WorldWideScience

Sample records for field driven transformations

  1. Neutron reflectivity studies of electric field driven structural transformations of surfactants

    CERN Document Server

    Majewski, J; Burgess, I; Zamlynny, V; Szymanski, G; Lipkowski, J; Satija, S

    2002-01-01

    We employed electrochemical methods together with in situ neutron reflectometry to describe the aggregation of organic surfactant molecules at a solid-liquid interface. The neutron reflectometry allowed us to determine the surface coverage, thickness, roughness and the relative positions of the aggregates. We found that the applied electric field may be used to reversibly manipulate the architecture of the organic molecules: from uniform monolayers to adsorbed hemi-micelles. These studies are expected to provide a new insight into the roles played by entropic and electrostatic forces in complex fluids or biomaterials. (orig.)

  2. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    process is a repeated deformation and welding or folding of particles or layers that allows for strain levels in excess of 100 as shown in Fig.1. The...complete transformation yielded a duplex product of metastable BCC and FCC solid solutions. Another form of mechanochemical transduction is

  3. Field transformations to multivalued fields

    Energy Technology Data Exchange (ETDEWEB)

    Kleinert, H [Institut fuer Theoretische Physik, Arnimallee 14, D-14195 Berlin (Germany)

    2007-05-15

    Changes of field variables may lead to multivalued fields which do not satisfy the Schwarz integrability conditions. Their quantum field theory needs special care as is shown in an application to the superfluid and superconducting phase transitions.

  4. Test-driven verification/validation of model transformations

    Institute of Scientific and Technical Information of China (English)

    László LENGYEL; Hassan CHARAF

    2015-01-01

    Why is it important to verify/validate model transformations? The motivation is to improve the quality of the trans-formations, and therefore the quality of the generated software artifacts. Verified/validated model transformations make it possible to ensure certain properties of the generated software artifacts. In this way, verification/validation methods can guarantee different requirements stated by the actual domain against the generated/modified/optimized software products. For example, a verified/ validated model transformation can ensure the preservation of certain properties during the model-to-model transformation. This paper emphasizes the necessity of methods that make model transformation verified/validated, discusses the different scenarios of model transformation verification and validation, and introduces the principles of a novel test-driven method for verifying/ validating model transformations. We provide a solution that makes it possible to automatically generate test input models for model transformations. Furthermore, we collect and discuss the actual open issues in the field of verification/validation of model transformations.

  5. Generalized field-transforming metamaterials

    International Nuclear Information System (INIS)

    Tretyakov, Sergei A; Nefedov, Igor S; Alitalo, Pekka

    2008-01-01

    In this paper, we introduce a generalized concept of field-transforming metamaterials, which perform field transformations defined as linear relations between the original and transformed fields. These artificial media change the fields in a prescribed fashion in the volume occupied by the medium. We show what electromagnetic properties of transforming medium are required. The coefficients of these linear functions can be arbitrary scalar functions of position and frequency, which makes the approach quite general and opens a possibility to realize various unusual devices.

  6. Phase transformations and systems driven far from equilibrium

    International Nuclear Information System (INIS)

    Ma, E.; Atzmon, M.; Bellon, P.; Trivedi, R.

    1998-01-01

    This volume compiles invited and contributed papers that were presented at Symposium B of the 1997 Materials Research Society Fall Meeting, Phase Transformations and Systems Driven Far From Equilibrium, which was held December 1--5, in Boston, Massachusetts. While this symposium followed the tradition of previous MRS symposia on the fundamental topic of phase transformations, this year the emphasis was on materials systems driven far from equilibrium. The central theme of the majority of the work presented is the understanding of the thermodynamics and kinetics of phase transformations, with significant coverage of metastable materials and externally forced transformations driven, for example, by energy beams or mechanical deformation. The papers are arranged in seven sections: solidification theory and experiments; nucleation; solid state transformations and microstructural evolution; beam-induced transformations; amorphous solids; interfacial and thin film transformations; and nanophases and mechanical alloying. One hundred three papers have been processed separately for inclusion on the data base

  7. Six Sigma Driven Enterprise Model Transformation

    Directory of Open Access Journals (Sweden)

    Raymond Vella

    2009-10-01

    Full Text Available Enterprise architecture methods provide a structured system to understand enterprise activities. However, existing enterprise modelling methodologies take static views of the enterprise and do not naturally lead to a path of improvement during enterprise model transformation. This paper discusses the need for a methodology to facilitate changes for improvement in an enterprise. The six sigma methodology is proposed as the tool to facilitate progressive and continual Enterprise Model Transformation to allow businesses to adapt to meet increased customer expectation and global competition. An alignment of six sigma with phases of GERAM life cycle is described with inclusion of Critical-To-Satisfaction (CTS requirements. The synergies of combining the two methodologies are presented in an effort to provide a more culturally embedded framework for Enterprise Model Transformation that builds on the success of six sigma.

  8. Shear-driven phase transformation in silicon nanowires.

    Science.gov (United States)

    Vincent, L; Djomani, D; Fakfakh, M; Renard, C; Belier, B; Bouchier, D; Patriarche, G

    2018-03-23

    We report on an unprecedented formation of allotrope heterostructured Si nanowires by plastic deformation based on applied radial compressive stresses inside a surrounding matrix. Si nanowires with a standard diamond structure (3C) undergo a phase transformation toward the hexagonal 2H-allotrope. The transformation is thermally activated above 500 °C and is clearly driven by a shear-stress relief occurring in parallel shear bands lying on {115} planes. We have studied the influence of temperature and axial orientation of nanowires. The observations are consistent with a martensitic phase transformation, but the finding leads to clear evidence of a different mechanism of deformation-induced phase transformation in Si nanowires with respect to their bulk counterpart. Our process provides a route to study shear-driven phase transformation at the nanoscale in Si.

  9. Noncommutative field gas driven inflation

    Energy Technology Data Exchange (ETDEWEB)

    Barosi, Luciano; Brito, Francisco A [Departamento de Fisica, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraiba (Brazil); Queiroz, Amilcar R, E-mail: lbarosi@ufcg.edu.br, E-mail: fabrito@df.ufcg.edu.br, E-mail: amilcarq@gmail.com [Centro Internacional de Fisica da Materia Condensada, Universidade de Brasilia, Caixa Postal 04667, Brasilia, DF (Brazil)

    2008-04-15

    We investigate early time inflationary scenarios in a Universe filled with a dilute noncommutative bosonic gas at high temperature. A noncommutative bosonic gas is a gas composed of a bosonic scalar field with noncommutative field space on a commutative spacetime. Such noncommutative field theories were recently introduced as a generalization of quantum mechanics on a noncommutative spacetime. Key features of these theories are Lorentz invariance violation and CPT violation. In the present study we use a noncommutative bosonic field theory that, besides the noncommutative parameter {theta}, shows up a further parameter {sigma}. This parameter {sigma} controls the range of the noncommutativity and acts as a regulator for the theory. Both parameters play a key role in the modified dispersion relations of the noncommutative bosonic field, leading to possible striking consequences for phenomenology. In this work we obtain an equation of state p = {omega}({sigma},{theta};{beta}){rho} for the noncommutative bosonic gas relating pressure p and energy density {rho}, in the limit of high temperature. We analyse possible behaviours for these gas parameters {sigma}, {theta} and {beta}, so that -1{<=}{omega}<-1/3, which is the region where the Universe enters an accelerated phase.

  10. Light-field-driven currents in graphene

    Science.gov (United States)

    Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter

    2017-10-01

    The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in

  11. ATLAS job transforms: a data driven workflow engine

    International Nuclear Information System (INIS)

    Stewart, G A; Breaden-Madden, W B; Maddocks, H J; Harenberg, T; Sandhoff, M; Sarrazin, B

    2014-01-01

    The need to run complex workflows for a high energy physics experiment such as ATLAS has always been present. However, as computing resources have become even more constrained, compared to the wealth of data generated by the LHC, the need to use resources efficiently and manage complex workflows within a single grid job have increased. In ATLAS, a new Job Transform framework has been developed that we describe in this paper. This framework manages the multiple execution steps needed to 'transform' one data type into another (e.g., RAW data to ESD to AOD to final ntuple) and also provides a consistent interface for the ATLAS production system. The new framework uses a data driven workflow definition which is both easy to manage and powerful. After a transform is defined, jobs are expressed simply by specifying the input data and the desired output data. The transform infrastructure then executes only the necessary substeps to produce the final data products. The global execution cost of running the job is minimised and the transform can adapt to scenarios where data can be produced along different execution paths. Transforms for specific physics tasks which support up to 60 individual substeps have been successfully run. As the new transforms infrastructure has been deployed in production many features have been added to the framework which improve reliability, quality of error reporting and also provide support for multi-process jobs.

  12. Finite field dependent mixed BRST transformation

    International Nuclear Information System (INIS)

    Upadhyay, Sudhaker; Mandal, Bhabani Prasad

    2013-01-01

    Joglekar and Mandal have generalized the usual Bechhi-Rouet-Stora-Tyutin (BRST) transformation by allowing infinitesimal BRST parameter finite and field dependent. Such a generalized BRST transformation (so-called FFBRST transformation) is also the symmetry of the effective action but not of the generating functional of the theory. We generalize the mixed BRST (sum of totally anti-commuting BRST and anti-BRST) symmetry transformation in same manner. We show that such a generalized mixed BRST transformation is the symmetry of the effective action as well as of the generating functional. We show our result by considering several explicit examples. (author)

  13. Generalized phase transformations of spinor fields

    International Nuclear Information System (INIS)

    Mikhov, S.G.

    1993-09-01

    In this paper some generalized four parameter phase transformations of a Dirac spinor are considered. It is shown that a corresponding compensating transformation of the electromagnetic field which restores the invariance of the Dirac-Maxwell equation might exist, provided some consistency conditions are satisfied by the parameters of the transformations. These transformations are used further to consider the Maxwell equations under the assumption that a Bosonization takes place. Only one of the considered cases proves to have a solution (the other cases show to be trivial) which although unphysical is obtained explicitly. (author). 10 refs

  14. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.

  15. Field transformations, collective coordinates and BRST invariance

    International Nuclear Information System (INIS)

    Alfaro, J.; Damgaard, P.H.

    1989-12-01

    A very large class of general field transformations can be viewed as a field theory generalization of the method of collective coordinates. The introduction of new variables induces a gauge invariance in the transformed theory, and the freedom left in gauge fixing this new invariance can be used to find equivalent formulations of the same theory. First the Batalin-Fradkin-Vilkovisky formalism is applied to the Hamiltonian formulation of physical systems that can be described in terms of collective coordinates. We then show how this type of collective coordinate scheme can be generalized to field transformations, and discuss the War Identities of the associated BRST invariance. For Yang-Mills theory a connection to topological field theory and the background field method is explained in detail. In general the resulting BRST invariance we find hidden in any quantum field theory can be viewed as a consequence of our freedom in choosing a basis of coordinates φ(χ) in the action S[φ]. (orig.)

  16. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu; Choi, Joshua J.; Kaushik, Ananth; Clancy, Paulette; Smilgies, Detlef-M.; Hanrath, Tobias

    2011-01-01

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  17. Shape-Anisotropy Driven Symmetry Transformations in Nanocrystal Superlattice Polymorphs

    KAUST Repository

    Bian, Kaifu

    2011-04-26

    Despite intense research efforts by research groups worldwide, the potential of self-assembled nanocrystal superlattices (NCSLs) has not been realized due to an incomplete understanding of the fundamental molecular interactions governing the self-assembly process. Because NCSLs reside naturally at length-scales between atomic crystals and colloidal assemblies, synthetic control over the properties of constituent nanocrystal (NC) building blocks and their coupling in ordered assemblies is expected to yield a new class of materials with remarkable optical, electronic, and vibrational characteristics. Progress toward the formation of suitable test structures and subsequent development of NCSL-based technologies has been held back by the limited control over superlattice spacing and symmetry. Here we show that NCSL symmetry can be controlled by manipulating molecular interactions between ligands bound to the NC surface and the surrounding solvent. Specifically, we demonstrate solvent vapor-mediated NCSL symmetry transformations that are driven by the orientational ordering of NCs within the lattice. The assembly of various superlattice polymorphs, including face-centered cubic (fcc), body-centered cubic (bcc), and body-centered tetragonal (bct) structures, is studied in real time using in situ grazing incidence small-angle X-ray scattering (GISAXS) under controlled solvent vapor exposure. This approach provides quantitative insights into the molecular level physics that controls solvent-ligand interactions and assembly of NCSLs. Computer simulations based on all-atom molecular dynamics techniques confirm several key insights gained from experiment. © 2011 American Chemical Society.

  18. Blockspin transformations for finite temperature field theories with gauge fields

    International Nuclear Information System (INIS)

    Kerres, U.

    1996-08-01

    A procedure is proposed to study quantum field theories at zero or at finite temperature by a sequence of real space renormalization group (RG) or blockspin transformations. They transform to effective theories on coarser and coarser lattices. The ultimate aim is to compute constraint effective potentials, i.e. the free energy as a function of suitable order parameters. From the free energy one can read off the thermodynamic behaviour of the theory, in particular the existence and nature of phase transitions. In a finite temperature field theory one begins with either one or a sequence of transformations which transform the original theory into an effective theory on a three-dimensional lattice. Its effective action has temperature dependent coefficients. Thereafter one may proceed with further blockspin transformations of the three-dimensional theory. Assuming a finite volume, this can in principle be continued until one ends with a lattice with a single site. Its effective action is the constraint effective potential. In each RG-step, an integral over the high frequency part of the field, also called the fluctuation field, has to be performed. This is done by perturbation theory. It requires the knowledge of bare fluctuation field propagators and of interpolation operators which enter into the vertices. A detailed examination of these quantities is presented for scalar fields, abelian gauge fields and for Higgs fields, finite temperature is admitted. The lattice perturbation theory is complicated because the bare lattice propagators are complicated. This is due to a partial loss of translation invariance in each step. Therefore the use of translation invariant cutoffs in place of a lattice is also discussed. In case of gauge fields this is only possible as a continuum version of the blockspin method. (orig.)

  19. Fourier transform zero field NMR and NQR

    International Nuclear Information System (INIS)

    Zax, D.B.

    1985-01-01

    In many systems the chemical shifts measured by traditional high resolution solid state NMR methods are insufficiently sensitive, or the information contained in the dipole-dipole couplings is more important. In these cases, Fourier transform zero field magnetic resonance may make an important contribution. Zero field NMR and NQR is the subject of this thesis. Chapter I presents the quantum mechanical background and notational formalism for what follows. Chapter II gives a brief review of high resolution magnetic resonance methods, with particular emphasis on techniques applicable to dipole-dipole and quadrupolar couplings. Level crossings between spin-1/2 and quadrupolar spins during demagnetization transfer polarization from high to low λ nuclei. This is the basis of very high sensitivity zero field NQR measurements by field cycling. Chapter III provides a formal presentation of the high resolution Fourier transform zero field NMR method. Theoretical signal functions are calculated for common spin systems, and examples of typical spectra are presented. Chapters IV and V review the experimental progress in zero field NMR of dipole-dipole coupled spin-1/2 nuclei and for quadrupolar spin systems. Variations of the simple experiment describe in earlier chapters that use pulsed dc fields are presented in Chapter VI

  20. Perturbative Gaussianizing transforms for cosmological fields

    Science.gov (United States)

    Hall, Alex; Mead, Alexander

    2018-01-01

    Constraints on cosmological parameters from large-scale structure have traditionally been obtained from two-point statistics. However, non-linear structure formation renders these statistics insufficient in capturing the full information content available, necessitating the measurement of higher order moments to recover information which would otherwise be lost. We construct quantities based on non-linear and non-local transformations of weakly non-Gaussian fields that Gaussianize the full multivariate distribution at a given order in perturbation theory. Our approach does not require a model of the fields themselves and takes as input only the first few polyspectra, which could be modelled or measured from simulations or data, making our method particularly suited to observables lacking a robust perturbative description such as the weak-lensing shear. We apply our method to simulated density fields, finding a significantly reduced bispectrum and an enhanced correlation with the initial field. We demonstrate that our method reconstructs a large proportion of the linear baryon acoustic oscillations, improving the information content over the raw field by 35 per cent. We apply the transform to toy 21 cm intensity maps, showing that our method still performs well in the presence of complications such as redshift-space distortions, beam smoothing, pixel noise and foreground subtraction. We discuss how this method might provide a route to constructing a perturbative model of the fully non-Gaussian multivariate likelihood function.

  1. Coherent polarization driven by external electromagnetic fields

    International Nuclear Information System (INIS)

    Apostol, M.; Ganciu, M.

    2010-01-01

    The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.

  2. Large Field Visualization with Demand-Driven Calculation

    Science.gov (United States)

    Moran, Patrick J.; Henze, Chris

    1999-01-01

    We present a system designed for the interactive definition and visualization of fields derived from large data sets: the Demand-Driven Visualizer (DDV). The system allows the user to write arbitrary expressions to define new fields, and then apply a variety of visualization techniques to the result. Expressions can include differential operators and numerous other built-in functions, ail of which are evaluated at specific field locations completely on demand. The payoff of following a demand-driven design philosophy throughout becomes particularly evident when working with large time-series data, where the costs of eager evaluation alternatives can be prohibitive.

  3. Radon-Wigner transform for optical field analysis

    NARCIS (Netherlands)

    Alieva, T.; Bastiaans, M.J.; Nijhawan, O.P.; Gupta, A.K.; Musla, A.K.; Singh, Kehar

    1998-01-01

    The Radon-Wigner transform, associated with the intensity distribution in the fractional Fourier transform system, is used for the analysis of complex structures of coherent as well as partially coherent optical fields. The application of the Radon-Wigner transform to the analysis of fractal fields

  4. Accelerator-driven assembly for plutonium transformation (ADAPT)

    Science.gov (United States)

    Tuyle, Greorgy J. Van; Todosow, Michael; Powell, James; Schweitzer, Donald

    1995-01-01

    A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the U.S. and Russia. The highly fissle plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly subcritical blanket region. Major advantages include very high one-pass burnup (over 90%), a high integrity waste form (the coated beads), and operation in a subcritical mode, thereby minimizing the vulnerability to the positive reativity feedbacks often associated with plutonium fuel.

  5. Scale transformation and massless limit in neutral-vector field theory. [Gauge transformation unified theory

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Takahashi, Y; Yokoyama, K

    1975-01-01

    In a wide class of neutral vector field theories, in which massive and massless fields are described in a unified way and a unique massless limit exists to quantum electrodynamics in covariant gauges, the commutability of the scale transformation and the massless limit is examined. It is shown that there occurs no anomaly with respect to the assignment for scale dimensions of relevant fields. Connection of scale transformation and gauge transformation is also discussed.

  6. Finite anticanonical transformations in field-antifield formalism

    Energy Technology Data Exchange (ETDEWEB)

    Batalin, Igor A.; Tyutin, Igor V. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation); Lavrov, Peter M. [Tomsk State Pedagogical University, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2015-06-15

    We study the role of arbitrary (finite) anticanonical transformations in the field-antifield formalism and the gauge-fixing procedure based on the use of these transformations. The properties of the generating functionals of the Green functions subjected to finite anticanonical transformations are considered. (orig.)

  7. Stable solutions of inflation driven by vector fields

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Razieh [Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Mukohyama, Shinji [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, 606-8502, Kyoto (Japan); Namba, Ryo [Department of Physics, McGill University, Montréal, QC, H3A 2T8 (Canada); Zhang, Ying-li, E-mail: iasraziehm@ust.hk, E-mail: shinji.mukohyama@yukawa.kyoto-u.ac.jp, E-mail: namba@physics.mcgill.ca, E-mail: yingli@bao.ac.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing 100012 (China)

    2017-03-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  8. Stable solutions of inflation driven by vector fields

    International Nuclear Information System (INIS)

    Emami, Razieh; Mukohyama, Shinji; Namba, Ryo; Zhang, Ying-li

    2017-01-01

    Many models of inflation driven by vector fields alone have been known to be plagued by pathological behaviors, namely ghost and/or gradient instabilities. In this work, we seek a new class of vector-driven inflationary models that evade all of the mentioned instabilities. We build our analysis on the Generalized Proca Theory with an extension to three vector fields to realize isotropic expansion. We obtain the conditions required for quasi de-Sitter solutions to be an attractor analogous to the standard slow-roll one and those for their stability at the level of linearized perturbations. Identifying the remedy to the existing unstable models, we provide a simple example and explicitly show its stability. This significantly broadens our knowledge on vector inflationary scenarios, reviving potential phenomenological interests for this class of models.

  9. Transformative Creativity in the Expanded Digital Field

    DEFF Research Database (Denmark)

    Søndergaard, Morten

    The idea that art may (can/will) transform ‘society’ is not a new one. Some would call it idealism - or an ideology, even – to have anything outside the market create transformation. But changes over the last decade, in the cultural constitution of the world’s global culture and economy, have......-practices like the Augmented Reality Project by the danish artgroup Boxiganga and the digital art/archive project MAP – Media Art Platform (Jacobsen og Søndergaard), which is using reactive media as a participatory strategy to map to a navigating audience the media art collection of The Museum of Contemporary...

  10. Influence of a guide field on collisionless driven reconnection

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Usami, Shunsuke; Ohtani, Hiroaki

    2014-01-01

    The influence of a guide field on collisionless driven reconnection is investigated by means of two-dimensional electromagnetic particle simulation in an open system. In a quasi-steady state when reconnection electric field evolves fully, a current layer evolves locally in a narrow kinetic region and its scale decreases in proportion to an electron meandering scale as the guide field is intensified. Here, the meandering scale stands for an average spatial scale of nongyrotropic motions in the vicinity of the reconnection point. Force terms associated with off-diagonal components of electron and ion pressure tensors, which are originating from nongyrotropic motions of charged particles, becomes dominant at the reconnection point and sustain the reconnection electric field even when the guide field is strong. It is also found that thermalization of both ions and electrons is suppressed by the guide field. For the weak guide field, an electron nonthermal component is significantly created through a fast outburst from the kinetic region, while for the strong guide field, an ion nonthermal component is generated through the acceleration by an in-plane electric field near the magnetic separatrix. (author)

  11. Atmospheric pressure plasma jet's characterization and surface wettability driven by neon transformer

    Science.gov (United States)

    Elfa, R. R.; Nafarizal, N.; Ahmad, M. K.; Sahdan, M. Z.; Soon, C. F.

    2017-03-01

    Atmospheric pressure plasma driven by Neon transformer power supply argon is presented in this paper. Atmospheric pressure plasma system has attracted researcher interest over low pressure plasma as it provides a flexibility process, cost-efficient, portable device and vacuum-free device. Besides, another golden key of this system is the wide promising application in the field of work cover from industrial and engineering to medical. However, there are still numbers of fundamental investigation that are necessary such as device configuration, gas configuration and its effect. Dielectric barrier discharge which is also known as atmospheric pressure plasma discharge is created when there is gas ionization process occur which enhance the movement of atom and electron and provide energetic particles. These energetic particles can provide modification and cleaning property to the sample surface due to the bombardment of the high reactive ion and radicals to the sample surface. In order to develop atmospheric pressure plasma discharge, a high voltage and high frequency power supply is needed. In this work, we used a neon transformer power supply as the power supply. The flow of the Ar is feed into 10 mm cylinder quartz tube with different treatment time in order to investigate the effect of the plasma discharge. The analysis of each treatment time is presented by optical emission spectroscopy (OES) and water contact angle (WCA) measurement. The increase of gas treatment time shows increases intensity of reactive Ar and reduces the angle of water droplets in water contact angle. Treatment time of 20 s microslide glass surface shows that the plasma needle discharges have modified the sample surface from hydrophilic surface to superhydrophilic surface. Thus, this leads to another interesting application in reducing sample surface adhesion to optimize productivity in the industry of paintings, semiconductor and more.

  12. Magnetic fields driven by tidal mixing in radiative stars

    Science.gov (United States)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  13. Field approach in the transformation optics concept

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Barkovsky, L. M.

    2012-01-01

    distribution (e.g., Gaussian and sinusoidal) is studied to validate the effectiveness of the field-based formulation. As for the boundary conditions for the cloaked region the absence of the normal component of the Poynting vector is justified. In the frames of the field-based approach the physical reasons...

  14. Bogoliubov transformations and fermion condensates in lattice field theories

    International Nuclear Information System (INIS)

    Caracciolo, Sergio; Palumbo, Fabrizio; Viola, Giovanni

    2009-01-01

    We apply generalized Bogoliubov transformations to the transfer matrix of relativistic field theories regularized on a lattice. We derive the conditions these transformations must satisfy to factorize the transfer matrix into two terms which propagate fermions and antifermions separately, and we solve the relative equations under some conditions. We relate these equations to the saddle point approximation of a recent bosonization method and to the Foldy-Wouthuysen transformations which separate positive from negative energy states in the Dirac Hamiltonian

  15. An implementation problem for boson fields and quantum Girsanov transform

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Obata, Nobuaki, E-mail: obata@math.is.tohoku.ac.jp [Graduate School of Information Sciences, Tohoku University, Sendai 980-8579 (Japan)

    2016-08-15

    We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.

  16. An implementation problem for boson fields and quantum Girsanov transform

    International Nuclear Information System (INIS)

    Ji, Un Cig; Obata, Nobuaki

    2016-01-01

    We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.

  17. Keldysh field theory for driven open quantum systems.

    Science.gov (United States)

    Sieberer, L M; Buchhold, M; Diehl, S

    2016-09-01

    Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.

  18. Penetration of magnetic field in ferromagnetic transformer sheet

    Energy Technology Data Exchange (ETDEWEB)

    Sikora, R; Ziolkowski, M

    1981-01-12

    The paper deals with the penetration of magnetic field in a ferromagnetic transformer sheet. The flux-density distribution is computed using Galerkin's procedure. The different boundary conditions and the nonlinear B/H characteristic is taken into account.

  19. Magnetic field measurements near stand-alone transformer stations.

    Science.gov (United States)

    Kandel, Shaiela; Hareuveny, Ronen; Yitzhak, Nir-Mordechay; Ruppin, Raphael

    2013-12-01

    Extremely low-frequency (ELF) magnetic field (MF) measurements around and above three stand-alone 22/0.4-kV transformer stations have been performed. The low-voltage (LV) cables between the transformer and the LV switchgear were found to be the major source of strong ELF MFs of limited spatial extent. The strong fields measured above the transformer stations support the assessment method, to be used in future epidemiological studies, of classifying apartments located right above the transformer stations as highly exposed to MFs. The results of the MF measurements above the ground around the transformer stations provide a basis for the assessment of the option of implementing precautionary procedures.

  20. Conformal Transformations and Conformal Killing Fields

    Science.gov (United States)

    Definition 1.1 A semi-Riemannian manifold is a pair (M,g) consisting of a differentiate (i.e. C∞) manifold M and a differentiable tensor field g which assigns to each point a ∈ M a non-degenerate and symmetric bilinear form on the tangent space TaM: g_a :T_a M × T_a M to R.

  1. Evidence for a temperature-driven structural transformation in liquid bismuth

    International Nuclear Information System (INIS)

    Greenberg, Y.; Dariel, M.P.; Greenberg, Y.; Yahel, E.; Caspi, E.N.; Makov, G.; Benmore, C.; Beuneu, B.

    2009-01-01

    The thermodynamic properties of liquid bismuth have been explored from the melting point to 1100 C degrees by high-resolution measurements of the density, the heat capacity and the static structure factor. These physical properties display a number of anomalies. In particular, we have observed evidence for the presence of a temperature-driven liquid-liquid structural transformation that takes place at ambient pressure. The latter is characterized by a density discontinuity that occurs at 740 C degrees. Differential thermal analysis measurements revealed the endo-thermal nature of this transformation. A rearrangement of liquid bismuth structure was found by neutron diffraction measurements, supporting the existence of a liquid-liquid transformation far above the liquidus. (authors)

  2. Laboratory observation of magnetic field growth driven by shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T. P., E-mail: intrator@lanl.gov; Feng, Y.; Sears, J.; Weber, T. [Los Alamos National Laboratory, M.S. E526, Los Alamos, New Mexico 87545 (United States); Dorf, L. [Applied Materials, Inc., Santa Clara, CA 95054 (United States); Sun, X. [University of Science and Technology, Hefei (China)

    2014-04-15

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  3. Analytical method of CIM to PIM transformation in Model Driven Architecture (MDA

    Directory of Open Access Journals (Sweden)

    Martin Kardos

    2010-06-01

    Full Text Available Information system’s models on higher level of abstraction have become a daily routine in many software companies. The concept of Model Driven Architecture (MDA published by standardization body OMG1 since 2001 has become a concept for creation of software applications and information systems. MDA specifies four levels of abstraction: top three levels are created as graphical models and the last one as implementation code model. Many research works of MDA are focusing on the lower levels and transformations between each other. The top level of abstraction, called Computation Independent Model (CIM and its transformation to the lower level called Platform Independent Model (PIM is not so extensive research topic. Considering to a great importance and usability of this level in practice of IS2Keywords: transformation, MDA, CIM, PIM, UML, DFD. development now our research activity is focused to this highest level of abstraction – CIM and its possible transformation to the lower PIM level. In this article we are presenting a possible solution of CIM modeling and its analytic method of transformation to PIM.

  4. PT-symmetric planar devices for field transformation and imaging

    International Nuclear Information System (INIS)

    Valagiannopoulos, C A; Monticone, F; Alù, A

    2016-01-01

    The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging. (paper)

  5. The resonant wake field transformer (RWT)-collider

    International Nuclear Information System (INIS)

    Weiland, T.; Holtkamp, N.; Schuett, P.; Wanzenberg, R.

    1990-01-01

    Future e + e - Linear Colliders with center of mass energies of 2 TeV need average accelerating gradients of 100 MeV/m to be built within a length of 20 km. The gradients required by colliders at this energy range can be economically provided by resonant Wake Field Transformers. At the Wake Field Experiment at DESY (Deutsches Elektronen-Synchrotron) a 20 cm long transformer section was investigated and the most recent results are presented. The second part gives a short overview of the present status of research concerning the proposed next stage of a multibunch driver linac with superconducting cavities and long Wake Field Transformer sections. (author) 9 refs.; 5 figs.; 1 tab

  6. Comparing Transformation Possibilities of Topological Functioning Model and BPMN in the Context of Model Driven Architecture

    Directory of Open Access Journals (Sweden)

    Solomencevs Artūrs

    2016-05-01

    Full Text Available The approach called “Topological Functioning Model for Software Engineering” (TFM4SE applies the Topological Functioning Model (TFM for modelling the business system in the context of Model Driven Architecture. TFM is a mathematically formal computation independent model (CIM. TFM4SE is compared to an approach that uses BPMN as a CIM. The comparison focuses on CIM modelling and on transformation to UML Sequence diagram on the platform independent (PIM level. The results show the advantages and drawbacks the formalism of TFM brings into the development.

  7. Two-level systems driven by large-amplitude fields

    Science.gov (United States)

    Nori, F.; Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.

    2009-03-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition, (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems. S. Ashhab, J.R. Johansson, A.M. Zagoskin, F. Nori, Two-level systems driven by large-amplitude fields, Phys. Rev. A 75, 063414 (2007). S. Ashhab et al, unpublished.

  8. Electrically driven hybrid Si/III-V Fabry-Pérot lasers based on adiabatic mode transformers.

    Science.gov (United States)

    Ben Bakir, B; Descos, A; Olivier, N; Bordel, D; Grosse, P; Augendre, E; Fulbert, L; Fedeli, J M

    2011-05-23

    We report the first demonstration of an electrically driven hybrid silicon/III-V laser based on adiabatic mode transformers. The hybrid structure is formed by two vertically superimposed waveguides separated by a 100-nm-thick SiO2 layer. The top waveguide, fabricated in an InP/InGaAsP-based heterostructure, serves to provide optical gain. The bottom Si-waveguides system, which supports all optical functions, is constituted by two tapered rib-waveguides (mode transformers), two distributed Bragg reflectors (DBRs) and a surface-grating coupler. The supermodes of this hybrid structure are controlled by an appropriate design of the tapers located at the edges of the gain region. In the middle part of the device almost all the field resides in the III-V waveguide so that the optical mode experiences maximal gain, while in regions near the III-V facets, mode transformers ensure an efficient transfer of the power flow towards Si-waveguides. The investigated device operates under quasi-continuous wave regime. The room temperature threshold current is 100 mA, the side-mode suppression ratio is as high as 20 dB, and the fiber-coupled output power is ~7 mW.

  9. Dielectrophoresis-magnetophoresis force driven magnetic nanoparticle movement in transformer oil based magnetic fluids.

    Science.gov (United States)

    Lee, Jong-Chul; Lee, Sangyoup

    2013-09-01

    Magnetic fluid is a stable colloidal mixture contained magnetic nanoparticles coated with a surfactant. Recently, it was found that the fluid has properties to increase heat transfer and dielectric characteristics due to the added magnetic nanoparticles in transformer oils. The magnetic nanoparticles in the fluid experience an electrical force directed toward the place of maximum electric field strength when the electric field is applied. And when the external magnetic field is applied, the magnetic nanoparticles form long chains oriented along the direction of the field. The behaviors of magnetic nanoparticles in both the fields must play an important role in changing the heat transfer and dielectric characteristics of the fluids. In this study, we visualized the movement of magnetic nanoparticles influenced by both the fields applied in-situ. It was found that the magnetic nanoparticles travel in the region near the electrode by the electric field and form long chains along the field direction by the magnetic field. It can be inferred that the movement of magnetic nanoparticles appears by both the fields, and the breakdown voltage of transformer oil based magnetic fluids might be influenced according to the dispersion of magnetic nanoparticles.

  10. Entertainment computing, social transformation and the quantum field

    OpenAIRE

    Rauterberg, G.W.M.; Nijholt, A.; Reidsma, D.; Hondorp, H.

    2009-01-01

    Entertainment computing is on its way getting an established academic discipline. The scope of entertainment computing is quite broad (see the scope of the international journal Entertainment Computing). One unifying idea in this diverse community of entertainment researchers and developers might be a normative position to enhance human living through social transformation. One possible option in this direction is a shared `conscious' field. Several ideas about a new kind of field based on qu...

  11. Transformations Based on Continuous Piecewise-Affine Velocity Fields

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Batmanghelich, Kayhan

    2017-01-01

    We propose novel finite-dimensional spaces of well-behaved transformations. The latter are obtained by (fast and highly-accurate) integration of continuous piecewise-affine velocity fields. The proposed method is simple yet highly expressive, effortlessly handles optional constraints (e.g., volum...

  12. CLOSED-FIELD CORONAL HEATING DRIVEN BY WAVE TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Downs, Cooper; Lionello, Roberto; Mikić, Zoran; Linker, Jon A [Predictive Science Incorporated, 9990 Mesa Rim Rd. Suite 170, San Diego, CA 92121 (United States); Velli, Marco, E-mail: cdowns@predsci.com [EPSS, UCLA, Los Angeles, CA 90095 (United States)

    2016-12-01

    To simulate the energy balance of coronal plasmas on macroscopic scales, we often require the specification of the coronal heating mechanism in some functional form. To go beyond empirical formulations and to build a more physically motivated heating function, we investigate the wave-turbulence-driven (WTD) phenomenology for the heating of closed coronal loops. Our implementation is designed to capture the large-scale propagation, reflection, and dissipation of wave turbulence along a loop. The parameter space of this model is explored by solving the coupled WTD and hydrodynamic evolution in 1D for an idealized loop. The relevance to a range of solar conditions is also established by computing solutions for over one hundred loops extracted from a realistic 3D coronal field. Due to the implicit dependence of the WTD heating model on loop geometry and plasma properties along the loop and at the footpoints, we find that this model can significantly reduce the number of free parameters when compared to traditional empirical heating models, and still robustly describe a broad range of quiet-Sun and active region conditions. The importance of the self-reflection term in producing relatively short heating scale heights and thermal nonequilibrium cycles is also discussed.

  13. Field Test of Driven Pile Group under Lateral Loading

    Science.gov (United States)

    Gorska, Karolina; Rybak, Jaroslaw; Wyjadlowski, Marek

    2017-12-01

    All the geotechnical works need to be tested because the diversity of soil parameters is much higher than in other fields of construction. Horizontal load tests are necessary to determine the lateral capacity of driven piles subject to lateral load. Various load tests were carried out altogether on the test field in Kutno (Poland). While selecting the piles for load tests, different load combinations were taken into account. The piles with diverse length were chosen, on the basis of the previous tests of their length and integrity. The subsoil around the piles consisted of mineral soils: clays and medium compacted sands with the density index ID>0.50. The pile heads were free. The points of support of the “base” to which the dial gauges (displacement sensors) were fastened were located at the distance of 0.7 m from the side surface of the pile loaded laterally. In order to assure the independence of measurement, additional control (verifying) geodetic survey of the displacement of the piles subject to the load tests was carried out (by means of the alignment method). The trial load was imposed in stages by means of a hydraulic jack. The oil pressure in the actuator was corrected by means of a manual pump in order to ensure the constant value of the load in the on-going process of the displacement of the pile under test. On the basis of the obtained results it is possible to verify the numerical simulations of the behaviour of piles loaded by a lateral force.

  14. Transformations in dreaming and characters in the psychoanalytic field.

    Science.gov (United States)

    Ferro, Antonino

    2009-04-01

    Having reviewed certain similarities and differences between the various psychoanalytic models (historical reconstruction/development of the container and of the mind's metabolic and transformational function; the significance to be attributed to dream-type material; reality gradients of narrations; tolerability of truth/lies as polar opposites; and the form in which characters are understood in a psychoanalytic session), the author uses clinical material to demonstrate his conception of a session as a virtual reality in which the central operation is transformation in dreaming (de-construction, de-concretization, and re-dreaming), accompanied in particular by the development of this attitude in both patient and analyst as an antidote to the operations of transformation in hallucinosis that bear witness to the failure of the functions of meaning generation. The theoretical roots of this model are traced in the concept of the field and its developments as a constantly expanding oneiric holographic field; in the developments of Bion's ideas (waking dream thought and its derivatives, and the patient as signaller of the movements of the field); and in the contributions of narratology (narrative transformations and the transformations of characters and screenplays). Stress is also laid on the transition from a psychoanalysis directed predominantly towards contents to a psychoanalysis that emphasizes the development of the instruments for dreaming, feeling, and thinking. An extensive case history and a session reported in its entirety are presented so as to convey a living impression of the ongoing process, in the consulting room, of the unsaturated co-construction of an emotional reality in the throes of continuous transformation. The author also describes the technical implications of this model in terms of forms of interpretation, the countertransference, reveries, and, in particular, how the analyst listens to the patient's communications. The paper ends with an

  15. Effects of high magnetic field on martensitic transformation behavior and structure in Fe-based alloys

    International Nuclear Information System (INIS)

    Ohtsuka, H.; Wada, H.; Ghosh, G.

    2000-01-01

    Effects of magnetic field on lath-type martensitic transformation behavior and the reverse transformation behavior from lath math martensite to austenite have been investigated in 18Ni maraging steel. It was found that the reverse transformation temperature during heating is increased by magnetic field. Reverse transformation behavior during isothermal holding was also found to be retarded by magnetic field. (orig.)

  16. Electromagnetically Driven Plasma-Field Dynamics in Modified Ionosphere

    Science.gov (United States)

    Kochetov, Andrey; Terina, Galina

    Under sounding of an artificial ionospheric turbulence by short probing radio pulses of ordinary polarization the two types of scattered signals were observed: a "caviton" signal (CS) and a "plasma" signal (PS), which appeared with the heating transmitter switching on and disap-peared after its switching off (G.I. Terina J. Atm. Terr. Phys, 57, 1995, 273, Izv. VUZov, Radiofizika, 39, 1998, 203). The scattered signal of PS type was revealed also after the heating switching off. It was called an "aftereffect plasma signal" (AEPS) (G.I. Terina Izv .VUZov, Radiofizika, 43, 2000, 958). This signal had large time and spatial delays and appeared mostly when corresponding PS had envelope fluctuations. The aftereffect phenomenon was expressed at time on CS by amplitude increasing at once after the heating transmitter turning off. The theoretical model of this phenomenon is proposed in and some peculiarities of the aftereffect phenomena of the scattered signals in modified ionospheric plasma are considered and discussed. For theoretical interpretation of the characteristics of CS and AEPS the numerical solution of nonlinear Shrüdinger equation (NSE) with driven extension were carried out in inhomogeneous plasma layer with linear electron density profile (A.V. Kochetov, V.A. Mironov, G.I. Terina, Adv. Space Reseacrh, 29, 2002, 1369) and for the one with prescribed density depletion (and A.V. Kochetov, G.I. Terina, Adv. Space Reseacrh, 38, 2006, 2490). The simulation results obtained for linear inhomogeneous plasma layer and for plasma one with density depletion al-low us to interpret the aftereffect of CS and PS qualitatively. The field amplitude increase at relaxation stage displayed at calculations allows us to interpret of CS aftereffect. The large time delays of AEPS can be explained as a result of powerful radio waves trapping in the forming at the plasma resonance regions density depletions (E. Mjøhus, J. Geophys. Res. 103, 1998, 14711; B. Eliasson and L. Stenflo, J

  17. Experimental Verification of Isotropic Radiation from a Coherent Dipole Source via Electric-Field-Driven LC Resonator Metamaterials

    Science.gov (United States)

    Tichit, Paul-Henri; Burokur, Shah Nawaz; Qiu, Cheng-Wei; de Lustrac, André

    2013-09-01

    It has long been conjectured that isotropic radiation by a simple coherent source is impossible due to changes in polarization. Though hypothetical, the isotropic source is usually taken as the reference for determining a radiator’s gain and directivity. Here, we demonstrate both theoretically and experimentally that an isotropic radiator can be made of a simple and finite source surrounded by electric-field-driven LC resonator metamaterials designed by space manipulation. As a proof-of-concept demonstration, we show the first isotropic source with omnidirectional radiation from a dipole source (applicable to all distributed sources), which can open up several possibilities in axion electrodynamics, optical illusion, novel transformation-optic devices, wireless communication, and antenna engineering. Owing to the electric- field-driven LC resonator realization scheme, this principle can be readily applied to higher frequency regimes where magnetism is usually not present.

  18. Design Improvements on Graded Insulation of Power Transformers Using Transient Electric Field Analysis and Visualization Technique

    OpenAIRE

    Yamashita, Hideo; Nakamae, Eihachiro; Namera, Akihiro; Cingoski, Vlatko; Kitamura, Hideo

    1998-01-01

    This paper deals with design improvements on graded insulation of power transformers using transient electric field analysis and a visualization technique. The calculation method for transient electric field analysis inside a power transformer impressed with impulse voltage is presented: Initially, the concentrated electric network for the power transformer is concentrated by dividing transformer windings into several blocks and by computing the electric circuit parameters.

  19. Magnetic field driven domain-wall propagation in magnetic nanowires

    International Nuclear Information System (INIS)

    Wang, X.R.; Yan, P.; Lu, J.; He, C.

    2009-01-01

    The mechanism of magnetic field induced magnetic domain-wall (DW) propagation in a nanowire is revealed: A static DW cannot exist in a homogeneous magnetic nanowire when an external magnetic field is applied. Thus, a DW must vary with time under a static magnetic field. A moving DW must dissipate energy due to the Gilbert damping. As a result, the wire has to release its Zeeman energy through the DW propagation along the field direction. The DW propagation speed is proportional to the energy dissipation rate that is determined by the DW structure. The negative differential mobility in the intermediate field is due to the transition from high energy dissipation at low field to low energy dissipation at high field. For the field larger than the so-called Walker breakdown field, DW plane precesses around the wire, leading to the propagation speed oscillation.

  20. The transformation of the journalistic field : discursive strategies and journalistic forms

    NARCIS (Netherlands)

    Broersma, Marcel

    2010-01-01

    The transformation of the journalistic field: discursive strategies and journalistic forms Journalism is transforming rapidly in the 21st century. This article argues that two complementary approaches offer Journalism Studies productive perspectives to study this process of change. Bourdieu's field

  1. Evidence of displacement-driven maturation along the San Cristobal Trough transform plate boundary

    Science.gov (United States)

    Neely, James S.; Furlong, Kevin P.

    2018-03-01

    The San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon Islands, provides an opportunity to study the transform boundary development process. Recent seismicity (2013-2016) along the 280 km long SCT, known as a Subduction-Transform Edge Propagator (STEP) fault, highlights the tearing process and ongoing development of the plate boundary. The region's earthquakes reveal two key characteristics. First, earthquakes at the western terminus of the SCT, which we interpret to indicate the Australia plate tearing, display disparate fault geometries. These events demonstrate that plate tearing is accommodated via multiple intersecting planes rather than a single through-going fault. Second, the SCT hosts sequences of Mw ∼7 strike-slip earthquakes that migrate westward through a rapid succession of events. Sequences in 1993 and 2015 both began along the eastern SCT and propagated west, but neither progression ruptured into or nucleated a large earthquake within the region near the tear. Utilizing b-value and Coulomb Failure Stress analyses, we examine these along-strike variations in the SCT's seismicity. b-Values are highest along the youngest, western end of the SCT and decrease with increasing distance from the tear. This trend may reflect increasing strain localization with increasing displacement. Coulomb Failure Stress analyses indicate that the stress conditions were conducive to continued western propagation of the 1993 and 2015 sequences suggesting that the unruptured western SCT may have fault geometries or properties that inhibit continued rupture. Our results indicate a displacement-driven fault maturation process. The multi-plane Australia plate tearing likely creates a western SCT with diffuse strain accommodated along a network of disorganized faults. After ∼90 km of cumulative displacement (∼900,000 yr of plate motion), strain localizes and faults align, allowing the SCT to host

  2. Fundamental properties of field emission-driven direct current microdischarges

    International Nuclear Information System (INIS)

    Rumbach, Paul; Go, David B.

    2012-01-01

    For half a century, it has been known that the onset of field emission in direct current microdischarges with gap sizes less than 10 μm can lead to breakdown at applied voltages far less than predicted by Paschen's law. It is still unclear how field emission affects other fundamental plasma properties at this scale. In this work, a one-dimensional fluid model is used to predict basic scaling laws for fundamental properties including ion density, electric field due to space charge, and current-voltage relations in the pre-breakdown regime. Computational results are compared with approximate analytic solutions. It is shown that field emission provides an abundance of cathode electrons, which in turn create large ion concentrations through ionizing collisions well before Paschen's criterion for breakdown is met. Breakdown due to ion-enhanced field emission occurs when the electric field due to space charge becomes comparable to the applied electric field. Simple scaling analysis of the 1D Poisson equation demonstrates that an ion density of n + ≈ 0.1V A ε 0 /qd 2 is necessary to significantly distort the electric field. Defining breakdown in terms of this critical ion density leads analytically to a simple, effective secondary emission coefficient γ ′ of the same mathematical form initially suggested by Boyle and Kisliuk [Phys. Rev. 97, 255 (1955)].

  3. In-situ studies of stress- and magnetic-field-induced phase transformation in a polymer-bonded Ni-Co-Mn-In composite

    International Nuclear Information System (INIS)

    Liu, D.M.; Nie, Z.H.; Wang, G.; Wang, Y.D.; Brown, D.E.; Pearson, J.; Liaw, P.K.; Ren, Y.

    2010-01-01

    A polymer-bonded Ni 45 Co 5 Mn 36.6 In 13.4 ferromagnetic shape-memory composite was fabricated, having magnetic-field-driven shape recovery properties. The thermo-magnetization curves of the composite suggested that the magnetic-field-induced reverse martensitic transformation occurs in the composite. The effects of temperature, stress, and magnetic-field on the phase transformation properties were systematically investigated using an in-situ high-energy X-ray diffraction technique. A temperature-induced reversible martensitic phase transformation was confirmed within the composite, showing a broad phase transformation interval. Stress-induced highly textured martensite was observed in the composite during uniaxial compressive loading, with a residual strain after unloading. The origin of the textured martensite can be explained by the grain-orientation-dependent Bain distortion energy. A recovery strain of ∼1.76% along the compression direction was evidenced in the pre-strained composite with an applied magnetic-field of 5 T. This recovery was caused by the magnetic-field-induced reverse martensitic phase transformation. The phase transformation properties of the ferromagnetic shape-memory composite, different from its bulk alloys, can be well explained by the Clausius-Clapeyron relation. The large magnetic-field-induced strain, together with good ductility and low cost, make the polymer-bonded Ni-Co-Mn-In composites potential candidates for magnetic-field-driven actuators.

  4. Electric field driven fractal growth dynamics in polymeric medium

    Energy Technology Data Exchange (ETDEWEB)

    Dawar, Anit; Chandra, Amita, E-mail: achandra@physics.du.ac.in

    2014-08-14

    This paper reports the extension of earlier work (Dawar and Chandra, 2012) [27] by including the influence of low values of electric field on diffusion limited aggregation (DLA) patterns in polymer electrolyte composites. Subsequently, specified cut-off value of voltage has been determined. Below the cut-off voltage, the growth becomes direction independent (i.e., random) and gives rise to ramified DLA patterns while above the cut-off, growth is governed by diffusion, convection and migration. These three terms (i.e., diffusion, convection and migration) lead to structural transition that varies from dense branched morphology (DBM) to chain-like growth to dendritic growth, i.e., from high field region (A) to constant field region (B) to low field region (C), respectively. The paper further explores the growth under different kinds of electrode geometries (circular and square electrode geometry). A qualitative explanation for fractal growth phenomena at applied voltage based on Nernst–Planck equation has been proposed. - Highlights: • The paper is an extension of earlier work [Phys. Lett. A 376 (2012) 3604] on effect of electric field on DLA. • Threshold value of electric field has been determined. • Below the threshold, growth is random. • Above the threshold, the growth is governed by diffusion, migration and convection. • Different kinds of electrode geometries have been used to simulate the growth.

  5. Electric field driven fractal growth dynamics in polymeric medium

    International Nuclear Information System (INIS)

    Dawar, Anit; Chandra, Amita

    2014-01-01

    This paper reports the extension of earlier work (Dawar and Chandra, 2012) [27] by including the influence of low values of electric field on diffusion limited aggregation (DLA) patterns in polymer electrolyte composites. Subsequently, specified cut-off value of voltage has been determined. Below the cut-off voltage, the growth becomes direction independent (i.e., random) and gives rise to ramified DLA patterns while above the cut-off, growth is governed by diffusion, convection and migration. These three terms (i.e., diffusion, convection and migration) lead to structural transition that varies from dense branched morphology (DBM) to chain-like growth to dendritic growth, i.e., from high field region (A) to constant field region (B) to low field region (C), respectively. The paper further explores the growth under different kinds of electrode geometries (circular and square electrode geometry). A qualitative explanation for fractal growth phenomena at applied voltage based on Nernst–Planck equation has been proposed. - Highlights: • The paper is an extension of earlier work [Phys. Lett. A 376 (2012) 3604] on effect of electric field on DLA. • Threshold value of electric field has been determined. • Below the threshold, growth is random. • Above the threshold, the growth is governed by diffusion, migration and convection. • Different kinds of electrode geometries have been used to simulate the growth

  6. Composition driven monolayer to bilayer transformation in a surfactant intercalated Mg-Al layered double hydroxide.

    Science.gov (United States)

    Naik, Vikrant V; Chalasani, Rajesh; Vasudevan, S

    2011-03-15

    The structure and organization of dodecyl sulfate (DDS) surfactant chains intercalated in an Mg-Al layered double hydroxide (LDH), Mg(1-x)Alx(OH)2, with differing Al/Mg ratios has been investigated. The Mg-Al LDHs can be prepared over a range of compositions with x varying from 0.167 to 0.37 and therefore provides a simple system to study how the organization of the alkyl chains of the intercalated DDS anions change with packing density; the Al/Mg ratio or x providing a convenient handle to do so. Powder X-ray diffraction measurements showed that at high packing densities (x ≥ 0.3) the alkyl chains of the intercalated dodecyl sulfate ions are anchored on opposing LDH sheets and arranged as bilayers with an interlayer spacing of ∼27 Å. At lower packing densities (x flat in the galleries with an interlayer spacing of ∼8 Å. For the in between compositions, 0.2 ≤ x organization of the chains and the interlayer spacing. The simulations are able to reproduce the composition driven monolayer to bilayer transformation in the arrangement of the intercalated surfactant chains and in addition provide insights into the factors that decide the arrangement of the surfactant chains in the two situations. In the bilayer arrangement, it is the dispersive van der Waals interactions between chains in opposing layers of the anchored bilayer that is responsible for the cohesive energy of the solid whereas at lower packing densities, where a monolayer arrangement is favored, Coulomb interactions between the positively charged Mg-Al LDH sheets and the negatively charged headgroup of the DDS anion dominate.

  7. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kusa, F. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Echternkamp, K. E.; Herink, G.; Ropers, C. [4th Physical Institute – Solids and Nanostructures, University of Göttingen, 37077 Göttingen (Germany); Ashihara, S., E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  8. Limit theorems for power variations of ambit fields driven by white noise

    DEFF Research Database (Denmark)

    Pakkanen, Mikko

    We study the asymptotic behavior of lattice power variations of two-parameter ambit fields that are driven by white noise. Our first result is a law of large numbers for such power variations. Under a constraint on the memory of the ambit field, normalized power variations are shown to converge...

  9. Limit theorems for power variations of ambit field driven by white noise

    DEFF Research Database (Denmark)

    Pakkanen, Mikko S.

    2014-01-01

    We study the asymptotics of lattice power variations of two-parameter ambit fields driven by white noise. Our first result is a law of large numbers for power variations. Under a constraint on the memory of the ambit field, normalized power variations converge to certain integral functionals...

  10. HPV-Induced Field Cancerisation: Transformation of Adult Tissue Stem Cell Into Cancer Stem Cell.

    Science.gov (United States)

    Olivero, Carlotta; Lanfredini, Simone; Borgogna, Cinzia; Gariglio, Marisa; Patel, Girish K

    2018-01-01

    Field cancerisation was originally described as a basis for multiple head and neck squamous cell carcinoma (HNSCC) and is a pre-malignant phenomenon that is frequently attributable to oncogenic human papillomavirus (HPV) infection. Our work on β-HPV-induced cutaneous squamous cell carcinomas identified a novel Lrig1+ hair follicle junctional zone keratinocyte stem cell population as the basis for field cancerisation. Herein, we describe the ability for HPV to infect adult tissue stem cells in order to establish persistent infection and induce their proliferation and displacement resulting in field cancerisation. By review of the HPV literature, we reveal how this mechanism is conserved as the basis of field cancerisation across many tissues. New insights have identified the capacity for HPV early region genes to dysregulate adult tissue stem cell self-renewal pathways ensuring that the expanded population preserve its stem cell characteristics beyond the stem cell niche. HPV-infected cells acquire additional transforming mutations that can give rise to intraepithelial neoplasia (IEN), from environmental factors such as sunlight or tobacco induced mutations in skin and oral cavity, respectively. With establishment of IEN, HPV viral replication is sacrificed with loss of the episome, and the tissue is predisposed to multiple cancer stem cell-driven carcinomas.

  11. Formation and field-driven dynamics of nematic spheroids.

    Science.gov (United States)

    Fu, Fred; Abukhdeir, Nasser Mohieddin

    2017-07-19

    Unlike the canonical application of liquid crystals (LCs), LC displays, emerging technologies based on LC materials are increasingly leveraging the presence of nanoscale defects. The inherent nanoscale characteristics of LC defects present both significant opportunities as well as barriers for the application of this fascinating class of materials. Simulation-based approaches to the study of the effects of confinement and interface anchoring conditions on LC domains has resulted in significant progress over the past decade, where simulations are now able to access experimentally-relevant length scales while simultaneously capturing nanoscale defect structures. In this work, continuum simulations were performed in order to study the dynamics of micron-scale nematic LC spheroids of varying shape. Nematic spheroids are one of the simplest inherently defect-containing LC structures and are relevant to polymer-dispersed LC-based "smart" window technology. Simulation results include nematic phase formation and external field-switching dynamics of nematic spheroids ranging in shape from oblate to prolate. Results include both qualitative and quantitative insight into the complex coupling of nanoscale defect dynamics and structure transitions to micron-scale reorientation. Dynamic mechanisms are presented and related to structural transitions in LC defects present in the nematic domain. Domain-averaged metrics including order parameters and response times are determined for a range of experimentally-accessible electric field strengths. These results have both fundamental and technological relevance, in that increased understanding of LC dynamics in the presence of defects is a key barrier to continued advancement in the field.

  12. Electron-inertia effects on driven magnetic field reconnection

    International Nuclear Information System (INIS)

    Al-Salti, N.; Shivamoggi, B.K.

    2003-01-01

    Electron-inertia effects on the magnetic field reconnection induced by perturbing the boundaries of a slab of plasma with a magnetic neutral surface inside are considered. Energetics of the tearing mode dynamics with electron inertia which controls the linearized collisionless magnetohydrodynamics (MHD) are considered with a view to clarify the role of the plasma pressure in this process. Cases with the boundaries perturbed at rates slow or fast compared with the hydromagnetic evolution rate are considered separately. When the boundaries are perturbed at a rate slow compared with the hydromagnetic evolution rate and fast compared with the resistive diffusion rate, the plasma response for early times is according to ideal MHD. A current sheet formation takes place at the magnetic neutral surface for large times in the ideal MHD stage and plasma becomes motionless. The subsequent evolution of the current sheet is found to be divided into two distinct stages: (i) the electron-inertia stage for small times (when the current sheet is very narrow); (ii) the resistive-diffusion stage for large times. The current sheet mainly undergoes exponential damping in the electron-inertia regime while the bulk of the diffusion happens in the resistivity regime. For large times of the resistive-diffusion stage when plasma flow is present, the current sheet completely disappears and the magnetic field reconnection takes place. When the boundaries are perturbed at a rate fast compared even with the hydromagnetic evolution rate, there is no time for the development of a current sheet and the magnetic field reconnection has been found not to take place

  13. Phase field theory of proper displacive phase transformations: Structural anisotropy and directional flexibility, a vector model, and the transformation kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Rao Weifeng [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States); Khachaturyan, Armen G., E-mail: khach@jove.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854 (United States)

    2011-06-15

    A phase field theory of proper displacive transformations is developed to address the microstructure evolution and its response to applied fields in decomposing and martensitic systems. The theory is based on the explicit equation for the non-equilibrium free energy function of the transformation strain obtained by a consistent separation of the total strain into transformation and elastic strains. The transformation strain is considered to be a relaxing long-range order parameter evolving in accordance with the system energetics rather than as a fixed material constant used in the conventional Eshelby theory of coherent inclusions. The elastic strain is defined as a coherency strain recovering the crystal lattice compatibility. The obtained free energy function of the transformation strain leads to the concepts of structural anisotropy and directional flexibility of low symmetry phases. The formulated vector model of displacive transformation makes apparent a similarity between proper displacive transformation and ferromagnetic/ferroelectric transformation and, in particular, a similarity between the structural anisotropy and magnetic/polar anisotropy of ferromagnetic/ferroelectric materials. It even predicts the feasibility of a glass-like structural state with unlimited directional flexibility of the transformation strain that is conceptually similar to a ferromagnetic glass. The thermodynamics of the equilibrium between low symmetry phases and the thermodynamic conditions leading to the formation of adaptive states are formulated.

  14. Field aligned flows driven by neutral puffing at MAST

    Science.gov (United States)

    Waters, I.; Frerichs, H.; Silburn, S.; Feng, Y.; Harrison, J.; Kirk, A.; Schmitz, O.

    2018-06-01

    Neutral deuterium gas puffing at the high field side of the mega ampere spherical tokamak (MAST) is shown to drive carbon impurity flows that are aligned with the trajectory of the magnetic field lines in the plasma scrape-off-layer. These impurity flows were directly imaged with emissions from C2+ ions at MAST by coherence imaging spectroscopy and were qualitatively reproduced in deuterium plasmas by modeling with the EMC3-EIRENE plasma edge fluid and kinetic neutral transport code. A reduced one-dimensional momentum and particle balance shows that a localized increase in the static plasma pressure in front of the neutral gas puff yields an acceleration of the plasma due to local ionization. Perpendicular particle transport yields a decay from which a parallel length scale can be determined. Parameter scans in EMC3-EIRENE were carried out to determine the sensitivity of the deuterium plasma flow phenomena to local fueling and diffusion parameters and it is found that these flows robustly form across a wide variety of plasma conditions. Finally, efforts to couple this behavior in the background plasma directly to the impurity flows observed experimentally in MAST using a trace impurity model are discussed. These results provide insight into the fueling and exhaust features at this pivotal point of the radial and parallel particle flux balance, which is a major part of the plasma fueling and exhaust characteristics in a magnetically confined fusion device.

  15. A Design Method for Graded Insulation of Transformers by Transient Electric Field Intensity Analysis

    OpenAIRE

    Yamashita, Hideo; Cingoski, Vlatko; Namera, Akihiro; Nakamae, Eihachiro; Kitamura, Hideo

    2000-01-01

    In this paper, a calculation method for transient electric field distribution inside a transformer impressed with voltage is proposed: The concentrated electric network for the transformer is constructed by dividing transformer windings into several blocks, and the transient voltage and electric field intensity distributions inside the transformer are calculated by using the axisymmetrical finite element method. Moreover, an animated display of the distributions is realized: The visualization...

  16. Double-electron ionization driven by inhomogeneous fields

    Czech Academy of Sciences Publication Activity Database

    Chacon, A.; Ortmann, L.; Cucchietti, F.; Suarez, N.; Perez-Hernandez, J.A.; Ciappina, Marcelo F.; Landsman, A.S.; Lewenstein, M.

    2017-01-01

    Roč. 123, č. 4 (2017), 1-11, č. článku 116. ISSN 0946-2171 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : nonsequential double-ionization * harmonic-generation * laser fields * helium * model * emission * single * atom * ion * He Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.696, year: 2016

  17. Self-assembly of colloidal bands driven by a periodic external field

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, André S.; Araújo, Nuno A. M., E-mail: nmaraujo@fc.ul.pt; Telo da Gama, Margarida M. [Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal and Centro de Física Teórica e Computacional, Universidade de Lisboa, P-1749-016 Lisboa (Portugal)

    2016-01-21

    We study the formation of bands of colloidal particles driven by periodic external fields. Using Brownian dynamics, we determine the dependence of the band width on the strength of the particle interactions and on the intensity and periodicity of the field. We also investigate the switching (field-on) dynamics and the relaxation times as a function of the system parameters. The observed scaling relations were analyzed using a simple dynamic density-functional theory of fluids.

  18. Kernel-Correlated Lévy Field Driven Forward Rate and Application to Derivative Pricing

    International Nuclear Information System (INIS)

    Bo Lijun; Wang Yongjin; Yang Xuewei

    2013-01-01

    We propose a term structure of forward rates driven by a kernel-correlated Lévy random field under the HJM framework. The kernel-correlated Lévy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure

  19. Kernel-Correlated Levy Field Driven Forward Rate and Application to Derivative Pricing

    Energy Technology Data Exchange (ETDEWEB)

    Bo Lijun [Xidian University, Department of Mathematics (China); Wang Yongjin [Nankai University, School of Business (China); Yang Xuewei, E-mail: xwyangnk@yahoo.com.cn [Nanjing University, School of Management and Engineering (China)

    2013-08-01

    We propose a term structure of forward rates driven by a kernel-correlated Levy random field under the HJM framework. The kernel-correlated Levy random field is composed of a kernel-correlated Gaussian random field and a centered Poisson random measure. We shall give a criterion to preclude arbitrage under the risk-neutral pricing measure. As applications, an interest rate derivative with general payoff functional is priced under this pricing measure.

  20. Two-level systems driven by large-amplitude fields

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Zagoskin, A. M.; Nori, Franco

    2007-01-01

    We analyze the dynamics of a two-level system subject to driving by large-amplitude external fields, focusing on the resonance properties in the case of driving around the region of avoided level crossing. In particular, we consider three main questions that characterize resonance dynamics: (1) the resonance condition (2) the frequency of the resulting oscillations on resonance, and (3) the width of the resonance. We identify the regions of validity of different approximations. In a large region of the parameter space, we use a geometric picture in order to obtain both a simple understanding of the dynamics and quantitative results. The geometric approach is obtained by dividing the evolution into discrete time steps, with each time step described by either a phase shift on the basis states or a coherent mixing process corresponding to a Landau-Zener crossing. We compare the results of the geometric picture with those of a rotating wave approximation. We also comment briefly on the prospects of employing strong driving as a useful tool to manipulate two-level systems

  1. Converging xenon shock waves driven by megagauss magnetic fields

    International Nuclear Information System (INIS)

    Shearer, J.W.; Steinberg, D.J.

    1986-07-01

    We attempted to implode a conducting metal linear at high velocity, and our failure to do so led to switching, or rapidly transferring the field from pushing an aluminum conductor to snow-plowing a half-atmosphere of xenon gas. We successfully initiated convergent xenon gas shocks with the use of a magnetohydrodynamic switch and coaxial high-explosive, flux-compression generators. Principal diagnostics used to study the imploding xenon gas were 133 Xe radioactive tracers, continuous x-ray absorption, and neutron output. We compressed the xenon gas about five to sixfold at a velocity of 10 cm/μs at a radius of 4 cm. The snowplow efficiency was good; going from 13- to 4-cm radius, we lost only about 20% of the mass. The temperature of the imploded sheath was determined by mixing deuterium with the xenon and measuring the neutron output. Using reasonable assumptions about the amount, density, and uniformity of the compressed gas, we estimate that we reached temperatures as high as 155 eV. Energy-loss mechanisms that we encountered included wall ablation and Taylor instabilities of the back surface

  2. Field- and current-driven domain wall dynamics: An experimental picture

    International Nuclear Information System (INIS)

    Beach, G.S.D.; Knutson, C.; Tsoi, M.; Erskine, J.L.

    2007-01-01

    Field- and current-driven domain wall velocities are measured and discussed in terms of existing spin-torque models. A reversal in the roles of adiabatic and non-adiabatic spin-torque is shown to arise in those models below and above Walker breakdown. The measured dependence of velocity on current is the same in both regimes, indicating both spin-torque components have similar magnitude. However, the models on which these conclusions are based have serious quantitative shortcomings in describing the observed field-driven wall dynamics, for which they were originally developed. Hence, the applicability of simple one-dimensional models to most experimental conditions may be limited

  3. Magnetic-field-driven localization of light in a cold-atom gas.

    Science.gov (United States)

    Skipetrov, S E; Sokolov, I M

    2015-02-06

    We discover a transition from extended to localized quasimodes for light in a gas of immobile two-level atoms in a magnetic field. The transition takes place either upon increasing the number density of atoms in a strong field or upon increasing the field at a high enough density. It has many characteristic features of a disorder-driven (Anderson) transition but is strongly influenced by near-field interactions between atoms and the anisotropy of the atomic medium induced by the magnetic field.

  4. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    Directory of Open Access Journals (Sweden)

    Senad Apelfröjd

    2014-01-01

    Full Text Available Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  5. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    Science.gov (United States)

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed.

  6. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    Science.gov (United States)

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  7. Supramolecule-to-supramolecule transformations of coordination-driven self-assembled polygons.

    Science.gov (United States)

    Zhao, Liang; Northrop, Brian H; Stang, Peter J

    2008-09-10

    Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6 + 6] hexagon is transformed into two [3 + 3] hexagons, and a triangle-square mixture is converted into [2 + 2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons.

  8. Resonance fluorescence spectra of a three-level atom driven by two strong laser fields

    International Nuclear Information System (INIS)

    Peng Jinsheng.

    1986-12-01

    The resonance fluorescence of a three-level atom interacted with two high-power laser fields is investigated in strong field approximation. The fluorescence distribution is obtained by means of the theory of dressing transformation. (author). 15 refs, 2 figs

  9. Electric field driven plasmon dispersion in AlGaN/GaN high electron mobility transistors

    International Nuclear Information System (INIS)

    Tan Ren-Bing; Qin Hua; Zhang Xiao-Yu; Xu Wen

    2013-01-01

    We present a theoretical study on the electric field driven plasmon dispersion of the two-dimensional electron gas (2DEG) in AlGaN/GaN high electron mobility transistors (HEMTs). By introducing a drifted Fermi—Dirac distribution, we calculate the transport properties of the 2DEG in the AlGaN/GaN interface by employing the balance-equation approach based on the Boltzmann equation. Then, the nonequilibrium Fermi—Dirac function is obtained by applying the calculated electron drift velocity and electron temperature. Under random phase approximation (RPA), the electric field driven plasmon dispersion is investigated. The calculated results indicate that the plasmon frequency is dominated by both the electric field E and the angle between wavevector q and electric field E. Importantly, the plasmon frequency could be tuned by the applied source—drain bias voltage besides the gate voltage (change of the electron density)

  10. Heat Flux of a Transferred Arc Driven by a Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Naomi Matsumoto

    2009-01-01

    Full Text Available Theoretical consideration of a magnetically driven arc was performed to elucidate the variation of heat flux with an imposed DC magnetic field. Experiments were conducted to confirm the validity of the theoretical model. The heat flux decreased concomitantly with increased imposed magnetic flux density. Theoretical predictions agreed with experimental results.

  11. Transforming in-situ observations of CME-driven shock accelerated protons into the shock's reference frame.

    Directory of Open Access Journals (Sweden)

    I. M. Robinson

    2005-07-01

    Full Text Available We examine the solar energetic particle event following solar activity from 14, 15 April 2001 which includes a "bump-on-the-tail" in the proton energy spectra at 0.99 AU from the Sun. We find this population was generated by a CME-driven shock which arrived at 0.99 AU around midnight 18 April. As such this population represents an excellent opportunity to study in isolation, the effects of proton acceleration by the shock. The peak energy of the bump-on-the-tail evolves to progressively lower energies as the shock approaches the observing spacecraft at the inner Lagrange point. Focusing on the evolution of this peak energy we demonstrate a technique which transforms these in-situ spectral observations into a frame of reference co-moving with the shock whilst making allowance for the effects of pitch angle scattering and focusing. The results of this transform suggest the bump-on-the-tail population was not driven by the 15 April activity but was generated or at least modulated by a CME-driven shock which left the Sun on 14 April. The existence of a bump-on-the-tail population is predicted by models in Rice et al. (2003 and Li et al. (2003 which we compare with observations and the results of our analysis in the context of both the 14 April and 15 April CMEs. We find an origin of the bump-on-the-tail at the 14 April CME-driven shock provides better agreement with these modelled predictions although some discrepancy exists as to the shock's ability to accelerate 100 MeV protons.

    Keywords. Solar physics, astrophysics and astronomy (Energetic particles; Flares and mass ejections – Space plasma physics (Transport processes

  12. Formulation of the rotational transformation of wave fields and their application to digital holography.

    Science.gov (United States)

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  13. Transformational leadership in medical practice: capturing and influencing principles-driven work.

    Science.gov (United States)

    Gabel, Stewart

    2012-01-01

    The importance of leadership in medicine is well recognized. Transformational leadership is a well-defined model that provides an empirically supported approach to foster organizational and personal change. It has been applied in health care settings with favorable outcomes. Transformational leadership is intended to help subordinates and followers transcend usual expectations of their own capabilities to reach higher levels of performance and personal meaning. The application of transformational leadership is appropriate to physicians in many roles, including to those who are supervisors in medical education or practice as team members in outpatient settings. Illustrations exemplify these points.

  14. How to use the Fast Fourier Transform in Large Finite Fields

    OpenAIRE

    Petersen, Petur Birgir

    2011-01-01

    The article contents suggestions on how to perform the Fast Fourier Transform over Large Finite Fields. The technique is to use the fact that the multiplicative groups of specific prime fields are surprisingly composite.

  15. Time dependence of 50 Hz magnetic fields in apartment buildings with indoor transformer stations.

    Science.gov (United States)

    Yitzhak, Nir-Mordechay; Hareuveny, Ronen; Kandel, Shaiela; Ruppin, Raphael

    2012-04-01

    Twenty-four hour measurements of 50 Hz magnetic fields (MFs) in apartment buildings containing transformer stations have been performed. The apartments were classified into four types, according to their location relative to the transformer room. Temporal correlation coefficients between the MF in various apartments, as well as between MF and transformer load curves, were calculated. It was found that, in addition to their high average MF, the apartments located right above the transformer room also exhibit unique temporal correlation properties.

  16. Resonant transformation of electrostatic energy in ExB field system

    International Nuclear Information System (INIS)

    Tanizuka, Noboru

    1986-01-01

    A theoretical consideration on an effective transformation of electrostatic potential energy is given. A transformator particle is introduced with the transformation in an ExB field system. A device constant of the system is introduced comparing with some empirical, practical examples and an experimental proof of the transformation is given. Finally a nuclear fusion device plan is proposed based on the idea of the consideration. (author)

  17. Bianchi-Baecklund transformations, conservation laws, and linearization of various field theories

    International Nuclear Information System (INIS)

    Chau Wang, L.L.

    1980-01-01

    The discussion includes: the Sine-Gordon equation, parametric Bianchi-Baecklund transformations and the derivation of local conservation laws; chiral fields, parametric Bianchi-Baecklund transformations, local and non-local conservation laws, and linearization; super chiral fields, a parallel development similar to the chiral field; and self-dual Yang-Mills fields in 4-dimensional Euclidean space; loop-cpace chiral equations, parallel development but with subtlety

  18. Near-Field to Far-Field Transformation Techniques with Spiral Scannings: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Renato Cicchetti

    2014-01-01

    Full Text Available An overview of the near-field-far-field (NF-FF transformation techniques with innovative spiral scannings, useful to derive the radiation patterns of the antennas commonly employed in the modern wireless communication systems, is provided in this paper. The theoretical background and the development of a unified theory of the spiral scannings for quasi-spherical and nonspherical antennas are described, and an optimal sampling interpolation expansion to evaluate the probe response on a quite arbitrary rotational surface from a nonredundant number of its samples, collected along a proper spiral wrapping it, is presented. This unified theory can be applied to spirals wrapping the conventional scanning surfaces and makes it possible to accurately reconstruct the NF data required by the NF-FF transformation employing the corresponding classical scanning. A remarkable reduction of the measurement time is so achieved, due to the use of continuous and synchronized movements of the positioning systems and to the reduced number of needed NF measurements. Some numerical and experimental results relevant to the spherical spiral scanning case when dealing with quasi-planar and electrically long antennas are shown.

  19. A note on T-duality, open strings in B-field background and canonical transformations

    International Nuclear Information System (INIS)

    Sheikh-Jabbari, M.M.

    1999-11-01

    In this paper we study T-duality for open strings ending on branes with non-zero B-field on them from the point of view of canonical transformations. For the particular case of type II strings on the two torus we show that the Sl(2, Z) N transformations can be understood as a sub-class of canonical transformations on the open strings in the B-field background. (author)

  20. On the conformal transformation in *gλμ-unified field theory

    International Nuclear Information System (INIS)

    Lee, Il Young

    1986-01-01

    Chung gave the complete set of the general solutions of Einstein's equations in the Einstein's * g λμ -unified field theory for all classes and all possible indices of interia. In the present paper we shall investigate how the conformal transformation enforces the connection and give the complete relations between connections in * g λμ -unified field theory. Also we shall investigate how S λ is transformed by the conformal transformation and give conformally invariant connection. (Author)

  1. Electric field driven orbital order-disorder transition in LaMnO3

    International Nuclear Information System (INIS)

    Bhattacharya, Dipten

    2012-01-01

    The external stimulation such as mechanical pressure magnetic field, electric field, and optical pulse driven phase transition and concomitant gigantic response in physical properties in terms of orders of magnitude jump in electrical resistivity, magnetization, thermoelectric power, or optical constants etc in strongly correlated electron systems has fascinated the researchers for more than two decades now. The underlying physics is nontrivial and the application potential is enormous. We report here our observation of pulsed electric field driven orbital order-disorder transition in canonical orbital ordered system LaMnO 3 . The LaMnO 3 , with orthorhombic crystallographic structure (space group Pbnm), possesses A-type magnetic order below T N (∼ 140 K) and C-type orbital order, with ordering of active 3d 3x 2 -r 2 /3d 3y 2 -r 2 orbitals within a plane and stacking across the plane, below Too (∼ 750 K). We have studied the electrical current-voltage characteristics as well as the differential thermal scans across a wide temperature range 80-800 K under pulsed field on a high quality single crystal of LaMnO 3 . We show how under pulsed electric field, T00 shifts towards lower temperature and the latent heat of the transition decreases monotonically. We also show that the electrical resistivity jumps by more than five orders of magnitude beyond a threshold electric field a low temperature (∼ 80 K). The field driven transition turns out to be originating electro-migration of lattice defects and consequent depinning of orbital domains. The orbital order in LaMnO 3 is not a continuum. It is granular because of interaction with lattice strain, defects, or even interference between Jahn-Teller and MnO 6 tilt order. The domains are pinned by the defects. The electric field driven migration leads to depinning transition. The model of depinning of charge density waves appears to be fitting the data observed in the present case closely, since the orbital order in La

  2. En route to surface-bound electric field-driven molecular motors.

    Science.gov (United States)

    Jian, Huahua; Tour, James M

    2003-06-27

    Four caltrop-shaped molecules that might be useful as surface-bound electric field-driven molecular motors have been synthesized. The caltrops are comprised of a pair of electron donor-acceptor arms and a tripod base. The molecular arms are based on a carbazole or oligo(phenylene ethynylene) core with a strong net dipole. The tripod base uses a silicon atom as its core. The legs of the tripod bear sulfur-tipped bonding units, as acetyl-protected benzylic thiols, for bonding to a gold surface. The geometry of the tripod base allows the caltrop to project upward from a metallic surface after self-assembly. Ellipsometric studies show that self-assembled monolayers of the caltrops are formed on Au surfaces with molecular thicknesses consistent with the desired upright-shaft arrangement. As a result, the zwitterionic molecular arms might be controllable when electric fields are applied around the caltrops, thereby constituting field-driven motors.

  3. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  4. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    Science.gov (United States)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  5. Approximate Integrals of rf-driven Particle Motion in Magnetic Field

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2004-01-01

    For a particle moving in nonuniform magnetic field under the action of an rf wave, ponderomotive effects result from rf-driven oscillations nonlinearly coupled with Larmor rotation. Using Lagrangian and Hamiltonian formalism, we show how, despite this coupling, two independent integrals of the particle motion are approximately conserved. Those are the magnetic moment of free Larmor rotation and the quasi-energy of the guiding center motion parallel to the magnetic field. Under the assumption of non-resonant interaction of the particle with the rf field, these integrals represent adiabatic invariants of the particle motion

  6. Inverse transformation algorithm of transient electromagnetic field and its high-resolution continuous imaging interpretation method

    International Nuclear Information System (INIS)

    Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua

    2015-01-01

    We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)

  7. Fourier transformation methods in the field of gamma spectrometry

    Indian Academy of Sciences (India)

    The basic principles of a new version of Fourier transformation is presented. This new version was applied to solve some main problems such as smoothing, and denoising in gamma spectroscopy. The mathematical procedures were first tested by simulated data and then by actual experimental data.

  8. Lessons from the field: Transforming health professionals' education ...

    African Journals Online (AJOL)

    Health professionals' education is undergoing enormous transformation internationally and also in Rwanda. We present the contribution of a Social and Community Medicine program at the University of Rwanda to this new era of community oriented, people centred and socially accountable health professionals' education.

  9. Magneto-Rayleigh-Taylor instability driven by a rotating magnetic field

    Science.gov (United States)

    Duan, Shuchao; Xie, Weiping; Cao, Jintao; Li, Ding

    2018-04-01

    In this paper, we analyze theoretically the magneto-Rayleigh-Taylor instability driven by a rotating magnetic field. Slab configurations of finite thickness are treated both with and without using the Wenzel-Kramers-Brillouin approximation. Regardless of the slab thickness, the directional rotation of the driving magnetic field contributes to suppressing these instabilities. The two factors of the finite thickness and directional rotation of the magnetic field cooperate to enhance suppression, with the finite thickness playing a role only when the orientation of the magnetic field is time varying. The suppression becomes stronger as the driving magnetic field rotates faster, and all modes are suppressed, in contrast to the case of a non-rotating magnetic field, for which the vertical mode cannot be suppressed. This implies that the dynamically alternate configuration of a Theta-pinch and a Z-pinch may be applicable to the concept of Theta-Z liner inertial fusion.

  10. Low voltage driven dielectric electro active polymer actuator with integrated piezoelectric transformer based driver

    DEFF Research Database (Denmark)

    Andersen, Thomas; Rødgaard, Martin Schøler; Thomsen, Ole Cornelius

    2011-01-01

    actuators, a low voltage solution is developed by integrating the driver electronic into a 110 mm tall cylindrical coreless Push InLastor actuator. To decrease the size of the driver, a piezoelectric transformer (PT) based solution is utilized. The PT is essentially an improved Rosen type PT...

  11. Impact of interplay between magnetic field, transformation strain, and coarsening on variant selection in L10-type FePd

    International Nuclear Information System (INIS)

    Ueshima, N.; Yasuda, H.; Yoshiya, M.; Fukuda, T.; Kakeshita, T.

    2014-01-01

    Variant selection of L1 0 -type ferromagnetic alloys has been numerically investigated using the phase-field modeling, to clarify the phenomena at greater temporal and spatial resolution and to reveal the underlying mechanism. The duration for which the external magnetic field is effective is found to be very short, and variant selection is significantly affected by not only direct response to the external magnetic field but also their interplay between the field, intrinsic transformation strain, and various thermodynamic energy components involved in the course of microstructure evolution. The detailed mechanism of the interplay was quantitatively analyzed in terms of the driving force for the variant selection, by partitioning it into the various energy components. Careful examination of the variant selection at the very early stage revealed that the slight difference in size and configuration of variants during disorder-to-order transition realized by the interplay between transformation strain and external field is essentially needed before proceeding to the latter stage of the variant selection driven by interface energy

  12. Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers

    DEFF Research Database (Denmark)

    Gontsarik, Mark; Buhmann, Matthias T; Yaghmur, Anan

    2016-01-01

    Designing efficient colloidal systems for the delivery of membrane active antimicrobial peptides requires in-depth understanding of their structural and morphological characteristics. Using dispersions of inverted type bicontinuous cubic phase (cubosomes), we examine the effect of integrating...... structure, inducing colloidal transformations to sponge and lamellar phases and micelles in a concentration-dependent manner. These investigations, together with in vitro evaluation studies using a clinically relevant bacterial strain, established the composition-nanostructure-activity relationship that can...

  13. Amount of gauge transformations in neutral-vector field theory. [Renormalization, free Lagrangian density

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, R; Yokoyama, K

    1974-11-01

    The purpose of this work is to study the structure of c-number gauge transformation in connection with renormalization problem. In the wide theory of neutral vector fields, there is the gauge structure described essentially by free Lagrangian density. The c-number gauge transformation makes the Lagrangian invariant correspondingly to the usual case of quantum electrodynamics. The c-number transformation can be used to derive relationships among all relevant renormalization constants in the case of interacting fields. In the presence of interaction, total Lagrangian density L is written as L=L/sub 0/+L/sub 1/+L/sub 2/, where L/sub 1/ is given from matter-field Lagrangian density, and L/sub 2/ denotes necessary additional counter terms. In order to conserve the gauge structure, the form of L is invariant under the gauge transformation. Since L matter is self-adjoining, L/sub 1/ remains invariant by itself under the transformation. The form of L/sub 2/ is finally given from the observation that L/sub 3/ cannot contain wave-function renormalization constants. Since L/sub 2/ is invariant under q-number gauge transformation, this transformation in unrenormalized form makes the present L form-invariant. Therefore, together with the above results, auxiliary fields produce the q-number gauge transformation for renormalized fields.

  14. Continuous director-field transformation of nematic tactoids

    NARCIS (Netherlands)

    Prinsen, P.; Schoot, van der P.P.A.M.

    2004-01-01

    We theoretically investigate the director field inside spindle-shaped nematic droplets, known as tactoids. Tactoids typically form in dispersions of rod-like colloidal particles. By optimising the bulk elastic and surface energies, we find that the director field crosses over smoothly from a

  15. Conformal transformation and symplectic structure of self-dual fields

    International Nuclear Information System (INIS)

    Yang Kongqing; Luo Yan

    1996-01-01

    Considered two dimensional self-dual fields, the symplectic structure on the space of solutions is given. It is shown that this structure is Poincare invariant. The Lagrangian of two dimensional self-dual field is invariant under infinite one component conformal group, then this symplectic structure is also invariant under this conformal group. The conserved currents in geometrical formalism are also obtained

  16. Observation of plasma rotation driven by static nonaxisymmetric magnetic fields in a tokamak.

    Science.gov (United States)

    Garofalo, A M; Burrell, K H; DeBoo, J C; deGrassie, J S; Jackson, G L; Lanctot, M; Reimerdes, H; Schaffer, M J; Solomon, W M; Strait, E J

    2008-11-07

    We present the first evidence for the existence of a neoclassical toroidal rotation driven in a direction counter to the plasma current by nonaxisymmetric, nonresonant magnetic fields. At high beta and with large injected neutral beam momentum, the nonresonant field torque slows down the plasma toward the neoclassical "offset" rotation rate. With small injected neutral beam momentum, the toroidal rotation is accelerated toward the offset rotation, with resulting improvement in the global energy confinement time. The observed magnitude, direction, and radial profile of the offset rotation are consistent with neoclassical theory predictions.

  17. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    International Nuclear Information System (INIS)

    Yu Zhaoxian; Jiao Zhiyong

    2004-01-01

    In this Letter, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-±1, spin-0 and spin-±2 exhibit the step structure under the external cosinusoidal magnetic field, respectively, but there do not exist step structure among spin-±1 and spin-±2. The tunneling current among spin-±1 and spin-±2 may exhibit periodically oscillation behavior, but among spin-0 and spin-±1, spin-0 and spin-±2, the tunneling currents exhibit irregular oscillation behavior

  18. Tunneling effect of the spin-2 Bose condensate driven by external magnetic fields

    OpenAIRE

    Yu, Zhao-xian; Jiao, Zhi-yong

    2003-01-01

    In this paper, we have studied tunneling effect of the spin-2 Bose condensate driven by external magnetic field. We find that the population transfers among spin-0 and spin-$\\pm1$, spin-0 and spin-$\\pm2$ exhibit the step structure under the external cosinusoidal magnetic field respectively, but there do not exist step structure among spin-$\\pm1$ and spin-$\\pm2$. The tunneling current among spin-$\\pm1$ and spin-$\\pm2$ may exhibit periodically oscillation behavior, but among spin-0 and spin-$\\p...

  19. Field Tests to Investigate the Penetration Rate of Piles Driven by Vibratory Installation

    Directory of Open Access Journals (Sweden)

    Zhaohui Qin

    2017-01-01

    Full Text Available Factors directly affecting the penetration rate of piles installed by vibratory driving technique are summarized and classified into seven aspects which are driving force, resistance, vibratory amplitude, energy consumption, speeding up at the beginning, pile plumbness keeping, and slowing down at the end, from the mechanism and engineering practice of the vibratory pile driving. In order to find out how these factors affect the penetration rate of the pile in three major actors of vibratory pile driving: (i the pile to be driven, (ii the selected driving system, and (iii the imposed soil conditions, field tests on steel sheet piles driven by vibratory driving technique in different soil conditions are conducted. The penetration rates of three different sheet pile types having up to four different lengths installed using two different vibratory driving systems are documented. Piles with different lengths and types driven with or without clutch have different penetration rates. The working parameters of vibratory hammer, such as driving force and vibratory amplitude, have great influences on the penetration rate of the pile, especially at the later stages of the sinking process. Penetration rate of piles driven in different soil conditions is uniform because of the different penetration resistance including shaft friction and toe resistance.

  20. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    Energy Technology Data Exchange (ETDEWEB)

    Venkattraman, Ayyaswamy [Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2013-11-15

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.

  1. Cathode fall model and current-voltage characteristics of field emission driven direct current microplasmas

    International Nuclear Information System (INIS)

    Venkattraman, Ayyaswamy

    2013-01-01

    The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential and the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission

  2. Transformation of QSPA plasma streams in longitudinal magnetic field

    International Nuclear Information System (INIS)

    Makhlaj, V.A.; Bandura, A.N.; Chebotarev, V.V.; Kulik, N.V.; Wuerz, H.

    2002-01-01

    The main aim of this work is analysis of efficiency of QSPA powerful plasma streams transportation in longitudinal magnetic field in dependence on operational mode of accelerator and plasma stream parameters

  3. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  4. Negative pressure driven phase transformation in Sr doped SmCoO₃.

    Science.gov (United States)

    Arshad Farhan, M; Javed Akhtar, M

    2010-02-24

    Atomistic computer simulation techniques based on energy minimization procedures are utilized for the structural investigation of perovskite-type SmCoO(3). A reliable potential model is derived which reproduces both cubic as well as orthorhombic phases of SmCoO(3). We observe a negative chemical pressure induced structural phase transformation from distorted perovskite (orthorhombic) to perfect perovskite (cubic) due to the substitution of Sr(2 + ) at the Sm(3 + ) sites. However, external hydrostatic pressure shows isotropic compression and no pressure-induced structural transformation is observed up to 100 GPa. To maintain the electroneutrality of the system, charge compensation is through oxygen vacancies which results in the brownmillerite-type structure. A defect model is proposed, which is consistent with experimental results. The solution energies for divalent and trivalent cations are also calculated. These results show that the cations having ionic radii less than 0.75 Å will occupy the Co sites and those with ionic radii larger than 0.75 Å will substitute at the Sm sites.

  5. Automatic Transformation of MPI Programs to Asynchronous, Graph-Driven Form

    Energy Technology Data Exchange (ETDEWEB)

    Baden, Scott B [University of California, San Diego; Weare, John H [University of California, San Diego; Bylaska, Eric J [Pacific Northwest National Laboratory

    2013-04-30

    The goals of this project are to develop new, scalable, high-fidelity algorithms for atomic-level simulations and program transformations that automatically restructure existing applications, enabling them to scale forward to Petascale systems and beyond. The techniques enable legacy MPI application code to exploit greater parallelism though increased latency hiding and improved workload assignment. The techniques were successfully demonstrated on high-end scalable systems located at DOE laboratories. Besides the automatic MPI program transformations efforts, the project also developed several new scalable algorithms for ab-initio molecular dynamics, including new massively parallel algorithms for hybrid DFT and new parallel in time algorithms for molecular dynamics and ab-initio molecular dynamics. These algorithms were shown to scale to very large number of cores, and they were designed to work in the latency hiding framework developed in this project. The effectiveness of the developments was enhanced by the direct application to real grand challenge simulation problems covering a wide range of technologically important applications, time scales and accuracies. These included the simulation of the electronic structure of mineral/fluid interfaces, the very accurate simulation of chemical reactions in microsolvated environments, and the simulation of chemical behavior in very large enzyme reactions.

  6. Indoor transformer stations and ELF magnetic field exposure: use of transformer structural characteristics to improve exposure assessment.

    Science.gov (United States)

    Okokon, Enembe Oku; Roivainen, Päivi; Kheifets, Leeka; Mezei, Gabor; Juutilainen, Jukka

    2014-01-01

    Previous studies have shown that populations of multiapartment buildings with indoor transformer stations may serve as a basis for improved epidemiological studies on the relationship between childhood leukaemia and extremely-low-frequency (ELF) magnetic fields (MFs). This study investigated whether classification based on structural characteristics of the transformer stations would improve ELF MF exposure assessment. The data included MF measurements in apartments directly above transformer stations ("exposed" apartments) in 30 buildings in Finland, and reference apartments in the same buildings. Transformer structural characteristics (type and location of low-voltage conductors) were used to classify exposed apartments into high-exposure (HE) and intermediate-exposure (IE) categories. An exposure gradient was observed: both the time-average MF and time above a threshold (0.4 μT) were highest in the HE apartments and lowest in the reference apartments, showing a statistically significant trend. The differences between HE and IE apartments, however, were not statistically significant. A simulation exercise showed that the three-category classification did not perform better than a two-category classification (exposed and reference apartments) in detecting the existence of an increased risk. However, data on the structural characteristics of transformers is potentially useful for evaluating exposure-response relationship.

  7. Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser

    Science.gov (United States)

    Fujioka, Shinsuke; Zhang, Zhe; Ishihara, Kazuhiro; Shigemori, Keisuke; Hironaka, Youichiro; Johzaki, Tomoyuki; Sunahara, Atsushi; Yamamoto, Naoji; Nakashima, Hideki; Watanabe, Tsuguhiro; Shiraga, Hiroyuki; Nishimura, Hiroaki; Azechi, Hiroshi

    2013-01-01

    Laboratory generation of strong magnetic fields opens new frontiers in plasma and beam physics, astro- and solar-physics, materials science, and atomic and molecular physics. Although kilotesla magnetic fields have already been produced by magnetic flux compression using an imploding metal tube or plasma shell, accessibility at multiple points and better controlled shapes of the field are desirable. Here we have generated kilotesla magnetic fields using a capacitor-coil target, in which two nickel disks are connected by a U-turn coil. A magnetic flux density of 1.5 kT was measured using the Faraday effect 650 μm away from the coil, when the capacitor was driven by two beams from the GEKKO-XII laser (at 1 kJ (total), 1.3 ns, 0.53 or 1 μm, and 5 × 1016 W/cm2). PMID:23378905

  8. Driving higher magnetic field sensitivity of the martensitic transformation in MnCoGe ferromagnet

    Science.gov (United States)

    Ma, S. C.; Ge, Q.; Hu, Y. F.; Wang, L.; Liu, K.; Jiang, Q. Z.; Wang, D. H.; Hu, C. C.; Huang, H. B.; Cao, G. P.; Zhong, Z. C.; Du, Y. W.

    2017-11-01

    The sharp metamagnetic martensitic transformation (MMT) triggered by a low critical field plays a pivotal role in magnetoresponsive effects for ferromagnetic shape memory alloys (FSMAs). Here, a sharper magnetic-field-induced metamagnetic martensitic transformation (MFIMMT) is realized in Mn1-xCo1+xGe systems with a giant magnetocaloric effect around room temperature, which represents the lowest magnetic driving and completion fields as well as the largest magnetization difference around MFIMMT reported heretofore in MnCoGe-based FSMAs. More interestingly, a reversible MFIMMT with field cycling is observed in the Mn0.965Co0.035Ge compound. These results indicate that the consensus would be broken that the magnetic field is difficult to trigger the MMT for MnCoGe-based systems. The origin of a higher degree of sensitivity of martensitic transformation to the magnetic field is discussed based on the X-ray absorption spectroscopic results.

  9. Stellarator fields with small PS current at small rotational transform

    International Nuclear Information System (INIS)

    Herrnegger, F.

    2001-01-01

    One aspect of the optimization concept of stellarators is the reduction of the normalized Pfirsch-Schlueter current density p arallel 2 / j p erpendikular 2 > 1/2 to a reasonable level but obeying other side conditions, e.g., concerning small bootstrap currents, good stability properties, reasonable aspect ratio, etc. This problem is addressed in the present work. Various stellarator vacuum field are given analytically for M 2, 3, 5, 10, 12 (M is the number of field period around the torus) where the PS-current density is reduced by more than a factor of ten to rather small values around 0.3 even at small i-values

  10. SPECIFICITY OF THE PROJECTIVE FIELD: REVERIES AND TRANSFORMATIVE POTENTIALITIES

    Directory of Open Access Journals (Sweden)

    Tiziana Sola

    2014-01-01

    Full Text Available This article suggests a reading of the projectives Methods in Bionian key, with particular reference to the bionian elaboration by Antonino Ferro, who substantially considers the patient’s associative flows as forms of the oneiric. The projective situation also represents a place of induction to reverie, in resonance with the concept of projective field, the peculiarity of which lie in the introduction of the element “third”, i.e. the test material.Keywords: Projective methods - Projective field – induction to reverie – activity of symbolization

  11. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    International Nuclear Information System (INIS)

    Schuette, Bernd

    2011-09-01

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  12. Laser-based terahertz-field-driven streak camera for the temporal characterization of ultrashort processes

    Energy Technology Data Exchange (ETDEWEB)

    Schuette, Bernd

    2011-09-15

    In this work, a novel laser-based terahertz-field-driven streak camera is presented. It allows for a pulse length characterization of femtosecond (fs) extreme ultraviolet (XUV) pulses by a cross-correlation with terahertz (THz) pulses generated with a Ti:sapphire laser. The XUV pulses are emitted by a source of high-order harmonic generation (HHG) in which an intense near-infrared (NIR) fs laser pulse is focused into a gaseous medium. The design and characterization of a high-intensity THz source needed for the streak camera is also part of this thesis. The source is based on optical rectification of the same NIR laser pulse in a lithium niobate crystal. For this purpose, the pulse front of the NIR beam is tilted via a diffraction grating to achieve velocity matching between NIR and THz beams within the crystal. For the temporal characterization of the XUV pulses, both HHG and THz beams are focused onto a gas target. The harmonic radiation creates photoelectron wavepackets which are then accelerated by the THz field depending on its phase at the time of ionization. This principle adopted from a conventional streak camera and now widely used in attosecond metrology. The streak camera presented here is an advancement of a terahertz-field-driven streak camera implemented at the Free Electron Laser in Hamburg (FLASH). The advantages of the laser-based streak camera lie in its compactness, cost efficiency and accessibility, while providing the same good quality of measurements as obtained at FLASH. In addition, its flexibility allows for a systematic investigation of streaked Auger spectra which is presented in this thesis. With its fs time resolution, the terahertz-field-driven streak camera thereby bridges the gap between attosecond and conventional cameras. (orig.)

  13. Transformations of the Danish Field of Welfare Work

    DEFF Research Database (Denmark)

    Frederiksen, Jan Thorhauge

    2017-01-01

    a set of welfare professions, each of which provides a specific subset of welfare benefits, or services. These professionals - agents of the Danish field of welfare work – make up the population of the analysis: teachers, social workers, occupational therapists, social educators, nurses, librarians...

  14. Does apartment's distance to an in-built transformer room predict magnetic field exposure levels?

    Science.gov (United States)

    Huss, Anke; Goris, Kelly; Vermeulen, Roel; Kromhout, Hans

    2013-01-01

    It has been shown that magnetic field exposure in apartments located directly on top or adjacent to transformer rooms is higher compared with exposure in apartments located further away from the transformer rooms. It is unclear whether this also translates into exposure contrast among individuals living in these apartments. We performed spot measurements of magnetic fields in 35 apartments in 14 apartment buildings with an in-built transformer and additionally performed 24-h personal measurements in a subsample of 24 individuals. Apartments placed directly on top of or adjacent to a transformer room had on average exposures of 0.42 μT, apartments on the second floor on top of a transformer room, or sharing a corner or edge with the transformer room had 0.11 μT, and apartments located further away from the transformer room had levels of 0.06 μT. Personal exposure levels were approximately a factor 2 lower compared with apartment averages, but still showed exposure contrasts, but only for those individuals who live in the apartments directly on top or adjacent to a transformer room compared with those living further away, with 0.23 versus 0.06 μT for personal exposure when indoors, respectively. A classification of individuals into 'high' and 'low' exposed based on the location of their apartment within a building with an in-built transformer is possible and could be applied in future epidemiological studies.

  15. Superconducting Film Flux Transformer for a Sensor of a Weak Magnetic Field

    International Nuclear Information System (INIS)

    Ichkitidze, L; Mironyuk, A

    2012-01-01

    The object of study is a superconducting film flux transformer in the form of a square shaped loop with the tapering operative strip used in a sensor of a weak magnetic field. The magnetosensitive film element based on the giant magnetoresistance effect is overlapped with the tapering operative strip of the flux transformer; it is separated from the latter by the insulator film. It is shown that the topological nanostructuring of the operative strip of the flux transformer increases its gain factor by one or more orders of magnitude, i.e. increases its efficiency, which leads to a significant improvement of important parameters of a magnetic-field sensor.

  16. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    Science.gov (United States)

    Honorio, Tulio

    2017-11-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  17. SPECIFICITY OF THE PROJECTIVE FIELD: REVERIES AND TRANSFORMATIVE POTENTIALITIES

    OpenAIRE

    Tiziana Sola

    2014-01-01

    This article suggests a reading of the projectives Methods in Bionian key, with particular reference to the bionian elaboration by Antonino Ferro, who substantially considers the patient’s associative flows as forms of the oneiric. The projective situation also represents a place of induction to reverie, in resonance with the concept of projective field, the peculiarity of which lie in the introduction of the element “third”, i.e. the test material.Keywords: Projective methods - Projective fi...

  18. Heliospheric magnetic field polarity inversions driven by radial velocity field structures

    Czech Academy of Sciences Publication Activity Database

    Landi, S.; Hellinger, Petr; Velli, M.

    2006-01-01

    Roč. 33, č. 14 (2006), L14101/1-L14101/5 ISSN 0094-8276 Grant - others:European Commission(XE) HRPN-CT-2001-00310 Institutional research plan: CEZ:AV0Z30420517 Keywords : solar wind * magnetic field polarity inversions * microstreams * turbulence Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.602, year: 2006

  19. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    Science.gov (United States)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  20. Role of particle masses in the magnetic field generation driven by the parity violating interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, Maxim, E-mail: maxdvo@izmiran.ru [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation (IZMIRAN), 142190 Troitsk, Moscow (Russian Federation); Physics Faculty, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk (Russian Federation); II. Institute for Theoretical Physics, University of Hamburg, 149 Luruper Chaussee, D-22761 Hamburg (Germany)

    2016-09-10

    Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show that the induced current is vanishing in both approaches leading to the zero contribution of massive particles to the generated magnetic field. We discuss the implication of our results for the problem of the magnetic field generation in compact stars.

  1. Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field

    Science.gov (United States)

    Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry

    2018-05-01

    Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.

  2. Laser-driven platform for generation and characterization of strong quasi-static magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Santos, J.J.; Bailly-Grandvaux, M.; Giuffrida, Lorenzo; Forestier-Colleoni, P.; Fujioka, H.; Zhang, Z.; Korneev, P.; Bouillaud, R.; Dorard, S.; Batani, D.; Chevrot, M.; Cross, J. E.; Crowston, R.; Dubois, J.L.; Gazave, J.; Gregori, G.; d'Humieres, E.; Hulin, S.; Ishihara, K.; Kojima, S.; Loyez, E.; Marqués, J.-R.; Morace, A.; Nicolaï, P.; Peyrusse, O.; Poyé, A.; Raffestin, D.; Ribolzi, J.; Roth, M.; Schaumann, G.; Serres, F.; Tikhonchuk, V.T.; Vacar, P.; Woolsey, N.

    2015-01-01

    Roč. 17, Aug (2015), s. 1-10, č. článku 083051. ISSN 1367-2630 R&D Projects: GA MŠk ED1.1.00/02.0061 Grant - others:ELI Beamlines(XE) CZ.1.05/1.1.00/02.0061 Institutional support: RVO:68378271 Keywords : strong magnetic field * laser-driven coil targets * laser-plasma interaction Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.570, year: 2015

  3. Magnetic fluctuation driven cross-field particle transport in the reversed-field pinch

    International Nuclear Information System (INIS)

    Scheffel, J.; Liu, D.

    1997-01-01

    Electrostatic and electromagnetic fluctuations generally cause cross-field particle transport in confined plasmas. Thus core localized turbulence must be kept at low levels for sufficient energy confinement in magnetic fusion plasmas. Reversed-field pinch (RFP) equilibria can, theoretically, be completely stable to ideal and resistive (tearing) magnetohydrodynamic (MHD) modes at zero beta. Unstable resistive interchange modes are, however, always present at experimentally relevant values of the poloidal beta β θ . An analytical quasilinear, ambipolar diffusion model is here used to model associated particle transport. The results indicate that core density fluctuations should not exceed a level of about 1% for plasmas of fusion interest. Parameters of experimentally relevant stationary states of the RFP were adjusted to minimize growth rates, using a fully resistive linearized MHD stability code. Density gradient effects are included through employing a parabolic density profile. The scaling of particle diffusion [D(r)∝λ 2 n 0.5 T/aB, where λ is the mode width] is such that the effects of particle transport are milder in present day RFP experiments than in future reactor-relevant plasmas. copyright 1997 American Institute of Physics

  4. Transformation

    DEFF Research Database (Denmark)

    Bock, Lars Nicolai

    2011-01-01

    Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....

  5. TRANSFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  6. The Grenoble station for producing strong transient magnetic fields higher than 100 teslas by an explosive driven flux compression

    International Nuclear Information System (INIS)

    Guillot, M.

    1976-01-01

    Reproducible transient magnetic fields up to 400 teslas (4 megaoersted) are achieved by a simple explosive driven flux compression. The results are described simply from the point of view of energy conversion. The problems of field measurements are studied: the precision is +-2% with a field cavity of 5 mm diameter [fr

  7. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    Science.gov (United States)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  8. Passive Superconducting Flux Conservers for Rotating-Magnetic-Field-Driven Field-Reversed Configurations

    International Nuclear Information System (INIS)

    EOz, E.; Myers, C.E.; Edwards, M.R.; Berlinger, B.; Brooks, A.; Cohen, S.A.

    2011-01-01

    The Princeton Field-Reversed Configuration (PFRC) experiment employs an odd-parity rotating magnetic field (RMFo) current drive and plasma heating system to form and sustain high-β plasmas. For radial confinement, an array of coaxial, internal, passive, flux-conserving (FC) rings applies magnetic pressure to the plasma while still allowing radio-frequency RMF o from external coils to reach the plasma. The 3 ms pulse duration of the present experiment is limited by the skin time (τ fc ) of its room-temperature copper FC rings. To explore plasma phenomena with longer characteristic times, the pulse duration of the next-generation PFRC-2 device will exceed 100 ms, necessitating FC rings with τ fc > 300 ms. In this paper we review the physics of internal, discrete, passive FCs and describe the evolution of the PFRC's FC array. We then detail new experiments that have produced higher performance FC rings that contain embedded high-temperature superconducting (HTS) tapes. Several HTS tape winding configurations have been studied and a wide range of extended skin times, from 0.4 s to over 10 3 s, has been achieved. The new FC rings must carry up to 3 kA of current to balance the expected PFRC-2 plasma pressure, so the dependence of the HTS-FC critical current on the winding configuration and temperature was also studied. From these experiments, the key HTS-FC design considerations have been identified and HTS-FC rings with the desired performance characteristics have been produced.

  9. Review of finite fields: Applications to discrete Fourier, transforms and Reed-Solomon coding

    Science.gov (United States)

    Wong, J. S. L.; Truong, T. K.; Benjauthrit, B.; Mulhall, B. D. L.; Reed, I. S.

    1977-01-01

    An attempt is made to provide a step-by-step approach to the subject of finite fields. Rigorous proofs and highly theoretical materials are avoided. The simple concepts of groups, rings, and fields are discussed and developed more or less heuristically. Examples are used liberally to illustrate the meaning of definitions and theories. Applications include discrete Fourier transforms and Reed-Solomon coding.

  10. Retrodictive determinism. [covariant and transformational behavior of tensor fields in hydrodynamics and thermodynamics

    Science.gov (United States)

    Kiehn, R. M.

    1976-01-01

    With respect to irreversible, non-homeomorphic maps, contravariant and covariant tensor fields have distinctly natural covariance and transformational behavior. For thermodynamic processes which are non-adiabatic, the fact that the process cannot be represented by a homeomorphic map emphasizes the logical arrow of time, an idea which encompasses a principle of retrodictive determinism for covariant tensor fields.

  11. Exact Foldy-Wouthuysen transformation for gravitational waves and magnetic field background

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Obukhov, Yuri N.; Shapiro, Ilya L.

    2007-01-01

    We consider an exact Foldy-Wouthuysen transformation for the Dirac spinor field on the combined background of a gravitational wave and constant uniform magnetic field. By taking the classical limit of the spinor field Hamiltonian, we arrive at the equations of motion for the nonrelativistic spinning particle. Two different kinds of gravitational fields are considered and in both cases the effect of the gravitational wave on the spinor field and on the corresponding spinning particle may be enforced by a sufficiently strong magnetic field. This result can be relevant for astrophysical applications and, in principle, useful for creating the gravitational wave detectors based on atomic physics and precise interferometry

  12. Design and test of a flat-top magnetic field system driven by capacitor banks.

    Science.gov (United States)

    Jiang, Fan; Peng, Tao; Xiao, Houxiu; Zhao, Jianlong; Pan, Yuan; Herlach, Fritz; Li, Liang

    2014-04-01

    An innovative method for generating a flat-top pulsed magnetic field by means of capacitor banks is developed at the Wuhan National High Magnetic Field Center (WHMFC). The system consists of two capacitor banks as they are normally used to generate a pulsed field. The two discharge circuits (the magnet circuit and the auxiliary circuit) are coupled by a pulse transformer such that the electromotive force (EMF) induced via the transformer in the magnet circuit containing the magnet coil is opposed to the EMF of the capacitor bank. At a certain point before the current pulse in the coil reaches its peak, the auxiliary circuit is triggered. With optimized parameters for charging voltage and trigger delay, the current in the magnet circuit can be approximately kept constant to obtain a flat-top. A prototype was developed at the WHMFC; the magnet circuit was energized by seven 1 MJ (3.2 mF/25 kV) capacitor modules and the auxiliary circuit by four 1 MJ modules. Fields up to 41 T with 6 ms flat-top have been obtained with a conventional user magnet used at the WHMFC.

  13. Nonlinear resonance and dynamical chaos in a diatomic molecule driven by a resonant ir field

    International Nuclear Information System (INIS)

    Berman, G.P.; Bulgakov, E.N.; Holm, D.D.

    1995-01-01

    We consider the transition from regular motion to dynamical chaos in a classical model of a diatomic molecule which is driven by a circularly polarized resonant ir field. Under the conditions of a nearly two-dimensional case, the Hamiltonian reduces to that for the nonintegrable motion of a charged particle in an electromagnetic wave [A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, City, 1983)]. In the general case, the transition to chaos is connected with the overlapping of vibrational-rotational nonlinear resonances and appears even at rather low radiation field intensity, S approx-gt 1 GW/cm 2 . We also discuss the possibility of experimentally observing this transition

  14. Perturbative Field-Theoretical Renormalization Group Approach to Driven-Dissipative Bose-Einstein Criticality

    Directory of Open Access Journals (Sweden)

    Uwe C. Täuber

    2014-04-01

    Full Text Available The universal critical behavior of the driven-dissipative nonequilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven open systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases. The starting point is a noisy and dissipative Gross-Pitaevski equation corresponding to a complex-valued Landau-Ginzburg functional, which captures the near critical nonequilibrium dynamics, and generalizes model A for classical relaxational dynamics with nonconserved order parameter. We confirm and further develop the physical picture previously established by means of a functional renormalization group study of this system. Complementing this earlier numerical analysis, we analytically compute the static and dynamical critical exponents at the condensation transition to lowest nontrivial order in the dimensional ε expansion about the upper critical dimension d_{c}=4 and establish the emergence of a novel universal scaling exponent associated with the nonequilibrium drive. We also discuss the corresponding situation for a conserved order parameter field, i.e., (subdiffusive model B with complex coefficients.

  15. TRANSFORMER

    Science.gov (United States)

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  16. Richter transformation driven by Epstein-Barr virus reactivation during therapy-related immunosuppression in chronic lymphocytic leukaemia.

    Science.gov (United States)

    García-Barchino, Maria J; Sarasquete, Maria E; Panizo, Carlos; Morscio, Julie; Martinez, Antonio; Alcoceba, Miguel; Fresquet, Vicente; Gonzalez-Farre, Blanca; Paiva, Bruno; Young, Ken H; Robles, Eloy F; Roa, Sergio; Celay, Jon; Larrayoz, Marta; Rossi, Davide; Gaidano, Gianluca; Montes-Moreno, Santiago; Piris, Miguel A; Balanzategui, Ana; Jimenez, Cristina; Rodriguez, Idoia; Calasanz, Maria J; Larrayoz, Maria J; Segura, Victor; Garcia-Muñoz, Ricardo; Rabasa, Maria P; Yi, Shuhua; Li, Jianyong; Zhang, Mingzhi; Xu-Monette, Zijun Y; Puig-Moron, Noemi; Orfao, Alberto; Böttcher, Sebastian; Hernandez-Rivas, Jesus M; Miguel, Jesus San; Prosper, Felipe; Tousseyn, Thomas; Sagaert, Xavier; Gonzalez, Marcos; Martinez-Climent, Jose A

    2018-05-01

    The increased risk of Richter transformation (RT) in patients with chronic lymphocytic leukaemia (CLL) due to Epstein-Barr virus (EBV) reactivation during immunosuppressive therapy with fludarabine other targeted agents remains controversial. Among 31 RT cases classified as diffuse large B-cell lymphoma (DLBCL), seven (23%) showed EBV expression. In contrast to EBV - tumours, EBV + DLBCLs derived predominantly from IGVH-hypermutated CLL, and they also showed CLL-unrelated IGVH sequences more frequently. Intriguingly, despite having different cellular origins, clonally related and unrelated EBV + DLBCLs shared a previous history of immunosuppressive chemo-immunotherapy, a non-germinal centre DLBCL phenotype, EBV latency programme type II or III, and very short survival. These data suggested that EBV reactivation during therapy-related immunosuppression can transform either CLL cells or non-tumoural B lymphocytes into EBV + DLBCL. To investigate this hypothesis, xenogeneic transplantation of blood cells from 31 patients with CLL and monoclonal B-cell lymphocytosis (MBL) was performed in Rag2 -/- IL2γc -/- mice. Remarkably, the recipients' impaired immunosurveillance favoured the spontaneous outgrowth of EBV + B-cell clones from 95% of CLL and 64% of MBL patients samples, but not from healthy donors. Eventually, these cells generated monoclonal tumours (mostly CLL-unrelated but also CLL-related), recapitulating the principal features of EBV + DLBCL in patients. Accordingly, clonally related and unrelated EBV + DLBCL xenografts showed indistinguishable cellular, virological and molecular features, and synergistically responded to combined inhibition of EBV replication with ganciclovir and B-cell receptor signalling with ibrutinib in vivo. Our study underscores the risk of RT driven by EBV in CLL patients receiving immunosuppressive therapies, and provides the scientific rationale for testing ganciclovir and ibrutinib in EBV + DLBCL. Copyright © 2018 Pathological

  17. Effect of magnetic field on ablatively driven Richtmyer-Meshkov instability induced by interfacial nonlinear structure

    International Nuclear Information System (INIS)

    Labakanta Mandal; Banerjee, R.; Roy, S.; Khan, M.; Gupta, M.R.

    2010-01-01

    Complete text of publication follows. In an Inertial Confinement Fusion (ICF) situation, laser driven ablation front of an imploding capsule is subjected to the fluid instabilities like Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instability. In this case dense core is compressed and accelerated by low density ablating plasma. During this process laser driven shocks interact the interface and hence it becomes unstable due to the formation of nonlinear structure like bubble and spike. The nonlinear structure is called bubble if the lighter fluid pushes inside the heavier fluid and spike, if opposite takes place. R-M instability causes non-uniform compression of ICF fuel pellets and needs to be mitigated. Scientists and researchers are much more interested on RM instability both from theoretical and experimental points of view. In this article, we have presented the analytical expression for the growth rate and velocity for the nonlinear structures due to the effect of magnetic field of fluid using potential flow model. The magnetic field is assumed to be parallel to the plane of two fluid interfaces. If the magnetic field is restricted only to either side of interface the R-M instability can be stabilized or destabilized depending on whether the magnetic pressure on the interface opposes the instability driving shock pressure or acts in the same direction. An interesting result is that if both the fluids are magnetized, interface as well as velocity of bubble and spike will show oscillating stabilization and R-M instability is mitigated. All analytical results are also supported by numerical results. Numerically it is seen that magnetic field above certain minimum value reduces the instability for compression the target in ICF.

  18. Dynamical Properties of Two Coupled Dissipative QED Cavities Driven by Coherent Fields

    International Nuclear Information System (INIS)

    Hou Bangpin; Sun Weili; Wang Shunjin; Wang Gang

    2007-01-01

    When two identical QED cavities driven by the coherent fields are located in a uniform environment, in addition to dissipation, there appears an indirect coupling between the two cavities induced by the background fields. We investigate the effects of the coherent fields, the dissipation as well as the incoherent coupling on the following dynamical properties of the system: photon transfer, reversible decoherence, and quantum state transfer, etc. We find that the photons in the cavities do not leak completely into the environment due to the collective coupling between the cavities and the environment, and the photons are transferred irreversibly from the cavity with more photons to the cavity with less ones due to the incoherent coupling so that they are equally distributed among the two cavities. The coherent field pumping on the two cavities increases the mean photons, complements the revived magnitude of the reversible decoherence, but hinders the quantum state transfer between the two cavities. The above phenomena may find applications in quantum communication and other basic fields.

  19. H II REGION DRIVEN GALACTIC BUBBLES AND THEIR RELATIONSHIP TO THE GALACTIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Michael D.; Clemens, D. P., E-mail: pavelmi@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Ave., Boston, MA 02215 (United States)

    2012-12-01

    The relative alignments of mid-infrared traced Galactic bubbles are compared to the orientation of the mean Galactic magnetic field in the disk. The orientations of bubbles in the northern Galactic plane were measured and are consistent with random orientations-no preferential alignment with respect to the Galactic disk was found. A subsample of H II region driven Galactic bubbles was identified, and as a single population they show random orientations. When this subsample was further divided into subthermal and suprathermal H II regions, based on hydrogen radio recombination linewidths, the subthermal H II regions showed a marginal deviation from random orientations, but the suprathermal H II regions showed significant alignment with the Galactic plane. The mean orientation of the Galactic disk magnetic field was characterized using new near-infrared starlight polarimetry and the suprathermal H II regions were found to preferentially align with the disk magnetic field. If suprathermal linewidths are associated with younger H II regions, then the evolution of young H II regions is significantly affected by the Galactic magnetic field. As H II regions age, they cease to be strongly linked to the Galactic magnetic field, as surrounding density variations come to dominate their morphological evolution. From the new observations, the ratios of magnetic-to-ram pressures in the expanding ionization fronts were estimated for younger H II regions.

  20. Field driven magnetic racetrack memory accompanied with the interfacial Dzyaloshinskii-Moriya interaction

    Science.gov (United States)

    Kim, June-Seo; Lee, Hyeon-Jun; Hong, Jung-Il; You, Chun-Yeol

    2018-06-01

    The in-plane magnetic field pulse driven domain wall motion on a perpendicularly magnetized nanowire is numerically investigated by performing micromagnetic simulations and magnetic domain wall dynamics are evaluated analytically with one-dimensional collective coordinate models including the interfacial Dzyaloshinskii-Moriya interaction. With the action of the precession torque, the chirality and the magnetic field direction dependent displacements of the magnetic domain walls are clearly observed. In order to move Bloch type and Neel type domain walls, a longitudinal and a transverse in-plane magnetic field pulse are required, respectively. The domain wall type (Bloch or Neel) can easily be determined by the dynamic motion of the domain walls under the applied pulse fields. By applying a temporally asymmetric in-plane field pulse and successive notches in the perpendicularly magnetized nanowire strip line with a proper interval, the concept of racetrack memory based on the synchronous displacements of the chirality dependent multiple domain walls is verified to be feasible. Requirement of multiple domain walls with homogeneous chirality is achieved with the help of Dzyaloshinskii-Moriya interaction.

  1. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria.

    Science.gov (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit

    2009-05-01

    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  2. Using the Cycloid as an Introduction to Transformations of E and B Fields

    Science.gov (United States)

    Frodyma, Marc; Le, My Phuong

    2018-05-01

    The transformations of electric and magnetic fields are usually introduced by viewing systems such as a long, straight current-carrying wire and a parallel plate capacitor in two different reference frames. These well-known examples show that magnetism is a necessary consequence of augmenting electrostatics with relativity. Because they require the full apparatus of Lorentz contraction and Lorentz transformation of forces, they are often postponed until the upper-division undergraduate electrodynamics course.

  3. Nonuniform transformation field analysis of multiphase elasto viscoplastic materials: application to MOX fuels

    International Nuclear Information System (INIS)

    Roussette, S.

    2005-05-01

    The description of the overall behavior of nonlinear materials with nonlinear dissipative phases requires an infinity of internal variables. An approximate model involving only a finite number of internal variables, Nonuniform Transformation Field Analysis, is obtained by considering a decomposition of these variables on a finite set of nonuniform transformation fields, called plastic modes. The method is initially developed for incompressible elasto viscoplastic materials. Karhunen-Loeve expansion is proposed to optimize the plastic modes. Then the method is extended to porous elasto viscoplastic materials. Finally the transformation field analysis, developed by Dvorak, is applied to nuclear fuels MOX. This method enables to make sensitivity studies to determine the role of some microstructural parameters on the fuel behaviour. Moreover the adequacy of the nonuniform method for fuels MOX is shown, the final objective being to be able to apply the model to the MOX in 3D. (author)

  4. Structure and viscosity of a transformer oil-based ferrofluid under an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Rajnak, M., E-mail: rajnak@saske.sk [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Timko, M.; Kopcansky, P.; Paulovicova, K. [Institute of Experimental Physics SAS, Watsonova 47, 04001 Košice (Slovakia); Tothova, J.; Kurimsky, J.; Dolnik, B.; Cimbala, R. [Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice (Slovakia); Avdeev, M.V. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Petrenko, V.I. [Joint Institute for Nuclear Research, Joliot-Curie 6, Moscow region, 141980 Dubna (Russian Federation); Taras Shevchenko Kyiv National University, Volodymyrska Street 64, 01601 Kyiv (Ukraine); Feoktystov, A. [Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching (Germany)

    2017-06-01

    Various structural changes of ferrofluids have been intensively studied under external magnetic fields. In this work we present an experimental evidence of similar changes induced by an electric field. In the context of the electric field effect on ferrofluids structure, we studied a simple ferrofluid consisting of iron oxide nanoparticles coated with oleic acid and dispersed in transformer oil. The structural changes have been observed both on macroscopic and microscopic scale. We also demonstrate a remarkable impact of the electric field on the ferrofluid viscosity in relation to the reported structural changes. It was found that the electric field induced viscosity changes are analogous to the magnetoviscous effect. These changes and the electroviscous effect are believed to stem from the dielectric permittivity contrast between the iron oxide nanoparticles and transformer oil, giving rise to the effective electric polarization of the nanoparticles. It is highlighted that this electrorheological effect should be considered in studies of ferrofluids for high voltage engineering applications, as it can have impact on the thermomagnetic convection or the dielectric breakdown performance. - Highlights: • An experimental evidence of the electric field induced structural changes in a ferrofluid is presented. • An electroviscous effect in the transformer oil-based ferrofluid is shown. • The dielectric contrast between the particles and the carrier fluid is the key factor. • The potential impact on the thermomagnetic convection of ferrofluids in power transformers is highlighted.

  5. Dynamics of a reconnection-driven runaway ion tail in a reversed field pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J. K., E-mail: jkanders@wisc.edu; Kim, J.; Bonofiglo, P. J.; Capecchi, W.; Eilerman, S.; Nornberg, M. D.; Sarff, J. S.; Sears, S. H. [Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-05-15

    While reconnection-driven ion heating is common in laboratory and astrophysical plasmas, the underlying mechanisms for converting magnetic to kinetic energy remain not fully understood. Reversed field pinch discharges are often characterized by rapid ion heating during impulsive reconnection, generating an ion distribution with an enhanced bulk temperature, mainly perpendicular to magnetic field. In the Madison Symmetric Torus, a subset of discharges with the strongest reconnection events develop a very anisotropic, high energy tail parallel to magnetic field in addition to bulk perpendicular heating, which produces a fusion neutron flux orders of magnitude higher than that expected from a Maxwellian distribution. Here, we demonstrate that two factors in addition to a perpendicular bulk heating mechanism must be considered to explain this distribution. First, ion runaway can occur in the strong parallel-to-B electric field induced by a rapid equilibrium change triggered by reconnection-based relaxation; this effect is particularly strong on perpendicularly heated ions which experience a reduced frictional drag relative to bulk ions. Second, the confinement of ions varies dramatically as a function of velocity. Whereas thermal ions are governed by stochastic diffusion along tearing-altered field lines (and radial diffusion increases with parallel speed), sufficiently energetic ions are well confined, only weakly affected by a stochastic magnetic field. High energy ions traveling mainly in the direction of toroidal plasma current are nearly classically confined, while counter-propagating ions experience an intermediate confinement, greater than that of thermal ions but significantly less than classical expectations. The details of ion confinement tend to reinforce the asymmetric drive of the parallel electric field, resulting in a very asymmetric, anisotropic distribution.

  6. Piezoelectric components wirelessly driven by dipole antenna-like electric field generator

    Energy Technology Data Exchange (ETDEWEB)

    Bhuyan, S., E-mail: elesatya@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Kumar, R.; Panda, S.K. [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Hu, J. [Lab of Precision Drive, Nanjing University of Aeronautics and Astronautics, Nanjing 210026 (China)

    2011-08-25

    Highlights: > Wireless energy transmission technique. > Dipole antenna-like electric field generator. > Piezoelecctric resonance. > Finite element analyses. > Simulations and experimental verifications. - Abstract: A new technique of transmitting electric energy wirelessly to piezoelectric components by using a dipole antenna-like electric field generator is explored. Two square size brass plate-shaped live and ground electrodes are used to form a dipole antenna-like electric field generator. When the dipole antenna-like electric field generator in electric resonance with an inductor, a maximum output power of 2.72 mW and an energy conversion efficiency of 0.0174% have been achieved wirelessly by the piezoelectric plate area of 40 mm{sup 2} operating in the thickness vibration mode, placed at the center 4 mm away from the antenna plane with an optimum electrical load of 1365 {Omega}, resonant frequency of 782 kHz, 1 cm electrodes separation, 2500 cm{sup 2} electrode area of dipole antenna-like structure, and input ac source power of 15.58 W applied to the series of dipole antenna-like structure and inductor. The theoretically calculated results have been validated by the experimental studies. It is seen that at the resonance frequency and optimum electrical load, the output power of the wirelessly driven piezoelectric component decreases with the size of piezoelectric component, distance of piezoelectric component from the electrode of antenna plane, but increases with the antenna electrode area.

  7. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  8. Ultrafast probing of magnetic field growth inside a laser-driven solenoid

    Science.gov (United States)

    Goyon, C.; Pollock, B. B.; Turnbull, D. P.; Hazi, A.; Divol, L.; Farmer, W. A.; Haberberger, D.; Javedani, J.; Johnson, A. J.; Kemp, A.; Levy, M. C.; Grant Logan, B.; Mariscal, D. A.; Landen, O. L.; Patankar, S.; Ross, J. S.; Rubenchik, A. M.; Swadling, G. F.; Williams, G. J.; Fujioka, S.; Law, K. F. F.; Moody, J. D.

    2017-03-01

    We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (˜0.2 cm3 ) indicates that it is possible to achieve several tens of Tesla.

  9. Steady-state configurations of Dzyaloshinskii domain walls driven by field and current

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Tejerina, L., E-mail: luis.st@ee.uva.es [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain); Alejos, O. [Departamento de Electricidad y Electrónica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid (Spain); Martínez, E. [Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Salamanca, 37011 Salamanca (Spain)

    2017-02-01

    The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.

  10. Steady-state configurations of Dzyaloshinskii domain walls driven by field and current

    International Nuclear Information System (INIS)

    Sánchez-Tejerina, L.; Alejos, O.; Martínez, E.

    2017-01-01

    The dynamics of Dzyaloshinskii domain walls (DDW) in ultrathin ferromagnetic strips with perpendicular magnetic anisotropy, for different values of both perpendicular field and longitudinal current excitation associated to the Spin-Hall effect, has been studied, taking into account different values of the interfacial Dzyaloshinskii-Moriya interaction (DMI). This study has been carried out with the help of the q-Φ one-dimensional model and micromagnetic simulations. We have found that Walker breakdown may be avoided by applying a certain threshold current, even though the inverse effect is also possible. We have also found that, for particular values of field and current, the magnetization within the DDW experiences an abrupt change of orientation, which provokes a change on the contribution of current to the terminal DDW velocity. This effect disappears for sufficiently strong DMI, as it is expected from the model. - Highlights: • Steady-state configurations of Dzyaloshinskii domain walls driven by field and current have been reported. • Field-like torques and Slonczewskii-like torques due to spin-orbit interactions have been considered. • The response is associated with the rotation of the domain wall inner magnetization. • An asymmetric behavior arising from the existence of degenerate states is shown. • The asymmetry results in different travelled distances and/or terminal speeds.

  11. Sheared electric field-induced suppression of edge turbulence using externally driven R.F. waves

    International Nuclear Information System (INIS)

    Craddock, G.G.; Diamond, P.H.

    1991-01-01

    Here the authors propose a novel method for active control and suppression of edge turbulence by sheared ExB flows driven by externally launched RF waves. The theory developed addresses the problem of open-quotes flow driveclose quotes, which is somewhat analogous to the problem of plasma current drive. As originally demonstrated for the case of spontaneously driven flows, a net difference in the gradient of the fluid and magnetic Reynolds' stresses produced by radially propagating waves can drive the plasma flow. For the prototypical case of the Alfven wave flow drive considered here, ρ 0 r v θ > - r B θ > is proportional to k perpendicular 2 ρ s 2 in the case of the kinetic Alfven wave, and [(ηk perpendicular 2 -vk perpendicular 2 )/ω] 2 in the case of resistive MHD. Both results reflect the dependence of flow drive on the net stress imbalance. The shear layer width is determined by the waves evanescence length (determined by dissipation) that sets the stress gradient scale length, while the direction of the flow is determined by the poloidal orientation of the launched waves. In particular, it should be noted that both positive and negative E r may be driven, so that enhanced confinement need not be accompanied by impurity accumulation, as commonly encountered in spontaneous H-modes. The efficiency is determined by the criterion that the radial electric field shear be large enough to suppress turbulence. For typical TEXT parameters, and unity efficiency, 300 kW of absorbed power is needed to suppress turbulence over 3 cm radially. For DIII-D, 300 kW over 4 cm is needed. Also, direct transport losses induced by RF have been shown to be small. Extensions of the theory to ICRF are underway and are discussed. They also discuss the analogous problem of current drive using kinetic Alfven waves. 2 refs

  12. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly.

    Science.gov (United States)

    Tikhonchuk, V T; Bailly-Grandvaux, M; Santos, J J; Poyé, A

    2017-08-01

    Recent experiments are showing possibilities to generate strong magnetic fields on the excess of 500 T with high-energy nanosecond laser pulses in a compact setup of a capacitor connected to a single turn coil. Hot electrons ejected from the capacitor plate (cathode) are collected at the other plate (anode), thus providing the source of a current in the coil. However, the physical processes leading to generation of currents exceeding hundreds of kiloamperes in such a laser-driven diode are not sufficiently understood. Here we present a critical analysis of previous results and propose a self-consistent model for the high current generation in a laser-driven capacitor-coil assembly. It accounts for three major effects controlling the diode current: the space charge neutralization, the plasma magnetization between the capacitor plates, and the Ohmic heating of the external circuit-the coil-shaped connecting wire. The model provides the conditions necessary for transporting strongly super-Alfvenic currents through the diode on the time scale of a few nanoseconds. The model validity is confirmed by a comparison with the available experimental data.

  13. Changes in measured vector magnetic fields when transformed into heliographic coordinates

    Science.gov (United States)

    Hagyard, M. J.

    1987-01-01

    The changes that occur in measured magnetic fields when they are transformed into a heliographic coordinate system are investigated. To carry out this investigation, measurements of the vector magnetic field of an active region that was observed at 1/3 the solar radius from disk center are taken, and the observed field is transformed into heliographic coordinates. Differences in the calculated potential field that occur when the heliographic normal component of the field is used as the boundary condition rather than the observed line-of-sight component are also examined. The results of this analysis show: (1) that the observed fields of sunspots more closely resemble the generally accepted picture of the distribution of umbral fields if they are displayed in heliographic coordinates; (2) that the differences in the potential calculations are less than 200 G in field strength and 20 deg in field azimuth outside sunspots; and (3) that differences in the two potential calculations in the sunspot areas are no more than 400 G in field strength but range from 60 to 80 deg in field azimuth in localized umbral areas.

  14. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures

    Science.gov (United States)

    Sekar, Ramanan; Taillefert, Martial

    2016-01-01

    ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants

  15. Quantum system driven by incoherent a.c fields: Multi-crossing Landau Zener dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jipdi, M.N., E-mail: jmichaelnicky@yahoo.fr; Fai, L.C.; Tchoffo, M.

    2016-10-23

    The paper investigates the multi-crossing dynamics of a Landau–Zener (LZ) system driven by two sinusoidal a.c fields applying the Dynamic Matrix approach (DMA). The system is shown to follow one-crossing and multi-crossing dynamics for low and high frequency regime respectively. It is shown that in low frequency regime, the resonance phenomenon occurs and leads to the decoupling of basis states; the effective gap vanishes and then the complete blockage of the system. For high frequency, the system achieves multi-crossing dynamics with two fictitious crossings; the system models a Landau–Zener–Stückelberg (LZS) interferometer with critical parameters that tailor probabilities. The system is then shown to depend only on the phase that permits the easiest control with possible application in implementing logic gates.

  16. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    International Nuclear Information System (INIS)

    Kim, S H; Hashi, S; Ishiyama, K

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and 19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  17. Centrifugal Force Based Magnetic Micro-Pump Driven by Rotating Magnetic Fields

    Science.gov (United States)

    Kim, S. H.; Hashi, S.; Ishiyama, K.

    2011-01-01

    This paper presents a centrifugal force based magnetic micro-pump for the pumping of blood. Most blood pumps are driven by an electrical motor with wired control. To develop a wireless and battery-free blood pump, the proposed pump is controlled by external rotating magnetic fields with a synchronized impeller. Synchronization occurs because the rotor is divided into multi-stage impeller parts and NdFeB permanent magnet. Finally, liquid is discharged by the centrifugal force of multi-stage impeller. The proposed pump length is 30 mm long and19 mm in diameter which much smaller than currently pumps; however, its pumping ability satisfies the requirement for a blood pump. The maximum pressure is 120 mmHg and the maximum flow rate is 5000ml/min at 100 Hz. The advantage of the proposed pump is that the general mechanical problems of a normal blood pump are eliminated by the proposed driving mechanism.

  18. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Albertazzi, B., E-mail: bruno.albertazzi@polytechnique.edu [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); INRS-EMT, Varennes, Québec J3X 1S2 (Canada); Graduate School of Engineering, Osaka University, Suita, Osaka 565-087 (Japan); D' Humières, E. [CELIA, Universite de Bordeaux, Talence 33405 (France); Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Lancia, L.; Antici, P. [Dipartimento SBAI, Universita di Roma “La Sapienza,” Via A. Scarpa 16, 00161 Roma (Italy); Dervieux, V.; Nakatsutsumi, M.; Romagnani, L.; Fuchs, J., E-mail: Julien.fuchs@polytechnique.fr [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Böcker, J.; Swantusch, M.; Willi, O. [Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität, Düsseldorf D-40225 (Germany); Bonlie, J.; Cauble, B.; Shepherd, R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Breil, J.; Feugeas, J. L.; Nicolaï, P.; Tikhonchuk, V. T. [CELIA, Universite de Bordeaux, Talence 33405 (France); Chen, S. N. [LULI, École Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau (France); Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Sentoku, Y. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); and others

    2015-04-15

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  19. Extremely low frequency magnetic field measurements in buildings with transformer stations in Switzerland.

    Science.gov (United States)

    Röösli, Martin; Jenni, Daniela; Kheifets, Leeka; Mezei, Gabor

    2011-08-15

    The aim of this study was to evaluate an exposure assessment method that classifies apartments in three exposure categories of extremely low frequency magnetic fields (ELF-MF) based on the location of the apartment relative to the transformer room. We completed measurements in 39 apartments in 18 buildings. In each room of the apartments ELF-MF was concurrently measured with 5 to 6 EMDEX II meters for 10 min. Measured arithmetic mean ELF-MF was 0.59 μT in 8 apartments that were fully adjacent to a transformer room, either directly above the transformer or touching the transformer room wall-to-wall. In apartments that only partly touched the transformer room at corners or edges, average ELF-MF level was 0.14 μT. Average exposure in the remaining apartments was 0.10 μT. Kappa coefficient for exposure classification was 0.64 (95%-CI: 0.45-0.82) if only fully adjacent apartments were considered as highly exposed (>0.4 μT). We found a distinct ELF-MF exposure gradient in buildings with transformer. Exposure classification based on the location of the apartment relative to the transformer room appears feasible. Such an approach considerably reduces effort for exposure assessment and may be used to eliminate selection bias in future epidemiologic studies. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. SO(d,d) transformations of Ramond-Ramond fields and space-time spinors

    International Nuclear Information System (INIS)

    Hassan, S.F.

    2000-01-01

    We explicitly construct the SO(d,d) transformations of Ramond-Ramond field strengths and potentials, along with those of the space-time supersymmetry parameters, the gravitinos and the dilatinos in type-II theories. The results include the case when the SO(d,d) transformation involves the time direction. The derivation is based on the compatibility of SO(d,d) transformations with space-time supersymmetry, which automatically guarantees compatibility with the equations of motion. It involves constructing the spinor representation of a twist that an SO(d,d) action induces between the local Lorentz frames associated with the left- and right-moving sectors of the worldsheet theory. The relation to the transformation of R-R potentials as SO(d,d) spinors is also clarified

  1. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    Science.gov (United States)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-09-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm2, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  2. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangyu, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn; Jiang, Tao [Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083 (China); Sun, Zhuo; Ou-Yang, Wei, E-mail: chenxiangyu@binn.cas.cn, E-mail: ouyangwei@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China)

    2015-09-14

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm{sup 2}, which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics.

  3. Field-driven chiral bubble dynamics analysed by a semi-analytical approach

    Science.gov (United States)

    Vandermeulen, J.; Leliaert, J.; Dupré, L.; Van Waeyenberge, B.

    2017-12-01

    Nowadays, field-driven chiral bubble dynamics in the presence of the Dzyaloshinskii-Moriya interaction are a topic of thorough investigation. In this paper, a semi-analytical approach is used to derive equations of motion that express the bubble wall (BW) velocity and the change in in-plane magnetization angle as function of the micromagnetic parameters of the involved interactions, thereby taking into account the two-dimensional nature of the bubble wall. It is demonstrated that the equations of motion enable an accurate description of the expanding and shrinking convex bubble dynamics and an expression for the transition field between shrinkage and expansion is derived. In addition, these equations of motion show that the BW velocity is not only dependent on the driving force, but also on the BW curvature. The absolute BW velocity increases for both a shrinking and an expanding bubble, but for different reasons: for expanding bubbles, it is due to the increasing importance of the driving force, while for shrinking bubbles, it is due to the increasing importance of contributions related to the BW curvature. Finally, using this approach we show how the recently proposed magnetic bubblecade memory can operate in the flow regime in the presence of a tilted sinusoidal magnetic field and at greatly reduced bubble sizes compared to the original device prototype.

  4. Spectral properties of a V-type three-level atom driven by two bichromatic fields

    International Nuclear Information System (INIS)

    Li Peng; Nakajima, Takashi; Ning Xijing

    2006-01-01

    We theoretically investigate the spectral properties of a V-type three-level atom driven by two bichromatic fields with a common frequency difference. By decomposing the master equation using harmonic expansions and invoking quantum regression theorem, fluorescence and probe absorption spectra of the strong atomic transition are numerically calculated under the steady state condition. We find that both fluorescence and absorption spectra exhibit two interesting features, which are equidistant comblike structures and phase-dependent line splittings. In the comblike structures, each fluorescence peak can be made subnatural by manipulating the relative intensities of the coupling fields, while for the absorption lines only the central peak can be narrowed. Line splittings are induced by the relative phase delay between the envelopes of the amplitudes of the two bichromatic fields. Interestingly, we find that the manipulation of the relative phase delay results in the emergence of sharp subnatural dips in the absorption spectra. As a natural consequence of the subnatural absorption dips, absorption spectra in atomic vapors exhibit striking subnatural burning holes for the counterpropagating probe beam geometry

  5. Field emission device driven by self-powered contact-electrification: Simulation and experimental analysis

    International Nuclear Information System (INIS)

    Chen, Xiangyu; Jiang, Tao; Sun, Zhuo; Ou-Yang, Wei

    2015-01-01

    A self-powered field emission device (FED) driven by a single-electrode tribo-electric nanogenerator (TENG) is demonstrated. The mechanical motion works as both a power supply to drive the FED and a control unit to regulate the amount of emitted electrons. By using the Fowler-Nordheim equation and Kirchhoff laws, a theoretical model of this self-powered FED is proposed, and accordingly the real-time output characteristics of the device are systematically investigated. It is found that the motion distance of the TENG controls switch-on of the FED and determines the charge amount for emission, while the motion velocity regulates the amplitude of emission current. The minimum contact area for the TENG to generate field emission is about 9 cm 2 , which can be improved by optimizing FED structure and the tribo-materials of TENG. The demonstrated concept of this self-powered FED as well as the proposed physical analysis can serve as guidance for further applications of FED in such fields of self-powered electronics and soft electronics

  6. Band Gap Distortion in Semiconductors Strongly Driven by Intense Mid-Infrared Laser Fields

    Science.gov (United States)

    Kono, J.; Chin, A. H.

    2000-03-01

    Crystalline solids non-resonantly driven by intense time-periodic electric fields are predicted to exhibit unusual band-gap distortion.(e.g., Y. Yacoby, Phys. Rev. 169, 610 (1968); L.C.M. Miranda, Solid State Commun. 45, 783 (1983); J.Z. Kaminski, Acta Physica Polonica A 83, 495(1993).) Such non-perturbative effects have not been observed to date because of the unavoidable sample damage due to the very high intensity required using conventional lasers ( 1 eV photon energy). Here, we report the first clear evidence of laser-induced bandgap shrinkage in semiconductors under intense mid-infrared (MIR) laser fields. The use of long-wavelength light reduces the required intensity and prohibits strong interband absorption, thereby avoiding the damage problem. The significant sub-bandgap absorption persists only during the existence of the MIR laser pulse, indicating the virtual nature of the effect. We show that this particular example of non-perturbative behavior, known as the dynamical Franz-Keldysh effect, occurs when the effective ponderomotive potential energy is comparable to the photon energy of the applied field. This work was supported by ONR, NSF, JST and NEDO.

  7. Stereo Imaging Velocimetry of Mixing Driven by Buoyancy Induced Flow Fields

    Science.gov (United States)

    Duval, W. M. B.; Jacqmin, D.; Bomani, B. M.; Alexander, I. J.; Kassemi, M.; Batur, C.; Tryggvason, B. V.; Lyubimov, D. V.; Lyubimova, T. P.

    2000-01-01

    Mixing of two fluids generated by steady and particularly g-jitter acceleration is fundamental towards the understanding of transport phenomena in a microgravity environment. We propose to carry out flight and ground-based experiments to quantify flow fields due to g-jitter type of accelerations using Stereo Imaging Velocimetry (SIV), and measure the concentration field using laser fluorescence. The understanding of the effects of g-jitter on transport phenomena is of great practical interest to the microgravity community and impacts the design of experiments for the Space Shuttle as well as the International Space Station. The aim of our proposed research is to provide quantitative data to the community on the effects of g-jitter on flow fields due to mixing induced by buoyancy forces. The fundamental phenomenon of mixing occurs in a broad range of materials processing encompassing the growth of opto-electronic materials and semiconductors, (by directional freezing and physical vapor transport), to solution and protein crystal growth. In materials processing of these systems, crystal homogeneity, which is affected by the solutal field distribution, is one of the major issues. The understanding of fluid mixing driven by buoyancy forces, besides its importance as a topic in fundamental science, can contribute towards the understanding of how solutal fields behave under various body forces. The body forces of interest are steady acceleration and g-jitter acceleration as in a Space Shuttle environment or the International Space Station. Since control of the body force is important, the flight experiment will be carried out on a tunable microgravity vibration isolation mount, which will permit us to precisely input the desired forcing function to simulate a range of body forces. To that end, we propose to design a flight experiment that can only be carried out under microgravity conditions to fully exploit the effects of various body forces on fluid mixing. Recent

  8. Three-dimensional imaging of vortex structure in a ferroelectric nanoparticle driven by an electric field.

    Science.gov (United States)

    Karpov, D; Liu, Z; Rolo, T Dos Santos; Harder, R; Balachandran, P V; Xue, D; Lookman, T; Fohtung, E

    2017-08-17

    Topological defects of spontaneous polarization are extensively studied as templates for unique physical phenomena and in the design of reconfigurable electronic devices. Experimental investigations of the complex topologies of polarization have been limited to surface phenomena, which has restricted the probing of the dynamic volumetric domain morphology in operando. Here, we utilize Bragg coherent diffractive imaging of a single BaTiO 3 nanoparticle in a composite polymer/ferroelectric capacitor to study the behavior of a three-dimensional vortex formed due to competing interactions involving ferroelectric domains. Our investigation of the structural phase transitions under the influence of an external electric field shows a mobile vortex core exhibiting a reversible hysteretic transformation path. We also study the toroidal moment of the vortex under the action of the field. Our results open avenues for the study of the structure and evolution of polar vortices and other topological structures in operando in functional materials under cross field configurations.Imaging of topological states of matter such as vortex configurations has generally been limited to 2D surface effects. Here Karpov et al. study the volumetric structure and dynamics of a vortex core mediated by electric-field induced structural phase transition in a ferroelectric BaTiO 3 nanoparticle.

  9. Implementability of gauge transformations and quantization of fermions in external fields

    International Nuclear Information System (INIS)

    Grosse, H.; Karner, G.

    1986-01-01

    Quantization of fermions in an external soliton field, leading to a representation of the CAR which is inequivalent to the representation connected to the massive Dirac operator, is studied. We determine classes of gauge and axial gauge transformations which can be unitarily implemented. In the latter case quantization conditions for gauge functions are obtained; integers entering can be interpreted as winding numbers. (Author)

  10. Fourier-transform imaging of cotton and botanical and field trash mixtures

    Science.gov (United States)

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  11. An Experimental Study of Continuous Plasma Flows Driven by a Confined Arc in a Transverse Magnetic Field

    Science.gov (United States)

    Barger, R. L.; Brooks, J. D.; Beasley, W. D.

    1961-01-01

    A crossed-field, continuous-flow plasma accelerator has been built and operated. The highest measured velocity of the flow, which was driven by the interaction of the electric and magnetic fields, was about 500 meters per second. Some of the problems discussed are ion slip, stability and uniformity of the discharge, effect of the magnetic field on electron emission, use of preionization, and electrode contamination.

  12. Instantaneous current and field structure of a gun-driven spheromak for two gun polarities

    International Nuclear Information System (INIS)

    Woodruff, S; Nagata, M

    2002-01-01

    The instantaneous plasma structure of the SPHEX spheromak is determined here by numerically processing data from insertable Rogowski and magnetic field probes. Data is presented and compared for two modes of gun operation: with the central electrode biased positively and negatively. It is found that while the mean-, or even instantaneous-, field structure would give the impression of a roughly axisymmetric spheromak, the instantaneous current structure does not. Hundred per cent variations in J measured at the magnetic axis can be explained by the rotation of a current filament that has a width equal to half of the radius of the flux-conserving first wall. In positive gun operation, current leaves the filament in the confinement region leading to high wall current there. In negative gun operation, wall current remains low as all injected current returns to the gun through the plasma. The plasma, in either instance, is strongly asymmetric. We discuss evidence for the existence of the current filament in other gun-driven spheromaks and coaxial plasma thrusters

  13. Long pulse FRC sustainment with enhanced edge driven rotating magnetic field current drive

    International Nuclear Information System (INIS)

    Hoffman, A.L.; Guo, H.Y.; Miller, K.E.; Milroy, R.D.

    2005-01-01

    FRCs have been formed and sustained for up to 50 normal flux decay times by Rotating Magnetic Fields (RMF) in the TCS experiment. For these longer pulse times a new phenomenon has been observed: switching to a higher performance mode delineated by shallower RMF penetration, higher ratios of generated poloidal to RMF drive field, and lower overall plasma resistivity. This global data is not explainable by previous RMF theory based on uniform electron rotational velocities or by numerical calculations based on uniform plasma resistivity, but agrees in many respects with new calculations made using strongly varying resistivity profiles. In order to more realistically model RMF driven FRCs with such non-uniform resistivity profiles, a double rigid rotor model has been developed with separate inner and outer electron rotational velocities and resistivities. The results of this modeling suggest that the RMF drive results in very high resistivity in a narrow edge layer, and that the higher performance mode is characterized by a sharp reduction in resistivity over the bulk of the FRC. (author)

  14. Nonequilibrium excitations and transport of Dirac electrons in electric-field-driven graphene

    Science.gov (United States)

    Li, Jiajun; Han, Jong E.

    2018-05-01

    We investigate nonequilibrium excitations and charge transport in charge-neutral graphene driven with dc electric field by using the nonequilibrium Green's-function technique. Due to the vanishing Fermi surface, electrons are subject to nontrivial nonequilibrium excitations such as highly anisotropic momentum distribution of electron-hole pairs, an analog of the Schwinger effect. We show that the electron-hole excitations, initiated by the Landau-Zener tunneling with a superlinear I V relation I ∝E3 /2 , reaches a steady state dominated by the dissipation due to optical phonons, resulting in a marginally sublinear I V with I ∝E , in agreement with recent experiments. The linear I V starts to show the sign of current saturation as the graphene is doped away from the Dirac point, and recovers the semiclassical relation for the saturated velocity. We give a detailed discussion on the nonequilibrium charge creation and the relation between the electron-phonon scattering rate and the electric field in the steady-state limit. We explain how the apparent Ohmic I V is recovered near the Dirac point. We propose a mechanism where the peculiar nonequilibrium electron-hole creation can be utilized in a infrared device.

  15. A phase-field study of the physical concepts of martensitic transformations in steels

    International Nuclear Information System (INIS)

    Yeddu, Hemantha Kumar; Borgenstam, Annika; Hedström, Peter; Ågren, John

    2012-01-01

    Highlights: ► Critical driving forces associated with martensitic transformation are estimated. ► Plastic relaxation rate affects the transformation and microstructure evolution. ► Low relaxation rate promotes multi-domained martensitic microstructure. ► High relaxation rate promotes growth of a single martensite domain. ► The model predicts the final habit plane of martensite to be (−2 1 1) γ . - Abstract: A 3D elastoplastic phase-field model is employed to study various driving forces associated with martensitic transformations, plastic deformation behavior as well as the habit plane concept. Usage of thermodynamic parameters corresponding to Fe–0.3%C alloy in conjunction with anisotropic physical parameters of steels as the simulation parameters have yielded the results in reasonable agreement with experimental observations. From the simulation results, it is concluded that there exist three critical driving forces that control the transformation and also that the plastic deformation behavior of the material greatly affects the transformation. The model predicts the initial habit plane of the first infinitesimal unit of martensite as (−1 1 1). The model also predicts that, as the transformation progresses, the above mentioned martensite domain rotates and finally orients along the new habit plane of (−2 1 1).

  16. Paddy field – A natural sequential anaerobic–aerobic bioreactor for polychlorinated biphenyls transformation

    International Nuclear Information System (INIS)

    Chen, Chen; Yu, Chunna; Shen, Chaofeng; Tang, Xianjin; Qin, Zhihui; Yang, Kai; Hashmi, Muhammad Zaffar; Huang, Ronglang; Shi, Huixiang

    2014-01-01

    The environmental pollution and health risks caused by the improper disposal of electric and electronic waste (e-waste) have become urgent issues for the developing countries. One of the typical pollutants, polychlorinated biphenyls (PCBs), is commonly found in farmland in Taizhou, a major hotspot of e-waste recycling in China. This study investigated the amount of PCB residue in local farmlands. Biotransformation of PCBs was further studied under different water management conditions in paddy field with or without rice cultivation, with a special focus on the alternating flooded and drying processes. It was found that paddy field improved the attenuation of PCBs, especially for highly chlorinated congeners. In the microcosm experiment, 40% or more of the initial total PCBs was removed after sequential flood–drying treatments, compared to less than 10% in the sterilized control and 20% in the constant-drying system. Variation in the quantity of PCBs degrading and dechlorinating bacterial groups were closely related to the alteration of anaerobic–aerobic conditions. These results suggested that alternating anoxic–oxic environment in paddy field led to the sequential aerobic–anaerobic transformation of PCBs, which provided a favorable environment for natural PCB attenuation. - Highlights: • Paddy fields hold significantly lower level of PCBs than drylands, especially highly-chlorinated PCBs. • Microbial dechlorination of PCBs is favored under flooded conditions in paddy field. • Aerobic biodegradation of PCBs is benefited under dry conditions in paddy field. • PCBs dechlorination rate is accelerated in rice planted paddy field compared to the unplanted one. • Alternating anoxic–oxic environment in paddy field led to the sequential aerobic–anaerobic transformation of PCBs. - Alternating anoxic–oxic environment led to the sequential aerobic–anaerobic transformation of PCBs in paddy field, which could act as a natural sequential anaerobic

  17. Martensitic transformations in Ni-Mn-Ga system affected by external fields

    International Nuclear Information System (INIS)

    Chernenko, V.; Babii, O.; L'vov, V.; McCormick, P.G.

    2000-01-01

    The influence of hydrostatic pressure, uniaxial stress and magnetic field on the martensitic transformation temperatures for the ferromagnetic single crystalline Ni-Mn-Ga alloys is studied. It is shown that the experimental results are satisfactorily described by the Landau theory. Ni-Mn-Ga L2 1 -type ordered alloys exhibit a number of the first order and weak first order structural transformations in a ferromagnetic or paramagnetic parent phase depending on the alloy composition and being either thermally or stress activated. Most of these phase transformations are of the martensitic type, i.e., they are accompanied by the spontaneous elastic strains forming a multicomponent order parameter in the Landau expansion for the Gibbs potential. In this work we analyze the influence of the external fields (mechanical and magnetic) on the martensitic transformation (MT) from cubic parent phase (P) to five-layered martensitic one (5M-martensite) usually exhibited by the ferromagnetic ordered Ni-Mn-Ga alloys. In accordance with, we treat the 5M-martensite as a twinned tetragonal phase and, so, describe the experimental results in the framework of the theory of cubic-tetragonal MT. The original experimental data of high magnetic field influence on MT in near stoichiometric Ni 2 MnGa compound are presented to compare with the theoretical estimations. (orig.)

  18. Accelerating field step-up transformer in wake-field accelerators

    International Nuclear Information System (INIS)

    Chojnacki, E.; Gai, W.; Schoessow, P.; Simpson, J.

    1991-01-01

    In the wake-field scheme of particle acceleration, a short, intense drive bunch of electrons passes through a slow-wave structure, leaving behind high rf power in its wake field. The axial accelerating electric field associated with the rf can be quite large, > 100 MeV/m, and is used to accelerate a much less intense ''witness'' beam to eventual energies > 1 TeV. The rf power is deposited predominantly in the fundamental mode of the structure, which, for dielectric-lined waveguide as used at Argonne, is the TM 01 mode. In all likelihood on the field amplitude will be limited only by rf breakdown of the dielectric material, the limit of which is currently unknown in the short time duration, high frequency regime of wake-field acceleration operation. To obtain such strong electric fields with given wake-field rf power, the dimensions of the dielectric-lined waveguide have to be fairly small, OD of the order of a cm and ID of a few mm, and this gives rise to the generation of strong deflection modes with beam misalignment. While a scheme exists to damp such deflection modes on a bunch-to-bunch time scale, head-tail beam deflection could still be a problem and BNS damping as well as FODO focusing are incomplete cures. Presented here are details of a scheme by which the rf power is generated by in a large-diameter wake-field tube, where deflection mode generation by the intense drive beam is tolerable, and then fed into a small-diameter acceleration tube where the less intense witness beam is accelerated by the greatly enhanced axial electric field. The witness beam generates little deflection-mode power itself, even in the small acceleration tube, thus a final high-quality, high-energy electron beam is produced

  19. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    Science.gov (United States)

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  20. Electric field measurements in a kHz-driven He jet - The influence of the gas flow speed

    NARCIS (Netherlands)

    Sobota, A.; Guaitella, O.; Sretenović, G.B.; Krstić, I.B.; Kovačević, V.V.; Obrusník, A.; Nguyen, Y.N.; Zajíčková, L.; Obradović, B.M.; Kuraica, M.M.

    2016-01-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between

  1. Field evidences and theoretical analysis of the gravity-driven wetting front instability of water runoffs on concrete structures

    NARCIS (Netherlands)

    Kuntz, M.; Van Mier, J.G.M.

    1997-01-01

    A series of field observations of the evolution of water runoffs over several vertical concrete walls directly exposed to rain falls is reported in this note. In all the cases, the main water flow originated from the top horizontal surface of the walls. The observations show that the gravity-driven

  2. Extremely low-frequency magnetic fields of transformers and possible biological and health effects.

    Science.gov (United States)

    Sirav, Bahriye; Sezgin, Gaye; Seyhan, Nesrin

    2014-12-01

    Physiological processes in organisms can be influenced by extremely low-frequency (ELF) electromagnetic energy. Biological effect studies have great importance; as well as measurement studies since they provide information on the real exposure situations. In this study, the leakage magnetic fields around a transformer were measured in an apartment building in Küçükçekmece, Istanbul, and the measurement results were evaluated with respect to the international exposure standards. The transformer station was on the bottom floor of a three-floor building. It was found that people living and working in the building were exposed to ELF magnetic fields higher than the threshold magnetic field value of the International Agency for Research on Cancer (IARC). Many people living in this building reported health complaints such as immunological problems of their children. There were child-workers working in the textile factories located in the building. Safe distances or areas for these people should be recommended. Protective measures could be implemented to minimize these exposures. Further residential exposure studies are needed to demonstrate the exposure levels of ELF magnetic fields. Precautions should, therefore, be taken either to reduce leakage or minimize the exposed fields. Shielding techniques should be used to minimize the leakage magnetic fields in such cases.

  3. Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields

    International Nuclear Information System (INIS)

    Han, Tiancheng; Qiu, Cheng-Wei

    2016-01-01

    The full control of single or even multiple physical fields has attracted intensive research attention in the past decade, thanks to the development of metamaterials and transformation optics. Significant progress has been made in vector fields (e.g., optics, electromagnetics, and acoustics), leading to a host of strikingly functional metamaterials, such as invisibility cloaks, illusion devices, concentrators, and rotators. However, metamaterials in vector fields, designed through coordinate transformation of Maxwell’s equations, usually require extreme parameters and impose challenges on the actual realization. In this context, metamaterials in scalar fields (e.g., thermal and dc fields), which are mostly governed by the Laplace equation, lead to more plausible and facile implementations, since there are native insulators and excellent conductors (serving as two extreme cases). This paper therefore is particularly dedicated to reviewing the most recent advances in Laplacian metamaterials in manipulating thermal (both transient and steady states) and dc fields, separately and (or) simultaneously. We focus on the theory, design, and realization of thermal/dc functional metamaterials that can be used to control heat flux and electric current at will. We also provide an outlook toward the challenges and future directions in this fascinating area. (review)

  4. Transformation Laplacian metamaterials: recent advances in manipulating thermal and dc fields

    Science.gov (United States)

    Han, Tiancheng; Qiu, Cheng-Wei

    2016-04-01

    The full control of single or even multiple physical fields has attracted intensive research attention in the past decade, thanks to the development of metamaterials and transformation optics. Significant progress has been made in vector fields (e.g., optics, electromagnetics, and acoustics), leading to a host of strikingly functional metamaterials, such as invisibility cloaks, illusion devices, concentrators, and rotators. However, metamaterials in vector fields, designed through coordinate transformation of Maxwell’s equations, usually require extreme parameters and impose challenges on the actual realization. In this context, metamaterials in scalar fields (e.g., thermal and dc fields), which are mostly governed by the Laplace equation, lead to more plausible and facile implementations, since there are native insulators and excellent conductors (serving as two extreme cases). This paper therefore is particularly dedicated to reviewing the most recent advances in Laplacian metamaterials in manipulating thermal (both transient and steady states) and dc fields, separately and (or) simultaneously. We focus on the theory, design, and realization of thermal/dc functional metamaterials that can be used to control heat flux and electric current at will. We also provide an outlook toward the challenges and future directions in this fascinating area.

  5. Site-disorder driven superconductor–insulator transition: a dynamical mean field study

    International Nuclear Information System (INIS)

    Kamar, Naushad Ahmad; Vidhyadhiraja, N S

    2014-01-01

    We investigate the effect of site disorder on the superconducting state in the attractive Hubbard model within the framework of dynamical mean field theory. For a fixed interaction strength (U), the superconducting order parameter decreases monotonically with increasing disorder (x), while the single-particle spectral gap decreases for small x, reaches a minimum and keeps increasing for larger x. Thus, the system remains gapped beyond the destruction of the superconducting state, indicating a disorder-driven superconductor–insulator transition. We investigate this transition in depth considering the effects of weak and strong disorder for a range of interaction strengths. In the clean case, the order parameter is known to increase monotonically with increasing interaction, saturating at a finite value asymptotically for U→∞. The presence of disorder results in destruction of superconductivity at large U, thus drastically modifying the clean case behaviour. A physical understanding of our findings is obtained by invoking particle–hole asymmetry and the probability distributions of the order parameter and spectral gap. (paper)

  6. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    Science.gov (United States)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  7. Generation of Raman lasers from nitrogen molecular ions driven by ultraintense laser fields

    Science.gov (United States)

    Yao, Jinping; Chu, Wei; Liu, Zhaoxiang; Xu, Bo; Chen, Jinming; Cheng, Ya

    2018-03-01

    Atmospheric lasing has aroused much interest in the past few years. The ‘air–laser’ opens promising potential for remote chemical sensing of trace gases with high sensitivity and specificity. At present, several approaches have been successfully implemented for generating highly coherent laser beams in atmospheric condition, including both amplified-spontaneous emission, and narrow-bandwidth stimulated emission in the forward direction in the presence of self-generated or externally injected seed pulses. Here, we report on generation of multiple-wavelength Raman lasers from nitrogen molecular ions ({{{N}}}2+), driven by intense mid-infrared laser fields. Intuitively, the approach appears problematic for the small nonlinear susceptibility of {{{N}}}2+ ions, whereas the efficiency of Raman laser can be significantly promoted in near-resonant condition. More surprisingly, a Raman laser consisting of a supercontinuum spanning from ∼310 to ∼392 nm has been observed resulting from a series near-resonant nonlinear processes including four-wave mixing, stimulated Raman scattering and cross phase modulation. To date, extreme nonlinear optics in molecular ions remains largely unexplored, which provides an alternative means for air–laser-based remote sensing applications.

  8. Energetic-particle-driven instabilities and induced fast-ion transport in a reversed field pinch

    International Nuclear Information System (INIS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Forest, C. B.; Koliner, J. J.; Nornberg, M. D.; Reusch, J.; Sarff, J. S.; Liu, D.

    2014-01-01

    Multiple bursty energetic-particle (EP) driven modes with fishbone-like structure are observed during 1 MW tangential neutral-beam injection in a reversed field pinch (RFP) device. The distinguishing features of the RFP, including large magnetic shear (tending to add stability) and weak toroidal magnetic field (leading to stronger drive), provide a complementary environment to tokamak and stellarator configurations for exploring basic understanding of EP instabilities. Detailed measurements of the EP mode characteristics and temporal-spatial dynamics reveal their influence on fast ion transport. Density fluctuations exhibit a dynamically evolving, inboard-outboard asymmetric spatial structure that peaks in the core where fast ions reside. The measured mode frequencies are close to the computed shear Alfvén frequency, a feature consistent with continuum modes destabilized by strong drive. The frequency pattern of the dominant mode depends on the fast-ion species. Multiple frequencies occur with deuterium fast ions compared to single frequency for hydrogen fast ions. Furthermore, as the safety factor (q) decreases, the toroidal mode number of the dominant EP mode transits from n=5 to n=6 while retaining the same poloidal mode number m=1. The transition occurs when the m=1, n=5 wave-particle resonance condition cannot be satisfied as the fast-ion safety factor (q fi ) decreases. The fast-ion temporal dynamics, measured by a neutral particle analyzer, resemble a classical predator-prey relaxation oscillation. It contains a slow-growth phase arising from the beam fueling followed by a rapid drop when the EP modes peak, indicating that the fluctuation-induced transport maintains a stiff fast-ion density profile. The inferred transport rate is strongly enhanced with the onset of multiple EP modes

  9. Full field reservoir modeling of shale assets using advanced data-driven analytics

    Directory of Open Access Journals (Sweden)

    Soodabeh Esmaili

    2016-01-01

    Full Text Available Hydrocarbon production from shale has attracted much attention in the recent years. When applied to this prolific and hydrocarbon rich resource plays, our understanding of the complexities of the flow mechanism (sorption process and flow behavior in complex fracture systems - induced or natural leaves much to be desired. In this paper, we present and discuss a novel approach to modeling, history matching of hydrocarbon production from a Marcellus shale asset in southwestern Pennsylvania using advanced data mining, pattern recognition and machine learning technologies. In this new approach instead of imposing our understanding of the flow mechanism, the impact of multi-stage hydraulic fractures, and the production process on the reservoir model, we allow the production history, well log, completion and hydraulic fracturing data to guide our model and determine its behavior. The uniqueness of this technology is that it incorporates the so-called “hard data” directly into the reservoir model, so that the model can be used to optimize the hydraulic fracture process. The “hard data” refers to field measurements during the hydraulic fracturing process such as fluid and proppant type and amount, injection pressure and rate as well as proppant concentration. This novel approach contrasts with the current industry focus on the use of “soft data” (non-measured, interpretive data such as frac length, width, height and conductivity in the reservoir models. The study focuses on a Marcellus shale asset that includes 135 wells with multiple pads, different landing targets, well length and reservoir properties. The full field history matching process was successfully completed using this data driven approach thus capturing the production behavior with acceptable accuracy for individual wells and for the entire asset.

  10. Final Report: Radiation-magnetohydrodynamic evolution and instability of conductors driven by megagauss magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Bruno, S.; Siemon, Richard, E.

    2008-10-22

    We are pleased to report important progress in experimentally characterizing and numerically modeling the transformation into plasma of walls subjected to pulsed megagauss magnetic fields. Understanding this is important to Magnetized Target Fusion (MTF) because an important limitation to the metal liner approach to MTF comes from the strong eddy current heating on the surface of the metal liner. This has intriguing non-linear aspects when the magnetic field is in the megagauss regime as needed for MTF, and may limit the magnetic field in an MTF implosion. Many faculty, students, and staff have contributed to this work, and, implicitly or explicitly, to this report. Contributors include, in addition to the PIs, Andrey Esaulov, Stephan Fuelling, Irvin Lindemuth, Volodymyr Makhin, Ioana Paraschiv, Milena Angelova, Tom Awe, Tasha Goodrich, Arunkumar Prasadam, Andrew Oxner, Bruno Le Galloudec, Radu Presura, and Vladimir Ivanov. Highlights of the progress made during the grant include: • 12 articles published, and 44 conference and workshop presentations made, on a broad range of issues related to this project; • An ongoing experiment that uses the 1 MA, 100-ns Zebra z-pinch at UNR to apply 2 5 megagauss to a variety of metal surfaces, examining plasma formation and evolution; • Numerical simulation studies of the 1-MA Zebra, and potential Shiva Star and Atlas experiments that include realistic equations of state and radiation effects, using a variety of tables. • Collaboration with other groups doing simulations of this experiment at LANL, VNIIEF, SNL, and NumerEx leading to a successful international workshop at UNR in the spring of 2008.

  11. Final Report: Radiation-magnetohydrodynamic evolution and instability of conductors driven by megagauss magnetic fields

    International Nuclear Information System (INIS)

    Bauer, Bruno S.; Siemon, Richard E.

    2008-01-01

    We are pleased to report important progress in experimentally characterizing and numerically modeling the transformation into plasma of walls subjected to pulsed megagauss magnetic fields. Understanding this is important to Magnetized Target Fusion (MTF) because an important limitation to the metal liner approach to MTF comes from the strong eddy current heating on the surface of the metal liner. This has intriguing non-linear aspects when the magnetic field is in the megagauss regime as needed for MTF, and may limit the magnetic field in an MTF implosion. Many faculty, students, and staff have contributed to this work, and, implicitly or explicitly, to this report. Contributors include, in addition to the PIs, Andrey Esaulov, Stephan Fuelling, Irvin Lindemuth, Volodymyr Makhin, Ioana Paraschiv, Milena Angelova, Tom Awe, Tasha Goodrich, Arunkumar Prasadam, Andrew Oxner, Bruno Le Galloudec, Radu Presura, and Vladimir Ivanov. Highlights of the progress made during the grant include: (1) 12 articles published, and 44 conference and workshop presentations made, on a broad range of issues related to this project; (2) An ongoing experiment that uses the 1 MA, 100-ns Zebra z-pinch at UNR to apply 2 5 megagauss to a variety of metal surfaces, examining plasma formation and evolution; (3) Numerical simulation studies of the 1-MA Zebra, and potential Shiva Star and Atlas experiments that include realistic equations of state and radiation effects, using a variety of tables; and (4) Collaboration with other groups doing simulations of this experiment at LANL, VNIIEF, SNL, and NumerEx leading to a successful international workshop at UNR in the spring of 2008.

  12. Dual transformations of the non-abelian fields in Minkowsky, Euclid, and Galilei-Newton spaces

    International Nuclear Information System (INIS)

    Tolkaehev, E.A.; Kurochkin, Y.A.; Trequbovich, A.Y.

    1991-01-01

    In this paper it is shown that the generalization of the Yang-Mills equations in Minkowsky space to the case of the biquaternions over dual and double numbers enables one to define the corresponding representations of the Galilei and SO(4) groups in a rather natural way. it makes construction of the non-Abelian field equations in Euclidean and Galilei-Newton spaces possible and proves their invariance under generalized dual transformations by use of the analogy with the Abelian gauge

  13. Analysis of reconstructed interference fields in digital holographic interferometry using the polynomial phase transform

    International Nuclear Information System (INIS)

    Gorthi, Sai Siva; Rastogi, Pramod

    2009-01-01

    A noisy wrapped phase map is the end-output of commonly employed phase estimation methods in digital holographic interferometry. Hence filtering and unwrapping are necessary to obtain continuous phase distributions. This paper introduces a new approach for phase estimation in digital holographic interferometry using the polynomial phase transform. The proposed approach directly provides an accurate estimation of the unwrapped phase distribution from a noisy reconstructed interference field, thereby bypassing cumbersome and error-prone filtering and 2D phase unwrapping procedures

  14. Full-field transmission-type angle-deviation optical microscope with reflectivity-height transformation.

    Science.gov (United States)

    Chiu, Ming-Hung; Tan, Chen-Tai; Tsai, Ming-Hung; Yang, Ya-Hsin

    2015-10-01

    This full-field transmission-type three-dimensional (3D) optical microscope is constructed based on the angle deviation method (ADM) and the algorithm of reflectivity-height transformation (RHT). The surface height is proportional to the deviation angle of light passing through the object. The angle deviation and surface height can be measured based on the reflectivity closed to the critical angle using a parallelogram prism and two CCDs.

  15. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    Science.gov (United States)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  16. Highly selective transformation of ammonia nitrogen to N2 based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions system.

    Science.gov (United States)

    Ji, Youzhi; Bai, Jing; Li, Jinhua; Luo, Tao; Qiao, Li; Zeng, Qingyi; Zhou, Baoxue

    2017-11-15

    A highly selective method for transforming ammonia nitrogen to N 2 was proposed, based on a novel solar-driven photoelectrocatalytic-chlorine radical reactions (PEC-chlorine) system. The PEC-chlorine system was facilitated by a visible light response WO 3 nanoplate array (NPA) electrode in an ammonia solution containing chloride ions (Cl - ). Under illumination, photoholes from WO 3 promote the oxidation of Cl - to chlorine radical (Cl). This radical can selectively transform ammonia nitrogen to N 2 (79.9%) and NO 3 - (19.2%), similar to the breakpoint chlorination reaction. The ammonia nitrogen removal efficiency increased from 10.6% (PEC without Cl - ) to 99.9% with the PEC-chlorine system within 90 min operation, which can be attributed to the cyclic reactions between Cl - /Cl and the reaction intermediates (NH 2 , NHCl, etc.) that expand the degradation reactions from the surface of the electrodes to the whole solution system. Moreover, Cl is the main radical species contributing to the transformation of ammonia nitrogen to N 2 , which is confirmed by the tBuOH capture experiment. Compared to conventional breakpoint chlorination, the PEC-chlorine system is a more economical and efficient means for ammonia nitrogen degradation because of the fast removal rate, no additional chlorine cost, and its use of clean energy (since it is solar-driven). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Remote sensing techniques to monitor nitrogen-driven carbon dynamics in field corn

    Science.gov (United States)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Petya K. E.; Huemmrich, K. Fred; Cheng, Yen-Ben; Daughtry, Craig S. T.

    2009-08-01

    Patterns of change in vegetation growth and condition are one of the primary indicators of the present and future ecological status of the globe. Nitrogen (N) is involved in photochemical processes and is one of the primary resources regulating plant growth. As a result, biological carbon (C) sequestration is driven by N availability. Large scale monitoring of photosynthetic processes are currently possible only with remote sensing systems that rely heavily on passive reflectance (R) information. Unlike R, fluorescence (F) emitted from chlorophyll is directly related to photochemical reactions and has been extensively used for the elucidation of the photosynthetic pathways. Recent advances in passive fluorescence instrumentation have made the remote acquisition of solar-induced fluorescence possible. The goal of this effort is to evaluate existing reflectance and emerging fluorescence methodologies for determining vegetation parameters related to photosynthetic function and carbon sequestration dynamics in plants. Field corn N treatment levels of 280, 140, 70, and 0 kg N / ha were sampled from an intensive test site for a multi-disciplinary project, Optimizing Production Inputs for Economic and Environmental Enhancement (OPE). Aircraft, near-ground, and leaf-level measurements were used to compare and contrast treatment effects within this experiment site assessed with both reflectance and fluorescence approaches. A number of spectral indices including the R derivative index D730/D705, the normalized difference of R750 vs. R705, and simple ratio R800/R750 differentiated three of the four N fertilization rates and yielded high correlations to three important carbon parameters: C:N, light use efficiency, and grain yield. These results advocate the application of hyperspectral sensors for remotely monitoring carbon cycle dynamics in terrestrial ecosystems.

  18. Reduced-rank approximations to the far-field transform in the gridded fast multipole method

    Science.gov (United States)

    Hesford, Andrew J.; Waag, Robert C.

    2011-05-01

    The fast multipole method (FMM) has been shown to have a reduced computational dependence on the size of finest-level groups of elements when the elements are positioned on a regular grid and FFT convolution is used to represent neighboring interactions. However, transformations between plane-wave expansions used for FMM interactions and pressure distributions used for neighboring interactions remain significant contributors to the cost of FMM computations when finest-level groups are large. The transformation operators, which are forward and inverse Fourier transforms with the wave space confined to the unit sphere, are smooth and well approximated using reduced-rank decompositions that further reduce the computational dependence of the FMM on finest-level group size. The adaptive cross approximation (ACA) is selected to represent the forward and adjoint far-field transformation operators required by the FMM. However, the actual error of the ACA is found to be greater than that predicted using traditional estimates, and the ACA generally performs worse than the approximation resulting from a truncated singular-value decomposition (SVD). To overcome these issues while avoiding the cost of a full-scale SVD, the ACA is employed with more stringent accuracy demands and recompressed using a reduced, truncated SVD. The results show a greatly reduced approximation error that performs comparably to the full-scale truncated SVD without degrading the asymptotic computational efficiency associated with ACA matrix assembly.

  19. A novel method for computation of the discrete Fourier transform over characteristic two finite field of even extension degree

    OpenAIRE

    Fedorenko, Sergei V.

    2011-01-01

    A novel method for computation of the discrete Fourier transform over a finite field with reduced multiplicative complexity is described. If the number of multiplications is to be minimized, then the novel method for the finite field of even extension degree is the best known method of the discrete Fourier transform computation. A constructive method of constructing for a cyclic convolution over a finite field is introduced.

  20. Data-driven robust control of the plasma rotational transform profile and normalized beta dynamics for advanced tokamak scenarios in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Shi, W.; Wehner, W.P.; Barton, J.E.; Boyer, M.D. [Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Schuster, E., E-mail: schuster@lehigh.edu [Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015 (United States); Moreau, D. [CEA, IRFM, F-13018 St Paul lez Durance (France); Walker, M.L.; Ferron, J.R.; Luce, T.C.; Humphreys, D.A.; Penaflor, B.G.; Johnson, R.D. [General Atomics, San Diego, CA 92121 (United States)

    2017-04-15

    A control-oriented, two-timescale, linear, dynamic, response model of the rotational transform ι profile and the normalized beta β{sub N} is proposed based on experimental data from the DIII-D tokamak. Dedicated system-identification experiments without feedback control have been carried out to generate data for the development of this model. The data-driven dynamic model, which is both device-specific and scenario-specific, represents the response of the ι profile and β{sub N} to the electric field due to induction as well as to the heating and current drive (H&CD) systems during the flat-top phase of an H-mode discharge in DIII-D. The control goal is to use both induction and the H&CD systems to locally regulate the plasma ι profile and β{sub N} around particular target values close to the reference state used for system identification. A singular value decomposition (SVD) of the plasma model at steady state is carried out to decouple the system and identify the most relevant control channels. A mixed-sensitivity robust control design problem is formulated based on the dynamic model to synthesize a stabilizing feedback controller without input constraints that minimizes the reference tracking error and rejects external disturbances with minimal control energy. The feedback controller is then augmented with an anti-windup compensator, which keeps the given controller well-behaved in the presence of magnitude constraints in the actuators and leaves the nominal closed-loop system unmodified when no saturation is present. The proposed controller represents one of the first feedback profile controllers integrating magnetic and kinetic variables ever implemented and experimentally tested in DIII-D. The preliminary experimental results presented in this work, although limited in number and constrained by actuator problems and design limitations, as it will be reported, show good progress towards routine current profile control in DIII-D and leave valuable lessons

  1. Task-Driven Optimization of Fluence Field and Regularization for Model-Based Iterative Reconstruction in Computed Tomography.

    Science.gov (United States)

    Gang, Grace J; Siewerdsen, Jeffrey H; Stayman, J Webster

    2017-12-01

    This paper presents a joint optimization of dynamic fluence field modulation (FFM) and regularization in quadratic penalized-likelihood reconstruction that maximizes a task-based imaging performance metric. We adopted a task-driven imaging framework for prospective designs of the imaging parameters. A maxi-min objective function was adopted to maximize the minimum detectability index ( ) throughout the image. The optimization algorithm alternates between FFM (represented by low-dimensional basis functions) and local regularization (including the regularization strength and directional penalty weights). The task-driven approach was compared with three FFM strategies commonly proposed for FBP reconstruction (as well as a task-driven TCM strategy) for a discrimination task in an abdomen phantom. The task-driven FFM assigned more fluence to less attenuating anteroposterior views and yielded approximately constant fluence behind the object. The optimal regularization was almost uniform throughout image. Furthermore, the task-driven FFM strategy redistribute fluence across detector elements in order to prescribe more fluence to the more attenuating central region of the phantom. Compared with all strategies, the task-driven FFM strategy not only improved minimum by at least 17.8%, but yielded higher over a large area inside the object. The optimal FFM was highly dependent on the amount of regularization, indicating the importance of a joint optimization. Sample reconstructions of simulated data generally support the performance estimates based on computed . The improvements in detectability show the potential of the task-driven imaging framework to improve imaging performance at a fixed dose, or, equivalently, to provide a similar level of performance at reduced dose.

  2. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil

    International Nuclear Information System (INIS)

    Hartung, Susen; Iwasaki, Masahide; Ogawa, Naoto; Kreuzig, Robert

    2013-01-01

    Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K d and K OC values were 15 and 298 L kg −1 for the Japanese tea field soil as well as 16 and 1610 L kg −1 for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L −1 . In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT 50 > 122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies. - Highlights: ► Laboratory tests on sorption, leaching, microbial and photo-induced microbial transformation were performed. ► Strong sorption was revealed by batch equilibrium and column tests. ► High persistence was found in aerobic biotransformation tests. ► An enhanced biotransformation by photo-induced impacts could not be confirmed. ► Field studies are necessary to elucidate fate and

  3. Shannon Entropy-Based Wavelet Transform Method for Autonomous Coherent Structure Identification in Fluid Flow Field Data

    Directory of Open Access Journals (Sweden)

    Kartik V. Bulusu

    2015-09-01

    Full Text Available The coherent secondary flow structures (i.e., swirling motions in a curved artery model possess a variety of spatio-temporal morphologies and can be encoded over an infinitely-wide range of wavelet scales. Wavelet analysis was applied to the following vorticity fields: (i a numerically-generated system of Oseen-type vortices for which the theoretical solution is known, used for bench marking and evaluation of the technique; and (ii experimental two-dimensional, particle image velocimetry data. The mother wavelet, a two-dimensional Ricker wavelet, can be dilated to infinitely large or infinitesimally small scales. We approached the problem of coherent structure detection by means of continuous wavelet transform (CWT and decomposition (or Shannon entropy. The main conclusion of this study is that the encoding of coherent secondary flow structures can be achieved by an optimal number of binary digits (or bits corresponding to an optimal wavelet scale. The optimal wavelet-scale search was driven by a decomposition entropy-based algorithmic approach and led to a threshold-free coherent structure detection method. The method presented in this paper was successfully utilized in the detection of secondary flow structures in three clinically-relevant blood flow scenarios involving the curved artery model under a carotid artery-inspired, pulsatile inflow condition. These scenarios were: (i a clean curved artery; (ii stent-implanted curved artery; and (iii an idealized Type IV stent fracture within the curved artery.

  4. Far-field high resolution effects and manipulating of electromagnetic waves based on transformation optics

    Science.gov (United States)

    Ji, XueBin; Zang, XiaoFei; Li, Zhou; Shi, Cheng; Chen, Lin; Cai, Bin; Zhu, YiMing

    2015-05-01

    Based on the transformation optics (TO) and the effective medium theory (EMT), a new illusion media with homogeneous and isotropic materials is proposed to realize the far-field high resolution effects. When two point sources with the separation distance of λ0 / 4 are covered with the illusion media (λ0 is the free-space wavelength), the corresponding far-field pattern is equivalent to the case of two point sources with the separation distance larger than λ0 / 2 in free space, leading to the far-field high resolution effects (in free space, the separation distance of λ0 / 4 is less than half-wavelength, and thus the two point sources cannot be distinguished from each other). Furthermore, such illusion media can be applied to design tunable high-directivity antenna and an angle-dependent floating carpet cloak. Full wave simulations are carried out to verify the performance of our device.

  5. High-order harmonic generation driven by inhomogeneous plasmonics fields spatially bounded: influence on the cut-off law

    Science.gov (United States)

    Neyra, E.; Videla, F.; Ciappina, M. F.; Pérez-Hernández, J. A.; Roso, L.; Lewenstein, M.; Torchia, G. A.

    2018-03-01

    We study high-order harmonic generation (HHG) in model atoms driven by plasmonic-enhanced fields. These fields result from the illumination of plasmonic nanostructures by few-cycle laser pulses. We demonstrate that the spatial inhomogeneous character of the laser electric field, in a form of Gaussian-shaped functions, leads to an unexpected relationship between the HHG cutoff and the laser wavelength. Precise description of the spatial form of the plasmonic-enhanced field allows us to predict this relationship. We combine the numerical solutions of the time-dependent Schrödinger equation (TDSE) with the plasmonic-enhanced electric fields obtained from 3D finite element simulations. We additionally employ classical simulations to supplement the TDSE outcomes and characterize the extended HHG spectra by means of their associated electron trajectories. A proper definition of the spatially inhomogeneous laser electric field is instrumental to accurately describe the underlying physics of HHG driven by plasmonic-enhanced fields. This characterization opens up new perspectives for HHG control with various experimental nano-setups.

  6. ROLE OF MAGNETIC FIELD STRENGTH AND NUMERICAL RESOLUTION IN SIMULATIONS OF THE HEAT-FLUX-DRIVEN BUOYANCY INSTABILITY

    International Nuclear Information System (INIS)

    Avara, Mark J.; Reynolds, Christopher S.; Bogdanović, Tamara

    2013-01-01

    The role played by magnetic fields in the intracluster medium (ICM) of galaxy clusters is complex. The weakly collisional nature of the ICM leads to thermal conduction that is channeled along field lines. This anisotropic heat conduction profoundly changes the instabilities of the ICM atmosphere, with convective stabilities being driven by temperature gradients of either sign. Here, we employ the Athena magnetohydrodynamic code to investigate the local non-linear behavior of the heat-flux-driven buoyancy instability (HBI) relevant in the cores of cooling-core clusters where the temperature increases with radius. We study a grid of two-dimensional simulations that span a large range of initial magnetic field strengths and numerical resolutions. For very weak initial fields, we recover the previously known result that the HBI wraps the field in the horizontal direction, thereby shutting off the heat flux. However, we find that simulations that begin with intermediate initial field strengths have a qualitatively different behavior, forming HBI-stable filaments that resist field-line wrapping and enable sustained vertical conductive heat flux at a level of 10%-25% of the Spitzer value. While astrophysical conclusions regarding the role of conduction in cooling cores require detailed global models, our local study proves that systems dominated by the HBI do not necessarily quench the conductive heat flux

  7. Jet outflow and open field line measurements on the C-2U advanced beam-driven field-reversed configuration plasma experiment.

    Science.gov (United States)

    Sheftman, D; Gupta, D; Roche, T; Thompson, M C; Giammanco, F; Conti, F; Marsili, P; Moreno, C D

    2016-11-01

    Knowledge and control of the axial outflow of plasma particles and energy along open-magnetic-field lines are of crucial importance to the stability and longevity of the advanced beam-driven field-reversed configuration plasma. An overview of the diagnostic methods used to perform measurements on the open field line plasma on C-2U is presented, including passive Doppler impurity spectroscopy, microwave interferometry, and triple Langmuir probe measurements. Results of these measurements provide the jet ion temperature and axial velocity, electron density, and high frequency density fluctuations.

  8. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field.

    Science.gov (United States)

    Wilkinson, John; Hooda, Peter S; Barker, James; Barton, Stephen; Swinden, Julian

    2017-12-01

    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  9. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field

    International Nuclear Information System (INIS)

    Wilkinson, John; Hooda, Peter S.; Barker, James; Barton, Stephen; Swinden, Julian

    2017-01-01

    Many of the products and drugs used commonly contain chemical components which may persist through sewage treatment works (STW) and eventually enter the aquatic environment as parent compounds, metabolites, or transformation products. Pharmaceuticals and personal care products (PPCPs) and other emerging contaminants (ECs) have been detected in waters (typically ng/L) as well as more recently bound to sediment and plastic particles (typically ng/g). Despite significant advancement of knowledge since the late 1990s, the fate of these contaminants/transformation products once introduced into the aquatic environment remains relatively unresolved. This review provides a unique focus on the fate of seven major groups of PPCPs/ECs in the aquatic environment, which is frequently not found in similar works which are often compound or topic-specific and limited in background knowledge. Key findings include: a) some replacements for regulation precluded/banned chemicals may be similarly persistent in the environment as those they replace, b) the adsorption of potentially bioactive chemicals to micro- and nanoplastics is a significant topic with risks to aquatic organisms potentially greater than previously thought, and c) micro-/nanoplastics are likely to remain of significant concern for centuries after regulatory limitations on their use become active due to the slow degradation of macro-plastics into smaller components. An interdisciplinary perspective on recent advances in the field is presented here in a unique way which highlights both the principle science and direction of research needed to elucidate the fate and transport patterns of aquatic PPCPs/ECs. Unlike similar reviews, which are often topic-specific, here we aim to present an overarching review of the field with focus on the occurrence, transformation and fate of emerging contaminants. Environmental presence of seven major classes of contaminants (analygesics, antibiotics, antineoplastics, beta

  10. Pressure, temperature, and electric field dependence of phase transformations in niobium modified 95/5 lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wen D.; Carlos Valadez, J.; Gallagher, John A.; Jo, Hwan R.; Lynch, Christopher S., E-mail: cslynch@seas.ucla.edu [Department of Mechanical and Aerospace Engineering, The University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, California 90095 (United States); Sahul, Raffi; Hackenberger, Wes [TRS Technologies, 2820 East College Avenue, State College, Pennsylvania 16801 (United States)

    2015-06-28

    Ceramic niobium modified 95/5 lead zirconate-lead titanate (PZT) undergoes a pressure induced ferroelectric to antiferroelectric phase transformation accompanied by an elimination of polarization and a volume reduction. Electric field and temperature drive the reverse transformation from the antiferroelectric to ferroelectric phase. The phase transformation was monitored under pressure, temperature, and electric field loading. Pressures and temperatures were varied in discrete steps from 0 MPa to 500 MPa and 25 °C to 125 °C, respectively. Cyclic bipolar electric fields were applied with peak amplitudes of up to 6 MV m{sup −1} at each pressure and temperature combination. The resulting electric displacement–electric field hysteresis loops were open “D” shaped at low pressure, characteristic of soft ferroelectric PZT. Just below the phase transformation pressure, the hysteresis loops took on an “S” shape, which split into a double hysteresis loop just above the phase transformation pressure. Far above the phase transformation pressure, when the applied electric field is insufficient to drive an antiferroelectric to ferroelectric phase transformation, the hysteresis loops collapse to linear dielectric behavior. Phase stability maps were generated from the experimental data at each of the temperature steps and used to form a three dimensional pressure–temperature–electric field phase diagram.

  11. Rate-independent dissipation in phase-field modelling of displacive transformations

    Science.gov (United States)

    Tůma, K.; Stupkiewicz, S.; Petryk, H.

    2018-05-01

    In this paper, rate-independent dissipation is introduced into the phase-field framework for modelling of displacive transformations, such as martensitic phase transformation and twinning. The finite-strain phase-field model developed recently by the present authors is here extended beyond the limitations of purely viscous dissipation. The variational formulation, in which the evolution problem is formulated as a constrained minimization problem for a global rate-potential, is enhanced by including a mixed-type dissipation potential that combines viscous and rate-independent contributions. Effective computational treatment of the resulting incremental problem of non-smooth optimization is developed by employing the augmented Lagrangian method. It is demonstrated that a single Lagrange multiplier field suffices to handle the dissipation potential vertex and simultaneously to enforce physical constraints on the order parameter. In this way, the initially non-smooth problem of evolution is converted into a smooth stationarity problem. The model is implemented in a finite-element code and applied to solve two- and three-dimensional boundary value problems representative for shape memory alloys.

  12. Effects of the pulse-driven magnetic field detuning on the calibration of coil constants while using noble gases

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2018-04-01

    Full Text Available In the calibration of coil constants using the Free Induction Decay (FID signal of noble gases, we analyse the effects of the pulse-driven magnetic field detuning on the calibration results. This method is based on the inverse relation between the π/2 pulse duration and its amplitude. We confirmed that obtaining a precise frequency is a prerequisite for ensuring the accuracy of research using the initial amplitude of the FID signal. In this paper, the spin dynamics of noble gases and its time-domain solution under the driving pulse have been discussed with regard to different detuning ranges. Experimental results are in good agreement with our theoretical predictions, which indicate the correctness of our theoretical deduction. Therefore, the frequency of the pulse-driven magnetic field is an important factor to the calibration of coil constants, it should be determined with a high degree of accuracy.

  13. Non-Abelian bosonization as a nonholonomic transformation from a flat to a curved field space

    International Nuclear Information System (INIS)

    Kleinert, H.

    1997-01-01

    There exists a simple rule by which path integrals for the motion of a point particle in a flat space can be transformed correctly into those in a curved space. This rule arose from well-established methods in the theory of plastic deformations, where crystals with defects are described mathematically by applying active nonholonomic coordinate transformations to ideal crystals. In the context of time-sliced path integrals, this has given rise to a quantum equivalence principle which determines the short-time action and functional integration measure of fluctuating orbits in spaces with curvature and torsion. The nonholonomic transformations have a nontrivial Jacobian which in curved spaces produces an additional energy proportional to the curvature scalar, thereby canceling an equal term found earlier by DeWitt in his formulation of Feynman close-quote s time-sliced path integral in curved space. The importance of this cancelation has been documented in various systems (H-atom, particle on the surface of a sphere, spinning top). Here we point out its relevance to the bosonization of a non-Abelian one-dimensional quantum field theory, whose fields live in a flat field space. The bosonized version is a quantum-mechanical path integral of a point particle moving in a space with constant curvature. The additional term introduced by the Jacobian is crucial for the identity between original and bosonized theory. A useful bosonization tool is the so-called Hubbard endash Stratonovich formula for which we find a nonabelian version. copyright 1997 Academic Press, Inc

  14. The thermo field transformation in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Vdovin, A.I.; Kosov, D.S.

    1993-01-01

    The method of extension of quasiparticle-phonon nuclear model to describe hot nuclei is proposed. For this aim the formalism of the thermo field dynamics is used. Following the main principles of the TFD we express the Hamiltonian of the QPM in terms of thermal quasiparticles. The coefficients of the corresponding transformation are determined by minimizing the grand thermodynamical potential of a hot nucleus in the thermal vacuum state. Then the RPA part of the thermal QPM Hamiltonian is extracted and the RPA equations are derived. They are in the agreement with the RPA equations derived by the Green function method and the equation of motion method. (author.). 15 refs

  15. Phase-field modelling and synchrotron validation of phase transformations in martensitic dual-phase steel

    International Nuclear Information System (INIS)

    Thiessen, R.G.; Sietsma, J.; Palmer, T.A.; Elmer, J.W.; Richardson, I.M.

    2007-01-01

    A thermodynamically based method to describe the phase transformations during heating and cooling of martensitic dual-phase steel has been developed, and in situ synchrotron measurements of phase transformations have been undertaken to support the model experimentally. Nucleation routines are governed by a novel implementation of the classical nucleation theory in a general phase-field code. Physically-based expressions for the temperature-dependent interface mobility and the driving forces for transformation have also been constructed. Modelling of martensite was accomplished by assuming a carbon supersaturation of the body-centred-cubic ferrite lattice. The simulations predict kinetic aspects of the austenite formation during heating and ferrite formation upon cooling. Simulations of partial austenitising thermal cycles predicted peak and retained austenite percentages of 38.2% and 6.7%, respectively, while measurements yielded peak and retained austenite percentages of 31.0% and 7.2% (±1%). Simulations of a complete austenitisation thermal cycle predicted the measured complete austenitisation and, upon cooling, a retained austenite percentage of 10.3% while 9.8% (±1%) retained austenite was measured

  16. Deviations from cooperative growth mode during eutectoid transformation: Insights from a phase-field approach

    International Nuclear Information System (INIS)

    Ankit, Kumar; Mukherjee, Rajdip; Mittnacht, Tobias; Nestler, Britta

    2014-01-01

    The non-cooperative eutectoid transformation relies on the presence of pre-existing cementite particles in the parent austenitic phase and yields a product, popularly known as the divorced eutectoid. Under isothermal conditions, two of the important parameters that influence the transformation mechanism and determine the final morphology are undercooling (below the A 1 temperature) and interparticle spacing. Although the criteria that govern the morphological transition from lamellar to divorced is experimentally well established, numerical studies giving a detailed exposition of the non-cooperative transformation mechanism have not been reported extensively. In the present work, we employ a multiphase-field model that uses thermodynamic information from the CALPHAD database to numerically simulate the pulling-away of the advancing ferrite–austenite interface from cementite, which results in a transition from lamellar to divorced eutectoid morphology in Fe–C alloy. We also identify the onset of a concurrent growth and coarsening regime at small interparticle spacing and low undercooling. We analyze the simulation results to unravel the essential physics behind this complex spatial and temporal evolution pathway and amend the existing criteria by constructing a Lamellar-Divorced-Coarsening (LDC) map

  17. Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO3

    International Nuclear Information System (INIS)

    Wang, Zhiyang; Hinterstein, Manuel; Daniels, John E.; Webber, Kyle G.; Hudspeth, Jessica M.

    2014-01-01

    An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO 3 at temperatures above the Curie point (T C ) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4 °C above T C . The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above T C , while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4 kV mm −1 ) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials.

  18. Onset of current-driven turbulence on application of a low toroidal electric field

    International Nuclear Information System (INIS)

    Nakamura, Yukio; Watanabe, Takechiyo; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Itoh, Satoshi

    1982-01-01

    The critical condition for current-driven instability excited in a turbulently-heated TRIAM-1 tokamak plasma is investigated experimentally. A resistive hump in the loop voltage, plasma density fluctuation and rapid increase in electron temperature in the skin layer are simultaneously observed when the electron drift velocity equals the critical drift velocity for low-frequency ion acoustic instability. (author)

  19. Onset of current-driven turbulence on application of a low toroidal electric field

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yukio; Watanabe, Takechiyo; Nagao, Akihiro; Nakamura, Kazuo; Hiraki, Naoji; Itoh, Satoshi [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1982-06-01

    The critical condition for current-driven instability excited in a turbulently-heated TRIAM-1 tokamak plasma is investigated experimentally. A resistive hump in the loop voltage, plasma density fluctuation and rapid increase in electron temperature in the skin layer are simultaneously observed when the electron drift velocity equals the critical drift velocity for low-frequency ion acoustic instability.

  20. Field transformations and the classical equation of motion in chiral perturbation theory

    International Nuclear Information System (INIS)

    Scherer, S.; Fearing, H.W.

    1995-01-01

    The construction of effective Lagrangians commonly involves the application of the ''classical equation of motion'' to eliminate redundant structures and thus generate the minimal number of independent terms. We investigate this procedure in the framework of chiral perturbation theory with particular emphasis on the new features which appear at O(p 6 ). The use of the ''classical equation of motion'' is interpreted in terms of field transformations. Such an interpretation is crucial if one wants to bring a given Lagrangian into a canonical form with a minimal number of terms. We emphasize that the application of field transformations leads to a modification of the coefficients of higher-order terms as well as eliminating structures, or what is equivalent, expressing certain structures in terms of already known different structures. This will become relevant once one considers the problem of expressing in canonical form a model effective interaction containing terms beyond next-to-leading order, i.e., beyond O(p 4 ). In such circumstances the naive application of the clasical equation of motion to simply drop terms, as is commonly done at lowest order, leads to subtle errors, which we discuss

  1. Thermodynamic and kinetic characteristics of the austenite-to-ferrite transformation under high magnetic field in medium carbon steel

    International Nuclear Information System (INIS)

    Zhang Yudong; He Changshu; Zhao Xiang; Zuo Liang; Esling, Claude

    2005-01-01

    The thermodynamic and kinetic characteristics of austenite-to-ferrite phase transformation in medium carbon steel in the high magnetic fields were investigated. Results showed that the magnetic field could obviously change the γ/α+γ phase equilibrium-by increasing the amount of ferrite obtained during cooling-and greatly accelerate the transformation. Thus the microstructure obtained under fast cooling with high magnetic field was still ferritic and pearlitic, while that obtained without the magnetic field under the same cooling conditions was bainitic. Exploration in this area contributes both to enriching the new theory on electromagnetic processing of materials (EPM) and in establishing new techniques for materials processing

  2. Theoretical study on the laser-driven ion-beam trace probe in toroidal devices with large poloidal magnetic field

    Science.gov (United States)

    Yang, X.; Xiao, C.; Chen, Y.; Xu, T.; Yu, Y.; Xu, M.; Wang, L.; Wang, X.; Lin, C.

    2018-03-01

    Recently, a new diagnostic method, Laser-driven Ion-beam Trace Probe (LITP), has been proposed to reconstruct 2D profiles of the poloidal magnetic field (Bp) and radial electric field (Er) in the tokamak devices. A linear assumption and test particle model were used in those reconstructions. In some toroidal devices such as the spherical tokamak and the Reversal Field Pinch (RFP), Bp is not small enough to meet the linear assumption. In those cases, the error of reconstruction increases quickly when Bp is larger than 10% of the toroidal magnetic field (Bt), and the previous test particle model may cause large error in the tomography process. Here a nonlinear reconstruction method is proposed for those cases. Preliminary numerical results show that LITP could be applied not only in tokamak devices, but also in other toroidal devices, such as the spherical tokamak, RFP, etc.

  3. Proton Radiography of Spontaneous Fields, Plasma Flows and Dynamics in X-Ray Driven Inertial-Confinement Fusion Implosions

    Science.gov (United States)

    Li, C. K.; Seguin, F. H.; Frenje, J. A.; Rosenberg, M.; Zylstra, A. B.; Rinderknecht, H. G.; Petrasso, R. D.; Amendt, P. A.; Landen, O. L.; Town, R. P. J.; Betti, R.; Knauer, J. P.; Meyerhofer, D. D.; Back, C. A.; Kilkenny, J. D.; Nikroo, A.

    2010-11-01

    Backlighting of x-ray-driven implosions in empty hohlraums with mono-energetic protons on the OMEGA laser facility has allowed a number of important phenomena to be observed. Several critical parameters were determined, including plasma flow, three types of spontaneous electric fields and megaGauss magnetic fields. These results provide insight into important issues in indirect-drive ICF. Even though the cavity is effectively a Faraday cage, the strong, local fields inside the hohlraum can affect laser-plasma instabilities, electron distributions and implosion symmetry. They are of fundamental scientific importance for a range of new experiments at the frontiers of high-energy-density physics. Future experiments designed to characterize the field formation and evolution in low-Z gas fill hohlraums will be discussed.

  4. Laboratory tests on sorption and transformation of the insecticide flubendiamide in Japanese tea field soil

    Energy Technology Data Exchange (ETDEWEB)

    Hartung, Susen [Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig (Germany); Iwasaki, Masahide; Ogawa, Naoto [Shizuoka University, Faculty of Agriculture, Department of Biological and Environmental Science, 836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Kreuzig, Robert, E-mail: r.kreuzig@tu-bs.de [Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry, Hagenring 30, 38106 Braunschweig (Germany)

    2013-01-15

    Flubendiamide belongs to the modern insecticides applied in Japanese tea cultivation to control smaller tea tortrix and tea leaf roller. Since fate and behavior in soil have been only monitored sparsely and fragmentarily until today, laboratory tests were performed on sorption, leaching, biotransformation and photo-induced biotransformation of flubendiamide in two different soils. In batch equilibrium tests, K{sub d} and K{sub OC} values were 15 and 298 L kg{sup −1} for the Japanese tea field soil as well as 16 and 1610 L kg{sup −1} for the German arable field soil classifying flubendiamide to be moderately mobile and slightly mobile, respectively. The affinity to the tea field soil was additionally confirmed by soil column tests where flubendiamide was predominantly retarded in the topsoil layers resulting in a percolate contamination of only 0.002 mg L{sup −1}. In the aerobic biotransformation tests, flubendiamide did not substantially disappear within the 122-d incubation period. Due to DT{sub 50} > 122 d, flubendiamide was assessed very persistent. Supplementary, photo-induced impacts on biotransformation were studied in a special laboratory irradiation system. Despite a 14-d irradiation period, photo-induced biotransformation in the tea field soil was not identifiable, neither by HPLC/DAD nor by LC/MS/MS. 3-d irradiation tests in photosensibilizing acetone, however, showed that the primary photo-transformation product desiodo-flubendiamide was formed. How far this photochemical reaction may also occur in soil of perennial tea plant stands, however, has to be checked in field studies. - Highlights: ► Laboratory tests on sorption, leaching, microbial and photo-induced microbial transformation were performed. ► Strong sorption was revealed by batch equilibrium and column tests. ► High persistence was found in aerobic biotransformation tests. ► An enhanced biotransformation by photo-induced impacts could not be confirmed. ► Field studies are

  5. Field-dependent BRST–antiBRST transformations in Yang–Mills and Gribov–Zwanziger theories

    Directory of Open Access Journals (Sweden)

    Pavel Yu. Moshin

    2014-11-01

    Full Text Available We introduce the notion of finite BRST–antiBRST transformations, both global and field-dependent, with a doublet λa, a=1,2, of anticommuting Grassmann parameters and find explicit Jacobians corresponding to these changes of variables in Yang–Mills theories. It turns out that the finite transformations are quadratic in their parameters. At the same time, exactly as in the case of finite field-dependent BRST transformations for the Yang–Mills vacuum functional, special field-dependent BRST–antiBRST transformations, with sa-potential parameters λa=saΛ induced by a finite even-valued functional Λ and by the anticommuting generators sa of BRST–antiBRST transformations, amount to a precise change of the gauge-fixing functional. This proves the independence of the vacuum functional under such BRST–antiBRST transformations. We present the form of transformation parameters that generates a change of the gauge in the path integral and evaluate it explicitly for connecting two arbitrary Rξ-like gauges. For arbitrary differentiable gauges, the finite field-dependent BRST–antiBRST transformations are used to generalize the Gribov horizon functional h, given in the Landau gauge, and being an additive extension of the Yang–Mills action by the Gribov horizon functional in the Gribov–Zwanziger model. This generalization is achieved in a manner consistent with the study of gauge independence. We also discuss an extension of finite BRST–antiBRST transformations to the case of general gauge theories and present an ansatz for such transformations.

  6. Effect of Annealing in Magnetic Field on Ferromagnetic Nanoparticle Formation in Cu-Al-Mn Alloy with Induced Martensite Transformation.

    Science.gov (United States)

    Titenko, Anatoliy; Demchenko, Lesya

    2016-12-01

    The paper considers the influence of aging of high-temperature phase on subsequent martensitic transformation in Cu-Al-Mn alloy. The morphology of behavior of martensitic transformation as a result of alloy aging under annealing in a constant magnetic field with different sample orientation relatively to the field direction and without field was studied for direct control of the processes of martensite induction at cooling. Temperature dependences of electrical resistance, magnetic susceptibility, and magnetization, as well as field dependences of magnetization, and phase composition were found. The tendency to the oriented growth of precipitated ferromagnetic phase nanoparticles in a direction of applied field and to an increase of their volume fraction under thermal magnetic treatment of material that favors a reversibility of induced martensitic transformation is observed.

  7. Transformation of AgCl nanoparticles in a sewer system — A field study

    Energy Technology Data Exchange (ETDEWEB)

    Kaegi, Ralf, E-mail: ralf.kaegi@eawag.ch [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Voegelin, Andreas; Sinnet, Brian [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Zuleeg, Steffen [KUSTER + HAGER Group, Oberstrasse 222, 9014 St. Gallen (Switzerland); Siegrist, Hansruedi [Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf (Switzerland); Burkhardt, Michael [HSR University of Applied Sciences, Institute of Environmental and Process Engineering (UMTEC), Oberseestrasse 10, 8640 Rapperswil (Switzerland)

    2015-12-01

    Silver nanoparticles (Ag-NP) are increasingly used in consumer products and their release during the use phase may negatively affect aquatic ecosystems. Research efforts, so far, have mainly addressed the application and use of metallic Ag(0)-NP. However, as shown by recent studies on the release of Ag from textiles, other forms of Ag, especially silver chloride (AgCl), are released in much larger quantities than metallic Ag(0). In this field study, we report the release of AgCl-NP from a point source (industrial laundry that applied AgCl-NP during a piloting phase over a period of several months to protect textiles from bacterial regrowth) to the public sewer system and investigate the transformation of Ag during its transport in the sewer system and in the municipal wastewater treatment plant (WWTP). During the study period, the laundry discharged ~ 85 g of Ag per day, which dominated the Ag loads in the sewer system from the respective catchment (72–95%) and the Ag in the digested WWTP sludge (67%). Combined results from electron microscopy and X-ray absorption spectroscopy revealed that the Ag discharged from the laundry to the sewer consisted of about one third AgCl and two thirds Ag{sub 2}S, both forms primarily occurring as nanoparticles with diameters < 100 nm. During the 800 m transport in the sewer channel to the nearby WWTP, corresponding to a travel time of ~ 30 min, the remaining AgCl was transformed into nanoparticulate Ag{sub 2}S. Ag{sub 2}S-NP also dominated the Ag speciation in the digested sludge. In line with results from earlier studies, the very low Ag concentrations measured in the effluent of the WWTP (< 0.5 μg L{sup −1}) confirmed the very high removal efficiency of Ag from the wastewater stream (> 95%). - Highlights: • First field study on the transformation of AgCl nanoparticles released from a point source into the municipal sewer system. • Transformation of AgCl-NP into Ag{sub 2}S already occurred during 30-min transport in the

  8. Absorption spectrum of a V-type three-level atom driven by a coherent field

    International Nuclear Information System (INIS)

    Dong Po; Tang, S.H.

    2002-01-01

    We examine the absorption of a weak probe beam by a laser driven V-type atom with a pair of closely lying excited levels, where both the driving and probe lasers interact simultaneously with the two transitions. The effects of quantum interference among decay channels on the absorption spectra are also investigated. We introduce dipole moments in the dressed-state representation and the Hamiltonian in terms of the dressed states describing the interaction between the probe and the atom. In the degenerate case, features similar to that of a driven two-level atomic system are found due to some dark transitions in the spontaneous emission and the fact that the probe beam only detects certain transitions. In the nondegenerate case, the absorption spectrum is strongly influenced by the degree of quantum interference, resulting in different line shapes for emission peaks, absorption peaks, and dispersionlike profiles. The effect of probe polarization on the absorption spectrum is also investigated

  9. Performance enhancement of high-field asymmetric waveform ion mobility spectrometry by applying differential-RF-driven operation mode.

    Science.gov (United States)

    Zeng, Yue; Tang, Fei; Zhai, Yadong; Wang, Xiaohao

    2017-09-01

    The traditional operation mode of high-field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) uses a one-way radio frequency (RF) voltage input as the dispersion voltage. This requires a high voltage input and limits power consumption reduction and miniaturization of instruments. With higher dispersion voltages or larger compensation voltages, there also exist problems such as low signal intensity or the fact that the dispersion voltage is no longer much larger than the compensation voltage. In this paper, a differential-RF-driven operation mode of FAIMS is proposed. The two-way RF is used to generate the dispersion field, and a phase difference is added between the two RFs to generate a single step waveform field. Theoretical analysis, and experimental results from an ethanol sample, showed that the peak positions of the ion spectra changed linearly (R 2 = 0.9992) with the phase difference of the two RFs in the differential-RF-driven mode and that the peak intensity of the ion spectrum could be enhanced by more than eight times for ethanol ions. In this way, it is possible to convert the ion spectrum peaks outside the separation or compensation voltage range into a detectable range, by changing the phase difference. To produce the same separation electric field, the high-voltage direct current input voltage can be maximally reduced to half of that in the traditional operation mode. Without changing the drift region size or drift condition, the differential-RF-driven operation mode can reduce power consumption, increase signal-to-noise ratio, extend the application range of the dispersion voltage and compensation voltage, and improve FAIMS detection performance.

  10. Theoretical investigation of field-line quality in a driven spheromak

    International Nuclear Information System (INIS)

    Cohen, R.H.; Cohen, B.I.; Berk, H.L.

    2003-01-01

    Theoretical studies aimed at predicting and diagnosing field-line quality in a spheromak are described. These include nonlinear 3-D MHD simulations, stability studies, analyses of confinement in spheromaks dominated by either open (stochastic) field lines or approximate flux surfaces, and a theory of fast electrons as a probe of field-line length. (author)

  11. Stress- and Magnetic Field-Induced Martensitic Transformation at Cryogenic Temperatures in Fe-Mn-Al-Ni Shape Memory Alloys

    Science.gov (United States)

    Xia, Ji; Xu, Xiao; Miyake, Atsushi; Kimura, Yuta; Omori, Toshihiro; Tokunaga, Masashi; Kainuma, Ryosuke

    2017-12-01

    Stress-induced and magnetic-field-induced martensitic transformation behaviors at low temperatures were investigated for Fe-Mn-Al-Ni alloys. The magnetic-field-induced reverse martensitic transformation was directly observed by in situ optical microscopy. Magnetization measurements under pulsed magnetic fields up to 50 T were carried out at temperatures between 4.2 and 125 K on a single-crystal sample; full magnetic-field-induced reverse martensitic transformation was confirmed at all tested temperatures. Compression tests from 10 to 100 K were conducted on a single-crystal sample; full shape recovery was obtained at all tested temperatures. It was found that the temperature dependence of both the critical stress and critical magnetic field is small and that the transformation hysteresis is less sensitive to temperature even at cryogenic temperatures. The temperature dependence of entropy change during martensitic transformation up to 100 K was then derived using the Clausius-Clapeyron relation with critical stresses and magnetic fields.

  12. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Science.gov (United States)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-05-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission.

  13. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duo, E-mail: zhangduo10@gmail.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023 (China); Li, Jiahua, E-mail: huajia_li@163.com [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ding, Chunling; Yang, Xiaoxue [Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-05-21

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  14. Control of spontaneous emission from a microwave-field-driven four-level atom in an anisotropic photonic crystal

    International Nuclear Information System (INIS)

    Zhang, Duo; Li, Jiahua; Ding, Chunling; Yang, Xiaoxue

    2012-01-01

    The spontaneous emission properties of a microwave-field-driven four-level atom embedded in anisotropic double-band photonic crystals (PCs) are investigated. We discuss the influences of the band-edge positions, Rabi frequency and detuning of the microwave field on the emission spectrum. It is found that several interesting features such as spectral-line enhancement, spectral-line suppression, spectral-line overlap, and multi-peak structures can be observed in the spectra. The proposed scheme can be achieved by use of a microwave-coupled field into hyperfine levels in rubidium atom confined in a photonic crystal. These theoretical investigations may provide more degrees of freedom to manipulate the atomic spontaneous emission. -- Highlights: ► Spontaneous emission properties of an atom embedded in PCs are investigated. ► Spectral-line enhancement, suppression and overlapping are observed. ► The results provide more degrees of freedom to control atomic spontaneous emission.

  15. T-duality transformation and universal structure of noncritical string field theory

    International Nuclear Information System (INIS)

    Asatani, T.; Kuroki, T.; Okawa, Y.; Sugino, F.; Yoneya, T.

    1997-01-01

    We discuss a T-duality transformation for the c=1/2 matrix model for the purpose of studying duality transformations in a possible toy example of nonperturbative frameworks of string theory. Our approach is to first investigate the scaling limit of the Schwinger-Dyson equations and the stochastic Hamiltonian in terms of the dual variables and then compare the results with those using the original spin variables. It is shown that the c=1/2 model in the scaling limit is T-duality symmetric in the sphere approximation. In the case of the standard two-matrix model, however, the duality symmetry is violated when the higher-genus effects are taken into account, due to the nonsymmetrical appearence of global Z 2 vector fields corresponding to nontrivial homology cycles. Some universal properties of the stochastic Hamiltonians which play an important role in discussing the scaling limit and have been discussed in a previous work by Sugino and Yoneya are refined in both the original and dual formulations. We also report a number of new explicit results for various amplitudes containing macroscopic loop operators. copyright 1997 The American Physical Society

  16. MOX fuel effective behaviour modeling by a micro-mechanical nonuniform transformation field analysis

    International Nuclear Information System (INIS)

    Largenton, R.

    2012-01-01

    The objective of this research thesis is to develop a modelling by scale change, based on the NTFA approach (Non uniform Transformation Field Analysis). These developments have been achieved on three-dimensional structures which are representative of the MOX fuel, and for local visco-elastic ageing behaviour with free deformations. First, the MOX fuel is represented by using existing methods to process and segment 2D experimental images. 2D information has been upgraded in 3D by a stereo-logic Saltykov method. Tools have been developed to represent and discretize (periodic 3D grid generator) a particulate multiphase composite representative of MOX. Developments made on the NTFA model and on the three-phase particulate composite have been theoretically and numerically studied. The model has then been validated by comparison with reference calculations performed in full field for the effective behaviour as well as for local fields for different test types (imposed strain rate, creep, relaxation, rotating). The approach is then compared with a recently developed homogenisation method: the semi-analytical 'incremental Mori-Tanka' model. Theoretical similarities are outlined. These methods are very fast in terms of CPU time, but the NTFA method remains the one giving the most information, and the most precise, but requires a more important preliminary work (mode identification) [fr

  17. Occupational exposure to magnetic fields from transformer stations and electric enclosures in Turkey.

    Science.gov (United States)

    Çam, Semra Tepe; Fırlarer, Arzu; Özden, Semih; Canseven, Ayşe G; Seyhan, Nesrin

    2011-06-01

    We aimed to provide a systematic evaluation of magnetic field (MF) exposure of staff working in the offices located above or close to transformer stations (TS) and electric enclosures (EE). Occupational short-term "spot" measurements with Narda EFA-300 and isotropic magnetic field probe were carried out in two National Banks and one Industrial Company having more than 500 employees. Extremely low-frequency (ELF) MFs up to several tens of μT were measured in the mentioned working environments. 25% of the measured MFs were found less than 0.3 μT, the background exposure level that staff receive at home, 75% were above 0.3 μT with the highest value of 6.8 μT. The mean and median personal exposures were calculated to be 1.19 μT and 0.56 μT, respectively. Most of the staff (83%) is under risk based on epidemiological studies that reported a statistically significant association between risk of leukemia and averaged magnetic fields of 0.2 μT or over. Results showed that risk evaluation should be considered to minimize the possibility of the workers being harmed due to exposure to work-related electromagnetic sources.

  18. Impact of high strength electromagnetic fields generated by Tesla transformer on plant cell ultrastructure

    Directory of Open Access Journals (Sweden)

    Anna Rusakova

    2017-09-01

    Full Text Available Non-thermal effects of direct electric fields and alternating electromagnetic fields (EMF have been successfully used in a number of studies and applications in agriculture and biotechnology. Among different kinds of high strength EMF generators, the Tesla transformer (TT is known as a widely applied, low cost, and troubleproof device, which generates EMF in the range of 2–8 MHz. Despite of a number of developed and perspective applications of high strength EMFs in agriculture and biotechnology, the EMFs generated by TT, as well as the 1–50 MHz range of high strength EMF still remain unexplored in the fields of plant physiology, ultrastructure studies and biochemistry. In this work, we have shown that TT-EMFs (4 MHz induced fast stem and petiole bending, disappearance of cell organelles, vacuolar membranes, and increase of a non-photochemical chlorophyll fluorescence quenching in petioles. It is intriguing that such fatal effects can be evoked in plants by EMFs which are well known as harmless for man at the applied strength and frequency.

  19. Modeling of Electric Field Around 100 MVA 150/20 KV Power Transformator Using Charge Simulation Method

    OpenAIRE

    Rachman, Noviadi Arief; Risdiyanto, Agus; Ramdan, Ade

    2013-01-01

    Charge Simulation Method is one of the field theory that can be used as an approach to calculate the electromagnetic distribution on the electrical conductor. This paper discussed electric field modeling around power transformator by using Matlab to find the safety distance. The safe distance threshold of the electric field to human health refers to WHO and SNI was 5 kV/m. The specification of the power transformator was three phases, 150/20 kV, and 100 MVA. The basic concept is to change the...

  20. Goal-driven selective attention in patients with right hemisphere lesions: how intact is the ipsilesional field?

    Science.gov (United States)

    Snow, Jacqueline C; Mattingley, Jason B

    2006-01-01

    Patients with right hemisphere (RH) lesions often display a spatial bias in attention towards the ipsilesional hemifield. The behavioural manifestations of this spatial bias are typically interpreted as reflecting increased or enhanced attention for stimuli within the 'intact' ipsilesional field, and impaired attentional functioning within the contralesional field. In the healthy brain, goal-driven and stimulus-driven attentional processes interact to determine which stimuli should be prioritized for selection. Although unilateral brain damage increases the relative attentional salience of stimuli within the ipsilesional field, it might also cause problems in filtering or attenuating task-irrelevant information. We examined whether goal-driven attention modulates the processing of ipsilesional and contralesional information in 6 patients with unilateral brain damage following RH stroke (5 male, 1 female; mean age 60.8 years) and a group of age and sex-matched controls. We used a flanker task in which participants made speeded judgements on a central target item (a coloured letter). On each trial the target was flanked by a coloured letter in the left and right hemifields. In separate blocks, participants were instructed to judge either the identity or the colour of the central target and to ignore the flankers. The flanker on one side could be congruent, incongruent or neutral with respect to the target, on either the letter or the colour dimension, whereas the flanker on the other side was always neutral on both dimensions. Healthy controls showed significant interference from incongruent flankers on either side. Crucially, however, this effect only occurred for the task-relevant dimension [F(2,10) = 24.60; P attention leads to unselective prioritization of all feature-based attributes of stimuli appearing within the ipsilesional hemifield, whether or not they are relevant to performance. Attentional selection for ipsilesional stimuli in disorders such as spatial

  1. Two-fluid and nonlinear effects of tearing and pressure-driven resistive modes in reversed field pinches

    International Nuclear Information System (INIS)

    Mirnov, V.V.

    2002-01-01

    Large-scale tearing instabilities have long been considered to underlie transport and dynamo processes in the reversed field pinch (RFP). The vast majority of theoretical and computational RFP work has focused on pressureless, single-fluid MHD in cylindrical plasmas driven solely by a toroidal electric field. We report results of five investigations covering two-fluid dynamos, toroidal nonlinear MHD computation, nonlinear computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on tearing instability, and the effect of pressure on resistive instability. The key findings are: (1) two-fluid dynamo arising from the Hall term is much larger than the standard MHD dynamo present in a single-fluid treatment, (2) geometric coupling from toroidicity precludes the occurrence of laminar single helicity states, except for nonreversed plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, although magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge resonant m=0 modes, which occur as spikes in experiment, and (5) pressure driven modes are resistive at low beta, only becoming ideal at extremely high beta. (author)

  2. Absolute atomic oxygen and nitrogen densities in radio-frequency driven atmospheric pressure cold plasmas: Synchrotron vacuum ultra-violet high-resolution Fourier-transform absorption measurements

    International Nuclear Information System (INIS)

    Niemi, K.; O'Connell, D.; Gans, T.; Oliveira, N. de; Joyeux, D.; Nahon, L.; Booth, J. P.

    2013-01-01

    Reactive atomic species play a key role in emerging cold atmospheric pressure plasma applications, in particular, in plasma medicine. Absolute densities of atomic oxygen and atomic nitrogen were measured in a radio-frequency driven non-equilibrium plasma operated at atmospheric pressure using vacuum ultra-violet (VUV) absorption spectroscopy. The experiment was conducted on the DESIRS synchrotron beamline using a unique VUV Fourier-transform spectrometer. Measurements were carried out in plasmas operated in helium with air-like N 2 /O 2 (4:1) admixtures. A maximum in the O-atom concentration of (9.1 ± 0.7)×10 20 m −3 was found at admixtures of 0.35 vol. %, while the N-atom concentration exhibits a maximum of (5.7 ± 0.4)×10 19 m −3 at 0.1 vol. %

  3. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    Science.gov (United States)

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  4. Interplay between temperature gradients field and C - E transformation in solidifying rolls

    Directory of Open Access Journals (Sweden)

    W. Wołczyński

    2009-07-01

    Full Text Available At first step of simulation a temperature field for solidifying cast steel and cast iron roll has been performed. The calculation does not take into account the convection in the liquid since convection has no influence on the proposed model for the localization of the C-E (columnar to equiaxed grains transformation. However, it allows to study the dynamics of temperature field temporal behavior in the middle of a mould. It is postulated that for the C-E transition a full accumulation of the heat in the mould has been observed (plateau at the T(t curve. The temporal range of plateau existence corresponds to the incubation time for the full equiaxed grains formation. At the second step of simulation temporal behavior of the temperature gradient field has been studied. Three ranges within temperature gradients field have been distinguished for the operating point situated at the middle of mould: a/ for the formation of columnar grains zone, ( and high temperature gradient 0>>T&0//>>∂∂−∂∂∂∂−∂∂>EttEtrTrT. T - temperature, r - roll radius. It is evident that the heat transfer across the mould decides on the temporal appearance of incubation during which the solidification is significantly arrested and competition between columnar and equiaxed growth occurs. Moreover solidification with positive temperature gradient transforms into solidification with negative temperature gradient (locally after the incubation. A simulation has been performed for the cast steel and cast iron rolls solidifying as in industry condition. Since the incubation divides the roll into to parts (first with columnar structure, second with equiaxed structure some experiments dealing with solidification have been made in laboratory scale. Finally, observations of the macrosegregation or microsegregation and phase or structure appearance in the cast iron ingot / roll (made in laboratory has also been done in order to confront them with theoretical predictions

  5. Modelling of Strains During SAW Surfacing Taking into Heat of the Weld in Temperature Field Description and Phase Transformations

    Science.gov (United States)

    Winczek, J.; Makles, K.; Gucwa, M.; Gnatowska, R.; Hatala, M.

    2017-08-01

    In the paper, the model of the thermal and structural strain calculation in a steel element during single-pass SAW surfacing is presented. The temperature field is described analytically assuming a bimodal volumetric model of heat source and a semi-infinite body model of the surfaced (rebuilt) workpiece. The electric arc is treated physically as one heat source. Part of the heat is transferred by the direct impact of the electric arc, while another part of the heat is transferred to the weld by the melted material of the electrode. Kinetics of phase transformations during heating is limited by temperature values at the beginning and at the end of austenitic transformation, while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagramand JMA-K law for diffusive transformations, and K-M law for martensitic transformation. Totalstrains equal to the sum ofthermaland structuralstrainsinduced by phasetransformationsin weldingcycle.

  6. Electromagnetic analysis of a superconducting transformer for high current characterization of cable in conduit conductors in background magnetic field

    Science.gov (United States)

    Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli

    2017-10-01

    A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.

  7. Modal description of longitudinal space-charge fields in pulse-driven free-electron devices

    Directory of Open Access Journals (Sweden)

    Yu. Lurie

    2010-05-01

    Full Text Available In pulsed-beam free-electron devices, longitudinal space-charge fields result in collective effects leading to an expansion of short electron bunches along their trajectory. This effect restricts an application of intense ultrashort electron pulses in free-electron radiation sources. A careful theoretical treatment is required in order to achieve an accurate description of the self-fields and the resulted electron beam dynamics. In this paper, longitudinal space-charge fields are considered in the framework of a three-dimensional, space-frequency approach. The model is based on the expansion of the total electromagnetic field (including self-fields in terms of transverse eigenmodes of the (cold cavity, in which the field is excited and propagates. The electromagnetic field, originally obtained in the model as a solution of the wave equation, is shown to satisfy also Gauss’s law. We applied the theory to derive an analytical expression for the longitudinal electric field of a pointlike charge, moving along a waveguide at a constant velocity. This enables consideration and study of the role played by different terms of the resulted expressions, such as components arising from forward and backward waves, propagating waves, and under cutoff frequencies, and so on. Possible simplifications in evaluation of longitudinal space-charge fields are discussed.

  8. Reversible structural transformation and enhanced performance of PEDOT:PSS-based hybrid solar cells driven by light intensity.

    Science.gov (United States)

    Thomas, Joseph Palathinkal; Srivastava, Saurabh; Zhao, Liyan; Abd-Ellah, Marwa; McGillivray, Donald; Kang, Jung Soo; Rahman, Md Anisur; Moghimi, Nafiseh; Heinig, Nina F; Leung, Kam Tong

    2015-04-15

    Hybrid solar cells made of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) and appropriate amounts of a cosolvent and a fluorosurfactant on planar n-type silicon substrates showed a photoconversion efficiency (PCE) of above 13%. These cells also exhibited stable, reproducible, and high external quantum efficiency (EQE) that was not sensitive to light-bias intensity (LBI). In contrast, solar cells made of pristine PSS showed low PCE and high EQE only under certain measurement conditions. The EQE was found to degrade with increasing LBI. Here we report that the LBI-sensitive variation of EQE of the low-PCE cells is related to a reversible structural transformation from a quinoid to a benzoid structure of PEDOT.

  9. Performance analysis on a new multi-effect distillation combined with an open absorption heat transformer driven by waste heat

    International Nuclear Information System (INIS)

    Zhang, Xiaodong; Hu, Dapeng; Li, Zhiyi

    2014-01-01

    In this paper, a new water distillation system, which consists of either a single- or multi-effect distiller combined with an open absorption heat transformer (OAHT), has been proposed. The new integrated system can be used for distilling waste water with high amounts of SiO 2 from heavy oil production, and the resultant distilled water can be supplied to steam boilers to produce high quality steam which in turn is injected into oil reservoirs to assist with heavy oil recovery. The thermodynamic cycle performances for these new integrated distillation systems were simulated based on the thermodynamic properties of the aqueous solution of LiBr as well as the mass and energy balance of the system. The results indicate that combined with OAHT, the waste heat at 70 °C can be elevated to 125 °C and thereby produce steam at 120 °C in the absorber, which is able to drive a four-effect distiller to produce distilled water. For a single-effect and four-effect distiller, the coefficients of performance (COP) are approximately 1.02 while the performance ratios are 2.19 and 5.72, respectively. Therefore, the four-effect distillation system combined with an OAHT is more thermally effective and is an ideal option to process the waste water in oilfields. -- Highlights: • A new absorption vapor compression distillation was proposed in present research. • An open absorption heat transformer has a coupled thermally evaporator and absorber. • Distillation of waste water with high content of SiO 2 from heavy oil production. • The waste heat of 70 °C can be elevated up to 125 °C and generate steam of 120 °C. • The waste heat is able to drive four-effect distillation to produce distilled water

  10. Energy Dissipation and Dynamics in Large Guide Field Turbulence Driven Reconnection at the Magnetopause

    Science.gov (United States)

    TenBarge, J. M.; Shay, M. A.; Sharma, P.; Juno, J.; Haggerty, C. C.; Drake, J. F.; Bhattacharjee, A.; Hakim, A.

    2017-12-01

    Turbulence and magnetic reconnection are the primary mechanisms responsible for the conversion of stored magnetic energy into particle energy in many space and astrophysical plasmas. The magnetospheric multiscale mission (MMS) has given us unprecedented access to high cadence particle and field data of turbulence and magnetic reconnection at earth's magnetopause. The observations include large guide field reconnection events generated within the turbulent magnetopause. Motivated by these observations, we present a study of large guide reconnection using the fully kinetic Eulerian Vlasov-Maxwell component of the Gkeyll simulation framework, and we also employ and compare with gyrokinetics to explore the asymptotically large guide field limit. In addition to studying the configuration space dynamics, we leverage the recently developed field-particle correlations to diagnose the dominant sources of dissipation and compare the results of the field-particle correlation to other energy dissipation measures.

  11. High-order sideband generation in a semiconductor quantum well driven by two orthogonal terahertz fields

    Science.gov (United States)

    Yan, Jie-Yun

    2017-08-01

    The theory of excitonic high-order sideband generation (HSG) in a semiconductor quantum well irradiated by two orthogonal terahertz (THz) fields (one frequency is an integral multiple of the other) is presented. The exact analytical solution to the sideband spectrum is given with the help of the generalized Bessel functions. As a special case, the HSG when the frequencies of these two THz fields are the same is derived and its dependence on the ellipticity of the THz field is discussed. The theory could explain the experiments, especially concerning the sensitive dependence of HSG signals on the ellipticity of the THz field: the signals are strong when the THz field has a linear polarization and totally vanish in case of a circular polarization. More interestingly, it was found that the strongest signal is not produced in the case of linear polarization for some sidebands. The theory is supported by numerical calculations.

  12. Physical transformations of iron oxide and silver nanoparticles from an intermediate scale field transport study

    Science.gov (United States)

    Emerson, Hilary P.; Hart, Ashley E.; Baldwin, Jonathon A.; Waterhouse, Tyler C.; Kitchens, Christopher L.; Mefford, O. Thompson; Powell, Brian A.

    2014-02-01

    In recent years, there has been increasing concern regarding the fate and transport of engineered nanoparticles (NPs) in environmental systems and the potential impacts on human and environmental health due to the exponential increase in commercial and industrial use worldwide. To date, there have been relatively few field-scale studies or laboratory-based studies on environmentally relevant soils examining the chemical/physical behavior of the NPs following release into natural systems. The objective of this research is to demonstrate the behavior and transformations of iron oxide and silver NPs with different capping ligands within the unsaturated zone. Here, we show that NP transport within the vadose zone is minimal primarily due to heteroaggregation with soil surface coatings with results that >99 % of the NPs remained within 5 cm of the original source after 1 year in intermediate-scale field lysimeters. These results suggest that transport may be overestimated when compared to previous laboratory-scale studies on pristine soils and pure minerals and that future work must incorporate more environmentally relevant parameters.

  13. Protein-Ligand Informatics Force Field (PLIff): Toward a Fully Knowledge Driven "Force Field" for Biomolecular Interactions.

    Science.gov (United States)

    Verdonk, Marcel L; Ludlow, R Frederick; Giangreco, Ilenia; Rathi, Prakash Chandra

    2016-07-28

    The Protein Data Bank (PDB) contains a wealth of data on nonbonded biomolecular interactions. If this information could be distilled down to nonbonded interaction potentials, these would have some key advantages over standard force fields. However, there are some important outstanding issues to address in order to do this successfully. This paper introduces the protein-ligand informatics "force field", PLIff, which begins to address these key challenges ( https://bitbucket.org/AstexUK/pli ). As a result of their knowledge-based nature, the next-generation nonbonded potentials that make up PLIff automatically capture a wide range of interaction types, including special interactions that are often poorly described by standard force fields. We illustrate how PLIff may be used in structure-based design applications, including interaction fields, fragment mapping, and protein-ligand docking. PLIff performs at least as well as state-of-the art scoring functions in terms of pose predictions and ranking compounds in a virtual screening context.

  14. Development of a numerical modelling tool for combined near field and far field wave transformations using a coupling of potential flow solvers

    DEFF Research Database (Denmark)

    Verbrugghe, Tim; Troch, Peter; Kortenhaus, Andreas

    2016-01-01

    Wave energy converters (WECs) need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC farm...... of a wave-structure interaction solver and a wave propagation model, both based on the potential flow theory. This paper discusses the coupling method and illustrates the functionality with a proof-of-concept. Additionally, a projection of the evolution of the numerical tool is given. It can be concluded...... is complex; it is difficult to simulate both near field and far field effects with a single numerical model, with relatively fast computing times. Within this research a numerical tool is developed to model near-field and far-field wave transformations caused by WECs. The tool is based on the coupling...

  15. Approximating a free-field blast environment in the test section of an explosively driven conical shock tube

    Science.gov (United States)

    Stewart, J. B.

    2018-02-01

    This paper presents experimental data on incident overpressures and the corresponding impulses obtained in the test section of an explosively driven 10° (full angle) conical shock tube. Due to the shock tube's steel walls approximating the boundary conditions seen by a spherical sector cut out of a detonating sphere of energetic material, a 5.3-g pentolite shock tube driver charge produces peak overpressures corresponding to a free-field detonation from an 816-g sphere of pentolite. The four test section geometries investigated in this paper (open air, cylindrical, 10° inscribed square frustum, and 10° circumscribed square frustum) provide a variety of different time histories for the incident overpressures and impulses, with a circumscribed square frustum yielding the best approximation of the estimated blast environment that would have been produced by a free-field detonation.

  16. Phase field study of interfacial diffusion-driven spheroidization in a composite comprized of two mutually insoluble phases

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Liang [Ames Laboratory; Russell, Alan [Ames Laboratory

    2014-03-27

    The phase field approach is a powerful computational technique to simulate morphological and microstructural evolution at the mesoscale. Spheroidization is a frequently observed morphological change of mesoscale heterogeneous structures during annealing. In this study, we used the diffuse interface phase field method to investigate the interfacial diffusion-driven spheroidization of cylindrical rod structures in a composite comprised of two mutually insoluble phases in a two-dimensional case. Perturbation of rod radius along a cylinder's axis has long been known to cause the necessary chemical potential gradient that drives spheroidization of the rod by Lord Rayleigh's instability theory. This theory indicates that a radius perturbation wavelength larger than the initial rod circumference would lead to cylindrical spheroidization. We investigated the effect of perturbation wavelength, interfacial energy, volume diffusion, phase composition, and interfacial percentage on the kinetics of spheroidization. The results match well with both the Rayleigh's instability criterion and experimental observations.

  17. Suppression of AGN-driven Turbulence by Magnetic Fields in a Magnetohydrodynamic Model of the Intracluster Medium

    Science.gov (United States)

    Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.

    2018-04-01

    We investigate the role of active galactic nucleus (AGN) feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work that neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency primarily arises because the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the intracluster medium (ICM) and 3D ideal magnetohydrodynamics (MHD) simulations, we examine the role of a large-scale magnetic field that is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from transitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for the observed feedback in galaxy clusters.

  18. Quick profile-reorganization driven by helical field perturbation for suppressing tokamak major disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Kawahata, K.; Ando, R.

    1986-09-01

    Disruptive behavior of magnetic field configuration leading to tokamak major disruption is found to be controlled by a mild ''mini-disruption'' which is induced by the compact external modular multipole-field coils with m = 3/n = 2 dominant helical field component in the JIPP T-IIU tokamak. This mini-disruption ergodizes the m = 2/n = 1 magnetic island quickly but mildly and then prevents the profile of electron temperature from flattening. This quick profile-reorganization is effective to avoid the two-step disruption (pre- and major disuptions) responsible for the chatastrophic current termination. (author)

  19. Blume-Capel ferromagnet driven by propagating and standing magnetic field wave: Dynamical modes and nonequilibrium phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Acharyya, Muktish, E-mail: muktish.physics@presiuniv.ac.in; Halder, Ajay, E-mail: ajay.rs@presiuniv.ac.in

    2017-03-15

    The dynamical responses of Blume-Capel (S=1) ferromagnet to the plane propagating (with fixed frequency and wavelength) and standing magnetic field waves are studied separately in two dimensions by extensive Monte Carlo simulation. Depending on the values of temperature, amplitude of the propagating magnetic field and the strength of anisotropy, two different dynamical phases are observed. For a fixed value of anisotropy and the amplitude of the propagating magnetic field, the system undergoes a dynamical phase transition from a driven spin wave propagating phase to a pinned or spin frozen state as the system is cooled down. The time averaged magnetisation over a full cycle of the propagating magnetic field plays the role of the dynamic order parameter. A comprehensive phase diagram is plotted in the plane formed by the amplitude of the propagating wave and the temperature of the system. It is found that the phase boundary shrinks inward as the anisotropy increases. The phase boundary, in the plane described by the strength of the anisotropy and temperature, is also drawn. This phase boundary was observed to shrink inward as the field amplitude increases. - Highlights: • The Blume-Capel ferromagnet in propagating and standing magnetic wave. • Monte Carlo single spin flip Metropolis algorithm is employed. • The dynamical modes are observed. • The nonequilibrium phase transitions are studied. • The phase boundaries are drawn.

  20. Measurements of the temporal onset of mega-Gauss magnetic fields in a laser-driven solenoid

    Science.gov (United States)

    Goyon, Clement; Polllock, B. B.; Turnbull, D. T.; Hazi, A.; Ross, J. S.; Mariscal, D. A.; Patankar, S.; Williams, G. J.; Farmer, W. A.; Moody, J. D.; Fujioka, S.; Law, K. F. F.

    2016-10-01

    We report on experimental results obtained at Omega EP showing a nearly linear increase of the B-field up to about 2 mega-Gauss in 0.75 ns in a 1 mm3 region. The field is generated using 1 TW of 351 nm laser power ( 8*1015 W/cm2) incident on a laser-driven solenoid target. The coil target converts about 1% of the laser energy into the B-field measured both inside and outside the coil using proton deflectometry with a grid and Faraday rotation of probe beam through SiO2 glass. Proton data indicates a current rise up to hundreds of kA with a spatial distribution in the Au solenoid conductor evolving in time. These results give insight into the generating mechanism of the current between the plates and the time behavior of the field. These experiments are motivated by recent efforts to understand and utilize High Energy Density (HED) plasmas in the presence of external magnetic fields in areas of research from Astrophysics to Inertial Confinement Fusion. We will describe the experimental results and scale them to a NIF hohlraum size. This work was performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  1. Current driven instabilities of the kinetic shear Alfven wave: application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-04-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer-Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 m -1 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  2. Field-driven sense elements for chirality-dependent domain wall detection and storage

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, S. R. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States); Unguris, J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-12-14

    A method for locally sensing and storing data of transverse domain wall chirality in planar nanowire logic and memory systems is presented. Patterned elements, in close proximity to the nanowires, respond to the asymmetry in the stray field from the domain wall to produce a chirality-dependent response. When a bias field is applied, a stray field-assisted reversal of the element magnetization results in a reversed remanent state, measurable by scanning electron microscopy with polarization analysis (SEMPA). The elements are designed as triangles with tips pointing toward the nanowire, allowing the shape anisotropy to be dominated by the base but having a portion with lower volume and lower energy barrier closest to the domain wall. Micromagnetic modeling assists in the design of the nanowire-triangle systems and experiments using SEMPA confirm the importance of aspect ratio and spacing given a constant bias field magnitude.

  3. Magnetic-field-driven electron transport in ferromagnetic/ insulator/semiconductor hybrid structures

    Science.gov (United States)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    Extremely large magnetotransport phenomena were found in the simple devices fabricated on base of the Me/SiO2/p-Si hybrid structures (where Me are Mn and Fe). These effects include gigantic magnetoimpedance (MI), dc magnetoresistance (MR) and the lateral magneto-photo-voltaic effect (LMPE). The MI and MR values exceed 106% in magnetic field about 0.2 T for Mn/SiO2/p-Si Schottky diode. LMPE observed in Fe/SiO2/p-Si lateral device reaches the value of 104% in a field of 1 T. We believe that in case with the Schottky diode MR and MI effects are originate from magnetic field influence on impact ionization process by two different ways. First, the trajectory of the electron is deflected by a magnetic field, which suppresses acquisition of kinetic energy and therefore impact ionization. Second, the magnetic field gives rise to shift of the acceptor energy levels in silicon to a higher energy. As a result, the activation energy for impact ionization significantly increases and consequently threshold voltage rises. Moreover, the second mechanism (acceptor level energy shifting in magnetic field) can be responsible for giant LMPE.

  4. Error field assessment from driven rotation of stable external kinks at EXTRAP-T2R reversed field pinch

    Science.gov (United States)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2013-04-01

    A new non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the EXTRAP-T2R reversed field pinch. Stable and marginally stable external kink modes of toroidal mode number n = 10 and n = 8, respectively, were generated, and their rotation sustained, by means of rotating magnetic perturbations of the same n. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the kink modes were observed to rotate non-uniformly and be modulated in amplitude. This behaviour was used to precisely infer the amplitude and approximately estimate the toroidal phase of the EF. A subsequent scan permitted to optimize the toroidal phase. The technique was tested against deliberately applied as well as intrinsic EFs of n = 8 and 10. Corrections equal and opposite to the estimated error fields were applied. The efficacy of the error compensation was indicated by the increased discharge duration and more uniform mode rotation in response to a uniformly rotating perturbation. The results are in good agreement with theory, and the extension to lower n, to tearing modes and to tokamaks, including ITER, is discussed.

  5. Transformative piezoelectric enhancement of P(VDF-TrFE) synergistically driven by nanoscale dimensional reduction and thermal treatment.

    Science.gov (United States)

    Ico, G; Myung, A; Kim, B S; Myung, N V; Nam, J

    2018-02-08

    Despite the significant potential of organic piezoelectric materials in the electro-mechanical or mechano-electrical applications that require light and flexible material properties, the intrinsically low piezoelectric performance as compared to traditional inorganic materials has limited their full utilization. In this study, we demonstrate that dimensional reduction of poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) at the nanoscale by electrospinning, combined with an appropriate thermal treatment, induces a transformative enhancement in piezoelectric performance. Specifically, the piezoelectric coefficient (d 33 ) reached up to -108 pm V -1 , approaching that of inorganic counterparts. Electrospun mats composed of thermo-treated 30 nm nanofibers with a thickness of 15 μm produced a consistent peak-to-peak voltage of 38.5 V and a power output of 74.1 μW at a strain of 0.26% while sustaining energy production over 10k repeated actuations. The exceptional piezoelectric performance was realized by the enhancement of piezoelectric dipole alignment and the materialization of flexoelectricity, both from the synergistic effects of dimensional reduction and thermal treatment. Our findings suggest that dimensionally controlled and thermally treated electrospun P(VDF-TrFE) nanofibers provide an opportunity to exploit their flexibility and durability for mechanically challenging applications while matching the piezoelectric performance of brittle, inorganic piezoelectric materials.

  6. High resolution Slovak Bouguer gravity anomaly map and its enhanced derivative transformations: new possibilities for interpretation of anomalous gravity fields

    Science.gov (United States)

    Pašteka, Roman; Zahorec, Pavol; Kušnirák, David; Bošanský, Marián; Papčo, Juraj; Szalaiová, Viktória; Krajňák, Martin; Ivan, Marušiak; Mikuška, Ján; Bielik, Miroslav

    2017-06-01

    The paper deals with the revision and enrichment of the present gravimetric database of the Slovak Republic. The output of this process is a new version of the complete Bouguer anomaly (CBA) field on our territory. Thanks to the taking into account of more accurate terrain corrections, this field has significantly higher quality and higher resolution capabilities. The excellent features of this map will allow us to re-evaluate and improve the qualitative interpretation of the gravity field when researching the structural and tectonic geology of the Western Carpathian lithosphere. In the contribution we also analyse the field of the new CBA based on the properties of various transformed fields - in particular the horizontal gradient, which by its local maximums defines important density boundaries in the lateral direction. All original and new transformed maps make a significant contribution to improving the geological interpretation of the CBA field. Except for the horizontal gradient field, we are also interested in a new special transformation of TDXAS, which excellently separates various detected anomalies of gravity field and improves their lateral delimitation.

  7. A Transformative Undergraduate Field Trip to the Grand Canyon and Death Valley

    Science.gov (United States)

    Smith, J. A.

    2014-12-01

    Seeing the iconic Grand Canyon and Death Valley in person is a transformative experience for most geologists, including nine undergraduate geology students from upstate New York. The students were enrolled in a one-credit course designed around a nine-day spring-break field trip to Grand Canyon National Park (GCNP) and Death Valley National Park (DVNP). We met once a week before the trip to plan day-to-day activities and discuss background geologic information. Students selected a research topic related to our itinerary and wrote a guidebook entry for the topic. Students' entries were combined with papers, maps, and background material to make a guidebook. The printed guidebooks provided students with a "publication" of their work to show to others and refer to in the field. The nine-day field trip started with a flight into Las Vegas, NV, on 3/1/14. We spent three nights camping at the South Rim of the Grand Canyon, one night camping in Valley of Fire State Park (VOFSP, 55 mi N of Las Vegas), and three nights staying at the Shoshone Education and Research Center (SHEAR) east of Death Valley. Highlights of the trip included the hike along the Bright Angel Trail (and fault) to Plateau Point and recognition of the Great Unconformity at GCNP; the White Domes loop hike, camping at the Beehives, and observation of the Muddy Mountain Overthrust in VOFSP; and hikes at Ubehebe Crater, Badwater Salt Flat, and Natural Bridge Canyon in DVNP. Each student presented his/her research topic at a pertinent point in the field trip; students were impressively well-prepared. One requirement of the course was a poster presentation on each student's research topic at our Undergraduate Research Symposium in April. For most of the students, the poster session was the first experience preparing and presenting a poster. In addition, the class gave a joint colloquium presentation to several hundred science majors and a number of science faculty at Saint Rose. Each student spoke for five

  8. Molecular dynamics for irradiation driven chemistry

    DEFF Research Database (Denmark)

    Sushko, Gennady B.; Solov'yov, Ilia A.; Solov'yov, Andrey V.

    2016-01-01

    A new molecular dynamics (MD) approach for computer simulations of irradiation driven chemical transformations of complex molecular systems is suggested. The approach is based on the fact that irradiation induced quantum transformations can often be treated as random, fast and local processes...... that describe the classical MD of complex molecular systems under irradiation. The proposed irradiation driven molecular dynamics (IDMD) methodology is designed for the molecular level description of the irradiation driven chemistry. The IDMD approach is implemented into the MBN Explorer software package...... involving small molecules or molecular fragments. We advocate that the quantum transformations, such as molecular bond breaks, creation and annihilation of dangling bonds, electronic charge redistributions, changes in molecular topologies, etc., could be incorporated locally into the molecular force fields...

  9. Risk-Based, Hypothesis-Driven Framework for Hydrological Field Campaigns with Case Studies

    Science.gov (United States)

    Harken, B.; Rubin, Y.

    2014-12-01

    There are several stages in any hydrological modeling campaign, including: formulation and analysis of a priori information, data acquisition through field campaigns, inverse modeling, and prediction of some environmental performance metric (EPM). The EPM being predicted could be, for example, contaminant concentration or plume travel time. These predictions often have significant bearing on a decision that must be made. Examples include: how to allocate limited remediation resources between contaminated groundwater sites or where to place a waste repository site. Answering such questions depends on predictions of EPMs using forward models as well as levels of uncertainty related to these predictions. Uncertainty in EPM predictions stems from uncertainty in model parameters, which can be reduced by measurements taken in field campaigns. The costly nature of field measurements motivates a rational basis for determining a measurement strategy that is optimal with respect to the uncertainty in the EPM prediction. The tool of hypothesis testing allows this uncertainty to be quantified by computing the significance of the test resulting from a proposed field campaign. The significance of the test gives a rational basis for determining the optimality of a proposed field campaign. This hypothesis testing framework is demonstrated and discussed using various synthetic case studies. This study involves contaminated aquifers where a decision must be made based on prediction of when a contaminant will arrive at a specified location. The EPM, in this case contaminant travel time, is cast into the hypothesis testing framework. The null hypothesis states that the contaminant plume will arrive at the specified location before a critical amount of time passes, and the alternative hypothesis states that the plume will arrive after the critical time passes. The optimality of different field campaigns is assessed by computing the significance of the test resulting from each one

  10. Modeling of Electric Field Around 100 MVA 150/20 kV Power Transformator using Charge Simulation Method

    Directory of Open Access Journals (Sweden)

    Noviadi Arief Rachman

    2013-07-01

    Full Text Available Charge Simulation Method is one of the field theory that can be used as an approach to calculate the electromagnetic distribution on the electrical conductor. This paper discussed electric field modeling around power transformator by using Matlab to find the safety distance. The safe distance threshold of the electric field to human health refers to WHO and SNI was 5 kV/m. The specification of the power transformator was three phases, 150/20 kV, and 100 MVA. The basic concept is to change the distribution charge on the conductor or dielectric polarization charge with a set of discrete fictitious charge. The value of discrete fictitious charge was equivalent to the potential value of the conductor, and became a reference to calculate the electric field around the surface contour of the selected power transformator. The measurement distance was 5 meter on each side of the transformator surface. The results showed that the magnitude of the electric field at the front side was 5541 V/m, exceeding the safety limits.

  11. Identification of BKCa channel openers by molecular field alignment and patent data-driven analysis

    Directory of Open Access Journals (Sweden)

    Yaseen Gigani

    2016-01-01

    Full Text Available In this work, we present the first comprehensive molecular field analysis of patent structures on how the chemical structure of drugs impacts the biological binding. This task was formulated as searching for drug structures to reveal shared effects of substitutions across a common scaffold and the chemical features that may be responsible. We used the SureChEMBL patent database, which provides search of the patent literature using keyword-based functionality, as a query engine. The extraction of data of the BKCa channel openers and aligning them for molecular field similarity with newly designed structures did provide a probable validation method with accurate values. Therefore, in an attempt to increase the true positives, we report a procedure that functions on a multiple analyses modeled on molecular field similarity and common sub-structural search with consensus scoring and high confidence values to obtain greater accuracy during conventional virtual screening.

  12. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    Science.gov (United States)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  13. Pilot study of extremely low frequency magnetic fields emitted by transformers in dwellings. Social aspects.

    Science.gov (United States)

    Zaryabova, Victoria; Shalamanova, Tsvetelina; Israel, Michel

    2013-06-01

    A large number of epidemiologic studies examining the potential effect of residential exposure to extremely-low frequency (ELF) magnetic fields and childhood leukemia have been published. Two pooled analyses [Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M, et al. (2000). A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 83(5):692-698; Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh AM (2000). A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology. 11(6):624-634], which included the major epidemiologic studies on ELF magnetic fields and childhood leukemia showed twofold increase in childhood leukemia risk in association with residential ELF exposure above 0.3-0.4 μT. Based on "limited" epidemiologic evidence linking ELF exposure to childhood leukemia and "inadequate evidence" for carcinogenicity of ELF in rodent bioassays, the International Agency for Research on Cancer (IARC) classified ELF magnetic fields as a possible human carcinogen (2B classification) [International Agency for Research on Cancer (IARC) (2002). Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 80. IARC Press: Lyon], confirmed by WHO on the basis of studies published after 2000 [World Health Organization. Extremely low frequency fields. In: 238 Environmental health criteria, Geneva: WHO; 2007]. The analysis of more recent studies of ELF magnetic fields and childhood leukemia had small findings and propose methodological improvements concerning the uncertainties in epidemiological approaches and exposure assessment, bias in selection of controls [Kheifets L, Oksuzyan S (2008). Exposure assessment and other challenges in non-ionizing radiation studies of childhood leukaemia. Radiat Prot Dosimetry. 132(2):139-147]. By the end of 2010, 37 countries had been identified for possible participation

  14. Transformative consumer research: Its origins and possible enrichment of the field of consumer research in South Africa

    Directory of Open Access Journals (Sweden)

    Leona M. Ungerer

    2014-06-01

    Research purpose: The purpose of this study is to explore the principles underlying transformative consumer research, including how it differs from traditional research methods and pointing out some established research areas in this field. Motivation for the study: Apart from pointing to a lack of literature, this article highlights the relevance of this approach for emerging countries by investigating the principles and practices embedded in transformative consumer research. It provides some indication of how an investigation of these areas may contribute to enhancing the relevance of consumer research to its various stakeholders. Research design, approach and method: The author used a literature review to conduct the study. Main findings: It appears that consumer research currently lacks external and internal relevance. A transformative consumer-research approach may address some of the fundamental problems in the way consumer psychologists plan and conduct their research, contributing to this lack of relevance. Practical/managerial implications: Most stages of the traditional research approach may need to be adapted for transformative research purposes. Some approaches appear particularly suited to transformative consumer research, including revelatory, incendiary, policy, participatory and coalition research. Contribution/value-add: This study’s primary contribution stems from suggesting a rather novel additional approach to enhance the relevance of consumer research in South Africa, pointing out some established practices in the field of transformative consumer research and suggesting how they may augment consumer research in South Africa.

  15. Field Performance of Inverter-Driven Heat Pumps in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, James [Consortium of Advanced Residential Buildings, Norwalk, CT (United States); Aldrich, Robb [Consortium of Advanced Residential Buildings, Norwalk, CT (United States)

    2015-08-19

    Traditionally, air-source heat pumps (ASHPs) have been used more often in warmer climates; however, some new ASHPs are gaining ground in colder areas. These systems operate at subzero (Fahrenheit) temperatures and many do not include backup electric resistance elements. There are still uncertainties, however, about capacity and efficiency in cold weather. Also, questions such as “how cold is too cold?” do not have clear answers. These uncertainties could lead to skepticism among homeowners; poor energy savings estimates; suboptimal system selection by heating, ventilating, and air-conditioning contractors; and inconsistent energy modeling. In an effort to better understand and characterize the heating performance of these units in cold climates, the U.S. Department of Energy Building America team, Consortium for Advanced Residential Buildings (CARB), monitored seven inverter-driven, ductless ASHPs across the Northeast. Operating data were collected for three Mitsubishi FE18 units, three Mitsubishi FE12 units, and one Fujitsu 15RLS2 unit. The intent of this research was to assess heat output, electricity consumption, and coefficients of performance (COPs) at various temperatures and load conditions. This assessment was accomplished with long- and short-term tests that measured power consumption; supply, return, and outdoor air temperatures; and airflow through the indoor fan coil.

  16. Model of a source-driven plasma interacting with a wall in an oblique magnetic field

    International Nuclear Information System (INIS)

    Ahedo, E.; Carralero, D.

    2009-01-01

    A fluid model of a magnetized source-driven plasma is discussed for regimes with (Debye length)<<(ion Larmor radius)<<(plasma size and collisional mean-free path). Plasma collection by the wall is determined in terms of angle of incidence, magnetic strength, and plasma collisionality. For nonparallel incidence, a three-scale asymptotic analysis reveals a three-region matched structure consisting of a magnetically aligned bulk region, the Chodura layer, and the Debye sheath. Sonic Chodura and Bohm conditions define the singular region transitions. For near-parallel incidence, a separate analysis demonstrates the presence of a diffusive-collisional bulk region followed by a thin collisionless layer, which differs partially from the Chodura layer. A parametric analysis unveils the presence of four regimes depending on plasma collisionality: (1) a collisionless regime, with the magnetically channeled bulk region governed by plasma production; (2) a resistive semicollisional regime, where collisions retard the plasma transport in the bulk region; (3) a diffusive semicollisional regime, where the ExB drift dominates the ion flux in the bulk region; and (4) a collisional regime, where collisions cancel out magnetic effects. At grazing incidence, plasma collection is found to vary nonmonotonically with plasma collisionality. Nonzero Debye-length effects are discussed briefly.

  17. An adaptive, data driven sound field control strategy for outdoor concerts

    DEFF Research Database (Denmark)

    Heuchel, Franz Maria; Caviedes Nozal, Diego; Brunskog, Jonas

    2017-01-01

    One challenge of outdoor concerts is to ensure adequate levels for the audience while avoiding disturbance of the surroundings. We outline the initial concept of a sound field control (SFC) system for tackling this issue using sound-zoning. The system uses Bayesian inference to update a sound...

  18. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek; Park, Daegeun; Cha, Min; Park, Jeong; Chung, Suk-Ho

    2016-01-01

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames

  19. Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions

    International Nuclear Information System (INIS)

    Williams, George J.; Gilland, James H.

    2009-01-01

    The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I SP (>10 5 s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

  20. Excitation kinetics of impurity doped quantum dot driven by Gaussian white noise: Interplay with external field

    International Nuclear Information System (INIS)

    Pal, Suvajit; Sinha, Sudarson Sekhar; Ganguly, Jayanta; Ghosh, Manas

    2013-01-01

    Highlights: • The excitation kinetics of impurity doped quantum dot has been investigated. • The dot is subject to Gaussian white noise. • External oscillatory field is also applied. • Noise strength and field intensity fabricate the kinetics. • Role of dopant location has also been analyzed. - Abstract: We investigate the excitation kinetics of a repulsive impurity doped quantum dot initiated by simultaneous application of Gaussian white noise and external sinusoidal field. We have considered both additive and multiplicative noise (in Stratonovich sense). The combined influences of noise strength (ζ) and the field intensity (∊) have been capsuled by invoking their ratio (η). The said ratio and the dopant location have been found to fabricate the kinetics in a delicate way. Moreover, the influences of additive and multiplicative nature of the noise on the excitation kinetics have been observed to be widely different. The investigation reveals emergence of maximization/minimization and saturation in the excitation kinetics as a result of complex interplay between η and the dopant coordinate (r 0 ). The present investigation is believed to provide some useful insights in the functioning of mesoscopic devices where noise plays some significant role

  1. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    International Nuclear Information System (INIS)

    Woodruff, S.; Cohen, B.I.; Hooper, E.B.; Mclean, H.S.; Stallard, B.W.; Hill, D.N.; Holcomb, C.T.; Romero-Talamas, C.; Wood, R.D.; Cone, G.; Sovinec, C.R.

    2005-01-01

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (δB/B∼1% on the midplane edge) yields T e profiles peaked at >200 eV. Trends indicate a limiting beta (β e ∼4%-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with δB/B∼2% and large voltage fluctuations (δV∼1 kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7 T along the geometric axis). By increasing the time between pulses, a quasisteady sustainment is produced (with periodic good confinement), comparing well with resistive magnetohydrodynamic simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  2. Controlled and Spontaneous Magnetic Field Generation in a Gun-Driven Spheromak

    International Nuclear Information System (INIS)

    Woodruff, S; Cohen, B I; Hooper, E B; McLean, H S; Stallard, B W; Hill, D N; Holcomb, C T; Romero-Talamas, C; Wood, R D; Cone, G; Sovinec, C R

    2005-04-01

    In the Sustained Spheromak Physics Experiment, SSPX, progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1-m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations ((delta)B/B∼1% on the midplane edge) yields T e profiles peaked at > 200eV. Trends indicate a limiting beta (β e ∼ 4-6%), and so we have been motivated to increase T e by operating with stronger magnetic field. Two new operating modes are observed to increase the magnetic field: (A) Operation with constant current and spontaneous gun voltage fluctuations. In this case, the gun is operated continuously at the threshold for ejection of plasma from the gun: stored magnetic energy of the spheromak increases gradually with (delta)B/B ∼2% and large voltage fluctuations ((delta)V ∼ 1kV), giving a 50% increase in current amplification, I tor /I gun . (B) Operation with controlled current pulses. In this case, spheromak magnetic energy increases in a stepwise fashion by pulsing the gun, giving the highest magnetic fields observed for SSPX (∼0.7T along the geometric axis). By increasing the time between pulses, a quasi-steady sustainment is produced (with periodic good confinement), comparing well with resistive MHD simulations. In each case, the processes that transport the helicity into the spheromak are inductive and exhibit a scaling of field with current that exceeds those previously obtained. We use our newly found scaling to suggest how to achieve higher temperatures with a series of pulses

  3. Effect of eddy currents in the toroidal field coils of a tokamak with an air-core transformer

    International Nuclear Information System (INIS)

    Tani, Keiji; Kobayashi, Tomofumi; Tamura, Sanae

    1975-02-01

    The effect of eddy currents in the copper parts of the toroidal field coils is evaluated for a tokamak with the air-core transformer windings located inside the bore of the toroidal field coils. By introducing appropriate weights to the solutions obtained for a simplified cylindrical model, calculation is made of the induction toroidal electric field on the plasma axis in the presence of the eddy currents. The result shows that, to reduce the influence of the eddy currents on the induction one-turn voltage to the permissible level, it is necessary to choose the optimal number of turns and shape of the single conductor of the toroidal field coil. (auth.)

  4. Stability of transgene expression, field performance and recombination breeding of transformed barley lines

    DEFF Research Database (Denmark)

    Horvath, H.; Jensen, L.G.; Wong, O.T.

    2001-01-01

    in homozygous transgenic T-3 plants, and these remained constant over a 3-year period. In micro-malting experiments, the heat-stable enzyme reached levels of up to 1.4 mug.mg(-1) protein and survived kiln drying at levels of 70-100%. In the field trials of 1997 and 1998 the transgenic lines had a reduced 1000...... lines yielded approximately 6 t.ha(-1) and Golden Promise 7.7 t.ha(-1). Cross-breeding was carried out to transfer the transgene into a more suitable genetic background. Crosses of the semi-dwarf ari-e mutant Golden Promise gave rise to the four morphological phenotypes nutans, high erect, erect...... transformants were observed in some F-4 lines homozygous for the morphological phenotypes and for the transgene. In the case of a homozygous nutans line, the transgenic plants had a higher 1000-grain weight than those lacking the transgene. Like mutants providing useful output traits, transgenic plants...

  5. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    International Nuclear Information System (INIS)

    Mishchenko, Yuriy

    2004-01-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  6. Applications of Canonical transformations and nontrivial vacuum solutions to flavor mixing and critical phenomena in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Mishchenko, Yuriy [North Carolina State Univ., Raleigh, NC (United States)

    2004-12-01

    MISHCHENKO, YURIY. Applications of Canonical Transformations and Nontrivial Vacuum Solutions to flavor mixing and critical phenomena in Quantum Field Theory. (Under the direction of Chueng-Ryong Ji.) In this dissertation we consider two recent applications of Bogoliubov Transformation to the phenomenology of quantum mixing and the theory of critical phenomena. In recent years quantum mixing got in the focus of the searches for New Physics due to its unparalleled sensitivity to SM parameters and indications of neutrino mixing. It was recently suggested that Bogoliubov Transformation may be important in proper definition of the flavor states that otherwise results in problems in perturbative treatment. As first part of this dissertation we investigate this conjecture and develop a complete formulation of such a mixing field theory involving introduction of general formalism, analysis of space-time conversion and phenomenological implications. As second part of this dissertati

  7. Bottom-up driven involuntary auditory evoked field change: constant sound sequencing amplifies but does not sharpen neural activity.

    Science.gov (United States)

    Okamoto, Hidehiko; Stracke, Henning; Lagemann, Lothar; Pantev, Christo

    2010-01-01

    The capability of involuntarily tracking certain sound signals during the simultaneous presence of noise is essential in human daily life. Previous studies have demonstrated that top-down auditory focused attention can enhance excitatory and inhibitory neural activity, resulting in sharpening of frequency tuning of auditory neurons. In the present study, we investigated bottom-up driven involuntary neural processing of sound signals in noisy environments by means of magnetoencephalography. We contrasted two sound signal sequencing conditions: "constant sequencing" versus "random sequencing." Based on a pool of 16 different frequencies, either identical (constant sequencing) or pseudorandomly chosen (random sequencing) test frequencies were presented blockwise together with band-eliminated noises to nonattending subjects. The results demonstrated that the auditory evoked fields elicited in the constant sequencing condition were significantly enhanced compared with the random sequencing condition. However, the enhancement was not significantly different between different band-eliminated noise conditions. Thus the present study confirms that by constant sound signal sequencing under nonattentive listening the neural activity in human auditory cortex can be enhanced, but not sharpened. Our results indicate that bottom-up driven involuntary neural processing may mainly amplify excitatory neural networks, but may not effectively enhance inhibitory neural circuits.

  8. Baeklund transformations, conservation laws and linearization of the self-dual Yang-Mills and chiral fields

    International Nuclear Information System (INIS)

    Wang, L.C.

    1980-01-01

    Baecklund Transformations (BT) and the derivation of local conservation laws are first reviewed in the classic case of the Sine-Gordon equation. The BT, conservation laws (local and nonlocal), and the inverse-scattering formulation are discussed for the chiral and the self-dual Yang-Mills fields. Their possible applications to the loop formulation for the Yang-Mills fields are mentioned. 55 references, 1 figure

  9. Translating tDCS into the field of obesity: mechanism-driven approaches

    Directory of Open Access Journals (Sweden)

    Miguel eAlonso-Alonso

    2013-08-01

    Full Text Available Transcranial direct current stimulation (tDCS is emerging as a promising technique for neuromodulation in a variety of clinical conditions. Recent neuroimaging studies suggest that modifying the activity of brain circuits involved in eating behavior could provide therapeutic benefits in obesity. One session of tDCS over the dorsolateral prefrontal cortex can induce an acute decrease in food craving, according to three small clinical trials, but the extension of these findings into the field of obesity remains unexplored. Importantly, there has been little/no interaction of our current understanding of tDCS and its mechanisms with obesity-related research. How can we start closing this gap and rationally guide the translation of tDCS into the field of obesity? In this mini-review I summarize some of the challenges and questions ahead, related to basic science and technical aspects, and suggest future directions.

  10. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    Science.gov (United States)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  11. Terahertz electric field driven electric currents and ratchet effects in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ganichev, Sergey D.; Weiss, Dieter; Eroms, Jonathan [Terahertz Center, University of Regensburg (Germany)

    2017-11-15

    Terahertz field induced photocurrents in graphene were studied experimentally and by microscopic modeling. Currents were generated by cw and pulsed laser radiation in large area as well as small-size exfoliated graphene samples. We review general symmetry considerations leading to photocurrents depending on linear and circular polarized radiation and then present a number of situations where photocurrents were detected. Starting with the photon drag effect under oblique incidence, we proceed to the photogalvanic effect enhancement in the reststrahlen band of SiC and edge-generated currents in graphene. Ratchet effects were considered for in-plane magnetic fields and a structure inversion asymmetry as well as for graphene with non-symmetric patterned top gates. Lastly, we demonstrate that graphene can be used as a fast, broadband detector of terahertz radiation. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Leveraging extreme laser-driven magnetic fields for gamma-ray generation and pair production

    Science.gov (United States)

    Jansen, O.; Wang, T.; Stark, D. J.; d’Humières, E.; Toncian, T.; Arefiev, A. V.

    2018-05-01

    The ability of an intense laser pulse to propagate in a classically over-critical plasma through the phenomenon of relativistic transparency is shown to facilitate the generation of strong plasma magnetic fields. Particle-in-cell simulations demonstrate that these fields significantly enhance the radiation rates of the laser-irradiated electrons, and furthermore they collimate the emission so that a directed and dense beam of multi-MeV gamma-rays is achievable. This capability can be exploited for electron–positron pair production via the linear Breit–Wheeler process by colliding two such dense beams. Presented simulations show that more than 103 pairs can be produced in such a setup, and the directionality of the positrons can be controlled by the angle of incidence between the beams.

  13. Field driven ferromagnetic phase nucleation and propagation from the domain boundaries in antiferromagnetically coupled perpendicular anisotropy films

    Energy Technology Data Exchange (ETDEWEB)

    Hauet, Thomas; Gunther, Christian M.; Hovorka, Ondrej; Berger, Andreas; Im, Mi-Young; Fischer, Peter; Hellwig, Olav

    2008-12-09

    We investigate the reversal process in antiferromagnetically coupled [Co/Pt]{sub X-1}/{l_brace}Co/Ru/[Co/Pt]{sub X-1}{r_brace}{sub 16} multilayer films by combining magnetometry and Magnetic soft X-ray Transmission Microscopy (MXTM). After out-of-plane demagnetization, a stable one dimensional ferromagnetic (FM) stripe domain phase (tiger-tail phase) for a thick stack sample (X=7 is obtained), while metastable sharp antiferromagnetic (AF) domain walls are observed in the remanent state for a thinner stack sample (X=6). When applying an external magnetic field the sharp domain walls of the thinner stack sample transform at a certain threshold field into the FM stripe domain wall phase. We present magnetic energy calculations that reveal the underlying energetics driving the overall reversal mechanisms.

  14. Monte Carlo study of dynamic phase transition in Ising metamagnet driven by oscillating magnetic field

    International Nuclear Information System (INIS)

    Acharyya, Muktish

    2011-01-01

    The dynamical responses of Ising metamagnet (layered antiferromagnet) in the presence of a sinusoidally oscillating magnetic field are studied by Monte Carlo simulation. The time average staggered magnetisation plays the role of dynamic order parameter. A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. The results are compared with that obtained from pure ferromagnetic system. The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculations. - Highlights: → The time average staggered magnetisation plays the role of dynamic order parameter. → A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. → The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. → The results are compared with that obtained from pure ferromagnetic system. → The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculation.

  15. Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields

    International Nuclear Information System (INIS)

    Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.

    2004-01-01

    Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields

  16. Using vertical Fourier transforms to invert potential-field data to magnetization or density models in the presence of topography

    Science.gov (United States)

    Phillips, Jeffrey

    2014-01-01

    A physical property inversion approach based on the use of 3D (or 2D) Fourier transforms to calculate the potential-field within a 3D (or 2D) volume from a known physical property distribution within the volume is described. Topographic surfaces and observations at arbitrary locations are easily accommodated. The limitations of the approach and applications to real data are considered.

  17. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    Science.gov (United States)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  18. Magnetic-field-induced martensitic transformation of off-stoichiometric single-crystal Ni2MnGa

    International Nuclear Information System (INIS)

    Inoue, Kazuko; Yamaguchi, Yasuo; Shishido, Toetsu; Ishii, Yoshinobu; Yamauchi, Hiroki

    2009-01-01

    The effect of a magnetic field on the martensitic transformation of an off-stoichiometric Heusler type Ni 2.16 Mn 0.78 Ga 1.06 single crystal has been revealed by neutron diffraction. The alloy undergoes a martensitic transformation at room temperature, which is nearly coincident with its Curie temperature. Splitting of the cubic (020) peak on the reciprocal lattice cubic c * -plane was traced at 293 K by a triple-axis neutron spectrometer under an increasing magnetic field of up to 10 T. It was found that the magnetic field causes the martensitic transformation from the cubic structure to the orthorhombic structure, which is the same as that caused by decreasing the temperature without a magnetic field. The increase in the magnetic field to 10 T appears to correspond to a decrease in temperature of nearly 12 K, i.e., from 293 to 281 K. The present experiment suggests the possibility of realizing a magnetic-field-induced shape memory alloy. (author)

  19. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation

    Directory of Open Access Journals (Sweden)

    Giuliana Cassinelli

    2009-01-01

    Full Text Available Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC. We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs.

  20. RET/PTC1-Driven Neoplastic Transformation and Proinvasive Phenotype of Human Thyrocytes Involve Met Induction and β-Catenin Nuclear Translocation1

    Science.gov (United States)

    Cassinelli, Giuliana; Favini, Enrica; Degl'Innocenti, Debora; Salvi, Alessandro; De Petro, Giuseppina; Pierotti, Marco A; Zunino, Franco; Borrello, Maria Grazia; Lanzi, Cinzia

    2009-01-01

    Activation of the RET gene by chromosomal rearrangements generating RET/PTC oncogenes is a frequent, early, and causative event in papillary thyroid carcinoma (PTC). We have previously shown that, in human primary thyrocytes, RET/PTC1 induces a transcriptional program including the MET proto-oncogene. In PTCs, β-catenin is frequently mislocated to the cytoplasm nucleus. We investigated the interplay between Ret/ptc1 signaling and Met in regulating the proinvasive phenotype and β-catenin localization in cellular models of human PTC. Here, we show that Met protein is expressed and is constitutively active in human thyrocytes exogenously expressing RET/PTC1 as well as a mutant (Y451F) devoid of the main Ret/ptc1 multidocking site. Both in transformed thyrocytes and in the human PTC cell line TPC-1, Ret/ptc1-Y451-dependent signaling and Met cooperated to promote a proinvasive phenotype. Accordingly, gene/functional silencing of either RET/PTC1 or MET abrogated early branching morphogenesis in TPC-1 cells. The same effect was obtained by blocking the common downstream effector Akt. Y451 of Ret/ptc1 was required to promote proliferation and nuclear translocation of β-catenin, suggesting that these oncogene-driven effects are Met-independent. Pharmacologic inhibition of Ret/ptc1 and Met tyrosine kinases by the multitarget small molecule RPI-1 blocked cell proliferation and invasive ability and dislocated β-catenin from the nucleus. Altogether, these results support that Ret/ptc1 cross talks with Met at transcriptional and signaling levels and promotes β-catenin transcriptional activity to drive thyrocyte neoplastic transformation. Such molecular network, promoting disease initiation and acquisition of a proinvasive phenotype, highlights new options to design multitarget therapeutic strategies for PTCs. PMID:19107227

  1. Infield X-ray diffraction studies of field and temperature driven structural phase transition in Nd{sub 0.49}Sr{sub 0.51}MnO{sub 3+δ}

    Energy Technology Data Exchange (ETDEWEB)

    Shahee, Aga, E-mail: agashahee@gmail.com [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India); Department of Physics, IIT Bombay, Powai, Mumbai 400076 (India); Sharma, Shivani; Singh, K.; Lalla, N.P. [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001 (India)

    2017-07-15

    Highlights: • Temperature and magnetic field driven coupled magneto-structural phase transition in Nd{sub 0.49}Sr{sub 0.51}MnO{sub 3+δ}. • Microscopic evidence of strong spin-charge-lattice coupling. • Iso-thermal magnetic field driven structure phase transition. • Field-driven structural phase transition origin of observed 1st order type CMR effect. - Abstract: Comprehensive X-ray diffraction (XRD) studies have been performed at different temperature (T) (4.2–300 K) and magnetic field (H) (0–8 T) to understand the evolution of crystal structure of Nd{sub 0.49}Sr{sub 0.51}MnO{sub 3+δ} (NSMO) under non ambient conditions. The T dependent XRD results show the abrupt change in the lattice parameters without any change in lattice symmetry at ∼200 K, which is associated with the first order structural phase transition from ferromagnetic to antiferromagnetic phase. This phase transition is strongly H dependent and shifted to lower temperature (∼150 K) on the application of 8 T field with phase coexistence (high temperature phase ∼18%), even down to 4.2 K. Isothermal XRD results at 150 K under different H clearly illustrate the H induced first order structural phase transition. The critical H at which this phase transformation starts is ∼1 T, with rapid growth above 4 T with hysteretic nature during increasing and decreasing H. These results are supported with the resistivity and magnetoresistance results and affirm the strong spin-lattice coupling in NSMO. Our detail studies reveal the structural correlations to the observed colossal magnetoresistance and magnetocaloric effect in this material.

  2. Evaluation of the toroidal torque driven by external non-resonant non-axisymmetric magnetic field perturbations in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kasilov, Sergei V. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Institute of Plasma Physics National Science Center “Kharkov Institute of Physics and Technology” ul. Akademicheskaya 1, 61108 Kharkov (Ukraine); Kernbichler, Winfried; Martitsch, Andreas F.; Heyn, Martin F. [Fusion@ÖAW, Institut für Theoretische Physik—Computational Physics, Technische Universität Graz Petersgasse 16, A–8010 Graz (Austria); Maassberg, Henning [Max-Planck Institut für Plasmaphysik, D-17491 Greifswald (Germany)

    2014-09-15

    The toroidal torque driven by external non-resonant magnetic perturbations (neoclassical toroidal viscosity) is an important momentum source affecting the toroidal plasma rotation in tokamaks. The well-known force-flux relation directly links this torque to the non-ambipolar neoclassical particle fluxes arising due to the violation of the toroidal symmetry of the magnetic field. Here, a quasilinear approach for the numerical computation of these fluxes is described, which reduces the dimension of a standard neoclassical transport problem by one without model simplifications of the linearized drift kinetic equation. The only limiting condition is that the non-axisymmetric perturbation field is small enough such that the effect of the perturbation field on particle motion within the flux surface is negligible. Therefore, in addition to most of the transport regimes described by the banana (bounce averaged) kinetic equation also such regimes as, e.g., ripple-plateau and resonant diffusion regimes are naturally included in this approach. Based on this approach, a quasilinear version of the code NEO-2 [W. Kernbichler et al., Plasma Fusion Res. 3, S1061 (2008).] has been developed and benchmarked against a few analytical and numerical models. Results from NEO-2 stay in good agreement with results from these models in their pertinent range of validity.

  3. Ultrafast transmission electron microscopy using a laser-driven field emitter: Femtosecond resolution with a high coherence electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Feist, Armin; Bach, Nora; Rubiano da Silva, Nara; Danz, Thomas; Möller, Marcel; Priebe, Katharina E.; Domröse, Till; Gatzmann, J. Gregor; Rost, Stefan; Schauss, Jakob; Strauch, Stefanie; Bormann, Reiner; Sivis, Murat; Schäfer, Sascha, E-mail: sascha.schaefer@phys.uni-goettingen.de; Ropers, Claus, E-mail: claus.ropers@uni-goettingen.de

    2017-05-15

    We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Göttingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 Å focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free-electron beams. - Highlights: • First implementation of an ultrafast TEM employing a nanoscale photocathode. • Localized single photon-photoemission from nanoscopic field emitter yields low emittance ultrashort electron pulses. • Electron pulses focused down to ~9 Å, with a duration of 200 fs and an energy width of 0.6 eV are demonstrated. • Quantitative characterization of ultrafast electron gun emittance and brightness. • A range of applications of high coherence ultrashort electron pulses is shown.

  4. Dual wavelength imaging of a scrape-off layer in an advanced beam-driven field-reversed configuration

    Energy Technology Data Exchange (ETDEWEB)

    Osin, D.; Schindler, T., E-mail: dosin@trialphaenergy.com [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, California 92688-7010 (United States)

    2016-11-15

    A dual wavelength imaging system has been developed and installed on C-2U to capture 2D images of a He jet in the Scrape-Off Layer (SOL) of an advanced beam-driven Field-Reversed Configuration (FRC) plasma. The system was designed to optically split two identical images and pass them through 1 nm FWHM filters. Dual wavelength images are focused adjacent on a large format CCD chip and recorded simultaneously with a time resolution down to 10 μs using a gated micro-channel plate. The relatively compact optical system images a 10 cm plasma region with a spatial resolution of 0.2 cm and can be used in a harsh environment with high electro-magnetic noise and high magnetic field. The dual wavelength imaging system provides 2D images of either electron density or temperature by observing spectral line pairs emitted by He jet atoms in the SOL. A large field of view, combined with good space and time resolution of the imaging system, allows visualization of macro-flows in the SOL. First 2D images of the electron density and temperature observed in the SOL of the C-2U FRC are presented.

  5. The ABC's of Delivering A Research-Driven Adventure Learning Program From the Field

    Science.gov (United States)

    Pregont, P.; Porsild, M.

    2008-12-01

    A is for anchoring the delivery of your research to your audience in a standard-aligned curriculum. B is for BGAN Satellite Communication System assisting in delivering real-time authentic media. C is for a collaborative online learning environment to engage learners" Z is for the peaceful sleep you will get once your program is up and running! As part of Team GoNorth! (http://www.PolarHusky.com) it is our job to deliver adventure learning. We set out to do this back when the computer was a 4-foot, 50-lb box powered by a hand-crank where one would have a window of ten minutes in a 24-hour period to catch the satellite (before Al Gore created the Internet!). Every year we review the quantum leaps in what is now possible from the field and in the classroom, and over the years we have wrestled technical issues, solutions and numerous re-structures in the process of our of curriculum development. With this presentation we will provide some basic ABC's on how you can remained focused on your research, yet deliver an adventure learning program for learners to investigate real-world issues within your scientific research. Our scales are most likely different. The volume of our curriculum is an annual production of 4-500 pages to be used from Kindergarden through 12th grade around the world. The framework of our online learning environment must be able to supports millions of users at a time. "In the field" means on a a 3-4 month dogsled expedition - so sending out our live updates involve thawing out the computers and setting up the satellite communication system to work in a ground blizzard! But regardless of the scope and location of your field research, you can probably build on some of our experiences in the planning of an upcoming adventure learning program to engage learners of all or any ages in your scientific explorations!

  6. Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields

    International Nuclear Information System (INIS)

    Brenning, N; Huo, C; Raadu, M A; Lundin, D; Helmersson, U; Vitelaru, C; Stancu, G D; Minea, T

    2012-01-01

    The lower deposition rate for high power impulse magnetron sputtering (HiPIMS) compared with direct current magnetron sputtering for the same average power is often reported as a drawback. The often invoked reason is back-attraction of ionized sputtered material to the target due to a substantial negative potential profile, sometimes called an extended presheath, from the location of ionization toward the cathode. Recent studies in HiPIMS devices, using floating-emitting and swept-Langmuir probes, show that such extended potential profiles do exist, and that the electric fields E z directed toward the target can be strong enough to seriously reduce ion transport to the substrate. However, they also show that the potential drops involved can vary by up to an order of magnitude from case to case. There is a clear need to understand the underlying mechanisms and identify the key discharge variables that can be used for minimizing the back-attraction. We here present a combined theoretical and experimental analysis of the problem of electric fields E z in the ionization region part of HiPIMS discharges, and their effect on the transport of ionized sputtered material. In particular, we have investigated the possibility of a ‘sweet spot’ in parameter space in which the back-attraction of ionized sputtered material is low. It is concluded that a sweet spot might possibly exist for some carefully optimized discharges, but probably in a rather narrow window of parameters. As a measure of how far a discharge is from such a window, a Townsend product Π Townsend is proposed. A parametric analysis of Π Townsend shows that the search for a sweet spot is complicated by the fact that contradictory demands appear for several of the externally controllable parameters such as high/low working gas pressure, short/long pulse length, high/low pulse power and high/low magnetic field strength. (paper)

  7. Double-electron recombination in high-order-harmonic generation driven by spatially inhomogeneous fields

    Czech Academy of Sciences Publication Activity Database

    Chacon, A.; Ciappina, Marcelo F.; Lewenstein, M.

    2016-01-01

    Roč. 94, č. 4 (2016), 1-8, č. článku 043407. ISSN 2469-9926 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : atomic line emission * double-ionization * laser fields * rare-gases Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.925, year: 2016

  8. HIGH-GRADIENT, HIGH-TRANSFORMER-RATIO, DIELECTRIC WAKE FIELD ACCELERATOR

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L

    2012-04-12

    The Phase I work reported here responds to DoE'ss stated need "...to develop improved accelerator designs that can provide very high gradient (>200 MV/m for electrons...) acceleration of intense bunches of particles." Omega-P's approach to this goal is through use of a ramped train of annular electron bunches to drive a coaxial dielectric wakefield accelerator (CDWA) structure. This approach is a direct extension of the CDWA concept from acceleration in wake fields caused by a single drive bunch, to the more efficient acceleration that we predict can be realized from a tailored (or ramped) train of several drive bunches. This is possible because of a much higher transformer ratio for the latter. The CDWA structure itself has a number of unique features, including: a high accelerating gradient G, potentially with G > 1 GeV/m; continuous energy coupling from drive to test bunches without transfer structures; inherent transverse focusing forces for particles in the accelerated bunch; highly stable motion of high charge annular drive bunches; acceptable alignment tolerances for a multi-section system. What is new in the present approach is that the coaxial dielectric structure is now to be energized by-not one-but by a short train of ramped annular-shaped drive bunches moving in the outer coaxial channel of the structure. We have shown that this allows acceleration of an electron bunch traveling along the axis in the inner channel with a markedly higher transformer ratio T than for a single drive bunch. As described in this report, the structure will be a GHz-scale prototype with cm-scale transverse dimensions that is expected to confirm principles that can be applied to the design of a future THz-scale high gradient (> 500 MV/m) accelerator with mm-scale transverse dimensions. We show here a new means to significantly increase the transformer ratio T of the device, and thereby to significantly improve its suitability as a flexible and effective component in

  9. Flow Field Simulation and Noise Control of a Twin-Screw Engine-Driven Supercharger

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2016-01-01

    Full Text Available With the advantages of good low-speed torque capability and excellent instant response performance, twin-screw superchargers have great potential in the automobile market, but the noise of these superchargers is the main factor that discourages their use. Therefore, it is important to study their noise mechanism and methods of reducing it. This study included a transient numerical simulation of a twin-screw supercharger flow field with computational fluid dynamics software and an analysis of the pressure field of the running rotor. The results showed that overcompression was significant in the compression end stage of the supercharger, resulting in a surge in airflow to a supersonic speed and the production of shock waves that resulted in loud noise. On the basis of these findings, optimization of the supercharger is proposed, including expansion of the supercharger exhaust orifice and creation of a slot along the direction of the rotor spiral normal line at the exhaust port, so as to reduce the compression end pressure, improve the exhaust flow channel, and weaken the source of the noise. Experimental results showed that the noise level value of the improved twin-screw supercharger was significantly lower at the same speed than the original model, with an average decrease of about 5 dB (A.

  10. The magnetized electron-acoustic instability driven by a warm, field-aligned electron beam

    International Nuclear Information System (INIS)

    Sooklal, A.; Mace, R.L.

    2004-01-01

    The electron-acoustic instability in a magnetized plasma having three electron components, one of which is a field-aligned beam of intermediate temperature, is investigated. When the plasma frequency of the cool electrons exceeds the electron gyrofrequency, the electron-acoustic instability 'bifurcates' at sufficiently large propagation angles with respect to the magnetic field to yield an obliquely propagating, low-frequency electron-acoustic instability and a higher frequency cyclotron-sound instability. Each of these instabilities retains certain wave features of its progenitor, the quasiparallel electron-acoustic instability, but displays also new magnetic qualities through its dependence on the electron gyrofrequency. The obliquely propagating electron-acoustic instability requires a lower threshold beam speed for its excitation than does the cyclotron-sound instability, and for low to intermediate beam speeds has the higher maximum growth rate. When the plasma is sufficiently strongly magnetized that the plasma frequency of the cool electrons is less than the electron gyrofrequency, the only instability in the electron-acoustic frequency range is the strongly magnetized electron-acoustic instability. Its growth rate and real frequency exhibit a monotonic decrease with wave propagation angle and it grows at small to intermediate wave numbers where its parallel phase speed is approximately constant. The relevance of the results to the interpretation of cusp auroral hiss and auroral broadband electrostatic noise is briefly discussed

  11. Curricular Transformation of Education in the Field of Physical and Sport Education in Slovakia

    Science.gov (United States)

    Bendíková, Elena

    2016-01-01

    The study presents basic information on the curricular transformation of physical and sport education in Slovakia after the year 1989, which is related to the education process in the 21st century. What is more, it points to the basis for modern transformation in relation to sports as well as to insufficient undergraduate teacher training and its…

  12. Kinetics of martensitic transformations in magnetic field or under hydrostatic pressure

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kakeshita, Jung-min Nam and Takashi Fukuda

    2011-01-01

    Full Text Available We have recently constructed a phenomenological theory that provides a unified explanation for athermal and isothermal martensitic transformation processes. On the basis of this theory, we predict some properties of martensitic transformation and confirm them experimentally using some Fe-based alloys and a Ni–Co–Mn–In magnetic shape memory alloy.

  13. Evaluation of diffusivity in the anterior lobe of the pituitary gland: 3D turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Yoshiura, T; Togao, O; Yamashita, K; Kikuchi, K; Kobayashi, K; Ohga, M; Sonoda, S; Honda, H; Obara, M

    2014-01-01

    3D turbo field echo with diffusion-sensitized driven-equilibrium preparation is a non-echo-planar technique for DWI, which enables high-resolution DWI without field inhomogeneity-related image distortion. The purpose of this study was to evaluate the feasibility of diffusion-sensitized driven-equilibrium turbo field echo in evaluating diffusivity in the normal pituitary gland. First, validation of diffusion-sensitized driven-equilibrium turbo field echo was attempted by comparing it with echo-planar DWI. Five healthy volunteers were imaged by using diffusion-sensitized driven-equilibrium turbo field echo and echo-planar DWI. The imaging voxel size was 1.5 × 1.5 × 1.5 mm(3) for diffusion-sensitized driven-equilibrium turbo field echo and 1.5 × 1.9 × 3.0 mm(3) for echo-planar DWI. ADCs measured by the 2 methods in 15 regions of interests (6 in gray matter and 9 in white matter) were compared by using the Pearson correlation coefficient. The ADC in the pituitary anterior lobe was then measured in 10 volunteers by using diffusion-sensitized driven-equilibrium turbo field echo, and the results were compared with those in the pons and vermis by using a paired t test. The ADCs from the 2 methods showed a strong correlation (r = 0.79; P pituitary gland were 1.37 ± 0.13 × 10(-3) mm(2)/s, which were significantly higher than those in the pons (1.01 ± 0.24 × 10(-3) mm(2)/s) and the vermis (0.89 ± 0.25 × 10(-3) mm(2)/s, P pituitary gland.

  14. Efficiency of wave-driven rigid body rotation toroidal confinement

    Science.gov (United States)

    Rax, J. M.; Gueroult, R.; Fisch, N. J.

    2017-03-01

    The compensation of vertical drifts in toroidal magnetic fields through a wave-driven poloidal rotation is compared with compensation through the wave driven toroidal current generation to support the classical magnetic rotational transform. The advantages and drawbacks associated with the sustainment of a radial electric field are compared with those associated with the sustainment of a poloidal magnetic field both in terms of energy content and power dissipation. The energy content of a radial electric field is found to be smaller than the energy content of a poloidal magnetic field for a similar set of orbits. The wave driven radial electric field generation efficiency is similarly shown, at least in the limit of large aspect ratio, to be larger than the efficiency of wave-driven toroidal current generation.

  15. High field terahertz emission from relativistic laser-driven plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zi-Yu, E-mail: Ziyu.Chen@uni-duesseldorf.de [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany); LSD, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999 (China); Pukhov, Alexander [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany)

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  16. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    Science.gov (United States)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C. A.; Min, K.

    2015-04-01

    Discerning why some soil organic matter (SOM) leaves soil profiles relatively quickly while other compounds, especially at depth, can be retained for decades to millennia is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified substrate-enzyme reaction kinetics can be used to advance recent theoretical efforts in SOM-focused research. Finally, we suggest how the observations in aquatic and purified substrate-enzyme systems could be used to help unravel the puzzles presented by oft-observed patterns of SOM

  17. Bogoliubov transformation for quantum fields in (S1)d x RD-d topology and applications to the Casimir effect

    International Nuclear Information System (INIS)

    Khanna, F C; Malbouisson, J M C; Santana, A E

    2009-01-01

    A Bogoliubov transformation accounting simultaneously for spatial compactifica-tion and thermal effects is introduced. The fields are described in a Γ D d = S 1 1 x ... x S 1 d x R D-d topology, and the Bogoliubov transformation is derived by a generalization of the thermofield dynamics formalism, a real-time finite-temperature quantum field theory. We consider the Casimir effect for Maxwell and Dirac fields and for a non-interacting massless QCD at finite temperature. For the fermion sector in a cubic box, we analyze the temperature at which the Casimir pressure changes its sign from attractive to repulsive. This critical temperature is approximately 200 MeV when the edge of the cube is of the order of the confining lengths (∼ 1 : fm) for quarks in baryons.

  18. On a phase field approach for martensitic transformations in a crystal plastic material at a loaded surface

    Science.gov (United States)

    Schmitt, Regina; Kuhn, Charlotte; Müller, Ralf

    2017-07-01

    A continuum phase field model for martensitic transformations is introduced, including crystal plasticity with different slip systems for the different phases. In a 2D setting, the transformation-induced eigenstrain is taken into account for two martensitic orientation variants. With aid of the model, the phase transition and its dependence on the volume change, crystal plastic material behavior, and the inheritance of plastic deformations from austenite to martensite are studied in detail. The numerical setup is motivated by the process of cryogenic turning. The resulting microstructure qualitatively coincides with an experimentally obtained martensite structure. For the numerical calculations, finite elements together with global and local implicit time integration scheme are employed.

  19. The renormalization group of relativistic quantum field theory as a set of generalized, spontaneously broken, symmetry transformations

    International Nuclear Information System (INIS)

    Maris, Th.A.J.

    1976-01-01

    The renormalization group theory has a natural place in a general framework of symmetries in quantum field theories. Seen in this way, a 'renormalization group' is a one-parametric subset of the direct product of dilatation and renormalization groups. This subset of spontaneously broken symmetry transformations connects the inequivalent solutions generated by a parameter-dependent regularization procedure, as occurs in renormalized perturbation theory. By considering the global, rather than the infinitesimal, transformations, an expression for general vertices is directly obtained, which is the formal solution of exact renormalization group equations [pt

  20. Magnetic field effect on Gd2(MoO4)3 domain structure formation in the phase transformation range

    International Nuclear Information System (INIS)

    Flerova, S.A.; Tsinman, I.L.

    1987-01-01

    The behaviour of ferroelastic-ferroelectric domain structure of gadolinium molybdate crystal (GMO)during its formation in the magnetic field in the vicinity of phase transformation is studied.It is shown that the formation of domain structure in the presence of a temperature gradient occurs in the field of mechanical stresses whose mainly stretching effect is concentrated near phase boundaries.The magnetic field intensifies summary mechanical stresses where a domain structure in a ferroelectric phase is formed due to interaction with the elements of inhomogeneous and differently oriented currents near phase boundaries

  1. Spectral Indices to Monitor Nitrogen-Driven Carbon Uptake in Field Corn

    Science.gov (United States)

    Corp, Lawrence A.; Middleton, Elizabeth M.; Campbell, Peya E.; Huemmrich, K. Fred; Daughtry, Craig S. T.; Russ, Andrew; Cheng, Yen-Ben

    2010-01-01

    Climate change is heavily impacted by changing vegetation cover and productivity with large scale monitoring of vegetation only possible with remote sensing techniques. The goal of this effort was to evaluate existing reflectance (R) spectroscopic methods for determining vegetation parameters related to photosynthetic function and carbon (C) dynamics in plants. Since nitrogen (N) is a key constituent of photosynthetic pigments and C fixing enzymes, biological C sequestration is regulated in part by N availability. Spectral R information was obtained from field corn grown at four N application rates (0, 70, 140, 280 kg N/ha). A hierarchy of spectral observations were obtained: leaf and canopy with a spectral radiometer; aircraft with the AISA sensor; and satellite with EO-1 Hyperion. A number of spectral R indices were calculated from these hyperspectral observations and compared to geo-located biophysical measures of plant growth and physiological condition. Top performing indices included the R derivative index D730/D705 and the normalized difference of R750 vs. R705 (ND705), both of which differentiated three of the four N fertilization rates at multiple observation levels and yielded high correlations to these carbon parameters: light use efficiency (LUE); C:N ratio; and crop grain yield. These results advocate the use of hyperspectral sensors for remotely monitoring carbon cycle dynamics in managed terrestrial ecosystems.

  2. Spatial orientation and electric-field-driven transport of hypericin inside of bilayer lipid membranes.

    Science.gov (United States)

    Strejčková, Alena; Staničová, Jana; Jancura, Daniel; Miškovský, Pavol; Bánó, Gregor

    2013-02-07

    Fluorescence experiments were carried out to investigate the interaction of hypericin (Hyp), a natural hydrophobic photosensitizer, with artificial bilayer lipid membranes. The spatial orientation of Hyp monomers incorporated in diphytanoyl phosphatidylcholine (DPhPC) membranes was determined by measuring the dependence of the Hyp fluorescence intensity on the angle of incidence of p- and s-polarized excitation laser beams. Inside of the membrane, Hyp monomers are preferentially located in the layers near the membrane/water interface and are oriented with the S(1) ← S(0) transition dipole moments perpendicular to the membrane surface. Transport of Hyp anions between the two opposite sides of the lipid bilayer was induced by applying rectangular electric field pulses to the membrane. The characteristic time for Hyp transport through the membrane center was evaluated by the analysis of the Hyp fluorescence signal during the voltage pulses. In the zero-voltage limit, the transport time approached 70 ms and gradually decreased with higher voltage applied to the membrane. In addition, our measurements indicated an apparent pK(a) constant of 8 for Hyp deprotonation in the membrane.

  3. Current profile redistribution driven by neutral beam injection in a reversed-field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Parke, E. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Anderson, J. K.; Den Hartog, D. J. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Brower, D. L.; Ding, W. X.; Lin, L. [Department of Physics and Astronomy, University of California Los Angeles 475 Portola Plaza, Los Angeles, California 90095 (United States); Johnson, C. A. [Department of Physics, University of Wisconsin-Madison 1150 University Ave., Madison, Wisconsin 53706 (United States); Department of Physics, Auburn University 206 Allison Laboratory, Auburn, Alabama 36849 (United States)

    2016-05-15

    Neutral beam injection in reversed-field pinch (RFP) plasmas on the Madison Symmetric Torus [Dexter et al., Fusion Sci. Technol. 19, 131 (1991)] drives current redistribution with increased on-axis current density but negligible net current drive. Internal fluctuations correlated with tearing modes are observed on multiple diagnostics; the behavior of tearing mode correlated structures is consistent with flattening of the safety factor profile. The first application of a parametrized model for island flattening to temperature fluctuations in an RFP allows inferrence of rational surface locations for multiple tearing modes. The m = 1, n = 6 mode is observed to shift inward by 1.1 ± 0.6 cm with neutral beam injection. Tearing mode rational surface measurements provide a strong constraint for equilibrium reconstruction, with an estimated reduction of q{sub 0} by 5% and an increase in on-axis current density of 8% ± 5%. The inferred on-axis current drive is consistent with estimates of fast ion density using TRANSP [Goldston et al., J. Comput. Phys. 43, 61 (1981)].

  4. A novel approach for in vitro studies applying electrical fields to cell cultures by transformer-like coupling.

    Science.gov (United States)

    Hess, R; Neubert, H; Seifert, A; Bierbaum, S; Hart, D A; Scharnweber, D

    2012-12-01

    The purpose of this study was to develop a new apparatus for in vitro studies applying low frequency electrical fields to cells without interfering side effects like biochemical reactions or magnetic fields which occur in currently available systems. We developed a non-invasive method by means of the principle of transformer-like coupling where the magnetic field is concentrated in a toroid and, therefore, does not affect the cell culture. Next to an extensive characterization of the electrical field parameters, initial cell culture studies have focused on examining the response of bone marrow-derived human mesenchymal stem cells (MSCs) to pulsed electrical fields. While no significant differences in the proliferation of human MSCs could be detected, significant increases in ALP activity as well as in gene expression of other osteogenic markers were observed. The results indicate that transformer-like coupled electrical fields can be used to influence osteogenic differentiation of human MSCs in vitro and can pose a useful tool in understanding the influence of electrical fields on the cellular and molecular level.

  5. COMMUNICATION: Resonant activation in polymer translocation: new insights into the escape dynamics of molecules driven by an oscillating field

    Science.gov (United States)

    Pizzolato, N.; Fiasconaro, A.; Persano Adorno, D.; Spagnolo, B.

    2010-09-01

    The translocation of molecules across cellular membranes or through synthetic nanopores is strongly affected by thermal fluctuations. In this work we study how the dynamics of a polymer in a noisy environment changes when the translocation process is driven by an oscillating electric field. An improved version of the Rouse model for a flexible polymer has been adopted to mimic the molecular dynamics, by taking into account the harmonic interactions between adjacent monomers and the excluded-volume effect by introducing a Lennard-Jones potential between all beads. A bending recoil torque has also been included in our model. The polymer dynamics is simulated in a two-dimensional domain by numerically solving the Langevin equations of motion. Thermal fluctuations are taken into account by introducing a Gaussian uncorrelated noise. The mean first translocation time of the polymer centre of inertia shows a minimum as a function of the frequency of the oscillating forcing field. This finding represents the first evidence of the resonant activation behaviour in the dynamics of polymer translocation.

  6. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    Directory of Open Access Journals (Sweden)

    F. Schillaci

    2018-02-01

    Full Text Available A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  7. Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields

    Science.gov (United States)

    Schillaci, F.; De Marco, M.; Giuffrida, L.; Fujioka, S.; Zhang, Z.; Korn, G.; Margarone, D.

    2018-02-01

    A coil-capacitor target is modeled using FEM simulations and analytical calculations, which allow to explain the time evolution of such complex target during magnetic field production driven by the flow of an extremely high current generated through the interaction with a high power laser. The numerical model includes a detailed study of the magnetic field produced by the coil-capacitor target, both in the static and transient cases, as well as magnetic force and Joule heating. The model is validated by experimental data reported in literature and can be of interest for several applications. As an example, the combination of two synchronized nanosecond lasers with the purpose of producing a plasma responsible of the proton-boron (p+ + 11B → 8.5 MeV + 3α) fusion reaction, and energizing two multi-turn coils with the main purpose of confining such a plasma could enhance the reaction rate. The preliminary conceptual design of a magnetic mirror configuration to be used for confining protons and boron ions up to a few MeV/u in a region of less than 1 mm2 is briefly reported.

  8. Research to practice in addiction treatment: key terms and a field-driven model of technology transfer.

    Science.gov (United States)

    2011-09-01

    The transfer of new technologies (e.g., evidence-based practices) into substance abuse treatment organizations often occurs long after they have been developed and shown to be effective. Transfer is slowed, in part, due to a lack of clear understanding about all that is needed to achieve full implementation of these technologies. Such misunderstanding is exacerbated by inconsistent terminology and overlapping models of an innovation, including its development and validation, dissemination to the public, and implementation or use in the field. For this reason, a workgroup of the Addiction Technology Transfer Center (ATTC) Network developed a field-driven conceptual model of the innovation process that more precisely defines relevant terms and concepts and integrates them into a comprehensive taxonomy. The proposed definitions and conceptual framework will allow for improved understanding and consensus regarding the distinct meaning and conceptual relationships between dimensions of the technology transfer process and accelerate the use of evidence-based practices. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Field Experience with Sweep Frequency Response Analysis for Power Transformer Diagnosis

    OpenAIRE

    Ambuj Kumar; Sunil Kumar Singh; Shrikant Singh

    2015-01-01

    Sweep frequency response analysis has been turning out a powerful tool for investigation of mechanical as well as electrical integration of transformers. In this paper various aspect of practical application of SFRA has been studied. Open circuit and short circuit measurement were done on different phases of high voltage and low voltage winding. A case study was presented for the transformer of rating 31.5 MVA for various frequency ranges. A clear picture was presented fo...

  10. Absence of External Electric-Field Effects on Transformations in Steels

    Science.gov (United States)

    1991-10-01

    12 2. Approximate CCT diagram for the high nickel composition used in the present measurements ...................................... 13 3...Main features of CCT diagram for 02 tool steel ........................ 14 4. DTA and THA data for the 3569C isothermal bainite transformation with...on the continuous-cooling-transformation ( CCT ) diagram obtained by examining transfor- mations in a 3.0 weight percent (wt.%) nickel specimen at

  11. Computation of Trajectories and Displacement Fields in a Three-Dimensional Ternary Diffusion Couple: Parabolic Transform Method

    Directory of Open Access Journals (Sweden)

    Marek Danielewski

    2015-01-01

    Full Text Available The problem of Kirkendall’s trajectories in finite, three- and one-dimensional ternary diffusion couples is studied. By means of the parabolic transformation method, we calculate the solute field, the Kirkendall marker velocity, and displacement fields. The velocity field is generally continuous and can be integrated to obtain a displacement field that is continuous everywhere. Special features observed experimentally and reported in the literature are also studied: (i multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple evolve into two locations as a result of the initial distribution, (ii multiple Kirkendall’s planes where markers placed on an initial compositional discontinuity of the diffusion couple move into two locations due to composition dependent mobilities, and (iii a Kirkendall plane that coincides with the interphase interface. The details of the deformation (material trajectories in these special situations are given using both methods and are discussed in terms of the stress-free strain rate associated with the Kirkendall effect. Our nonlinear transform generalizes the diagonalization method by Krishtal, Mokrov, Akimov, and Zakharov, whose transform of diffusivities was linear.

  12. Hypothesis-driven and field-validated method to prioritize fragmentation mitigation efforts in road projects.

    Science.gov (United States)

    Vanthomme, Hadrien; Kolowski, Joseph; Nzamba, Brave S; Alonso, Alfonso

    2015-10-01

    The active field of connectivity conservation has provided numerous methods to identify wildlife corridors with the aim of reducing the ecological effect of fragmentation. Nevertheless, these methods often rely on untested hypotheses of animal movements, usually fail to generate fine-scale predictions of road crossing sites, and do not allow managers to prioritize crossing sites for implementing road fragmentation mitigation measures. We propose a new method that addresses these limitations. We illustrate this method with data from southwestern Gabon (central Africa). We used stratified random transect surveys conducted in two seasons to model the distribution of African forest elephant (Loxodonta cyclotis), forest buffalo (Syncerus caffer nanus), and sitatunga (Tragelaphus spekii) in a mosaic landscape along a 38.5 km unpaved road scheduled for paving. Using a validation data set of recorded crossing locations, we evaluated the performance of three types of models (local suitability, local least-cost movement, and regional least-cost movement) in predicting actual road crossings for each species, and developed a unique and flexible scoring method for prioritizing road sections for the implementation of road fragmentation mitigation measures. With a data set collected in method was able to identify seasonal changes in animal movements for buffalo and sitatunga that shift from a local exploitation of the site in the wet season to movements through the study site in the dry season, whereas elephants use the entire study area in both seasons. These three species highlighted the need to use species- and season-specific modeling of movement. From these movement models, the method ranked road sections for their suitability for implementing fragmentation mitigation efforts, allowing managers to adjust priority thresholds based on budgets and management goals. The method relies on data that can be obtained in a period compatible with environmental impact assessment

  13. Electric-field control of tri-state phase transformation with a selective dual-ion switch

    Science.gov (United States)

    Lu, Nianpeng; Zhang, Pengfei; Zhang, Qinghua; Qiao, Ruimin; He, Qing; Li, Hao-Bo; Wang, Yujia; Guo, Jingwen; Zhang, Ding; Duan, Zheng; Li, Zhuolu; Wang, Meng; Yang, Shuzhen; Yan, Mingzhe; Arenholz, Elke; Zhou, Shuyun; Yang, Wanli; Gu, Lin; Nan, Ce-Wen; Wu, Jian; Tokura, Yoshinori; Yu, Pu

    2017-06-01

    Materials can be transformed from one crystalline phase to another by using an electric field to control ion transfer, in a process that can be harnessed in applications such as batteries, smart windows and fuel cells. Increasing the number of transferrable ion species and of accessible crystalline phases could in principle greatly enrich material functionality. However, studies have so far focused mainly on the evolution and control of single ionic species (for example, oxygen, hydrogen or lithium ions). Here we describe the reversible and non-volatile electric-field control of dual-ion (oxygen and hydrogen) phase transformations, with associated electrochromic and magnetoelectric effects. We show that controlling the insertion and extraction of oxygen and hydrogen ions independently of each other can direct reversible phase transformations among three different material phases: the perovskite SrCoO3-δ (ref. 12), the brownmillerite SrCoO2.5 (ref. 13), and a hitherto-unexplored phase, HSrCoO2.5. By analysing the distinct optical absorption properties of these phases, we demonstrate selective manipulation of spectral transparency in the visible-light and infrared regions, revealing a dual-band electrochromic effect that could see application in smart windows. Moreover, the starkly different magnetic and electric properties of the three phases—HSrCoO2.5 is a weakly ferromagnetic insulator, SrCoO3-δ is a ferromagnetic metal, and SrCoO2.5 is an antiferromagnetic insulator—enable an unusual form of magnetoelectric coupling, allowing electric-field control of three different magnetic ground states. These findings open up opportunities for the electric-field control of multistate phase transformations with rich functionalities.

  14. An electrooptic probe to determine internal electric fields in a piezoelectric transformer.

    Science.gov (United States)

    Norgard, Peter; Kovaleski, Scott

    2012-02-01

    A technique using the electrooptic effect to determine the output voltage of an optically clear LiNbO(3) piezoelectric transformer was developed and explored. A brief mathematical description of the solution is provided, as well as experimental data demonstrating a linear response under ac resonant operating conditions. A technique to calibrate the diagnostic was developed and is described. Finally, a sensitivity analysis of the electrooptic response to variations in angular alignment between the LiNbO(3) transformer and the laser probe are discussed.

  15. Role of Reversible Phase Transformation for Strong Piezoelectric Performance at the Morphotropic Phase Boundary

    Science.gov (United States)

    Liu, Hui; Chen, Jun; Huang, Houbing; Fan, Longlong; Ren, Yang; Pan, Zhao; Deng, Jinxia; Chen, Long-Qing; Xing, Xianran

    2018-01-01

    A functional material with coexisting energetically equivalent phases often exhibits extraordinary properties such as piezoelectricity, ferromagnetism, and ferroelasticity, which is simultaneously accompanied by field-driven reversible phase transformation. The study on the interplay between such phase transformation and the performance is of great importance. Here, we have experimentally revealed the important role of field-driven reversible phase transformation in achieving enhanced electromechanical properties using in situ high-energy synchrotron x-ray diffraction combined with 2D geometry scattering technology, which can establish a comprehensive picture of piezoelectric-related microstructural evolution. High-throughput experiments on various Pb /Bi -based perovskite piezoelectric systems suggest that reversible phase transformation can be triggered by an electric field at the morphotropic phase boundary and the piezoelectric performance is highly related to the tendency of electric-field-driven phase transformation. A strong tendency of phase transformation driven by an electric field generates peak piezoelectric response. Further, phase-field modeling reveals that the polarization alignment and the piezoelectric response can be much enhanced by the electric-field-driven phase transformation. The proposed mechanism will be helpful to design and optimize the new piezoelectrics, ferromagnetics, or other related functional materials.

  16. Application of photogrammetry to transforming PIV-acquired velocity fields to a moving-body coordinate system

    Science.gov (United States)

    Nikoueeyan, Pourya; Naughton, Jonathan

    2016-11-01

    Particle Image Velocimetry is a common choice for qualitative and quantitative characterization of unsteady flows associated with moving bodies (e.g. pitching and plunging airfoils). Characterizing the separated flow behavior is of great importance in understanding the flow physics and developing predictive reduced-order models. In most studies, the model under investigation moves within a fixed camera field-of-view, and vector fields are calculated based on this fixed coordinate system. To better characterize the genesis and evolution of vortical structures in these unsteady flows, the velocity fields need to be transformed into the moving-body frame of reference. Data converted to this coordinate system allow for a more detailed analysis of the flow field using advanced statistical tools. In this work, a pitching NACA0015 airfoil has been used to demonstrate the capability of photogrammetry for such an analysis. Photogrammetry has been used first to locate the airfoil within the image and then to determine an appropriate mask for processing the PIV data. The photogrammetry results are then further used to determine the rotation matrix that transforms the velocity fields to airfoil coordinates. Examples of the important capabilities such a process enables are discussed. P. Nikoueeyan is supported by a fellowship from the University of Wyoming's Engineering Initiative.

  17. Instabilities and spin-up behaviour of a rotating magnetic field driven flow in a rectangular cavity

    Science.gov (United States)

    Galindo, V.; Nauber, R.; Räbiger, D.; Franke, S.; Beyer, H.; Büttner, L.; Czarske, J.; Eckert, S.

    2017-11-01

    This study presents numerical simulations and experiments considering the flow of an electrically conducting fluid inside a cube driven by a rotating magnetic field (RMF). The investigations are focused on the spin-up, where a liquid metal (GaInSn) is suddenly exposed to an azimuthal body force generated by the RMF and the subsequent flow development. The numerical simulations rely on a semi-analytical expression for the induced electromagnetic force density in an electrically conducting medium inside a cuboid container with insulating walls. Velocity distributions in two perpendicular planes are measured using a novel dual-plane, two-component ultrasound array Doppler velocimeter with continuous data streaming, enabling long term measurements for investigating transient flows. This approach allows identifying the main emerging flow modes during the transition from stable to unstable flow regimes with exponentially growing velocity oscillations using the Proper Orthogonal Decomposition method. Characteristic frequencies in the oscillating flow regimes are determined in the super critical range above the critical magnetic Taylor number T ac≈1.26 ×1 05, where the transition from the steady double vortex structure of the secondary flow to an unstable regime with exponentially growing oscillations is detected. The mean flow structures and the temporal evolution of the flow predicted by the numerical simulations and observed in experiments are in very good agreement.

  18. Near-to far-field transformation in the aperiodic Fourier modal method

    NARCIS (Netherlands)

    Rook, R.; Pisarenco, M.; Setija, I.D.

    2013-01-01

    This paper addresses the task of obtaining the far-field spectrum for a finite structure given the near-field calculated by the aperiodic Fourier modal method in contrast-field formulation (AFMM-CFF). The AFMM-CFF efficiently calculates the solution to Maxwell's equations for a finite structure by

  19. Migration transformation of two-dimensional magnetic vector and tensor fields

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...

  20. Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise

    Science.gov (United States)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, M. T.; Sleigh, J. W.

    2007-07-01

    One of the grand puzzles in neuroscience is establishing the link between cognition and the disparate patterns of spontaneous and task-induced brain activity that can be measured clinically using a wide range of detection modalities such as scalp electrodes and imaging tomography. High-level brain function is not a single-neuron property, yet emerges as a cooperative phenomenon of multiply-interacting populations of neurons. Therefore a fruitful modeling approach is to picture the cerebral cortex as a continuum characterized by parameters that have been averaged over a small volume of cortical tissue. Such mean-field cortical models have been used to investigate gross patterns of brain behavior such as anesthesia, the cycles of natural sleep, memory and erasure in slow-wave sleep, and epilepsy. There is persuasive and accumulating evidence that direct gap-junction connections between inhibitory neurons promote synchronous oscillatory behavior both locally and across distances of some centimeters, but, to date, continuum models have ignored gap-junction connectivity. In this paper we employ simple mean-field arguments to derive an expression for D2 , the diffusive coupling strength arising from gap-junction connections between inhibitory neurons. Using recent neurophysiological measurements reported by Fukuda [J. Neurosci. 26, 3434 (2006)], we estimate an upper limit of D2≈0.6cm2 . We apply a linear stability analysis to a standard mean-field cortical model, augmented with gap-junction diffusion, and find this value for the diffusive coupling strength to be close to the critical value required to destabilize the homogeneous steady state. Computer simulations demonstrate that larger values of D2 cause the noise-driven model cortex to spontaneously crystalize into random mazelike Turing structures: centimeter-scale spatial patterns in which regions of high-firing activity are intermixed with regions of low-firing activity. These structures are consistent with the

  1. Conformational transformations induced by the charge-curvature interaction: Mean-field approach

    DEFF Research Database (Denmark)

    Gaididei, Yu B.; Christiansen, Peter Leth; Zakrzewski, W.J.

    2006-01-01

    A simple phenomenological model for describing the conformational dynamics of biological macromolecules via the nonlinearity-induced instabilities is proposed. It is shown that the interaction between charges and bending degrees of freedom of closed molecular aggregates may act as drivers giving ...... impetus to conformational dynamics of biopolymers. It is demonstrated that initially circular aggregates may undergo transformation to polygonal shapes and possible application to aggregates of bacteriochlorophyl a molecules is considered....

  2. Data-driven analysis of collections of big datasets by the Bi-CoPaM method yields field-specific novel insights

    DEFF Research Database (Denmark)

    Abu-Jamous, Basel; Liu, Chao; Roberts, David, J.

    2017-01-01

    not commonly considered. To bridge this gap between the fast pace of data generation and the slower pace of data analysis, and to exploit the massive amounts of existing data, we suggest employing data-driven explorations to analyse collections of related big datasets. This approach aims at extracting field......Massive amounts of data have recently been, and are increasingly being, generated from various fields, such as bioinformatics, neuroscience and social networks. Many of these big datasets were generated to answer specific research questions, and were analysed accordingly. However, the scope...... clusters of consistently correlated objects. We demonstrate the power of data-driven explorations by applying the Bi-CoPaM to two collections of big datasets from two distinct fields, namely bioinformatics and neuroscience. In the first application, the collective analysis of forty yeast gene expression...

  3. Control of Earth-like magnetic fields on the transformation of ferrihydrite to hematite and goethite.

    Science.gov (United States)

    Jiang, Zhaoxia; Liu, Qingsong; Dekkers, Mark J; Barrón, Vidal; Torrent, José; Roberts, Andrew P

    2016-07-26

    Hematite and goethite are the two most abundant iron oxides in natural environments. Their formation is controlled by multiple environmental factors; therefore, their relative concentration has been used widely to indicate climatic variations. In this study, we aimed to test whether hematite and goethite growth is influenced by ambient magnetic fields of Earth-like values. Ferrihydrite was aged at 95 °C in magnetic fields ranging from ~0 to ~100 μT. Our results indicate a large influence of the applied magnetic field on hematite and goethite growth from ferrihydrite. The synthesized products are a mixture of hematite and goethite for field intensities fields favour hematite formation by accelerating ferrimagnetic ferrihydrite aggregation. Additionally, hematite particles growing in a controlled magnetic field of ~100 μT appear to be arranged in chains, which may be reduced to magnetite keeping its original configuration, therefore, the presence of magnetic particles in chains in natural sediments cannot be used as an exclusive indicator of biogenic magnetite. Hematite vs. goethite formation in our experiments is influenced by field intensity values within the range of geomagnetic field variability. Thus, geomagnetic field intensity could be a source of variation when using iron (oxyhydr-)oxide concentrations in environmental magnetism.

  4. Continuous spin mean-field models : Limiting kernels and Gibbs properties of local transforms

    NARCIS (Netherlands)

    Kulske, Christof; Opoku, Alex A.

    2008-01-01

    We extend the notion of Gibbsianness for mean-field systems to the setup of general (possibly continuous) local state spaces. We investigate the Gibbs properties of systems arising from an initial mean-field Gibbs measure by application of given local transition kernels. This generalizes previous

  5. Trapping induced Neff and electrical field transformation at different temperatures in neutron irradiated high resistivity silicon detectors

    International Nuclear Information System (INIS)

    Eremin, V.; Li, Z.; Iljashenko, I.

    1994-02-01

    The trapping of both non-equilibrium electrons and holes by neutron induced deep levels in high resistivity silicon planar detectors have been observed. In the experiments Transient Current and Charge Techniques, with short laser light pulse excitation have been applied at temperature ranges of 77--300 k. Light pulse illumination of the front (p + ) and back (n + ) contacts of the detectors showed effective trapping and detrapping, especially for electrons. At temperatures lower than 150 k, the detrapping becomes non-efficient, and the additional negative charge of trapped electrons in the space charge region (SCR) of the detectors leads to dramatic transformations of the electric field due to the distortion of the effective space charge concentration N eff . The current and charge pulses transformation data can be explained in terms of extraction of electric field to the central part of the detector from the regions near both contacts. The initial field distribution may be recovered immediately by dropping reverse bias, which injects both electrons and holes into the space charge region. In the paper, the degree of the N eff distortions among various detectors irradiated by different neutron fluences are compared

  6. First Observation of the High Field Side Sawtooth Crash and Heat Transfer during Driven Reconnection Processes in Magnetically Confined Plasmas

    International Nuclear Information System (INIS)

    Park, HK; Luhmann, NC; Donne, AJH; Classen, IGJ; Domier, CW; Mazzucato, E; Munsat, T; van de Pol, MJ; Xia, Z

    2005-01-01

    High resolution (temporal and spatial), two-dimensional images of electron temperature fluctuations during sawtooth oscillations were employed to study driven reconnection processes in magnetically confined toroidal plasmas. The combination of kink and local pressure driven instabilities leads to an 'X-point' reconnection process that is localized in the toroidal and poloidal planes. The reconnection is not always confined to the magnetic surfaces with minimum energy. The heat transport process from the core is demonstrated to be highly collective rather than stochastic

  7. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    Science.gov (United States)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  8. Relativistic transformation law of quantum fields: A slight generalization consistent with the equivalence of all Lorentz frames

    International Nuclear Information System (INIS)

    Ingraham, R.L.

    1985-01-01

    The well-known relativistic transformation law of quantum fields satisfies the relativity principle, which asserts the complete equivalence of all Lorentz (inertial) frames as far as physical measurements go. We point out a slight generalization which is allowed by the relativity principle, but violates a further, tacit assumption usually made in connection with it but which is actually logically independent of it and subject to a feasible experimental test. The interest of the generalization is that it permits the incorporation of an ultraviolet cutoff in a simple, direct way which avoids the usual difficulties

  9. A systematic study of finite BRST-BV transformations within W-X formulation of the standard and the Sp(2)-extended field-antifield formalism

    Energy Technology Data Exchange (ETDEWEB)

    Batalin, Igor A. [P.N. Lebedev Physical Institute, Moscow (Russian Federation); Tomsk State Pedagogical University, Tomsk (Russian Federation); Bering, Klaus [Masaryk University, Faculty of Science, Brno (Czech Republic); Lavrov, Peter M. [Tomsk State Pedagogical University, Tomsk (Russian Federation); National Research Tomsk State University, Tomsk (Russian Federation)

    2016-03-15

    Finite BRST-BV transformations are studied systematically within the W-X formulation of the standard and the Sp(2)-extended field-antifield formalism. The finite BRST-BV transformations are introduced by formulating a new version of the Lie equations. The corresponding finite change of the gauge-fixing master action X and the corresponding Ward identity are derived. (orig.)

  10. RUPTURES IN THE ANALYTIC SETTING AND DISTURBANCES IN THE TRANSFORMATIONAL FIELD OF DREAMS.

    Science.gov (United States)

    Brown, Lawrence J

    2015-10-01

    This paper explores some implications of Bleger's (1967, 2013) concept of the analytic situation, which he views as comprising the analytic setting and the analytic process. The author discusses Bleger's idea of the analytic setting as the depositary for projected painful aspects in either the analyst or patient or both-affects that are then rendered as nonprocess. In contrast, the contents of the analytic process are subject to an incessant process of transformation (Green 2005). The author goes on to enumerate various components of the analytic setting: the nonhuman, object relational, and the analyst's "person" (including mental functioning). An extended clinical vignette is offered as an illustration. © 2015 The Psychoanalytic Quarterly, Inc.

  11. Bureauratic and Political Transformations of the Danish Field of Welfare Work

    DEFF Research Database (Denmark)

    Frederiksen, Jan Thorhauge

    in the Scandinavian welfare state, and the shaping of European educational systems. Bourdieu, P., & Clough, L. C. (1998). The State Nobility: Elite Schools in the Field of Power. Contemporary Sociology (Vol. 27, p. 351). Cambridge: Polity Press. doi:10.2307/2655468 Broady, D. (1991). Sociologi och epistemologi Om...... Pierre Bourdieus författarskap och den historiska epistemologin (Vol. 1991). Brodersen, M. (2009). Fra profession til felt forvelfærdsarbejde. Tidsskrift for Arbejdsliv, 11(3). Bøje, J. D. (2010). Differentiering og sortering i pædagoguddannelsen. University of Copenhagen. Carlhed, C. (2011...... & Rouanet, 2004). I makes separate analyses at different points in time between 1980 and 2013, the operational assumption being that reforms originating in socially dominant fields affect the capital structure of the dominated field of welfare work.(Lebaron, 2009) The population analyzed are all members...

  12. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    OpenAIRE

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the finding...

  13. Transition from Target to Gaze Coding in Primate Frontal Eye Field during Memory Delay and Memory–Motor Transformation123

    Science.gov (United States)

    Sajad, Amirsaman; Sadeh, Morteza; Yan, Xiaogang; Wang, Hongying

    2016-01-01

    Abstract The frontal eye fields (FEFs) participate in both working memory and sensorimotor transformations for saccades, but their role in integrating these functions through time remains unclear. Here, we tracked FEF spatial codes through time using a novel analytic method applied to the classic memory-delay saccade task. Three-dimensional recordings of head-unrestrained gaze shifts were made in two monkeys trained to make gaze shifts toward briefly flashed targets after a variable delay (450-1500 ms). A preliminary analysis of visual and motor response fields in 74 FEF neurons eliminated most potential models for spatial coding at the neuron population level, as in our previous study (Sajad et al., 2015). We then focused on the spatiotemporal transition from an eye-centered target code (T; preferred in the visual response) to an eye-centered intended gaze position code (G; preferred in the movement response) during the memory delay interval. We treated neural population codes as a continuous spatiotemporal variable by dividing the space spanning T and G into intermediate T–G models and dividing the task into discrete steps through time. We found that FEF delay activity, especially in visuomovement cells, progressively transitions from T through intermediate T–G codes that approach, but do not reach, G. This was followed by a final discrete transition from these intermediate T–G delay codes to a “pure” G code in movement cells without delay activity. These results demonstrate that FEF activity undergoes a series of sensory–memory–motor transformations, including a dynamically evolving spatial memory signal and an imperfect memory-to-motor transformation. PMID:27092335

  14. Transformations in the Field of Symbolic Control and Their Implications for the Greek Educational Administration

    Science.gov (United States)

    Tsatsaroni, Anna; Sifakakis, Polychronis; Sarakinioti, Antigone

    2015-01-01

    This paper theorises the field of symbolic control and reflects on the critical literature of policy studies, exploring the possibilities that the former might offer to the analysis of global policy discourses and their up-take in specific national and local contexts. Starting from the rapidly expanding literature on the "globalising"…

  15. Connecting solutions in open string field theory with singular gauge transformations

    Czech Academy of Sciences Publication Activity Database

    Erler, Theodore; Maccaferri, C.

    2012-01-01

    Roč. 2012, č. 4 (2012), 1-40 ISSN 1126-6708 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : tachyon condensation * string field theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP04%282012%29107

  16. Fourier Bessel transform method for efficiently calculating the magnetic field of solenoids

    International Nuclear Information System (INIS)

    Nachamkin, J.; Maggiore, C.J.

    1980-01-01

    A numerical procedure for calculating the magnetic field of a selenoid is derived. Based on the properties of Bessel functions, the procedure is shown to be convergent everywhere, including within the windings of the solenoid. The most critical part of the procedure is detailed in the main text. A simple method is used to ensure numerical significance while allowing economical computational times. In the appendix the procedure is generalized to universal convergence by appropriate partitioning of the solenoid windings

  17. Transforming data into decisions to optimize the recovery of the Saih Rawl Field in Oman

    Energy Technology Data Exchange (ETDEWEB)

    Dozier, G C [Society of Petroleum Engineers, Dubai (United Arab Emirates); [Schlumberger Oilfield Services, Dubai (United Arab Emirates); Giacon, P [Society of Petroleum Engineers, Dubai (United Arab Emirates); [Petroleum Development of Oman (Oman)

    2006-07-01

    The Saih Rawl field of Oman has been producing for more than 5 years from the Barik and Miqrat Formations. Well productivity depends greatly on the effectiveness of hydraulic fracturing and other operating practices. Productivity is further complicated by the changing mechanical and reservoir properties related to depletion and intralayer communication. In this study, a systematic approach was used by a team of operators and service companies to optimize well production within a one-year time period. The approach involved a dynamic integration of historical data and new information technologies and engineering diagnostics to identify the key parameters that influence productivity and to optimize performance according to current analyses. In particular, historical pressure trends by unit were incorporated with theoretical assumptions validated by indirect field evidence. Onsite decision-making resulted in effective placement of fracture treatments. The approach has produced some of the highest producing wells in the field's history. It was concluded that optimization and maximization of well productivity requires multidiscipline inputs that should be managed through structured workflow that includes not only the classical simulation design inputs but entails the entire process from design to execution with particular emphasis on cleanup practices and induced fluid damage. 6 refs., 2 tabs., 25 figs.

  18. Wave field synthesis, adaptive wave field synthesis and ambisonics using decentralized transformed control: Potential applications to sound field reproduction and active noise control

    Science.gov (United States)

    Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw

    2005-09-01

    Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to

  19. Hough transform for clustered microcalcifications detection in full-field digital mammograms

    Science.gov (United States)

    Fanizzi, A.; Basile, T. M. A.; Losurdo, L.; Amoroso, N.; Bellotti, R.; Bottigli, U.; Dentamaro, R.; Didonna, V.; Fausto, A.; Massafra, R.; Moschetta, M.; Tamborra, P.; Tangaro, S.; La Forgia, D.

    2017-09-01

    Many screening programs use mammography as principal diagnostic tool for detecting breast cancer at a very early stage. Despite the efficacy of the mammograms in highlighting breast diseases, the detection of some lesions is still doubtless for radiologists. In particular, the extremely minute and elongated salt-like particles of microcalcifications are sometimes no larger than 0.1 mm and represent approximately half of all cancer detected by means of mammograms. Hence the need for automatic tools able to support radiologists in their work. Here, we propose a computer assisted diagnostic tool to support radiologists in identifying microcalcifications in full (native) digital mammographic images. The proposed CAD system consists of a pre-processing step, that improves contrast and reduces noise by applying Sobel edge detection algorithm and Gaussian filter, followed by a microcalcification detection step performed by exploiting the circular Hough transform. The procedure performance was tested on 200 images coming from the Breast Cancer Digital Repository (BCDR), a publicly available database. The automatically detected clusters of microcalcifications were evaluated by skilled radiologists which asses the validity of the correctly identified regions of interest as well as the system error in case of missed clustered microcalcifications. The system performance was evaluated in terms of Sensitivity and False Positives per images (FPi) rate resulting comparable to the state-of-art approaches. The proposed model was able to accurately predict the microcalcification clusters obtaining performances (sensibility = 91.78% and FPi rate = 3.99) which favorably compare to other state-of-the-art approaches.

  20. The transformation of nitrogen in soil under Robinia Pseudacacia shelterbelt and in adjoining cultivated field

    Science.gov (United States)

    Szajdak, L.; Gaca, W.

    2009-04-01

    The shelterbelts perform more than twenty different functions favorable to the environment, human economy, health and culture. The most important for agricultural landscape is increase of water retention, purification of ground waters and prevent of pollution spread in the landscape, restriction of wind and water erosion effects, isolation of polluting elements in the landscape, preservation of biological diversity in agricultural areas and mitigation of effects of unfavorable climatic phenomena. Denitrification is defined as the reduction of nitrate or nitrite coupled to electron transport phosphorylation resulting in gaseous N either as molecular N2 or as an oxide of N. High content of moisture, low oxygen, neutral and basic pH favour the denitrification. Nitrate reductase is an important enzyme involved in the process of denitrification. The reduction of nitrate to nitrite is catalyzed by nitrate reductase. Nitrite reductase is catalyzed reduction nitrite to nitrous oxide. The conversion of N2O to N2 is catalyzed by nitrous oxide reductase. This process leads to the lost of nitrogen in soil mainly in the form of N2 and N2O. Nitrous oxide is a greenhouse gas which cause significant depletion of the Earth's stratospheric ozone layer. The investigations were carried out in Dezydery Chlapowski Agroecological Landscape Park in Turew (40 km South-West of Poznań, West Polish Lowland). Our investigations were focused on the soils under Robinia pseudacacia shelterbelt and in adjoining cultivated field. The afforestation was created 200 years ago and it is consist of mainly Robinia pseudacacia with admixture of Quercus petraea and Quercus robur. This shelterbelt and adjoining cultivated field are located on grey-brown podzolic soil. The aim of this study is to present information on the changes of nitrate reductase activity in soil with admixture urea (organic form of nitrogen) in two different concentrations 0,25% N and 0,5% N. Our results have shown that this process

  1. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave's ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation.

    Science.gov (United States)

    Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H

    2018-03-20

    The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.

  2. Fringe pattern demodulation using the one-dimensional continuous wavelet transform: field-programmable gate array implementation.

    Science.gov (United States)

    Abid, Abdulbasit

    2013-03-01

    This paper presents a thorough discussion of the proposed field-programmable gate array (FPGA) implementation for fringe pattern demodulation using the one-dimensional continuous wavelet transform (1D-CWT) algorithm. This algorithm is also known as wavelet transform profilometry. Initially, the 1D-CWT is programmed using the C programming language and compiled into VHDL using the ImpulseC tool. This VHDL code is implemented on the Altera Cyclone IV GX EP4CGX150DF31C7 FPGA. A fringe pattern image with a size of 512×512 pixels is presented to the FPGA, which processes the image using the 1D-CWT algorithm. The FPGA requires approximately 100 ms to process the image and produce a wrapped phase map. For performance comparison purposes, the 1D-CWT algorithm is programmed using the C language. The C code is then compiled using the Intel compiler version 13.0. The compiled code is run on a Dell Precision state-of-the-art workstation. The time required to process the fringe pattern image is approximately 1 s. In order to further reduce the execution time, the 1D-CWT is reprogramed using Intel Integrated Primitive Performance (IPP) Library Version 7.1. The execution time was reduced to approximately 650 ms. This confirms that at least sixfold speedup was gained using FPGA implementation over a state-of-the-art workstation that executes heavily optimized implementation of the 1D-CWT algorithm.

  3. Modelling the actual behaviour of the MOX fuel by a micromechanical analysis in non-uniform transformation fields

    International Nuclear Information System (INIS)

    Largenton, R.

    2012-01-01

    This research thesis aimed at developing a model based on scale change to assess more precisely the distribution of local thermo-mechanical fields within a heterogeneous medium as MOX fuel. The analysis method is a non-uniform transformation field analysis (NTFA) which is adapted to the problem of scale change in presence of a coupling between dissipative and elastic effects. More precisely, the author addressed the development of a NTFA model based on specific three-phase and three-dimensional microstructures which are typical of the MOX fuel in an in-service operation. The first part proposes an overview of knowledge and use of MOX. It recalls the context and the industrial problematic associated with this fuel: operating principles for a 900 MWe PWR, fuel fabrication processes, fuel morphologies and structural and microstructural consequences. It addresses local mechanisms within each phase during irradiation, and presents the approach methodology regarding scale change. The second part reports the representation and analysis in complete fields of multiphase particle-based composites (MOX type) in order to determine the representative elementary volume and the local behaviour of each phase. The third part reports the extension of the NTFA approach to 3D aspects, free deformations, ageing and optimization. The last part compares the NTFA approach with the incremental two-phase and three-phase Mori-Tanaka models

  4. Photolytic and photocatalytic degradation of quinclorac in ultrapure and paddy field water: identification of transformation products and pathways.

    Science.gov (United States)

    Pareja, Lucía; Pérez-Parada, Andrés; Agüera, Ana; Cesio, Verónica; Heinzen, Horacio; Fernández-Alba, Amadeo R

    2012-05-01

    Quinclorac (QNC) is an effective but rather persistent herbicide commonly used in rice production. This herbicide presents a mean persistence in the environment so its residues are considered of environmental relevance. However, few studies have been conducted to investigate its environmental behavior and degradation. In the present work, direct photolysis and TiO(2) photocatalysis of the target compound in ultrapure and paddy field water were investigated. After 10h photolysis in ultrapure water, the concentration of QNC declined 26% and 54% at 250 and 700 W m(-2), respectively. However, the amount of quinclorac in paddy field water remained almost constant under the same irradiation conditions. QNC dissipated completely after 40 min of TiO(2) photocatalysis in ultrapure water, whereas 130 min were necessary to degrade 98% of the initial concentration in paddy field water. Possible QNC photolytic and photocatalytic degradation pathways are proposed after structure elucidation of the main transformation products, through liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry and exact mass measurements. Pyridine ring hydroxylation at C-9 followed by ring opening and/or oxidative dechlorination were the key steps of QNC degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. A robust Hough transform algorithm for determining the radiation centers of circular and rectangular fields with subpixel accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Du Weiliang; Yang, James [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Unit 94, Houston, TX 77030 (United States)], E-mail: wdu@mdanderson.org

    2009-02-07

    Uncertainty in localizing the radiation field center is among the major components that contribute to the overall positional error and thus must be minimized. In this study, we developed a Hough transform (HT)-based computer algorithm to localize the radiation center of a circular or rectangular field with subpixel accuracy. We found that the HT method detected the centers of the test circular fields with an absolute error of 0.037 {+-} 0.019 pixels. On a typical electronic portal imager with 0.5 mm image resolution, this mean detection error was translated to 0.02 mm, which was much finer than the image resolution. It is worth noting that the subpixel accuracy described here does not include experimental uncertainties such as linac mechanical instability or room laser inaccuracy. The HT method was more accurate and more robust to image noise and artifacts than the traditional center-of-mass method. Application of the HT method in Winston-Lutz tests was demonstrated to measure the ball-radiation center alignment with subpixel accuracy. Finally, the method was applied to quantitative evaluation of the radiation center wobble during collimator rotation.

  6. Reversibility of magnetic field driven transition from electronic phase separation state to single-phase state in manganites: A microscopic view

    Science.gov (United States)

    Liu, Hao; Lin, Lingfang; Yu, Yang; Lin, Hanxuan; Zhu, Yinyan; Miao, Tian; Bai, Yu; Shi, Qian; Cai, Peng; Kou, Yunfang; Lan, Fanli; Wang, Wenbin; Zhou, Xiaodong; Dong, Shuai; Yin, Lifeng; Shen, Jian

    2017-11-01

    Electronic phase separation (EPS) is a common phenomenon in strongly correlated oxides. For colossal magnetoresistive (CMR) manganites, the EPS is so pronounced that not only does it govern the CMR behavior, but also raises a question whether EPS exists as a ground state for systems or a metastable state. While it has been well known that a magnetic field can drive the transition of the EPS state into a single-phase state in manganites, the reversibility of this transition is not well studied. In this work we use magnetic force microscopy (MFM) to directly visualize the reversibility of the field driven transition between the EPS state and the single-phase state at different temperatures. The MFM images correspond well with the global magnetic and transport property measurements, uncovering the underlying mechanism of the field driven transition between the EPS state and the single-phase state. We argue that EPS state is a consequence of system quenching whose response to an external magnetic field is governed by a local energy landscape.

  7. Neonatal Informatics: Transforming Neonatal Care Through Translational Bioinformatics

    Science.gov (United States)

    Palma, Jonathan P.; Benitz, William E.; Tarczy-Hornoch, Peter; Butte, Atul J.; Longhurst, Christopher A.

    2012-01-01

    The future of neonatal informatics will be driven by the availability of increasingly vast amounts of clinical and genetic data. The field of translational bioinformatics is concerned with linking and learning from these data and applying new findings to clinical care to transform the data into proactive, predictive, preventive, and participatory health. As a result of advances in translational informatics, the care of neonates will become more data driven, evidence based, and personalized. PMID:22924023

  8. Phase-field simulations of α → γ precipitations and transition to massive transformation in the Ti-Al alloy

    International Nuclear Information System (INIS)

    Singer, H.M.; Singer, I.; Jacot, A.

    2009-01-01

    A phase-field model for the solid-solid α → γ transition of Ti-Al binary alloys is presented based on analytical Gibbs free energies and couplings to the thermodynamical database ThermoCalc. The equilibrium values recover the α + γ phase boundaries. Morphological transitions from diffusive to massive (partitionless) growth are observed on increasing the initial mole fraction of aluminum. Temporal evolution of the interface shows a √(t) behavior for diffusive and a linear behavior for massive growth, which is in accordance with theoretical predictions. An estimate of the interfacial mobility of Ti-Al based on the Burke-Turnbull equation is calculated. The expression of the mobility follows an Arrhenius law. Using the derived interfacial mobility, the calculated interfacial velocities of the massive transformation are in quantitative agreement with those observed in experiments

  9. Determination of hyperfine fields and atomic ordering in NiMnFeGe exhibiting martensitic transformation

    Directory of Open Access Journals (Sweden)

    Satuła Dariusz

    2015-03-01

    Full Text Available The hyperfine fields and atomic ordering in Ni1−xFexMnGe (x = 0.1, 0.2, 0.3 alloys were investigated using X-ray diffraction and Mössbauer spectroscopy at room temperature. The X-ray diffraction measurements show that the samples with x = 0.2, 0.3 crystallized in the hexagonal Ni2In-type of structure, whereas in the sample with x = 0.1, the coexistence of two phases, Ni2In- and orthorhombic TiNiSi-type of structures, were found. The Mössbauer spectra measured with x = 0.2, 0.3 show three doublets with different values of isomer shift (IS and quadrupole splitting (QS related to three different local surroundings of Fe atoms in the hexagonal Ni2In-type structure. It was shown that Fe atoms in the hexagonal Ni2In-type structure of as-cast Ni1−xFexMnGe alloys are preferentially located in Ni sites and small amount of Fe is located in Mn and probably in Ge sites. The spectrum for x = 0.1 shows the doublets in the central part of spectrum and a broad sextet. The doublets originate from the Fe atoms in the paramagnetic state of hexagonal Ni2In-type structure, whereas the sextet results from the Fe atoms in orthorhombic TiNiSi-type structure.

  10. The OMICS of Sports & Space: How Genomics is Transforming Both Fields

    Science.gov (United States)

    Reeves, Katherine

    2016-01-01

    Join top 10 New York Times Bestseller “The Sports Gene” author David Epstein and NASA Twins Study investigator Christopher E. Mason, Ph.D., in the debate as old as physical competition—nature versus nurture. From personal experience, Epstein tackles the great debate and traces how far science has come in solving this timeless riddle, and how genetics has entered into the field of sports. He’s an investigative science reporter for ProPublica and longtime contributor to Sports Illustrated. Epstein will share insights into performance-enhancing drugs, the lucky genetics that separate a professional athlete from a less talented athlete, and his research into the death of a friend with Hypertrophic Cardiomyopathy (HCM).From an epigenomic viewpoint, Mason examines the benefits and risks for astronauts who face extreme spaceflight conditions and what it means for the future of human space travel. He is an associate professor in the Department of Physiology and Biophysics, The Feil Family Brain and Mind Research Institute (BMRI) & The Institute for Computational Biomedicine at Weill Cornell Medicine. He is also part of the Tri-Institutional Program on Computational Biology and a Medicine Fellow of Genomics, Ethics, and Law in the Information Society Project at Yale Law School.The study of omics shows tremendous potential in prevention, diagnosis and treatment of injuries and diseases but genetic discrimination and molecular privacy concerns are raised in both sports and space.

  11. Deep Vadose Zone Applied Field Research Center: Transformational Technology Development For Environmental Remediation

    International Nuclear Information System (INIS)

    Wellman, Dawn M.; Triplett, Mark B.; Freshley, Mark D.; Truex, Michael J.; Gephart, Roy E.; Johnson, Timothy C.; Chronister, Glen B.; Gerdes, Kurt D.; Chamberlain, Skip; Marble, Justin; Ramirez, Rosa

    2011-01-01

    DOE-EM, Office of Groundwater and Soil Remediation and DOE Richland, in collaboration with the Hanford site and Pacific Northwest National Laboratory, have established the Deep Vadose Zone Applied Field Research Center (DVZ-AFRC). The DVZ-AFRC leverages DOE investments in basic science from the Office of Science, applied research from DOE EM Office of Technology Innovation and Development, and site operation (e.g., site contractors [CH2M HILL Plateau Remediation Contractor and Washington River Protection Solutions], DOE-EM RL and ORP) in a collaborative effort to address the complex region of the deep vadose zone. Although the aim, goal, motivation, and contractual obligation of each organization is different, the integration of these activities into the framework of the DVZ-AFRC brings the resources and creativity of many to provide sites with viable alternative remedial strategies to current baseline approaches for persistent contaminants and deep vadose zone contamination. This cooperative strategy removes stove pipes, prevents duplication of efforts, maximizes resources, and facilitates development of the scientific foundation needed to make sound and defensible remedial decisions that will successfully meet the target cleanup goals for one of DOE EM's most intractable problems, in a manner that is acceptable by regulators.

  12. Model Driven Engineering

    Science.gov (United States)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  13. Crystal-field-driven redox reactions: How common minerals split H2O and CO2 into reduced H2 and C plus oxygen

    Science.gov (United States)

    Freund, F.; Batllo, F.; Leroy, R. C.; Lersky, S.; Masuda, M. M.; Chang, S.

    1991-01-01

    It is difficult to prove the presence of molecular H2 and reduced C in minerals containing dissolved H2 and CO2. A technique was developed which unambiguously shows that minerals grown in viciously reducing environments contain peroxy in their crystal structures. The peroxy represent interstitial oxygen atoms left behind when the solute H2O and/or CO2 split off H2 and C as a result of internal redox reactions, driven by the crystal field. The observation of peroxy affirms the presence of H2 and reduced C. It shows that the solid state is indeed an unusual reaction medium.

  14. TH-CD-207B-09: Task-Driven Fluence Field Modulation Design for Model-Based Iterative Reconstruction in CT

    Energy Technology Data Exchange (ETDEWEB)

    Gang, G; Siewerdsen, J; Stayman, J [Johns Hopkins University, Baltimore, MD (United States)

    2016-06-15

    Purpose: There has been increasing interest in integrating fluence field modulation (FFM) devices with diagnostic CT scanners for dose reduction purposes. Conventional FFM strategies, however, are often either based on heuristics or the analysis of filtered-backprojection (FBP) performance. This work investigates a prospective task-driven optimization of FFM for model-based iterative reconstruction (MBIR) in order to improve imaging performance at the same total dose as conventional strategies. Methods: The task-driven optimization framework utilizes an ultra-low dose 3D scout as a patient-specific anatomical model and a mathematical formation of the imaging task. The MBIR method investigated is quadratically penalized-likelihood reconstruction. The FFM objective function uses detectability index, d’, computed as a function of the predicted spatial resolution and noise in the image. To optimize performance throughout the object, a maxi-min objective was adopted where the minimum d’ over multiple locations is maximized. To reduce the dimensionality of the problem, FFM is parameterized as a linear combination of 2D Gaussian basis functions over horizontal detector pixels and projection angles. The coefficients of these bases are found using the covariance matrix adaptation evolution strategy (CMA-ES) algorithm. The task-driven design was compared with three other strategies proposed for FBP reconstruction for a calcification cluster discrimination task in an abdomen phantom. Results: The task-driven optimization yielded FFM that was significantly different from those designed for FBP. Comparing all four strategies, the task-based design achieved the highest minimum d’ with an 8–48% improvement, consistent with the maxi-min objective. In addition, d’ was improved to a greater extent over a larger area within the entire phantom. Conclusion: Results from this investigation suggests the need to re-evaluate conventional FFM strategies for MBIR. The task

  15. TH-CD-207B-09: Task-Driven Fluence Field Modulation Design for Model-Based Iterative Reconstruction in CT

    International Nuclear Information System (INIS)

    Gang, G; Siewerdsen, J; Stayman, J

    2016-01-01

    Purpose: There has been increasing interest in integrating fluence field modulation (FFM) devices with diagnostic CT scanners for dose reduction purposes. Conventional FFM strategies, however, are often either based on heuristics or the analysis of filtered-backprojection (FBP) performance. This work investigates a prospective task-driven optimization of FFM for model-based iterative reconstruction (MBIR) in order to improve imaging performance at the same total dose as conventional strategies. Methods: The task-driven optimization framework utilizes an ultra-low dose 3D scout as a patient-specific anatomical model and a mathematical formation of the imaging task. The MBIR method investigated is quadratically penalized-likelihood reconstruction. The FFM objective function uses detectability index, d’, computed as a function of the predicted spatial resolution and noise in the image. To optimize performance throughout the object, a maxi-min objective was adopted where the minimum d’ over multiple locations is maximized. To reduce the dimensionality of the problem, FFM is parameterized as a linear combination of 2D Gaussian basis functions over horizontal detector pixels and projection angles. The coefficients of these bases are found using the covariance matrix adaptation evolution strategy (CMA-ES) algorithm. The task-driven design was compared with three other strategies proposed for FBP reconstruction for a calcification cluster discrimination task in an abdomen phantom. Results: The task-driven optimization yielded FFM that was significantly different from those designed for FBP. Comparing all four strategies, the task-based design achieved the highest minimum d’ with an 8–48% improvement, consistent with the maxi-min objective. In addition, d’ was improved to a greater extent over a larger area within the entire phantom. Conclusion: Results from this investigation suggests the need to re-evaluate conventional FFM strategies for MBIR. The task

  16. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. I. Interaction of Dipolar and Quadrupolar Fields

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk [University of Exeter (UK), Department of Physics and Astronomy, Stoker Road, Devon, Exeter, EX4 4QL (United Kingdom)

    2017-08-10

    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.

  17. Effects of magnetic field and hydrostatic pressure on the isothermal martensitic transformation in an Fe-25.0Ni-4.0Cr alloy

    International Nuclear Information System (INIS)

    Kakeshita, T.; Saburi, T.; Shimizu, K.

    1995-01-01

    Effects of magnetic fields and hydrostatic pressures on the isothermal martensitic transformation, whose nose temperature is about 140K, in an Fe-25.0Ni-4.0Cr alloy (mass%) has been examined by applying magnetic fields up to 30MA/m and hydrostatic pressures up to 1.5GPa. The obtained results are the following: The martensitic transformation is induced instantaneously (less than 20μsec.) under pulsed magnetic fields higher than a critical field over a wide temperature range between 4.2 and 200K. The critical magnetic field increases with increasing temperature, and the relation between critical magnetic field and temperature is in good agreement with the one calculated by the equation previously derived by the authors. The T T T diagram under static magnetic field shows a lower nose temperature and a shorter incubation time than that under no external magnetic field, while the T T T diagram under hydrostatic pressure shows a higher nose temperature and a longer incubation time than that under no external hydrostatic pressure. These results are well explained by the new phenomenological theory, which gives a unified explanation on the isothermal and athermal kinetics of martensitic transformations previously constructed by the authors. (orig.)

  18. Effect of focusing field error during final beam bunching in heavy-ion-beam driven inertial confinement fusion

    International Nuclear Information System (INIS)

    Kikuchi, T.; Kawata, S.; Kawata, S.; Nakajima, M.; Horioka, K.

    2006-01-01

    Emittance growth due to the transverse focusing field error is investigated during the final beam bunching in the energy driver system of heavy ion inertial fusion. The beam bunch is longitudinally compressed during the transport with the field error in the continuous focusing (CF) or the alternating gradient (AG) field lattices. Numerical calculation results show the only 2% difference of the emittance growth between the cases with and without field error in the CF lattice. In the case of the AG lattice model with the field error of 10%, the emittance growth of 2.4 times is estimated, and the major difference between the CF and AG models is indicated from the numerical simulations. (author)

  19. A molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions

    DEFF Research Database (Denmark)

    De Luca, Sergio; Todd, Billy; Hansen, Jesper Schmidt

    2014-01-01

    by an external spatially uniform rotating electric field and confined between two planar surfaces exposing different degrees of hydrophobicity. The permanent dipole moment of water follows the rotating field, thus inducing the molecules to spin, and the torque exerted by the field is continuously injected...... into the fluid, enabling a steady conversion of spin angular momentum into linear momentum. The translational–rotational coupling is a sensitive function of the rotating electric field parameters. In this work, we have found that there exists a small energy dissipation region attainable when the frequency...... of the rotating electric field matches the inverse of the dielectric relaxation time of water and when its amplitude lies in a range just before dielectric saturation effects take place. In this region, that is, when the frequency lies in a small window of the microwave region around ∼20 GHz and amplitude ∼0.03 V...

  20. Low-leakage, high-current power crowbar transformer

    International Nuclear Information System (INIS)

    Buck, R.T.; Galbraith, J.D.; Nunnally, W.C.

    1979-01-01

    The design, fabrication, and testing of two sizes of power crowbar transformers for the ZT-40 Toroidal Z-Pinch experiment at the Los Alamos Scientific Laboratory are described. Low-leakage transformers in series with the poloidal and the toroidal field coils are used to sustain magnetic field currents initially produced by 50-kV capacitor banks. The transformer primaries are driven by cost-effective, ignitron-switched, 10-kV high-density capacitor banks. The transformer secondaries, in series with the field coils, provide from 1,000 to 1,500 V to cancel the resistive voltage drop in the coil circuits. Prototype transformers, with a total leakage inductance measured in the secondary of 5 nH, have been tested with peak secondary currents in excess of 600 kA resulting from a 10-kV primary charge voltage. The test procedures and results and the mechanical construction details are presented

  1. Topological phase transitions in an inverted InAs/GaSb quantum well driven by tilted magnetic fields

    Science.gov (United States)

    Hsu, Hsiu-Chuan; Jhang, Min-Jyun; Chen, Tsung-Wei; Guo, Guang-Yu

    2017-05-01

    The helical edge states in a quantum spin Hall insulator are presumably protected by time-reversal symmetry. However, even in the presence of magnetic field which breaks time-reversal symmetry, the helical edge conduction can still exist, dubbed as pseudo quantum spin Hall effect. In this paper, the effects of the magnetic fields on the pseudo quantum spin Hall effect and the phase transitions are studied. We show that an in-plane magnetic field drives a pseudo quantum spin Hall state to a metallic state at a high field. Moreover, at a fixed in-plane magnetic field, an increasing out-of-plane magnetic field leads to a reentrance of pseudo quantum spin Hall state in an inverted InAs/GaSb quantum well. The edge state probability distribution and Chern numbers are calculated to verify that the reentrant states are topologically nontrivial. The origin of the reentrant behavior is attributed to the nonmonotonic bending of Landau levels and the Landau level mixing caused by the orbital effect induced by the in-plane magnetic field. The robustness to disorder is demonstrated by the numerically calculated quantized conductance for disordered nanowires within Landauer-Büttiker formalism.

  2. Visualizing Transformation

    DEFF Research Database (Denmark)

    Pedersen, Pia

    2012-01-01

    Transformation, defined as the step of extracting, arranging and simplifying data into visual form (M. Neurath, 1974), was developed in connection with ISOTYPE (International System Of TYpographic Picture Education) and might well be the most important legacy of Isotype to the field of graphic...... design. Recently transformation has attracted renewed interest because of the book The Transformer written by Robin Kinross and Marie Neurath. My on-going research project, summarized in this paper, identifies and depicts the essential principles of data visualization underlying the process...... of transformation with reference to Marie Neurath’s sketches on the Bilston Project. The material has been collected at the Otto and Marie Neurath Collection housed at the University of Reading, UK. By using data visualization as a research method to look directly into the process of transformation, the project...

  3. Open field modifications needed to measure, in the mouse, exploration- driven ambulation and fear of open space.

    OpenAIRE

    Vidal Gómez, José

    2014-01-01

    The open field test is used to assess ambulation and anxiety; one way to assess anxiety is to compare ambulation in the center with ambulation in the periphery: the more anxious is the mouse, the less it moves in the center. The results of this report cast doubts on the generality of that rule, because they show that ambulation, both in the center and in the periphery, depends on the mouse strain and on the size of the open field; specifically, in a brightly lit open-field of moderate size (3...

  4. Optical bistability and multistability driven by external magnetic field in a dielectric slab doped with nanodiamond nitrogen vacancy centres

    Science.gov (United States)

    Nasehi, R.; Norouzi, F.

    2016-08-01

    The theoretical investigation of controlling the optical bistability (OB) and optical multistability (OM) in a dielectric medium doped with nanodiamond nitrogen vacancy centres under optical excitation are reported. The shape of the OB curve from dielectric slab can be tuned by changing the external magnetic field and polarization of the control beam. The effect of the intensity of the control laser field and the frequency detuning of probe laser field on the OB and OM behaviour are also discussed in this paper. The results obtained can be used for realizing an all-optical bistable switching or development of nanoelectronic devices.

  5. Better Rooting Procedure to Enhance Survival Rate of Field Grown Malaysian Eksotika Papaya Transformed with 1-Aminocyclopropane-1-Carboxylic Acid Oxidase Gene

    Science.gov (United States)

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom

    2013-01-01

    A high survival rate for transformed papaya plants when transferred to the field is useful in the quest for improving the commercial quality traits. We report in this paper an improved rooting method for the production of transformed Malaysian Eksotika papaya with high survival rate when transferred to the field. Shoots were regenerated from embryogenic calli transformed with antisense and RNAi constructs of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes using the Agrobacterium tumefaciens-mediated transformation method. Regenerated transformed shoots, each measuring approximately 3-4 cm in height, were cultured in liquid half-strength Murashige and Skoog (MS) medium or sterile distilled water, and with either perlite or vermiculite supplementation. All the culturing processes were conducted either under sterile or nonsterile condition. The results showed that rooting under sterile condition was better. Shoots cultured in half-strength MS medium supplemented with vermiculite exhibited a 92.5% rooting efficiency while perlite showed 77.5%. The survival rate of the vermiculite-grown transformed papaya plantlets after transfer into soil, contained in polybags, was 94%, and the rate after transfer into the ground was 92%. Morpho-histological analyses revealed that the tap roots were more compact, which might have contributed to the high survival rates of the plantlets. PMID:25969786

  6. Better rooting procedure to enhance survival rate of field grown malaysian eksotika papaya transformed with 1-aminocyclopropane-1-carboxylic Acid oxidase gene.

    Science.gov (United States)

    Sekeli, Rogayah; Abdullah, Janna Ong; Namasivayam, Parameswari; Muda, Pauziah; Abu Bakar, Umi Kalsom

    2013-01-01

    A high survival rate for transformed papaya plants when transferred to the field is useful in the quest for improving the commercial quality traits. We report in this paper an improved rooting method for the production of transformed Malaysian Eksotika papaya with high survival rate when transferred to the field. Shoots were regenerated from embryogenic calli transformed with antisense and RNAi constructs of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) genes using the Agrobacterium tumefaciens-mediated transformation method. Regenerated transformed shoots, each measuring approximately 3-4 cm in height, were cultured in liquid half-strength Murashige and Skoog (MS) medium or sterile distilled water, and with either perlite or vermiculite supplementation. All the culturing processes were conducted either under sterile or nonsterile condition. The results showed that rooting under sterile condition was better. Shoots cultured in half-strength MS medium supplemented with vermiculite exhibited a 92.5% rooting efficiency while perlite showed 77.5%. The survival rate of the vermiculite-grown transformed papaya plantlets after transfer into soil, contained in polybags, was 94%, and the rate after transfer into the ground was 92%. Morpho-histological analyses revealed that the tap roots were more compact, which might have contributed to the high survival rates of the plantlets.

  7. P01.29 Mutant (R132H) IDH1-driven cellular transformation makes cells dependent on continued wild type IDH1 expression in a model of in vitro gliomagenesis

    Science.gov (United States)

    Johannessen, T.; Mukherjee, J.; Wood, M.; Viswanath, P.; Ohba, S.; Ronen, S.; Berkvig, R.; Pieper, R.

    2017-01-01

    Abstract Introduction: Missense R132H mutations in the active site of isocitrate dehydrogenase 1 (IDH1) biologically and diagnostically distinguish low-grade gliomas and secondary glioblastomas from primary glioblastomas. IDH1 mutations lead to the formation of the oncometabolite 2-hydroxyglutarate (2-HG) from the reduction of α-ketoglutarate (α-KG), which in turn facilitates tumorigenesis by modifying DNA and histone methylation as well blocking differentiation processes. We recently showed (Mol Cancer Res 14: 976–983, 2016) that although mutant IDH1 expression in hTERT-immortalized, p53/pRb-deficient astrocytes can drive cellular transformation and gliomagenesis, selective pharmacologic inhibition and elimination of 2-HG by the mutant IDH1 inhibitor AGI-5198 has little effect on the growth or clonagenicity of these transformed cells. To address the possible role of WT IDH1 in the growth of mutant IDH-driven tumor cells, we used a slightly different gliomagenesis model in which the transformation of TERT-deficient, p53/pRb-deficient astrocytes (pre-crisis cells) occurs only after prolonged expression of mutant IDH and passage through cellular crisis (post-crisis cells, Cancer Res 76:6680–6689, 2016). METHODS AND MATERIALS: Using this system we introduced AGI-5198, or siRNA targeting both WT and mutant forms of IDH1 into p53/pRb-deficient, mutant IDH1-expressing human astrocytes prior to or following their transformation, and compared the effects on cell growth and clonagenicity. Results: AGI-5198 exposure decreased levels of 2HG by greater than 90%, and as previously reported had no effect on the growth of either the pre-or post-crisis cell populations. A one-day exposure to a pan IDH1 siRNA resulted in a similar, prolonged (greater than 6 day), 80% inhibition of both WT and mutant IDH1 protein levels and 2HG in both cell groups. While the growth of the mutant IDH-expressing, non-transformed cells was similar to that of scramble siRNA controls, the growth

  8. Application of the windowed-Fourier-transform-based fringe analysis technique for investigating temperature and concentration fields in fluids.

    Science.gov (United States)

    Mohanan, Sharika; Srivastava, Atul

    2014-04-10

    The present work is concerned with the development and application of a novel fringe analysis technique based on the principles of the windowed-Fourier-transform (WFT) for the determination of temperature and concentration fields from interferometric images for a range of heat and mass transfer applications. Based on the extent of the noise level associated with the experimental data, the technique has been coupled with two different phase unwrapping methods: the Itoh algorithm and the quality guided phase unwrapping technique for phase extraction. In order to generate the experimental data, a range of experiments have been carried out which include cooling of a vertical flat plate in free convection conditions, combustion of mono-propellant flames, and growth of organic as well as inorganic crystals from their aqueous solutions. The flat plate and combustion experiments are modeled as heat transfer applications wherein the interest is to determine the whole-field temperature distribution. Aqueous-solution-based crystal growth experiments are performed to simulate the mass transfer phenomena and the interest is to determine the two-dimensional solute concentration field around the growing crystal. A Mach-Zehnder interferometer has been employed to record the path-integrated quantity of interest (temperature and/or concentration) in the form of interferometric images in the experiments. The potential of the WFT method has also been demonstrated on numerically simulated phase data for varying noise levels, and the accuracy in phase extraction have been quantified in terms of the root mean square errors. Three levels of noise, i.e., 0%, 10%, and 20% have been considered. Results of the present study show that the WFT technique allows an accurate extraction of phase values that can subsequently be converted into two-dimensional temperature and/or concentration distribution fields. Moreover, since WFT is a local processing technique, speckle patterns and the inherent

  9. Hyperfine-Interaction-Driven Suppression of Quantum Tunneling at Zero Field in a Holmium(III) Single-Ion Magnet.

    Science.gov (United States)

    Chen, Yan-Cong; Liu, Jun-Liang; Wernsdorfer, Wolfgang; Liu, Dan; Chibotaru, Liviu F; Chen, Xiao-Ming; Tong, Ming-Liang

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm -1 . The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from 165 Ho (I=7/2) with a natural abundance of 100 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Hyperfine-interaction-driven suppression of quantum tunneling at zero field in a holmium(III) single-ion magnet

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan-Cong; Liu, Jun-Liang; Chen, Xiao-Ming; Tong, Ming-Liang [Key Lab. of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen Univ., Guangzhou (China); Wernsdorfer, Wolfgang [Institut Neel, CNRS and Universite Joseph Fournier, Grenoble (France); Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Physikalisches Institut, Karlsruhe Institute of Technology (Germany); Liu, Dan; Chibotaru, Liviu F. [Theory of Nanomaterials Group and INPAC-Institute of Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven (Belgium)

    2017-04-24

    An extremely rare non-Kramers holmium(III) single-ion magnet (SIM) is reported to be stabilized in the pentagonal-bipyramidal geometry by a phosphine oxide with a high energy barrier of 237(4) cm{sup -1}. The suppression of the quantum tunneling of magnetization (QTM) at zero field and the hyperfine structures originating from field-induced QTMs can be observed even from the field-dependent alternating-current magnetic susceptibility in addition to single-crystal hysteresis loops. These dramatic dynamics were attributed to the combination of the favorable crystal-field environment and the hyperfine interactions arising from {sup 165}Ho (I=7/2) with a natural abundance of 100 %. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027 (Australia)

    2014-07-07

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  12. Simultaneous monitoring of singlet and triplet exciton variations in solid organic semiconductors driven by an external static magnetic field

    International Nuclear Information System (INIS)

    Ding, Baofu; Alameh, Kamal

    2014-01-01

    The research field of organic spintronics has remarkably and rapidly become a promising research area for delivering a range of high-performance devices, such as magnetic-field sensors, spin valves, and magnetically modulated organic light emitting devices (OLEDs). Plenty of microscopic physical and chemical models based on exciton or charge interactions have been proposed to explain organic magneto-optoelectronic phenomena. However, the simultaneous observation of singlet- and triplet-exciton variations in an external magnetic field is still unfeasible, preventing a thorough theoretical description of the spin dynamics in organic semiconductors. Here, we show that we can simultaneously observe variations of singlet excitons and triplet excitons in an external magnetic field, by designing an OLED structure employing a singlet-exciton filtering and detection layer in conjunction with a separate triplet-exciton detection layer. This OLED structure enables the observation of a Lorentzian and a non-Lorentzian line-shape magnetoresponse for singlet excitons and triplet excitons, respectively.

  13. Current-driven instabilities of the kinetic shear Alfven wave: Application to reversed field pinches and spheromaks

    International Nuclear Information System (INIS)

    Meyerhofer, D.D.; Perkins, F.W.

    1984-01-01

    The kinetic Alfven wave is studied in a cylindrical force-free plasma with self-consistent magnetic fields. This equilibrium represents a reversed field pinch or a spheromak. The stability of the wave is found to depend on the ratio of the electron drift velocity to the Alfven velocity. This ratio varies inversely with the square root of the plasma line density. The critical line density using the Spitzer--Harm electron distribution function is found for reversed field pinches with deuterium plasmas to be approximately 2 x 10 18 and is 5 x 10 17 m -1 in spheromaks with hydrogen plasmas. The critical line density is in reasonable agreement with experimental data for reversed field pinches

  14. Temperature and Magnetic Field Driven Modifications in the I-V Features of Gold-DNA-Gold Structure

    Directory of Open Access Journals (Sweden)

    Nadia Mahmoudi Khatir

    2014-10-01

    Full Text Available The fabrication of Metal-DNA-Metal (MDM structure-based high sensitivity sensors from DNA micro-and nanoarray strands is a key issue in their development. The tunable semiconducting response of DNA in the presence of external electromagnetic and thermal fields is a gift for molecular electronics. The impact of temperatures (25–55 °C and magnetic fields (0–1200 mT on the current-voltage (I-V features of Au-DNA-Au (GDG structures with an optimum gap of 10 μm is reported. The I-V characteristics acquired in the presence and absence of magnetic fields demonstrated the semiconducting diode nature of DNA in GDG structures with high temperature sensitivity. The saturation current in the absence of magnetic field was found to increase sharply with the increase of temperature up to 45 °C and decrease rapidly thereafter. This increase was attributed to the temperature-assisted conversion of double bonds into single bond in DNA structures. Furthermore, the potential barrier height and Richardson constant for all the structures increased steadily with the increase of external magnetic field irrespective of temperature variations. Our observation on magnetic field and temperature sensitivity of I-V response in GDG sandwiches may contribute towards the development of DNA-based magnetic sensors.

  15. Non-affine fields in solid-solid transformations: the structure and stability of a product droplet.

    Science.gov (United States)

    Paul, Arya; Sengupta, Surajit; Rao, Madan

    2014-01-08

    We describe the microstructure, morphology, and dynamics of growth of a droplet of martensite nucleating in a parent austenite during a solid-solid transformation, using a Landau theory written in terms of both conventional affine elastic deformations and non-affine deformations. Non-affineness, φ, serves as a source of strain incompatibility and screens long-ranged elastic interactions. It is produced wherever the local stress exceeds a threshold and anneals diffusively thereafter. Using a variational calculation, we find three types of stable solution (labeled I, II, and III) for the structure of the product droplet, depending on the stress threshold and the scaled mobilities of φ parallel and perpendicular to the parent-product interface. The profile of the non-affine field φ is different in these three solutions: I is characterized by a vanishingly small φ, II admits large values of φ localized in regions of high stress within the parent-product interface, and III is a structure in which φ completely wets the parent-product interface. The width l and size W of the twins follow the relation l is proportional to √W in solution I; this relation does not hold for II or III. We obtain a dynamical phase diagram featuring these solutions, and argue that they represent specific solid-state microstructures.

  16. An MHD Simulation of Solar Active Region 11158 Driven with a Time-dependent Electric Field Determined from HMI Vector Magnetic Field Measurement Data

    Science.gov (United States)

    Hayashi, Keiji; Feng, Xueshang; Xiong, Ming; Jiang, Chaowei

    2018-03-01

    For realistic magnetohydrodynamics (MHD) simulation of the solar active region (AR), two types of capabilities are required. The first is the capability to calculate the bottom-boundary electric field vector, with which the observed magnetic field can be reconstructed through the induction equation. The second is a proper boundary treatment to limit the size of the sub-Alfvénic simulation region. We developed (1) a practical inversion method to yield the solar-surface electric field vector from the temporal evolution of the three components of magnetic field data maps, and (2) a characteristic-based free boundary treatment for the top and side sub-Alfvénic boundary surfaces. We simulate the temporal evolution of AR 11158 over 16 hr for testing, using Solar Dynamics Observatory/Helioseismic Magnetic Imager vector magnetic field observation data and our time-dependent three-dimensional MHD simulation with these two features. Despite several assumptions in calculating the electric field and compromises for mitigating computational difficulties at the very low beta regime, several features of the AR were reasonably retrieved, such as twisting field structures, energy accumulation comparable to an X-class flare, and sudden changes at the time of the X-flare. The present MHD model can be a first step toward more realistic modeling of AR in the future.

  17. Reversible magnetic-field-induced martensitic transformation over a wide temperature window in Ni42-xCoxCu8Mn37Ga13 alloys

    Science.gov (United States)

    Hua, Hui; Wang, Jingmin; Jiang, Chengbao; Xu, Huibin

    2018-05-01

    Ni42-xCoxCu8Mn37Ga13 (0 ≤ x ≤ 14) alloys are reported to exhibit a magnetostructural transition from weakly-magnetic martensite to ferromagnetic austenite over a rather wide temperature window ranging from 200 K to 380 K. Simultaneously a large magnetization change Δσ of up to 105 Am2 kg-1 is obtained at the martensitic transformation. A reversible magnetic-field-induced martensitic transformation is realized, resulting in a large magnetocaloric effect related to the high magnetic entropy change with a broad working temperature span. This work shows how it is possible to effectively tailor the magnetostructural transition in Ni-Mn-Ga alloys so as to achieve a reversible magnetic-field-induced martensitic transformation and associated functionalities.

  18. Rearrangement of crystallographic domains driven by magnetic field in ferromagnetic Ni2MnGa and antiferromagnetic CoO

    International Nuclear Information System (INIS)

    Terai, Tomoyuki; Yasui, Motoyoshi; Yamamoto, Masataka; Kakeshita, Tomoyuki

    2009-01-01

    We have investigated the rearrangement of crystallographic domains (martensite variants) in Ni 2 MnGa ferromagnetic shape memory alloy and CoO antiferromagnetic oxide by applying magnetic field up to 8.0 MA/m. From the result of optical microscope observation of Ni 2 MnGa single crystal, when a magnetic field is applied along [001] p (p represents a parent phase), the rearrangement of crystallographic domains occurs and the single domain state is obtained below T Ms = 202 K. The same rearrangement occurs but partially when a magnetic field is applied along [110] p . On the other hand, when a magnetic field is applied along [111] p , the rearrangement does not occur. In case of the CoO single crystal, when a magnetic field is applied along [001] p below T Ms = 293 K, the rearrangement occurs at 170 K ≤ T ≤ 293 K, but does not occur at T p and [111] p , the rearrangement does not occur below T Ms . In order to explain the rearrangement in the alloy and the oxide, we have evaluated the magnetic shear stress, τ mag , which is derived from the difference in magnetic energy among crystallographic domains and have compared it with the shear stress required for the twinning plane movement, τ req . As a result, we have found that the rearrangement occurs when the value of τ mag is larger than or equal to the value of τ req for the present alloy and oxide.

  19. A PtdIns(4)P-driven electrostatic field controls cell membrane identity and signalling in plants.

    Science.gov (United States)

    Simon, Mathilde Laetitia Audrey; Platre, Matthieu Pierre; Marquès-Bueno, Maria Mar; Armengot, Laia; Stanislas, Thomas; Bayle, Vincent; Caillaud, Marie-Cécile; Jaillais, Yvon

    2016-06-20

    Many signalling proteins permanently or transiently localize to specific organelles. It is well established that certain lipids act as biochemical landmarks to specify compartment identity. However, they also influence membrane biophysical properties, which emerge as important features in specifying cellular territories. Such parameters include the membrane inner surface potential, which varies according to the lipid composition of each organelle. Here, we found that the plant plasma membrane (PM) and the cell plate of dividing cells have a unique electrostatic signature controlled by phosphatidylinositol-4-phosphate (PtdIns(4)P). Our results further reveal that, contrarily to other eukaryotes, PtdIns(4)P massively accumulates at the PM, establishing it as a critical hallmark of this membrane in plants. Membrane surface charges control the PM localization and function of the polar auxin transport regulator PINOID as well as proteins from the BRI1 KINASE INHIBITOR1 (BKI1)/MEMBRANE ASSOCIATED KINASE REGULATOR (MAKR) family, which are involved in brassinosteroid and receptor-like kinase signalling. We anticipate that this PtdIns(4)P-driven physical membrane property will control the localization and function of many proteins involved in development, reproduction, immunity and nutrition.

  20. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, Joao

    2017-10-01

    Powerful laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in the kTesla range. The B-fields are measured by proton-deflectometry and high-frequency bandwidth B-dot probes. According to our modeling, the quasi-static currents are provided from hot electron ejection from the laser-irradiated surface, accounting for the space charge neutralization and the plasma magnetization. The major control parameter is the laser irradiance Iλ2 . The B-fields ns-scale is long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport into solid dielectric targets, yielding an unprecedented enhancement of a factor 5 on the energy-density flux at 60 µm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes and to laboratory astrophysics. We acknowledge funding from French National Agency for Research (ANR), Grant TERRE ANR-2011-BS04-014, and from EUROfusion Consortium, European Union's Horizon 2020 research and innovation programme, Grant 633053.

  1. Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes

    Science.gov (United States)

    Romero, Manuel; González-Aguilar, José; Luque, Salvador

    2017-06-01

    The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.

  2. Emergence of periodic order in electric-field-driven planar nematic liquid crystals: An exclusive ac effect absent in static fields

    Science.gov (United States)

    Krishnamurthy, K. S.; Kumar, Pramoda

    2007-11-01

    We report, for a nematic liquid crystal with a low conductivity anisotropy, an ac field generated transition from a uniformly planar to a periodically modulated director configuration with the wave vector parallel to the initial director. Significantly, with unblocked electrodes, this instability is not excited by dc fields. Additionally, in very low frequency square wave fields, it occurs transiently after each polarity reversal, vanishing completely during field constancy. The time of occurrence of maximum distortion after polarity reversal decreases exponentially with voltage. The time dependence of optical phase change during transient distortion is nearly Gaussian. The pattern threshold Vc is linear in f , f denoting the frequency; the critical wave number qc of the modulation scales nearly linearly as f to a peak at ˜50Hz before falling slightly thereafter. The observed Vc(f) and qc(f) characteristics differ from the predictions of the standard model (SM). The instability may be interpreted as a special case of the Carr-Helfrich distortion suppressed in static fields due to weak charge focusing and strong charge injection. Its transient nature in the low frequency regime is suggestive of the possible role of gradient flexoelectric effect in its occurrence. The study includes measurement of certain elastic and viscosity parameters relevant to the application of the SM.

  3. Evaluation of Chemical and Mineralogical Transformation of Iron in Different Soils in Saturated and Field Capacity Conditions

    Directory of Open Access Journals (Sweden)

    M. Saadatpour Mogaddam

    2016-09-01

    Full Text Available Introduction: Redox potential is one of the most important factors affecting on the solubility of iron minerals in soil. Decreasing redox potential in soil reduces Fe3+ to Fe2+, thereby affecting on solubility of Fe minerals. Application of organic matter to soil under waterlogging condition, decrease redox potential and as a consequence, accelerate the transformation of Fe minerals. The objectives of this study were: 1- The effect of waterlogging on the soluble total Fe concentration and transformation of Fe minerals in different soil pH values. 2- The indirect effects of organic matter on solubility of Fe minerals by changing the redox potential of the soils. Materials and Methods: A study was conducted to determine the effects of redox potential on solubility of Fe and transformation of Fe minerals during the time. Four agricultural soils were selected from different regions of Iran. The soil samples were treated with 0 (Cand 2% (O alfalfa powder and then incubated for 12 weeks under 60% Field capacity (F and waterlogged conditions (S. Subsamples were taken after 1and 12 weeks of incubation and the redox potential, pH value, electrical conductivity (EC, soluble cations (such as Ca2+, Mg2+, K+ and Na+ and anions (such as Cl-, SO42-, PO43- and NO3- and soluble Fe concentrations in the subsamples were measured. Concentrations of Fe2+ and Fe3+ species in soil solution were also predicted using Visual MINTEQ speciation program. Mineralogical transformation of Fe minerals was also determined by X-ray diffraction (XRD technique. Results and Discussion: The results in 60% Field capacity condition showed that pH value by organic matter (alfalfa powder application (OF increased significantly (p≤ 0.05 in acid and neutral soils and decreased in calcareous soils when compared to the control (CF. Organic matter is usually capable of lowering pH of alkaline soils by releasing hydrogen ions associated with organic anions or by nitrification in an open

  4. The promises and limitations of gender-transformative health programming with men: critical reflections from the field.

    Science.gov (United States)

    Dworkin, Shari L; Fleming, Paul J; Colvin, Christopher J

    2015-01-01

    Since the 1994 International Conference on Population and Development, researchers and practitioners have engaged in a series of efforts to shift health programming with men from being gender-neutral to being more gender-sensitive and gender-transformative. Efforts in this latter category have been increasingly utilised, particularly in the last decade, and attempt to transform gender relations to be more equitable in the name of improved health outcomes for both women and men. We begin by assessing the conceptual progression of social science contributions to gender-transformative health programming with men. Next, we briefly assess the empirical evidence from gender-transformative health interventions with men. Finally, we examine some of the challenges and limitations of gender-transformative health programmes and make recommendations for future work in this thriving interdisciplinary area of study.

  5. Development of a high brightness ultrafast Transmission Electron Microscope based on a laser-driven cold field emission source.

    Science.gov (United States)

    Houdellier, F; Caruso, G M; Weber, S; Kociak, M; Arbouet, A

    2018-03-01

    We report on the development of an ultrafast Transmission Electron Microscope based on a cold field emission source which can operate in either DC or ultrafast mode. Electron emission from a tungsten nanotip is triggered by femtosecond laser pulses which are tightly focused by optical components integrated inside a cold field emission source close to the cathode. The properties of the electron probe (brightness, angular current density, stability) are quantitatively determined. The measured brightness is the largest reported so far for UTEMs. Examples of imaging, diffraction and spectroscopy using ultrashort electron pulses are given. Finally, the potential of this instrument is illustrated by performing electron holography in the off-axis configuration using ultrashort electron pulses. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    Directory of Open Access Journals (Sweden)

    Hikaru Akahoshi

    2018-03-01

    Full Text Available High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  7. Filtering peripheral high temperature electrons in a cylindrical rf-driven plasmas by an axisymmetric radial magnetic field

    Science.gov (United States)

    Akahoshi, Hikaru; Takahashi, Kazunori; Ando, Akira

    2018-03-01

    High temperature electrons generated near a radial wall of a cylindrical source tube in a radiofrequency (rf) inductively-coupled plasma is filtered by an axisymmetric radial magnetic field formed near the source exit by locating annular permanent magnets, where the axial magnetic field strength in the radially central region is fairly uniform inside the source tube and is close to zero near the source exit. The source is operated at 3 mTorr in argon and the rf antenna is powered by a 13.56 MHz and 400 W rf generator. Measurement of electron energy probability functions shows the presence of the peripheral high temperature electrons inside the source, while the temperature of the peripheral electrons downstream of the source is observed to be reduced.

  8. Dipolar molecules inside C-70: an electric field-driven room-temperature single-molecule switch

    Czech Academy of Sciences Publication Activity Database

    Foroutan-Nejad, C.; Andrushchenko, Valery; Straka, Michal

    2016-01-01

    Roč. 18, č. 48 (2016), s. 32673-32677 ISSN 1463-9076 R&D Projects: GA ČR(CZ) GA14-03564S Institutional support: RVO:61388963 Keywords : room-temperature single-molecule switch * electric field * endohedral fullerene * density functional calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.123, year: 2016 http://pubs.rsc.org/en/content/articlepdf/2016/cp/c6cp06986j

  9. Polarity-sensitive transient patterned state in a twisted nematic liquid crystal driven by very low frequency fields.

    Science.gov (United States)

    Krishnamurthy, K S; Kumar, Pramoda; Kumar, M Vijay

    2013-02-01

    We report, for a rodlike nematic liquid crystal with small positive dielectric and conductivity anisotropies, and in the 90°-twisted configuration, low frequency (wave electric field generated Carr-Helfrich director modulation appearing transiently over a few seconds at each polarity reversal and vanishing almost completely under steady field conditions. Significantly, the instability is polarity sensitive, with the maximum distortion localized in the vicinity of the negative electrode, rather than in the midplane of the layer. This is revealed by the wave vector alternating in the two halves of the driving cycle between the alignment directions at the two substrates. Besides the Carr-Helfrich mechanism, quadrupolar flexoelectric polarization arising under electric field gradient is strongly indicated as being involved in the development of the transient periodic order. Similar transient instability is also observed in other nematic compounds with varying combinations of dielectric and conductivity anisotropies, showing its general nature. The study also deals with various characteristics of the electro-optic effect that emerge from the temporal variation of optical response for different driving voltages, frequencies, and temperatures.

  10. Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics

    Science.gov (United States)

    Santos, J. J.; Bailly-Grandvaux, M.; Ehret, M.; Arefiev, A. V.; Batani, D.; Beg, F. N.; Calisti, A.; Ferri, S.; Florido, R.; Forestier-Colleoni, P.; Fujioka, S.; Gigosos, M. A.; Giuffrida, L.; Gremillet, L.; Honrubia, J. J.; Kojima, S.; Korneev, Ph.; Law, K. F. F.; Marquès, J.-R.; Morace, A.; Mossé, C.; Peyrusse, O.; Rose, S.; Roth, M.; Sakata, S.; Schaumann, G.; Suzuki-Vidal, F.; Tikhonchuk, V. T.; Toncian, T.; Woolsey, N.; Zhang, Z.

    2018-05-01

    Powerful nanosecond laser-plasma processes are explored to generate discharge currents of a few 100 kA in coil targets, yielding magnetostatic fields (B-fields) in excess of 0.5 kT. The quasi-static currents are provided from hot electron ejection from the laser-irradiated surface. According to our model, which describes the evolution of the discharge current, the major control parameter is the laser irradiance Ilasλlas2 . The space-time evolution of the B-fields is experimentally characterized by high-frequency bandwidth B-dot probes and proton-deflectometry measurements. The magnetic pulses, of ns-scale, are long enough to magnetize secondary targets through resistive diffusion. We applied it in experiments of laser-generated relativistic electron transport through solid dielectric targets, yielding an unprecedented 5-fold enhancement of the energy-density flux at 60 μm depth, compared to unmagnetized transport conditions. These studies pave the ground for magnetized high-energy density physics investigations, related to laser-generated secondary sources of radiation and/or high-energy particles and their transport, to high-gain fusion energy schemes, and to laboratory astrophysics.

  11. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    International Nuclear Information System (INIS)

    Gottschalk, Hanno; Hack, Thomas-Paul

    2009-12-01

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a φ p -theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  12. On the unitary transformation between non-quasifree and quasifree state spaces and its application to quantum field theory on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, Hanno [Bonn Univ. (Germany). Inst. fuer Angewandte Mathematik; Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2009-12-15

    Using *-calculus on the dual of the Borchers-Uhlmann algebra endowed with a combinatorial co-product, we develop a method to calculate a unitary transformation relating the GNS representations of a non-quasifree and a quasifree state of the free hermitian scalar field. The motivation for such an analysis and a further result is the fact that a unitary transformation of this kind arises naturally in scattering theory on non-stationary backgrounds. Indeed, employing the perturbation theory of the Yang-Feldman equations with a free CCR field in a quasifree state as an initial condition and making use of extended Feynman graphs, we are able to calculate the Wightman functions of the interacting and outgoing fields in a {phi}{sup p}-theory on arbitrary curved spacetimes. A further examination then reveals two major features of the aforementioned theory: firstly, the interacting Wightman functions fulfil the basic axioms of hermiticity, invariance, spectrality (on stationary spacetimes), perturbative positivity, and locality. Secondly, the outgoing field is free and fulfils the CCR, but is in general not in a quasifree state in the case of a non-stationary spacetime. In order to obtain a sensible particle picture for the outgoing field and, hence, a description of the scattering process in terms of particles (in asymptotically flat spacetimes), it is thus necessary to compute a unitary transformation of the abovementioned type. (orig.)

  13. Design and simulation of a heat transformer of a directly solar-driven diffusion absorption chiller; Auslegung und Simulation von Waermeuebertragern einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Josua; Schmid, Fabian; Spindler, Klaus [Stuttgart Univ. (DE). Inst. fuer Thermodynamik und Waermetechnik (ITW)

    2011-07-01

    The ITW is working on a directly solar-driven diffusion absorption chiller. Solar cooling offers vast potential for saving fossil resources, e.g. owing to the good temporal agreement between insolation and cold demand for cooling of office buildings and domestic buildings. So far, the focus has been on central systems with indirect solar thermal operation. Direct solar thermal plants can be decentral. A diffusion-absorption refrigeration system without mechanical components was constructed. Solvent circulation is achieved by the thermosyphon principle, which makes the plant noiseless, wear-free, and low-maintenance. In the course of a study, a mathematical model of the heat exchangers was established on the basis of the heat transfer equations, and optimisation suggestions for the heat exchanger were identified on this basis. The influence of the pressure gradient - which is decisive -, and the influence of geometry and materials were investigated. The simulations were validated by measurements. Concrete optimisation potentials were identified, and first suggestions were implemented. [German] Am ITW wird intensiv an einer direkt solarthermisch angetriebenen Diffusions-Absorptionskaeltemaschine (DAKM) geforscht. Die solare Kuehlung bietet grosse Potentiale zur Einsparung fossiler Energietraeger. Ein Grund dafuer ist die gute zeitliche Uebereinstimmung zwischen Solarstrahlung und dem Kaeltebedarf fuer die Kuehlung von Wohngebaeuden und Bueros. Bislang standen zentrale und indirekt solarthermisch angetriebene Systeme zur Kaelteerzeugung im Fokus. Die direkt solarthermisch angetriebene Anlage kann auf Grund ihres neuen Konzepts dezentral aufgebaut und betrieben werden. Auf Grundlage des Diffusions-Absorptionskaelteprozesses wurde eine Anlage gebaut, die ohne mechanische Bauteile funktioniert. Der Loesungsmittelumlauf erfolgt durch das Thermosiphonprinzip. Dadurch ist die Anlage im Betrieb geraeuschlos, verschleissfrei und wartungsarm. Im Rahmen einer Studienarbeit

  14. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea.

    Directory of Open Access Journals (Sweden)

    Matthias Kretschmer

    2009-12-01

    Full Text Available The grey mould fungus Botrytis cinerea causes losses of commercially important fruits, vegetables and ornamentals worldwide. Fungicide treatments are effective for disease control, but bear the risk of resistance development. The major resistance mechanism in fungi is target protein modification resulting in reduced drug binding. Multiple drug resistance (MDR caused by increased efflux activity is common in human pathogenic microbes, but rarely described for plant pathogens. Annual monitoring for fungicide resistance in field isolates from fungicide-treated vineyards in France and Germany revealed a rapidly increasing appearance of B. cinerea field populations with three distinct MDR phenotypes. All MDR strains showed increased fungicide efflux activity and overexpression of efflux transporter genes. Similar to clinical MDR isolates of Candida yeasts that are due to transcription factor mutations, all MDR1 strains were shown to harbor activating mutations in a transcription factor (Mrr1 that controls the gene encoding ABC transporter AtrB. MDR2 strains had undergone a unique rearrangement in the promoter region of the major facilitator superfamily transporter gene mfsM2, induced by insertion of a retrotransposon-derived sequence. MDR2 strains carrying the same rearranged mfsM2 allele have probably migrated from French to German wine-growing regions. The roles of atrB, mrr1 and mfsM2 were proven by the phenotypes of knock-out and overexpression mutants. As confirmed by sexual crosses, combinations of mrr1 and mfsM2 mutations lead to MDR3 strains with higher broad-spectrum resistance. An MDR3 strain was shown in field experiments to be selected against sensitive strains by fungicide treatments. Our data document for the first time the rising prevalence, spread and molecular basis of MDR populations in a major plant pathogen in agricultural environments. These populations will increase the risk of grey mould rot and hamper the effectiveness of

  15. Time-dependent restricted-active-space self-consistent-field theory for laser-driven many-electron dynamics

    DEFF Research Database (Denmark)

    Miyagi, Haruhide; Madsen, Lars Bojer

    2013-01-01

    We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...

  16. Electric-field driven insulator-metal transition and tunable magnetoresistance in ZnO thin film

    Science.gov (United States)

    Zhang, Le; Chen, Shanshan; Chen, Xiangyang; Ye, Zhizhen; Zhu, Liping

    2018-04-01

    Electrical control of the multistate phase in semiconductors offers the promise of nonvolatile functionality in the future semiconductor spintronics. Here, by applying an external electric field, we have observed a gate-induced insulator-metal transition (MIT) with the temperature dependence of resistivity in ZnO thin films. Due to a high-density carrier accumulation, we have shown the ability to inverse change magnetoresistance in ZnO by ionic liquid gating from 10% to -2.5%. The evolution of photoluminescence under gate voltage was also consistent with the MIT, which is due to the reduction of dislocation. Our in-situ gate-controlled photoluminescence, insulator-metal transition, and the conversion of magnetoresistance open up opportunities in searching for quantum materials and ZnO based photoelectric devices.

  17. Spectral and far-field broadening due to stimulated rotational Raman scattering driven by the Nike krypton fluoride laser.

    Science.gov (United States)

    Weaver, James; Lehmberg, Robert; Obenschain, Stephen; Kehne, David; Wolford, Matthew

    2017-11-01

    Stimulated rotational Raman scattering (SRRS) in the ultraviolet region (λ=248  nm) has been observed at the Nike laser over extended propagation paths in air during high power operation. Although this phenomenon is not significant for standard operating configurations at Nike, broadening of the laser spectrum and far-field focal profiles has been observed once the intensity-path length product exceeds a threshold of approximately 1  TW/cm. This paper presents experimental results and a new theoretical evaluation of these effects. The observations suggest that significantly broader spectra can be achieved with modest degradation of the final focal distribution. These results point to a possible path for enhanced laser-target coupling with the reduction of laser-plasma instabilities due to broad laser bandwidth produced by the SRRS.

  18. Electric-Field-Driven Dual Vacancies Evolution in Ultrathin Nanosheets Realizing Reversible Semiconductor to Half-Metal Transition.

    Science.gov (United States)

    Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi

    2015-12-02

    Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.

  19. Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRASG12D-driven Pancreatic TumorigenesisSummary

    Directory of Open Access Journals (Sweden)

    Nicolas Chuvin

    2017-09-01

    Full Text Available Background & Aims: Transforming growth factor beta (TGFβ acts either as a tumor suppressor or as an oncogene, depending on the cellular context and time of activation. TGFβ activates the canonical SMAD pathway through its interaction with the serine/threonine kinase type I and II heterotetrameric receptors. Previous studies investigating TGFβ-mediated signaling in the pancreas relied either on loss-of-function approaches or on ligand overexpression, and its effects on acinar cells have so far remained elusive. Methods: We developed a transgenic mouse model allowing tamoxifen-inducible and Cre-mediated conditional activation of a constitutively active type I TGFβ receptor (TβRICA in the pancreatic acinar compartment. Results: We observed that TβRICA expression induced acinar-to-ductal metaplasia (ADM reprogramming, eventually facilitating the onset of KRASG12D-induced pre-cancerous pancreatic intraepithelial neoplasia. This phenotype was characterized by the cellular activation of apoptosis and dedifferentiation, two hallmarks of ADM, whereas at the molecular level, we evidenced a modulation in the expression of transcription factors such as Hnf1β, Sox9, and Hes1. Conclusions: We demonstrate that TGFβ pathway activation plays a crucial role in pancreatic tumor initiation through its capacity to induce ADM, providing a favorable environment for KRASG12D-dependent carcinogenesis. Such findings are highly relevant for the development of early detection markers and of potentially novel treatments for pancreatic cancer patients. Keywords: Pancreas, Cancer, TGFβ, Acinar-to-Ductal Metaplasia, KRASG12D

  20. Post-translational transformation of methionine to aspartate is catalyzed by heme iron and driven by peroxide: a novel subunit-specific mechanism in hemoglobin.

    Science.gov (United States)

    Strader, Michael Brad; Hicks, Wayne A; Kassa, Tigist; Singleton, Eileen; Soman, Jayashree; Olson, John S; Weiss, Mitchell J; Mollan, Todd L; Wilson, Michael T; Alayash, Abdu I

    2014-08-08

    A pathogenic V67M mutation occurs at the E11 helical position within the heme pockets of variant human fetal and adult hemoglobins (Hb). Subsequent post-translational modification of Met to Asp was reported in γ subunits of human fetal Hb Toms River (γ67(E11)Val → Met) and β subunits of adult Hb (HbA) Bristol-Alesha (β67(E11)Val → Met) that were associated with hemolytic anemia. Using kinetic, proteomic, and crystal structural analysis, we were able to show that the Met → Asp transformation involves heme cycling through its oxoferryl state in the recombinant versions of both proteins. The conversion to Met and Asp enhanced the spontaneous autoxidation of the mutants relative to wild-type HbA and human fetal Hb, and the levels of Asp were elevated with increasing levels of hydrogen peroxide (H2O2). Using H2(18)O2, we verified incorporation of (18)O into the Asp carboxyl side chain confirming the role of H2O2 in the oxidation of the Met side chain. Under similar experimental conditions, there was no conversion to Asp at the αMet(E11) position in the corresponding HbA Evans (α62(E11)Val → Met). The crystal structures of the three recombinant Met(E11) mutants revealed similar thioether side chain orientations. However, as in the solution experiments, autoxidation of the Hb mutant crystals leads to electron density maps indicative of Asp(E11) formation in β subunits but not in α subunits. This novel post-translational modification highlights the nonequivalence of human Hb α, β, and γ subunits with respect to redox reactivity and may have direct implications to α/β hemoglobinopathies and design of oxidatively stable Hb-based oxygen therapeutics. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Periodically Driven Array of Single Rydberg Atoms

    Science.gov (United States)

    Basak, Sagarika; Chougale, Yashwant; Nath, Rejish

    2018-03-01

    An array of single Rydberg atoms driven by a temporally modulated atom-field detuning is studied. The periodic modulation effectively modifies the Rabi coupling, leading to unprecedented dynamics in the presence of Rydberg-Rydberg interactions, in particular, blockade enhancement, antiblockades, and state-dependent population trapping. Interestingly, the Schrieffer-Wolf transformation reveals a fundamental process in Rydberg gases, correlated Rabi coupling, which stems from the extended nature of the Rydberg-Rydberg interactions. Also, the correlated coupling provides an alternative depiction for the Rydberg blockade, exhibiting a nontrivial behavior in the presence of periodic modulation. The dynamical localization of a many-body configuration in a driven Rydberg lattice is discussed.

  2. Error Field Assessment from Driven Mode Rotation: Results from Extrap-T2R Reversed-Field-Pinch and Perspectives for ITER

    Science.gov (United States)

    Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.

    2012-10-01

    A new ITER-relevant non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the Extrap-T2R reversed field pinch. Resistive Wall Modes (RWMs) were generated and their rotation sustained by rotating magnetic perturbations. In particular, stable modes of toroidal mode number n=8 and 10 and unstable modes of n=1 were used in this experiment. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the RWMs were observed to rotate non-uniformly and be modulated in amplitude (in the case of unstable modes, the observed oscillation was superimposed to the mode growth). This behavior was used to infer the amplitude and toroidal phase of n=1, 8 and 10 EFs. The method was first tested against known, deliberately applied EFs, and then against actual intrinsic EFs. Applying equal and opposite corrections resulted in longer discharges and more uniform mode rotation, indicating good EF compensation. The results agree with a simple theoretical model. Extensions to tearing modes, to the non-uniform plasma response to rotating perturbations, and to tokamaks, including ITER, will be discussed.

  3. Density-driven structural transformations in network forming glasses: a high-pressure neutron diffraction study of GeO2 glass up to 17.5 GPa

    International Nuclear Information System (INIS)

    Salmon, Philip S; Drewitt, James W E; Whittaker, Dean A J; Zeidler, Anita; Wezka, Kamil; Bull, Craig L; Tucker, Matthew G; Wilding, Martin C; Guthrie, Malcolm; Marrocchelli, Dario

    2012-01-01

    The structure of GeO 2 glass was investigated at pressures up to 17.5(5) GPa using in situ time-of-flight neutron diffraction with a Paris-Edinburgh press employing sintered diamond anvils. A new methodology and data correction procedure were developed, enabling a reliable measurement of structure factors that are largely free from diamond Bragg peaks. Calibration curves, which are important for neutron diffraction work on disordered materials, were constructed for pressure as a function of applied load for both single and double toroid anvil geometries. The diffraction data are compared to new molecular-dynamics simulations made using transferrable interaction potentials that include dipole-polarization effects. The results, when taken together with those from other experimental methods, are consistent with four densification mechanisms. The first, at pressures up to ≃ 5 GPa, is associated with a reorganization of GeO 4 units. The second, extending over the range from ≃ 5 to 10 GPa, corresponds to a regime where GeO 4 units are replaced predominantly by GeO 5 units. In the third, as the pressure increases beyond ∼10 GPa, appreciable concentrations of GeO 6 units begin to form and there is a decrease in the rate of change of the intermediate-range order as measured by the pressure dependence of the position of the first sharp diffraction peak. In the fourth, at about 30 GPa, the transformation to a predominantly octahedral glass is achieved and further densification proceeds via compression of the Ge-O bonds. The observed changes in the measured diffraction patterns for GeO 2 occur at similar dimensionless number densities to those found for SiO 2 , indicating similar densification mechanisms for both glasses. This implies a regime from about 15 to 24 GPa where SiO 4 units are replaced predominantly by SiO 5 units, and a regime beyond ∼24 GPa where appreciable concentrations of SiO 6 units begin to form.

  4. Modulation of basal cell fate during productive and transforming HPV-16 infection is mediated by progressive E6-driven depletion of Notch.

    Science.gov (United States)

    Kranjec, Christian; Holleywood, Christina; Libert, Diane; Griffin, Heather; Mahmood, Radma; Isaacson, Erin; Doorbar, John

    2017-08-01

    In stratified epithelia such as the epidermis, homeostasis is maintained by the proliferation of cells in the lower epithelial layers and the concomitant loss of differentiated cells from the epithelial surface. These differentiating keratinocytes progressively stratify and form a self-regenerating multi-layered barrier that protects the underlying dermis. In such tissue, the continual loss and replacement of differentiated cells also limits the accumulation of oncogenic mutations within the tissue. Inactivating mutations in key driver genes, such as TP53 and NOTCH1, reduce the proportion of differentiating cells allowing for the long-term persistence of expanding mutant clones in the tissue. Here we show that through the expression of E6, HPV-16 prevents the early fate commitment of human keratinocytes towards differentiation and confers a strong growth advantage to human keratinocytes. When E6 is expressed either alone or with E7, it promotes keratinocyte proliferation at high cell densities, through the combined inactivation of p53 and Notch1. In organotypic raft culture, the activity of E6 is restricted to the basal layer of the epithelium and is enhanced during the progression from productive to abortive or transforming HPV-16 infection. Consistent with this, the expression of p53 and cleaved Notch1 becomes progressively more disrupted, and is associated with increased basal cell density and reduced commitment to differentiation. The expression of cleaved Notch1 is similarly disrupted also in HPV-16-positive cervical lesions, depending on neoplastic grade. When taken together, these data depict an important role of high-risk E6 in promoting the persistence of infected keratinocytes in the basal and parabasal layers through the inactivation of gene products that are commonly mutated in non-HPV-associated neoplastic squamous epithelia. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great

  5. Reconsidering the advantages of the three-dimensional representation of the interferometric transform for imaging with non-coplanar baselines and wide fields of view

    Science.gov (United States)

    Smith, D. M. P.; Young, A.; Davidson, D. B.

    2017-07-01

    Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.

  6. Fast imaging diagnostics on the C-2U advanced beam-driven field-reversed configuration device

    Energy Technology Data Exchange (ETDEWEB)

    Granstedt, E. M., E-mail: egranstedt@trialphaenergy.com; Petrov, P.; Knapp, K.; Cordero, M.; Patel, V. [Tri Alpha Energy, P.O. Box 7010, Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    The C-2U device employed neutral beam injection, end-biasing, and various particle fueling techniques to sustain a Field-Reversed Configuration (FRC) plasma. As part of the diagnostic suite, two fast imaging instruments with radial and nearly axial plasma views were developed using a common camera platform. To achieve the necessary viewing geometry, imaging lenses were mounted behind re-entrant viewports attached to welded bellows. During gettering, the vacuum optics were retracted and isolated behind a gate valve permitting their removal if cleaning was necessary. The axial view incorporated a stainless-steel mirror in a protective cap assembly attached to the vacuum-side of the viewport. For each system, a custom lens-based, high-throughput optical periscope was designed to relay the plasma image about half a meter to a high-speed camera. Each instrument also contained a remote-controlled filter wheel, set between shots to isolate a particular hydrogen or impurity emission line. The design of the camera platform, imaging performance, and sample data for each view is presented.

  7. A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies

    Energy Technology Data Exchange (ETDEWEB)

    Oran, R.; Van der Holst, B.; Landi, E.; Jin, M.; Sokolov, I. V.; Gombosi, T. I., E-mail: oran@umich.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48105 (United States)

    2013-12-01

    We describe, analyze, and validate the recently developed Alfvén Wave Solar Model, a three-dimensional global model starting from the top of the chromosphere and extending into interplanetary space (out to 1-2 AU). This model solves the extended, two-temperature magnetohydrodynamics equations coupled to a wave kinetic equation for low-frequency Alfvén waves. In this picture, heating and acceleration of the plasma are due to wave dissipation and to wave pressure gradients, respectively. The dissipation process is described by a fully developed turbulent cascade of counterpropagating waves. We adopt a unified approach for calculating the wave dissipation in both open and closed magnetic field lines, allowing for a self-consistent treatment in any magnetic topology. Wave dissipation is the only heating mechanism assumed in the model; no geometric heating functions are invoked. Electron heat conduction and radiative cooling are also included. We demonstrate that the large-scale, steady state (in the corotating frame) properties of the solar environment are reproduced, using three adjustable parameters: the Poynting flux of chromospheric Alfvén waves, the perpendicular correlation length of the turbulence, and a pseudoreflection coefficient. We compare model results for Carrington rotation 2063 (2007 November-December) with remote observations in the extreme-ultraviolet and X-ray ranges from the Solar Terrestrial Relations Observatory, Solar and Heliospheric Observatory, and Hinode spacecraft and with in situ measurements by Ulysses. The results are in good agreement with observations. This is the first global simulation that is simultaneously consistent with observations of both the thermal structure of the lower corona and the wind structure beyond Earth's orbit.

  8. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects.

    Science.gov (United States)

    VanGordon, James A; Kovaleski, Scott D; Norgard, Peter; Gall, Brady B; Dale, Gregory E

    2014-02-01

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  9. Measurement of the internal stress and electric field in a resonating piezoelectric transformer for high-voltage applications using the electro-optic and photoelastic effects

    Energy Technology Data Exchange (ETDEWEB)

    VanGordon, James A.; Kovaleski, Scott D., E-mail: kovaleskis@missouri.edu; Norgard, Peter; Gall, Brady B. [Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Dale, Gregory E. [High Power Electrodynamics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-02-15

    The high output voltages from piezoelectric transformers are currently being used to accelerate charged particle beams for x-ray and neutron production. Traditional methods of characterizing piezoelectric transformers (PTs) using electrical probes can decrease the voltage transformation ratio of the device due to the introduction of load impedances on the order of hundreds of kiloohms to hundreds of megaohms. Consequently, an optical diagnostic was developed that used the photoelastic and electro-optic effects present in piezoelectric materials that are transparent to a given optical wavelength to determine the internal stress and electric field. The combined effects of the piezoelectric, photoelastic, and electro-optic effects result in a time-dependent change the refractive indices of the material and produce an artificially induced, time-dependent birefringence in the piezoelectric material. This induced time-dependent birefringence results in a change in the relative phase difference between the ordinary and extraordinary wave components of a helium-neon laser beam. The change in phase difference between the wave components was measured using a set of linear polarizers. The measured change in phase difference was used to calculate the stress and electric field based on the nonlinear optical properties, the piezoelectric constitutive equations, and the boundary conditions of the PT. Maximum stresses of approximately 10 MPa and electric fields of as high as 6 kV/cm were measured with the optical diagnostic. Measured results were compared to results from both a simple one-dimensional (1D) model of the piezoelectric transformer and a three-dimensional (3D) finite element model. Measured stresses and electric fields along the length of an operating length-extensional PT for two different electrical loads were within at least 50 % of 3D finite element simulated results. Additionally, the 3D finite element results were more accurate than the results from the 1D model

  10. New microstructural features occurring during transformation from austenite to ferrite under the kinetic influence of magnetic field in a medium carbon steel

    International Nuclear Information System (INIS)

    Zhang Yudong; He Changshu; Zhao Xiang; Zuo Liang; Esling, Claude; He, Jicheng

    2004-01-01

    The effects of magnetic field on nucleation barrier of the phase transformation from austenite to ferrite at different cooling rates in 42CrMo steel have been investigated. The microstructures of ferrite and pearlite aligned along the magnetic field direction (parallel to the hot-rolling direction) are obtained at a cooling rate of 10 deg. C/min, resulting from the kinetic effects of the applied magnetic field during cooling and the microstructural influences of an inhomogeneous deformation occurring during the previous hot rolling. In this case, the formation of ferrite grains at higher temperatures is attributed mainly to the preferential nucleation at austenite boundaries. However, a fairly uniform microstructure of randomly distributed ferrite and pearlite is formed at a high cooling rate of 46 deg. C/min in the magnetic field of 14 T, as a result of both intergranular and intragranular nucleation at relatively low temperatures. Probing into this issue is helpful to gain a better understanding of kinetic influences of magnetic field on the phase transformation from austenite to ferrite

  11. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Science.gov (United States)

    Malakar, Pradyut; Jana, Bana Bihari; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas. PMID:28974053

  12. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    Science.gov (United States)

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus ® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  13. Settlers Unsettled: Using Field Schools and Digital Stories to Transform Geographies of Ignorance about Indigenous Peoples in Canada

    Science.gov (United States)

    Castleden, Heather; Daley, Kiley; Sloan Morgan, Vanessa; Sylvestre, Paul

    2013-01-01

    Geography is a product of colonial processes, and in Canada, the exclusion from educational curricula of Indigenous worldviews and their lived realities has produced "geographies of ignorance". Transformative learning is an approach geographers can use to initiate changes in non-Indigenous student attitudes about Indigenous…

  14. Wavelet transform with fuzzy tuning based indirect field oriented speed control of three-phase induction motor drive

    DEFF Research Database (Denmark)

    Sanjeevikumar, P.; Daya, J.L. Febin; Wheeler, Patrick

    2015-01-01

    by the proposed controller for an improved transient and steady state performances. The discrete wavelet transform has been used to decompose the error speed into different frequency components and the fuzzy logic is used to generate the scaling gains of the wavelet controller. The complete model of the proposed...

  15. Electronic Power Transformer Control Strategy in Wind Energy Conversion Systems for Low Voltage Ride-through Capability Enhancement of Directly Driven Wind Turbines with Permanent Magnet Synchronous Generators (D-PMSGs

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2014-11-01

    Full Text Available This paper investigates the use of an Electronic Power Transformer (EPT incorporated with an energy storage system to smooth the wind power fluctuations and enhance the low voltage ride-through (LVRT capability of directly driven wind turbines with permanent magnet synchronous generators (D-PMSGs. The decoupled control schemes of the system, including the grid side converter control scheme, generator side converter control scheme and the control scheme of the energy storage system, are presented in detail. Under normal operating conditions, the energy storage system absorbs the high frequency component of the D-PMSG output power to smooth the wind power fluctuations. Under grid fault conditions, the energy storage system absorbs the redundant power, which could not be transferred to the grid by the EPT, to help the D-PMSG to ride through low voltage conditions. This coordinated control strategy is validated by simulation studies using MATLAB/Simulink. With the proposed control strategy, the output wind power quality is improved and the D-PMSG can ride through severe grid fault conditions.

  16. Electric field-induced phase transitions and composition-driven nanodomains in rhombohedral-tetragonal potassium-sodium niobate-based ceramics

    KAUST Repository

    Lv, Xiang

    2017-08-07

    The mechanisms behind the high piezoelectricity of (K,Na)NbO3-based lead-free ceramics were investigated, including electric field-induced phase transitions and composition-driven nanodomains. The construction of a rhombohedral-tetragonal (R-T) phase boundary, confirmed using several advanced techniques, allowed a large piezoelectric constant (d33) of 450 ± 5 pC/N to be obtained in (1-x)K0.4Na0.6Nb0.945Sb0.055O3-xBi0.5Na0.5(Hf1-ySny)O3 (0 ≤ x ≤ 0.06 and 0 ≤ y ≤ 0.5) ceramics possessing an ultralow ΔUT-R of 7.4 meV. More importantly, the existence of an intermediate phase, i.e., the electric-induced phase (EIP), bridging the rhombohedral R [Ps//(111)] and tetragonal T [Ps//(001)] phases during the polarization rotation was demonstrated. Striped nanodomains (∼40 nm) that easily responded to external stimulation were also observed in the ceramics with an R-T phase. Thus, the enhanced piezoelectric properties originated from EIP and the striped nanodomains.

  17. MR Imaging of the Internal Auditory Canal and Inner Ear at 3T: Comparison between 3D Driven Equilibrium and 3D Balanced Fast Field Echo Sequences

    Energy Technology Data Exchange (ETDEWEB)

    Byun, Jun Soo; Kim, Hyung Jin; Yim, Yoo Jeong; Kim, Sung Tae; Jeon, Pyoung; Kim, Keon Ha [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Sam Soo; Jeon, Yong Hwan; Lee, Ji Won [Kangwon National University College of Medicine, Chuncheon (Korea, Republic of)

    2008-06-15

    To compare the use of 3D driven equilibrium (DRIVE) imaging with 3D balanced fast field echo (bFFE) imaging in the assessment of the anatomic structures of the internal auditory canal (IAC) and inner ear at 3 Tesla (T). Thirty ears of 15 subjects (7 men and 8 women; age range, 22 71 years; average age, 50 years) without evidence of ear problems were examined on a whole-body 3T MR scanner with both 3D DRIVE and 3D bFFE sequences by using an 8-channel sensitivity encoding (SENSE) head coil. Two neuroradiologists reviewed both MR images with particular attention to the visibility of the anatomic structures, including four branches of the cranial nerves within the IAC, anatomic structures of the cochlea, vestibule, and three semicircular canals. Although both techniques provided images of relatively good quality, the 3D DRIVE sequence was somewhat superior to the 3D bFFE sequence. The discrepancies were more prominent for the basal turn of the cochlea, vestibule, and all semicircular canals, and were thought to be attributed to the presence of greater magnetic susceptibility artifacts inherent to gradient-echo techniques such as bFFE. Because of higher image quality and less susceptibility artifacts, we highly recommend the employment of 3D DRIVE imaging as the MR imaging choice for the IAC and inner ear

  18. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring.

    Science.gov (United States)

    Maity, Arnab; Sui, Xiaoyu; Tarman, Chad R; Pu, Haihui; Chang, Jingbo; Zhou, Guihua; Ren, Ren; Mao, Shun; Chen, Junhong

    2017-11-22

    Rapid and real-time detection of heavy metals in water with a portable microsystem is a growing demand in the field of environmental monitoring, food safety, and future cyber-physical infrastructure. Here, we report a novel ultrasensitive pulse-driven capacitance-based lead ion sensor using self-assembled graphene oxide (GO) monolayer deposition strategy to recognize the heavy metal ions in water. The overall field-effect transistor (FET) structure consists of a thermally reduced graphene oxide (rGO) channel with a thin layer of Al 2 O 3 passivation as a top gate combined with sputtered gold nanoparticles that link with the glutathione (GSH) probe to attract Pb 2+ ions in water. Using a preprogrammed microcontroller, chemo-capacitance based detection of lead ions has been demonstrated with this FET sensor. With a rapid response (∼1-2 s) and negligible signal drift, a limit of detection (LOD) water stabilization followed by lead ion testing and calculation is much shorter than common FET resistance/current measurements (∼minutes) and other conventional methods, such as optical and inductively coupled plasma methods (∼hours). An approximate linear operational range (5-20 ppb) around 15 ppb (the maximum contaminant limit by US Environmental Protection Agency (EPA) for lead in drinking water) makes it especially suitable for drinking water quality monitoring. The validity of the pulse method is confirmed by quantifying Pb 2+ in various real water samples such as tap, lake, and river water with an accuracy ∼75%. This capacitance measurement strategy is promising and can be readily extended to various FET-based sensor devices for other targets.

  19. Grenade Range Management Using Lime for Dual Role of Metals Immobilization and Explosives Transformation. Field Demonstration at Fort Jackson, SC

    Science.gov (United States)

    2008-09-01

    and reported the results under the sample delivery groups ( SDG ) L128026 and L128720. The following analytical methods were requested on the chains -of... supplies . The application of hydrated lime to an HGR to provide a mechanism for both metals immobilization and explosives transformation was...Offsites 1 and 2 were supplied by RDX from the control bay, Bay 2. Offsite 3 was supplied by the RDX from lime- treated Bay 4. A period of 6 months had

  20. Calculation of breaking radiation dose fields in heterogenous media by a method of the transformation of axial distribution

    International Nuclear Information System (INIS)

    Mil'shtejn, R.S.

    1988-01-01

    Analysis of dose fields in a heterogeneous tissue equivalent medium has shown that dose distributions have radial symmetry and can be described by a curve of axial distribution with renormalization of maximum ionization depth. A method of the calculation of a dose field in a heterogeneous medium using the principle of radial symmetry is presented

  1. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Directory of Open Access Journals (Sweden)

    Philipp Otter

    2017-10-01

    Full Text Available Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L, iron (5.5 ± 0.8 mg/L, manganese (1.5 ± 0.4 mg/L, phosphate (2.4 ± 1.3 mg/L and ammonium (1.4 ± 0.5 mg/L concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L, >99% for iron (0.03 ± 0.03 mg/L, 96% for manganese (0.06 ± 0.05 mg/L, 72% for phosphate (0.7 ± 0.3 mg/L and 84% for ammonium (0.18 ± 0.12 mg/L were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  2. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  3. Graph Transformation Semantics for a QVT Language

    NARCIS (Netherlands)

    Rensink, Arend; Nederpel, Ronald; Bruni, Roberto; Varró, Dániel

    It has been claimed by many in the graph transformation community that model transformation, as understood in the context of Model Driven Architecture, can be seen as an application of graph transformation. In this paper we substantiate this claim by giving a graph transformation-based semantics to

  4. Domain patterns and hysteresis in phase-transforming solids: analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation

    Czech Academy of Sciences Publication Activity Database

    DeSimone, A.; Kružík, Martin

    2013-01-01

    Roč. 8, č. 2 (2013), s. 481-499 ISSN 1556-1801 R&D Projects: GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985556 Keywords : hysteresis * shape memory Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kruzik-domain patterns and hysteresis in phase-transforming solids analysis and numerical simulations of a sharp interface dissipative model via phase-field approximation.pdf

  5. Transforming care in nursing: a concept analysis.

    Science.gov (United States)

    Vázquez-Calatayud, Mónica; Oroviogoicoechea, Cristina; Saracibar, Maribel; Pumar-Méndez, María J

    2017-04-01

    Although the concept of 'Transforming care' is promising for improving health care, there is no consensus in the field as to its definition. The aim of this concept analysis is to develop a deeper understanding of the term 'Transforming care' within the nursing discipline, in order to facilitate its comprehension, implementation, and evaluation. We performed a comprehensive literature review on electronic databases such as Medline (PubMed), Cinahl (Ebsco), Cochrane Library, PsycINFO (Ovid), Web of Science, Wiley-Blackwell, ScienceDirect, and SpringerLink and used Walker and Avant's approach to analyse the concept. From the 20 studies selected for this analysis, 3 main attributes of 'Transforming care' were identified: patient-centredness, evidence-based change, and transformational leadership driven. We suggest an operational definition to facilitate the implementation of the concept in practice. Furthermore, we propose that implementation is guided by the following key ideas: (1) fostering a culture of continuous improvement; (2) encouraging bottom-up initiatives; (3) promoting patient-centred care; and (4) using transformational leadership. Lastly, the evaluation of 'Transforming care' initiatives should assess care processes and professionals' and patients' outcomes.

  6. Improving Thin Bed Identification in Sarawak Basin Field using Short Time Fourier Transform Half Cepstrum (STFTHC) method

    Science.gov (United States)

    Nizarul, O.; Hermana, M.; Bashir, Y.; Ghosh, D. P.

    2016-02-01

    In delineating complex subsurface geological feature, broad band of frequencies are needed to unveil the often hidden features of hydrocarbon basin such as thin bedding. The ability to resolve thin geological horizon on seismic data is recognized to be a fundamental importance for hydrocarbon exploration, seismic interpretation and reserve prediction. For thin bedding, high frequency content is needed to enable tuning, which can be done by applying the band width extension technique. This paper shows an application of Short Time Fourier Transform Half Cepstrum (STFTHC) method, a frequency bandwidth expansion technique for non-stationary seismic signal in increasing the temporal resolution to uncover thin beds and improve characterization of the basin. A wedge model and synthetic seismic data is used to quantify the algorithm as well as real data from Sarawak basin were used to show the effectiveness of this method in enhancing the resolution.

  7. New 3D Gravity Model of the Lithosphere and new Approach of the Gravity Field Transformation in the Western Carpathian-Pannonian Region

    Science.gov (United States)

    Bielik, M.; Tasarova, Z. A.; Goetze, H.; Mikuska, J.; Pasteka, R.

    2007-12-01

    The 3-D forward modeling was performed for the Western Carpathians and the Pannonian Basin system. The density model includes 31 cross-sections, extends to depth of 220 km. By means of the combined 3-D modeling, new estimates of the density distribution of the crust and upper mantle, as well as depths of the Moho were derived. These data allowed to perform gravity stripping, which in the area of the Pannonian Basin is crucial for the signal analysis of the gravity field. In this region, namely, two pronounced features (i.e. the deep sedimentary basins and shallow Moho) with opposite gravity effects make it impossible to analyze the Bouguer anomaly by field separation or filtering. The results revealed a significantly different nature of the Western Carpathian- Pannonian region (ALACAPA and Tisza-Dacia microplates) from the European Platform lithosphere (i.e. these microplates to be much less dense than the surrounding European Platform lithosphere). The calculation of the transformed gravity maps by means of new method provided the additional information on the lithospheric structure. The use of existing elevation information represents an independent approach to the problem of transformation of gravity maps. Instead of standard separation and transformation methods both in wave-number and spatial domains, this method is based on the estimating of really existing linear trends within the values of complete Bouguer anomalies (CBA), which are understood as a function defined in 3D space. An important assumption that the points with known input values of CBA lie on a horizontal plane is therefore not required. Instead, the points with known CBA and elevation values are treated in their original positions, i.e. on the Earth surface.

  8. Work(er)-Driven Innovation

    Science.gov (United States)

    Smith, Raymond

    2017-01-01

    Purpose: The focus on innovation as a foundational element of enhanced organisational performance has led to the promoting and valuing of greater levels of employee participation in innovation processes. An emergent concept of employee-driven innovation could be argued to have hindered understandings of the creative and transformative nature of…

  9. Driven Quantum Dynamics: Will It Blend?

    Directory of Open Access Journals (Sweden)

    Leonardo Banchi

    2017-10-01

    Full Text Available Randomness is an essential tool in many disciplines of modern sciences, such as cryptography, black hole physics, random matrix theory, and Monte Carlo sampling. In quantum systems, random operations can be obtained via random circuits thanks to so-called q-designs and play a central role in condensed-matter physics and in the fast scrambling conjecture for black holes. Here, we consider a more physically motivated way of generating random evolutions by exploiting the many-body dynamics of a quantum system driven with stochastic external pulses. We combine techniques from quantum control, open quantum systems, and exactly solvable models (via the Bethe ansatz to generate Haar-uniform random operations in driven many-body systems. We show that any fully controllable system converges to a unitary q-design in the long-time limit. Moreover, we study the convergence time of a driven spin chain by mapping its random evolution into a semigroup with an integrable Liouvillian and finding its gap. Remarkably, we find via Bethe-ansatz techniques that the gap is independent of q. We use mean-field techniques to argue that this property may be typical for other controllable systems, although we explicitly construct counterexamples via symmetry-breaking arguments to show that this is not always the case. Our findings open up new physical methods to transform classical randomness into quantum randomness, via a combination of quantum many-body dynamics and random driving.

  10. FIELD EVALUATION OF A METHOD FOR ESTIMATING GASEOUS FLUXES FROM AREA SOURCES USING OPEN-PATH FOURIER TRANSFORM INFRARED

    Science.gov (United States)

    The paper describes preliminary results from a field experiment designed to evaluate a new approach to quantifying gaseous fugitive emissions from area air pollution sources. The new approach combines path-integrated concentration data acquired with any path-integrated optical re...

  11. Effect of thermal cycling on martensitic transformation and mechanical strengthening of stainless steels – A phase-field study

    DEFF Research Database (Denmark)

    Yeddu, Hemantha Kumar; Shaw, Brian A.; Somers, Marcel A. J.

    2017-01-01

    A 3D elastoplastic phase-field model is used to study the effect of thermal cycling on martensitic transformationas well as on mechanical strengthening of both austenite and martensite in stainless steel. The results show that with an increasing number of thermal cycles, martensite becomes more...

  12. Transforming Your Regional Economy through Uncertainty and Surprise: Learning from Complexity Science, Network Theory and the Field

    Science.gov (United States)

    Holley, June

    The field of regional development blossomed in the last decade, as researchers and practitioners increasingly asserted that the region was the most effective geographic unit for supporting the excellence and innovation of entrepreneurs. See, for example, the many studies by the European Union and the work by Michael Porter.

  13. No effects of power line frequency extremely low frequency electromagnetic field exposure on selected neurobehavior tests of workers inspecting transformers and distribution line stations versus controls.

    Science.gov (United States)

    Li, Li; Xiong, De-fu; Liu, Jia-wen; Li, Zi-xin; Zeng, Guang-cheng; Li, Hua-liang

    2014-03-01

    We aimed to evaluate the interference of 50 Hz extremely low frequency electromagnetic field (ELF-EMF) occupational exposure on the neurobehavior tests of workers performing tour-inspection close to transformers and distribution power lines. Occupational short-term "spot" measurements were carried out. 310 inspection workers and 300 logistics staff were selected as exposure and control. The neurobehavior tests were performed through computer-based neurobehavior evaluation system, including mental arithmetic, curve coincide, simple visual reaction time, visual retention, auditory digit span and pursuit aiming. In 500 kV areas electric field intensity at 71.98% of total measured 590 spots were above 5 kV/m (national occupational standard), while in 220 kV areas electric field intensity at 15.69% of total 701 spots were above 5 kV/m. Magnetic field flux density at all the spots was below 1,000 μT (ICNIRP occupational standard). The neurobehavior score changes showed no statistical significance. Results of neurobehavior tests among different age, seniority groups showed no significant changes. Neurobehavior changes caused by daily repeated ELF-EMF exposure were not observed in the current study.

  14. Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    International Nuclear Information System (INIS)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R; Kumar, Kranti; Banerjee, A; Chaddah, P

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr 0.5 Ca 0.5 Mn 0.975 Al 0.025 O 3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle. (fast track communication)

  15. FAST TRACK COMMUNICATION: Field dependence of temperature induced irreversible transformations of magnetic phases in Pr0.5Ca0.5Mn0.975Al0.025O3 crystalline oxide

    Science.gov (United States)

    Lakhani, Archana; Kushwaha, Pallavi; Rawat, R.; Kumar, Kranti; Banerjee, A.; Chaddah, P.

    2010-01-01

    Glass-like arrest has recently been reported in various magnetic materials. As in structural glasses, the kinetics of a first order transformation is arrested while retaining the higher entropy phase as a non-ergodic state. We show visual mesoscopic evidence of the irreversible transformation of the arrested antiferromagnetic-insulating phase in Pr0.5Ca0.5Mn0.975Al0.025O3 to its equilibrium ferromagnetic-metallic phase with an isothermal increase of magnetic field, similar to its iso-field transformation on warming. The magnetic field dependence of the non-equilibrium to equilibrium transformation temperature is shown to be governed by Le Chatelier's principle.

  16. Piezoelectric Transformers: An Historical Review

    OpenAIRE

    Alfredo Vazquez Carazo

    2016-01-01

    Piezoelectric transformers (PTs) are solid-state devices that transform electrical energy into electrical energy by means of a mechanical vibration. These devices are manufactured using piezoelectric materials that are driven at resonance. With appropriate design and circuitry, it is possible to step up and step down the voltages between the input and output sections of the piezoelectric transformer, without making use of magnetic materials and obtaining excellent conversion efficiencies. The...

  17. Transformation of arsenic-rich copper smelter flue dust in contrasting soils: A 2-year field experiment.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Penížek, Vít; Matoušek, Tomáš; Culka, Adam; Drahota, Petr

    2018-06-01

    Dust emissions from copper smelters processing arsenic-bearing ores represent a risk to soil environments due to the high levels of As and other inorganic contaminants. Using an in situ experiment in four different forest and grassland soils (pH 3.2-8.0) we studied the transformation of As-rich (>50 wt% As) copper smelter dust over 24 months. Double polyamide bags with 1 g of flue dust were buried at different depths in soil pits and in 6-month intervals; then those bags, surrounding soil columns, and soil pore waters were collected and analysed. Dust dissolution was relatively fast during the first 6 months (5-34%), and mass losses attained 52% after 24 months. The key driving forces affecting dust dissolution were not only pH, but also the water percolation/retention in individual soils. Primary arsenolite (As 2 O 3 ) dissolution was responsible for high As release from the dust (to 72%) and substantial increase of As in the soil (to a 56 × increase; to 1500 mg kg -1 ). Despite high arsenolite solubility, this phase persisted in the dust after 2 years of exposure. Mineralogical investigation indicated that mimetite [Pb 5 (AsO 4 ) 3 (Cl,OH)], unidentified complex Ca-Pb-Fe-Zn arsenates, and Fe oxyhydroxides partly controlled the mobility of As and other metal(loid)s. Compared to As, other less abundant contaminants (Bi, Cu, Pb, Sb, Zn) were released into the soil to a lesser extent (8-40% of total). The relatively high mobility of As in the soil can be seen from decreases of bulk As concentrations after spring snowmelt, high water-extractable fractions with up to ∼50% of As(III) in extracts, and high As concentrations in soil pore waters. Results indicate that efficient controls of emissions from copper smelters and flue dust disposal sites are needed to prevent extensive contamination of nearby soils by persistent As. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A model for abnormal activity recognition and alert generation system for elderly care by hidden conditional random fields using R-transform and generalized discriminant analysis features.

    Science.gov (United States)

    Khan, Zafar Ali; Sohn, Won

    2012-10-01

    The growing population of elderly people living alone increases the need for automatic healthcare monitoring systems for elderly care. Automatic vision sensor-based systems are increasingly used for human activity recognition (HAR) in recent years. This study presents an improved model, tested using actors, of a sensor-based HAR system to recognize daily life activities of elderly people at home and generate an alert in case of abnormal HAR. Datasets consisting of six abnormal activities (falling backward, falling forward, falling rightward, falling leftward, chest pain, and fainting) and four normal activities (walking, rushing, sitting down, and standing up) are generated from different view angles (90°, -90°, 45°, -45°). Feature extraction and dimensions reduction are performed by R-transform followed by generalized discriminant analysis (GDA) methods. R-transform extracts symmetric, scale, and translation-invariant features from the sequences of activities. GDA increases the discrimination between different classes of highly similar activities. Silhouette sequences are quantified by the Linde-Buzo-Gray algorithm and recognized by hidden conditional random fields. Experimental results provide an average recognition rate of 94.2% for abnormal activities and 92.7% for normal activities. The recognition rate for the highly similar activities from different view angles shows the flexibility and efficacy of the proposed abnormal HAR and alert generation system for elderly care.

  19. Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Ebaid, Abdelhalim; Al Sharif, Mohammed A. [Tabuk Univ. (Saudi Arabia). Faculty of Science

    2015-10-01

    Since the discovery of the carbon nanotubes (CNTs), there is an increasing interest in their applications in industry and medical fields. Attempts of using such CNTs as drug carriers and in cancer therapy in the presence of a magnetic field are now undertaken because of their direct impacts on increasing the thermal conductivity of base fluids. Two types of CNTs are well known for the researchers, the single-walled CNT (SWCNTs) and the multi-walled CNTs (MWCNTs); however, the subject of which one is more effective in treatment of cancer deserves more investigations. The present article discusses the effect of such types of CNTs on the flow and heat transfer of nanofluids in the presence of a magnetic field. Exact analytical solution for the heat equation has been obtained by using the Laplace transform, where the solution is expressed in terms of a new special function, the generalised incomplete gamma function. The effects of various parameters on the fluid velocity, temperature distribution, and heat transfer rates have been introduced. Details of possible applications of the current results in the treatment of cancer have been also discussed.

  20. Application of Laplace transform for the exact effect of a magnetic field on heat transfer of carbon nanotubes-suspended nanofluids

    International Nuclear Information System (INIS)

    Ebaid, Abdelhalim; Al Sharif, Mohammed A.

    2015-01-01

    Since the discovery of the carbon nanotubes (CNTs), there is an increasing interest in their applications in industry and medical fields. Attempts of using such CNTs as drug carriers and in cancer therapy in the presence of a magnetic field are now undertaken because of their direct impacts on increasing the thermal conductivity of base fluids. Two types of CNTs are well known for the researchers, the single-walled CNT (SWCNTs) and the multi-walled CNTs (MWCNTs); however, the subject of which one is more effective in treatment of cancer deserves more investigations. The present article discusses the effect of such types of CNTs on the flow and heat transfer of nanofluids in the presence of a magnetic field. Exact analytical solution for the heat equation has been obtained by using the Laplace transform, where the solution is expressed in terms of a new special function, the generalised incomplete gamma function. The effects of various parameters on the fluid velocity, temperature distribution, and heat transfer rates have been introduced. Details of possible applications of the current results in the treatment of cancer have been also discussed.

  1. Invariance identities associated with finite gauge transformations and the uniqueness of the equations of motion of a particle in a classical gauge field

    International Nuclear Information System (INIS)

    Rund, H.

    1984-01-01

    A certain class of geometric objects is considered against the background of a classical gauge field associated with an arbitrary structural Lie group. It is shown that the necessary and sufficient conditions for the invariance of the given objects under a finite gauge transformation are embodied in a set of three relations involving the derivatives of their components. As a special case these so-called invariance identities indicate that there cannot exist a gauge-invariant Lagrangian that depends on the gauge potentials, the interaction parameters, and the 4-velocity components of a test particle. However, the requirement that the equations of motion that result from such a lagrangian be gauge-invariant, uniquely determines the structure of these equations. (author)

  2. Neutrality of the lorentz transformations in SRT

    International Nuclear Information System (INIS)

    Hamdan, N.; Baza, S.

    2005-01-01

    The special theory of Relativity (SRT), gives us two results, the dilation of time and the contraction of the Length, which have been refuted by many scientists. The solution to these kinematical effects has driven researchers to develop new methods. One of these methods is using the physical law equations and apply the principle of relativity to them. With this approach, we reformulated the SRT in a simple manner which has dynamical applications without using the Lorentz transformations (LT) and its kinematical effects. We obtained the results which require the invariant of Maxwell's field equations under the LT in a way different to that of Einsterin. In the present paper, we get the LT from the Lorentz force. In contrast to Einstein's LT with its kinematical effects, the LT produced in this paper is simply a neutral transformation. Containing no physical significance, i.e. LT and its kinematical effects do not explain any physical phenomenon. (author)

  3. Photochemical transformation of anionic 2-nitro-4-chlorophenol in surface waters: Laboratory and model assessment of the degradation kinetics, and comparison with field data

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Babita [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Department of Chemical Engineering, Calcutta University, 92 Acharya P. C. Road, Kolkata 700009 (India); De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Vione, Davide [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 5, 10125 Torino (Italy); Centro Interdipartimentale NatRisk, Universita di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (Italy)

    2012-06-01

    Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with {center_dot}OH. NCP has a polychromatic photolysis quantum yield {Phi}{sub NCP} = (1.27 {+-} 0.22) {center_dot} 10{sup -5}, a rate constant with {center_dot}OH k{sub NCP,}{center_dot}{sub OH} = (1.09 {+-} 0.09) {center_dot} 10{sup 10} M{sup -1} s{sup -1}, a rate constant with {sup 1}O{sub 2}k{sub NCP,1O2} = (2.15 {+-} 0.38) {center_dot} 10{sup 7} M{sup -1} s{sup -1}, a rate constant with the triplet state of anthraquinone-2-sulphonate k{sub NCP,3AQ2S*} = (5.90 {+-} 0.43) {center_dot} 10{sup 8} M{sup -1} s{sup -1}, and is poorly reactive toward CO{sub 3}{sup -}{center_dot}. The k{sub NCP,3AQ2S*} value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhone delta (Southern France). Highlights: Black-Right-Pointing-Pointer Phototransformation kinetics of 2-nitro-4-chlorophenol, relevant to surface waters. Black-Right-Pointing-Pointer Determination of photochemical reactivity data in the laboratory. Black-Right-Pointing-Pointer Model approach to combine photochemical reactivity with environmental variables. Black-Right-Pointing-Pointer Good agreement with field data in lagoon water (Rhone delta, Southern France). Black-Right-Pointing-Pointer Direct photolysis and reaction with {center_dot}OH as main photoprocesses in the environment.

  4. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    Science.gov (United States)

    Eppelbaum, Lev; Meirova, Tatiana

    2015-04-01

    It is well-known that the local seismic site effects may have a significant contribution to the intensity of damage and destruction (e.g., Hough et al., 1990; Regnier et al., 2000; Bonnefoy-Claudet et al., 2006; Haase et al., 2010). The thicknesses of sediments, which play a large role in amplification, usually are derived from seismic velocities. At the same time, thickness of sediments may be determined (or defined) on the basis of 3D combined gravity-magnetic modeling joined with available geological materials, seismic data and borehole section examination. Final result of such investigation is a 3D physical-geological model (PGM) reflecting main geological peculiarities of the area under study. Such a combined study needs in application of a reliable 3D mathematical algorithm of computation together with advanced methodology of 3D modeling. For this analysis the developed GSFC software was selected. The GSFC (Geological Space Field Calculation) program was developed for solving a direct 3-D gravity and magnetic prospecting problem under complex geological conditions (Khesin et al., 1996; Eppelbaum and Khesin, 2004). This program has been designed for computing the field of Δg (Bouguer, free-air or observed value anomalies), ΔZ, ΔX, ΔY , ΔT , as well as second derivatives of the gravitational potential under conditions of rugged relief and inclined magnetization. The geological space can be approximated by (1) three-dimensional, (2) semi-infinite bodies and (3) those infinite along the strike closed, L.H. non-closed, R.H. on-closed and open). Geological bodies are approximated by horizontal polygonal prisms. The program has the following main advantages (besides abovementioned ones): (1) Simultaneous computing of gravity and magnetic fields; (2) Description of the terrain relief by irregularly placed characteristic points; (3) Computation of the effect of the earth-air boundary by the method of selection directly in the process of interpretation; (4

  5. Canonical transformations and generating functionals

    NARCIS (Netherlands)

    Broer, L.J.F.; Kobussen, J.A.

    1972-01-01

    It is shown that canonical transformations for field variables in hamiltonian partial differential equations can be obtained from generating functionals in the same way as classical canonical transformations from generating functions. A simple proof of the relation between infinitesimal invariant

  6. The SCUBA-2 Cosmology Legacy Survey: The EGS deep field - II. Morphological transformation and multiwavelength properties of faint submillimetre galaxies

    Science.gov (United States)

    Zavala, J. A.; Aretxaga, I.; Dunlop, J. S.; Michałowski, M. J.; Hughes, D. H.; Bourne, N.; Chapin, E.; Cowley, W.; Farrah, D.; Lacey, C.; Targett, T.; van der Werf, P.

    2018-04-01

    We present a multiwavelength analysis of galaxies selected at 450 and 850 μm from the deepest SCUBA-2 observations in the Extended Groth Strip (EGS) field, which have an average depth of σ450 = 1.9 and σ850 = 0.46 mJy beam- 1 over ˜70 arcmin2. The final sample comprises 95 sources: 56 (59 per cent) are detected at both wavelengths, 31 (33 per cent) are detected only at 850 μm, and 8 (8 per cent) are detected only at 450 μm. We identify counterparts for 75 per cent of the whole sample. The redshift distributions of the 450 and 850 μm samples peak at different redshifts with median values of \\bar{z}=1.66± 0.18 and \\bar{z}=2.30± 0.20, respectively. However, the two populations have similar IR luminosities, SFRs, and stellar masses, with mean values of 1.5 ± 0.2 × 1012 L⊙, 150 ± 20 M⊙ yr-1, and 9.0 ± 0.6 × 1010 M⊙, respectively. This places most of our sources (≳85 per cent) on the high-mass end of the main sequence of star-forming galaxies. Exploring the IR excess versus UV-slope (IRX-β) relation we find that the most luminous galaxies are consistent with the Meurer law, while the less luminous galaxies lie below this relation. Using the results of a two-dimensional modelling of the HSTH160-band imaging, we derive a median Sérsic index of n=1.4^{+0.3}_{-0.1} and a median half-light radius of r1/2 = 4.8 ± 0.4 kpc. Based on a visual-like classification in the same band, we find that the dominant component for most of the galaxies at all redshifts is a disc-like structure, although there is a transition from irregular discs to discs with a spheroidal component at z ˜ 1.4, which morphologically supports the scenario of SMGs as progenitors of massive elliptical galaxies.

  7. Stability and economy analysis based on computational fluid dynamics and field testing of hybrid-driven underwater glider with the water quality sensor in Danjiangkou Reservoir

    Directory of Open Access Journals (Sweden)

    Chao Li

    2015-12-01

    Full Text Available Hybrid-driven underwater glider is a new kind of unmanned platform for water quality monitoring. It has advantages such as high controllability and maneuverability, low cost, easy operation, and ability to carry multiple sensors. This article develops a hybrid-driven underwater glider, PETRELII, and integrates a water quality monitoring sensor. Considering stability and economy, an optimal layout scheme is selected from four candidates by simulation using computational fluid dynamics method. Trials were carried out in Danjiangkou Reservoir—important headwaters of the Middle Route of the South-to-North Water Diversion Project. In the trials, a monitoring strategy with polygonal mixed-motion was adopted to make full use of the advantages of the unmanned platform. The measuring data, including temperature, dissolved oxygen, conductivity, pH, turbidity, chlorophyll, and ammonia nitrogen, are obtained. These data validate the practicability of the theoretical layout obtained using computational fluid dynamics method and the practical performance of PETRELII with sensor.

  8. Risk communication and the transformations in the meta narrative of the nuclear field in the 20{sup th} and 21{sup st} centuries

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Tariana B., E-mail: tariana@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Escola de Comunicacoes e Artes. Programa de Pos-Graduacao em Ciencias da Comunicacao

    2015-07-01

    The meta narrative of the nuclear field was influenced in the beginning by the perspectives of economic prosperity and the possibility of diversifying to alternative sources of power. However, it has been transformed throughout the 20{sup th} and the early 21{sup st} centuries by the collective memory and micro narratives of the nuclear bombs during the II World War and the nuclear or radiologic incidents of Three Mile Island, in 1979, Chernobyl, 1986, Goiania, 1987, and Fukushima, 2011. The most recent occurrence made countries like France and Germany, which depend a great deal on nuclear power supply, to suspend their nuclear programs, although having to retake them afterwards due to the impossibility of getting new sources of energy in a short period of time. All that attracted negative attention to the field and severely impacted the perception of risk by the society. This paper observes the future of the meta narrative in such area will be based in the influence of other national and supranational risk communication narratives around security, pollution, environment and economy. The discussion is based on theories by researchers such as Andreas Huyssen, Carlo Ginzburg, Lorenzo Negri, Maurice Halbwachs, Max Weber, Pedro Fernando Bendassolli, Peter Sandman, Roland Barthes, Ulrick Beck and Walter Benjamin. (author)

  9. Risk communication and the transformations in the meta narrative of the nuclear field in the 20th and 21st centuries

    International Nuclear Information System (INIS)

    Machado, Tariana B.

    2015-01-01

    The meta narrative of the nuclear field was influenced in the beginning by the perspectives of economic prosperity and the possibility of diversifying to alternative sources of power. However, it has been transformed throughout the 20 th and the early 21 st centuries by the collective memory and micro narratives of the nuclear bombs during the II World War and the nuclear or radiologic incidents of Three Mile Island, in 1979, Chernobyl, 1986, Goiania, 1987, and Fukushima, 2011. The most recent occurrence made countries like France and Germany, which depend a great deal on nuclear power supply, to suspend their nuclear programs, although having to retake them afterwards due to the impossibility of getting new sources of energy in a short period of time. All that attracted negative attention to the field and severely impacted the perception of risk by the society. This paper observes the future of the meta narrative in such area will be based in the influence of other national and supranational risk communication narratives around security, pollution, environment and economy. The discussion is based on theories by researchers such as Andreas Huyssen, Carlo Ginzburg, Lorenzo Negri, Maurice Halbwachs, Max Weber, Pedro Fernando Bendassolli, Peter Sandman, Roland Barthes, Ulrick Beck and Walter Benjamin. (author)

  10. Transformations in destination texture

    DEFF Research Database (Denmark)

    Gyimóthy, Szilvia

    2018-01-01

    This article takes heterogeographical approaches to understand Bollywood-induced destination transformations in Switzerland. Positioned within the theoretical field of mediatized mobility, the study contextualizes Bollywood-induced tourism in Europe the concept of texture. Textural analysis (base...

  11. Constitutive modelling and identification of parameters of the plastic strain-induced martensitic transformation in 316L stainless steel at cryogenic temperatures

    CERN Document Server

    Garion, C; Sgobba, Stefano

    2006-01-01

    The present paper is focused on constitutive modelling and identification of parameters of the relevant model of plastic strain- induced martensitic transformation in austenitic stainless steels at low temperatures. The model used to describe the FCCrightward arrow BCC phase transformation in austenitic stainless steels is based on the assumption of linearization of the most intensive part of the transformation curve. The kinetics of phase transformation is described by three parameters: transformation threshold (p/sub xi/), slope (A) and saturation level (xi/sub L/). It is assumed that the phase transformation is driven by the accumulated plastic strain p. In addition, the intensity of plastic deformation is strongly coupled to the phase transformation via the description of mixed kinematic /isotropic linear plastic hardening based on the Mori-Tanaka homogenization. The theory of small strains is applied. Small strain fields, corresponding to phase transformation, are decomposed into the volumic and the shea...

  12. Coaxial pulse matching transformer

    International Nuclear Information System (INIS)

    Ledenev, V.V.; Khimenko, L.T.

    1986-01-01

    This paper describes a coaxial pulse matching transformer with comparatively simple design, increased mechanical strength, and low stray inductance. The transformer design makes it easy to change the turns ratio. The circuit of the device and an expression for the current multiplication factor are presented; experiments confirm the efficiency of the transformer. Apparatus with a coaxial transformer for producing high-power pulsed magnetic fields is designed (current pulses of 1-10 MA into a load and a natural frequency of 100 kHz)

  13. fields

    Directory of Open Access Journals (Sweden)

    Brad J. Arnold

    2014-07-01

    Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.

  14. Characterization of an electroactive polymer simultaneously driven by an electrical field and a mechanical excitation: An easy means of measuring the dielectric constant, the Young modulus and the electrostrictive coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Guyomar, Daniel [Universite de Lyon, LGEF-INSA de Lyon, Batiment Gustave Ferrie, 8 rue de la Physique, 69621 Villeurbanne Cedex (France); Cottinet, Pierre-Jean, E-mail: Pierre-jean.cottinet@insa-lyon.f [Universite de Lyon, LGEF-INSA de Lyon, Batiment Gustave Ferrie, 8 rue de la Physique, 69621 Villeurbanne Cedex (France); Lebrun, Laurent; Sebald, Gael [Universite de Lyon, LGEF-INSA de Lyon, Batiment Gustave Ferrie, 8 rue de la Physique, 69621 Villeurbanne Cedex (France)

    2011-04-18

    An easy method for measuring the dielectric constant, the Young modulus and the electrostrictive coefficients of a polymer film is proposed herein. The approach was based on the determination of the current flowing through the sample when simultaneously driven by an electrical field and a mechanical excitation. The experimental data were in good agreement with published results. In addition, the method rendered it possible to characterize the film sample under real conditions. - Highlights: In this study we model a multiphysic coupling in electroactive polymer (EAP). A new method was developed to determine the different coefficient of the material. The results demonstrated the potential of this method for the characterization of EAP.

  15. Laplace transforms essentials

    CERN Document Server

    Shafii-Mousavi, Morteza

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Laplace Transforms includes the Laplace transform, the inverse Laplace transform, special functions and properties, applications to ordinary linear differential equations, Fourier tr

  16. Influence of the configuration of the magnetic filter field on the discharge structure in the RF driven negative ion source prototype for fusion

    Science.gov (United States)

    Lishev, S.; Schiesko, L.; Wünderlich, D.; Fantz, U.

    2017-08-01

    The study provides results for the influence of the filter field topology on the plasma parameters in the RF prototype negative ion source for ITER NBI. A previously developed 2D fluid plasma model of the prototype source was extended towards accounting for the particles and energy losses along the magnetic field lines and the presence of a magnetic field in the driver which is the case at the BATMAN and ELISE test-beds. The effect of the magnetic field in the driver is shown for the magnetic field configuration of the prototype source (i.e. a magnetic field produced by an external magnet frame) by comparison of plasma parameters without and with the magnetic field in the driver and for different axial positions of the filter. Since the ELISE-like magnetic field (i.e. a magnetic field produced by a current flowing through the plasma grid) is a new feature planned to be installed at the BATMAN test-bed, its effect on the discharge structure was studied for different strengths of the magnetic field. The obtained results show for both configurations of the magnetic filter the same main features in the patterns of the plasma parameters in the expansion chamber: a strong axial drop of the electron temperature and the formation of a groove accompanied with accumulation of electrons in front of the plasma grid. The presence of a magnetic field in the driver has a local impact on the plasma parameters: the formation of a second groove of the electron temperature in the case of BATMAN (due to the reversed direction of the filter field in the driver) and a strong asymmetry of the electron density. Accounting for the additional losses in the third dimension suppresses the drifts across the magnetic field and, thus, the variations of the electron density in the expansion chamber are less pronounced.

  17. Transformer engineering design, technology, and diagnostics

    CERN Document Server

    Kulkarni, SV

    2012-01-01

    Transformer Engineering: Design, Technology, and Diagnostics, Second Edition helps you design better transformers, apply advanced numerical field computations more effectively, and tackle operational and maintenance issues. Building on the bestselling Transformer Engineering: Design and Practice, this greatly expanded second edition also emphasizes diagnostic aspects and transformer-system interactions. What's New in This Edition Three new chapters on electromagnetic fields in transformers, transformer-system interactions and modeling, and monitoring and diagnostics An extensively revised chap

  18. Evaluation of microbial transformations of dissolved organic matter - what information can be extracted from high-field FTICR-MS elemental formula data sets?

    Science.gov (United States)

    Herzsprung, Peter; von Tümpling, Wolf; Harir, Mourad; Hertkorn, Norbert; Schmitt-Kopplin, Philippe; Norf, Helge; Weitere, Markus; Kamjunke, Norbert

    2017-04-01

    Transformation of DOC and DOM was and is widespread investigated (1-3). Due to the complex composition of DOC increased attention was payed to DOM quality change during degradation processes. In order to get a better insight in DOM transformation processes both resolution as a function of time and on a molecular level are promising. The observation of DOM quality changes requires sophisticated evaluation techniques. A new evaluation strategy of FTICR-MS elemental formula data sets is introduced. An experiment with seven flumes and leaf leachate was performed. All flumes were sampled on five dates (within 7 days) and the SPEDOM was characterized using high-field FTICR-MS analysis, resulting in together 35 elemental formula data sets. The time dependent change of components abundance was fitted by a simple linear regression model after normalization of mass peak intensities. All components were categorized by calculation of the slope (change of percent intensity per day) in all seven flumes. A positive slope means product formation, a negative slope means degradation of components. Specific data filtration was developed to find out components with relevant change of relative intensity. About 7000 different components were present in at least one of the 35 samples. Of those about 1800 components were present in all of the 35 samples. About 300 components with significant increase of intensity were identified. They were mainly unsaturated and oxygen-rich components (lignin-like or tannin-like) and had molecular masses less than 450 Dalton. A group of about 70 components was partially degraded (significant negative slope, present in all samples). These components were more saturated and less oxygen-rich compared to the product group and had molecular masses > 450 Dalton. A third group of about 150 components was identified with a tendency to total degradation (significant negative slope, not present in all samples, reduced or no abundance at the end of the experiment

  19. Phenotyping soybean plants transformed with rd29A:AtDREB1A for drought tolerance in the greenhouse and field.

    Science.gov (United States)

    de Paiva Rolla, Amanda Alves; de Fátima Corrêa Carvalho, Josirley; Fuganti-Pagliarini, Renata; Engels, Cibelle; do Rio, Alexandre; Marin, Silvana Regina Rockenbach; de Oliveira, Maria Cristina Neves; Beneventi, Magda A; Marcelino-Guimarães, Francismar Corrêa; Farias, José Renato Bouças; Neumaier, Norman; Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Nepomuceno, Alexandre Lima

    2014-02-01

    The development of drought tolerant plants is a high priority because the area suffering from drought is expected to increase in the future due to global warming. One strategy for the development of drought tolerance is to genetically engineer plants with transcription factors (TFs) that regulate the expression of several genes related to abiotic stress defense responses. This work assessed the performance of soybean plants overexpressing the TF DREB1A under drought conditions in the field and in the greenhouse. Drought was simulated in the greenhouse by progressively drying the soil of pot cultures of the P58 and P1142 lines. In the field, the performance of the P58 line and of 09D-0077, a cross between the cultivars BR16 and P58, was evaluated under four different water regimes: irrigation, natural drought (no irrigation) and water stress created using rain-out shelters in the vegetative or reproductive stages. Although the dehydration-responsive element-binding protein (DREB) plants did not outperform the cultivar BR16 in terms of yield, some yield components were increased when drought was introduced during the vegetative stage, such as the number of seeds, the number of pods with seeds and the total number of pods. The greenhouse data suggest that the higher survival rates of DREB plants are because of lower water use due to lower transpiration rates under well watered conditions. Further studies are needed to better characterize the soil and atmospheric conditions under which these plants may outperform the non-transformed parental plants.

  20. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.