies with a focus on the orbitofrontal cortex.

  1. Path planning in uncertain flow fields using ensemble method

    Science.gov (United States)

    Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.

    2016-10-01

    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  2. Path planning in uncertain flow fields using ensemble method

    KAUST Repository

    Wang, Tong

    2016-08-20

    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  3. Path planning in uncertain flow fields using ensemble method

    Science.gov (United States)

    Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.

    2016-08-01

    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  4. Fields Institute International Symposium on Asymptotic Methods in Stochastics

    CERN Document Server

    Kulik, Rafal; Haye, Mohamedou; Szyszkowicz, Barbara; Zhao, Yiqiang

    2015-01-01

    This book contains articles arising from a conference in honour of mathematician-statistician Miklόs Csörgő on the occasion of his 80th birthday, held in Ottawa in July 2012. It comprises research papers and overview articles, which provide a substantial glimpse of the history and state-of-the-art of the field of asymptotic methods in probability and statistics, written by leading experts. The volume consists of twenty articles on topics on limit theorems for self-normalized processes, planar processes, the central limit theorem and laws of large numbers, change-point problems, short and long range dependent time series, applied probability and stochastic processes, and the theory and methods of statistics. It also includes Csörgő’s list of publications during more than 50 years, since 1962.

  5. Multi-Echo-Based Echo-Planar Spectroscopic Imaging Using a 3T MRI Scanner

    Directory of Open Access Journals (Sweden)

    Jon K. Furuyama

    2011-10-01

    Full Text Available The use of spin-echoes has been employed in an Echo-Planar Spectroscopic Imaging (EPSI sequence to collect multiple phase encoded lines within a single TR in a Multi-Echo-based Echo-Planar Spectroscopic Imaging technique (MEEPSI. Despite the T2 dependence on the amplitude of the spin-echoes, the Full Width at Half Maximum (FWHM of the derived multi-echo Point Spread Function (PSF is shown to decrease, indicating an improved overall spatial resolution without requiring any additional scan time. The improved spatial resolution is demonstrated in the one-dimensional (1D spatial profiles of the N-Acetyl Aspartate (NAA singlet along the phase encode dimension in a gray matter phantom. Although the improved spatial resolution comes at the expense of spectral resolution, it is shown in vivo that peak broadening due to T2* decay is more significant than the loss of resolution from using spin-echoes and therefore does not affect the ability to quantify metabolites using the LCModel fitting algorithm.

  6. How can dolphins recognize fish according to their echoes? A statistical analysis of fish echoes.

    Directory of Open Access Journals (Sweden)

    Yossi Yovel

    Full Text Available Echo-based object classification is a fundamental task of animals that use a biosonar system. Dolphins and porpoises should be able to rely on echoes to discriminate a predator from a prey or to select a desired prey from an undesired object. Many studies have shown that dolphins and porpoises can discriminate between objects according to their echoes. All of these studies however, used unnatural objects that can be easily characterized in human terminologies (e.g., metallic spheres, disks, cylinders. In this work, we collected real fish echoes from many angles of acquisition using a sonar system that mimics the emission properties of dolphins and porpoises. We then tested two alternative statistical approaches in classifying these echoes. Our results suggest that fish species can be classified according to echoes returning from porpoise- and dolphin-like signals. These results suggest how dolphins and porpoises can classify fish based on their echoes and provide some insight as to which features might enable the classification.

  7. Evolution of entanglement under echo dynamics

    Science.gov (United States)

    Prosen, Tomaž; Seligman, Thomas H.; Žnidarič, Marko

    2003-04-01

    Echo dynamics and fidelity are often used to discuss stability in quantum-information processing and quantum chaos. Yet fidelity yields no information about entanglement, the characteristic property of quantum mechanics. We study the evolution of entanglement in echo dynamics. We find qualitatively different behavior between integrable and chaotic systems on one hand and between random and coherent initial states for integrable systems on the other. For the latter the evolution of entanglement is given by a classical time scale. Analytic results are illustrated numerically in a Jaynes-Cummings model.

  8. An improved potential field method for mobile robot navigation

    Institute of Scientific and Technical Information of China (English)

    李广胜

    2016-01-01

    In order to overcome the inherent oscillation problem of potential field methods ( PFMs) for au-tonomous mobile robots in the presence of obstacles and in narrow passages, an enhanced potential field method that integrates Levenberg-Marquardt ( L-M ) algorithm and k-trajectory algorithm into the basic PFMs is proposed and simulated.At first, the mobile robot navigation function based on the basic PFMs is established by choosing Gaussian model.Then, the oscillation problem of the nav-igation function is investigated when a mobile robot nears obstacles and passes through a long and narrow passage, which can cause large computation cost and system instability.At last, the L-M al-gorithm is adopted to modify the search direction of the navigation function for alleviating the oscilla-tion, while the k-trajectory algorithm is applied to further smooth trajectories.By a series of compar-ative experiments, the use of the L-M algorithm and k-trajectory algorithm can greatly improve the system performance with the advantages of reducing task completion time and achieving smooth traj-ectories.

  9. ECHO: a reference-free short-read error correction algorithm.

    Science.gov (United States)

    Kao, Wei-Chun; Chan, Andrew H; Song, Yun S

    2011-07-01

    Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a probabilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly, particularly in the case of low-to-moderate sequence coverage depth.

  10. The influence of gender and age on the thickness and echo-density of skin.

    Science.gov (United States)

    Firooz, A; Rajabi-Estarabadi, A; Zartab, H; Pazhohi, N; Fanian, F; Janani, L

    2017-02-01

    The more recent use of ultrasound scanning allows a direct measurement on unmodified skin, and is considered to be a reliable method for in vivo measurement of epidermal and dermal thickness. The objective of this study was to assess the influence of gender and age on the thickness and echo-density of skin measured by high frequency ultrasonography (HFUS). This study was carried out on 30 healthy volunteers (17 female, 13 male) with age range of 24-61 years old. The thickness and echo-density of dermis as well as epidermal entrance echo thickness in five anatomic sites (cheek, neck, palm, dorsal foot, and sole) were measured using two different types of B mode HFUS, 22 and 50 MHz frequencies. The epidermal entrance echo thickness and thickness of dermis in males were higher than females, which was statistically significant on neck and dorsum of foot. The echo-density of dermis was higher in females on all sites, but was only statistically significant on neck. The epidermal entrance echo thickness and thickness of dermis in young age group was statistically higher than old group on sole and dorsal of the foot respectively. Overall, the skin thickness decreased with age. High frequency ultrasonography method provides a simple non-invasive method for evaluating the skin thickness and echo-density. Gender and age have significant effect on these parameters. Differences in study method, population, and body site likely account for different results previously reported. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. A New Method for Coronal Magnetic Field Reconstruction

    Science.gov (United States)

    Yi, Sibaek; Choe, Gwang-Son; Cho, Kyung-Suk; Kim, Kap-Sung

    2017-08-01

    A precise way of coronal magnetic field reconstruction (extrapolation) is an indispensable tool for understanding of various solar activities. A variety of reconstruction codes have been developed so far and are available to researchers nowadays, but they more or less bear this and that shortcoming. In this paper, a new efficient method for coronal magnetic field reconstruction is presented. The method imposes only the normal components of magnetic field and current density at the bottom boundary to avoid the overspecification of the reconstruction problem, and employs vector potentials to guarantee the divergence-freeness. In our method, the normal component of current density is imposed, not by adjusting the tangential components of A, but by adjusting its normal component. This allows us to avoid a possible numerical instability that on and off arises in codes using A. In real reconstruction problems, the information for the lateral and top boundaries is absent. The arbitrariness of the boundary conditions imposed there as well as various preprocessing brings about the diversity of resulting solutions. We impose the source surface condition at the top boundary to accommodate flux imbalance, which always shows up in magnetograms. To enhance the convergence rate, we equip our code with a gradient-method type accelerator. Our code is tested on two analytical force-free solutions. When the solution is given only at the bottom boundary, our result surpasses competitors in most figures of merits devised by Schrijver et al. (2006). We have also applied our code to a real active region NOAA 11974, in which two M-class flares and a halo CME took place. The EUV observation shows a sudden appearance of an erupting loop before the first flare. Our numerical solutions show that two entwining flux tubes exist before the flare and their shackling is released after the CME with one of them opened up. We suggest that the erupting loop is created by magnetic reconnection between

  12. Phase-aligned multiple spin-echo averaging: a simple way to improve signal-to-noise ratio of in vivo mouse spinal cord diffusion tensor image.

    Science.gov (United States)

    Tu, Tsang-Wei; Budde, Matthew D; Xie, Mingqiang; Chen, Ying-Jr; Wang, Qing; Quirk, James D; Song, Sheng-Kwei

    2014-12-01

    To improve signal-noise-ratio of in vivo mouse spinal cord diffusion tensor imaging using-phase aligned multiple spin-echo technique. In vivo mouse spinal cord diffusion tensor imaging maps generated by multiple spin-echo and conventional spin-echo diffusion weighting were examined to demonstrate the efficacy of multiple spin-echo diffusion sequence to improve image quality and throughput. Effects of signal averaging using complex, magnitude and phased images from multiple spin-echo diffusion weighting were also assessed. Bayesian probability theory was used to generate phased images by moving the coherent signals to the real channel to eliminate the effect of phase variation between echoes while preserving the Gaussian noise distribution. Signal averaging of phased multiple spin-echo images potentially solves both the phase incoherence problem and the bias of the elevated Rician noise distribution in magnitude image. The proposed signal averaging with Bayesian phase-aligned multiple spin-echo images approach was compared to the conventional spin-echo data acquired with doubling the scan time. The diffusion tensor imaging parameters were compared in the mouse contusion spinal cord injury. Significance level (p-value) and effect size (Cohen's d) were reported between the control and contused spinal cord to inspect the sensitivity of each approach in detecting white matter pathology. Compared to the spin-echo image, the signal-noise-ratio increased to 1.84-fold using the phased image averaging and to 1.30-fold using magnitude image averaging in the spinal cord white matter. Multiple spin-echo phased image averaging showed improved image quality of the mouse spinal cord among the tested methods. Diffusion tensor imaging metrics obtained from multiple spin-echo phased images using three echoes and two averages closely agreed with those derived by spin-echo magnitude data with four averages (two times more in acquisition time). The phased image averaging correctly

  13. Implementation of the ECHO(®) telementoring model for the treatment of patients with hepatitis C.

    Science.gov (United States)

    Marciano, Sebastián; Haddad, Leila; Plazzotta, Fernando; Mauro, Ezequiel; Terraza, Sergio; Arora, Sanjeev; Thornton, Karla; Ríos, Beatriz; García Dans, Carlos; Ratusnu, Natalia; Calanni, Liliana; Allevato, José; Sirotinsky, María Ester; Pedrosa, Marcos; Gadano, Adrián

    2017-04-01

    We aimed to implement the Extension for Community Healthcare Outcomes (ECHO) telementoring model for hepatitis C and to evaluate its outcomes in the health providers. Following the ECHO model, an hepatitis C teleECHO clinic was established at the Hospital Italiano in Argentina. The teleECHO clinic provides support and training to physicians from Patagonia who treat patients with hepatitis C. In order to evaluate the teleECHO clinic outcomes, physicians completed a survey focused on skills and competence in hepatitis C before and after 6 months of participating in the project. The survey consisted of 10 questions, which participants rated from 1 to 7 (1 no ability; 7 highest ability). To analyze the difference before and after participation in the project, Wilcoxon signed-rank test was used. During the first 6 months of implementation of the model, a total of 14 physicians from 12 sites in Patagonia agreed to participate in the survey. The median age of the participants was 42 years. Participants' primary specialties were Hepatology (55%), Infectious Diseases (25%), General Practice (10%), and other (10%). A significant improvement was observed in all the evaluated fields after 6 month of the participation in the teleECHO clinic, namely fibrosis staging, determining appropriate candidates for treatment, and selecting appropriate HCV treatment. In addition, their general interest in hepatitis C increased. We successfully replicated and implemented the first teleECHO clinic in Argentina. Physicians improved their ability to provide best practice care for patients with Hepatitis C. J. Med. Virol. 89:660-664, 2017. © 2016 Wiley Periodicals, Inc.

  14. Reducing motion artefacts in diffusion-weighted MRI of the brain: efficacy of navigator echo correction and pulse triggering

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, O.; Heiland, S.; Benner, T.; Sartor, K. [Dept. of Neuroradiology, University of Heidelberg Medical School, Heidelberg (Germany)

    2000-02-01

    Diffusion-weighted MRI (DWI) is extremely sensitive to motion of the object being examined. Pulse triggering and navigator echo correction are methods for reducing motion artefacts which can be combined with conventional DWI sequences. Implementation of these methods in imaging sequences with a readout of one, three, or five echoes is presented and imaging results compared in a study of five healthy volunteers. As an objective measure for motion-induced image artefacts, the ''artefacticity'' of an image is defined. Pulse triggering and navigator echo correction significantly improve image quality and provide a technique for high-quality DWI on standard imagers without improved gradient hardware. (orig.)

  15. A Multipole Expansion Method for Analyzing Lightning Field Changes

    Science.gov (United States)

    Koshak, William J.; Krider, E. Philip; Murphy, Martin J.

    1999-01-01

    Changes in the surface electric field are frequently used to infer the locations and magnitudes of lightning-caused changes in thundercloud charge distributions. The traditional procedure is to assume that the charges that are effectively deposited by the flash can be modeled either as a single point charge (the Q model) or a point dipole (the P model). The Q model has four unknown parameters and provides a good description of many cloud-to-ground (CG) flashes. The P model has six unknown parameters and describes many intracloud (IC) discharges. In this paper we introduce a new analysis method that assumes that the change in the cloud charge can be described by a truncated multipole expansion, i.e., there are both monopole and dipole terms in the unknown source distribution, and both terms are applied simultaneously. This method can be used to analyze CG flashes that are accompanied by large changes in the cloud dipole moment and complex IC discharges. If there is enough information content in the measurements, the model can also be generalized to include quadrupole and higher order terms. The parameters of the charge moments are determined using a dme-dimensional grid search in combination with a linear inversion, and because of this, local minima in the error function and the associated solution ambiguities are avoided. The multipole method has been tested on computer-simulated sources and on natural lightning at the NASA Kennedy Space Center and U.S. Air Force Eastern Range.

  16. Asymmetric radar echo patterns from insects

    Science.gov (United States)

    Radar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to diffe...

  17. Picosecond Photon Echoes Detected by Optical Mixing

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1978-01-01

    Picosecond photon echoes are shown to be easily detected by optical mixing. The synchronized picosecond excitation and probe pulses are generated by amplifying pulses from two dye lasers, synchronously pumped by a mode-locked argon-ion laser. The technique is used to study optical dephasing in the o

  18. Pesticide Dashboard Help | ECHO | US EPA

    Science.gov (United States)

    The dashboards found on the Enforcement and Compliance History Online (ECHO) website are specialized to track both facility and agency performance as they relate to compliance with and enforcement of environmental standards under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA).

  19. Method and apparatus for measuring weak magnetic fields

    DEFF Research Database (Denmark)

    1995-01-01

    When measuring weak magnetic fields, a container containing a medium, such as a solution containing a stable radical, is placed in a polarising magnetic field, which is essentially at right angles to the field to be measured. The polarising field is interrupted rapidly, the interruption being...

  20. Bootstrapping conformal field theories with the extremal functional method.

    Science.gov (United States)

    El-Showk, Sheer; Paulos, Miguel F

    2013-12-13

    The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.

  1. Dendritic Morphology Simulation Using the Phase Field Method

    Institute of Scientific and Technical Information of China (English)

    张光跃; 荆涛; 柳百成

    2003-01-01

    Dendritic morphology was simulated using a macro- and micro-coupled method. Since the microstructure of a whole casting cannot be easily analyzed, a scheme was developed to calculate the temperature of the whole casting with the microstructure analyzed by selecting one cell in the central region of the casting. The heterogeneous nucleation was described using a Gaussian distribution with the dendritic growth controlled by the solution of the phase field equation. The initial temperature distribution in the microdomain was obtained by interpolating the cell temperatures near the selected cell with the interface undercooling assumed to be the sum of thermal, solute, and curvature effects. The solute distribution was calculated from the mixed solute conservation equation with noise introduced to produce the side branches. The simulation results agree well with experimental results.

  2. Hybrid star structure with the Field Correlator Method

    Energy Technology Data Exchange (ETDEWEB)

    Burgio, G.F.; Zappala, D. [INFN, Catania (Italy)

    2016-03-15

    We explore the relevance of the color-flavor locking phase in the equation of state (EoS) built with the Field Correlator Method (FCM) for the description of the quark matter core of hybrid stars. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock (BHF) many-body theory, and its relativistic counterpart, i.e. the Dirac-Brueckner (DBHF). We find that the main features of the phase transition are directly related to the values of the quark-antiquark potential V{sub 1}, the gluon condensate G{sub 2} and the color-flavor superconducting gap Δ. We confirm that the mapping between the FCM and the CSS (constant speed of sound) parameterization holds true even in the case of paired quark matter. The inclusion of hyperons in the hadronic phase and its effect on the mass-radius relation of hybrid stars is also investigated. (orig.)

  3. A novel time series analysis approach for prediction of dialysis in critically ill patients using echo-state networks.

    Science.gov (United States)

    Verplancke, T; Van Looy, S; Steurbaut, K; Benoit, D; De Turck, F; De Moor, G; Decruyenaere, J

    2010-01-21

    Echo-state networks (ESN) are part of a group of reservoir computing methods and are basically a form of recurrent artificial neural networks (ANN). These methods can perform classification tasks on time series data. The recurrent ANN of an echo-state network has an 'echo-state' characteristic. This 'echo-state' functions as a fading memory: samples that have been introduced into the network in a further past, are faded away. The echo-state approach for the training of recurrent neural networks was first described by Jaeger H. et al. In clinical medicine, until this moment, no original research articles have been published to examine the use of echo-state networks. This study examines the possibility of using an echo-state network for prediction of dialysis in the ICU. Therefore, diuresis values and creatinine levels of the first three days after ICU admission were collected from 830 patients admitted to the intensive care unit (ICU) between May 31 th 2003 and November 17th 2007. The outcome parameter was the performance by the echo-state network in predicting the need for dialysis between day 5 and day 10 of ICU admission. Patients with an ICU length of stay network was then compared by means of the area under the receiver operating characteristic curve (AUC) with results obtained by two other time series analysis methods by means of a support vector machine (SVM) and a naive Bayes algorithm (NB). The AUC's in the three developed echo-state networks were 0.822, 0.818, and 0.817. These results were comparable to the results obtained by the SVM and the NB algorithm. This proof of concept study is the first to evaluate the performance of echo-state networks in an ICU environment. This echo-state network predicted the need for dialysis in ICU patients. The AUC's of the echo-state networks were good and comparable to the performance of other classification algorithms. Moreover, the echo-state network was more easily configured than other time series modeling

  4. Relationship between Fujikawa's Method and the Background Field Method for the Scale Anomaly

    CERN Document Server

    Lin, Chris L

    2015-01-01

    We show the equivalence between Fujikawa's method for calculating the scale anomaly and the diagrammatic approach to calculating the effective potential via the background field method, for an $O(N)$ symmetric scalar field theory. Fujikawa's method leads to a sum of terms, each one superficially in one-to-one correspondence with a vacuum diagram of the 1-loop expansion. From the viewpoint of the classical action, the anomaly results in a breakdown of the Ward identities due to a scale-dependence of the couplings, whereas in terms of the effective action, the anomaly is the result of the breakdown of Noether's theorem due to explicit symmetry breaking terms of the effective potential.

  5. Relationship between Fujikawa’s Method and the Background Field Method for the Scale Anomaly

    Directory of Open Access Journals (Sweden)

    Chris L. Lin

    2016-01-01

    Full Text Available We show the equivalence between Fujikawa’s method for calculating the scale anomaly and the diagrammatic approach to calculating the effective potential via the background field method, for an O(N symmetric scalar field theory. Fujikawa’s method leads to a sum of terms, each one superficially in one-to-one correspondence with a vacuum diagram of the 1-loop expansion. From the viewpoint of the classical action, the anomaly results in a breakdown of the Ward identities due to scale-dependence of the couplings, whereas, in terms of the effective action, the anomaly is the result of the breakdown of Noether’s theorem due to explicit symmetry breaking terms of the effective potential.

  6. Echo voltage reflected by turtle on various angles

    OpenAIRE

    Sunardi Sunardi; Anton Yudhana; Azrul Mahfurdz; Sharipah Salwa Mohamed

    2015-01-01

    This research proposes the acoustic measurement by using echo sounder for green turtle detection of 1 year, 12 and 18 years. Various positions or angles of turtles are head, tail, shell, lung, left and right side. MATLAB software and echo sounder are used to analyse the frequency and the response of the turtle as echo voltage and target strength parameter. Based on the experiment and analysis have been conducted, the bigger size of the turtle, the higher echo voltage and target strength. The ...

  7. Preliminary Results of the Echo-Seeding Experiment ECHO-7 at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D.; Colby, E.; Ding, Y.; Dunning, M.; Frederico, J.; Gilevich, S.; Hast, C.; Jobe, K.; McCormick, D.; Nelson, J.; Raubenheimer, T.O.; Soong, K.; Stupakov, G.; Szalata, Z.; Walz, D.; Weathersby, S.; Woodley, M.; /SLAC; Corlett, J.; Qiang, J.; Penn, G.; Prestemon, S.; /LBL, Berkeley /LPHE, Lausanne

    2010-06-15

    ECHO-7 is a proof-of-principle echo-enabled harmonic generation FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which are the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.

  8. Tissue electrical property mapping from zero echo-time magnetic resonance imaging.

    Science.gov (United States)

    Lee, Seung-Kyun; Bulumulla, Selaka; Wiesinger, Florian; Sacolick, Laura; Sun, Wei; Hancu, Ileana

    2015-02-01

    The capability of magnetic resonance imaging (MRI) to produce spatially resolved estimation of tissue electrical properties (EPs) in vivo has been a subject of much recent interest. In this work we introduce a method to map tissue EPs from low-flip-angle, zero-echo-time (ZTE) imaging. It is based on a new theoretical formalism that allows calculation of EPs from the product of transmit and receive radio-frequency (RF) field maps. Compared to conventional methods requiring separation of the transmit RF field (B(1)(+)) from acquired MR images, the proposed method has such advantages as: 1) reduced theoretical error, 2) higher acquisition speed, and 3) flexibility in choice of different transmit and receive RF coils. The method is demonstrated in electrical conductivity and relative permittivity mapping in a salt water phantom, as well as in vivo measurement of brain conductivity in healthy volunteers. The phantom results show the validity and scan-time efficiency of the proposed method applied to a piece-wise homogeneous object. Quality of in vivo EP results was limited by reconstruction errors near tissue boundaries, which highlights need for image segmentation in EP mapping in a heterogeneous medium. Our results show the feasibility of rapid EP mapping from MRI without B(1)(+) mapping.

  9. Discrete echo signal modeling of ultrasound imaging systems

    Science.gov (United States)

    Chen, Ming; Zhang, Cishen

    2008-03-01

    In this paper, a discrete model representing the pulse-tissue interaction in the medical ultrasound scanning and imaging process is developed. The model is based on discretizing the acoustical wave equation and is in terms of convolution between the input ultrasound pulses and the tissue mass density variation. Such a model can provide a useful means for ultrasound echo signal processing and imaging. Most existing models used for ultrasound imaging are based on frequency domain transform. A disadvantage of the frequency domain transform is that it is only applicable to shift-invariant models. Thus it has ignored the shift-variant nature of the original acoustic wave equation where the tissue compressibility and mass density distributions are spatial-variant factors. The discretized frequency domain model also obscures the compressibility and mass density representations of the tissue, which may mislead the physical understanding and interpretation of the image obtained. Moreover, only the classical frequency domain filtering methods have been applied to the frequency domain model for acquiring some tissue information from the scattered echo signals. These methods are non-parametric and require a prior knowledge of frequency spectra of the transmitted pulses. Our proposed model technique will lead to discrete, multidimensional, shift-variant and parametric difference or convolution equations with the transmitted pulse pressure as the input, the measurement data of the echo signals as the output, and functions of the tissue compressibility and mass density distributions as shift-variant parameters that can be readily identified from input-output measurements. The proposed model represents the entire multiple scattering process, and hence overcomes the key limitation in the current ultrasound imaging methods.

  10. 21 CFR 892.1560 - Ultrasonic pulsed echo imaging system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed echo imaging system. 892.1560... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1560 Ultrasonic pulsed echo imaging system. (a) Identification. An ultrasonic pulsed echo imaging system is a device intended to project...

  11. First Demonstration of ECHO: an External Calibrator for Hydrogen Observatories

    Science.gov (United States)

    Jacobs, Daniel C.; Burba, Jacob; Bowman, Judd D.; Neben, Abraham R.; Stinnett, Benjamin; Turner, Lauren; Johnson, Kali; Busch, Michael; Allison, Jay; Leatham, Marc; Serrano Rodriguez, Victoria; Denney, Mason; Nelson, David

    2017-03-01

    Multiple instruments are pursuing constraints on dark energy, observing reionization and opening a window on the dark ages through the detection and characterization of the 21 cm hydrogen line for redshifts ranging from ∼1 to 25. These instruments, including CHIME in the sub-meter and HERA in the meter bands, are wide-field arrays with multiple-degree beams, typically operating in transit mode. Accurate knowledge of their primary beams is critical for separation of bright foregrounds from the desired cosmological signals, but difficult to achieve through astronomical observations alone. Previous beam calibration work at low frequencies has focused on model verification and does not address the need of 21 cm experiments for routine beam mapping, to the horizon, of the as-built array. We describe the design and methodology of a drone-mounted calibrator, the External Calibrator for Hydrogen Observatories (ECHO), that aims to address this need. We report on a first set of trials to calibrate low-frequency dipoles at 137 MHz and compare ECHO measurements to an established beam-mapping system based on transmissions from the Orbcomm satellite constellation. We create beam maps of two dipoles at a 9° resolution and find sample noise ranging from 1% at the zenith to 100% in the far sidelobes. Assuming this sample noise represents the error in the measurement, the higher end of this range is not yet consistent with the desired requirement but is an improvement on Orbcomm. The overall performance of ECHO suggests that the desired precision and angular coverage is achievable in practice with modest improvements. We identify the main sources of systematic error and uncertainty in our measurements and describe the steps needed to overcome them.

  12. Measurement of gravitation-induced quantum interference for neutrons in a spin-echo spectrometer

    NARCIS (Netherlands)

    De Haan, V.O.; Plomp, J.; Van Well, A.A.; Rekveldt, M.T.; Hasegawa, Y.H.; Dalgliesh, R.M.; Steinke, N.J.

    2014-01-01

    With a neutron spin-echo reflectometer (OffSpec at ISIS, UK) it is possible to measure the gravitation-induced quantum phase difference between the two spin states of the neutron wave function in a magnetic field. In the small-angle approximation, this phase depends linearly on the inclination angle

  13. The determination of field usability of method measuring temperature fields in the air using an infrared camera

    Directory of Open Access Journals (Sweden)

    Pešek Martin

    2014-03-01

    Full Text Available The article deals with the field usability determination of the method for measuring temperature fields in the air using an infrared camera. This method is based on the visualization of temperature fields on an auxiliary material, which is inserted into the non-isothermal air flow. In this article the field usability is determined from time constants of this method, which define borders of usability for low temperature differences (between air flow temperature and surrounding temperature and for low air flow velocities. The field usability determination for measuring temperature fields in the air can be used in many various applications such as air-heating and air-conditioning where the method of measuring temperature fields in the air by infrared camera can be used.

  14. Selected Tools and Methods from Quality Management Field

    Directory of Open Access Journals (Sweden)

    Kateřina BRODECKÁ

    2009-06-01

    Full Text Available Following paper describes selected tools and methods from Quality management field and their practical applications on defined examples. Solved examples were elaborated in the form of electronic support. This in detail elaborated electronic support provides students opportunity to thoroughly practice specific issues, help them to prepare for exams and consequently will lead to education improvement. Especially students of combined study form will appreciate this support. The paper specifies project objectives, subjects that will be covered by mentioned support, target groups, structure and the way of elaboration of electronic exercise book in view. The emphasis is not only on manual solution of selected examples that may help students to understand the principles and relationships, but also on solving and results interpreting of selected examples using software support. Statistic software Statgraphics Plus v 5.0 is used while working support, because it is free to use for all students of the faculty. Exemplary example from the subject Basic Statistical Methods of Quality Management is also part of this paper.

  15. Photon echo without a free induction decay in a double-Λ system.

    Science.gov (United States)

    Beavan, Sarah E; Ledingham, Patrick M; Longdell, Jevon J; Sellars, Matthew J

    2011-04-01

    We have characterized a novel photon-echo pulse sequence for a double-Λ-type energy level system where the input and rephasing transitions are different from the applied π pulses. We show that, despite having imperfect π-pulses associated with large coherent emission due to free induction decay (FID), the noise added in the echo mode is only 0.2 ± 0.1 photons per shot, compared to 4 × 10⁴ photons in the FID modes. Using this echo pulse sequence in the "rephased amplified spontaneous emission" (RASE) scheme [Phys. Rev. A 81, 012301 (2010)] will allow for generation of entangled photon pairs that are in different frequency, temporal, and potentially spatial modes to any bright driving fields. The coherence and efficiency properties of this sequence were characterized in a Pr(3+):Y₂SiO₅ crystal.

  16. Teaching Geographic Field Methods to Cultural Resource Management Technicians

    Science.gov (United States)

    Mires, Peter B.

    2004-01-01

    There are perhaps 10,000 technicians in the United States who work in the field known as cultural resource management (CRM). The typical field technician possesses a bachelor's degree in anthropology, geography, or a closely allied discipline. The author's experience has been that few CRM field technicians receive adequate undergraduate training…

  17. Spherical neutron polarimetry applied to spin-echo and time-of-flight spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre-Berna, E., E-mail: lelievre@ill.e [Institut Laue Langevin (ILL), 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bentley, P.; Bourgeat-Lami, E.; Thomas, M. [Institut Laue Langevin (ILL), 6 rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Pappas, C. [Helmholtz Centre Berlin for Materials and Energy (HCB), Glienickerstr. 100, 14109 Berlin (Germany); Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Kischnik, R.; Moskvin, E. [Helmholtz Centre Berlin for Materials and Energy (HCB), Glienickerstr. 100, 14109 Berlin (Germany)

    2009-09-01

    The changes in direction of the neutron spin that take place on scattering by a magnetic interaction vector are highly dependent on their relative directions. In some circumstances, without zero-field polarimeter, it is impossible to distinguish between a simple depolarisation and a rotation of the polarisation vector. Motivated by the investigation of chiral magnetic fluctuations, we have implemented the third-generation zero-field polarimeter Cryopad on the neutron spin-echo spectrometer SPAN at the Helmholtz Centre Berlin (HCB). We present the method and the limitations of this novel technique that is now available on IN15 at the ILL. The huge progress accomplished with {sup 3}He neutron spin filters/flippers are going to facilitate the exploitation of polarised beams at spallation sources. Zero-field polarimeters like Cryopad are used routinely at several steady-state sources but their design would be inefficient at a pulse source. We have investigated the possibility to implement a zero-field polarimeter on a time-of-flight spectrometer. We propose a design that would lead to a better efficiency and present the finite element calculations.

  18. Loschmidt echoes in two-body random matrix ensembles

    Science.gov (United States)

    Pižorn, Iztok; Prosen, Tomaž; Seligman, Thomas H.

    2007-07-01

    Fidelity decay is studied for quantum many-body systems with a dominant independent particle Hamiltonian resulting, e.g., from a mean field theory with a weak two-body interaction. The diagonal terms of the interaction are included in the unperturbed Hamiltonian, while the off-diagonal terms constitute the perturbation that distorts the echo. We give the linear response solution for this problem in a random matrix framework. While the ensemble average shows no surprising behavior, we find that the typical ensemble member as represented by the median displays a very slow fidelity decay known as “freeze.” Numerical calculations confirm this result and show that the ground state even on average displays the freeze. This may contribute to explanation of the “unreasonable” success of mean field theories.

  19. Fat/water separation in single acquisition steady-state free precession using multiple echo radial trajectories.

    Science.gov (United States)

    Lu, Aiming; Grist, Thomas M; Block, Walter F

    2005-11-01

    Phase detection in fully refocused SSFP imaging has recently allowed fat/water separation without preparing the magnetization or using multiple acquisitions. Instead, it exploits the phase difference between fat and water at an echo time at the midpoint of the TR. To minimize the TR for improved robustness to B0 inhomogeneity, a 3D projection acquisition collecting two half echoes at the beginning and end of each excitation was previously implemented. Since echoes are not formed at the midpoint of the TR, this method still requires two passes of k-space for fat/water separation. A new method is presented to linearly combine the half echoes to separate fat and water in a single acquisition. Separation using phase detection provides superior contrast between fat and water voxels. Results from high resolution angiography and musculoskeletal studies with improved robustness to inhomogeneity and a 50% scan time reduction compared to the two pass method are presented.

  20. A novel field emission microscopy method to study field emission characteristics of freestanding carbon nanotube arrays

    Science.gov (United States)

    Li, Yunhan; Sun, Yonghai; Jaffray, David A.; Yeow, John T. W.

    2017-04-01

    Field emission (FE) uniformity and the mechanism of emitter failure of freestanding carbon nanotube (CNT) arrays have not been well studied due to the difficulty of observing and quantifying FE performance of each emitter in CNT arrays. Herein a field emission microscopy (FEM) method based on poly(methyl methacrylate) (PMMA) thin film is proposed to study the FE uniformity and CNT emitter failure of freestanding CNT arrays. FE uniformity of freestanding CNT arrays and different levels of FE current contributions from each emitter in the arrays are recorded and visualized. FEM patterns on the PMMA thin film contain the details of the CNT emitter tip shape and whether multiple CNT emitters occur at an emission site. Observation of real-time FE performance and the CNT emitter failure process in freestanding CNT arrays are successfully achieved using a microscopic camera. High emission currents through CNT emitters causes Joule heating and light emission followed by an explosion of the CNTs. The proposed approach is capable of resolving the major challenge of building the relationship between FE performance and CNT morphologies, which can significantly facilitate the study of FE non-uniformity, the emitter failure mechanism and the development of stable and reliable FE devices in practical applications.

  1. Evaluation of different field methods for measuring soil water infiltration

    Science.gov (United States)

    Pla-Sentís, Ildefonso; Fonseca, Francisco

    2010-05-01

    Soil infiltrability, together with rainfall characteristics, is the most important hydrological parameter for the evaluation and diagnosis of the soil water balance and soil moisture regime. Those balances and regimes are the main regulating factors of the on site water supply to plants and other soil organisms and of other important processes like runoff, surface and mass erosion, drainage, etc, affecting sedimentation, flooding, soil and water pollution, water supply for different purposes (population, agriculture, industries, hydroelectricity), etc. Therefore the direct measurement of water infiltration rates or its indirect deduction from other soil characteristics or properties has become indispensable for the evaluation and modelling of the previously mentioned processes. Indirect deductions from other soil characteristics measured under laboratory conditions in the same soils, or in other soils, through the so called "pedo-transfer" functions, have demonstrated to be of limited value in most of the cases. Direct "in situ" field evaluations have to be preferred in any case. In this contribution we present the results of past experiences in the measurement of soil water infiltration rates in many different soils and land conditions, and their use for deducing soil water balances under variable climates. There are also presented and discussed recent results obtained in comparing different methods, using double and single ring infiltrometers, rainfall simulators, and disc permeameters, of different sizes, in soils with very contrasting surface and profile characteristics and conditions, including stony soils and very sloping lands. It is concluded that there are not methods universally applicable to any soil and land condition, and that in many cases the results are significantly influenced by the way we use a particular method or instrument, and by the alterations in the soil conditions by the land management, but also due to the manipulation of the surface

  2. Objectives and design of the Echo 6 electron beam experiment - Large ionospheric perturbations and energetic particle patterns

    Science.gov (United States)

    Winckler, J. R.; Steffen, J. E.; Malcolm, P. R.; Erickson, K. N.; Abe, Y.

    1985-01-01

    The data from the March 30, 1983 launching of Echo 6 are presented. Echo 6 contained duplex accelerators and a system of four throw away detectors to detect and analyze conjugate electron echoes. The model used to calculate the proper trajectory of the rocket and the reason for not detecting echoes are discussed. The components of the plasma diagnostic package which was used to study the electron beam interactions with the ionospheric plasma, and the functions of the two controllable electron guns and the two sets of orthogonal electric probes are described. The signal-mode potentials between each probe and the plasma diagnostic payload are investigated. The signals produced by the gun pulses are analyzed and the interpretation of the electric field probe response is examined.

  3. [Development and application of electroanalytical methods in biomedical fields].

    Science.gov (United States)

    Kusu, Fumiyo

    2015-01-01

    To summarize our electroanalytical research in the biomedical field over the past 43 years, this review describes studies on specular reflection measurement, redox potential determination, amperometric acid sensing, HPLC with electrochemical detection, and potential oscillation across a liquid membrane. The specular reflection method was used for clarifying the adsorption of neurotransmitters and their related drugs onto a gold electrode and the interaction between dental alloys and compound iodine glycerin. A voltammetric screening test using a redox potential for the antioxidative effect of flavonoids was proposed. Amperometric acid sensing based on the measurement of the reduction prepeak current of 2-methyl-1,4-naphthoquinone (VK3) or 3,5-di-tert-buty1-1,2-benzoquinone (DBBQ) was applied to determine acid values of fats and oils, titrable acidity of coffee, and enzyme activity of lipase, free fatty acids (FFAs) in serum, short-chain fatty acids in feces, etc. The electrode reactions of phenothiazines, catechins, and cholesterol were applied to biomedical analysis using HPLC with electrochemical detection. A three-channel electrochemical detection system was utilized for the sensitive determination of redox compounds in Chinese herbal medicines. The behavior of barbituric acid derivatives was examined based on potential oscillation measurements.

  4. Multispin correlations and pseudo-thermalization of the transient density matrix in solid-state NMR: free induction decay and magic echo

    Science.gov (United States)

    Morgan, Steven W.; Oganesyan, Vadim; Boutis, Gregory S.

    2013-01-01

    Quantum unitary evolution typically leads to thermalization of generic interacting many-body systems. There are very few known general methods for reversing this process, and we focus on the magic echo, a radio-frequency pulse sequence known to approximately “rewind” the time evolution of dipolar coupled homonuclear spin systems in a large magnetic field. By combining analytic, numerical, and experimental results we systematically investigate factors leading to the degradation of magic echoes, as observed in reduced revival of mean transverse magnetization. Going beyond the conventional analysis based on mean magnetization we use a phase encoding technique to measure the growth of spin correlations in the density matrix at different points in time following magic echoes of varied durations and compare the results to those obtained during a free induction decay (FID). While considerable differences are documented at short times, the long-time behavior of the density matrix appears to be remarkably universal among the types of initial states considered – simple low order multispin correlations are observed to decay exponentially at the same rate, seeding the onset of increasingly complex high order correlations. This manifestly athermal process is constrained by conservation of the second moment of the spectrum of the density matrix and proceeds indefinitely, assuming unitary dynamics. PMID:23710125

  5. Optimized, Unequal Pulse Spacing in Multiple Echo Sequences Improves Refocusing

    CERN Document Server

    Jenista, Elizabeth; Branca, Rosa; Warren, Warren

    2009-01-01

    A recent quantum computing paper (G. S. Uhrig, Phys Rev Lett 98 100504 (2007)) analytically derived optimal pulse spacings for a multiple spin echo sequence designed to remove decoherence in a two level system coupled to a bath. The spacings in what has been called a UDD sequence differ dramatically from the conventional, equal pulse spacing of a Carr-Purcell-Meiboom-Gill (CPMG) multiple spin echo sequence. The UDD sequence was derived for a model that is unrelated to magnetic resonance, but was recently shown theoretically to be more general. Here we show that the UDD sequence has theoretical advantages for magnetic resonance imaging of structured materials such as tissue, where diffusion in compartmentalized and microstructured environments leads to fluctuating fields on a range of different timescales. We also show experimentally, both in excised tissue and in a live mouse tumor model, that optimal UDD sequences produce different T2-weighted contrast than do CPMG sequences with the same number of pulses an...

  6. Sum-frequency generation echo and grating from interface

    Energy Technology Data Exchange (ETDEWEB)

    Volkov, Victor [Bereozovaya 2A, Konstantinovo, Moscow Region 140207 (Russian Federation)

    2014-10-14

    The work addresses spectroscopy of fourth-order Sum Frequency Generation Echo and Grating responses as an experimental tool to study structure and dynamics at interfaces. First, it addresses experimental geometry to extract background-free fourth-order Echo and Grating responses. Further, the article provides the analytical expressions of the response functions for these nonlinearities. The derived expressions are used to model the χ{sup (4)} two-dimensional spectral responses of a hydrated methyl acetate, which resembles a hydrated carbonyl moiety at the polar outer side of a phospholipid membrane. Orientation, transition dipole moments, and Raman tensors are obtained from the results of classical and quantum calculations, respectively. The numerical studies for the nonlinear responses under different polarization schemes and timings suggest the possibility of securely factoring of spectral contributions of χ{sub YYYZX} and χ{sub YYYZY} macroscopic susceptibilities. As such, the nonlinearities provide an experimental perspective on orientation of a generic (low-symmetry) molecular system at interfaces. Besides, the spectral properties of the tensors may reflect correlations of the in-plane and out-of-plane field components specific to the interface. For the case of a phospholipid membrane, the experiment would address in-plane and out-of-plane anisotropy of hydrogen bonding and related dynamics.

  7. Cardiac echo-lab productivity in times of economic austerity.

    Science.gov (United States)

    Katsi, Vasiliki K; Vrachatis, Dimitrios A; Politi, Anastasia; Papageorgiou, Manto; Koumoulidis, Anastasios; Vlasseros, Ioannis; Vavuranakis, Manolis; Tousoulis, Dimitrios; Stefanadis, Christodoulos; Kallikazaros, Ioannis; Souliotis, Kyriakos

    2014-01-01

    The present study attempts to offer insight into the volume, cost, and productivity of the operation of a cardiac echocardiographic laboratory (echo-lab) in a major public hospital of Greece and thus to contribute, on a practical level, to the widening of knowledge in the strategic field of secondary and tertiary healthcare management. The conducted research includes the basic step of the deployment of a primary data registry in the echo-lab and unfolds in three levels, i.e. the variability measurement of the quantity and cost of medical services provided to different patient populations, the assessment of operating costs and the development of productivity indexes. The results show that the mean costs of provision do change among distinct patient populations. The most important, from a financial standpoint, population cluster appears to be the one corresponding to outpatients. Productivity indices presented in this analysis constitute an essential piece of information which the public healthcare system is currently largely lacking, and which, combined with the pricing and the diagnosis-related group coding system of hospitals, can be used to improve efficiency in the management of secondary and tertiary care.

  8. Light-echo spectroscopy of historic Supernovae

    Science.gov (United States)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  9. Workshop on neutron spin-echo

    Energy Technology Data Exchange (ETDEWEB)

    Aynajian, P.; Habicht, K.; Keller, Th.; Keimer, B.; Mezei, F.; Monkenbusch, M.; Allgaier, J.; Richter, D.; Fetters, L.J.; Muller, K.; Kreiling, S.; Dehnicke, K.; Greiner, A.; Ehlers, G.; Arbe, A.; Colmenero, J.; Richter, D.; Farago, B.; Monkenbusch, M.; Ohl, M.; Butzek, M.; Kozielewski, T.; Monkenbusch, M.; Richter, D.; Pappas, C.; Hillier, A.; Manuel, P.; Cywinski, R.; Bentley, P.; Alba, M.; Mezei, F.; Campbell, I.A.; Zimmermann, U.; Ellis, J.; Jobic, H.; Pickup, R.M.; Pappas, C.; Farago, B.; Cywinski, R.; Haussler, W.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Monkenbusch, M.; Allgaier, J.; Richter, D.; Egger, H.; Hellweg, Th.; Malikova, N.; Cadene, A.; Marry, V.; Dubois, E.; Turq, P.; Gardner, J.S.; Ehlers, G.; Bramwell, St.S.; Grigoriev, S.; Kraan, W.; Rekveldt, T.; Bouwman, W.; Van Dijk, N.; Falus, P.; Vorobiev, A.; Major, J.; Felcher, G.P.; Te-velthuis, S.; Dosch, H.; Vorobiev, A.; Dridi, M.H.; Major, J.; Dosch, H.; Falus, P.; Felcher, G.P.; Te Velthuis, S.G.E.; Bleuel, M.; Broell, M.; Lang, E.; Littrell, K.; Gahler, R.; Lal, J.; Lauter, H.; Toperverg, B.; Lauter, V.; Jernenkov, M.; Stueber, S.; Enderle, M.; Janoschek, M.; Keller, Th.; Klimko, S.; Boeni, P.; Nagao, M.; Yamada, N.; Kawabata, Y.; Seto, H.; Takeda, T.; Yoshizawa, H.; Yoshida, K.; Yamaguchi, T.; Bellissent-Funel, M.C.; Longeville, St

    2005-07-01

    This document gathers the abstracts of most papers presented at the workshop. Neutron spin-echo (NSE) spectroscopy is a well established technique with a growing expert user community, the aim of the meeting was to discuss the latest achievements in neutron spin-echo science and instrumentation. One of the applications presented is the investigation on the microscopic scale of the dynamics of water in montmorillonite clays with Na{sup +} and Cs{sup +} ions in monolayer and bilayer states. The NSE technique has been used in the normal and resonance modes. NSE results show consistently slower dynamics (higher relaxation times) than both time-of-flight technique (TOF) and classical molecular dynamics simulations (MD). In the present TOF and NSE experiments, anisotropy of the water motion in the interlayer is almost impossible to detect, due to the use of powder samples and insufficient resolution. (A.C.)

  10. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    Science.gov (United States)

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Estimating the diffuseness of sound fields: A wavenumber analysis method

    DEFF Research Database (Denmark)

    Nolan, Melanie; Davy, John L.; Brunskog, Jonas

    2017-01-01

    The concept of a diffuse sound field is widely used in the analysis of sound in enclosures. The diffuse sound field is generally described as composed of plane waves with random phases, which wave number vectors are uniformly distributed over all angles of incidence. In this study......, an interpretation in the spatial frequency domain is discussed, with the prospect of evaluating the diffuse field conditions in non-anechoic enclosures. This work examines how theoretical considerations compare with experimental results obtained in rooms with various diffuse field conditions. In addition, the paper...

  12. Monte Carlo Simulation of the Echo Signals from Low-Flying Targets for Airborne Radar

    Directory of Open Access Journals (Sweden)

    Mingyuan Man

    2014-01-01

    Full Text Available A demonstrated hybrid method based on the combination of half-space physical optics method (PO, graphical-electromagnetic computing (GRECO, and Monte Carlo method on echo signals from low-flying targets based on actual environment for airborne radar is presented in this paper. The half-space physical optics method , combined with the graphical-electromagnetic computing (GRECO method to eliminate the shadow regions quickly and rebuild the target automatically, is employed to calculate the radar cross section (RCS of the conductive targets in half space fast and accurately. The direct echo is computed based on the radar equation. The reflected paths from sea or ground surface cause multipath effects. In order to accurately obtain the echo signals, the phase factors are modified for fluctuations in multipath, and the statistical average value of the echo signals is obtained using the Monte Carlo method. A typical simulation is performed, and the numerical results show the accuracy of the proposed method.

  13. Comparison of Diversity of Type IIb Supernovae with Asymmetry in Cassiopeia A Using Light Echoes

    CERN Document Server

    Finn, Kieran; Modjaz, Maryam; Liu, Yu-Qian; Rest, Armin

    2016-01-01

    We compare the diversity of spectral line velocities in a large sample of type IIb supernovae (SNe IIb) with the expected asphericity in the explosion, as measured from the light echoes of Cassiopeia A (Cas A), which was a historical galactic SN IIb. We revisit the results of Rest et al. (2011a), who used light echoes to observe Cas A from multiple lines of sight and hence determine its asphericity, as seen in the velocity of three spectral lines (He I $\\lambda$5876, H$\\alpha$ and the Ca II NIR triplet). We confirm and improve on this measurement by reproducing the effect of the light echoes in the spectra of several extragalactic SNe IIb found in the literature as well as a new SN IIb template recently created by Liu et al. (2015), and comparing these to the observed light echo spectra of Cas A, including their associated uncertainties. In order to quantify the accuracy of this comparison we smooth the light echo spectra of Cas A using Gaussian processes and we use a Monte Carlo method to measure the absorpt...

  14. Seasonal and diel patterns in sedimentary flux of krill fecal pellets recorded by an echo sounder

    KAUST Repository

    Røstad, Anders

    2013-11-01

    We used a moored upward-facing 200 kHz echo sounder to address sedimentation of fecal pellets (FPs) from dielly migrating Meganyctiphanes norvegica. The echo sounder was located on the bottom at 150 m depth in the Oslofjord, Norway, and was cabled to shore for continuous measurements during winter and spring. Records of sinking pellets were for the first time observed with an echo sounder. Seasonal patterns of sedimentation of krill FPs were strongly correlated with data from continuous measurement of fluorescence, which illustrate the development of the spring bloom. Sedimenting particles were first observed as fluorescence values started to increase at the end of February and continued to increase until the bloom suddenly culminated at the end of March. This collapse of the bloom was detected on the echo sounder as a pulse of slowly sinking acoustic targets over a 2 d period. Prior to this event, there was a strong diel pattern in sedimentation, which correlated, with some time lag, with the diel migration of krill foraging at night near the surface. Pellet average sinking speeds ranged between 423 m d−1 and 804 m d−1, with a strong relation to pellet target strength, which is an acoustic proxy for size. This novel approach shows that echo sounders may be a valuable tool in studies of vertical pellet flux and, thereby, carbon flux, providing temporal resolution and direct observation of the sedimentation process, which are not obtained from standard methods.

  15. Modeling of cortical signals using echo state networks

    Science.gov (United States)

    Zhou, Hanying; Wang, Yongji; Huang, Jiangshuai

    2009-10-01

    Diverse modeling frameworks have been utilized with the ultimate goal of translating brain cortical signals into prediction of visible behavior. The inputs to these models are usually multidimensional neural recordings collected from relevant regions of a monkey's brain while the outputs are the associated behavior which is typically the 2-D or 3-D hand position of a primate. Here our task is to set up a proper model in order to figure out the move trajectories by input the neural signals which are simultaneously collected in the experiment. In this paper, we propose to use Echo State Networks (ESN) to map the neural firing activities into hand positions. ESN is a newly developed recurrent neural network(RNN) model. Besides its dynamic property and short term memory just as other recurrent neural networks have, it has a special echo state property which endows it with the ability to model nonlinear dynamic systems powerfully. What distinguished it from transitional recurrent neural networks most significantly is its special learning method. In this paper we train this net with a refined version of its typical training method and get a better model.

  16. A METHOD FOR PRODUCING A HIGH QUALITY SOLENOIDAL FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B.; Brown, I.G.; Halbach, K.; Kunkel, W.B.

    1981-01-01

    A relatively simple and inexpensive device is described which can be used to provide a highly homogeneous solenoidal magnetic field when the solenoid windings are inadequate. Design considerations and experimental measurements are presented. A field straightness of approximately 10{sup -4} radians has been achieved.

  17. Coal Field Fire Fighting - Practiced methods, strategies and tactics

    Science.gov (United States)

    Wündrich, T.; Korten, A. A.; Barth, U. H.

    2009-04-01

    achieved. For an effective and efficient fire fighting optimal tactics are requiered and can be divided into four fundamental tactics to control fire hazards: - Defense (digging away the coal, so that the coal can not begin to burn; or forming a barrier, so that the fire can not reach the not burning coal), - Rescue the coal (coal mining of a not burning seam), - Attack (active and direct cooling of burning seam), - Retreat (only monitoring till self-extinction of a burning seam). The last one is used when a fire exceeds the organizational and/or technical scope of a mission. In other words, "to control a coal fire" does not automatically and in all situations mean "to extinguish a coal fire". Best-practice tactics or a combination of them can be selected for control of a particular coal fire. For the extinguishing works different extinguishing agents are available. They can be applied by different application techniques and varying distinctive operating expenses. One application method may be the drilling of boreholes from the surface or covering the surface with low permeability soils. The mainly used extinction agents for coal field fire are as followed: Water (with or without additives), Slurry, Foaming mud/slurry, Inert gases, Dry chemicals and materials and Cryogenic agents. Because of its tremendous dimension and its complexity the worldwide challenge of coal fires is absolutely unique - it can only be solved with functional application methods, best fitting strategies and tactics, organisation and research as well as the dedication of the involved fire fighters, who work under extreme individual risks on the burning coal fields.

  18. X-ray shout echoing through space

    Science.gov (United States)

    2004-01-01

    a flash of X-rays hi-res Size hi-res: 3991 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in hours. At their largest size, the rings would appear in the sky about five times smaller than the full moon. a flash of X-rays hi-res Size hi-res: 2153 Kb Credits: ESA, S. Vaughan (University of Leicester) EPIC camera shows the expanding rings caused by a flash of X-rays (Please choose "hi-res" version for animation) XMM-Newton's X-ray EPIC camera shows the expanding rings caused by a flash of X-rays scattered by dust in our Galaxy. The X-rays were produced by a powerful gamma-ray burst that took place on 3 December 2003. The slowly fading afterglow of the gamma-ray burst is at the centre of the expanding rings. Other, unrelated, X-ray sources can also be seen. The time since the gamma-ray explosion is shown in each panel in seconds. At their largest size, the rings would appear in the sky about five times smaller than the full moon. This echo forms when the powerful radiation of a gamma-ray burst, coming from far away, crosses a slab of dust in our Galaxy and is scattered by it, like the beam of a lighthouse in clouds. Using the expanding rings to precisely pin-point the location of this dust, astronomers can identify places where new stars and planets are likely to form. On 3 December 2003 ESA's observatory, Integral, detected a burst of gamma rays, lasting about 30 seconds, from the direction of a distant galaxy. Within minutes of the detection, thanks to a sophisticated alert network, many

  19. Accelerated susceptibility-based positive contrast imaging of MR compatible metallic devices based on modified fast spin echo sequences

    Science.gov (United States)

    Shi, Caiyun; Xie, Guoxi; Zhang, Yongqin; Zhang, Xiaoyong; Chen, Min; Su, Shi; Dong, Ying; Liu, Xin; Ji, Jim

    2017-04-01

    This study aims to develop an accelerated susceptibility-based positive contrast MR imaging method for visualizing MR compatible metallic devices. A modified fast spin echo sequence is used to accelerate data acquisition. Each readout gradient in the modified fast spin echo is slightly shifted by a short distance T shift. Phase changes accumulated within T shift are then used to calculate the susceptibility map by using a kernel deconvolution algorithm with a regularized ℓ1 minimization. To evaluate the proposed fast spin echo method, three phantom experiments were conducted and compared to a spin echo based technique and the gold standard CT for visualizing biopsy needles and brachytherapy seeds. Compared to the spin echo based technique, the data sampling speed of the proposed method was faster by 2–4 times while still being able to accurately visualize and identify the location of the biopsy needle and brachytherapy seeds. These results were confirmed by CT images of the same devices. Results also demonstrated that the proposed fast spin echo method can achieve good visualization of the brachytherapy seeds in positive contrast and in different orientations. It is also capable of correctly differentiating brachytherapy seeds from other similar structures on conventional magnitude images.

  20. Analysis of electric field control methods for foil coils in high-voltage linear actuators

    Directory of Open Access Journals (Sweden)

    Beek T.A. van

    2015-12-01

    Full Text Available This paper describes multiple electric field control methods for foil coils in high-voltage coreless linear actuators and their sensitivity to misalignment. The investigated field control methods consist of resistive, refractive, capacitive and geometrical solutions for mitigating electric stress at edges and corners of foil coils. These field control methods are evaluated using 2-D boundary element and finite element methods. A comparison is presented between the field control methods and their ability to mitigate electric stress in coreless linear actuators. Furthermore, the sensitivity to misalignment of the field control methods is investigated.

  1. Application of Multi-Scale Tracking Radar Echoes Scheme in Quantitative Precipitation Nowcasting

    Institute of Scientific and Technical Information of China (English)

    WANG Gaili; WONG Waikin; LIU Liping; WANG Hongyan

    2013-01-01

    A new radar echo tracking algorithm known as multi-scale tracking radar echoes by cross-correlation (MTREC) was developed in this study to analyze movements of radar echoes at different spatial scales.Movement of radar echoes,particularly associated with convective storms,exhibits different characteristics at various spatial scales as a result of complex interactions among meteorological systems leading to the formation of convective storms.For the null echo region,the usual correlation technique produces zero or a very small magnitude of motion vectors.To mitigate these constraints,MTREC uses the tracking radar echoes by correlation (TREC) technique with a large "box" to determine the systematic movement driven by steering wind,and MTREC applies the TREC technique with a small "box" to estimate small-scale internal motion vectors.Eventually,the MTREC vectors are obtained by synthesizing the systematic motion and the small scale internal motion.Performance of the MTREC technique was compared with TREC technique using case studies:the Khanun typhoon on 11 September 2005 observed by Wenzhou radar and a squall-line system on 23 June 2011 detected by Beijing radar.The results demonstrate that more spatially smoothed and continuous vector fields can be generated by the MTREC technique,which leads to improvements in tracking the entire radar reflectivity pattern.The new multi-scale tracking scheme was applied to study its impact on the performance of quantitative precipitation nowcasting.The location and intensity of heavy precipitation at a 1-h lead time was more consistent with quantitative precipitation estimates using radar and rain gauges.

  2. Research on the underwater echo characteristics by hollow coaxial cylinder-cone assembled elastic shell

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhen; WANG; Zhongqiu; YU; Yanting; XIANG; Xu; YANG; Qun

    2015-01-01

    For the purpose to research the underwater echo characteristics of elastic shell,the numerical expressions of surface sound pressure and particle vibration velocity are derived based on finite element and boundary element theories.The echo characteristics of hollow coaxial cylinder-cone assembled elastic shell are calculated with simulation and experiment methods to obtained the azimuth angle and frequency characteristics.It’s shown in the results that the more quantity of mesh point,the higher precision of calculation.Meanwhile,the magnitude of mirror reflection wave is largest in the echo wave between 20 and 40 kHz,and increases as the scattering cross-section.The backscatter sound pressure of elastic shell has the obvious frequency characteristic.

  3. Phase Locked Photon Echoes for Near-Perfect Retrieval Efficiency and Extended Storage Time

    CERN Document Server

    Ham, B S

    2009-01-01

    Quantum storage of light in a collective ensemble of atoms plays an important role in quantum information processing. Consisting of a quantum repeater together with quantum entanglement swapping, quantum memory has been intensively studied recently. Conventional photon echoes have been limited by extremely low retrieval efficiency and short storage time confined by the optical phase decay process. Here, we report a storage time-extended near perfect photon echo protocol using a phase locking method via an auxiliary spin state, where the phase locking acts as a conditional stopper of the rephasing process resulting in extension of storage time determined by the spin dephasing process. We experimentally prove the proposed phase locked photon echo protocol in a Pr3+ doped Y2SiO5 in a quasi phase conjugate scheme, where the phase conjugate gives the important benefit of aberration corrections when dealing with quantum images.

  4. Noise reduction in multiple-echo data sets using singular value decomposition.

    Science.gov (United States)

    Bydder, Mark; Du, Jiang

    2006-09-01

    A method is described for denoising multiple-echo data sets using singular value decomposition (SVD). Images are acquired using a multiple gradient- or spin-echo sequence, and the variation of the signal with echo time (TE) in all pixels is subjected to SVD analysis to determine the components of the signal variation. The least significant components are associated with small singular values and tend to characterize the noise variation. Applying a "minimum variance" filter to the singular values suppresses the noise components in a way that optimally approximates the underlying noise-free images. The result is a reduction in noise in the individual TE images with minimal degradation of the spatial resolution and contrast. Phantom and in vivo results are presented.

  5. ALTERNATIVE FIELD METHODS TO TREAT MERCURY IN SOIL

    Energy Technology Data Exchange (ETDEWEB)

    Ernest F. Stine Jr; Steven T. Downey

    2002-08-14

    U.S. Department of Energy (DOE) used large quantities of mercury in the uranium separating process from the 1950s until the late 1980s in support of national defense. Some of this mercury, as well as other hazardous metals and radionuclides, found its way into, and under, several buildings, soil and subsurface soils and into some of the surface waters. Several of these areas may pose potential health or environmental risks and must be dealt with under current environmental regulations. DOE's National Energy Technology Laboratory (NETL) awarded a contract ''Alternative Field Methods to Treat Mercury in Soil'' to IT Group, Knoxville TN (IT) and its subcontractor NFS, Erwin, TN to identify remedial methods to clean up mercury-contaminated high-clay content soils using proven treatment chemistries. The sites of interest were the Y-12 National Security Complex located in Oak Ridge, Tennessee, the David Witherspoon properties located in Knoxville, Tennessee, and at other similarly contaminated sites. The primary laboratory-scale contract objectives were (1) to safely retrieve and test samples of contaminated soil in an approved laboratory and (2) to determine an acceptable treatment method to ensure that the mercury does not leach from the soil above regulatory levels. The leaching requirements were to meet the TC (0.2 mg/l) and UTS (0.025 mg/l) TCLP criteria. In-situ treatments were preferred to control potential mercury vapors emissions and liquid mercury spills associated with ex-situ treatments. All laboratory work was conducted in IT's and NFS laboratories. Mercury contaminated nonradioactive soil from under the Alpha 2 building in the Y-12 complex was used. This soils contained insufficient levels of leachable mercury and resulted in TCLP mercury concentrations that were similar to the applicable LDR limits. The soil was spiked at multiple levels with metallic (up to 6000 mg/l) and soluble mercury compounds (up to 500 mg/kg) to

  6. Analysis on Three-dimensional Structure and Echo Characteristic Quantity of a Supercell Storm

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to study three-dimensional structure and echo characteristic quantity of a supercell storm in central Gansu on May 30,2005.[Method] By monitoring data of Lanzhou CINRAD/CC Doppler radar,the three-dimensional structure characteristics of a rare supercell storm which happened in central Gansu on May 30,2005 were analyzed.We tried to reveal three-dimensional structure and echo characteristic index of supercell storm in the northeast of Qinghai-Tibet Plateau,and find reason of rar...

  7. Alternative Methods for Field Corrections in Helical Solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Krave, S. T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Tompkins, J. C. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yonehara, K. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Flanagan, G. [Muons Inc., Batavia, IL (United States); Kahn, S. A. [Muons Inc., Batavia, IL (United States); Melconian, K. [Texas A & M Univ., College Station, TX (United States)

    2015-05-01

    Helical cooling channels have been proposed for highly efficient 6D muon cooling. Helical solenoids produce solenoidal, helical dipole, and helical gradient field components. Previous studies explored the geometric tunability limits on these main field components. In this paper we present two alternative correction schemes, tilting the solenoids and the addition of helical lines, to reduce the required strength of the anti-solenoid and add an additional tuning knob.

  8. Gaussian-approximation formalism for evaluating decay of NMR spin echoes

    Energy Technology Data Exchange (ETDEWEB)

    Recchia, C.H.; Gorny, K.; Pennington, C.H. [Department of Physics, The Ohio State University, 174 W. 18th Ave., Columbus, Ohio 43210 (United States)

    1996-08-01

    We present a formalism for evaluating the amplitude of the NMR spin echo and stimulated echo as a function of pulse spacings, for situations in which the nuclear spins experience an effective longitudinal magnetic field {ital h}{sub {ital z}}({ital t}) resulting from an arbitrary number of independent sources, each characterized by its own arbitrary time correlation function. The distribution of accumulated phase angles for the ensemble of nuclear spins at the time of the echo is approximated as a Gaussian. The development of the formalism is motivated by the need to understand the transverse relaxation of {sup 89}Y in YBa{sub 2}Cu{sub 3}O{sub 7}, in which the {sup 89}Y experiences {sup 63,65}Cu dipolar fields which fluctuate due to {sup 63,65}Cu {ital T}{sub 1} processes. The formalism is applied successfully to this example, and to the case of nuclei diffusing in a spatially varying magnetic field. Then we examine a situation in which the approximation fails{emdash}the classic problem of chemical exchange in dimethylformamide, where the methyl protons experience a chemical shift which fluctuates between two discrete values. In this case the Gaussian approximation yields a monotonic decay of the echo amplitude with increasing pulse spacing, while the exact solution yields distinct {open_quote}{open_quote}beats{close_quote}{close_quote} in the echo height, which we confirm experimentally. In light of this final example the limits of validity of the approximation are discussed. {copyright} {ital 1996 The American Physical Society.}

  9. Anomalous echoes observed with the EISCAT UHF radar at 100-km altitude

    Directory of Open Access Journals (Sweden)

    E. Malnes

    Full Text Available We have observed a number of strong echoes with the European incoherent-scatter (EISCAT UHF (930-MHz radar at angles 83.5° and 78.6° with the geomagnetic field and at about 100-km altitude north in the auroral zone. The echoes are short-lived and occur in single 2- or 10-s data dumps. They are offset by 125–130 kHz with respect to the transmitted frequency. In most cases the offset compares well with the frequency of gyro lines in the incoherent-scatter spectrum, as given by the standard linear dispersion relation. But sometimes the measured offsets deviate significantly from the model calculations, and the interpretation in terms of gyro lines becomes questionable. The discrepancy could possibly be explained by local deviations in the magnetic field from the model (IGRF 1987, which are generated by incoming particle beams. A more serious problem with the gyro-line theory is how the line can be excited at altitudes where the collisional damping is substantial. The high intensity and short lifetime of the signal point to a fast-growing plasma instability as the likely excitation mechanism, if the gyro-line interpretation is correct. The cause of the instability could be the same particle beams as those causing the disturbances in the magnetic field. Alternatively, the observations may be interpreted as meteor head echoes. The large Doppler shifts, the short lifetimes and the altitudes of the signals support this explanation. The main difficulty is that the distribution of measured offsets appears to be different in magnetically active conditions and in less active conditions. Also, the occurrence of echoes does not seem to follow the expected changes in meteor density. More observations in different conditions are needed to decide between the two interpretations. As it is, we are inclined to believe in the meteor head echo theory, the objections to the gyro-line theory being more fundamental.

  10. Growing Echo-State Network With Multiple Subreservoirs.

    Science.gov (United States)

    Qiao, Junfei; Li, Fanjun; Han, Honggui; Li, Wenjing

    2017-02-01

    An echo-state network (ESN) is an effective alternative to gradient methods for training recurrent neural network. However, it is difficult to determine the structure (mainly the reservoir) of the ESN to match with the given application. In this paper, a growing ESN (GESN) is proposed to design the size and topology of the reservoir automatically. First, the GESN makes use of the block matrix theory to add hidden units to the existing reservoir group by group, which leads to a GESN with multiple subreservoirs. Second, every subreservoir weight matrix in the GESN is created with a predefined singular value spectrum, which ensures the echo-sate property of the ESN without posterior scaling of the weights. Third, during the growth of the network, the output weights of the GESN are updated in an incremental way. Moreover, the convergence of the GESN is proved. Finally, the GESN is tested on some artificial and real-world time-series benchmarks. Simulation results show that the proposed GESN has better prediction performance and faster leaning speed than some ESNs with fixed sizes and topologies.

  11. 127I NMR study of quadrupolar echoes in KI

    Science.gov (United States)

    Lee, Nelson; Sanctuary, B. C.; Halstead, T. K.

    Potassium iodide (K 121I), like KBr and many other alkali halide solids, has cubic symmetry. Distortion of this cubic symmetry in single crystals of KI creates electric field gradients of sufficient strength for the quadrupolar interactions to dominate the dynamics of the system. Simple one-, two-, and three-pulse sequences applied to such crystals permit the observation, in the time domain, of the solid- or quadrupolar-echo phenomenon for spin I = {5}/{2}( 127I) . Using the multipole approach to interpret the experimental responses of three-pulse sequences, the characteristic relaxation behavior of the first-, second-, third-, and fifth-rank zero- and multiquantum polarizations are determined. The experimental determination of distinct relaxation times for the higher rank polarizations in both KI and KBr ( I = {3}/{2}) lends credibility to the concept of the multipoles as physical quantities.

  12. The effects of preceding lead-alone and lag-alone click trains on the buildup of echo suppression.

    Science.gov (United States)

    Bishop, Christopher W; Yadav, Deepak; London, Sam; Miller, Lee M

    2014-08-01

    Spatial perception in echoic environments is influenced by recent acoustic history. For instance, echo suppression becomes more effective or "builds up" with repeated exposure to echoes having a consistent acoustic relationship to a temporally leading sound. Four experiments were conducted to investigate how buildup is affected by prior exposure to unpaired lead-alone or lag-alone click trains. Unpaired trains preceded lead-lag click trains designed to evoke and assay buildup. Listeners reported how many sounds they heard from the echo hemifield during the lead-lag trains. Stimuli were presented in free field (experiments 1 and 4) or dichotically through earphones (experiments 2 and 3). In experiment 1, listeners reported more echoes following a lead-alone train compared to a period of silence. In contrast, listeners reported fewer echoes following a lag-alone train; similar results were observed with earphones. Interestingly, the effects of lag-alone click trains on buildup were qualitatively different when compared to a no-conditioner trial type in experiment 4. Finally, experiment 3 demonstrated that the effects of preceding click trains on buildup cannot be explained by a change in counting strategy or perceived click salience. Together, these findings demonstrate that echo suppression is affected by prior exposure to unpaired stimuli.

  13. Six-dimensional Methods for Four-dimensional Conformal Field Theories II: Irreducible Fields

    CERN Document Server

    Weinberg, Steven

    2012-01-01

    This note supplements an earlier paper on conformal field theories. There it was shown how to construct tensor, spinor, and spinor-tensor primary fields in four dimensions from their counterparts in six dimensions, where conformal transformations act simply as SO(4,2) Lorentz transformations. Here we show how to constrain fields in six dimensions so that the corresponding primary fields in four dimensions transform according to irreducible representations of the four-dimensional Lorentz group, even when the irreducibility conditions on these representations involve the four-component Levi-Civita tensor $\\epsilon_{\\mu\

  14. Method of using an electric field controlled emulsion phase contactor

    Science.gov (United States)

    Scott, Timothy C.

    1993-01-01

    A system for contacting liquid phases comprising a column for transporting a liquid phase contacting system, the column having upper and lower regions. The upper region has a nozzle for introducing a dispersed phase and means for applying thereto a vertically oriented high intensity pulsed electric field. This electric field allows improved flow rates while shattering the dispersed phase into many micro-droplets upon exiting the nozzle to form a dispersion within a continuous phase. The lower region employs means for applying to the dispersed phase a horizontally oriented high intensity pulsed electric field so that the dispersed phase undergoes continuous coalescence and redispersion while being urged from side to side as it progresses through the system, increasing greatly the mass transfer opportunity.

  15. Using multi-beam echo sounder backscatter data for sediment classification in very shallow water environments

    NARCIS (Netherlands)

    Amiri-Simkooei, A.R.; Snellen, M.; Simons, D.G.

    2009-01-01

    In a recent work described in Ref. [1], an angle-independent methodology was developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed sediment classification. The method employs the backscatter data at a certain angle to obtain the number of sediment classes and to discrim

  16. Effect of cardiac resynchronization therapy in patients with diabetes randomized in EchoCRT

    DEFF Research Database (Denmark)

    Nägele, Matthias P; Steffel, Jan; Robertson, Michele;

    2017-01-01

    AIMS: As patients with heart failure (HF) and concomitant diabetes carry a poor prognosis, this post-hoc subgroup analysis aimed to compare the outcomes of patients with and without diabetes randomized in the Echocardiography Guided Cardiac Resynchronization Therapy (EchoCRT) study. METHODS AND R...

  17. Physical understanding of an echo-Doppler test with voice-induced vibration

    CERN Document Server

    D'Alessandro, Alessio; Minetti, Giuseppe; Rosso, Franco; Villa, Alessandro

    2008-01-01

    The physical understanding of a method of detecting mammalian cancer via vocalization during a normal echo-Doppler test is provided. The backscattered ultrasound frequency in the case of a vocal humming resonating in the chest wall is computed: the overall effect is that the signal/noise ratio could be easily improved at no cost. Clinical results are to appear separately elsewhere.

  18. Methods of gas hydrate concentration estimation with field examples

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, D.; Dash, R.; Dewangan, P.

    different methods of gas hydrate concentration estimation that make use of data from the measurements of the seismic properties, electrical resistivity, chlorinity, porosity, density, and temperature are summarized in this paper. We demonstrate the methods...

  19. A New Definition and Classification of Echo Questions

    Institute of Scientific and Technical Information of China (English)

    王瑾琼; 张岭

    2014-01-01

    The frequent occurrence of echo questions in people’s daily conversation has not arouse enough interest in linguists yet; meanwhile, different scholars hold different views when it comes to such questions as how far the boundary of echo ques-tions should extend, how they should be classified, etc. The following paper gives the echo question a new definition and classifi-cation. It hopes to provide a more persuasive reference of future researchers.

  20. An Acoustic Echo Cancellation System based on Adaptive Algorithm

    OpenAIRE

    2012-01-01

    Adaptive filtering technique is one of the core technologies in digital signal processing and finds numerous application areas in science as well as in industry. Adaptive filtering technique is widely used in many applications, including echo cancellation, adaptive noise cancellation, adaptive beam forming and adaptive equalization. Acoustic echo is a common occurrence in today’s telecommunication systems. The distraction caused by the acoustic echo, reduces the speech quality in the communic...

  1. Enhancing Field Research Methods with Mobile Survey Technology

    Science.gov (United States)

    Glass, Michael R.

    2015-01-01

    This paper assesses the experience of undergraduate students using mobile devices and a commercial application, iSurvey, to conduct a neighborhood survey. Mobile devices offer benefits for enhancing student learning and engagement. This field exercise created the opportunity for classroom discussions on the practicalities of urban research, the…

  2. Enhancing Field Research Methods with Mobile Survey Technology

    Science.gov (United States)

    Glass, Michael R.

    2015-01-01

    This paper assesses the experience of undergraduate students using mobile devices and a commercial application, iSurvey, to conduct a neighborhood survey. Mobile devices offer benefits for enhancing student learning and engagement. This field exercise created the opportunity for classroom discussions on the practicalities of urban research, the…

  3. Developing and evaluating rapid field methods to estimate peat carbon

    Science.gov (United States)

    Rodney A. Chimner; Cassandra A. Ott; Charles H. Perry; Randall K. Kolka

    2014-01-01

    Many international protocols (e.g., REDD+) are developing inventories of ecosystem carbon stocks and fluxes at country and regional scales, which can include peatlands. As the only nationally implemented field inventory and remeasurement of forest soils in the US, the USDA Forest Service Forest Inventory and Analysis Program (FIA) samples the top 20 cm of organic soils...

  4. Effective and efficient method of calculating Bessel beam fields

    CSIR Research Space (South Africa)

    Litvin, IA

    2005-01-01

    Full Text Available Bessel beams have gathered much interest of late due to their properties of near diffraction free propagation and self reconstruction after obstacles. Such laser beams have already found applications in fields such as optical tweezers and as pump...

  5. Test of Scintillometer Saturation Correction Methods Using Field Experimental Data

    NARCIS (Netherlands)

    Kleissl, J.; Hartogensis, O.K.; Gomez, J.D.

    2010-01-01

    Saturation of large aperture scintillometer (LAS) signals can result in sensible heat flux measurements that are biased low. A field study with LASs of different aperture sizes and path lengths was performed to investigate the onset of, and corrections for, signal saturation. Saturation already occu

  6. Decoherence and Spin Echo in Biological Systems

    CERN Document Server

    Nesterov, Alexander I

    2015-01-01

    The spin echo approach is extended to include bio-complexes for which the interaction with dynamical noise is strong. Significant restoration of the free induction decay signal due to homogeneous (decoherence) and inhomogeneous (dephasing) broadening is demonstrated analytically and numerically, for both an individual dimer of interacting chlorophylls and for an ensemble of dimers. This approach is based on an exact and closed system of ordinary differential equations that can be easily solved for a wide range of parameters that are relevant for bio-applications.

  7. Decoherence alias Loschmidt echo of the environment

    CERN Document Server

    Gorin, T; Seligman, T H; Strunz, W T

    2004-01-01

    Entanglement between a quantum system and its environment leads to loss of coherence in the former. In general, the temporal fate of coherences is complicated. Here, we establish the connection between decoherence of a central system and fidelity decay in the environment for a variety of situations, including both, energy conserving and dissipative couplings. We show how properties of unitary time evolution of the environment can be inferred from the non-unitary evolution of coherences in the central system. This opens up promising ways for measuring Loschmidt echoes in a variety of situations.

  8. Preprocessing of ionospheric echo Doppler spectra

    Institute of Scientific and Technical Information of China (English)

    FANG Liang; ZHAO Zhengyu; WANG Feng; SU Fanfan

    2007-01-01

    The real-time information of the distant ionosphere can be acquired by using the Wuhan ionospheric oblique backscattering sounding system(WIOBSS),which adopts a discontinuous wave mechanism.After the characteristics of the ionospheric echo Doppler spectra were analyzed,the signal preprocessing was developed in this paper,which aimed at improving the Doppler spectra.The results indicate that the preprocessing not only makes the system acquire a higher ability of target detection but also suppresses the radio frequency interference by 6-7 dB.

  9. Non-invasive method of field imaging in parallel plate waveguides

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Andryieuski, Andrei; Lavrinenko, Andrei

    2011-01-01

    We present a new non-invasive air-photonic-based method of terahertz (THz) field imaging inside a parallel plate waveguide. The method is based on THz field-enhanced second harmonic generation of the fundamental laser beam in an external electric field. We also demonstrate the direct measurements...

  10. PROGRESS ON GENERIC PHASE-FIELD METHOD DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Biner, Bullent; Tonks, Michael; Millett, Paul C.; Li, Yulan; Hu, Shenyang Y.; Gao, Fei; Sun, Xin; Martinez, E.; Anderson, D.

    2012-09-26

    In this report, we summarize our current collobarative efforts, involving three national laboratories: Idaho National Laboratory (INL), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboatory (LANL), to develop a computational framework for homogenous and heterogenous nucleation mechanisms into the generic phase-field model. During the studies, the Fe-Cr system was chosen as a model system due to its simplicity and availability of reliable thermodynamic and kinetic data, as well as the range of applications of low-chromium ferritic steels in nuclear reactors. For homogenous nucleation, the relavant parameters determined from atomistic studies were used directly to determine the energy functional and parameters in the phase-field model. Interfacial energy, critical nucleus size, nucleation rate, and coarsening kinetics were systematically examined in two- and three- dimensional models. For the heteregoneous nucleation mechanism, we studied the nucleation and growth behavior of chromium precipitates due to the presence of dislocations. The results demonstrate that both nucleation schemes can be introduced to a phase-field modeling algorithm with the desired accuracy and computational efficiency.

  11. On multiplying methods in the field of research evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Derrick, G.; Molas-Gallart, J.; De Rijcke, S.; Meijer, I.; Van der Weijden, I.; Wouters, P.

    2016-07-01

    This special session forms part of a larger program aimed at the multiplication and integration of methodological approaches in the research evaluation and innovation policy field. The session builds on previous initiatives by Gemma Derrick and colleagues at CWTS, INGENIO, the Rathenau Instituut and SPRU, exploring the advantages of qualitative methodological tools at the STI/ENID conference in Lugano, and an international workshop in London in October 2015. The program is highly topical: the research evaluation field is currently reconsidering its methodological foundations in light of new research questions arising from policy initiatives regarding a) the move toward open science; b) a reconceptualization of research excellence to include societal relevance; c) diversification of academic careers, and d) the search for indicators showcasing responsible research behavior and innovation. This new special session at STI2016 will advance and broaden the scope of previous initiatives by building bridges between cutting edge research involving quantitative, qualitative, and mixed methodological research designs. Bringing together leading experts and promising researchers with distinctive methodological skill-sets, the session will demonstrate the advantages of cross-fertilization between ‘core’ and ‘peripheral’ methodological approaches for the research evaluation and science indicators field. (Author)

  12. Practical methods for generating alternating magnetic fields for biomedical research

    Science.gov (United States)

    Christiansen, Michael G.; Howe, Christina M.; Bono, David C.; Perreault, David J.; Anikeeva, Polina

    2017-08-01

    Alternating magnetic fields (AMFs) cause magnetic nanoparticles (MNPs) to dissipate heat while leaving surrounding tissue unharmed, a mechanism that serves as the basis for a variety of emerging biomedical technologies. Unfortunately, the challenges and costs of developing experimental setups commonly used to produce AMFs with suitable field amplitudes and frequencies present a barrier to researchers. This paper first presents a simple, cost-effective, and robust alternative for small AMF working volumes that uses soft ferromagnetic cores to focus the flux into a gap. As the experimental length scale increases to accommodate animal models (working volumes of 100s of cm3 or greater), poor thermal conductivity and volumetrically scaled core losses render that strategy ineffective. Comparatively feasible strategies for these larger volumes instead use low loss resonant tank circuits to generate circulating currents of 1 kA or greater in order to produce the comparable field amplitudes. These principles can be extended to the problem of identifying practical routes for scaling AMF setups to humans, an infrequently acknowledged challenge that influences the extent to which many applications of MNPs may ever become clinically relevant.

  13. Dose calculation for asymmetric fields and irregular fields with multileaf collimators. Approximation of tissue-maximum ratio and field factor using modified Day`s calculation method

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Manabu; Okada, Takashi; Komai, Yoshinori; Nohara, Hiroki [Kyoto Univ. (Japan). Hospital

    1996-08-01

    Modern linear accelerators have four independent jaws and multileaf collimators (MLC) of 1 cm width at the isocenter. Asymmetric fields defined by such independent jaws and irregular multileaf collimated fields can be used to match adjacent fields or to spare the spinal cord in external photon beam radiotherapy. We have developed a new approximate algorithm for depth dose calculations at the collimator rotation axis. The program is based on Clarkson`s principle, and uses a more accurate modification of Day`s method for asymmetric fields. Using this method, tissue-maximum ratios (TMR) and field factors of ten kinds of asymmetric fields and ten different irregular multileaf collimated fields were calculated and compared with the measured data for 6 MV and 15 MV photon beams. The dose accuracy with the general A/Pe method was about 3%, however, with the new modified Day`s method, accuracy was within 1.7% for TMR and 1.2% for field factors. The calculated TMR and field factors were found to be in good agreement with measurements for both the 6 MV and 15 MV photon beams. (author)

  14. 扩展性微动目标回波模拟与特征参数提取研究∗%Research on extended micro-motion target echo simulation and characteristic extraction

    Institute of Scientific and Technical Information of China (English)

    王童; 童创明; 李西敏; 李昌泽

    2015-01-01

    The micro-motion Doppler echo simulation and characteristic parameter extraction of the extended micro-motion target are carried out. For the extended micro-motion target, the echo from the target cannot be regarded as several points’ echo. Based on the connections between the scattering field and Doppler echo, an echo simulation method for micro-motion target (based on physical optics) and a method of equivalent current are proposed. At the moment, the micro-motion target can be taken as a static target, so the back scattering field series can be calculated by physical optics and the method of equivalent current. The back scattering field series calculated in the target coordinate system is transformed into the echo of radar coordinate system by the conversion of coordinates, and the Doppler echo is obtained. By comparing with the analytic signal model, the method is validated. The precession characteristics of a cone and warhead with fins are analyzed. Echoes come from every part of the extended micro-motion target and contain the motion characteristics of that part. So the traditional time-frequency analytical methods are not appropriate. In order to achieve better time frequency concentration and avoid the cross terms, the S-method is used to get the time-frequency distributions. The time-frequency characteristics at different radar waves’ incidence angles, target different motion states and different geometries are analyzed. From the time-frequency distribution map, the micro-motion of the cone behaves as the micro-motion of two strong scattering points at the bottom of the cone. Because of the shielding effect, the time-frequency curves are not integrated when the radar waves are incident from the cone’s bottom. The sinusoidal curve can be mapped to a point in the parameter space based on the inverse radon transform, and the target micro-motion parameters can be obtained. Results of inverse radon transform also show that the precession of the cone

  15. MR venography of the human brain using susceptibility weighted imaging at very high field strength

    NARCIS (Netherlands)

    Koopmans, Peter J.; Manniesing, Rashindra; Niessen, Wiro J.; Viergever, Max A.; Barth, Markus

    2008-01-01

    Objective We investigate the implications of high magnetic field strength on MR venography based on susceptibility-weighted imaging (SWI) and estimate the optimum echo time to obtain maximum contrast between blood and brain tissue. Materials and methods We measured tissue contrast and T*(2) relaxati

  16. Quantitative visualization of coherent flow structures in alluvial channels using multibeam echo-sounding

    Science.gov (United States)

    Parsons, D. R.; Simmons, S.; Best, J.

    2010-12-01

    Multibeam Echo-Sounder systems have developed rapidly over recent decades and are routinely deployed to provide high-resolution bathymetric details in range of aquatic environments. Modern data handling and storage technologies now facilitate the logging of the raw acoustic back-scatter information that was previously discarded by these systems. This paper describes methodologies that exploit this logging capability to quantify the concentration and dynamics of suspended sediment within the water column and presents a novel method that also allows for quantification of 2D flow velocities. This development provides a multi-purpose tool for the holistic surveying of the process linkages between flow, sediment transport and bed morphology. The application of this new technique is illustrated with reference to flow over alluvial sand dunes, which allows, for the first time in a field study, quantitative visualization of larg-scale, whole flow field, turbulent coherent flow structures, associated with the dune leeside, that are responsible for suspending bed sediment. This methodology holds great potential for use in a wide range of aqueous geophysical flows. CFS captured by MBES in the lee of an alluvial dune. Contours of suspended sediment concentration and superimposed 2D flow velocity vectors

  17. Caustic echoes from a Schwarzschild black hole

    CERN Document Server

    Zenginoğlu, Anıl

    2012-01-01

    We present the first numerical construction of the scalar Schwarzschild Green function in the time-domain, which reveals several universal features of wave propagation in black hole spacetimes. We demonstrate the trapping of energy near the photon sphere and confirm its exponential decay. The trapped wavefront propagates through caustics resulting in echoes that propagate to infinity. The arrival times and the decay rate of these caustic echoes are consistent with propagation along null geodesics and the large l-limit of quasinormal modes. We show that the four-fold singularity structure of the retarded Green function is due to the well-known action of a Hilbert transform on the trapped wavefront at caustics. A two-fold cycle is obtained for degenerate source-observer configurations along the caustic line, where the energy amplification increases with an inverse power of the scale of the source. Finally, we discuss the tail piece of the solution due to propagation within the light cone, up to and including nu...

  18. The EChO science case

    CERN Document Server

    Tinetti, Giovanna; Eccleston, Paul; Hartogh, Paul; Isaak, Kate; Linder, Martin; Lovis, Christophe; Micela, Giusi; Ollivier, Marc; Puig, Ludovic; Ribas, Ignasi; Snellen, Ignas; Allard, Bruce Swinyard France; Barstow, Joanna; Cho, James; Coustenis, Athena; Cockell, Charles; Correia, Alexandre; Decin, Leen; de Kok, Remco; Deroo, Pieter; Encrenaz, Therese; Forget, Francois; Glasse, Alistair; Griffith, Caitlin; Guillot, Tristan; Koskinen, Tommi; Lammer, Helmut; Leconte, Jeremy; Maxted, Pierre; Mueller-Wodarg, Ingo; Nelson, Richard; North, Chris; Pallé, Enric; Pagano, Isabella; Piccioni, Guseppe; Pinfield, David; Selsis, Franck; Sozzetti, Alessandro; Stixrude, Lars; Tennyson, Jonathan; Turrini, Diego; Beaulieu, Mariarosa Zapatero-Osorio Jean-Philippe; Grodent, Denis; Guedel, Manuel; Luz, David; Nørgaard-Nielsen, Hans Ulrik; Ray, Tom; Rickman, Hans; Selig, Avri; Banaszkiewicz, Mark Swain Marek; Barlow, Mike; Bowles, Neil; Branduardi-Raymont, Graziella; Foresto, Vincent Coudé du; Gerard, Jean-Claude; Gizon, Laurent; Hornstrup, Allan; Jarchow, Christopher; Kerschbaum, Franz; Kovacs, Géza; Lagage, Pierre-Olivier; Lim, Tanya; Lopez-Morales, Mercedes; Malaguti, Giuseppe; Pace, Emanuele; Pascale, Enzo; Vandenbussche, Bart; Wright, Gillian; Adriani, Gonzalo Ramos Zapata Alberto; Azzollini, Ruymán; Balado, Ana; Bryson, Ian; Burston, Raymond; Colomé, Josep; Crook, Martin; Di Giorgio, Anna; Griffin, Matt; Hoogeveen, Ruud; Ottensamer, Roland; Irshad, Ranah; Middleton, Kevin; Morgante, Gianluca; Pinsard, Frederic; Rataj, Mirek; Reess, Jean-Michel; Savini, Giorgio; Schrader, Jan-Rutger; Stamper, Richard; Abe, Berend Winter L; Abreu, M; Achilleos, N; Ade, P; Adybekian, V; Affer, L; Agnor, C; Agundez, M; Alard, C; Alcala, J; Prieto, C Allende; Floriano, F J Alonso; Altieri, F; Iglesias, C A Alvarez; Amado, P; Andersen, A; Aylward, A; Baffa, C; Bakos, G; Ballerini, P; Banaszkiewicz, M; Barber, R J; Barrado, D; Barton, E J; Batista, V; Bellucci, G; Avilés, J A Belmonte; Berry, D; Bézard, B; Biondi, D; Błęcka, M; Boisse, I; Bonfond, B; Bordé, P; Börner, P; Bouy, H; Brown, L; Buchhave, L; Budaj, J; Bulgarelli, A; Burleigh, M; Cabral, A; Capria, M T; Cassan, A; Cavarroc, C; Cecchi-Pestellini, C; Cerulli, R; Chadney, J; Chamberlain, S; Charnoz, S; Jessen, N Christian; Ciaravella, A; Claret, A; Claudi, R; Coates, A; Cole, R; Collura, A; Cordier, D; Covino, E; Danielski, C; Damasso, M; Deeg, H J; Delgado-Mena, E; Del Vecchio, C; Demangeon, O; De Sio, A; De Wit, J; Dobrijévic, M; Doel, P; Dominic, C; Dorfi, E; Eales, S; Eiroa, C; Contreras, M Espinoza; Esposito, M; Eymet, V; Fabrizio, N; Fernández, M; Castella, B Femenía; Figueira, P; Filacchione, G; Fletcher, L; Focardi, M; Fossey, S; Fouqué, P; Frith, J; Galand, M; Gambicorti, L; Gaulme, P; López, R J García; Garcia-Piquer, A; Gear, W; Gerard, J -C; Gesa, L; Giani, E; Gianotti, F; Gillon, M; Giro, E; Giuranna, M; Gomez, H; Gomez-Leal, I; Hernandez, J Gonzalez; Merino, B González; Graczyk, R; Grassi, D; Guardia, J; Guio, P; Gustin, J; Hargrave, P; Haigh, J; Hébrard, E; Heiter, U; Heredero, R L; Herrero, E; Hersant, F; Heyrovsky, D; Hollis, M; Hubert, B; Hueso, R; Israelian, G; Iro, N; Irwin, P; Jacquemoud, S; Jones, G; Jones, H; Justtanont, K; Kehoe, T; Kerschbaum, F; Kerins, E; Kervella, P; Kipping, D; Koskinen, T; Krupp, N; Lahav, O; Laken, B; Lanza, N; Lellouch, E; Leto, G; Goldaracena, J Licandro; Lithgow-Bertelloni, C; Liu, S J; Cicero, U Lo; Lodieu, N; Lognonné, P; Lopez-Puertas, M; Lopez-Valverde, M A; Rasmussen, I Lundgaard; Luntzer, A; Machado, P; MacTavish, C; Maggio, A; Maillard, J -P; Magnes, W; Maldonado, J; Mall, U; Marquette, J -B; Mauskopf, P; Massi, F; Maurin, A -S; Medvedev, A; Michaut, C; Miles-Paez, P; Montalto, M; Rodríguez, P Montañés; Monteiro, M; Montes, D; Morais, H; Morales, J C; Morales-Calderón, M; Morello, G; Martín, A Moro; Moses, J; Bedon, A Moya; Alcaino, F Murgas; Oliva, E; Orton, G; Palla, F; Pancrazzi, M; Pantin, E; Parmentier, V; Parviainen, H; Ramírez, K Y Peña; Peralta, J; Perez-Hoyos, S; Petrov, R; Pezzuto, S; Pietrzak, R; Pilat-Lohinger, E; Piskunov, N; Prinja, R; Prisinzano, L; Polichtchouk, I; Poretti, E; Radioti, A; Ramos, A A; Rank-Lüftinger, T; Read, P; Readorn, K; López, R Rebolo; Rebordão, J; Rengel, M; Rezac, L; Rocchetto, M; Rodler, F; Béjar, V J Sánchez; Lavega, A Sanchez; Sanromá, E; Santos, N; Forcada, J Sanz; Scandariato, G; Schmider, F -X; Scholz, A; Scuderi, S; Sethenadh, J; Shore, S; Showman, A; Sicardy, B; Sitek, P; Smith, A; Soret, L; Sousa, S; Stiepen, A; Stolarski, M; Strazzulla, G; Tabernero, H M; Tanga, P; Tecsa, M; Temple, J; Terenzi, L; Tessenyi, M; Testi, L; Thompson, S; Thrastarson, H; Tingley, B W; Trifoglio, M; Torres, J Martín; Tozzi, A; Turrini, D; Varley, R; Vakili, F; de Val-Borro, M; Valdivieso, M L; Venot, O; Villaver, E; Vinatier, S; Viti, S; Waldmann, I; Waltham, D; Ward-Thompson, D; Waters, R; Watkins, C; Watson, D; Wawer, P; Wawrzaszk, A; White, G; Widemann, T; Winek, W; Wiśniowski, T; Yelle, R; Yung, Y; Yurchenko, S N

    2015-01-01

    The discovery of almost 2000 exoplanets has revealed an unexpectedly diverse planet population. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? What causes the exceptional diversity observed as compared to the Solar System? EChO (Exoplanet Characterisation Observatory) has been designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large and diverse planet sample within its four-year mission lifetime. EChO can target the atmospheres of super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300K-3000K) of F to M-type host stars. Over the next ten years, several new ground- and space-based transit surveys will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on find...

  19. Application of the anisotropy field distribution method to arrays of magnetic nanowires

    OpenAIRE

    De La Torre Medina, Joaquin; Darques, Michaël; Piraux, Luc; Encinas, Armando

    2009-01-01

    The applicability of the anisotropy field distribution method and the conditions required for an accurate determination of the effective anisotropy field in arrays of magnetic nanowires have been evaluated. In arrays of magnetic nanowires that behave as ideal uniaxial systems having only magnetostatic contributions to the effective anisotropy field, i.e., shape anisotropy and magnetostatic coupling, the method yields accurate values of the average anisotropy field at low-moderate dipolar coup...

  20. Neural network control method for thermoelectric converters with controlled profile temperature field

    OpenAIRE

    Кочан, Орест Володимирович

    2012-01-01

    There is method of control of temperature field of thermocouple based sensor with controlled profile of temperature field (TBS with CPTF) along electrodes of main thermocouple (MTC) considered in this paper. This mentioned above method is based on neural networks. MTC measure temperature of an object directly.Stable profile of the temperature field along electrodes of MTC doesn’t allow to the heterogeneity error of thermoelectrodes of MTC appear itself. Such stability of the temperature field...

  1. Long distance propagation of a polarized neutron beam in zero magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, U.; Bitter, T.; El-Muzeini, P. (Heidelberg Univ. (Germany). Physikalisches Inst.); Dubbers, D. (Technische Univ. Muenchen, Garching (Germany). Fakultaet fuer Physik E21); Schaerpf, O. (Inst. Laue Langevin, 38 - Grenoble (France))

    1992-09-01

    A beam of fully polarized cold neutrons was transported through a zero magnetic field region of 70 m length without loss of polarization. The purpose of this exercise was twofold: Firstly, to demonstrate that the new zero-field neutron spin-echo method will work also for very long neutron flight paths; secondly, to prove in the most direct way that the neutron free-flight region of the ILL neutron-antineutron oscillation experiment was indeed sufficiently field-free ('quasifree condition') by using the neutrons themselves as a magnetometer. To this purpose the residual magnetic field integrals in the long 'zero-field' region were measured with a conventional neutron spin-echo method. The overall spin precession angle of the neutrons during their flight through the long zero-field region was found to be less than 2[sup 0]. (orig.).

  2. Broadband echo sequence using a pi composite pulse for the pure NQR of a spin I = 32 powder sample

    Science.gov (United States)

    Odin

    2000-04-01

    This work presents a numerical approach to optimizing sequences with composite pulses for the pure NQR of a spin I = 32 powder sample. The calculations are based on a formalism developed in a previous paper, which allows a fast powder-averaging procedure to be implemented. The framework of the Cayley-Klein matrices to describe space rotations by 2 x 2 unitary and unimodular complex matrices is used to calculate the pulse propagators. The object of such a study is to design a high-performance echo sequence composed of a single preparation pulse and a three-pulse composite transfer pulse. We mean a sequence leading to a large excitation bandwidth with a good signal-to-noise ratio, a flat excitation profile near the irradiation frequency, and a good linearity of the phase as a function of frequency offset. Such a composite echo sequence is intended to give a better excitation profile than the classical Hahn (θ)-tau-(2θ) echo sequence. It is argued that in pure NQR of a powder sample, the sequence must be optimized as a whole since both the excitation and the reception of the signal depend on the relative orientation of the crystallites with respect to the coil axis. To our knowledge, this is the first time such a global approach is presented. An extensive numerical study of the composite echo sequence described above is performed in this article. The key of the discrimination between the sequences lies in using the first five reduced moments of the excitation profile as well as an estimator of the phase linearity. Based on such information, we suggest that the echo sequence that best fulfills our criterion is (1)(0)-tau-(0.35)(0)(2.1)(pi)(0.35)(0), the pulse angles omega(RF)t(p) being in radians. The subscripts are the relative pulse phases. We outlined the way to implement the spin echo mapping method to reconstruct large spectra with this sequence, and it is shown that it reduces the acquisition time by a factor of 1.7 if compared to the classical Hahn echo. Some

  3. Echo-lucency of computerized ultrasound images of carotid atherosclerotic plaques are associated with increased levels of triglyceride-rich lipoproteins as well as increased plaque lipid content

    DEFF Research Database (Denmark)

    Grønholdt, Marie-Louise Moes; Nordestgaard, Børge G.; Weibe, Brit M.;

    1998-01-01

    Background-Echo-lucency of carotid atherosclerotic plaques on computerized ultrasound B-mode images has been associated with a high incidence of brain infarcts as evaluated on CT scans. We tested the hypotheses that triglyceride-rich lipoproteins in the fasting and postprandial state predict......-rich lipoproteins predict echo-lucency of carotid plaques, which is associated with increased plaque Lipid content, Because echo-lucency has been associated with a high incidence of brain infarcts on CT scans, triglyceride-rich lipoproteins may predict a plaque type particularly vulnerable to rupture....... carotid plaque echo-lucency and that echo-lucency predicts a high plaque lipid content. Methods and Results-The study included 137 patients with neurological symptoms and greater than or equal to 50% stenosis of the relevant carotid artery, High-resolution B-mode ultrasound images of carotid plaques were...

  4. Trawling bats exploit an echo-acoustic ground effect

    Directory of Open Access Journals (Sweden)

    Sandor eZsebok

    2013-04-01

    Full Text Available A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the substrate and target height on both target detection and –discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc. Psychophysical performance was measured as a function of height above either smooth substrates (water or PVC or above a clutter substrate (artificial grass. At low heights above the clutter substrate (10, 20 or 35 cm, the bats’ detection performance was worse than above a smooth substrate. At a height of 50 cm, the substrate structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats’ echolocation calls during target approach shows that above the clutter substrate, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an object from below over water but from above over a clutter substrate.These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and –discrimination not only for prey on the water but also for some range above.

  5. Trawling bats exploit an echo-acoustic ground effect.

    Science.gov (United States)

    Zsebok, Sandor; Kroll, Ferdinand; Heinrich, Melina; Genzel, Daria; Siemers, Björn M; Wiegrebe, Lutz

    2013-01-01

    A water surface acts not only as an optic mirror but also as an acoustic mirror. Echolocation calls emitted by bats at low heights above water are reflected away from the bat, and hence the background clutter is reduced. Moreover, targets on the surface create an enhanced echo. Here, we formally quantified the effect of the surface and target height on both target detection and -discrimination in a combined laboratory and field approach with Myotis daubentonii. In a two-alternative, forced-choice paradigm, the bats had to detect a mealworm and discriminate it from an inedible dummy (20 mm PVC disc). Psychophysical performance was measured as a function of height above either smooth surfaces (water or PVC) or above a clutter surface (artificial grass). At low heights above the clutter surface (10, 20, or 35 cm), the bats' detection performance was worse than above a smooth surface. At a height of 50 cm, the surface structure had no influence on target detection. Above the clutter surface, also target discrimination was significantly impaired with decreasing target height. A detailed analysis of the bats' echolocation calls during target approach shows that above the clutter surface, the bats produce calls with significantly higher peak frequency. Flight-path reconstruction revealed that the bats attacked an target from below over water but from above over a clutter surface. These results are consistent with the hypothesis that trawling bats exploit an echo-acoustic ground effect, in terms of a spatio-temporal integration of direct reflections with indirect reflections from the water surface, to optimize prey detection and -discrimination not only for prey on the water but also for some range above.

  6. An Efficient and Examinable Illegal Fallow Fields Detecting Method with Spatio-Temporal Information Integration

    Science.gov (United States)

    Chang, Chia-Hao; Chu, Tzu-How

    2017-04-01

    To control the rice production and farm usage in Taiwan, Agriculture and Food Agency (AFA) has published a series of policies to subsidize farmers to plant different crops or to practice fallow science 1983. Because of no efficient and examinable mechanism to verify the fallow fields surveyed by township office, illegal fallow fields were still repeated each year. In this research, we used remote sensing images, GIS data of Fields, and application records of fallow fields to establish an illegal fallow fields detecting method in Yulin County in central Taiwan. This method included: 1. collected multi-temporal images from FS-2 or SPOT series with 4 time periods; 2. combined the application records and GIS data of fields to verify the location of fallow fields; 3. conducted ground truth survey and classified images with ISODATA and Maximum Likelihood Classification (MLC); 4. defined the land cover type of fallow fields by zonal statistic; 5. verified accuracy with ground truth; 6. developed potential illegal fallow fields survey method and benefit estimation. We use 190 fallow fields with 127 legal and 63 illegal as ground truth and accuracies of illegal fallow field interpretation in producer and user are 71.43% and 38.46%. If township office surveyed 117 classified illegal fallow fields, 45 of 63 illegal fallow fields will be detected. By using our method, township office can save 38.42% of the manpower to detect illegal fallow fields and receive an examinable 71.43% producer accuracy.

  7. Rationale and Design of the Echocardiographic Study of Hispanics / Latinos (ECHO-SOL)

    Science.gov (United States)

    Rodriguez, Carlos J.; Dharod, Ajay; Allison, Matthew A.; Shah, Sanjiv J.; Hurwitz, Barry; Bangdiwala, Shrikant I.; Gonzalez, Franklyn; Kitzman, Dalane; Gillam, Linda; Spevack, Daniel; Dadhania, Rupal; Langdon, Sarah; Kaplan, Robert

    2015-01-01

    Background Information regarding the prevalence and determinants of cardiac structure and function (systolic and diastolic) among the various Hispanic background groups in the United States is limited. Methods and Results The Echocardiographic Study of Latinos (ECHO-SOL) ancillary study recruited 1,824 participants through a stratified-sampling process representative of the population-based Hispanic Communities Health Study – Study of Latinos (HCHS-SOL) across four sites (Bronx, NY; Chicago, Ill; San Diego, Calif; Miami, Fla). The HCHS-SOL baseline cohort did not include an echo exam. ECHO-SOL added the echocardiographic assessment of cardiac structure and function to an array of existing HCHS-SOL baseline clinical, psychosocial, and socioeconomic data and provides sufficient statistical power for comparisons among the Hispanic subgroups. Standard two-dimensional (2D) echocardiography protocol, including M-mode, spectral, color and tissue Doppler study was performed. The main objectives were to: 1) characterize cardiac structure and function and its determinants among Hispanics and Hispanic subgroups; and 2) determine the contributions of specific psychosocial factors (acculturation and familismo) to cardiac structure and function among Hispanics. Conclusion We describe the design, methods and rationale of currently the largest and most comprehensive study of cardiac structure and function exclusively among US Hispanics. ECHO-SOL aims to enhance our understanding of Hispanic cardiovascular health as well as help untangle the relative importance of Hispanic subgroup heterogeneity and sociocultural factors on cardiac structure and function. (Ethn Dis. 2015;25[2]:180–186) PMID:26118146

  8. Monitoring of Refractory Wall recession using high temperature impact echo instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    University of Dayton

    2004-04-30

    Regression of refractory linings of furnaces occurs due to a variety of mechanisms. The specific mechanism selected for investigation during this program is the regression of refractories which are in direct contact with a liquid corrodant. Examples include the melting of glass, the production of pig iron and steel, and the melting of aluminum. The rates of regression to a wall thickness which requires reline or extensive reconstruction vary widely, from less than a year to over ten years depending on the specific service environment. This program investigated the feasibility of measuring refractory wall thickness with an impact-echo method while at operating temperature (wall temperatures exceeding 500 C). The impact-echo method uses the impact of a small sphere with the surface of the test object to send a stress wave into the object. In a plate-like structure, the stress wave reflects back to the front surface, reverberating in the structure and causing a periodic surface displacement whose frequency is inversely proportional to the thickness of the test object. Impact-echo testing was chosen because it requires access to only one side of the test object and could be performed during the operation of a refractory structure. Commercially-available impact-echo instrumentation is available for room temperature use for a variety of tests on concrete. The enabling technology for this work was to use a high-temperature piezoelectric material, aluminum nitride, as the receiving sensor for the stress waves, allowing its use on refractories during furnace operation.

  9. Anomalous Propagation Echo Classification of Imbalanced Radar Data with Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Hansoo Lee

    2016-01-01

    Full Text Available A number of technologically advanced devices, such as radars and satellites, are used in an actual weather forecasting process. Among these devices, the radar is essential equipment in this process because it has a wide observation area and fine resolution in both the time and the space domains. However, the radar can also observe unwanted nonweather phenomena. Anomalous propagation echo is one of the representative nonprecipitation echoes generated by an abnormal refraction phenomenon of a radar beam. Abnormal refraction occurs when the temperature and the humidity change dramatically. In such a case, the radar recognizes either the ground or the sea surface as an atmospheric object. This false observation decreases the accuracy of both quantitative precipitation estimation and weather forecasting. Therefore, a system that can automatically recognize an anomalous propagation echo from the radar data needs to be developed. In this paper, we propose a classification method for separating anomalous propagation echoes from the rest of the weather data by using a combination of a support vector machine classifier and the synthetic minority oversampling technique, to solve the problem of imbalanced data. By using actual cases of anomalous propagation we have confirmed that the proposed method provides good classification results.

  10. Heavy Ions Collision evolution modeling with ECHO-QGP

    CERN Document Server

    Rolando, Valentina; Beraudo, Andrea; Del Zanna, Luca; Becattini, Francesco; Chandra, Vinod; De Pace, Arturo; Nardi, Marzia

    2014-01-01

    We present a numerical code modeling the evolution of the medium formed in relativistic heavy ion collisions, ECHO-QGP. The code solves relativistic hydrodynamics in $(3+1)-$D, with dissipative terms included within the framework of Israel-Stewart theory; it can work both in Minkowskian and in Bjorken coordinates. Initial conditions are provided through an implementation of the Glauber model (both Optical and Monte Carlo), while freezeout and particle generation are based on the Cooper-Frye prescription. The code is validated against several test problems and shows remarkable stability and accuracy with the combination of a conservative (shock-capturing) approach and the high-order methods employed. In particular it beautifully agrees with the semi-analytic solution known as Gubser flow, both in the ideal and in the viscous Israel-Stewart case, up to very large times and without any ad hoc tuning of the algorithm.

  11. Field evaluation of broiler gait score using different sampling methods

    Directory of Open Access Journals (Sweden)

    AFS Cordeiro

    2009-09-01

    Full Text Available Brazil is today the world's largest broiler meat exporter; however, in order to keep this position, it must comply with welfare regulations while maintaining low production costs. Locomotion problems restrain bird movements, limiting their access to drinking and feeding equipment, and therefore their survival and productivity. The objective of this study was to evaluate locomotion deficiency in broiler chickens reared under stressful temperature conditions using three different sampling methods of birds from three different ages. The experiment consisted in determining the gait score of 28, 35, 42 and 49-day-old broilers using three different known gait scoring methods: M1, birds were randomly selected, enclosed in a circle, and then stimulated to walk out of the circle; M2, ten birds were randomly selected and gait scored; and M3, birds were randomly selected, enclosed in a circle, and then observed while walking away from the circle without stimulus to walking. Environmental temperature, relative humidity, and light intensity inside the poultry houses were recorded. No evidence of interaction between scoring method and age was found however, both method and age influenced gait score. Gait score was found to be lower at 28 days of age. The evaluation using the ten randomly selected birds within the house was the method that presented the less reliable results. Gait score results when birds were stimulated to walk were lower than when they were not simulated, independently of age. The gait scores obtained with the three tested methods and ages were higher than those considered acceptable. The highest frequency of normal gait score (0 represented 50% of the flock. These results may be related to heat stress during rearing. Average gait score incresead with average ambient temperature, relative humidity, and light intensity. The evaluation of gait score to detect locomotion problems of broilers under rearing conditions seems subjective and

  12. A Field Method for Integrating Equations of Motion of Nonlinear Mechanico-Electrical Coupling Dynamical Systems

    Institute of Scientific and Technical Information of China (English)

    FU Jing-Li; FU Hao

    2008-01-01

    We deai with the generalization of the field method to weakly non-linear mechanico-electricai coupling systems.The field co-ordinates and field momenta approaches are combined with the method of multiple time scales in order to obtain the amplitudes and phase of oscillations in the frst approximation. An example in mechanico-electrical coupling systems is given to illustrate this method.

  13. Acoustic spectroscopy: A powerful analytical method for the pharmaceutical field?

    Science.gov (United States)

    Bonacucina, Giulia; Perinelli, Diego R; Cespi, Marco; Casettari, Luca; Cossi, Riccardo; Blasi, Paolo; Palmieri, Giovanni F

    2016-04-30

    Acoustics is one of the emerging technologies developed to minimize processing, maximize quality and ensure the safety of pharmaceutical, food and chemical products. The operating principle of acoustic spectroscopy is the measurement of the ultrasound pulse intensity and phase after its propagation through a sample. The main goal of this technique is to characterise concentrated colloidal dispersions without dilution, in such a way as to be able to analyse non-transparent and even highly structured systems. This review presents the state of the art of ultrasound-based techniques in pharmaceutical pre-formulation and formulation steps, showing their potential, applicability and limits. It reports in a simplified version the theory behind acoustic spectroscopy, describes the most common equipment on the market, and finally overviews different studies performed on systems and materials used in the pharmaceutical or related fields.

  14. Mathematical methods for students of physics and related fields

    CERN Document Server

    Hassani, Sadri

    2000-01-01

    Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics This new edition has been made more user-friendly through organization into convenient, shorter chapters Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms Some praise for the previous edi...

  15. Mathematical Methods For Students of Physics and Related Fields

    CERN Document Server

    Hassani, Sadri

    2009-01-01

    Intended to follow the usual introductory physics courses, this book has the unique feature of addressing the mathematical needs of sophomores and juniors in physics, engineering and other related fields. Many original, lucid, and relevant examples from the physical sciences, problems at the ends of chapters, and boxes to emphasize important concepts help guide the student through the material. Beginning with reviews of vector algebra and differential and integral calculus, the book continues with infinite series, vector analysis, complex algebra and analysis, ordinary and partial differential equations. Discussions of numerical analysis, nonlinear dynamics and chaos, and the Dirac delta function provide an introduction to modern topics in mathematical physics. This new edition has been made more user-friendly through organization into convenient, shorter chapters. Also, it includes an entirely new section on Probability and plenty of new material on tensors and integral transforms. Some praise for the previo...

  16. Two stochastic mean-field polycrystal plasticity methods

    Energy Technology Data Exchange (ETDEWEB)

    Tonks, Michael [Los Alamos National Laboratory

    2008-01-01

    In this work, we develop two mean-field polycrystal plasticity models in which the L{sup c} are approximated stochastically. Through comprehensive CPFEM analyses of an idealized tantalum polycrystal, we verify that the L{sup c} tend to follow a normal distribution and surmise that this is due to the crystal interactions. We draw on these results to develop the STM and the stochastic no-constraints model (SNCM), which differ in the manner in which the crystal strain rates D{sup c} are prescribed. Calibration and validation of the models are performed using data from tantalum compression experiments. Both models predict the compression textures more accurately than the FCM, and the SNCM predicts them more accurately than the STM. The STM is extremely computationally efficient, only slightly more expensive than the FCM, while the SNCM is three times more computationally expensive than the STM.

  17. Spectral editing of weakly coupled spins using variable flip angles in PRESS constant echo time difference spectroscopy: Application to GABA

    Science.gov (United States)

    Snyder, Jeff; Hanstock, Chris C.; Wilman, Alan H.

    2009-10-01

    A general in vivo magnetic resonance spectroscopy editing technique is presented to detect weakly coupled spin systems through subtraction, while preserving singlets through addition, and is applied to the specific brain metabolite γ-aminobutyric acid (GABA) at 4.7 T. The new method uses double spin echo localization (PRESS) and is based on a constant echo time difference spectroscopy approach employing subtraction of two asymmetric echo timings, which is normally only applicable to strongly coupled spin systems. By utilizing flip angle reduction of one of the two refocusing pulses in the PRESS sequence, we demonstrate that this difference method may be extended to weakly coupled systems, thereby providing a very simple yet effective editing process. The difference method is first illustrated analytically using a simple two spin weakly coupled spin system. The technique was then demonstrated for the 3.01 ppm resonance of GABA, which is obscured by the strong singlet peak of creatine in vivo. Full numerical simulations, as well as phantom and in vivo experiments were performed. The difference method used two asymmetric PRESS timings with a constant total echo time of 131 ms and a reduced 120° final pulse, providing 25% GABA yield upon subtraction compared to two short echo standard PRESS experiments. Phantom and in vivo results from human brain demonstrate efficacy of this method in agreement with numerical simulations.

  18. Field evaluation of personal sampling methods for multiple bioaerosols.

    Directory of Open Access Journals (Sweden)

    Chi-Hsun Wang

    Full Text Available Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min. Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.

  19. Field evaluation of personal sampling methods for multiple bioaerosols.

    Science.gov (United States)

    Wang, Chi-Hsun; Chen, Bean T; Han, Bor-Cheng; Liu, Andrew Chi-Yeu; Hung, Po-Chen; Chen, Chih-Yong; Chao, Hsing Jasmine

    2015-01-01

    Ambient bioaerosols are ubiquitous in the daily environment and can affect health in various ways. However, few studies have been conducted to comprehensively evaluate personal bioaerosol exposure in occupational and indoor environments because of the complex composition of bioaerosols and the lack of standardized sampling/analysis methods. We conducted a study to determine the most efficient collection/analysis method for the personal exposure assessment of multiple bioaerosols. The sampling efficiencies of three filters and four samplers were compared. According to our results, polycarbonate (PC) filters had the highest relative efficiency, particularly for bacteria. Side-by-side sampling was conducted to evaluate the three filter samplers (with PC filters) and the NIOSH Personal Bioaerosol Cyclone Sampler. According to the results, the Button Aerosol Sampler and the IOM Inhalable Dust Sampler had the highest relative efficiencies for fungi and bacteria, followed by the NIOSH sampler. Personal sampling was performed in a pig farm to assess occupational bioaerosol exposure and to evaluate the sampling/analysis methods. The Button and IOM samplers yielded a similar performance for personal bioaerosol sampling at the pig farm. However, the Button sampler is more likely to be clogged at high airborne dust concentrations because of its higher flow rate (4 L/min). Therefore, the IOM sampler is a more appropriate choice for performing personal sampling in environments with high dust levels. In summary, the Button and IOM samplers with PC filters are efficient sampling/analysis methods for the personal exposure assessment of multiple bioaerosols.

  20. Long-lasting inverted photon echo and optical memory

    Energy Technology Data Exchange (ETDEWEB)

    Akhmediev, N.N.; Borisov, B.S.; Zuikov, V.A.; Samartsev, V.V.; Stel' makh, M.F.

    1988-06-01

    Experimental results are presented on the formation of the long-lasting inverted stimulated photon echo in the LaF3:Pr(3+) crystal. The physics of this phenomenon is explained on the basis of a three-level model. The feasibility of using this echo effect in the development of optical-memory systems is considered. 18 references.

  1. Picosecond Photon Echoes Stimulated from an Accumulated Grating

    NARCIS (Netherlands)

    Hesselink, Wim H.; Wiersma, Douwe A.

    1979-01-01

    It is shown that in optical transitions with a bottleneck, a mode-locked cw dye laser may be used to generate and heterodyne detect picosecond photon echoes. These echoes are stimulated from an accumulated grating in the electronic ground state formed by a train of twin excitation pulses of constant

  2. Mean grain size mapping with single-beam echo sounders

    NARCIS (Netherlands)

    Van Walree, P.A.; Ainslie, M.A.; Simons, D.G.

    2006-01-01

    Echo energies of single-beam echo sounders are inverted for the sediment mean grain size via a combination of theoretical and empirical relationships. In situ measurements of the seafloor mass density have revealed the presence of a thin transition layer between the water and the sediment. Within th

  3. Numerical-Analytical Method for Magnetic Field Computation in Rotational Electric Machines

    Institute of Scientific and Technical Information of China (English)

    章跃进; 江建中; 屠关镇

    2003-01-01

    A numerical-analytical method is applied for the two-dimensional magnetic field computation in rotational electric machines in this paper. The analytical expressions for air gap magnetic field axe derived. The pole pairs in the expressions are taken into account so that the solution region can be reduced within one periodic range. The numerical and analytical magnetic field equations are linked with equal vector magnetic potential boundary conditions. The magnetic field of a brushless permanent magnet machine is computed by the proposed method. The result is compared to that obtained by finite element method so as to validate the correction of th method.

  4. N3 Bias Field Correction Explained as a Bayesian Modeling Method

    DEFF Research Database (Denmark)

    Larsen, Christian Thode; Iglesias, Juan Eugenio; Van Leemput, Koen

    2014-01-01

    Although N3 is perhaps the most widely used method for MRI bias field correction, its underlying mechanism is in fact not well understood. Specifically, the method relies on a relatively heuristic recipe of alternating iterative steps that does not optimize any particular objective function....... In this paper we explain the successful bias field correction properties of N3 by showing that it implicitly uses the same generative models and computational strategies as expectation maximization (EM) based bias field correction methods. We demonstrate experimentally that purely EM-based methods are capable...... of producing bias field correction results comparable to those of N3 in less computation time....

  5. New method for generating linear transfer matrices through combined rf and solenoid fields

    Directory of Open Access Journals (Sweden)

    Colwyn Gulliford

    2012-02-01

    Full Text Available We present a new method for computing the transverse transfer matrix for superimposed axisymmetric rf and solenoid field maps. The algorithm constructs the transfer matrix directly from one-dimensional rf and solenoid field maps without computing numerical derivatives or eigenfunction expansions of the field map data. In addition, this method accurately describes the dynamics of low energy particles starting from a solenoid-immersed cathode, allowing the method to simulate transport through both rf and electrostatic guns. Comparison of particle tracking with the transfer matrix, and direct integration of the equations of motion through several field setups, shows excellent agreement between the two methods.

  6. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  7. Method and system for progressive mesh storage and reconstruction using wavelet-encoded height fields

    Science.gov (United States)

    Baxes, Gregory A. (Inventor); Linger, Timothy C. (Inventor)

    2011-01-01

    Systems and methods are provided for progressive mesh storage and reconstruction using wavelet-encoded height fields. A method for progressive mesh storage includes reading raster height field data, and processing the raster height field data with a discrete wavelet transform to generate wavelet-encoded height fields. In another embodiment, a method for progressive mesh storage includes reading texture map data, and processing the texture map data with a discrete wavelet transform to generate wavelet-encoded texture map fields. A method for reconstructing a progressive mesh from wavelet-encoded height field data includes determining terrain blocks, and a level of detail required for each terrain block, based upon a viewpoint. Triangle strip constructs are generated from vertices of the terrain blocks, and an image is rendered utilizing the triangle strip constructs. Software products that implement these methods are provided.

  8. Dynamic Multi-Coil Technique (DYNAMITE) Shimming for Echo-Planar Imaging of the Human Brain at 7 Tesla

    Science.gov (United States)

    Juchem, Christoph; Rudrapatna, S. Umesh; Nixon, Terence W.; de Graaf, Robin A.

    2014-01-01

    Gradient-echo echo-planar imaging (EPI) is the primary method of choice in functional MRI and other methods relying on fast MRI to image brain activation and connectivity. However, the high susceptibility of EPI towards B0 magnetic field inhomogeneity poses serious challenges. Conventional magnetic field shimming with low-order spherical harmonic (SH) functions is capable of compensating shallow field distortions, but performs poorly for global brain shimming or on specific areas with strong susceptibility-induced B0 distortions such as the prefrontal cortex (PFC). Excellent B0 homogeneity has been demonstrated recently in the human brain at 7 Tesla with the DYNAmic Multi-coIl TEchnique (DYNAMITE) for magnetic field shimming (Juchem et al., J Magn Reson (2011) 212:280-288). Here, we report the benefits of DYNAMITE shimming for multi-slice EPI and T2* mapping. A standard deviation of 13 Hz was achieved for the residual B0 distribution in the human brain at 7 Tesla with DYNAMITE shimming and was 60% lower compared to conventional shimming that employs static zero through third order SH shapes. The residual field inhomogeneity with SH shimming led to an average 8 mm shift at acquisition parameters commonly used for fMRI and was reduced to 1.5-3 mm with DYNAMITE shimming. T2* values obtained from the prefrontal and temporal cortices with DYNAMITE shimming were 10-50% longer than those measured with SH shimming. The reduction of the confounding macroscopic B0 field gradients with DYNAMITE shimming thereby promises improved access to the relevant microscopic T2* effects. The combination of high spatial resolution and DYNAMITE shimming allows largely artifact-free EPI and T2* mapping throughout the brain, including prefrontal and temporal lobe areas. DYNAMITE shimming is expected to critically benefit a wide range of MRI applications that rely on excellent B0 magnetic field conditions including EPI-based fMRI to study various cognitive processes and assessing large

  9. Excitation of spin echo by pulses with linear frequency modulation

    Science.gov (United States)

    Baruzdin, S. A.

    2015-03-01

    The excitation of a spin echo by two pulses with linear frequency modulation, upon which the pulse parameters ensure maximal compression of the response in time, is considered. The frequency of the excitation pulses was changed by a step law, approximating its linear rise. The transfer matrix of the state of the spin system for pulses with linear frequency modulation is found by solving the Bloch equations. The shape of the envelope of the spin echo in thin magnetic cobalt films, as well as the dependence of the echo amplitude on the parameters of the excitation pulses, is determined. The amplitudes of the excitation pulses, which ensure the excitation of the echo maximal amplitude for various values of the frequency deviation, are found. It is shown that the use of pulses with linear frequency modulation makes it possible to obtain the same echo amplitude as with the use of simple excitation pulses for a substantially smaller amplitude and power of excitation pulses.

  10. Echoes from Ancient supernovae in the Large Magellanic Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Rest, A; Suntzeff, N B; Olsen, K; Prieto, J L; Smith, R C; Welch, D L; Becker, A; Bergmann, M; Clocchiatti, A; Cook, K; Garg, A; Huber, M; Miknaitis, G; Minniti, D; Nikolaev, S; Stubbs, C

    2005-06-15

    In principle, historical supernovae could still be visible as scattered-light echoes even centuries later [1, 2]. Searches for surface brightness variations using photographic plates have not recovered any echoes in the regions of historical Galactic supernovae [3]. Using differenced images, our SuperMACHO collaboration has discovered three faint new variable surface brightness complexes with high apparent proper motion pointing back to well-defined positions in the Large Magellanic Cloud (LMC). These correspond to three of the six smallest (and likely youngest) supernova remnants believed to be due to thermonuclear (Type Ia) supernovae [4]. A lower limit to the age of these remnants and echoes is 200 years given the lack of any reported LMC supernovae until 1987. The discovery of historical supernova echoes in the LMC suggests that similar echoes for Galactic supernovae such as Tycho, Kepler, Cas A, or SN1006 could be visible using standard image differencing techniques.

  11. Symmetric Matrix Fields in the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Gerard Awanou

    2010-07-01

    Full Text Available The theory of elasticity is used to predict the response of a material body subject to applied forces. In the linear theory, where the displacement is small, the stress tensor which measures the internal forces is the variable of primal importance. However the symmetry of the stress tensor which expresses the conservation of angular momentum had been a challenge for finite element computations. We review in this paper approaches based on mixed finite element methods.

  12. Field Testing of Compartmentalization Methods for Multifamily Construction

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single-family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, driving the need for easier and more effective methods of compartmentalization in multifamily buildings. Builders and practitioners have found that fire-resistance rated wall assemblies are a major source of difficulty in air sealing/compartmentalization, particularly in townhouse construction. This problem is exacerbated when garages are “tucked in” to the units and living space is located over the garages. In this project, Building Science Corporation examined the taping of exterior sheathing details to improve air sealing results in townhouse and multifamily construction, when coupled with a better understanding of air leakage pathways. Current approaches are cumbersome, expensive, time consuming, and ineffective; these details were proposed as a more effective and efficient method. The effectiveness of these air sealing methods was tested with blower door testing, including “nulled” or “guarded” testing (adjacent units run at equal test pressure to null out inter-unit air leakage, or “pressure neutralization”). Pressure diagnostics were used to evaluate unit-to-unit connections and series leakage pathways (i.e., air leakage from exterior, into the fire-resistance rated wall assembly, and to the interior).

  13. Graphical Methods for Quantifying Macromolecules through Bright Field Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hang; DeFilippis, Rosa Anna; Tlsty, Thea D.; Parvin, Bahram

    2008-08-14

    Bright ?eld imaging of biological samples stained with antibodies and/or special stains provides a rapid protocol for visualizing various macromolecules. However, this method of sample staining and imaging is rarely employed for direct quantitative analysis due to variations in sample fixations, ambiguities introduced by color composition, and the limited dynamic range of imaging instruments. We demonstrate that, through the decomposition of color signals, staining can be scored on a cell-by-cell basis. We have applied our method to Flbroblasts grown from histologically normal breast tissue biopsies obtained from two distinct populations. Initially, nuclear regions are segmented through conversion of color images into gray scale, and detection of dark elliptic features. Subsequently, the strength of staining is quanti?ed by a color decomposition model that is optimized by a graph cut algorithm. In rare cases where nuclear signal is significantly altered as a result of samplepreparation, nuclear segmentation can be validated and corrected. Finally, segmented stained patterns are associated with each nuclear region following region-based tessellation. Compared to classical non-negative matrix factorization, proposed method (i) improves color decomposition, (ii) has a better noise immunity, (iii) is more invariant to initial conditions, and (iv) has a superior computing performance

  14. Photon echo study of excitons and excitonic complexes in self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ikezawa, Michio [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan)]. E-mail: mikezawa@sakura.cc.tsukuba.ac.jp; Nair, Selvakumar [Centre for Nanotechnology, University of Toronto, Toronto M5S 3E3 (Canada); Suto, Fumitaka [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan); Masumoto, Yasuaki [Institute of Physics, University of Tsukuba, Tsukuba 305-8571 (Japan); Uchiyama, Chikako [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11, Takeda, Kofu, Yamanashi 400-8511 (Japan); Aihara, Masaki [Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma, Nara 630-0101 (Japan); Ruda, Harry [Centre for Nanotechnology, University of Toronto, Toronto M5S 3E3 (Canada)

    2007-01-15

    The authors have studied the excitons and excitonic complexes in two kinds of self-assembled quantum dots (QDs) using photon echo measurements. In GaAs strain-induced quantum dots (SIQDs), a pronounced biexcitonic beat with a period of 1 ps is observed. The biexciton binding energy in SIQDs is obtained from the beat period, and its magnetic field dependence is investigated. It is found that the biexciton binding energy is remarkably increased by the lateral confinement and they are almost independent of the applied magnetic field up to 8 T. A theoretical calculation of the biexciton binding energy in SIQDs is presented to explain the observed magnetic field dependence. In charge-tunable InP QDs, the photon echo signal shows dramatic changes depending on the electric bias. The decay profile of the echo intensity is not a single exponential but Gaussian-like function, which indicates non-Markovian nature of the dephasing process in this system. Theoretical calculation is done assuming tunneling induced dephasing mechanism, and it reproduces the experimental results quite well.

  15. A method for the estimate of the wall diffusion for non-axisymmetric fields using rotating external fields

    Science.gov (United States)

    Frassinetti, L.; Olofsson, K. E. J.; Fridström, R.; Setiadi, A. C.; Brunsell, P. R.; Volpe, F. A.; Drake, J.

    2013-08-01

    A new method for the estimate of the wall diffusion time of non-axisymmetric fields is developed. The method based on rotating external fields and on the measurement of the wall frequency response is developed and tested in EXTRAP T2R. The method allows the experimental estimate of the wall diffusion time for each Fourier harmonic and the estimate of the wall diffusion toroidal asymmetries. The method intrinsically considers the effects of three-dimensional structures and of the shell gaps. Far from the gaps, experimental results are in good agreement with the diffusion time estimated with a simple cylindrical model that assumes a homogeneous wall. The method is also applied with non-standard configurations of the coil array, in order to mimic tokamak-relevant settings with a partial wall coverage and active coils of large toroidal extent. The comparison with the full coverage results shows good agreement if the effects of the relevant sidebands are considered.

  16. Spin Echo Studies on Cellular Water

    CERN Document Server

    Chang, D C; Nichols, B L; Rorschach, H E

    2014-01-01

    Previous studies indicated that the physical state of cellular water could be significantly different from pure liquid water. To experimentally investigate this possibility, we conducted a series of spin-echo NMR measurements on water protons in rat skeletal muscle. Our result indicated that the spin-lattice relaxation time and the spin-spin relaxation time of cellular water protons are both significantly shorter than that of pure water (by 4.3-fold and 34-fold, respectively). Furthermore, the spin diffusion coefficient of water proton is almost 1/2 of that of pure water. These data suggest that cellular water is in a more ordered state in comparison to pure water.

  17. Echo chambers in the age of misinformation

    CERN Document Server

    Del Vicario, Michela; Zollo, Fabiana; Petroni, Fabio; Scala, Antonio; Caldarelli, Guido; Stanley, H Eugene; Quattrociocchi, Walter

    2015-01-01

    The wide availability of user-provided content in online social media facilitates the aggregation of people around common interests, worldviews, and narratives. Despite the enthusiastic rhetoric on the part of some that this process generates "collective intelligence", the WWW also allows the rapid dissemination of unsubstantiated conspiracy theories that often elicite rapid, large, but naive social responses such as the recent case of Jade Helm 15 -- where a simple military exercise turned out to be perceived as the beginning of the civil war in the US. We study how Facebook users consume information related to two different kinds of narrative: scientific and conspiracy news. We find that although consumers of scientific and conspiracy stories present similar consumption patterns with respect to content, the sizes of the spreading cascades differ. Homogeneity appears to be the primary driver for the diffusion of contents, but each echo chamber has its own cascade dynamics. To mimic these dynamics, we introdu...

  18. V838 Monocerotis: A Geometric Distance from Hubble Space Telescope Polarimetric Imaging of its Light Echo

    CERN Document Server

    Sparks, William B; Cracraft, Misty; Levay, Zolt; Crause, Lisa A; Dopita, Michael A; Henden, Arne A; Munari, Ulisse; Panagia, Nino; Starrfield, Sumner G; Sugerman, Ben E; Wagner, R Mark; White, Richard L

    2007-01-01

    Following the outburst of the unusual variable star V838 Monocerotis in 2002, a spectacular light echo appeared. A light echo provides the possibility of direct geometric distance determination, because it should contain a ring of highly linearly polarized light at a linear radius of ct, where t is the time since the outburst. We present imaging polarimetry of the V838 Mon light echo, obtained in 2002 and 2005 with the Advanced Camera for Surveys onboard the Hubble Space Telescope, which confirms the presence of the highly polarized ring. Based on detailed modeling that takes into account the outburst light curve, the paraboloidal echo geometry, and the physics of dust scattering and polarization, we find a distance of 6.1+-0.6 kpc. The error is dominated by the systematic uncertainty in the scattering angle of maximum linear polarization, taken to be theta_{max}=90^o +- 5^o. The polarimetric distance agrees remarkably well with a distance of 6.2+-1.5 kpc obtained from the entirely independent method of main-...

  19. Dynamic hysteresis between gradient echo and spin echo attenuations in dynamic susceptibility contrast imaging.

    Science.gov (United States)

    Xu, Chao; Kiselev, Valerij G; Möller, Harald E; Fiebach, Jochen B

    2013-04-01

    Perfusion measurements using dynamic susceptibility contrast imaging provide additional information about the mean vessel size of microvasculature when supplemented with a dual gradient echo (GE) - spin echo (SE) contrast. Dynamic increase in the corresponding transverse relaxation rate constant changes, ΔR2GE and ΔR2SE , forms a loop on the (Δ R2SE3/2, ΔR2GE ) plane, rather than a reversible line. The shape of the loop and the direction of its passage differentiate between healthy brain and pathological tissue, such as tumour and ischemic tissue. By considering a tree model of microvasculature, the direction of the loop is found to be influenced mainly by the relative arterial and venous blood volume, as well as the tracer bolus dispersion. A parameter Λ is proposed to characterize the direction and shape of the loop, which might be considered as a novel imaging marker for describing the pathology of cerebrovascular network.

  20. A field method for soil erosion measurements in agricultural and natural lands

    Science.gov (United States)

    Y.P. Hsieh; K.T. Grant; G.C. Bugna

    2009-01-01

    Soil erosion is one of the most important watershed processes in nature, yet quantifying it under field conditions remains a challenge. The lack of soil erosion field data is a major factor hindering our ability to predict soil erosion in a watershed. We present here the development of a simple and sensitive field method that quantifies soil erosion and the resulting...