International Nuclear Information System (INIS)
Perez, J.F.; Pontin, L.F.; Segundo, J.A.B.
1985-01-01
Using a method proposed by van Hemmen the free energy of the Curie-Weiss version of the site-dilute antiferromagnetic Ising model is computed, in the presence of an uniform magnetic field. The solution displays an exact correspondence between this model and the Curie-Weiss version of the Ising model in the presence of a random magnetic field. The phase diagrams are discussed and a tricritical point is shown to exist. (Author) [pt
Multiple phase transitions in the generalized Curie-Weiss model
International Nuclear Information System (INIS)
Eisele, T.; Ellis, R.S.
1988-01-01
The generalized Curie-Weiss model is an extension of the classical Curie-Weiss model in which the quadratic interaction function of the mean spin value is replaced by a more general interaction function. It is shown that the generalized Curie-Weiss model can have a sequence of phase transitions at different critical temperatures. Both first-order and second-order phase transitions can occur, and explicit criteria for the two types are given. Three examples of generalized Curie-Weiss models are worked out in detail, including one example with infinitely many phase transitions. A number of results are derived using large-deviation techniques
Large deviations of the finite-time magnetization of the Curie-Weiss random-field Ising model
Paga, Pierre; Kühn, Reimer
2017-08-01
We study the large deviations of the magnetization at some finite time in the Curie-Weiss random field Ising model with parallel updating. While relaxation dynamics in an infinite-time horizon gives rise to unique dynamical trajectories [specified by initial conditions and governed by first-order dynamics of the form mt +1=f (mt) ] , we observe that the introduction of a finite-time horizon and the specification of terminal conditions can generate a host of metastable solutions obeying second-order dynamics. We show that these solutions are governed by a Newtonian-like dynamics in discrete time which permits solutions in terms of both the first-order relaxation ("forward") dynamics and the backward dynamics mt +1=f-1(mt) . Our approach allows us to classify trajectories for a given final magnetization as stable or metastable according to the value of the rate function associated with them. We find that in analogy to the Freidlin-Wentzell description of the stochastic dynamics of escape from metastable states, the dominant trajectories may switch between the two types (forward and backward) of first-order dynamics. Additionally, we show how to compute rate functions when uncertainty in the quenched disorder is introduced.
A Conditional Curie-Weiss Model for Stylized Multi-group Binary Choice with Social Interaction
Opoku, Alex Akwasi; Edusei, Kwame Owusu; Ansah, Richard Kwame
2018-04-01
This paper proposes a conditional Curie-Weiss model as a model for decision making in a stylized society made up of binary decision makers that face a particular dichotomous choice between two options. Following Brock and Durlauf (Discrete choice with social interaction I: theory, 1955), we set-up both socio-economic and statistical mechanical models for the choice problem. We point out when both the socio-economic and statistical mechanical models give rise to the same self-consistent equilibrium mean choice level(s). Phase diagram of the associated statistical mechanical model and its socio-economic implications are discussed.
Spin-flip dynamics of the Curie-Weiss model Loss of Gibbsianness with possibly broken symmetry.
Külske, C
2005-01-01
We study the conditional probabilities of the Curie-Weiss Ising model in vanishing external field under a symmetric independent stochastic spin-flip dynamics and discuss their set of bad configurations (points of discontinuity). We exhibit a complete analysis of the transition between Gibbsian and non-Gibbsian behavior as a function of time, extending the results for the corresponding lattice model, where only partial answers can be obtained. For initial inverse temperature $\\b \\leq 1$, we prove that the time-evolved measure is always Gibbsian. For $1 \\frac{3}{2}$, we observe the new phenomenon of symmetry-breaking of bad configurations: The time-evolved measure loses its Gibbsian character at a sharp transition time, and bad configurations with non-zero spin-average appear. These bad configurations merge into a neutral configuration at a later transition time, while the measure stays non-Gibbs. In our proof we give a detailed analysis of the phase-diagram of a Curie-Weiss random field Ising model with possi...
Dynamics of quantum measurements employing two Curie-Weiss apparatuses
Perarnau-Llobet, Martí; Nieuwenhuizen, Theodorus Maria
2017-10-01
Two types of quantum measurements, measuring the spins of an entangled pair and attempting to measure a spin at either of two positions, are analysed dynamically by apparatuses of the Curie-Weiss type. The outcomes comply with the standard postulates. This article is part of the themed issue `Second quantum revolution: foundational questions'.
Misjudging frustrations in spin liquids from oversimplified use of Curie-Weiss law
Energy Technology Data Exchange (ETDEWEB)
Nag, Abhishek, E-mail: msan@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Ray, Sugata [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Centre for Advanced Materials, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)
2017-02-15
Absence of a single smoking-gun experiment to identify a quantum spin liquid, has kept their characterisation difficult till date. Featureless dc magnetic susceptibility and large antiferromagnetic frustration are always considered as the essential pointers to these systems. However, we show that the amount of frustration estimated by using generalised Curie-Weiss law on these susceptibility data are prone to errors and thus should be dealt with caution. We measure and analyse susceptibility data of Ba{sub 3}ZnIr{sub 2}O{sub 9}, a spin orbital liquid candidate and Gd{sub 2}O{sub 3}, a 1.5 K antiferromagnet and show the distinguishing features between them. A continuous and significant change in Curie and Weiss constants is seen to take place in Ba{sub 3}ZnIr{sub 2}O{sub 9} and other reported spin liquids with the change in the range of fitting temperatures showing the need of a temperature ‘range-of-fit’ analysis before commenting on the Weiss constants of spin liquids. The variation observed is similar to fluctuations among topological sectors persisting over a range of temperature in spin-ice candidates. On the other hand, even though we find correlations to exist at even 100 times the ordering temperature in Gd{sub 2}O{sub 3}, no such fluctuation is observed which may be used as an additional distinguishing signature of spin liquids over similarly featureless correlated paramagnets. - Highlights: • Curie-Weiss fitting may give erroneous frustration parameters in spin-liquids. • The results depend upon choice of fitting method and temperature range used. • More appropriate method is to use a Ê½range of fit’ analysis. • Can distinguish between spin-liquids and correlated paramagnets.
Directory of Open Access Journals (Sweden)
I.I. Gimazov, Yu.I. Talanov
2015-12-01
Full Text Available The results of the electron spin resonance study of the La1-xCaxMnO3 manganite and the diphenyl-picrylhydrazyl thin films for the magnetic field parallel and perpendicular to plane of the films are presented. The temperature dependence of the demagnetizing field is obtained. The parameters of the Curie-Weiss law are estimated for the paramagnetic thin film.
International Nuclear Information System (INIS)
Souza, P E N de; Oliveira, L M de; Ortiz, W A; Camargo, P C de; Oliveira, A J A de
2005-01-01
In this work we present magnetic susceptibility results for Cr-x at.% Nb alloys (x = 0.2, 0.6, 0.7, 1.4, and 2.0), showing that a local short-range order spin-density wave (L-SDW) appears at a characteristic temperature (T loc ) above the Neel temperature. The evidence for L-SDW is based on a Curie-Weiss-like behaviour, which is suppressed when large magnetic fields are applied or for alloys with Nb concentration above x = 2.0 at.%
A novel approach to modelling non-exponential spin glass relaxation
Energy Technology Data Exchange (ETDEWEB)
Pickup, R.M. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)]. E-mail: r.cywinski@leeds.ac.uk; Cywinski, R. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Pappas, C. [Hahn-Meitner Institut, Glienicker Strasse 100, 14109 Berlin (Germany)
2007-07-15
A probabilistic cluster model, originally proposed by Weron to explain the universal power law of dielectric relaxation, is shown to account for the non-exponential relaxation in spin glasses above T {sub g}. Neutron spin echo spectra measured for the cluster glass compound Co{sub 55}Ga{sub 45} are well described by the Weron relaxation function, {phi}(t)={phi} {sub o}(1+k(t/{tau}) {sup {beta}}){sup -1/k}, with the interaction parameter k scaling linearly with the non-Curie-Weiss susceptibility.
In-plane anisotropy of the electric field gradient in Ba(Fe 1 -xCox)2As2 observed by 75As NMR
Toyoda, Masayuki; Ichikawa, Akihiro; Kobayashi, Yoshiaki; Sato, Masatoshi; Itoh, Masayuki
2018-05-01
We have performed 75As NMR measurements on single crystals to investigate the nematic behavior via the in-plane anisotropy of the electronic state at the As site far from Co impurities in the representative iron arsenides Ba (Fe1-xCox) 2As2 . From the analysis of the angular dependence of the NMR satellites in the c plane using the binominal distribution, we find that there is the in-plane fourfold symmetry breaking, namely, the orthorhombic-type anisotropy in the electric field gradient (EFG) at the As site with no Co atom at the nearest neighboring Fe sites even in the tetragonal phase of both BaFe2As2 and Ba (Fe1-xCox) 2As2(x ≠0 ) . The NMR spectrum in the antiferromagnetically ordered state of BaFe2As2 is shown not to support a nanotwin model on the basis of the nematic order proposed from the pair-distribution analysis of neutron scattering data. Based on results of the x and temperature T dependences of the in-plane anisotropy in the wide x and T ranges, the symmetry breaking is concluded to come from the local orthorhombic domains induced by disorder such as Co impurities or lattice imperfections. Furthermore, we find that the asymmetry parameter of EFG η obeys the Curie-Weiss law which may be governed by nematic susceptibility, and the Weiss temperature becomes zero at xc˜0.05 in Ba (Fe1-xCox) 2As2 .
International Nuclear Information System (INIS)
Roger, Michel.
1980-06-01
The model presented in this thesis, with only two adjustable parameters, is alone able to account quantitatively for all the results described in chapter I and interpreted in chapter II. The development of this model was based originally on two essential ideas: - the simple model given in introduction suggests that in a hard-sphere quantum solid, three- and four-particle exchanges may be as important and even more favourable than two-atom exchanges. - By accounting for four-spin exchange terms in the Hamiltonian of the system, fourth power terms of the order parameter (polarisation) liable to give first-order transitions are introduced into the equation of free energy in a molecular field. On the basis of these two ideas the thesis is arranged in two parts: 1) Part one (ch. III to VIII) analyses the consequences, from the viewpoint of magnetic and thermodynamic properties, of a phenomenological Hamiltonian including four-spin exchanges. 2) The aim of part two is to estimate from microscopic equations the hierarchy amongst 2, 3 and 4-particle exchanges. A new approach, due to J.M. Delrieu, is proposed for a realistic wave function approximation accounting for the geometric correlations between hard cores. Reasons are given to justify the existence of a strong four-particle exchange in body-centred cubic 3 He. In a compact hexagonal lattice on the other hand the three-particle exchange is shown to be predominant. However three-particle exchanges promote ferromagnetism, so an ordered ferromagnetic phase is foreseen for compact hexagonal 3 He. A crucial test for our model would be to measure the sign of the Curie-Weiss constant in c.h. 3 He [fr
Delocalized and localized states of eg electrons in half-doped manganites.
Winkler, E L; Tovar, M; Causa, M T
2013-07-24
We have studied the magnetic behaviour of half-doped manganite Y0.5Ca0.5MnO3 in an extended range of temperatures by means of magnetic susceptibility, χ(T), and electron spin resonance (ESR) experiments. At high temperature the system crystallizes in an orthorhombic structure. The resistivity value, ρ ≃ 0.05 Ω cm at 500 K, indicates a metallic behaviour, while the Curie-Weiss dependence of χ(T) and the thermal evolution of the ESR parameters are very well described by a model that considers a system conformed by localized Mn(4+) cores, [Formula: see text], and itinerant, eg, electrons. The strong coupling between t2g and eg electrons results in an enhanced Curie constant and an FM Curie-Weiss temperature that overcomes the AFM interactions between the [Formula: see text] cores. A transition to a more distorted phase is observed at T ≈ 500 K and signatures of localization of the eg electrons appear in the χ(T) behaviour below 300 K. A new Curie-Weiss regime is observed, where the Curie-constant value is consistent with dimer formation. Based on mean-field calculations, the dimer formation is predicted as a function of the interaction strength between the t2g and eg electrons.
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1975-10-01
Stora's analysis is continued in discussing the nonabelian (Yang-Mills) gauge field models (G.F.M.). The gauge independence of the physical scattering operator is discussed in some details and the connection between its unitary and the Slavnov symmetry outlined. Only the models involving semisimple gauge groups are considered. This greatly simplifies the analysis of the possible quantum corrections to the Quantum Action Principle which is reduced to the study of the cohomology group of the Lie algebra characterizing the gauge theory. The discussion is at the classical level for the algebraic properties of the SU(2) Higgs-Kibble-Englert-Brout-Faddeev-Popov lagrangian and its invariance under Slavnov identity transformations is exhibited. The renormalization of the Slavnov identity in the G.M.F. involving semisimple gauge groups is studied. The unitary and gauge independence of the physical S operator in the SU(2) H.K. model is dealt with [fr
International Nuclear Information System (INIS)
Leite Lopes, J.
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author)
Magnetic properties of mixed Ni–Cu ferrites calculated using mean field approach
Energy Technology Data Exchange (ETDEWEB)
Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi (Morocco); LMPHE, URAC 12, Faculté des Sciences, Université Mohamed V-Agdal, Rabat (Morocco); Hamedoun, M. [Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [LMPHE, URAC 12, Faculté des Sciences, Université Mohamed V-Agdal, Rabat (Morocco); Institute for Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Academie Hassan II des Sciences et Techniques, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble cedex 9 (France)
2014-08-01
The magnetic properties of spinel ferrites [Fe{sub 1−(1−x)y}{sup 3+}Cu{sub (1−x)y}{sup 2+}]{sub A}[Ni{sub x}{sup 2+}Cu{sub (1−x)(1−y)}{sup 2+}Fe{sub 1+(1−x)y}{sup 3+}]{sub B}O{sub 4} have been studied by the mean field theory (MFT) and high temperature series expansions (HTSEs) combined with the Padé approximants. The critical temperature, the saturation magnetisation (M{sub S}) and the intra-sublattice exchanges interactions (J{sub AA}(x,y), J{sub BB}(x,y) and J{sub AB}(x,y)) are obtained by using a probability distribution law. The critical exponents associate with the magnetic susceptibility have been obtained. The effect of copper doping on the magnetic properties of nickel ferrites has been examined. - Highlights: • The exchange and constants interactions of CuFe{sub 2}O{sub 4} material are obtained. • The saturation magnetisation, the critical temperature, the Curie Weiss temperature and the Curie constant of CuFe{sub 2}O{sub 4} are obtained. • The critical exponent associated with the magnetic susceptibility is given.
Field Model: An Object-Oriented Data Model for Fields
Moran, Patrick J.
2001-01-01
We present an extensible, object-oriented data model designed for field data entitled Field Model (FM). FM objects can represent a wide variety of fields, including fields of arbitrary dimension and node type. FM can also handle time-series data. FM achieves generality through carefully selected topological primitives and through an implementation that leverages the potential of templated C++. FM supports fields where the nodes values are paired with any cell type. Thus FM can represent data where the field nodes are paired with the vertices ("vertex-centered" data), fields where the nodes are paired with the D-dimensional cells in R(sup D) (often called "cell-centered" data), as well as fields where nodes are paired with edges or other cell types. FM is designed to effectively handle very large data sets; in particular FM employs a demand-driven evaluation strategy that works especially well with large field data. Finally, the interfaces developed for FM have the potential to effectively abstract field data based on adaptive meshes. We present initial results with a triangular adaptive grid in R(sup 2) and discuss how the same design abstractions would work equally well with other adaptive-grid variations, including meshes in R(sup 3).
Conformal FDTD modeling wake fields
Energy Technology Data Exchange (ETDEWEB)
Jurgens, T.; Harfoush, F.
1991-05-01
Many computer codes have been written to model wake fields. Here we describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non- cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements of the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall motions. 4 refs., 5 figs.
Stochastic-field cavitation model
International Nuclear Information System (INIS)
Dumond, J.; Magagnato, F.; Class, A.
2013-01-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations
Stochastic-field cavitation model
Dumond, J.; Magagnato, F.; Class, A.
2013-07-01
Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Renormalization of gauge fields models
International Nuclear Information System (INIS)
Becchi, C.; Rouet, A.; Stora, R.
1974-01-01
A new approach to gauge field models is described. It is based on the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) renormalization scheme making extensive use of the quantum action principle, and the Slavnov invariance. The quantum action principle being first summarized in the framework of the BPHZ is then applied to a global symmetry problem. The symmetry property of the gauge field Lagrangians in the tree approximation is exhibited, and the preservation of this property at the quantum level is discussed. The main results relative to the Abelian and SU(2) Higgs-Kibble models are briefly reviewed [fr
A model unified field equation
International Nuclear Information System (INIS)
Perring, J.K.; Skyrme, T.H.R.
1994-01-01
The classical solutions of a unified field theory in a two-dimensional space-time are considered. This system, a model of a interacting mesons and baryons, illustrates how the particle can be built from a wave-packet of mesons and how reciprocally the meson appears as a tightly bound combination of particle and antiparticle. (author). 6 refs
Field testing of bioenergetic models
International Nuclear Information System (INIS)
Nagy, K.A.
1985-01-01
Doubly labeled water provides a direct measure of the rate of carbon dioxide production by free-living animals. With appropriate conversion factors, based on chemical composition of the diet and assimilation efficiency, field metabolic rate (FMR), in units of energy expenditure, and field feeding rate can be estimated. Validation studies indicate that doubly labeled water measurements of energy metabolism are accurate to within 7% in reptiles, birds, and mammals. This paper discusses the use of doubly labeled water to generate empirical models for FMR and food requirements for a variety of animals
Correlation Models for Temperature Fields
North, Gerald R.
2011-05-16
This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.
Correlation Models for Temperature Fields
North, Gerald R.; Wang, Jue; Genton, Marc G.
2011-01-01
This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.
Data requirements for integrated near field models
International Nuclear Information System (INIS)
Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.
1981-01-01
The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities
The Swarm Initial Field Model for the 2014 Geomagnetic Field
Olsen, Nils; Hulot, Gauthier; Lesur, Vincent; Finlay, Christopher C.; Beggan, Ciaran; Chulliat, Arnaud; Sabaka, Terence J.; Floberghagen, Rune; Friis-Christensen, Eigil; Haagmans, Roger
2015-01-01
Data from the first year of ESA's Swarm constellation mission are used to derive the Swarm Initial Field Model (SIFM), a new model of the Earth's magnetic field and its time variation. In addition to the conventional magnetic field observations provided by each of the three Swarm satellites, explicit advantage is taken of the constellation aspect by including east-west magnetic intensity gradient information from the lower satellite pair. Along-track differences in magnetic intensity provide further information concerning the north-south gradient. The SIFM static field shows excellent agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for east-west intensity differences between the lower satellite pair being only 0.12 nT.
Mean-field models and exotic nuclei
Energy Technology Data Exchange (ETDEWEB)
Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)
1998-06-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
Mean-field models and exotic nuclei
International Nuclear Information System (INIS)
Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.
1998-01-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)
The Swarm Initial Field Model for the 2014 geomagnetic field
DEFF Research Database (Denmark)
Olsen, Nils; Hulot, Gauthier; Lesur, Vincent
2015-01-01
agreement (up to at least degree 60) with recent field models derived from CHAMP data, providing an initial validation of the quality of the Swarm magnetic measurements. Use of gradient data improves the determination of both the static field and its secular variation, with the mean misfit for East...
The CHAOS-4 geomagnetic field model
DEFF Research Database (Denmark)
Olsen, Nils; Lühr, H.; Finlay, Chris
2014-01-01
We present CHAOS-4, a new version in the CHAOS model series, which aims to describe the Earth's magnetic field with high spatial and temporal resolution. Terms up to spherical degree of at least n = 85 for the lithospheric field, and up to n = 16 for the time-varying core field are robustly...... to the core field, but the high-degree lithospheric field is regularized for n > 85. CHAOS-4 model is derived by merging two submodels: its low-degree part has been derived using similar model parametrization and data sets as used for previous CHAOS models (but of course including more recent data), while its...
Manifestations of Kitaev physics in thermodynamic properties of hexagonal iridates and α-RuCl3
Tsirlin, Alexander
Kitaev model is hard to achieve in real materials. Best candidates available so far are hexagonal iridates M2IrO3 (M = Li and Na) and the recently discovered α-RuCl3 featuring hexagonal layers coupled by weak van der Waals bonding. I will review recent progress in crystal growth of these materials and compare their thermodynamic properties. Both hexagonal iridates and α-RuCl3 feature highly anisotropic Curie-Weiss temperatures that not only differ in magnitude but also change sign depending on the direction of the applied magnetic field. Néel temperatures are largely suppressed compared to the energy scale of the Curie-Weiss temperatures. These experimental observations will be linked to features of the electronic structure and to structural peculiarities associated with deviations from the ideal hexagonal symmetry. I will also discuss how the different nature of ligand atoms affects electronic structure and magnetic superexchange. This work has been done in collaboration with M. Majumder, M. Schmidt, M. Baenitz, F. Freund, and P. Gegenwart.
Modeling of Karachaganak field development
Sadvakasov, A. A.; Shamsutdinova, G. F.; Almukhametova, E. M.; Gabdrakhmanov, N. Kh
2018-05-01
Management of a geological deposit includes the study and analysis of oil recovery, identification of factors influencing production performance and oil-bearing rock flooding, reserve recovery and other indicators characterizing field development in general. Regulation of oil deposits exploitation is a mere control over the fluid flow within a reservoir, which is ensured through the designed system of development via continuous improvement of production and injection wells placement, optimum performance modes, service conditions of downhole and surface oil-field equipment taking into account various changes and physical-geological properties of a field when using modern equipment to obtain the best performance indicators.
RESICALC: Magnetic field modeling program
International Nuclear Information System (INIS)
Silva, J.M.
1992-12-01
RESICALC, Version 1.0, is a Microsoft Windows application that describes the magnetic field environment produced by user-defined arrays of transmission lines, distribution lines, and custom conductors. These arrays simulate specific situations that may be encountered in real-world community settings. RESICALC allows the user to define an area or ''world'' that contains the transmission and/or distribution lines, user-defined conductors, and locations of residences. The world contains a ''reference grid'' within which RESICALC analyzes the magnetic field environment due to all conductors within the world. Unique physical parameters (e.g., conductor height and spacing) and operating characteristics can be assigned to all electrical conductors. RESICALC's output is available for the x, y, z axis separately, the resultant (the three axes added in quadrature), and the major axis, each in three possible formats: a three-dimensional map of the magnetic field, two dimensional-contours, and as a table with statistical values. All formats may be printed, accompanied by a three-dimensional view of the world the user has drawn. The view of the world and the corresponding three-dimensional field map may be adjusted to the elevation and rotation angle of the user's preference
Phase-field model of eutectic growth
International Nuclear Information System (INIS)
Karma, A.
1994-01-01
A phase-field model which describes the solidification of a binary eutectic alloy with a simple symmetric phase diagram is introduced and the sharp-interface limit of this model is explored both analytically and numerically
The CHAOS-4 Geomagnetic Field Model
DEFF Research Database (Denmark)
Olsen, Nils; Finlay, Chris; Lühr, H.
We present CHAOS-4, a new version in the CHAOS model series, which aims at describing the Earth's magnetic field with high spatial resolution (terms up to spherical degree n=90 for the crustal field, and up to n=16 for the time-varying core field are robustly determined) and high temporal...... between the coordinate systems of the vector magnetometer and of the star sensor providing attitude information). The final CHAOS-4 model is derived by merging two sub-models: its low-degree part has been obtained using similar model parameterization and data sets as used for previous CHAOS models (but...
Uncertainty Quantification in Geomagnetic Field Modeling
Chulliat, A.; Nair, M. C.; Alken, P.; Meyer, B.; Saltus, R.; Woods, A.
2017-12-01
Geomagnetic field models are mathematical descriptions of the various sources of the Earth's magnetic field, and are generally obtained by solving an inverse problem. They are widely used in research to separate and characterize field sources, but also in many practical applications such as aircraft and ship navigation, smartphone orientation, satellite attitude control, and directional drilling. In recent years, more sophisticated models have been developed, thanks to the continuous availability of high quality satellite data and to progress in modeling techniques. Uncertainty quantification has become an integral part of model development, both to assess the progress made and to address specific users' needs. Here we report on recent advances made by our group in quantifying the uncertainty of geomagnetic field models. We first focus on NOAA's World Magnetic Model (WMM) and the International Geomagnetic Reference Field (IGRF), two reference models of the main (core) magnetic field produced every five years. We describe the methods used in quantifying the model commission error as well as the omission error attributed to various un-modeled sources such as magnetized rocks in the crust and electric current systems in the atmosphere and near-Earth environment. A simple error model was derived from this analysis, to facilitate usage in practical applications. We next report on improvements brought by combining a main field model with a high resolution crustal field model and a time-varying, real-time external field model, like in NOAA's High Definition Geomagnetic Model (HDGM). The obtained uncertainties are used by the directional drilling industry to mitigate health, safety and environment risks.
Geostatistical methods applied to field model residuals
DEFF Research Database (Denmark)
Maule, Fox; Mosegaard, K.; Olsen, Nils
consists of measurement errors and unmodelled signal), and is typically assumed to be uncorrelated and Gaussian distributed. We have applied geostatistical methods to analyse the residuals of the Oersted(09d/04) field model [http://www.dsri.dk/Oersted/Field_models/IGRF_2005_candidates/], which is based...
Alien wavelength modeling tool and field trial
DEFF Research Database (Denmark)
Sambo, N.; Sgambelluri, A.; Secondini, M.
2015-01-01
A modeling tool is presented for pre-FEC BER estimation of PM-QPSK alien wavelength signals. A field trial is demonstrated and used as validation of the tool's correctness. A very close correspondence between the performance of the field trial and the one predicted by the modeling tool has been...
Phase Field Modeling Using PetIGA
Vignal, Philippe; Collier, Nathan; Calo, Victor M.
2013-01-01
, and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We
Building analytical three-field cosmological models
Energy Technology Data Exchange (ETDEWEB)
Santos, J.R.L. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Moraes, P.H.R.S. [ITA-Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil); Ferreira, D.A. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil); Neta, D.C.V. [Universidade de Federal de Campina Grande, Unidade Academica de Fisica, Campina Grande, PB (Brazil); Universidade Estadual da Paraiba, Departamento de Fisica, Campina Grande, PB (Brazil)
2018-02-15
A difficult task to deal with is the analytical treatment of models composed of three real scalar fields, as their equations of motion are in general coupled and hard to integrate. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called ''extension method''. The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is with inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters. (orig.)
A combinatorial wind field model
DEFF Research Database (Denmark)
Soleimanzadeh, Maryam; Wisniewski, Rafal; Sloth, Christoffer
2010-01-01
This report is the deliverable 2.4 in the project Distributed Control of Large-Scale Oshore Wind Farms with the acronym Aeolus. The objective of this deliverable is to provide an understanding of the wind eld model and dynamic variations superimposed on the mean eld. In this report a dynamical...
Field theory and the Standard Model
Energy Technology Data Exchange (ETDEWEB)
Dudas, E [Orsay, LPT (France)
2014-07-01
This brief introduction to Quantum Field Theory and the Standard Model contains the basic building blocks of perturbation theory in quantum field theory, an elementary introduction to gauge theories and the basic classical and quantum features of the electroweak sector of the Standard Model. Some details are given for the theoretical bias concerning the Higgs mass limits, as well as on obscure features of the Standard Model which motivate new physics constructions.
An evaluation of Tsyganenko magnetic field model
International Nuclear Information System (INIS)
Fairfield, D.H.
1991-01-01
A long-standing goal of magnetospheric physics has been to produce a model of the Earth's magnetic field that can accurately predict the field vector at all locations within the magnetosphere for all dipole tilt angles and for various solar wind or magnetic activity conditions. A number of models make such predictions, but some only for limited spatial regions, some only for zero tilt angle, and some only for arbitrary conditions. No models depend explicitly on solar wind conditions. A data set of more than 22,000 vector averages of the magnetosphere magnetic field over 0.5 R E regions is used to evaluate Tsyganenko's 1982 and 1987 magnetospheric magnetic field models. The magnetic field predicted by the model in various regions is compared to observations to find systematic discrepancies which future models might address. While agreement is generally good, discrepancies are noted which include: (1) a lack of adequate field line stretching in the tail and ring current regions; (2) an inability to predict weak enough fields in the polar cusps; and (3) a deficiency of Kp as a predictor of the field configuration
Phase Field Modeling Using PetIGA
Vignal, Philippe
2013-06-01
Phase field modeling has become a widely used framework in the computational material science community. Its ability to model different problems by defining appropriate phase field parameters and relating it to a free energy functional makes it highly versatile. Thermodynamically consistent partial differential equations can then be generated by assuming dissipative dynamics, and setting up the problem as one of minimizing this free energy. The equations are nonetheless challenging to solve, and having a highly efficient and parallel framework to solve them is necessary. In this work, a brief review on phase field models is given, followed by a short analysis of the Phase Field Crystal Model solved with Isogeometric Analysis us- ing PetIGA. We end with an introduction to a new modeling concept, where free energy functions are built with a periodic equilibrium structure in mind.
Astrophysical constraints on scalar field models
International Nuclear Information System (INIS)
Bertolami, O.; Paramos, J.
2005-01-01
We use stellar structure dynamics arguments to extract bounds on the relevant parameters of two scalar field models: the putative scalar field mediator of a fifth force with a Yukawa potential and the new variable mass particle models. We also analyze the impact of a constant solar inbound acceleration, such as the one reported by the Pioneer anomaly, on stellar astrophysics. We consider the polytropic gas model to estimate the effect of these models on the hydrostatic equilibrium equation and fundamental quantities such as the central temperature. The current bound on the solar luminosity is used to constrain the relevant parameters of each model
Magnetic field decay in model SSC dipoles
International Nuclear Information System (INIS)
Gilbert, W.S.; Althaus, R.F.; Barale, P.J.; Benjegerdes, R.W.; Green, M.A.; Green, M.I.; Scanlan, R.M.
1988-08-01
We have observed that some of our model SSC dipoles have long time constant decays of the magnetic field harmonics with amplitudes large enough to result in significant beam loss, if they are not corrected. The magnets were run at constant current at the SSC injection field level of 0.3 tesla for one to three hours and changes in the magnetic field were observed. One explanation for the observed field decay is time dependent superconductor magnetization. Another explanation involves flux creep or flux flow. Data are presented on how the decay changes with previous flux history. Similar magnets with different Nb-Ti filament spacings and matrix materials have different long time field decay. A theoretical model using proximity coupling and flux creep for the observed field decay is discussed. 10 refs., 5 figs., 2 tabs
Reconstructing bidimensional scalar field theory models
International Nuclear Information System (INIS)
Flores, Gabriel H.; Svaiter, N.F.
2001-07-01
In this paper we review how to reconstruct scalar field theories in two dimensional spacetime starting from solvable Scrodinger equations. Theree different Schrodinger potentials are analyzed. We obtained two new models starting from the Morse and Scarf II hyperbolic potencials, the U (θ) θ 2 In 2 (θ 2 ) model and U (θ) = θ 2 cos 2 (In(θ 2 )) model respectively. (author)
Modelling electricity forward markets by ambit fields
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut
This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics......, but the forward price directly, where we focus on models which are stationary in time. We give a detailed account on the probabilistic properties of the new model and we discuss martingale conditions and change of measure within the new model class. Also, we derive a model for the spot price which is obtained...
Image-Optimized Coronal Magnetic Field Models
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.
2017-01-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.
Image-optimized Coronal Magnetic Field Models
Energy Technology Data Exchange (ETDEWEB)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov [NASA Goddard Space Flight Center, Code 670, Greenbelt, MD 20771 (United States)
2017-08-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.
DEFF Research Database (Denmark)
Olsen, Nils; Holme, R.; Hulot, G.
2000-01-01
Magnetic measurements taken by the Orsted satellite during geomagnetic quiet conditions around January 1, 2000 have been used to derive a spherical harmonic model of the Earth's magnetic field for epoch 2000.0. The maximum degree and order of the model is 19 for internal, and 2 for external, source...... fields; however, coefficients above degree 14 may not be robust. Such a detailed model exists for only one previous epoch, 1980. Achieved rms misfit is ... to the Orsted mission, this model supercedes IGRF 2000....
Flow field mapping in data rack model
Directory of Open Access Journals (Sweden)
Matěcha J.
2013-04-01
Full Text Available The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.
A Hamiltonian five-field gyrofluid model
Energy Technology Data Exchange (ETDEWEB)
Keramidas Charidakos, I.; Waelbroeck, F. L.; Morrison, P. J. [Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin, TX 78712 (United States)
2015-11-15
A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to be Hamiltonian. The model includes the effects of magnetic field curvature and describes the evolution of the electron and ion gyro-center densities, the parallel component of the ion and electron velocities, and the ion temperature. The quasineutrality property and Ampère's law determine, respectively, the electrostatic potential and magnetic flux. The Casimir invariants are presented, and shown to be associated with five Lagrangian invariants advected by distinct velocity fields. A linear, local study of the model is conducted both with and without Landau and diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic models.
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2010-01-01
be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focussed. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations.The set of numerical coefficients defining this linear combination is then what one refers.......The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...
Mathematical Properties Relevant to Geomagnetic Field Modeling
DEFF Research Database (Denmark)
Sabaka, Terence J.; Hulot, Gauthier; Olsen, Nils
2014-01-01
be directly measured. In this chapter, the mathematical foundation of global (as opposed to regional) geomagnetic field modeling is reviewed, and the spatial modeling of the field in spherical coordinates is focused. Time can be dealt with as an independent variable and is not explicitly considered......Geomagnetic field modeling consists in converting large numbers of magnetic observations into a linear combination of elementary mathematical functions that best describes those observations. The set of numerical coefficients defining this linear combination is then what one refers....... The relevant elementary mathematical functions are introduced, their properties are reviewed, and how they can be used to describe the magnetic field in a source-free (such as the Earth’s neutral atmosphere) or source-dense (such as the ionosphere) environment is explained. Completeness and uniqueness...
Modeling aeolian dune and dune field evolution
Diniega, Serina
Aeolian sand dune morphologies and sizes are strongly connected to the environmental context and physical processes active since dune formation. As such, the patterns and measurable features found within dunes and dune fields can be interpreted as records of environmental conditions. Using mathematical models of dune and dune field evolution, it should be possible to quantitatively predict dune field dynamics from current conditions or to determine past field conditions based on present-day observations. In this dissertation, we focus on the construction and quantitative analysis of a continuum dune evolution model. We then apply this model towards interpretation of the formative history of terrestrial and martian dunes and dune fields. Our first aim is to identify the controls for the characteristic lengthscales seen in patterned dune fields. Variations in sand flux, binary dune interactions, and topography are evaluated with respect to evolution of individual dunes. Through the use of both quantitative and qualitative multiscale models, these results are then extended to determine the role such processes may play in (de)stabilization of the dune field. We find that sand flux variations and topography generally destabilize dune fields, while dune collisions can yield more similarly-sized dunes. We construct and apply a phenomenological macroscale dune evolution model to then quantitatively demonstrate how dune collisions cause a dune field to evolve into a set of uniformly-sized dunes. Our second goal is to investigate the influence of reversing winds and polar processes in relation to dune slope and morphology. Using numerical experiments, we investigate possible causes of distinctive morphologies seen in Antarctic and martian polar dunes. Finally, we discuss possible model extensions and needed observations that will enable the inclusion of more realistic physical environments in the dune and dune field evolution models. By elucidating the qualitative and
Integrated field modelling[Oil and gas fields
Energy Technology Data Exchange (ETDEWEB)
Nazarian, Bamshad
2002-07-01
This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant
Model improves oil field operating cost estimates
International Nuclear Information System (INIS)
Glaeser, J.L.
1996-01-01
A detailed operating cost model that forecasts operating cost profiles toward the end of a field's life should be constructed for testing depletion strategies and plans for major oil fields. Developing a good understanding of future operating cost trends is important. Incorrectly forecasting the trend can result in bad decision making regarding investments and reservoir operating strategies. Recent projects show that significant operating expense reductions can be made in the latter stages o field depletion without significantly reducing the expected ultimate recoverable reserves. Predicting future operating cost trends is especially important for operators who are currently producing a field and must forecast the economic limit of the property. For reasons presented in this article, it is usually not correct to either assume that operating expense stays fixed in dollar terms throughout the lifetime of a field, nor is it correct to assume that operating costs stay fixed on a dollar per barrel basis
Reversed-Field Pinch plasma model
International Nuclear Information System (INIS)
Miley, G.H.; Nebel, R.A.; Moses, R.W.
1979-01-01
The stability of a Reversed-Field Pinch (RFP) is strongly dependent on the plasma profile and the confining sheared magnetic field. Magnetic diffusion and thermal transport produce changing conditions of stability. Despite the limited understanding of RFP transport, modelling is important to predict general trends and to study possible field programming options. To study the ZT-40 experiment and to predict the performance of future RFP reactors, a one-dimensional transport code has been developed. This code includes a linear, ideal MHD stability check based on an energy principle. The transport section integrates plasma profiles forward in time while the stability section periodically checks the stability of the evolving plasma profile
Modeling emotional dynamics : currency versus field.
Energy Technology Data Exchange (ETDEWEB)
Sallach, D .L.; Decision and Information Sciences; Univ. of Chicago
2008-08-01
Randall Collins has introduced a simplified model of emotional dynamics in which emotional energy, heightened and focused by interaction rituals, serves as a common denominator for social exchange: a generic form of currency, except that it is active in a far broader range of social transactions. While the scope of this theory is attractive, the specifics of the model remain unconvincing. After a critical assessment of the currency theory of emotion, a field model of emotion is introduced that adds expressiveness by locating emotional valence within its cognitive context, thereby creating an integrated orientation field. The result is a model which claims less in the way of motivational specificity, but is more satisfactory in modeling the dynamic interaction between cognitive and emotional orientations at both individual and social levels.
Mean-field models and superheavy elements
International Nuclear Information System (INIS)
Reinhard, P.G.; Bender, M.; Maruhn, J.A.; Frankfurt Univ.
2001-03-01
We discuss the performance of two widely used nuclear mean-field models, the relativistic mean-field theory (RMF) and the non-relativistic Skyrme-Hartree-Fock approach (SHF), with particular emphasis on the description of superheavy elements (SHE). We provide a short introduction to the SHF and RMF, the relations between these two approaches and the relations to other nuclear structure models, briefly review the basic properties with respect to normal nuclear observables, and finally present and discuss recent results on the binding properties of SHE computed with a broad selection of SHF and RMF parametrisations. (orig.)
Preliminary Phase Field Computational Model Development
Energy Technology Data Exchange (ETDEWEB)
Li, Yulan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Ke [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Suter, Jonathan D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McCloy, John S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Johnson, Bradley R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2014-12-15
This interim report presents progress towards the development of meso-scale models of magnetic behavior that incorporate microstructural information. Modeling magnetic signatures in irradiated materials with complex microstructures (such as structural steels) is a significant challenge. The complexity is addressed incrementally, using the monocrystalline Fe (i.e., ferrite) film as model systems to develop and validate initial models, followed by polycrystalline Fe films, and by more complicated and representative alloys. In addition, the modeling incrementally addresses inclusion of other major phases (e.g., martensite, austenite), minor magnetic phases (e.g., carbides, FeCr precipitates), and minor nonmagnetic phases (e.g., Cu precipitates, voids). The focus of the magnetic modeling is on phase-field models. The models are based on the numerical solution to the Landau-Lifshitz-Gilbert equation. From the computational standpoint, phase-field modeling allows the simulation of large enough systems that relevant defect structures and their effects on functional properties like magnetism can be simulated. To date, two phase-field models have been generated in support of this work. First, a bulk iron model with periodic boundary conditions was generated as a proof-of-concept to investigate major loop effects of single versus polycrystalline bulk iron and effects of single non-magnetic defects. More recently, to support the experimental program herein using iron thin films, a new model was generated that uses finite boundary conditions representing surfaces and edges. This model has provided key insights into the domain structures observed in magnetic force microscopy (MFM) measurements. Simulation results for single crystal thin-film iron indicate the feasibility of the model for determining magnetic domain wall thickness and mobility in an externally applied field. Because the phase-field model dimensions are limited relative to the size of most specimens used in
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.
A field theoretic model for static friction
Mahyaeh, I.; Rouhani, S.
2013-01-01
We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...
Staircase Models from Affine Toda Field Theory
Dorey, P; Dorey, Patrick; Ravanini, Francesco
1993-01-01
We propose a class of purely elastic scattering theories generalising the staircase model of Al. B. Zamolodchikov, based on the affine Toda field theories for simply-laced Lie algebras g=A,D,E at suitable complex values of their coupling constants. Considering their Thermodynamic Bethe Ansatz equations, we give analytic arguments in support of a conjectured renormalisation group flow visiting the neighbourhood of each W_g minimal model in turn.
Empirical high-latitude electric field models
International Nuclear Information System (INIS)
Heppner, J.P.; Maynard, N.C.
1987-01-01
Electric field measurements from the Dynamics Explorer 2 satellite have been analyzed to extend the empirical models previously developed from dawn-dusk OGO 6 measurements (J.P. Heppner, 1977). The analysis embraces large quantities of data from polar crossings entering and exiting the high latitudes in all magnetic local time zones. Paralleling the previous analysis, the modeling is based on the distinctly different polar cap and dayside convective patterns that occur as a function of the sign of the Y component of the interplanetary magnetic field. The objective, which is to represent the typical distributions of convective electric fields with a minimum number of characteristic patterns, is met by deriving one pattern (model BC) for the northern hemisphere with a +Y interplanetary magnetic field (IMF) and southern hemisphere with a -Y IMF and two patterns (models A and DE) for the northern hemisphere with a -Y IMF and southern hemisphere with a +Y IMF. The most significant large-scale revisions of the OGO 6 models are (1) on the dayside where the latitudinal overlap of morning and evening convection cells reverses with the sign of the IMF Y component, (2) on the nightside where a westward flow region poleward from the Harang discontinuity appears under model BC conditions, and (3) magnetic local time shifts in the positions of the convection cell foci. The modeling above was followed by a detailed examination of cases where the IMF Z component was clearly positive (northward). Neglecting the seasonally dependent cases where irregularities obscure pattern recognition, the observations range from reasonable agreement with the new BC and DE models, to cases where different characteristics appeared primarily at dayside high latitudes
Quantum field theory and the standard model
Schwartz, Matthew D
2014-01-01
Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...
Effective field theory and the quark model
International Nuclear Information System (INIS)
Durand, Loyal; Ha, Phuoc; Jaczko, Gregory
2001-01-01
We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections
Polyacetylene and relativistic field-theory models
International Nuclear Information System (INIS)
Bishop, A.R.; Campbell, D.K.; Fesser, K.
1981-01-01
Connections between continuum, mean-field, adiabatic Peierls-Froehlich theory in the half-filled band limit and known field theory results are discussed. Particular attention is given to the phi 4 model and to the solvable N = 2 Gross-Neveu model. The latter is equivalent to the Peierls system at a static, semi-classical level. Based on this equivalence we note the prediction of both kink and polaron solitons in models of trans-(CH)/sub x/. Polarons in cis-(CH)/sub x/ are compared with those in the trans isomer. Optical absorption from polarons is described, and general experimental consequences of polarons in (CH)/sub x/ and other conjugated polymers is discussed
Improved modeling techniques for turbomachinery flow fields
Energy Technology Data Exchange (ETDEWEB)
Lakshminarayana, B. [Pennsylvania State Univ., University Park, PA (United States); Fagan, J.R. Jr. [Allison Engine Company, Indianapolis, IN (United States)
1995-10-01
This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.
High-performance phase-field modeling
Vignal, Philippe
2015-04-27
Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.
The status of near-field modelling
International Nuclear Information System (INIS)
Apted, M.J.
1993-01-01
The near-field of a high-level nuclear waste repository consists of the waste itself and of the man-made barriers engineered around it (Engineered Barrier System, EBS). The conceptual and mathematical models of repositories and EBS, and the state of the air of performance assessment of waste repositories with EBS are discussed at the meeting. 18 individual items have been indexed and abstracted for the INIS database. (R.P.)
Classical solutions of some field theoretic models
International Nuclear Information System (INIS)
Zakrzewski, W.J.
1982-01-01
In recent years much attention has been paid to simpler fields theories, so chosen that they possess several properties of nonabelian gauge theories. They preserve the conformal invariance of the action and one can define the topological charge for them. They possess nontrivial solutions to the equations of motion. The perturbation theory based on the fluctuations around each solution is characterized by asymptotic freedom. A model called CP sup(n-1) is presented and some models which are its natural generalizations are discussed. (M.F.W.)
Critical properties of symmetric nanoscale metal-ferroelectric-metal capacitors
International Nuclear Information System (INIS)
Zheng Yue; Cai, M.Q.; Woo, C.H.
2010-01-01
The size, surface and interface effects on the magnitude and stability of spontaneous polarization in a symmetric nanoscale ferroelectric capacitor were studied by analyzing its evolutionary trajectory based on a thermodynamic model. Analytic expressions of the Curie temperature, spontaneous polarization, critical thickness and the Curie-Weiss relation were derived, taking into account the effects of the depolarization field, built-in electric field, interfaces and surfaces. Our results show that the critical properties are not only functions of the ambient temperature, misfit strain and electromechanical boundary conditions, but also depend on the characteristics of electrodes, surfaces and interfaces, through the incomplete charge compensation, near-surface variation of polarization and work function steps of ferroelectric-electrode interfaces, which are adjustable.
Particles and scaling for lattice fields and Ising models
International Nuclear Information System (INIS)
Glimm, J.; Jaffe, A.
1976-01-01
The conjectured inequality GAMMA 6 4 -fields and the scaling limit for d-dimensional Ising models. Assuming GAMMA 6 = 6 these phi 4 fields are free fields unless the field strength renormalization Z -1 diverges. (orig./BJ) [de
The role of mechanical boundary conditions in the soft mode dynamics of PbTiO3.
McCash, Kevin; Mani, B K; Chang, C-M; Ponomareva, I
2014-10-29
The role of different mechanical boundary conditions in the soft mode dynamics of ferroelectric PbTiO3 is systematically investigated using first-principles-based simulations and analytical model. The change in the soft mode dynamics due to hydrostatic pressure, uniaxial and biaxial stresses and biaxial strains is studied in a wide temperature range. Our computations predict: (i) the existence of Curie-Weiss laws that relate the soft mode frequency to the stress or strain; (ii) a non-trivial temperature evolution of the associated Curie-Weiss constants; (iii) a qualitative difference between the soft mode response to stresses/strains and hydrostatic pressure. The latter finding implies that the Curie-Weiss pressure law commonly used for residual stress estimation may not apply for the cases of uniaxial and biaxial stresses and strains. On the other hand, our systematic study offers a way to eliminate this difficulty through the establishment of Curie-Weiss stress and strain laws. Implications of our predictions for some available experimental data are discussed.
Domino model for geomagnetic field reversals.
Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M
2013-01-01
We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field.
DTU candidate field models for IGRF-12 and the CHAOS-5 geomagnetic field model
DEFF Research Database (Denmark)
Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars
2015-01-01
We present DTU’s candidate field models for IGRF-12 and the parent field model from which they were derived,CHAOS-5. Ten months of magnetic field observations from ESA’s Swarm mission, together with up-to-date ground observatory monthly means, were used to supplement the data sources previously u...... been documented, but the 2013 pulse has only recently been identified. The spatial signature of the 2013pulse at the core surface, under the Atlantic sector where it is strongest, is well correlated with the 2006 pulse, but anti-correlated with the 2009 pulse....
Relativistic mean-field mass models
Energy Technology Data Exchange (ETDEWEB)
Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)
2016-10-15
We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)
International Nuclear Information System (INIS)
Cooper, F.
1996-01-01
We review the assumptions and domain of applicability of Landau's Hydrodynamical Model. By considering two models of particle production, pair production from strong electric fields and particle production in the linear σ model, we demonstrate that many of Landau's ideas are verified in explicit field theory calculations
DEFF Research Database (Denmark)
Finlay, Chris; Olsen, Nils; Gillet, Nicolas
We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to tradition...... physical hypotheses can be tested by asking questions of the entire ensemble of core field models, rather than by interpreting any single model.......We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional...... regularization methods based on minimizing the square of second or third time derivative. We invert satellite and observatory data directly by adopting the external field and crustal field modelling framework of the CHAOS model, but apply the stochastic process method of Gillet et al. (2013) to the core field...
Near Field Environment Process Model Report
Energy Technology Data Exchange (ETDEWEB)
R.A. Wagner
2000-11-14
Waste emplacement and activities associated with construction of a repository system potentially will change environmental conditions within the repository system. These environmental changes principally result from heat generated by the decay of the radioactive waste, which elevates temperatures within the repository system. Elevated temperatures affect distribution of water, increase kinetic rates of geochemical processes, and cause stresses to change in magnitude and orientation from the stresses resulting from the overlying rock and from underground construction activities. The recognition of this evolving environment has been reflected in activities, studies and discussions generally associated with what has been termed the Near-Field Environment (NFE). The NFE interacts directly with waste packages and engineered barriers as well as potentially changing the fluid composition and flow conditions within the mountain. As such, the NFE defines the environment for assessing the performance of a potential Monitored Geologic Repository at Yucca Mountain, Nevada. The NFe evolves over time, and therefore is not amenable to direct characterization or measurement in the ambient system. Analysis or assessment of the NFE must rely upon projections based on tests and models that encompass the long-term processes of the evolution of this environment. This NFE Process Model Report (PMR) describes the analyses and modeling based on current understanding of the evolution of the near-field within the rock mass extending outward from the drift wall.
Long-time predictability in disordered spin systems following a deep quench.
Ye, J; Gheissari, R; Machta, J; Newman, C M; Stein, D L
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit-in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Long-time predictability in disordered spin systems following a deep quench
Ye, J.; Gheissari, R.; Machta, J.; Newman, C. M.; Stein, D. L.
2017-04-01
We study the problem of predictability, or "nature vs nurture," in several disordered Ising spin systems evolving at zero temperature from a random initial state: How much does the final state depend on the information contained in the initial state, and how much depends on the detailed history of the system? Our numerical studies of the "dynamical order parameter" in Edwards-Anderson Ising spin glasses and random ferromagnets indicate that the influence of the initial state decays as dimension increases. Similarly, this same order parameter for the Sherrington-Kirkpatrick infinite-range spin glass indicates that this information decays as the number of spins increases. Based on these results, we conjecture that the influence of the initial state on the final state decays to zero in finite-dimensional random-bond spin systems as dimension goes to infinity, regardless of the presence of frustration. We also study the rate at which spins "freeze out" to a final state as a function of dimensionality and number of spins; here the results indicate that the number of "active" spins at long times increases with dimension (for short-range systems) or number of spins (for infinite-range systems). We provide theoretical arguments to support these conjectures, and also study analytically several mean-field models: the random energy model, the uniform Curie-Weiss ferromagnet, and the disordered Curie-Weiss ferromagnet. We find that for these models, the information contained in the initial state does not decay in the thermodynamic limit—in fact, it fully determines the final state. Unlike in short-range models, the presence of frustration in mean-field models dramatically alters the dynamical behavior with respect to the issue of predictability.
Optimization Models for Petroleum Field Exploitation
Energy Technology Data Exchange (ETDEWEB)
Jonsbraaten, Tore Wiig
1998-12-31
This thesis presents and discusses various models for optimal development of a petroleum field. The objective of these optimization models is to maximize, under many uncertain parameters, the project`s expected net present value. First, an overview of petroleum field optimization is given from the point of view of operations research. Reservoir equations for a simple reservoir system are derived and discretized and included in optimization models. Linear programming models for optimizing production decisions are discussed and extended to mixed integer programming models where decisions concerning platform, wells and production strategy are optimized. Then, optimal development decisions under uncertain oil prices are discussed. The uncertain oil price is estimated by a finite set of price scenarios with associated probabilities. The problem is one of stochastic mixed integer programming, and the solution approach is to use a scenario and policy aggregation technique developed by Rockafellar and Wets although this technique was developed for continuous variables. Stochastic optimization problems with focus on problems with decision dependent information discoveries are also discussed. A class of ``manageable`` problems is identified and an implicit enumeration algorithm for finding optimal decision policy is proposed. Problems involving uncertain reservoir properties but with a known initial probability distribution over possible reservoir realizations are discussed. Finally, a section on Nash-equilibrium and bargaining in an oil reservoir management game discusses the pool problem arising when two lease owners have access to the same underlying oil reservoir. Because the oil tends to migrate, both lease owners have incentive to drain oil from the competitors part of the reservoir. The discussion is based on a numerical example. 107 refs., 31 figs., 14 tabs.
A matrix model from string field theory
Directory of Open Access Journals (Sweden)
Syoji Zeze
2016-09-01
Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
Heisenberg Model in a Rotating Magnetic Field
Institute of Scientific and Technical Information of China (English)
LIN Qiong-Gui
2005-01-01
We study the Heisenberg model under the influence of a rotating magnetic field. By using a time-dependent unitary transformation, the time evolution operator for the Schrodinger equation is obtained, which involves no chronological product. The spin vectors (mean values of the spin operators) are obtained as explicit functions of time in the most general case. A series of cyclic solutions are presented. The nonadiabatic geometric phases of these cyclic solutions are calculated, and are expressed in terms of the solid angle subtended by the closed trace of the total spin vector, as well as in terms of those of the individual spins.
Non standard analysis, polymer models, quantum fields
International Nuclear Information System (INIS)
Albeverio, S.
1984-01-01
We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)
Migration model for the near field
International Nuclear Information System (INIS)
Andersson, G.; Rasmusson, A.; Neretnieks, I.
1982-11-01
The near field model describes the transport of substances dissolved in the groundwater to and from a canister in which radioactive materials are stored. The migration of substances that can cause corrosion (oxidants) of the canister is described by means of a mathematical model. The model takes into account diffusion through the buffer material and water flow in the rock fractures. Two distinct transport resistances can be distinguished in this transport process. The first consists of the diffusion resistance in the buffer material and the second arises due to diffusion resistance in the flowing water in the thin fractures in the rock. The model can also be used to calculate the non-steady-state phase of the inward or outward transport of dissolved species. The model has also been used to calculate how a redox front caused by radiolytically produced oxidants moves out through the clay and into the rock. It has been shown that the migration rate of the redox front can be calculated with good accuracy by means of simple mass balance computations. The transport of radiolytically formed hydrogen away from the fuel has been calculated. When dissolved in the water, hydrogen can be transported through the clay barrier by means of diffusion without the partial pressure of the hydrogen exceeding the hydrostatic pressure. (author)
Electron Model of Linear-Field FFAG
Koscielniak, Shane R
2005-01-01
A fixed-field alternating-gradient accelerator (FFAG) that employs only linear-field elements ushers in a new regime in accelerator design and dynamics. The linear-field machine has the ability to compact an unprecedented range in momenta within a small component aperture. With a tune variation which results from the natural chromaticity, the beam crosses many strong, uncorrec-table, betatron resonances during acceleration. Further, relativistic particles in this machine exhibit a quasi-parabolic time-of-flight that cannot be addressed with a fixed-frequency rf system. This leads to a new concept of bucketless acceleration within a rotation manifold. With a large energy jump per cell, there is possibly strong synchro-betatron coupling. A few-MeV electron model has been proposed to demonstrate the feasibility of these untested acceleration features and to investigate them at length under a wide range of operating conditions. This paper presents a lattice optimized for a 1.3 GHz rf, initial technology choices f...
The Channel Network model and field applications
International Nuclear Information System (INIS)
Khademi, B.; Moreno, L.; Neretnieks, I.
1999-01-01
The Channel Network model describes the fluid flow and solute transport in fractured media. The model is based on field observations, which indicate that flow and transport take place in a three-dimensional network of connected channels. The channels are generated in the model from observed stochastic distributions and solute transport is modeled taking into account advection and rock interactions, such as matrix diffusion and sorption within the rock. The most important site-specific data for the Channel Network model are the conductance distribution of the channels and the flow-wetted surface. The latter is the surface area of the rock in contact with the flowing water. These parameters may be estimated from hydraulic measurements. For the Aespoe site, several borehole data sets are available, where a packer distance of 3 meters was used. Numerical experiments were performed in order to study the uncertainties in the determination of the flow-wetted surface and conductance distribution. Synthetic data were generated along a borehole and hydraulic tests with different packer distances were simulated. The model has previously been used to study the Long-term Pumping and Tracer Test (LPT2) carried out in the Aespoe Hard Rock Laboratory (HRL) in Sweden, where the distance travelled by the tracers was of the order hundreds of meters. Recently, the model has been used to simulate the tracer tests performed in the TRUE experiment at HRL, with travel distance of the order of tens of meters. Several tracer tests with non-sorbing and sorbing species have been performed
Computer Forensics Field Triage Process Model
Directory of Open Access Journals (Sweden)
Marcus K. Rogers
2006-06-01
Full Text Available With the proliferation of digital based evidence, the need for the timely identification, analysis and interpretation of digital evidence is becoming more crucial. In many investigations critical information is required while at the scene or within a short period of time - measured in hours as opposed to days. The traditional cyber forensics approach of seizing a system(s/media, transporting it to the lab, making a forensic image(s, and then searching the entire system for potential evidence, is no longer appropriate in some circumstances. In cases such as child abductions, pedophiles, missing or exploited persons, time is of the essence. In these types of cases, investigators dealing with the suspect or crime scene need investigative leads quickly; in some cases it is the difference between life and death for the victim(s. The Cyber Forensic Field Triage Process Model (CFFTPM proposes an onsite or field approach for providing the identification, analysis and interpretation of digital evidence in a short time frame, without the requirement of having to take the system(s/media back to the lab for an in-depth examination or acquiring a complete forensic image(s. The proposed model adheres to commonly held forensic principles, and does not negate the ability that once the initial field triage is concluded, the system(s/storage media be transported back to a lab environment for a more thorough examination and analysis. The CFFTPM has been successfully used in various real world cases, and its investigative importance and pragmatic approach has been amply demonstrated. Furthermore, the derived evidence from these cases has not been challenged in the court proceedings where it has been introduced. The current article describes the CFFTPM in detail, discusses the model’s forensic soundness, investigative support capabilities and practical considerations.
Field space entanglement entropy, zero modes and Lifshitz models
Huffel, Helmuth; Kelnhofer, Gerald
2017-12-01
The field space entanglement entropy of a quantum field theory is obtained by integrating out a subset of its fields. We study an interacting quantum field theory consisting of massless scalar fields on a closed compact manifold M. To this model we associate its Lifshitz dual model. The ground states of both models are invariant under constant shifts. We interpret this invariance as gauge symmetry and subject the models to proper gauge fixing. By applying the heat kernel regularization one can show that the field space entanglement entropies of the massless scalar field model and of its Lifshitz dual are agreeing.
Field space entanglement entropy, zero modes and Lifshitz models
Directory of Open Access Journals (Sweden)
Helmuth Huffel
2017-12-01
Full Text Available The field space entanglement entropy of a quantum field theory is obtained by integrating out a subset of its fields. We study an interacting quantum field theory consisting of massless scalar fields on a closed compact manifold M. To this model we associate its Lifshitz dual model. The ground states of both models are invariant under constant shifts. We interpret this invariance as gauge symmetry and subject the models to proper gauge fixing. By applying the heat kernel regularization one can show that the field space entanglement entropies of the massless scalar field model and of its Lifshitz dual are agreeing.
Wind gust models derived from field data
Gawronski, W.
1995-01-01
Wind data measured during a field experiment were used to verify the analytical model of wind gusts. Good coincidence was observed; the only discrepancy occurred for the azimuth error in the front and back winds, where the simulated errors were smaller than the measured ones. This happened because of the assumption of the spatial coherence of the wind gust model, which generated a symmetric antenna load and, in consequence, a low azimuth servo error. This result indicates a need for upgrading the wind gust model to a spatially incoherent one that will reflect the real gusts in a more accurate manner. In order to design a controller with wind disturbance rejection properties, the wind disturbance should be known at the input to the antenna rate loop model. The second task, therefore, consists of developing a digital filter that simulates the wind gusts at the antenna rate input. This filter matches the spectrum of the measured servo errors. In this scenario, the wind gusts are generated by introducing white noise to the filter input.
Properties of invariant modelling and invariant glueing of vector fields
International Nuclear Information System (INIS)
Petukhov, V.R.
1987-01-01
Invariant modelling and invariant glueing of both continuous (rates and accelerations) and descrete vector fields, gradient and divergence cases are considered. The following appendices are discussed: vector fields in crystals, crystal disclinations, topological charges and their fields
International Nuclear Information System (INIS)
Hamed Hassani, S; Macris, Nicolas; Urbanke, Ruediger
2012-01-01
We consider a collection of Curie–Weiss (CW) spin systems, possibly with a random field, each of which is placed along the positions of a one-dimensional chain. The CW systems are coupled together by a Kac-type interaction in the longitudinal direction of the chain and by an infinite-range interaction in the direction transverse to the chain. Our motivations for studying this model come from recent findings in the theory of error-correcting codes based on spatially coupled graphs. We find that, although much simpler than the codes, the model studied here already displays similar behavior. We are interested in the van der Waals curve in a regime where the size of each Curie–Weiss model tends to infinity, and the length of the chain and range of the Kac interaction are large but finite. Below the critical temperature, and with appropriate boundary conditions, there appears a series of equilibrium states representing kink-like interfaces between the two equilibrium states of the individual system. The van der Waals curve oscillates periodically around the Maxwell plateau. These oscillations have a period inversely proportional to the chain length and an amplitude exponentially small in the range of the interaction; in other words, the spinodal points of the chain model lie exponentially close to the phase transition threshold. The amplitude of the oscillations is closely related to a Peierls–Nabarro free energy barrier for the motion of the kink along the chain. Analogies to similar phenomena and their possible algorithmic significance for graphical models of interest in coding theory and theoretical computer science are pointed out
Dynamics of the Random Field Ising Model
Xu, Jian
The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.
Modeling quantization effects in field effect transistors
International Nuclear Information System (INIS)
Troger, C.
2001-06-01
Numerical simulation in the field of semiconductor device development advanced to a valuable, cost-effective and flexible facility. The most widely used simulators are based on classical models, as they need to satisfy time and memory constraints. To improve the performance of field effect transistors such as MOSFETs and HEMTs these devices are continuously scaled down in their dimensions. Consequently the characteristics of such devices are getting more and more determined by quantum mechanical effects arising from strong transversal fields in the channel. In this work an approach based on a two-dimensional electron gas is used to describe the confinement of the carriers. Quantization is considered in one direction only. For the derivation of a one-dimensional Schroedinger equation in the effective mass framework a non-parabolic correction for the energy dispersion due to Kane is included. For each subband a non-parabolic dispersion relation characterized by subband masses and subband non-parabolicity coefficients is introduced and the parameters are calculated via perturbation theory. The method described in this work has been implemented in a software tool that performs a self-consistent solution of Schroedinger- and Poisson-equation for a one-dimensional cut through a MOS structure or heterostructure. The calculation of the carrier densities is performed assuming Fermi-Dirac statistics. In the case of a MOS structure a metal or a polysilicon gate is considered and an arbitrary gate bulk voltage can be applied. This allows investigating quantum mechanical effects in capacity calculations, to compare the simulated data with measured CV curves and to evaluate the results obtained with a quantum mechanical correction for the classical electron density. The behavior of the defined subband parameters is compared to the value of the mass and the non-parabolicity coefficient from the model due to Kane. Finally the presented characterization of the subbands is applied
Evaluation of recent quantitative magnetospheric magnetic field models
International Nuclear Information System (INIS)
Walker, R.J.
1976-01-01
Recent quantitative magnetospheric field models contain many features not found in earlier models. Magnetopause models which include the effects of the dipole tilt were presented. More realistic models of the tail field include tail currents which close on the magnetopause, cross-tail currents of finite thickness, and cross-tail current models which model the position of the neutral sheet as a function of tilt. Finally, models have attempted to calculate the field of currents distributed in the inner magnetosphere. As the purpose of a magnetospheric model is to provide a mathematical description of the field that reasonably reproduces the observed magnetospheric field, several recent models were compared with the observed ΔB(B/sub observed/--B/sub main field/) contours. Models containing only contributions from magnetopause and tail current systems are able to reproduce the observed quiet time field only in an extremely qualitative way. The best quantitative agreement between models and observations occurs when currents distributed in the inner magnetosphere are added to the magnetopause and tail current systems. However, the distributed current models are valid only for zero tilt. Even the models which reproduce the average observed field reasonably well may not give physically reasonable field gradients. Three of the models evaluated contain regions in the near tail in which the field gradient reverses direction. One region in which all the models fall short is that around the polar cusp, though most can be used to calculate the position of the last closed field line reasonably well
Near-field/altered-zone models report
International Nuclear Information System (INIS)
Hardin, E. L.
1998-01-01
lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF/AZ performance. The selection and
Near-field/altered-zone models report
Energy Technology Data Exchange (ETDEWEB)
Hardin, E. L., LLNL
1998-03-01
nonlithophysal and lower lithophysal units. These units are made up of moderately to densely welded, devitrified, fractured tuff. The rock's chemical composition is comparable to that of typical granite, but has textural features and mineralogical characteristics of large-scale, silicic volcanism. Because the repository horizon will be approximately 300 m below the ground surface and 200 m above the water table, the repository will be partially saturated. The welded tuff matrix in the host units is highly impermeable, but water and gas flow readily through fractures. The degree of fracturing in these units is highly variable, and the hydrologic significance of fracturing is an important aspect of site investigation. This report describes the characterization and modeling of a region around the potential repository--the altered zone--a region in which the temperature will be increased significantly by waste-generated heat. Numerical simulation has shown that, depending on the boundary conditions, rock properties, and repository design features incorporated in the models, the altered zone (AZ) may extend from the water table to the ground surface. This report also describes models of the near field, the region comprising the repository emplacement drifts and the surrounding rock, which are critical to the performance of engineered components. Investigations of near-field and altered-zone (NF/AZ) processes support the design of underground repository facilities and engineered barriers and also provide constraint data for probabilistic calculations of waste-isolation performance (i.e., performance assessment). The approach to investigation, which is an iterative process involving hypothesis testing and experimentation, has relied on conceptualizing engineered barriers and on performance analysis. This report is a collection, emphasizing conceptual and numerical models, of the recent results contributed from studies of NF/AZ processes and of quantitative measures of NF
NMR evidence for spin fluctuations in underdoped LaO{sub 1-x}F{sub x}FeAs
Energy Technology Data Exchange (ETDEWEB)
Hammerath, Franziska; Grafe, Hans-Joachim; Lang, Guillaume; Behr, Guenter; Werner, Jochen; Buechner, Bernd [Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany); Paar, Dalibor [Department of Physics, Faculty of Science, University of Zagreb (Croatia)
2012-07-01
We present {sup 75}As Nuclear Magnetic Resonance (NMR) measurements on the iron-based superconductor LaO{sub 1-x}F{sub x}FeAs with 0 {<=} x {<=} 0.1, covering a broad range of the phase diagram from magnetically-ordered to optimally-doped superconducting samples. For underdoped samples (x=0.05,x=0.075) the {sup 75}As NMR spin-lattice relaxation rate (T{sub 1}T){sup -1} shows a Curie-Weiss-like increase at intermediate temperatures, indicating the slowing down of spin fluctuations. However, a simple Curie-Weiss fit fails to describe (T{sub 1}T){sup -1}(T) above 250 K and the occurrence of a peak in (T{sub 1}T){sup -1} slightly above T{sub c}. Instead, the data can be well described by considering a BPP-model for fluctuating magnetic fields in combination with a doping-independent linear temperature dependence at high temperature. At optimal doping (x=0.1) spin fluctuations are suppressed and only the linear contribution to (T{sub 1}T){sup -1} is left. This stands in contrast to other pnictides, such as Ba(Fe{sub 1-x}Co{sub x}As){sub 2} and Ba(FeAs{sub 1-x}P{sub x}){sub 2}. Our analysis is consistent with charge carrier localization in underdoped LaO{sub 1-x}F{sub x}FeAs as seen by means of resistivity measurements.
Modeling of Coastal Effluent Transport: an Approach to Linking of Far-field and Near-field Models
International Nuclear Information System (INIS)
Yang, Zhaoqing; Khangaonkar, Tarang P.
2008-01-01
One of the challenges in effluent transport modeling in coastal tidal environments is the proper calculation of initial dilution in connection with the far-field transport model. In this study, an approach of external linkage of far-field and near-field effluent transport models is presented, and applied to simulate the effluent transport in the Port Angeles Harbor, Washington in the Strait of Juan de Fuca. A near-field plume model was used to calculate the effluent initial dilution and a three-dimensional (3-D) hydrodynamic model was developed to simulate the tidal circulation and far-field effluent transport in the Port Angeles Harbor. In the present study, the hydrodynamic model was driven by tides and surface winds. Observed water surface elevation and velocity data were used to calibrate the model over a period covering the neap-spring tidal cycle. The model was also validated with observed surface drogue trajectory data. The model successfully reproduced the tidal dynamics in the study area and good agreements between model results and observed data were obtained. This study demonstrated that the linkage between the near-field and far-field models in effluent transport modeling can be achieved through iteratively adjusting the model grid sizes such that the far-field modeled dilution ratio and effluent concentration in the effluent discharge model grid cell match the concentration calculated by the near-field plume model
Field modeling for transcranial magnetic stimulation
DEFF Research Database (Denmark)
Thielscher, Axel; Antunes, Andre; Saturnino, Guilherme B
2015-01-01
) improving the usability of the tools for field calculation to the level that they can be easily used by non-experts. We then introduce a new version of our pipeline for field calculations (www.simnibs.org) that substantially simplifies setting up and running TMS and tDCS simulations based on Finite...
A physical data model for fields and agents
de Jong, Kor; de Bakker, Merijn; Karssenberg, Derek
2016-04-01
Two approaches exist in simulation modeling: agent-based and field-based modeling. In agent-based (or individual-based) simulation modeling, the entities representing the system's state are represented by objects, which are bounded in space and time. Individual objects, like an animal, a house, or a more abstract entity like a country's economy, have properties representing their state. In an agent-based model this state is manipulated. In field-based modeling, the entities representing the system's state are represented by fields. Fields capture the state of a continuous property within a spatial extent, examples of which are elevation, atmospheric pressure, and water flow velocity. With respect to the technology used to create these models, the domains of agent-based and field-based modeling have often been separate worlds. In environmental modeling, widely used logical data models include feature data models for point, line and polygon objects, and the raster data model for fields. Simulation models are often either agent-based or field-based, even though the modeled system might contain both entities that are better represented by individuals and entities that are better represented by fields. We think that the reason for this dichotomy in kinds of models might be that the traditional object and field data models underlying those models are relatively low level. We have developed a higher level conceptual data model for representing both non-spatial and spatial objects, and spatial fields (De Bakker et al. 2016). Based on this conceptual data model we designed a logical and physical data model for representing many kinds of data, including the kinds used in earth system modeling (e.g. hydrological and ecological models). The goal of this work is to be able to create high level code and tools for the creation of models in which entities are representable by both objects and fields. Our conceptual data model is capable of representing the traditional feature data
Phase transitions in the random field Ising model in the presence of a transverse field
Energy Technology Data Exchange (ETDEWEB)
Dutta, A.; Chakrabarti, B.K. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Stinchcombe, R.B. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Department of Physics, Oxford (United Kingdom)
1996-09-07
We have studied the phase transition behaviour of the random field Ising model in the presence of a transverse (or tunnelling) field. The mean field phase diagram has been studied in detail, and in particular the nature of the transition induced by the tunnelling (transverse) field at zero temperature. Modified hyper-scaling relation for the zero-temperature transition has been derived using the Suzuki-Trotter formalism and a modified 'Harris criterion'. Mapping of the model to a randomly diluted antiferromagnetic Ising model in uniform longitudinal and transverse field is also given. (author)
Modeling Magnetospheric Fields in the Jupiter System
Saur, Joachim; Chané, Emmanuel; Hartkorn, Oliver
2018-01-01
The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter’s large internal dynamo magnetic field generates a gigantic magnetosphere, which in contrast to Earth’s magnetosphere is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the ...
Electrical circuit modeling of reversed field pinches
International Nuclear Information System (INIS)
Sprott, J.C.
1988-02-01
Equations are proposed to describe the radial variation of the magnetic field and current density in a circular, cylindrical RFP. These equations are used to derive the electrical circuit parameters (inductance, resistance, and coupling coefficient) for an RFP discharge. The circuit parameters are used to evaluate the flux and energy consumption for various startup modes and for steady-state operation using oscillating field current drive. The results are applied to the MST device. 32 refs., 14 figs., 1 tab
Exotic nuclei in self-consistent mean-field models
International Nuclear Information System (INIS)
Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.
1999-01-01
We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics
MHD turbulence models for the reversed field pinch
International Nuclear Information System (INIS)
Gimblett, C.G.; Watkins, M.L.
1976-01-01
A kinematic model which describes the effect of isotropic, non-mirror symmetric turbulence on a mean magnetic field is used to examine the temporal behaviour of magnetic field in high beta pinch experiments. Solutions to the model can indicate the formation of a steady-state, force-free configuration that corresponds to the state of lowest magnetic energy and the reversal of the toroidal magnetic field at the plasma boundary in accordance with experimental observations on toroidal pinches such as ZETA and HBTX. This model neglects both the dynamic interaction between fluid and field and the associated anisotropy. These effects are examined in a further model. (author)
Testing of a one dimensional model for Field II calibration
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2008-01-01
Field II is a program for simulating ultrasound transducer fields. It is capable of calculating the emitted and pulse-echoed fields for both pulsed and continuous wave transducers. To make it fully calibrated a model of the transducer’s electro-mechanical impulse response must be included. We...... examine an adapted one dimensional transducer model originally proposed by Willatzen [9] to calibrate Field II. This model is modified to calculate the required impulse responses needed by Field II for a calibrated field pressure and external circuit current calculation. The testing has been performed...... to the calibrated Field II program for 1, 4, and 10 cycle excitations. Two parameter sets were applied for modeling, one real valued Pz27 parameter set, manufacturer supplied, and one complex valued parameter set found in literature, Alguer´o et al. [11]. The latter implicitly accounts for attenuation. Results show...
Lattice models and conformal field theories
International Nuclear Information System (INIS)
Saleur, H.
1988-01-01
Theoretical studies concerning the connection between critical physical systems and the conformal theories are reviewed. The conformal theory associated to a critical (integrable) lattice model is derived. The obtention of the central charge, critical exponents and torus partition function, using renormalization group arguments, is shown. The quantum group structure, in the integrable lattice models, and the theory of Visaro algebra representations are discussed. The relations between off-critical integrable models and conformal theories, in finite geometries, are studied
Quantum field model of strong-coupling binucleon
International Nuclear Information System (INIS)
Amirkhanov, I.V.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A.; Zemlyanaya, E.V.; Lakhno, V.D.
1996-01-01
The quantum field binucleon model for the case of the nucleon spot interaction with the scalar and pseudoscalar meson fields is considered. It is shown that the nonrelativistic problem of the two nucleon interaction reduces to the one-particle problem. For the strong coupling limit the nonlinear equations describing two nucleons in the meson field are developed [ru
Enabling full field physics based OPC via dynamic model generation
Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas
2017-03-01
As EUV lithography marches closer to reality for high volume production, its peculiar modeling challenges related to both inter- and intra- field effects has necessitated building OPC infrastructure that operates with field position dependency. Previous state of the art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7nm and 5nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of EPE errors. The introduction of Dynamic Model Generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through field. DMG allows unique models for EMF, apodization, aberrations, etc to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.
High-performance phase-field modeling
Vignal, Philippe; Sarmiento, Adel; Cortes, Adriano Mauricio; Dalcin, L.; Collier, N.; Calo, Victor M.
2015-01-01
and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.
Development of the near field geochemistry model
International Nuclear Information System (INIS)
Arcos, D.; Bruno, J.; Duro, L.; Grive, M.
2000-01-01
This report discusses in a quantitative manner the evolution of the near field geochemistry as a result of the interactions between two different introducing granitic groundwaters and the FEBEX bentonite as a buffer material. The two granitic groundwaters considered are: SR-5 water, sampled in a borehole at 500 m depth in Mina Ratones, and a mean composition of different granitic groundwaters from the iberian Massif. The steel canister has also been introduced by considering the iron corrosion in anoxic conditions. (Author)
Propulsion Physics Under the Changing Density Field Model
Robertson, Glen A.
2011-01-01
To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model
Shape Modelling Using Markov Random Field Restoration of Point Correspondences
DEFF Research Database (Denmark)
Paulsen, Rasmus Reinhold; Hilger, Klaus Baggesen
2003-01-01
A method for building statistical point distribution models is proposed. The novelty in this paper is the adaption of Markov random field regularization of the correspondence field over the set of shapes. The new approach leads to a generative model that produces highly homogeneous polygonized sh...
Evaluation of candidate geomagnetic field models for IGRF-11
DEFF Research Database (Denmark)
Finlay, Chris; Maus, S.; Beggan, C. D.
2010-01-01
variations between candidates originate. A retrospective analysis of IGRF-10 main field candidates for epoch 2005.0 and predictive secular variation candidates for 2005.0–2010.0 using the new IGRF-11 models as a reference is also reported. The high quality and consistency of main field models derived using...
The U(1) Higgs model in an external electromagnetic field
International Nuclear Information System (INIS)
Damgaard, P.H.; Heller, U.M.
1988-01-01
An external electromagnetic field is coupled to the lattice-regularized U(1) Higgs model. We study the phase diagram of this model by both analytical and numerical techniques for different values of the external field strength tensor. The results are compared with expectations based on the analogy with superconducting systems, as described by the phenomenological Ginzburg-Landau theory. (orig.)
Use of along-track magnetic field differences in lithospheric field modelling
DEFF Research Database (Denmark)
Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils
2015-01-01
. Experiments in modelling the Earth's lithospheric magnetic field with along-track differences are presented here as a proof of concept. We anticipate that use of such along-track differences in combination with east–west field differences, as are now provided by the Swarm satellite constellation......We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track direction can be used to obtain high resolution models of the lithospheric field. Along-track differences approximate the north–south magnetic field gradients for non-polar latitudes. In a test case......, using 2 yr of low altitude data from the CHAMP satellite, we show that use of along-track differences of vector field data results in an enhanced recovery of the small scale lithospheric field, compared to the use of the vector field data themselves. We show that the along-track technique performs...
Spatio-Temporal Modeling of Neuron Fields
DEFF Research Database (Denmark)
Lund, Adam
The starting point and focal point for this thesis was stochastic dynamical modelling of neuronal imaging data with the declared objective of drawing inference, within this model framework, in a large-scale (high-dimensional) data setting. Implicitly this objective entails carrying out three...... be achieved if the scale of the data is taken into consideration throughout i) - iii). The strategy in this project was, relying on a space and time continuous stochastic modelling approach, to obtain a stochastic functional differential equation on a Hilbert space. By decomposing the drift operator...... of this SFDE such that each component is essentially represented by a smooth function of time and space and expanding these component functions in a tensor product basis we implicitly reduce the number of model parameters. In addition, the component-wise tensor representation induce a corresponding component...
Dipole-magnet field models based on a conformal map
Directory of Open Access Journals (Sweden)
P. L. Walstrom
2012-10-01
Full Text Available In general, generation of charged-particle transfer maps for conventional iron-pole-piece dipole magnets to third and higher order requires a model for the midplane field profile and its transverse derivatives (soft-edge model to high order and numerical integration of map coefficients. An exact treatment of the problem for a particular magnet requires use of measured magnetic data. However, in initial design of beam transport systems, users of charged-particle optics codes generally rely on magnet models built into the codes. Indeed, if maps to third order are adequate for the problem, an approximate analytic field model together with numerical map coefficient integration can capture the important features of the transfer map. The model described in this paper is based on the fact that, except at very large distances from the magnet, the magnetic field for parallel pole-face magnets with constant pole gap height and wide pole faces is basically two dimensional (2D. The field for all space outside of the pole pieces is given by a single (complex analytic expression and includes a parameter that controls the rate of falloff of the fringe field. Since the field function is analytic in the complex plane outside of the pole pieces, it satisfies two basic requirements of a field model for higher-order map codes: it is infinitely differentiable at the midplane and also a solution of the Laplace equation. It is apparently the only simple model available that combines an exponential approach to the central field with an inverse cubic falloff of field at large distances from the magnet in a single expression. The model is not intended for detailed fitting of magnetic field data, but for use in numerical map-generating codes for studying the effect of extended fringe fields on higher-order transfer maps. It is based on conformally mapping the area between the pole pieces to the upper half plane, and placing current filaments on the pole faces. An
Post-processing scheme for modelling the lithospheric magnetic field
Directory of Open Access Journals (Sweden)
V. Lesur
2013-03-01
Full Text Available We investigated how the noise in satellite magnetic data affects magnetic lithospheric field models derived from these data in the special case where this noise is correlated along satellite orbit tracks. For this we describe the satellite data noise as a perturbation magnetic field scaled independently for each orbit, where the scaling factor is a random variable, normally distributed with zero mean. Under this assumption, we have been able to derive a model for errors in lithospheric models generated by the correlated satellite data noise. Unless the perturbation field is known, estimating the noise in the lithospheric field model is a non-linear inverse problem. We therefore proposed an iterative post-processing technique to estimate both the lithospheric field model and its associated noise model. The technique has been successfully applied to derive a lithospheric field model from CHAMP satellite data up to spherical harmonic degree 120. The model is in agreement with other existing models. The technique can, in principle, be extended to all sorts of potential field data with "along-track" correlated errors.
Uncertainty analysis for a field-scale P loss model
Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that model predictions are inherently uncertain, few studies have addressed prediction uncertainties using P loss models. In this study we assessed the effect of model input error on predic...
Mean field models for spin glasses
Talagrand, Michel
2011-01-01
This is a new, completely revised, updated and enlarged edition of the author's Ergebnisse vol. 46: "Spin Glasses: A Challenge for Mathematicians". This new edition will appear in two volumes, the present first volume presents the basic results and methods, the second volume is expected to appear in 2011. In the eighties, a group of theoretical physicists introduced several models for certain disordered systems, called "spin glasses". These models are simple and rather canonical random structures, of considerable interest for several branches of science (statistical physics, neural networks and computer science). The physicists studied them by non-rigorous methods and predicted spectacular behaviors. This book introduces in a rigorous manner this exciting new area to the mathematically minded reader. It requires no knowledge whatsoever of any physics. The first volume of this new and completely rewritten edition presents six fundamental models and the basic techniques to study them.
Quantum integrable models of field theory
International Nuclear Information System (INIS)
Faddeev, L.D.
1979-01-01
Fundamental features of the classical method of the inverse problem have been formulated in the form which is convenient for its quantum reformulation. Typical examples are studied which may help to formulate the quantum method of the inverse problem. Examples are considered for interaction with both attraction and repulsion at a final density. The sine-Gordon model and the XYZ model from the quantum theory of magnetics are examined in short. It is noted that all the achievements of the one-dimensional mathematical physics as applied to exactly solvable quantum models may be put to an extent within the framework of the quantum method of the inverse problem. Unsolved questions are enumerated and perspectives of applying the inverse problem method are shown
Field Guide to Plant Model Systems.
Chang, Caren; Bowman, John L; Meyerowitz, Elliot M
2016-10-06
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photosynthesize differently. Empowered by the availability of large-scale sequencing and new technologies for investigating gene function, many new plant models are being proposed and studied. Copyright © 2016 Elsevier Inc. All rights reserved.
The random field Blume-Capel model revisited
Santos, P. V.; da Costa, F. A.; de Araújo, J. M.
2018-04-01
We have revisited the mean-field treatment for the Blume-Capel model under the presence of a discrete random magnetic field as introduced by Kaufman and Kanner (1990). The magnetic field (H) versus temperature (T) phase diagrams for given values of the crystal field D were recovered in accordance to Kaufman and Kanner original work. However, our main goal in the present work was to investigate the distinct structures of the crystal field versus temperature phase diagrams as the random magnetic field is varied because similar models have presented reentrant phenomenon due to randomness. Following previous works we have classified the distinct phase diagrams according to five different topologies. The topological structure of the phase diagrams is maintained for both H - T and D - T cases. Although the phase diagrams exhibit a richness of multicritical phenomena we did not found any reentrant effect as have been seen in similar models.
Field validation of the contaminant transport model, FEMA
International Nuclear Information System (INIS)
Wong, K.-F.V.
1986-01-01
The work describes the validation with field data of a finite element model of material transport through aquifers (FEMA). Field data from the Idaho Chemical Processing Plant, Idaho, USA and from the 58th Street landfill in Miami, Florida, USA are used. In both cases the model was first calibrated and then integrated over a span of eight years to check on the predictive capability of the model. Both predictive runs gave results that matched well with available data. (author)
Regularity of solutions of a phase field model
Amler, Thomas
2013-01-01
Phase field models are widely-used for modelling phase transition processes such as solidification, freezing or CO2 sequestration. In this paper, a phase field model proposed by G. Caginalp is considered. The existence and uniqueness of solutions are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.
Field Guide to Plant Model Systems
Chang, Caren; Bowman, John L.; Meyerowitz, Elliot M.
2016-01-01
For the past several decades, advances in plant development, physiology, cell biology, and genetics have relied heavily on the model (or reference) plant Arabidopsis thaliana. Arabidopsis resembles other plants, including crop plants, in many but by no means all respects. Study of Arabidopsis alone provides little information on the evolutionary history of plants, evolutionary differences between species, plants that survive in different environments, or plants that access nutrients and photo...
One biquaternion model of electro-gravimagnetic field. Field analogues of Newton laws
Alexeyeva, Lyudmila A.
2007-01-01
Using the biquaternions algebra with involution and mutual quaternional gradients the equations of one model of electro-gravimagnetic (EGM) field are constructed on the base of Hamilton form of Maxwell equations. For this field the hypothesis of equivalence of magnetic charge to gravitational mass is implied. The equations of interaction of generated by different charges and currents EGM-fields are built. On its base the analogies of three Newton's laws are obtained. The laws of transformatio...
On the electric field model for an open magnetosphere
Wang, Zhi; Ashour-Abdalla, Maha; Walker, Raymond J.
1993-01-01
We have developed a new canonical separator line type magnetospheric magnetic field and electric field model for use in magnetospheric calculations, we determine the magnetic and electric field by controlling the reconnection rate at the subsolar magnetopause. The model is applicable only for purely southward interplanetary magnetic field (IMF). We have obtained a more realistic magnetotail configuration by applying a stretch transformation to an axially symmetric field solution. We also discuss the Stern singularity in which there is an electric field singlarity in the canonical separate line models for B(sub y) not = to 0 by using a new technique that solves for the electric field along a field line directly instead of determining it by a potential mapping. The singularity not only causes an infinite electric field on the polar cap, but also causes the boundary conditions at plus infinity and minus infinity in the solar wind to contradict each other. This means that the canonical separator line models do not represent the open magnetosphere well, except for the case of purely southward IMF.
Effect of external fields in Axelrod's model of social dynamics
Peres, Lucas R.; Fontanari, José F.
2012-09-01
The study of the effects of spatially uniform fields on the steady-state properties of Axelrod's model has yielded plenty of counterintuitive results. Here, we reexamine the impact of this type of field for a selection of parameters such that the field-free steady state of the model is heterogeneous or multicultural. Analyses of both one- and two-dimensional versions of Axelrod's model indicate that the steady state remains heterogeneous regardless of the value of the field strength. Turning on the field leads to a discontinuous decrease on the number of cultural domains, which we argue is due to the instability of zero-field heterogeneous absorbing configurations. We find, however, that spatially nonuniform fields that implement a consensus rule among the neighborhood of the agents enforce homogenization. Although the overall effects of the fields are essentially the same irrespective of the dimensionality of the model, we argue that the dimensionality has a significant impact on the stability of the field-free homogeneous steady state.
Anisotropy in wavelet-based phase field models
Korzec, Maciek; Mü nch, Andreas; Sü li, Endre; Wagner, Barbara
2016-01-01
When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.
Anisotropy in wavelet-based phase field models
Korzec, Maciek
2016-04-01
When describing the anisotropic evolution of microstructures in solids using phase-field models, the anisotropy of the crystalline phases is usually introduced into the interfacial energy by directional dependencies of the gradient energy coefficients. We consider an alternative approach based on a wavelet analogue of the Laplace operator that is intrinsically anisotropic and linear. The paper focuses on the classical coupled temperature/Ginzburg--Landau type phase-field model for dendritic growth. For the model based on the wavelet analogue, existence, uniqueness and continuous dependence on initial data are proved for weak solutions. Numerical studies of the wavelet based phase-field model show dendritic growth similar to the results obtained for classical phase-field models.
A dynamic model of Venus's gravity field
Kiefer, W. S.; Richards, M. A.; Hager, B. H.; Bills, B. G.
1984-01-01
Unlike Earth, long wavelength gravity anomalies and topography correlate well on Venus. Venus's admittance curve from spherical harmonic degree 2 to 18 is inconsistent with either Airy or Pratt isostasy, but is consistent with dynamic support from mantle convection. A model using whole mantle flow and a high viscosity near surface layer overlying a constant viscosity mantle reproduces this admittance curve. On Earth, the effective viscosity deduced from geoid modeling increases by a factor of 300 from the asthenosphere to the lower mantle. These viscosity estimates may be biased by the neglect of lateral variations in mantle viscosity associated with hot plumes and cold subducted slabs. The different effective viscosity profiles for Earth and Venus may reflect their convective styles, with tectonism and mantle heat transport dominated by hot plumes on Venus and by subducted slabs on Earth. Convection at degree 2 appears much stronger on Earth than on Venus. A degree 2 convective structure may be unstable on Venus, but may have been stabilized on Earth by the insulating effects of the Pangean supercontinental assemblage.
Modeling of the near field plume of a Hall thruster
International Nuclear Information System (INIS)
Boyd, Iain D.; Yim, John T.
2004-01-01
In this study, a detailed numerical model is developed to simulate the xenon plasma near-field plume from a Hall thruster. The model uses a detailed fluid model to describe the electrons and a particle-based kinetic approach is used to model the heavy xenon ions and atoms. The detailed model is applied to compute the near field plume of a small, 200 W Hall thruster. Results from the detailed model are compared with the standard modeling approach that employs the Boltzmann model. The usefulness of the model detailed is assessed through direct comparisons with a number of different measured data sets. The comparisons illustrate that the detailed model accurately predicts a number of features of the measured data not captured by the simpler Boltzmann approach
Stability of a Noncanonical Scalar Field Model during Cosmological Date
Directory of Open Access Journals (Sweden)
Z. Ossoulian
2016-01-01
Full Text Available Using the noncanonical model of scalar field, the cosmological consequences of a pervasive, self-interacting, homogeneous, and rolling scalar field are studied. In this model, the scalar field potential is “nonlinear” and decreases in magnitude with increasing the value of the scalar field. A special solution of the nonlinear field equations of ϕ that has time dependency as fixed point is obtained. The fixed point relies on the noncanonical term of action and γ-parameter; this parameter appeared in energy density of scalar field redshift. By means of such fixed point the different eigenvalues of the equation of motion will be obtained. In different epochs in the evolution of the Universe for different values of q and n, the potentials as a function of scalar field are attained. The behavior of baryonic perturbations in linear perturbation scenario as a considerable amount of energy density of scalar field at low redshifts prevents the growth of perturbations in the ordinary matter fluid. The energy density in the scalar field is not appreciably perturbed by nonrelativistic gravitational fields, in either the radiation or matter dominant or scalar field dominated epoch.
Geomagnetic field models for satellite angular motion studies
Ovchinnikov, M. Yu.; Penkov, V. I.; Roldugin, D. S.; Pichuzhkina, A. V.
2018-03-01
Four geomagnetic field models are discussed: IGRF, inclined, direct and simplified dipoles. Geomagnetic induction vector expressions are provided in different reference frames. Induction vector behavior is compared for different models. Models applicability for the analysis of satellite motion is studied from theoretical and engineering perspectives. Relevant satellite dynamics analysis cases using analytical and numerical techniques are provided. These cases demonstrate the benefit of a certain model for a specific dynamics study. Recommendations for models usage are summarized in the end.
Geomagnetic core field models in the satellite era
DEFF Research Database (Denmark)
Lesur, Vincent; Olsen, Nils; Thomson, Alan W. P.
2011-01-01
After a brief review of the theoretical basis and difficulties that modelers are facing, we present three recent models of the geomagnetic field originating in the Earth’s core. All three modeling approaches are using recent observatory and near-Earth orbiting survey satellite data. In each case...
Contribution to the ATLAS B-field 3D model
International Nuclear Information System (INIS)
Vorozhtsov, S.B.; Titkova, I.V.; Nessi, M.
1996-01-01
The results from the simplified Tile-Cal B-field models calculations are presented. The effects of glue gaps, end plates, front plates, laminated iron layer near girder, 2 mm iron layers between tiles have been estimated. An interpretation of the existing field measurements of the TileCal segments is fulfilled. Some proposals for the general ATLAS B-field map calculation are given. 12 refs., 10 figs
Field theory of large amplitude collective motion. A schematic model
International Nuclear Information System (INIS)
Reinhardt, H.
1978-01-01
By using path integral methods the equation for large amplitude collective motion for a schematic two-level model is derived. The original fermion theory is reformulated in terms of a collective (Bose) field. The classical equation of motion for the collective field coincides with the time-dependent Hartree-Fock equation. Its classical solution is quantized by means of the field-theoretical generalization of the WKB method. (author)
Preliminary validation of a Monte Carlo model for IMRT fields
International Nuclear Information System (INIS)
Wright, Tracy; Lye, Jessica; Mohammadi, Mohammad
2011-01-01
Full text: A Monte Carlo model of an Elekta linac, validated for medium to large (10-30 cm) symmetric fields, has been investigated for small, irregular and asymmetric fields suitable for IMRT treatments. The model has been validated with field segments using radiochromic film in solid water. The modelled positions of the multileaf collimator (MLC) leaves have been validated using EBT film, In the model, electrons with a narrow energy spectrum are incident on the target and all components of the linac head are included. The MLC is modelled using the EGSnrc MLCE component module. For the validation, a number of single complex IMRT segments with dimensions approximately 1-8 cm were delivered to film in solid water (see Fig, I), The same segments were modelled using EGSnrc by adjusting the MLC leaf positions in the model validated for 10 cm symmetric fields. Dose distributions along the centre of each MLC leaf as determined by both methods were compared. A picket fence test was also performed to confirm the MLC leaf positions. 95% of the points in the modelled dose distribution along the leaf axis agree with the film measurement to within 1%/1 mm for dose difference and distance to agreement. Areas of most deviation occur in the penumbra region. A system has been developed to calculate the MLC leaf positions in the model for any planned field size.
Conducting field studies for testing pesticide leaching models
Smith, Charles N.; Parrish, Rudolph S.; Brown, David S.
1990-01-01
A variety of predictive models are being applied to evaluate the transport and transformation of pesticides in the environment. These include well known models such as the Pesticide Root Zone Model (PRZM), the Risk of Unsaturated-Saturated Transport and Transformation Interactions for Chemical Concentrations Model (RUSTIC) and the Groundwater Loading Effects of Agricultural Management Systems Model (GLEAMS). The potentially large impacts of using these models as tools for developing pesticide management strategies and regulatory decisions necessitates development of sound model validation protocols. This paper offers guidance on many of the theoretical and practical problems encountered in the design and implementation of field-scale model validation studies. Recommendations are provided for site selection and characterization, test compound selection, data needs, measurement techniques, statistical design considerations and sampling techniques. A strategy is provided for quantitatively testing models using field measurements.
A simplified model of polar cap electric fields
International Nuclear Information System (INIS)
D'Angelo, N.
1977-01-01
A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)
Two Populations Mean-Field Monomer-Dimer Model
Alberici, Diego; Mingione, Emanuele
2018-04-01
A two populations mean-field monomer-dimer model including both hard-core and attractive interactions between dimers is considered. The pressure density in the thermodynamic limit is proved to satisfy a variational principle. A detailed analysis is made in the limit of one population is much smaller than the other and a ferromagnetic mean-field phase transition is found.
Anisotropic Bianchi II cosmological models with matter and electromagnetic fields
International Nuclear Information System (INIS)
Soares, D.
1978-01-01
A class of solutions of Einstein-Maxwell equations is presented, which corresponds to anisotropic Bianchi II spatially homogeneous cosmological models with perfect fluid and electromagnetic field. A particular model is examined and shown to be unstable for perturbations of the electromagnetic field strength parameter about a particular value. This value defines a limiar unstable case in which the ratio epsilon, of the fluid density to the e.m. energy density is monotonically increasing with a minimum finite value at the singularity. Beyond this limiar, the model has a matter dominated singularity, and a characteristic stage appears where epsilon has a minimum, at a finite time from the singularity. For large times, the models tend to an exact solution for zero electromagnetic field and fluid with p = (1/5)p. Some cosmological features of the models are calculated, as the effect of anisotropy on matter density and expansion time scale factors, as compared to the corresponding Friedmann model [pt
Numerical simulation of interior flow field of nuclear model pump
International Nuclear Information System (INIS)
Wang Chunlin; Peng Na; Kang Can; Zhao Baitong; Zhang Hao
2009-01-01
Reynolds time-averaged N-S equations and the standard k-ε turbulent model were adopted, and three-dimensional non-structural of tetrahedral mesh division was used for modeling. Multiple reference frame model of rotating fluid mechanical model was used, under the design condition, the three-dimensional incompressible turbulent flow of nuclear model pump was simulated, and the results preferably post the characteristics of the interior flow field. This paper first analyzes the total pressure and velocity distribution in the flow field, and then describes the interior flow field characteristics of each part such as the impeller, diffuser and spherical shell, and also discusses the reasons that cause these characteristics. The study results can be used to estimate the performance of nuclear model pump, and will provide some useful references for its hydraulic optimized design. (authors)
Self-consistent mean-field models for nuclear structure
International Nuclear Information System (INIS)
Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard
2003-01-01
The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications
Supersymmetric field-theoretic models on a supermanifold
Energy Technology Data Exchange (ETDEWEB)
Franco, D.H.T. [Centro de Estudos de Fisica Teorica, Belo Horizonte, MG (Brazil); Polito, Caio M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas
2003-04-01
We propose an extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a super manifold. (author)
Fate of pesticides in field ditches: the TOXSWA simulation model
Adriaanse, P.I.
1996-01-01
The TOXSWA model describes the fate of pesticides entering field ditches by spray drift, atmospheric deposition, surface run-off, drainage or leaching. It considers four processes: transport, transformation, sorption and volatilization. Analytical andnumerical solutions corresponded well. A sample
Three level constraints on conformal field theories and string models
International Nuclear Information System (INIS)
Lewellen, D.C.
1989-05-01
Simple tree level constraints for conformal field theories which follow from the requirement of crossing symmetry of four-point amplitudes are presented, and their utility for probing general properties of string models is briefly illustrated and discussed. 9 refs
Conformal field theories, Coulomb gas picture and integrable models
International Nuclear Information System (INIS)
Zuber, J.B.
1988-01-01
The aim of the study is to present the links between some results of conformal field theory, the conventional Coulomb gas picture in statistical mechanics and the approach of integrable models. It is shown that families of conformal theories, related by the coset construction to the SU(2) Kac-Moody algebra, may be regarded as obtained from some free field, and modified by the coupling of its winding numbers to floating charges. This representation reflects the procedure of restriction of the corresponding integrable lattice models. The work may be generalized to models based on the coset construction with higher rank algebras. The corresponding integrable models are identified. In the conformal field description, generalized parafermions appear, and are coupled to free fields living on a higher-dimensional torus. The analysis is not as exhaustive as in the SU(2) case: all the various restrictions have not been identified, nor the modular invariants completely classified
Exactly solvable field-theoretical model with tachyons
International Nuclear Information System (INIS)
Barashenkov, I.V.; Getmanov, B.S.; Kovtun, V.E.
1988-01-01
Explicit soliton solutions describing the inelastic interaction between sub- and superluminal particles are found within the framework of a new integrable model of relativistic classical field theory. The corresponding energies are nonnegative irrespective of the choice of reference frame
Four dimensional sigma model coupled to the metric tensor field
International Nuclear Information System (INIS)
Ghika, G.; Visinescu, M.
1980-02-01
We discuss the four dimensional nonlinear sigma model with an internal O(n) invariance coupled to the metric tensor field satisfying Einstein equations. We derive a bound on the coupling constant between the sigma field and the metric tensor using the theory of harmonic maps. A special attention is paid to Einstein spaces and some new explicit solutions of the model are constructed. (author)
The phase field technique for modeling multiphase materials
Singer-Loginova, I.; Singer, H. M.
2008-10-01
This paper reviews methods and applications of the phase field technique, one of the fastest growing areas in computational materials science. The phase field method is used as a theory and computational tool for predictions of the evolution of arbitrarily shaped morphologies and complex microstructures in materials. In this method, the interface between two phases (e.g. solid and liquid) is treated as a region of finite width having a gradual variation of different physical quantities, i.e. it is a diffuse interface model. An auxiliary variable, the phase field or order parameter \\phi(\\vec{x}) , is introduced, which distinguishes one phase from the other. Interfaces are identified by the variation of the phase field. We begin with presenting the physical background of the phase field method and give a detailed thermodynamical derivation of the phase field equations. We demonstrate how equilibrium and non-equilibrium physical phenomena at the phase interface are incorporated into the phase field methods. Then we address in detail dendritic and directional solidification of pure and multicomponent alloys, effects of natural convection and forced flow, grain growth, nucleation, solid-solid phase transformation and highlight other applications of the phase field methods. In particular, we review the novel phase field crystal model, which combines atomistic length scales with diffusive time scales. We also discuss aspects of quantitative phase field modeling such as thin interface asymptotic analysis and coupling to thermodynamic databases. The phase field methods result in a set of partial differential equations, whose solutions require time-consuming large-scale computations and often limit the applicability of the method. Subsequently, we review numerical approaches to solve the phase field equations and present a finite difference discretization of the anisotropic Laplacian operator.
A note on moving average models for Gaussian random fields
DEFF Research Database (Denmark)
Hansen, Linda Vadgård; Thorarinsdottir, Thordis L.
The class of moving average models offers a flexible modeling framework for Gaussian random fields with many well known models such as the Matérn covariance family and the Gaussian covariance falling under this framework. Moving average models may also be viewed as a kernel smoothing of a Lévy...... basis, a general modeling framework which includes several types of non-Gaussian models. We propose a new one-parameter spatial correlation model which arises from a power kernel and show that the associated Hausdorff dimension of the sample paths can take any value between 2 and 3. As a result...
Broken Weyl symmetry. [Gauge model, coupling, Higgs field
Energy Technology Data Exchange (ETDEWEB)
Domokos, G.
1976-05-01
It is argued that conformal symmetry can be properly understood in the framework of field theories in curved space. In such theories, invariance is required under general coordinate transformations and conformal rescalings. A gauge model coupled to a Higgs field is examined. In the tree approximation, the vacuum solution exhibits two Higgs phenomena; both the phase (Goldstone boson) and the coordinate dependent part of the radial component of the scalar field can be removed by a Higgs-Kibble transformation. The resulting vacuum solution corresponds to a space of constant curvature and constant vacuum expectation value of the scalar field.
Mean-field theory and self-consistent dynamo modeling
International Nuclear Information System (INIS)
Yoshizawa, Akira; Yokoi, Nobumitsu
2001-12-01
Mean-field theory of dynamo is discussed with emphasis on the statistical formulation of turbulence effects on the magnetohydrodynamic equations and the construction of a self-consistent dynamo model. The dynamo mechanism is sought in the combination of the turbulent residual-helicity and cross-helicity effects. On the basis of this mechanism, discussions are made on the generation of planetary magnetic fields such as geomagnetic field and sunspots and on the occurrence of flow by magnetic fields in planetary and fusion phenomena. (author)
H+3 WZNW model from Liouville field theory
International Nuclear Information System (INIS)
Hikida, Yasuaki; Schomerus, Volker
2007-01-01
There exists an intriguing relation between genus zero correlation functions in the H + 3 WZNW model and in Liouville field theory. We provide a path integral derivation of the correspondence and then use our new approach to generalize the relation to surfaces of arbitrary genus g. In particular we determine the correlation functions of N primary fields in the WZNW model explicitly through Liouville correlators with N+2g-2 additional insertions of certain degenerate fields. The paper concludes with a list of interesting further extensions and a few comments on the relation to the geometric Langlands program
A toy model for single field open inflation
International Nuclear Information System (INIS)
Vaudrevange, Pascal M.; Westphal, Alexander
2012-05-01
Inflation in an open universe produced by Coleman-De Luccia (CDL) tunneling induces a friction term that is strong enough to allow for successful small-field inflation in models that would otherwise suffer from a severe overshoot problem. In this paper, we present a polynomial scalar potential which allows for a full analysis. This provides a simple model of single-field open inflation on a small-field inflection point after tunneling. We present numerical results and compare them with analytic approximations.
Model-Checking Mean-Field Models: Algorithms & Applications
Kolesnichenko, A.V.
2014-01-01
Large systems of interacting objects are highly prevalent in today's world. Such system usually consist of a large number of relatively simple identical objects, and can be observed in many different field as, e.g., physics (interactions of molecules in gas), chemistry (chemical reactions),
Model calculation of the scanned field enhancement factor of CNTs
International Nuclear Information System (INIS)
Ahmad, Amir; Tripathi, V K
2006-01-01
The field enhancement factor of a carbon nanotube (CNT) placed in a cluster of CNTs is smaller than an isolated CNT because the electric field on one tube is screened by neighbouring tubes. This screening depends on the length of the CNTs and the spacing between them. We have derived an expression to compute the field enhancement factor of CNTs under any positional distribution of CNTs using a model of a floating sphere between parallel anode and cathode plates. Using this expression we can compute the field enhancement factor of a CNT in a cluster (non-uniformly distributed CNTs). This expression is used to compute the field enhancement factor of a CNT in an array (uniformly distributed CNTs). Comparison has been shown with experimental results and existing models
Magnetic field measurements of JT-60SA CS model coil
Energy Technology Data Exchange (ETDEWEB)
Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Murakami, Haruyuki; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)
2015-01-15
Highlights: • Magnetic fields of the JT-60SA CS model coil were measured. • While the coil current was held constant at 20 kA, magnetic fields varied slightly with several different long time constants. • We investigated coils consisting of CIC conductors and having long time constants. - Abstract: In a cold test of the JT-60SA CS model coil, which has a quad-pancake configuration consisting of a Nb{sub 3}Sn cable-in-conduit (CIC) conductor, magnetic fields were measured using Hall sensors. For a holding coil current of 20 kA, measured magnetic fields varied slightly with long time constants in the range 17–571 s, which was much longer than the time constant derived from a measurement using a short straight sample. To validate the measurements, the magnetic fields of the model coil were calculated using a computational model representing the positions of Nb{sub 3}Sn strands inside the CIC conductor. The calculated results were in good agreement with the measurements. Consequently, the validity of the magnetic field measurements was confirmed. Next, we investigated other coils consisting of CIC conductors and having long time constants. The only commonality among the coils was the use of CIC conductors. At present, there is no obvious way to prevent generation of such magnetic-field variations with long time constants.
DRAPING OF THE INTERSTELLAR MAGNETIC FIELD OVER THE HELIOPAUSE: A PASSIVE FIELD MODEL
International Nuclear Information System (INIS)
Isenberg, Philip A.; Forbes, Terry G.; Möbius, Eberhard
2015-01-01
As the local interstellar plasma flows past our heliosphere, it is slowed and deflected around the magnetic obstacle of the heliopause. The interstellar magnetic field, frozen into this plasma, then becomes draped around the heliopause in a characteristic manner. We derive the analytical solution for this draped magnetic field in the limit of weak field intensity, assuming an ideal potential flow around the heliopause, which we model as a Rankine half-body. We compare the structure of the model magnetic field with observed properties of the Interstellar Boundary Explorer (IBEX) ribbon and with in situ observations at the Voyager 1 spacecraft. We find reasonable qualitative agreement, given the idealizations of the model. This agreement lends support to the secondary ENA model of the IBEX ribbon and to the interpretation that Voyager 1 has crossed the heliopause. We also predict that the magnetic field measured by Voyager 2 after it crosses the heliopause will not be significantly rotated away from the direction of the undisturbed interstellar field
A quasi-hemispheric model of the Hermean's magnetic field
Thebault, E.; Oliveira, J.; Langlais, B.; Amit, H.
2015-10-01
We analyse and process magnetic field measurements provided by the MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) mission. The vect or magnetic field measurements are modelled with a dedicated regional scheme expanded in space and in time. Compared to the widely used global Spherical Harmonics (SH), the regional approach is particularly well suited because the partial and quasi hemispheric distribution of the MESSENGER data represents no major numerical difficulty. We confirm that the internal magnetic field of Mercury is mostly axisymmetric with a magnetic equator shifted northward. However, we also observe a time dependency in the model that is at present hardly explained only by time variations of the external magnetic fields. We present the major spatial and temporal structures shown by the regional model.
Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model
Directory of Open Access Journals (Sweden)
F. Cao
Full Text Available A numerical procedure has been developed to deduce the plasma pressure and anisotropy from the Tsyganenko magnetic field model. The Tsyganenko empirical field model, which is based on vast satellite field data, provides a realistic description of magnetic field configuration in the magnetosphere. When the force balance under the static condition is assumed, the electromagnetic J×B force from the Tsyganenko field model can be used to infer the plasma pressure and anisotropy distributions consistent with the field model. It is found that the J×B force obtained from the Tsyganenko field model is not curl-free. The curl-free part of the J×B force in an empirical field model can be balanced by the gradient of the isotropic pressure, while the nonzero curl of the J×B force can only be associated with the pressure anisotropy. The plasma pressure and anisotropy in the near-Earth plasma sheet are numerically calculated to obtain a static equilibrium consistent with the Tsyganenko field model both in the noon-midnight meridian and in the equatorial plane. The plasma pressure distribution deduced from the Tsyganenko 1989 field model is highly anisotropic and shows this feature early in the substorm growth phase. The pressure anisotropy parameter α_{P}, defined as α_{P}=1-P_{Vert}P_{⊥}, is typically ~0.3 at x ≈ -4.5R_{E} and gradually decreases to a small negative value with an increasing tailward distance. The pressure anisotropy from the Tsyganenko 1989 model accounts for 50% of the cross-tail current at maximum and only in a highly localized region near xsim-10R_{E}. In comparison, the plasma pressure anisotropy inferred from the Tsyganenko 1987 model is much smaller. We also find that the boundary
Mean Field Games Models-A Brief Survey
Gomes, Diogo A.; Saú de, Joã o
2013-01-01
The mean-field framework was developed to study systems with an infinite number of rational agents in competition, which arise naturally in many applications. The systematic study of these problems was started, in the mathematical community by Lasry and Lions, and independently around the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this paper we present a brief survey of mean-field models as well as recent results and techniques. In the first part of this paper, we study reduced mean-field games, that is, mean-field games, which are written as a system of a Hamilton-Jacobi equation and a transport or Fokker-Planck equation. We start by the derivation of the models and by describing some of the existence results available in the literature. Then we discuss the uniqueness of a solution and propose a definition of relaxed solution for mean-field games that allows to establish uniqueness under minimal regularity hypothesis. A special class of mean-field games that we discuss in some detail is equivalent to the Euler-Lagrange equation of suitable functionals. We present in detail various additional examples, including extensions to population dynamics models. This section ends with a brief overview of the random variables point of view as well as some applications to extended mean-field games models. These extended models arise in problems where the costs incurred by the agents depend not only on the distribution of the other agents, but also on their actions. The second part of the paper concerns mean-field games in master form. These mean-field games can be modeled as a partial differential equation in an infinite dimensional space. We discuss both deterministic models as well as problems where the agents are correlated. We end the paper with a mean-field model for price impact. © 2013 Springer Science+Business Media New York.
Mean Field Games Models-A Brief Survey
Gomes, Diogo A.
2013-11-20
The mean-field framework was developed to study systems with an infinite number of rational agents in competition, which arise naturally in many applications. The systematic study of these problems was started, in the mathematical community by Lasry and Lions, and independently around the same time in the engineering community by P. Caines, Minyi Huang, and Roland Malhamé. Since these seminal contributions, the research in mean-field games has grown exponentially, and in this paper we present a brief survey of mean-field models as well as recent results and techniques. In the first part of this paper, we study reduced mean-field games, that is, mean-field games, which are written as a system of a Hamilton-Jacobi equation and a transport or Fokker-Planck equation. We start by the derivation of the models and by describing some of the existence results available in the literature. Then we discuss the uniqueness of a solution and propose a definition of relaxed solution for mean-field games that allows to establish uniqueness under minimal regularity hypothesis. A special class of mean-field games that we discuss in some detail is equivalent to the Euler-Lagrange equation of suitable functionals. We present in detail various additional examples, including extensions to population dynamics models. This section ends with a brief overview of the random variables point of view as well as some applications to extended mean-field games models. These extended models arise in problems where the costs incurred by the agents depend not only on the distribution of the other agents, but also on their actions. The second part of the paper concerns mean-field games in master form. These mean-field games can be modeled as a partial differential equation in an infinite dimensional space. We discuss both deterministic models as well as problems where the agents are correlated. We end the paper with a mean-field model for price impact. © 2013 Springer Science+Business Media New York.
Covariant field equations, gauge fields and conservation laws from Yang-Mills matrix models
International Nuclear Information System (INIS)
Steinacker, Harold
2009-01-01
The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.
Initial geomagnetic field model from Magsat vector data
Langel, R. A.; Mead, G. D.; Lancaster, E. R.; Estes, R. H.; Fabiano, E. B.
1980-01-01
Magsat data from the magnetically quiet days of November 5-6, 1979, were used to derive a thirteenth degree and order spherical harmonic geomagnetic field model, MGST(6/80). The model utilized both scalar and high-accuracy vector data and fit that data with root-mean-square deviations of 8.2, 6.9, 7.6 and 7.4 nT for the scalar magnitude, B(r), B(theta), and B(phi), respectively. The model includes the three first-order coefficients of the external field. Comparison with averaged Dst indicates that zero Dst corresponds with 25 nT of horizontal field from external sources. When compared with earlier models, the earth's dipole moment continues to decrease at a rate of about 26 nT/yr. Evaluation of earlier models with Magsat data shows that the scalar field at the Magsat epoch is best predicted by the POGO(2/72) model but that the WC80, AWC/75 and IGS/75 are better for predicting vector fields.
A Preliminary Field Test of an Employee Work Passion Model
Zigarmi, Drea; Nimon, Kim; Houson, Dobie; Witt, David; Diehl, Jim
2011-01-01
Four dimensions of a process model for the formulation of employee work passion, derived from Zigarmi, Nimon, Houson, Witt, and Diehl (2009), were tested in a field setting. A total of 447 employees completed questionnaires that assessed the internal elements of the model in a corporate work environment. Data from the measurements of work affect,…
The Sport Education Model: A Track and Field Unit Application
O'Neil, Kason; Krause, Jennifer M.
2016-01-01
Track and field is a traditional instructional unit often taught in secondary physical education settings due to its history, variety of events, and potential for student interest. This article provides an approach to teaching this unit using the sport education model (SEM) of instruction, which has traditionally been presented as a model for team…
2D phase field modeling of sintering of silver nanoparticles
Chockalingam, K.; Kouznetsova, V.; van der Sluis, O.; Geers, M.G.D.
2016-01-01
The sintering mechanism of silver nanoparticles is modelled by incorporating surface, volume and grain boundary diffusion in a phase field model. A direction-dependent tensorial mobility formulation is adopted, capturing the fact that diffusion mainly occurs along the directions tangential to the
Modelling of evapotranspiration at field and landscape scales. Abstract
DEFF Research Database (Denmark)
Overgaard, Jesper; Butts, M.B.; Rosbjerg, Dan
2002-01-01
observations from a nearby weather station. Detailed land-use and soil maps were used to set up the model. Leaf area index was derived from NDVI (Normalized Difference Vegetation Index) images. To validate the model at field scale the simulated evapotranspiration rates were compared to eddy...
Modeling of the Temperature Field Recovery in the Oil Pool
Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.
2018-05-01
This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).
Arbitrary scalar-field and quintessence cosmological models
International Nuclear Information System (INIS)
Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.
2014-01-01
The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)
Archaeomagnetic Dating in Europe Using a Global Geomagnetic Field Model
Lodge, A.; Suttie, N.; Holme, R.; Shaw, J.; Hill, M. J.; Linford, P.
2009-12-01
Using up-to-date archaeomagnetic data from Europe and CALS7K.2 as an apriori model, we produce a global geomagnetic field model to be used for archaeomagnetic dating in Europe. More details on the modelling process will be presented elsewhere (in session GP12, abstract: Geophysical insights from archaeomagnetic dating). Here we apply the global geomagnetic field model to a series of test cases from both recently published data and unpublished data to demonstrate its application to archaeomagnetic dating. We compare the results produced using our model with those from the spherical cap harmonic model, SCHA.DIF.3K (Pavón-Carrasco et al., 2009), the global geomagnetic field model, ARCH3K.1 (Korte et al., 2009) and those produced using the palaeosecular variation curves generated using Bayesian statistics (Lanos, 2004). We include examples which emphasise the importance of using three component data (declination, inclination and intensity) to produce an improved archaeomagnetic date. In addition to the careful selection of an appropriate model for archaeomagnetic dating, the choice of errors on the model curves is vital for providing archaeologists with an age range of possible dates. We discuss how best to constrain the errors on the model curves and alternative ways to the mathematical method of Lanos (2004) for producing an archaeomagnetic date for archaeologists.
3D modeling of electric fields in the LUX detector
Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.
2017-11-01
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.
A cavitation model based on Eulerian stochastic fields
Magagnato, F.; Dumond, J.
2013-12-01
Non-linear phenomena can often be described using probability density functions (pdf) and pdf transport models. Traditionally the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and in particular to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. Firstly, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.
Heavy-ion interactions in relativistic mean-field models
International Nuclear Information System (INIS)
Rashdan, M.
1996-01-01
The interaction potential between spherical nuclei and the elastic scattering cross section are calculated within relativistic mean-field (linear and non-linear) models, using a generalized relativistic local density approximation. The nuclear densities are calculated self-consistently from the solution of the relativistic mean-field equations. It is found that both the linear and non-linear models predict the characteristic switching-over phenomenon of the heavy-ion nuclear potential, where the potential gets attraction with increasing energy up to some value where it reverses this behaviour. The non-linear NLC model predicts a deeper potential than the linear LW model. The elastic scattering cross section calculated within the non-linear NLC model is in better agreement with experiments than that calculated within the linear LW model. (orig.)
Grimsel Test Site: modelling radionuclide migration field experiments
International Nuclear Information System (INIS)
Heer, W.; Hadermann, J.
1994-09-01
In the migration field experiments at Nagra's Grimsel Test Site, the processes of nuclide transport through a well defined fractured shear-zone in crystalline rock are being investigated. For these experiments, model calculations have been performed to obtain indications on validity and limitation of the model applied and the data deduced under field conditions. The model consists of a hydrological part, where the dipole flow fields of the experiments are determined, and a nuclide transport part, where the flow field driven nuclide propagation through the shear-zone is calculated. In addition to the description of the model, analytical expressions are given to guide the interpretation of experimental results. From the analysis of experimental breakthrough curves for conservative uranine, weakly sorbing sodium and more stronger sorbing strontium tracers, the following main results can be derived: i) The model is able to represent the breakthrough curves of the migration field experiments to a high degree of accuracy, ii) The process of matrix diffusion is manifest through the tails of the breakthrough curves decreasing with time as t -3/2 and through the special shape of the tail ends, both confirmed by the experiments, iii) For nuclide sorbing rapidly, not too strongly, linearly, and exhibiting a reversible cation exchange process on fault gouge, the laboratory sorption coefficient can reasonably well be extrapolated to field conditions. Adequate care in selecting and preparing the rock samples is, of course, a necessary requirement. Using the parameters determined in the previous analysis, predictions are made for experiments in a smaller an faster flow field. For conservative uranine and weakly sorbing sodium, the agreement of predicted and measured breakthrough curves is good, for the more stronger sorbing strontium reasonable, confirming that the model describes the main nuclide transport processes adequately. (author) figs., tabs., 29 refs
Benchmark problems for numerical implementations of phase field models
International Nuclear Information System (INIS)
Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G.
2016-01-01
Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verify new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.
On magnetic properties of thorium and uranium borides and Usub(1-x)Thsub(x)Bsub(4) solid solutions
International Nuclear Information System (INIS)
Chachkhiani, Z.B.; Chachkhiani, L.G.; Chechernikov, V.I.; Slovyanskikh, V.K.
1982-01-01
The dependence of magnetic susceptibility on temperature of UB 4 compound and Usub(1-x)Thsub(x)Bsub(4) alloy system in the 140-1300 K temperature range is investigated. It has been found that paramagnetic susceptibility does not obeys the Curie-Weiss law. The interpretation of experimental results is performed on the basis of Stoner model of collectivized electrons which permits also to explain the magnetic properites of other thorium and uranium borides
Effective-field theory on the kinetic Ising model
International Nuclear Information System (INIS)
Shi Xiaoling; Wei Guozhu; Li Lin
2008-01-01
As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)
Numerical modeling of Harmonic Imaging and Pulse Inversion fields
Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis
2003-10-01
Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.
Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields
Hipp, Susanne
2015-01-01
This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...
A Swarm lithospheric magnetic field model to SH degree 80
Thébault, Erwan; Vigneron, Pierre; Langlais, Benoit; Hulot, Gauthier
2016-01-01
International audience; The Swarm constellation of satellites was launched in November 2013 and since then has delivered high-quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency to provide a number of scientific products to be made available to the scientific community on a regular basis. In this study, we present the dedicated lithospheric field inversion model. It uses carefully selected magnetic fiel...
Modeling electric fields in two dimensions using computer aided design
International Nuclear Information System (INIS)
Gilmore, D.W.; Giovanetti, D.
1992-01-01
The authors describe a method for analyzing static electric fields in two dimensions using AutoCAD. The algorithm is coded in LISP and is modeled after Coloumb's Law. The software platform allows for facile graphical manipulations of field renderings and supports a wide range of hardcopy-output and data-storage formats. More generally, this application is representative of the ability to analyze data that is the solution to known mathematical functions with computer aided design (CAD)
3D Modeling of Electric Fields in the LUX Detector
LUX Collaboration; Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.
2017-01-01
This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, g...
3D modeling of electric fields in the LUX detector
Akerib, DS; Alsum, S; Araújo, HM; Bai, X; Bailey, AJ; Balajthy, J; Beltrame, P; Bernard, EP; Bernstein, A; Biesiadzinski, TP; Boulton, EM; Brás, P; Byram, D; Cahn, SB; Carmona-Benitez, MC
2017-01-01
© 2017 IOP Publishing Ltd and Sissa Medialab. This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the de...
Modeling of Local Magnetic Field Enhancements within Solar Flux Ropes
Romashets, E; Vandas, M; Poedts, Stefaan
2010-01-01
To model and study local magnetic-field enhancements in a solar flux rope we consider the magnetic field in its interior as a superposition of two linear (constant alpha) force-free magnetic-field distributions, viz. a global one, which is locally similar to a part of the cylinder, and a local torus-shaped magnetic distribution. The newly derived solution for a toroid with an aspect ratio close to unity is applied. The symmetry axis of the toroid and that of the cylinder may or may not coinci...
Lagrangian model of conformal invariant interacting quantum field theory
International Nuclear Information System (INIS)
Lukierski, J.
1976-01-01
A Lagrangian model of conformal invariant interacting quantum field theory is presented. The interacting Lagrangian and free Lagrangian are derived replacing the canonical field phi by the field operator PHIsub(d)sup(c) and introducing the conformal-invariant interaction Lagrangian. It is suggested that in the conformal-invariant QFT with the dimensionality αsub(B) obtained from the bootstrep equation, the normalization constant c of the propagator and the coupling parametery do not necessarily need to satisfy the relation xsub(B) = phi 2 c 3
A stochastic phase-field model determined from molecular dynamics
von Schwerin, Erik; Szepessy, Anders
2010-01-01
The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.
A stochastic phase-field model determined from molecular dynamics
von Schwerin, Erik
2010-03-17
The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.
Integrable models in 1+1 dimensional quantum field theory
International Nuclear Information System (INIS)
Faddeev, Ludvig.
1982-09-01
The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR
Directory of Open Access Journals (Sweden)
Brad J. Arnold
2014-07-01
Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.
The Research of the Driver Attention Field Modeling
Directory of Open Access Journals (Sweden)
Pengfei Tao
2014-01-01
Full Text Available For expanding the application scope of car-following, based on the basic idea of the noncontact interaction of the objects in physics, establish an attention field model to describe the driving behavior. Firstly, propose the time distance concept to describe the degree of driver perception to the front one-dimensional space and extend its application range to the two-dimensional space. Secondly, connect the point which has the same time distance to constitute the equipotential line of drivers’ attention field equipotent, and establish a model to describe it. Thirdly, define the effective range of the driver’s psychological field with the feature of the driver’s visual distance range increasing and the angle decreasing. Finally, design the calculation method to collect projection of the object in the psychological field scope and calculate the curve points to determine the object’s intensity of psychological field. Preliminarily build the driving behavior model and use the numerical simulation method to simulate the simple transport scenarios; initially verify the validity of the model.
Application of Real Time Models Updating in ABO Central Field
International Nuclear Information System (INIS)
Heikal, S.; Adewale, D.; Doghmi, A.; Augustine, U.
2003-01-01
ABO central field is the first deep offshore oil production in Nigeria located in OML 125 (ex-OPL316). The field was developed in a water depth of between 500 and 800 meters. Deep-water development requires much faster data handling and model updates in order to make the best possible technical decision. This required an easy way to incorporate the latest information and dynamic update of the reservoir model enabling real time reservoir management. The paper aims at discussing the benefits of real time static and dynamic model update and illustrates with a horizontal well example how this update was beneficial prior and during the drilling operation minimizing the project CAPEX Prior to drilling, a 3D geological model was built based on seismic and offset wells' data. The geological model was updated twice, once after the pilot hole drilling and then after reaching the landing point and prior drilling the horizontal section .Forward modeling ws made was well using the along the planned trajectory. During the drilling process both geo- steering and LWD data were loaded in real time to the 3D modeling software. The data was analyzed and compared with the predicted model. The location of markers was changed as drilling progressed and the entire 3D Geological model was rapidly updated. The target zones were revaluated in the light of the new model updates. Recommendations were communicated to the field, and the well trajectory was modified to take into account the new information. The combination of speed, flexibility and update-ability of the 3D modeling software enabled continues geological model update on which the asset team based their trajectory modification decisions throughout the drilling phase. The well was geo-steered through 7 meters thickness of sand. After the drilling, the testing showed excellent results with a productivity and fluid properties data were used to update the dynamic model reviewing the well production plateau providing optimum reservoir
Evaluation of candidate geomagnetic field models for IGRF-12
Erwan Thébault; Christopher C. Finlay; Patrick Alken; Ciaran D. Beggan; Elisabeth Canet; Arnaud Chulliat; Benoit Langlais; V. Lesur; Frank J. Lowes; Chandrasekharan Manoj; Martin Rother; Reyko Schachtschneider
2015-01-01
Background: The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical harmonic main field models for epochs 2010.0 (DGRF-2010) and 2015.0 (IGRF-2015) and predictive linear secular variation for the interval 2015.0-2020.0 (SV-2010-2015). Findings: The models were deri...
Gauge-independent decoherence models for solids in external fields
Wismer, Michael S.; Yakovlev, Vladislav S.
2018-04-01
We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.
Temperature Field-Wind Velocity Field Optimum Control of Greenhouse Environment Based on CFD Model
Directory of Open Access Journals (Sweden)
Yongbo Li
2014-01-01
Full Text Available The computational fluid dynamics technology is applied as the environmental control model, which can include the greenhouse space. Basic environmental factors are set to be the control objects, the field information is achieved via the division of layers by height, and numerical characteristics of each layer are used to describe the field information. Under the natural ventilation condition, real-time requirements, energy consumption, and distribution difference are selected as index functions. The optimization algorithm of adaptive simulated annealing is used to obtain optimal control outputs. A comparison with full-open ventilation shows that the whole index can be reduced at 44.21% and found that a certain mutual exclusiveness exists between the temperature and velocity field in the optimal course. All the results indicate that the application of CFD model has great advantages to improve the control accuracy of greenhouse.
Field applications of the channel network model, CHAN3D
International Nuclear Information System (INIS)
Khademi, B.; Gylling, B.; Moreno, L.; Neretnieks, I.
1998-01-01
The Channel Network model and its computer implementation, CHAN3D, was developed to simulate fluid flow and transport of solutes in fractured media. The model has been used to interpret field experiments of flow and transport in small and in large scale. It may also be used for safety assessments of repositories for nuclear and other hazardous wastes. In this case, CHAN3D has been coupled to a compartment model, NUCTRAN, to describe the near field of the repository. The model is based on field observations, which indicate that the flow and solute transport take place in a three-dimensional network of connected channels. The channels have very different properties and they are generated in the model from observed stochastic distributions. This allows us to represent the large heterogeneity of the flow distribution commonly observed in fractured media. Solute transport is modelled considering advection and rock interactions such as matrix diffusion and sorption within the interior of the rock. Objects such as fracture zones, tunnels and release sources can be incorporated in the model
2d Model Field Theories at Finite Temperature and Density
Schoen, Verena; Thies, Michael
2000-01-01
In certain 1+1 dimensional field theoretic toy models, one can go all the way from microscopic quarks via the hadron spectrum to the properties of hot and dense baryonic matter in an essentially analytic way. This "miracle" is illustrated through case studies of two popular large N models, the Gross-Neveu and the 't Hooft model - caricatures of the Nambu-Jona-Lasinio model and real QCD, respectively. The main emphasis will be on aspects related to spontaneous symmetry breaking (discrete or co...
A Solvatochromic Model Calibrates Nitriles’ Vibrational Frequencies to Electrostatic Fields
Bagchi, Sayan; Fried, Stephen D.; Boxer, Steven G.
2012-01-01
Electrostatic interactions provide a primary connection between a protein’s three-dimensional structure and its function. Infrared (IR) probes are useful because vibrational frequencies of certain chemical groups, such as nitriles, are linearly sensitive to local electrostatic field, and can serve as a molecular electric field meter. IR spectroscopy has been used to study electrostatic changes or fluctuations in proteins, but measured peak frequencies have not been previously mapped to total electric fields, because of the absence of a field-frequency calibration and the complication of local chemical effects such as H-bonds. We report a solvatochromic model that provides a means to assess the H-bonding status of aromatic nitrile vibrational probes, and calibrates their vibrational frequencies to electrostatic field. The analysis involves correlations between the nitrile’s IR frequency and its 13C chemical shift, whose observation is facilitated by a robust method for introducing isotopes into aromatic nitriles. The method is tested on the model protein Ribonuclease S (RNase S) containing a labeled p-CN-Phe near the active site. Comparison of the measurements in RNase S against solvatochromic data gives an estimate of the average total electrostatic field at this location. The value determined agrees quantitatively with MD simulations, suggesting broader potential for the use of IR probes in the study of protein electrostatics. PMID:22694663
Directory of Open Access Journals (Sweden)
E. S. Belenkaya
2016-07-01
Full Text Available The paraboloid model of Saturn's magnetosphere describes the magnetic field as being due to the sum of contributions from the internal field of the planet, the ring current, and the tail current, all contained by surface currents inside a magnetopause boundary which is taken to be a paraboloid of revolution about the planet-Sun line. The parameters of the model have previously been determined by comparison with data from a few passes through Saturn's magnetosphere in compressed and expanded states, depending on the prevailing dynamic pressure of the solar wind. Here we significantly expand such comparisons through examination of Cassini magnetic field data from 18 near-equatorial passes that span wide ranges of local time, focusing on modelling the co-latitudinal field component that defines the magnetic flux passing through the equatorial plane. For 12 of these passes, spanning pre-dawn, via noon, to post-midnight, the spacecraft crossed the magnetopause during the pass, thus allowing an estimate of the concurrent subsolar radial distance of the magnetopause R1 to be made, considered to be the primary parameter defining the scale size of the system. The best-fit model parameters from these passes are then employed to determine how the parameters vary with R1, using least-squares linear fits, thus providing predictive model parameters for any value of R1 within the range. We show that the fits obtained using the linear approximation parameters are of the same order as those for the individually selected parameters. We also show that the magnetic flux mapping to the tail lobes in these models is generally in good accord with observations of the location of the open-closed field line boundary in Saturn's ionosphere, and the related position of the auroral oval. We then investigate the field data on six passes through the nightside magnetosphere, for which the spacecraft did not cross the magnetopause, such that in this case we compare the
Hubble induced mass after inflation in spectator field models
Energy Technology Data Exchange (ETDEWEB)
Fujita, Tomohiro [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Harigaya, Keisuke, E-mail: tomofuji@stanford.edu, E-mail: keisukeh@icrr.u-tokyo.ac.jp [Department of Physics, University of California, Berkeley, CA 94720 (United States)
2016-12-01
Spectator field models such as the curvaton scenario and the modulated reheating are attractive scenarios for the generation of the cosmic curvature perturbation, as the constraints on inflation models are relaxed. In this paper, we discuss the effect of Hubble induced masses on the dynamics of spectator fields after inflation. We pay particular attention to the Hubble induced mass by the kinetic energy of an oscillating inflaton, which is generically unsuppressed but often overlooked. In the curvaton scenario, the Hubble induced mass relaxes the constraint on the property of the inflaton and the curvaton, such as the reheating temperature and the inflation scale. We comment on the implication of our discussion for baryogenesis in the curvaton scenario. In the modulated reheating, the predictions of models e.g. the non-gaussianity can be considerably altered. Furthermore, we propose a new model of the modulated reheating utilizing the Hubble induced mass which realizes a wide range of the local non-gaussianity parameter.
On the Predictiveness of Single-Field Inflationary Models
Burgess, C.P.; Trott, Michael
2014-01-01
We re-examine the predictiveness of single-field inflationary models and discuss how an unknown UV completion can complicate determining inflationary model parameters from observations, even from precision measurements. Besides the usual naturalness issues associated with having a shallow inflationary potential, we describe another issue for inflation, namely, unknown UV physics modifies the running of Standard Model (SM) parameters and thereby introduces uncertainty into the potential inflationary predictions. We illustrate this point using the minimal Higgs Inflationary scenario, which is arguably the most predictive single-field model on the market, because its predictions for $A_s$, $r$ and $n_s$ are made using only one new free parameter beyond those measured in particle physics experiments, and run up to the inflationary regime. We find that this issue can already have observable effects. At the same time, this UV-parameter dependence in the Renormalization Group allows Higgs Inflation to occur (in prin...
Cosmic microwave background observables of small field models of inflation
International Nuclear Information System (INIS)
Ben-Dayan, Ido; Brustein, Ram
2010-01-01
We construct a class of single small field models of inflation that can predict, contrary to popular wisdom, an observable gravitational wave signal in the cosmic microwave background anisotropies. The spectral index, its running, the tensor to scalar ratio and the number of e-folds can cover all the parameter space currently allowed by cosmological observations. A unique feature of models in this class is their ability to predict a negative spectral index running in accordance with recent cosmic microwave background observations. We discuss the new class of models from an effective field theory perspective and show that if the dimensionless trilinear coupling is small, as required for consistency, then the observed spectral index running implies a high scale of inflation and hence an observable gravitational wave signal. All the models share a distinct prediction of higher power at smaller scales, making them easy targets for detection
Modelling the core magnetic field of the earth
Harrison, C. G. A.; Carle, H. M.
1982-01-01
It is suggested that radial off-center dipoles located within the core of the earth be used instead of spherical harmonics of the magnetic potential in modeling the core magnetic field. The off-center dipoles, in addition to more realistically modeling the physical current systems within the core, are if located deep within the core more effective at removing long wavelength signals of either potential or field. Their disadvantage is that their positions and strengths are more difficult to compute, and such effects as upward and downward continuation are more difficult to manipulate. It is nevertheless agreed with Cox (1975) and Alldredge and Hurwitz (1964) that physical realism in models is more important than mathematical convenience. A radial dipole model is presented which agrees with observations of secular variation and excursions.
Renormalizability aspects of massive Yang--Mills field models
International Nuclear Information System (INIS)
Ktorides, C.N.
1976-01-01
We confront the problem concerning the renormalizability of massive Yang--Mills theories in which the mass term for the vector fields has been inserted by hand. Our starting Lagrangians are of a type in the past found to be nonrenormalizable. The massive Yang--Mills fields are split into transverse and longitudinal components. The latter carry all the nonrenormalizability pathologies which manifest themselves in terms of certain nonpolynomial factors involving the longtitudinal fields. The removal of the bad nonpolynomial terms (Boulware's problem) is studied within the context of the adjoint representation of the gauge group SU(2). A necessary condition for solving Boulware's problem is the introduction of extra fields. We find an explicit solution which requires the introduction of a triplet of scalar fields belonging to the adjoint representation of SU(2). We interpret the additional fields as ghost, or superfluous, fields, most probably corresponding to the ghost fields of spontaneously broken gauge theories in the R gauge. Out interpretation of the fields which combine with the longitudinal ones in order to remove the nonpolymomial factors as ghost fields is not evident in the treatment of Cornwall et al. Unlike the case of Cornwall et al., we do not just show the existence of the trnasformation which removes the undesirable terms, but also give the explicit conditions which bring about this result in the case of SU(2). A proposition relating the models under consideration to spontaneously broken gauge ones is also presented. We argue, without explicit proof, that the combination of this proposition with out main theorem corresponds to building a spontaneously broken gauge theory in the R gauge, having started from a non-Abelian theory with mass inserted by hand
Two dimensional analytical model for a reconfigurable field effect transistor
Ranjith, R.; Jayachandran, Remya; Suja, K. J.; Komaragiri, Rama S.
2018-02-01
This paper presents two-dimensional potential and current models for a reconfigurable field effect transistor (RFET). Two potential models which describe subthreshold and above-threshold channel potentials are developed by solving two-dimensional (2D) Poisson's equation. In the first potential model, 2D Poisson's equation is solved by considering constant/zero charge density in the channel region of the device to get the subthreshold potential characteristics. In the second model, accumulation charge density is considered to get above-threshold potential characteristics of the device. The proposed models are applicable for the device having lightly doped or intrinsic channel. While obtaining the mathematical model, whole body area is divided into two regions: gated region and un-gated region. The analytical models are compared with technology computer-aided design (TCAD) simulation results and are in complete agreement for different lengths of the gated regions as well as at various supply voltage levels.
Soliton excitations in a class of nonlinear field theory models
International Nuclear Information System (INIS)
Makhan'kov, V.G.; Fedyanin, V.K.
1985-01-01
Investigation results of nonlinear models of the field theory with a lagrangian are described. The theory includes models both with zero stable vacuum epsilon=1 and with condensate epsilon=-1 (of disturbed symmetry). Conditions of existence of particle-like solutions (PLS), stability of these solutions are investigated. Soliton dynamics is studied. PLS formfactors are calculated. Statistical mechanics of solitons is built and their dynamic structure factors are calculated
Coupled oscillators as models of phantom and scalar field cosmologies
International Nuclear Information System (INIS)
Faraoni, Valerio
2004-01-01
We study a toy model for phantom cosmology recently introduced in the literature and consisting of two oscillators, one of which carries negative kinetic energy. The results are compared with the exact phase space picture obtained for similar dynamical systems describing, respectively, a massive canonical scalar field conformally coupled to the spacetime curvature and a conformally coupled massive phantom. Finally, the dynamical system describing exactly a minimally coupled phantom is studied and compared with the toy model
Unified Dark Matter scalar field models with fast transition
Energy Technology Data Exchange (ETDEWEB)
Bertacca, Daniele [Dipartimento di Fisica Galileo Galilei, Università di Padova, via F. Marzolo 8, I-35131 Padova (Italy); Bruni, Marco [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom); Piattella, Oliver F. [Department of Physics, Universidade Federal do Espírito Santo, avenida Ferrari 514, 29075-910, Vitória, ES (Brazil); Pietrobon, Davide, E-mail: daniele.bertacca@pd.infn.it, E-mail: marco.bruni@port.ac.uk, E-mail: oliver.piattella@gmail.com, E-mail: davide.pietrobon@jpl.nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, 91109 Pasadena CA U.S.A. (United States)
2011-02-01
We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.
H+3 WZNW model from Liouville field theory
International Nuclear Information System (INIS)
Hikida, Y.; Schomerus, V.
2007-06-01
There exists an intriguing relation between genus zero correlation functions in the H + 3 WZNW model and in Liouville field theory. This was found by Ribault and Teschner based in part on earlier ideas by Stoyanovsky. We provide a path integral derivation of the correspondence and then use our new approach to generalize the relation to surfaces of arbitrary genus g. In particular we determine the correlation functions of N primary fields in the WZNW model explicitly through Liouville correlators with N+2g-2 additional insertions of certain degenerate fields. The paper concludes with a list of interesting further extensions and a few comments on the relation to the geometric Langlands program. (orig.)
Automated particulate sampler field test model operations guide
Energy Technology Data Exchange (ETDEWEB)
Bowyer, S.M.; Miley, H.S.
1996-10-01
The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.
Antiferromagnetic Ising model with transverse and longitudinal field
International Nuclear Information System (INIS)
Kischinhevsky, M.
1985-01-01
We study the quantum hamiltonian version of the Ising Model in one spacial dimension under an external longitudinal (uniform) field at zero temperature. A phenomenological renormalization group procedure is used to obtain the phase diagram; the transverse and longitudinal zero field limits are studied and we verify the validity of universality at non zero transverse fields, where two-dimensional critical behaviour is obtained. To perform the numerical calculations we use the Lanczos scheme, which gives highly precise results with rather short processing times. We also analyse the possibility of using these techniques to extend the present work to the quantum hamiltonian version of the q-state Potts Model (q>2) in larger system. (author) [pt
Genesis of unified models from Majorana-Weyl fields
International Nuclear Information System (INIS)
Budini, P.; Furlan, P.
1977-07-01
It is proposed that all forms of interaction arise from elementary interactions between Weyl-Majorana fields. Weak interactions due to the high masses of the intermediate bosons are practically identical to the elementary interactions. Strong and electromagnetic interactions arise at larger distance, where dynamic determines both masses and symmetry. In the frame of these ideas, Pati-Salam and Fritzsch-Minkowski type of unified models are constructed starting from eight Weyl-Majorana fields. Fractional charges for quarks, integer charges for lepton and regularization of q.e.d. arise naturally from the model. Unobserved transitions (μ→e + γ, p→ leptons) may be ascribed to properties of the elementary fields (handedness) rather than very high W masses
Vector fields in a tight laser focus: comparison of models.
Peatross, Justin; Berrondo, Manuel; Smith, Dallas; Ware, Michael
2017-06-26
We assess several widely used vector models of a Gaussian laser beam in the context of more accurate vector diffraction integration. For the analysis, we present a streamlined derivation of the vector fields of a uniformly polarized beam reflected from an ideal parabolic mirror, both inside and outside of the resulting focus. This exact solution to Maxwell's equations, first developed in 1920 by V. S. Ignatovsky, is highly relevant to high-intensity laser experiments since the boundary conditions at a focusing optic dictate the form of the focus in a manner analogous to a physical experiment. In contrast, many models simply assume a field profile near the focus and develop the surrounding vector fields consistent with Maxwell's equations. In comparing the Ignatovsky result with popular closed-form analytic vector models of a Gaussian beam, we find that the relatively simple model developed by Erikson and Singh in 1994 provides good agreement in the paraxial limit. Models involving a Lax expansion introduce a divergences outside of the focus while providing little if any improvement in the focal region. Extremely tight focusing produces a somewhat complicated structure in the focus, and requires the Ignatovsky model for accurate representation.
Two-dimensional models in statistical mechanics and field theory
International Nuclear Information System (INIS)
Koberle, R.
1980-01-01
Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt
An improved model for the Earth's gravity field
Tapley, B. D.; Shum, C. K.; Yuan, D. N.; Ries, J. C.; Schutz, B. E.
1989-01-01
An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy.
Correlation effects in the Ising model in an external field
International Nuclear Information System (INIS)
Borges, H.E.; Silva, P.R.
1983-01-01
The thermodynamic properties of the spin-1/2 Ising Model in an external field are evaluated through the use of the exponential differential operator method and Callen's exact relations. The correlations effects are treated in a phenomenological approach and the results are compared with other treatments. (Author) [pt
A mean-field game economic growth model
Gomes, Diogo A.; Lafleche, Laurent; Nurbekyan, Levon
2016-01-01
Here, we examine a mean-field game (MFG) that models the economic growth of a population of non-cooperative, rational agents. In this MFG, agents are described by two state variables - the capital and consumer goods they own. Each agent seeks
Fourier Simulation of a Non-Isotropic Wind Field Model
DEFF Research Database (Denmark)
Mann, J.; Krenk, S.
Realistic modelling of three dimensional wind fields has become important in calculation of dynamic loads on same spatially extended structures, such as large bridges, towers and wind turbines. For some structures the along wind component of the of the turbulent flow is important while for others...
The dilute random field Ising model by finite cluster approximation
International Nuclear Information System (INIS)
Benyoussef, A.; Saber, M.
1987-09-01
Using the finite cluster approximation, phase diagrams of bond and site diluted three-dimensional simple cubic Ising models with a random field have been determined. The resulting phase diagrams have the same general features for both bond and site dilution. (author). 7 refs, 4 figs
The MARTINI force field : Coarse grained model for biomolecular simulations
Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge; Tieleman, D. Peter; de Vries, Alex H.
2007-01-01
We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To
TMS field modelling-status and next steps
DEFF Research Database (Denmark)
Thielscher, Axel
2013-01-01
In the recent years, an increasing number of studies used geometrically accurate head models and finite element (FEM) or finite difference methods (FDM) to estimate the electric field induced by non-invasive neurostimulation techniques such as transcranial magnetic stimulation (TMS) or transcranial...
Artificial Neural Network L* from different magnetospheric field models
Yu, Y.; Koller, J.; Zaharia, S. G.; Jordanova, V. K.
2011-12-01
The third adiabatic invariant L* plays an important role in modeling and understanding the radiation belt dynamics. The popular way to numerically obtain the L* value follows the recipe described by Roederer [1970], which is, however, slow and computational expensive. This work focuses on a new technique, which can compute the L* value in microseconds without losing much accuracy: artificial neural networks. Since L* is related to the magnetic flux enclosed by a particle drift shell, global magnetic field information needed to trace the drift shell is required. A series of currently popular empirical magnetic field models are applied to create the L* data pool using 1 million data samples which are randomly selected within a solar cycle and within the global magnetosphere. The networks, trained from the above L* data pool, can thereby be used for fairly efficient L* calculation given input parameters valid within the trained temporal and spatial range. Besides the empirical magnetospheric models, a physics-based self-consistent inner magnetosphere model (RAM-SCB) developed at LANL is also utilized to calculate L* values and then to train the L* neural network. This model better predicts the magnetospheric configuration and therefore can significantly improve the L*. The above neural network L* technique will enable, for the first time, comprehensive solar-cycle long studies of radiation belt processes. However, neural networks trained from different magnetic field models can result in different L* values, which could cause mis-interpretation of radiation belt dynamics, such as where the source of the radiation belt charged particle is and which mechanism is dominant in accelerating the particles. Such a fact calls for attention to cautiously choose a magnetospheric field model for the L* calculation.
A thermomechanical far-field model of Yucca Mountain
International Nuclear Information System (INIS)
Brandshaug, T.
1991-04-01
Thermal and mechanical finite element far-field models have been constructed for a potential repository site in the Topopah Spring Thermal/mechanical Unit at Yucca Mountain on the Nevada Test Site. The models reflect site-specific information that was available at the time of the study on the material properties and structural character of Yucca Mountain. The thermal model simulates transient heat transfer resulting from the emplacement of heat-generating nuclear waste in the repository. Simulation of boiling of the pore water is included in the model. The mechanical model simulates the tuff at Yucca Mountain as being an elastic/plastic, isotropic, heterogeneous continuum with one ubiquitous vertical joint set. The initial conditions of the mechanical model are based on a gravitational stress field. The model uses the temperatures predicted by the thermal finite element model as input to predict thermal stresses and displacements induced by the presence of the repository. Plasticity is incorporated in shear (fracture slip) and tension (fracture opening) by using a Mohr-Coulomb failure criterion. 6 refs., 15 figs., 2 tabs
Identification of wind fields for wave modeling near Qatar
Nayak, Sashikant; Balan Sobhana, Sandeepan; Panchang, Vijay
2016-04-01
Due to the development of coastal and offshore infrastructure in and around the Arabian Gulf, a large semi-enclosed sea, knowledge of met-ocean factors like prevailing wind systems, wind generated waves, and currents etc. are of great importance. Primarily it is important to identify the wind fields that are used as forcing functions for wave and circulation models for hindcasting and forecasting purposes. The present study investigates the effects of using two sources of wind-fields on the modeling of wind-waves in the Arabian Gulf, in particular near the coastal regions of Qatar. Two wind sources are considered here, those obtained from ECMWF and those generated by us using the WRF model. The wave model SWAN was first forced with the 6 hourly ERA Interim daily winds (from ECMWF) having spatial resolution of 0.125°. For the second option, wind fields were generated by us using the mesoscale wind model (WRF) with a high spatial resolution (0.1°) at every 30 minute intervals. The simulations were carried out for a period of two months (7th October-7th December, 2015) during which measurements were available from two moored buoys (deployed and operated by the Qatar Meteorological Department), one in the north of Qatar ("Qatar North", in water depth of 58.7 m) and other in the south ("Shiraouh Island", in water depth of 16.64 m). This period included a high-sea event on 11-12th of October, recorded by the two buoys where the significant wave heights (Hs) reached as high as 2.9 m (i.e. max wave height H ~ 5.22 m) and 1.9 (max wave height H ~ 3.4 m) respectively. Model results were compared with the data for this period. The scatter index (SI) of the Hs simulated using the WRF wind fields and the observed Hs was found to be about 30% and 32% for the two buoys (total period). The observed Hs were generally reproduced but there was consistent underestimation. (Maximum 27% for the high-sea event). For the Hs obtained with ERA interim wind fields, the underestimation was
The dual of the Carroll-Field-Jackiw model
International Nuclear Information System (INIS)
Guimaraes, M.S.; Grigorio, L.; Wotzasek, C.
2006-01-01
In this work we apply different duality techniques, both the dual projection, based on the soldering formalism and the master action, in order to obtain and study the dual description of the Carroll- Field-Jackiw model [1], a theory with a Chern-Simons-like explicitly Lorentz and CPT violating term, including the interaction with external charges. This Maxwell-Chern-Simons-like model may be rewritten in terms of the interacting modes of a massless scalar model and a topologically massive model [2], that are mapped, through duality, into interacting massless Maxwell and massive self-dual modes [3]. It is also shown that these dual modes might be represented into an unified rank-two self-dual model that represents the direct dual of the vector Maxwell-Chern-Simons-like model
A lithospheric magnetic field model derived from the Swarm satellite magnetic field measurements
Hulot, G.; Thebault, E.; Vigneron, P.
2015-12-01
The Swarm constellation of satellites was launched in November 2013 and has since then delivered high quality scalar and vector magnetic field measurements. A consortium of several research institutions was selected by the European Space Agency (ESA) to provide a number of scientific products which will be made available to the scientific community. Within this framework, specific tools were tailor-made to better extract the magnetic signal emanating from Earth's the lithospheric. These tools rely on the scalar gradient measured by the lower pair of Swarm satellites and rely on a regional modeling scheme that is more sensitive to small spatial scales and weak signals than the standard spherical harmonic modeling. In this presentation, we report on various activities related to data analysis and processing. We assess the efficiency of this dedicated chain for modeling the lithospheric magnetic field using more than one year of measurements, and finally discuss refinements that are continuously implemented in order to further improve the robustness and the spatial resolution of the lithospheric field model.
A Computational Model of Cellular Response to Modulated Radiation Fields
Energy Technology Data Exchange (ETDEWEB)
McMahon, Stephen J., E-mail: stephen.mcmahon@qub.ac.uk [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Butterworth, Karl T. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); McGarry, Conor K. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Trainor, Colman [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); O' Sullivan, Joe M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Clinical Oncology, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Belfast, Northern Ireland (United Kingdom); Hounsell, Alan R. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom); Radiotherapy Physics, Northern Ireland Cancer Centre, Belfast Health and Social Care Trust, Northern Ireland (United Kingdom); Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Belfast, Northern Ireland (United Kingdom)
2012-09-01
Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.
A Computational Model of Cellular Response to Modulated Radiation Fields
International Nuclear Information System (INIS)
McMahon, Stephen J.; Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O’Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.
2012-01-01
Purpose: To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies. Materials and Methods: A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields. Results: The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses. Conclusions: The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.
Soliton excitations in polyacetylene and relativistic field theory models
International Nuclear Information System (INIS)
Campbell, D.K.; Bishop, A.R.; Los Alamos Scientific Lab., NM
1982-01-01
A continuum model of a Peierls-dimerized chain, as described generally by Brazovskii and discussed for the case of polyacetylene by Takayama, Lin-Liu and Maki (TLM), is considered. The continuum (Bogliubov-de Gennes) equations arising in this model of interacting electrons and phonons are shown to be equivalent to the static, semiclassical equations for a solvable model field theory of self-coupled fermions - the N = 2 Gross-Neveu model. Based on this equivalence we note the existence of soliton defect states in polyacetylene that are additional to, and qualitatively different from, the amplitude kinks commonly discussed. The new solutions do not have the topological stability of kinks but are essentially conventional strong-coupling polarons in the dimerized chain. They carry spin (1/2) and charge (+- e). In addition, we discuss further areas in which known field theory results may apply to a Peierls-dimerized chain, including relations between phenomenological PHI 4 and continuuum electron-phonon models, and the structure of the fully quantum versus mean field theories. (orig.)
Numerically modelling the large scale coronal magnetic field
Panja, Mayukh; Nandi, Dibyendu
2016-07-01
The solar corona spews out vast amounts of magnetized plasma into the heliosphere which has a direct impact on the Earth's magnetosphere. Thus it is important that we develop an understanding of the dynamics of the solar corona. With our present technology it has not been possible to generate 3D magnetic maps of the solar corona; this warrants the use of numerical simulations to study the coronal magnetic field. A very popular method of doing this, is to extrapolate the photospheric magnetic field using NLFF or PFSS codes. However the extrapolations at different time intervals are completely independent of each other and do not capture the temporal evolution of magnetic fields. On the other hand full MHD simulations of the global coronal field, apart from being computationally very expensive would be physically less transparent, owing to the large number of free parameters that are typically used in such codes. This brings us to the Magneto-frictional model which is relatively simpler and computationally more economic. We have developed a Magnetofrictional Model, in 3D spherical polar co-ordinates to study the large scale global coronal field. Here we present studies of changing connectivities between active regions, in response to photospheric motions.
modelling of far modelling of far-field mixing o field mixing o ambient
African Journals Online (AJOL)
User
his study sought to describe the dynamics of advective and dispersive tr .... focused on environmental policy designs targeted at ... consequences such as welfare loss of outright ban on polluting ... optimal DO level. ... carried out a similar study to model the shadow price .... As A varies, we have a family of curves depicted in.
A statistical model for field emission in superconducting cavities
International Nuclear Information System (INIS)
Padamsee, H.; Green, K.; Jost, W.; Wright, B.
1993-01-01
A statistical model is used to account for several features of performance of an ensemble of superconducting cavities. The input parameters are: the number of emitters/area, a distribution function for emitter β values, a distribution function for emissive areas, and a processing threshold. The power deposited by emitters is calculated from the field emission current and electron impact energy. The model can successfully account for the fraction of tests that reach the maximum field Epk in an ensemble of cavities, for eg, 1-cells at sign 3 GHz or 5-cells at sign 1.5 GHz. The model is used to predict the level of power needed to successfully process cavities of various surface areas with high pulsed power processing (HPP)
Modelling Field Bus Communications in Mixed-Signal Embedded Systems
Directory of Open Access Journals (Sweden)
Alassir Mohamad
2008-01-01
Full Text Available Abstract We present a modelling platform using the SystemC-AMS language to simulate field bus communications for embedded systems. Our platform includes the model of an I/O controller IP (in this specific case an C controller that interfaces a master microprocessor with its peripherals on the field bus. Our platform shows the execution of the embedded software and its analog response on the lines of the bus. Moreover, it also takes into account the influence of the circuits's I/O by including their IBIS models in the SystemC-AMS description, as well as the bus lines imperfections. Finally, we present simulation results to validate our platform and measure the overhead introduced by SystemC-AMS over a pure digital SystemC simulation.
Modelling Field Bus Communications in Mixed-Signal Embedded Systems
Directory of Open Access Journals (Sweden)
Patrick Garda
2008-08-01
Full Text Available We present a modelling platform using the SystemC-AMS language to simulate field bus communications for embedded systems. Our platform includes the model of an I/O controller IP (in this specific case an I2C controller that interfaces a master microprocessor with its peripherals on the field bus. Our platform shows the execution of the embedded software and its analog response on the lines of the bus. Moreover, it also takes into account the influence of the circuits's I/O by including their IBIS models in the SystemC-AMS description, as well as the bus lines imperfections. Finally, we present simulation results to validate our platform and measure the overhead introduced by SystemC-AMS over a pure digital SystemC simulation.
An Optimal Electric Dipole Antenna Model and Its Field Propagation
Directory of Open Access Journals (Sweden)
Yidong Xu
2016-01-01
Full Text Available An optimal electric dipole antennas model is presented and analyzed, based on the hemispherical grounding equivalent model and the superposition principle. The paper also presents a full-wave electromagnetic simulation for the electromagnetic field propagation in layered conducting medium, which is excited by the horizontal electric dipole antennas. Optimum frequency for field transmission in different depth is carried out and verified by the experimental results in comparison with previously reported simulation over a digital wireless Through-The-Earth communication system. The experimental results demonstrate that the dipole antenna grounding impedance and the output power can be efficiently reduced by using the optimal electric dipole antenna model and operating at the optimum frequency in a vertical transmission depth up to 300 m beneath the surface of the earth.
Evaluation of candidate geomagnetic field models for IGRF-12
DEFF Research Database (Denmark)
Thébault, Erwan; Finlay, Chris; Alken, Patrick
2015-01-01
Background: The 12th revision of the International Geomagnetic Reference Field (IGRF) was issued in December 2014 by the International Association of Geomagnetism and Aeronomy (IAGA) Division V Working Group V-MOD (http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html). This revision comprises new spherical...... by the British Geological Survey (UK), DTU Space (Denmark), ISTerre (France), IZMIRAN (Russia), NOAA/NGDC (USA), GFZ Potsdam (Germany), NASA/GSFC (USA), IPGP (France), LPG Nantes (France), and ETH Zurich (Switzerland). Each candidate model was carefully evaluated and compared to all other models and a mean model...
Seasonal Gravity Field Variations from GRACE and Hydrological Models
DEFF Research Database (Denmark)
Andersen, Ole Baltazar; Hinderer, Jacques; Lemoine, Frank G.
2004-01-01
. Four global hydrological models covering the same period in 2002–2003 as the GRACE observations were investigated to for their mutual consistency in estimates of annual variation in terrestrial water storage and related temporal changes in gravity field. The hydrological models differ by a maximum of 2...... µGal or nearly 5 cm equivalent water storage in selected regions. Integrated over all land masses the standard deviation among the annual signal from the four hydrological models are 0.6 µGal equivalent to around 1.4 cm in equivalent water layer thickness. The estimated accuracy of the annual...
Energy Technology Data Exchange (ETDEWEB)
Nakanishi, M; Hagiwara, T [Hokkaido University, Sapporo (Japan)
1997-10-01
The present study proposes a model to evaluate visual performance of road traffic facilities required for drivers. Two factors were employed to obtain the suitable contrast for drivers under driving situation. One factor is a suitable luminance range, which is derived from minimum required luminance and glare luminance. Another is a field. The model showed capability of providing visibility range in some cases. 8 refs., 4 figs., 2 tabs.
Models with oscillator terms in noncommutative quantum field theory
International Nuclear Information System (INIS)
Kronberger, E.
2010-01-01
The main focus of this Ph.D. thesis is on noncommutative models involving oscillator terms in the action. The first one historically is the successful Grosse-Wulkenhaar (G.W.) model which has already been proven to be renormalizable to all orders of perturbation theory. Remarkably it is furthermore capable of solving the Landau ghost problem. In a first step, we have generalized the G.W. model to gauge theories in a very straightforward way, where the action is BRS invariant and exhibits the good damping properties of the scalar theory by using the same propagator, the so-called Mehler kernel. To be able to handle some more involved one-loop graphs we have programmed a powerful Mathematica package, which is capable of analytically computing Feynman graphs with many terms. The result of those investigations is that new terms originally not present in the action arise, which led us to the conclusion that we should better start from a theory where those terms are already built in. Fortunately there is an action containing this complete set of terms. It can be obtained by coupling a gauge field to the scalar field of the G.W. model, integrating out the latter, and thus 'inducing' a gauge theory. Hence the model is called Induced Gauge Theory. Despite the advantage that it is by construction completely gauge invariant, it contains also some unphysical terms linear in the gauge field. Advantageously we could get rid of these terms using a special gauge dedicated to this purpose. Within this gauge we could again establish the Mehler kernel as gauge field propagator. Furthermore we where able to calculate the ghost propagator, which turned out to be very involved. Thus we were able to start with the first few loop computations showing the expected behavior. The next step is to show renormalizability of the model, where some hints towards this direction will also be given. (author) [de
Conformal FDTD modeling of 3-D wake fields
International Nuclear Information System (INIS)
Jurgens, T.G.; Harfoush, F.A.
1991-01-01
Many computer codes have been written to model wake fields. Here the authors describe the use of the Conformal Finite Difference Time Domain (CFDTD) method to model the wake fields generated by a rigid beam traveling through various accelerating structures. The non-cylindrical symmetry of some of the problems considered here requires the use of a three dimensional code. In traditional FDTD codes, curved surfaces are approximated by rectangular steps. The errors introduced in wake field calculations by such an approximation can be reduced by increasing the mesh size, therefore increasing the cost of computing. Another approach, validated here, deforms Ampere and Faraday contours near a media interface so as to conform to the interface. These improvements so as to conform to the interface. These improvements to the FDTD method result in better accuracy of the fields at asymptotically no computational cost. This method is also capable of modeling thin wires as found in beam profile monitors, and slots and cracks as found in resistive wall monitors
Spiking patterns of a hippocampus model in electric fields
International Nuclear Information System (INIS)
Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Deng Bin; Che Yan-Qiu
2011-01-01
We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective. Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study. The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity. It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field. Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude. These findings are qualitatively in accordance with the results of relevant experimental and numerical studies. It is implied that the external or endogenous electric field can modulate the neural code in the brain. Furthermore, it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy. (interdisciplinary physics and related areas of science and technology)
Modelling of radial electric field profile for different divertor configurations
International Nuclear Information System (INIS)
Rozhansky, V; Kaveeva, E; Voskoboynikov, S; Counsell, G; Kirk, A; Meyer, H; Coster, D; Conway, G; Schirmer, J; Schneider, R
2006-01-01
The impact of divertor configuration on the structure of the radial electric field has been simulated by the B2SOLPS5.0 transport fluid code. It is shown that the change in the parallel flows in the scrape-off layer, which are transported through the separatrix due to turbulent viscosity and diffusivity, should result in variation of the radial electric field and toroidal rotation in the separatrix vicinity. The modelling predictions are compared with the measurements of the radial electric field for the low field side equatorial mid-plane of ASDEX Upgrade in lower, upper and double-null (DN) divertor configurations. The parallel (toroidal) flows in the scrape-off layer and mechanisms for their formation are analysed for different geometries. It is demonstrated that a spike in the electric field exists at the high field side equatorial mid-plane in the connected DN divertor configuration. Its origin is connected with different potential drops between the separatrix vicinity and divertor plates in the two disconnected scrape-off layers, while the separatrix should be at almost the same potential. The spike might be important for additional turbulent suppression
Modeling the static fringe field of superconducting magnets.
Jeglic, P; Lebar, A; Apih, T; Dolinsek, J
2001-05-01
The resonance frequency-space and the frequency gradient-space relations are evaluated analytically for the static fringe magnetic field of superconducting magnets used in the NMR diffusion measurements. The model takes into account the actual design of the high-homogeneity magnet coil system that consists of the main coil and the cryoshim coils and enables a precise calibration of the on-axis magnetic field gradient and the resonance frequency inside and outside of the superconducting coil. Copyright 2001 Academic Press.
Modeling and simulation of flow field in giant magnetostrictive pump
Zhao, Yapeng; Ren, Shiyong; Lu, Quanguo
2017-09-01
Recent years, there has been significant research in the design and analysis of giant magnetostrictive pump. In this paper, the flow field model of giant magnetostrictive pump was established and the relationship between pressure loss and working frequency of piston was studied by numerical simulation method. Then, the influence of different pump chamber height on pressure loss in giant magnetostrictive pump was studied by means of flow field simulation. Finally, the fluid pressure and velocity vector distribution in giant magnetostrictive pump chamber were simulated.
Modeling of Geological Objects and Geophysical Fields Using Haar Wavelets
Directory of Open Access Journals (Sweden)
A. S. Dolgal
2014-12-01
Full Text Available This article is a presentation of application of the fast wavelet transform with basic Haar functions for modeling the structural surfaces and geophysical fields, characterized by fractal features. The multiscale representation of experimental data allows reducing significantly a cost of the processing of large volume data and improving the interpretation quality. This paper presents the algorithms for sectionally prismatic approximation of geological objects, for preliminary estimation of the number of equivalent sources for the analytical approximation of fields, and for determination of the rock magnetization in the upper part of the geological section.
Stochastic geometry, spatial statistics and random fields models and algorithms
2015-01-01
Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.
Fluid analog model for boundary effects in field theory
International Nuclear Information System (INIS)
Ford, L. H.; Svaiter, N. F.
2009-01-01
Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.
DEFF Research Database (Denmark)
Olsen, Nils; Lowes, F.; Sabaka, T.J.
2005-01-01
the zonal coefficients g(1)(0), g(3)(0),..., by 1-2 nT. We describe the reason for this contamination, and present a method to correct for it. Since not only OSVM but probably all main field models that are derived primarily from data around local midnight suffer from this effect, the presented scheme can...
Particle Based Modeling of Electrical Field Flow Fractionation Systems
Directory of Open Access Journals (Sweden)
Tonguc O. Tasci
2015-10-01
Full Text Available Electrical Field Flow Fractionation (ElFFF is a sub method in the field flow fractionation (FFF family that relies on an applied voltage on the channel walls to effect a separation. ElFFF has fallen behind some of the other FFF methods because of the optimization complexity of its experimental parameters. To enable better optimization, a particle based model of the ElFFF systems has been developed and is presented in this work that allows the optimization of the main separation parameters, such as electric field magnitude, frequency, duty cycle, offset, flow rate and channel dimensions. The developed code allows visualization of individual particles inside the separation channel, generation of realistic fractograms, and observation of the effects of the various parameters on the behavior of the particle cloud. ElFFF fractograms have been generated via simulations and compared with experiments for both normal and cyclical ElFFF. The particle visualizations have been used to verify that high duty cycle voltages are essential to achieve long retention times and high resolution separations. Furthermore, by simulating the particle motions at the channel outlet, it has been demonstrated that the top channel wall should be selected as the accumulation wall for cyclical ElFFF to reduce band broadening and achieve high efficiency separations. While the generated particle based model is a powerful tool to estimate the outcomes of the ElFFF experiments and visualize particle motions, it can also be used to design systems with new geometries which may lead to the design of higher efficiency ElFFF systems. Furthermore, this model can be extended to other FFF techniques by replacing the electrical field component of the model with the fields used in the other FFF techniques.
Directory of Open Access Journals (Sweden)
T. R. Sun
2012-08-01
Full Text Available We performed global MHD simulations of the geosynchronous magnetic field in response to fast solar wind dynamic pressure (Pd enhancements. Taking three Pd enhancement events in 2000 as examples, we found that the main features of the total field B and the dominant component Bz can be efficiently predicted by the MHD model. The predicted B and Bz varies with local time, with the highest level near noon and a slightly lower level around mid-night. However, it is more challenging to accurately predict the responses of the smaller component at the geosynchronous orbit (i.e., Bx and By. In contrast, the limitations of T01 model in predicting responses to fast Pd enhancements are presented.
Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory
International Nuclear Information System (INIS)
Deviren, Bayram; Canko, Osman; Keskin, Mustafa
2010-01-01
Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)
Zero-field-cooled/field-cooled magnetization study of Dendrimer model
Energy Technology Data Exchange (ETDEWEB)
Arejdal, M., E-mail: arejdal.achdad@gmail.com [Laboratory of Magnetism and Physics of High Energies, Department of Physics, L.M.P.H.E (URAC-12), Faculty of Sciences, Mohammed V University, Rabat (Morocco); Bahmad, L. [Laboratory of Magnetism and Physics of High Energies, Department of Physics, L.M.P.H.E (URAC-12), Faculty of Sciences, Mohammed V University, Rabat (Morocco); Benyoussef, A. [Hassan II Academy of Science and Technology, Rabat (Morocco)
2017-01-01
Being motivated by Dendrimer model with mixed spins σ=3 and S=7/2, we investigated the magnetic nanoparticle system in this study. We analyzed and discussed the ground-state phase diagrams and the stable phases. Then, we elaborated and explained the magnetic properties of the system by using Monte Carlo Simulations (MCS) in the framework of the Ising model. In this way, we determined the blocking temperature, which is deduced through studying the partial-total magnetization and susceptibility as a function of the temperature, and we established the effects of both the exchange coupling interaction and the crystal field on the hysteresis loop.
MODELLING SYNERGISTIC EYE MOVEMENTS IN THE VISUAL FIELD
Directory of Open Access Journals (Sweden)
BARITZ Mihaela
2015-06-01
Full Text Available Some theoretical and practical considerations about eye movements in visual field are presented in the first part of this paper. These movements are developed into human body to be synergistic and are allowed to obtain the visual perception in 3D space. The theoretical background of the eye movements’ analysis is founded on the establishment of movement equations of the eyeball, as they consider it a solid body with a fixed point. The exterior actions, the order and execution of the movements are ensured by the neural and muscular external system and thus the position, stability and movements of the eye can be quantified through the method of reverse kinematic. The purpose of these researches is the development of a simulation model of human binocular visual system, an acquisition methodology and an experimental setup for data processing and recording regarding the eye movements, presented in the second part of the paper. The modeling system of ocular movements aims to establish the binocular synergy and limits of visual field changes in condition of ocular motor dysfunctions. By biomechanical movements of eyeball is established a modeling strategy for different sort of processes parameters like convergence, fixation and eye lens accommodation to obtain responses from binocular balance. The results of modelling processes and the positions of eye ball and axis in visual field are presented in the final part of the paper.
Numerical Analysis of Electromagnetic Fields in Multiscale Model
International Nuclear Information System (INIS)
Ma Ji; Fang Guang-You; Ji Yi-Cai
2015-01-01
Modeling technique for electromagnetic fields excited by antennas is an important topic in computational electromagnetics, which is concerned with the numerical solution of Maxwell's equations. In this paper, a novel hybrid technique that combines method of moments (MoM) with finite-difference time-domain (FDTD) method is presented to handle the problem. This approach employed Huygen's principle to realize the hybridization of the two classical numerical algorithms. For wideband electromagnetic data, the interpolation scheme is used in the MoM based on the dyadic Green's function. On the other hand, with the help of equivalence principle, the scattered electric and magnetic fields on the Huygen's surface calculated by MoM are taken as the sources for FDTD. Therefore, the electromagnetic fields in the environment can be obtained by employing finite-difference time-domain method. Finally, numerical results show the validity of the proposed technique by analyzing two canonical samples. (paper)
Gluon field strength correlation functions within a constrained instanton model
International Nuclear Information System (INIS)
Dorokhov, A.E.; Esaibegyan, S.V.; Maximov, A.E.; Mikhailov, S.V.
2000-01-01
We suggest a constrained instanton (CI) solution in the physical QCD vacuum which is described by large-scale vacuum field fluctuations. This solution decays exponentially at large distances. It is stable only if the interaction of the instanton with the background vacuum field is small and additional constraints are introduced. The CI solution is explicitly constructed in the ansatz form, and the two-point vacuum correlator of the gluon field strengths is calculated in the framework of the effective instanton vacuum model. At small distances the results are qualitatively similar to the single instanton case; in particular, the D 1 invariant structure is small, which is in agreement with the lattice calculations. (orig.)
Use of field experimental studies to evaluate emergency response models
International Nuclear Information System (INIS)
Gudiksen, P.H.; Lange, R.; Rodriguez, D.J.; Nasstrom, J.S.
1985-01-01
The three-dimensional diagnostic wind field model (MATHEW) and the particle-in-cell atmospheric transport and diffusion model (ADPIC) are used by the Atmospheric Release Advisory Capability to estimate the environmental consequences of accidental releases of radioactivity into the atmosphere. These models have undergone extensive evaluations against field experiments conducted in a variety of environmental settings ranging from relatively flat to very complex terrain areas. Simulations of tracer experiments conducted in a complex mountain valley setting revealed that 35 to 50% of the comparisons between calculated and measured tracer concentrations were within a factor of 5. This may be compared with a factor of 2 for 50% of the comparisons for relatively flat terrain. This degradation of results in complex terrain is due to a variety of factors such as the limited representativeness of measurements in complex terrain, the limited spatial resolution afforded by the models, and the turbulence parameterization based on sigma/sub theta/ measurements to evaluate the eddy diffusivities. Measurements of sigma/sub theta/ in complex terrain exceed those measured over flat terrain by a factor of 2 to 3 leading to eddy diffusivities that are unrealistically high. The results of model evaluations are very sensitive to the quality and the representativeness of the meteorological data. This is particularly true for measurements near the source. The capability of the models to simulate the dispersion of an instantaneously produced cloud of particulates was illustrated to be generally within a factor of 2 over flat terrain. 19 refs., 16 figs
Phase field model for the study of boiling
International Nuclear Information System (INIS)
Ruyer, P.
2006-07-01
This study concerns both the modeling and the numerical simulation of boiling flows. First we propose a review concerning nucleate boiling at high wall heat flux and focus more particularly on the current understanding of the boiling crisis. From this analysis we deduce a motivation for the numerical simulation of bubble growth dynamics. The main and remaining part of this study is then devoted to the development and analyze of a phase field model for the liquid-vapor flows with phase change. We propose a thermodynamic quasi-compressible formulation whose properties match the one required for the numerical study envisaged. The system of governing equations is a thermodynamically consistent regularization of the sharp interface model, that is the advantage of the di use interface models. We show that the thickness of the interface transition layer can be defined independently from the thermodynamic description of the bulk phases, a property that is numerically attractive. We derive the kinetic relation that allows to analyze the consequences of the phase field formulation on the model of the dissipative mechanisms. Finally we study the numerical resolution of the model with the help of simulations of phase transition in simple configurations as well as of isothermal bubble dynamics. (author)
Leaching of saltstone: Laboratory and field testing and mathematical modeling
International Nuclear Information System (INIS)
Grant, M.W.; Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wallace, R.M.; Wilhite, E.L.; Yau, W.W.F.
1987-01-01
A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a wasteform, saltstone, and disposed of in surface vaults. Laboratory and field leach testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet the design objective, which is to meet drinking water standards in shallow groundwater at the disposal area boundary. Diffusion is the predominant mechanism for release of contaminants to the environment. Leach testing in unsaturated soil, at soil moisture levels above 1 wt %, has shown no difference in leach rate compared to leaching in distilled water. Field leach testing of three thirty-ton blocks of saltstone in lysimeters has been underway since January 1984. Mathematical models were applied to assess design features for saltstone disposal. One dimensional infinite-composite and semi-infinite analytical models were developed for assessing diffusion of nitrate from saltstone through a cement barrier. Numerical models, both finite element and finite difference, were validated by comparison of model predictions with the saltstone lysimeter results. Validated models were used to assess the long-term performance of the saltstone stored in surface vaults. The maximum concentrations of all contaminants released from saltstone to shallow groundwater are predicted to be below drinking water standards at the disposal area boundary. 5 refs., 11 figs., 5 tabs
DEFF Research Database (Denmark)
Olsen, Nils; Sabaka, T.J.; Lowes, F.
2005-01-01
When deriving spherical harmonic models of the Earth's magnetic field, low-degree external field contributions are traditionally considered by assuming that their expansion coefficient q(1)(0) varies linearly with the D-st-index, while induced contributions are considered assuming a constant ratio...... Q(1) of induced to external coefficients. A value of Q(1) = 0.27 was found from Magsat data and has been used by several authors when deriving recent field models from Orsted and CHAMP data. We describe a new approach that considers external and induced field based on a separation of D-st = E-st + I......-st into external (E-st) and induced (I-st) parts using a 1D model of mantle conductivity. The temporal behavior of q(1)(0) and of the corresponding induced coefficient are parameterized by E-st and I-st, respectively. In addition, we account for baseline-instabilities of D-st by estimating a value of q(1...
Primordial black holes from single field models of inflation
Garcia-Bellido, Juan
Primordial black holes (PBH) have been shown to arise from high peaks in the matter power spectra of multi-field models of inflation. Here we show, with a simple toy model, that it is also possible to generate a peak in the curvature power spectrum of single-field inflation. We assume that the effective dynamics of the inflaton field presents a near-inflection point which slows down the field right before the end of inflation and gives rise to a prominent spike in the fluctuation power spectrum at scales much smaller than those probed by Cosmic Microwave Background (CMB) and Large Scale Structure (LSS) observations. This peak will give rise, upon reentry during the radiation era, to PBH via gravitational collapse. The mass and abundance of these PBH is such that they could constitute the totality of the Dark Matter today. We satisfy all CMB and LSS constraints and predict a very broad range of PBH masses. Some of these PBH are light enough that they will evaporate before structure formation, leaving behind a ...
Modeling study of the Pauzhetsky geothermal field, Kamchatka, Russia
Energy Technology Data Exchange (ETDEWEB)
Kiryukhin, A.V. [Institute of Volcanology, Kamchatsky (Russian Federation); Yampolsky, V.A. [Kamchatskburgeotermia State Enterprise, Elizovo (Russian Federation)
2004-08-01
Exploitation of the Pauzhetsky geothermal field started in 1966 with a 5 MW{sub e} power plant. A hydrogeological model of the Pauzhetsky field has been developed based on an integrated analysis of data on lithological units, temperature, pressure, production zones and natural discharge distributions. A one-layer 'well by well' model with specified vertical heat and mass exchange conditions has been used to represent the main features of the production reservoir. Numerical model development was based on the TOUGH2 code [Pruess, 1991. TOUGH2 - A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Lawrence Berkeley National Laboratory Report, Berkeley, CA; Pruess et al., 1999. TOUGH2 User's Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA] coupled with tables generated by the HOLA wellbore simulator [Aunzo et al., 1991. Wellbore Models GWELL, GWNACL, and HOLA, Users Guide, Draft, 81 pp.]. Lahey Fortran-90 compiler and computer graphical packages (Didger-3, Surfer-8, Grapher-3) were also used to model the development process. The modeling study of the natural-state conditions was targeted on a temperature distribution match to estimate the natural high-temperature upflow parameters: the mass flow-rate was estimated at 220 kg/s with enthalpy of 830-920 kJ/kg. The modeling study for the 1964-2000 exploitation period of the Pauzhetsky geothermal field was targeted at matching the transient reservoir pressure and flowing enthalpies of the production wells. The modeling study of exploitation confirmed that 'double porosity' in the reservoir, with a 10-20% active volume of 'fractures', and a thermo-mechanical response to reinjection (including changes in porosity due to compressibility and expansivity), were the key parameters of the model. The calibrated model of the Pauzhetsky geothermal field was used to forecast reservoir behavior under different exploitation scenarios for
Stress field models from Maxwell stress functions: southern California
Bird, Peter
2017-08-01
The lithospheric stress field is formally divided into three components: a standard pressure which is a function of elevation (only), a topographic stress anomaly (3-D tensor field) and a tectonic stress anomaly (3-D tensor field). The boundary between topographic and tectonic stress anomalies is somewhat arbitrary, and here is based on the modeling tools available. The topographic stress anomaly is computed by numerical convolution of density anomalies with three tensor Green's functions provided by Boussinesq, Cerruti and Mindlin. By assuming either a seismically estimated or isostatic Moho depth, and by using Poisson ratio of either 0.25 or 0.5, I obtain four alternative topographic stress models. The tectonic stress field, which satisfies the homogeneous quasi-static momentum equation, is obtained from particular second derivatives of Maxwell vector potential fields which are weighted sums of basis functions representing constant tectonic stress components, linearly varying tectonic stress components and tectonic stress components that vary harmonically in one, two and three dimensions. Boundary conditions include zero traction due to tectonic stress anomaly at sea level, and zero traction due to the total stress anomaly on model boundaries at depths within the asthenosphere. The total stress anomaly is fit by least squares to both World Stress Map data and to a previous faulted-lithosphere, realistic-rheology dynamic model of the region computed with finite-element program Shells. No conflict is seen between the two target data sets, and the best-fitting model (using an isostatic Moho and Poisson ratio 0.5) gives minimum directional misfits relative to both targets. Constraints of computer memory, execution time and ill-conditioning of the linear system (which requires damping) limit harmonically varying tectonic stress to no more than six cycles along each axis of the model. The primary limitation on close fitting is that the Shells model predicts very sharp
Modeling Enzymatic Transition States by Force Field Methods
DEFF Research Database (Denmark)
Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank
2009-01-01
The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... of the TS geometry on the flexibility of the system has been probed by fixing layers of atoms around the active site and using increasingly larger nonbonded cutoffs. The variability over the 20 structures is found to decrease as the system is made more flexible. Relative energies have been calculated...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...
Three-field modeling for MARS 1-D code
International Nuclear Information System (INIS)
Hwang, Moonkyu; Lim, Ho-Gon; Jeong, Jae-Jun; Chung, Bub-Dong
2006-01-01
In this study, the three-field modeling of the two-phase mixture is developed. The finite difference equations for the three-field equations thereafter are devised. The solution scheme has been implemented into the MARS 1-D code. The three-field formulations adopted are similar to those for MARS 3-D module, in a sense that the mass and momentum are treated separately for the entrained liquid and continuous liquid. As in the MARS-3D module, the entrained liquid and continuous liquid are combined into one for the energy equation, assuming thermal equilibrium between the two. All the non-linear terms are linearized to arrange the finite difference equation set into a linear matrix form with respect to the unknown arguments. The problems chosen for the assessment of the newly added entrained field consist of basic conceptual tests. Among the tests are gas-only test, liquid-only test, gas-only with supplied entrained liquid test, Edwards pipe problem, and GE level swell problem. The conceptual tests performed confirm the sound integrity of the three-field solver
Electromagnetic fields in small systems from a multiphase transport model
Zhao, Xin-Li; Ma, Yu-Gang; Ma, Guo-Liang
2018-02-01
We calculate the electromagnetic fields generated in small systems by using a multiphase transport (AMPT) model. Compared to A +A collisions, we find that the absolute electric and magnetic fields are not small in p +Au and d +Au collisions at energies available at the BNL Relativistic Heavy Ion Collider and in p +Pb collisions at energies available at the CERN Large Hadron Collider. We study the centrality dependencies and the spatial distributions of electromagnetic fields. We further investigate the azimuthal fluctuations of the magnetic field and its correlation with the fluctuating geometry using event-by-event simulations. We find that the azimuthal correlation 〈" close="〉cos(ϕα+ϕβ-2 ΨRP)〉">cos2 (ΨB-Ψ2) between the magnetic field direction and the second-harmonic participant plane is almost zero in small systems with high multiplicities, but not in those with low multiplicities. This indicates that the charge azimuthal correlation is not a valid probe to study the chiral magnetic effect (CME) in small systems with high multiplicities. However, we suggest searching for possible CME effects in small systems with low multiplicities.
A model for electron currents near a field null
International Nuclear Information System (INIS)
Stark, R.A.; Miley, G.H.
1987-01-01
The fluid approximation is invalid near a field null, since the local electron orbit size and the magnetic scale length are comparable. To model the electron currents in this region we propose a single equation of motion describing the bulk electron dynamics. The equation applies to the plasma within one thermal orbit size of the null. The region is treated as unmagnetized; electrons are accelerated by the inductive electric field and drag on ions; damping is provided by viscosity due to electrons and collisions with ions. Through variational calculations and a particle tracking code for electrons, the size of the terms in the equation of motion have been estimated. The resulting equation of motion combines with Faraday's Law to produce a governing equation which implicitly contains the self inductive field of the electrons. This governing equation predicts that viscosity prevents complete cancellation of the ion current density by the electrons in the null region. Thus electron dynamics near the field null should not prevent the formation and deepening of field reversal using neutral-beam injection
Magnetic field approaches in dc thermal plasma modelling
International Nuclear Information System (INIS)
Freton, P; Gonzalez, J J; Masquere, M; Reichert, Frank
2011-01-01
The self-induced magnetic field has an important role in thermal plasma configurations generated by electric arcs as it generates velocity through Lorentz forces. In the models a good representation of the magnetic field is thus necessary. Several approaches exist to calculate the self-induced magnetic field such as the Maxwell-Ampere formulation, the vector potential approach combined with different kinds of boundary conditions or the Biot and Savart (B and S) formulation. The calculation of the self-induced magnetic field is alone a difficult problem and only few papers of the thermal plasma community speak on this subject. In this study different approaches with different boundary conditions are applied on two geometries to compare the methods and their limitations. The calculation time is also one of the criteria for the choice of the method and a compromise must be found between method precision and computation time. The study shows the importance of the current carrying path representation in the electrode on the deduced magnetic field. The best compromise consists of using the B and S formulation on the walls and/or edges of the calculation domain to determine the boundary conditions and to solve the vector potential in a 2D system. This approach provides results identical to those obtained using the B and S formulation over the entire domain but with a considerable decrease in calculation time.
Model of unified gauge fields; Le modele des champs de jauge unifies
Energy Technology Data Exchange (ETDEWEB)
Leite Lopes, J. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author) 22 refs., 6 figs.
Immune Response to Electromagnetic Fields through Cybernetic Modeling
International Nuclear Information System (INIS)
Godina-Nava, J. J.; Segura, M. A. Rodriguez; Cadena, S. Reyes; Sierra, L. C. Gaitan
2008-01-01
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen
Immune Response to Electromagnetic Fields through Cybernetic Modeling
Godina-Nava, J. J.; Segura, M. A. Rodríguez; Cadena, S. Reyes; Sierra, L. C. Gaitán
2008-08-01
We study the optimality of the humoral immune response through a mathematical model, which involves the effect of electromagnetic fields over the large lymphocytes proliferation. Are used the so called cybernetic variables in the context of the matching law of microeconomics or mathematical psychology, to measure the large lymphocytes population and to maximize the instantaneous antibody production rate in time during the immunologic response in order to most efficiently inactivate the antigen.
Stress field modelling from digital geological map data
Albert, Gáspár; Barancsuk, Ádám; Szentpéteri, Krisztián
2016-04-01
To create a model for the lithospheric stress a functional geodatabase is required which contains spatial and geodynamic parameters. A digital structural-geological map is a geodatabase, which usually contains enough attributes to create a stress field model. Such a model is not accurate enough for engineering-geological purposes because simplifications are always present in a map, but in many cases maps are the only sources for a tectonic analysis. The here presented method is designed for field geologist, who are interested to see the possible realization of the stress field over the area, on which they are working. This study presents an application which can produce a map of 3D stress vectors from a kml-file. The core application logic is implemented on top of a spatially aware relational database management system. This allows rapid and geographically accurate analysis of the imported geological features, taking advantage of standardized spatial algorithms and indexing. After pre-processing the map features in a GIS, according to the Type-Property-Orientation naming system, which was described in a previous study (Albert et al. 2014), the first stage of the algorithm generates an irregularly spaced point cloud by emitting a pattern of points within a user-defined buffer zone around each feature. For each point generated, a component-wise approximation of the tensor field at the point's position is computed, derived from the original feature's geodynamic properties. In a second stage a weighted moving average method calculates the stress vectors in a regular grid. Results can be exported as geospatial data for further analysis or cartographic visualization. Computation of the tensor field's components is based on the implementation of the Mohr diagram of a compressional model, which uses a Coulomb fracture criterion. Using a general assumption that the main principal stress must be greater than the stress from the overburden, the differential stress is
Transport modelling including radial electric field and plasma rotation
International Nuclear Information System (INIS)
Fukuyama, A.; Fuji, Y.; Itoh, S.-I.
1994-01-01
Using a simple turbulent transport model with a constant diffusion coefficient and a fixed temperature profile, the density profile in a steady state and the transient behaviour during the co and counter neutral beam injection are studied. More consistent analysis has been initiated with a turbulent transport model based on the current diffusive high-n ballooning mode. The enhancement of the radial electric field due to ion orbit losses and the reduction of the transport due to the poloidal rotation shear are demonstrated. The preliminary calculation indicates a sensitive temperature dependence of the density profile. (author)
Effective potential in Lorentz-breaking field theory models
Energy Technology Data Exchange (ETDEWEB)
Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, Nova Gameleira Belo Horizonte, MG (Brazil); Setor Tecnico-Cientifico, Departamento de Policia Federal, Belo Horizonte, MG (Brazil); Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Felipe, J.C.C. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Engenharia, Ciencia e Tecnologia, Veredas, Janauba, MG (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)
2017-12-15
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)
Loop Corrections to Standard Model fields in inflation
Energy Technology Data Exchange (ETDEWEB)
Chen, Xingang [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics,60 Garden Street, Cambridge, MA 02138 (United States); Department of Physics, The University of Texas at Dallas,800 W Campbell Rd, Richardson, TX 75080 (United States); Wang, Yi [Department of Physics, The Hong Kong University of Science and Technology,Clear Water Bay, Kowloon, Hong Kong (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications, Harvard University,20 Garden Street, Cambridge, MA 02138 (United States)
2016-08-08
We calculate 1-loop corrections to the Schwinger-Keldysh propagators of Standard-Model-like fields of spin-0, 1/2, and 1, with all renormalizable interactions during inflation. We pay special attention to the late-time divergences of loop corrections, and show that the divergences can be resummed into finite results in the late-time limit using dynamical renormalization group method. This is our first step toward studying both the Standard Model and new physics in the primordial universe.
Scattering and short-distance properties in field theory models
International Nuclear Information System (INIS)
Iagolnitzer, D.
1987-01-01
The aim of constructive field theory is not only to define models but also to establish their general properties of physical interest. We here review recent works on scattering and on short-distance properties for weakly coupled theories with mass gap such as typically P(φ) in dimension 2, φ 4 in dimension 3 and the (renormalizable, asymptotically free) massive Gross-Neveu (GN) model in dimension 2. Many of the ideas would apply similarly to other (possibly non renormalizable) theories that might be defined in a similar way via phase-space analysis
Effective potential in Lorentz-breaking field theory models
International Nuclear Information System (INIS)
Baeta Scarpelli, A.P.; Brito, L.C.T.; Felipe, J.C.C.; Nascimento, J.R.; Petrov, A.Yu.
2017-01-01
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)
Integration of field data into operational snowmelt-runoff models
International Nuclear Information System (INIS)
Brandt, M.; Bergström, S.
1994-01-01
Conceptual runoff models have become standard tools for operational hydrological forecasting in Scandinavia. These models are normally based on observations from the national climatological networks, but in mountainous areas the stations are few and sometimes not representative. Due to the great economic importance of good hydrological forecasts for the hydro-power industry attempts have been made to improve the model simulations by support from field observations of the snowpack. The snowpack has been mapped by several methods; airborne gamma-spectrometry, airborne georadars, satellites and by conventional snow courses. The studies cover more than ten years of work in Sweden. The conclusion is that field observations of the snow cover have a potential for improvement of the forecasts of inflow to the reservoirs in the mountainous part of the country, where the climatological data coverages is poor. This is pronounced during years with unusual snow distribution. The potential for model improvement is smaller in the climatologically more homogeneous forested lowlands, where the climatological network is denser. The costs of introduction of airborne observations into the modelling procedure are high and can only be justified in areas of great hydropower potential. (author)
Classical nucleation theory in the phase-field crystal model.
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Wind field and trajectory models for tornado-propelled objects
International Nuclear Information System (INIS)
Anon
1978-01-01
This report contains the results of the second phase of a research program which has as its objective the development of a mathematical model to predict the trajectory of tornado-borne objects postulated to be in the vicinity of nuclear power plants. An improved tornado wind field model satisfies the no-slip ground boundary condition of fluid mechanics and includes the functional dependence of eddy viscosity with altitude. Sub-scale wind tunnel data are obtained for all of the missiles currently specified for nuclear plant design. Confirmatory full-scale data are obtained for a 12-inch pipe and automobile. The original six-degree-of-freedom trajectory model is modified to include the improved wind field and increased capability as to body shapes and inertial characteristics that can be handled. The improved trajectory model is used to calculate maximum credible speeds, which for all of the heavy missiles are considerably less than those currently specified for design. Equivalent coefficients for use in three-degree-of-freedom models are developed and the sensitivity of range and speed to various trajectory parameters for the 12-inch diameter pipe is examined
Classical nucleation theory in the phase-field crystal model
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Electronic field emission models beyond the Fowler-Nordheim one
Lepetit, Bruno
2017-12-01
We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.
A model of the magnetosheath magnetic field during magnetic clouds
Directory of Open Access Journals (Sweden)
L. Turc
2014-02-01
Full Text Available Magnetic clouds (MCs are huge interplanetary structures which originate from the Sun and have a paramount importance in driving magnetospheric storms. Before reaching the magnetosphere, MCs interact with the Earth's bow shock. This may alter their structure and therefore modify their expected geoeffectivity. We develop a simple 3-D model of the magnetosheath adapted to MCs conditions. This model is the first to describe the interaction of MCs with the bow shock and their propagation inside the magnetosheath. We find that when the MC encounters the Earth centrally and with its axis perpendicular to the Sun–Earth line, the MC's magnetic structure remains mostly unchanged from the solar wind to the magnetosheath. In this case, the entire dayside magnetosheath is located downstream of a quasi-perpendicular bow shock. When the MC is encountered far from its centre, or when its axis has a large tilt towards the ecliptic plane, the MC's structure downstream of the bow shock differs significantly from that upstream. Moreover, the MC's structure also differs from one region of the magnetosheath to another and these differences vary with time and space as the MC passes by. In these cases, the bow shock configuration is mainly quasi-parallel. Strong magnetic field asymmetries arise in the magnetosheath; the sign of the magnetic field north–south component may change from the solar wind to some parts of the magnetosheath. We stress the importance of the Bx component. We estimate the regions where the magnetosheath and magnetospheric magnetic fields are anti-parallel at the magnetopause (i.e. favourable to reconnection. We find that the location of anti-parallel fields varies with time as the MCs move past Earth's environment, and that they may be situated near the subsolar region even for an initially northward magnetic field upstream of the bow shock. Our results point out the major role played by the bow shock configuration in modifying or keeping the
Vortex ring state by full-field actuator disc model
Energy Technology Data Exchange (ETDEWEB)
Soerensen, J.N.; Shen, W.Z.; Munduate, X. [DTU, Dept. of Energy Engineering, Lyngby (Denmark)
1997-08-01
One-dimensional momentum theory provides a simple analytical tool for analysing the gross flow behavior of lifting propellers and rotors. Combined with a blade-element strip-theory approach, it has for many years been the most popular model for load and performance predictions of wind turbines. The model works well at moderate and high wind velocities, but is not reliable at small wind velocities, where the expansion of the wake is large and the flow field behind the rotor dominated by turbulent mixing. This is normally referred to as the turbulent wake state or the vortex ring state. In the vortex ring state, momentum theory predicts a decrease of thrust whereas the opposite is found from experiments. The reason for the disagreement is that recirculation takes place behind the rotor with the consequence that the stream tubes past the rotor becomes effectively chocked. This represents a condition at which streamlines no longer carry fluid elements from far upstream to far downstream, hence one-dimensional momentum theory is invalid and empirical corrections have to be introduced. More sophisticated analytical or semi-analytical rotor models have been used to describe stationary flow fields for heavily loaded propellers. In recent years generalized actuator disc models have been developed, but up to now no detailed computations of the turbulent wake state or the vortex ring state have been performed. In the present work the phenomenon is simulated by direct simulation of the Navier-Stokes equations, where the influence of the rotor on the flow field is modelled simply by replacing the blades by an actuator disc with a constant normal load. (EG) 13 refs.
Validation of community models: 3. Tracing field lines in heliospheric models
MacNeice, Peter; Elliott, Brian; Acebal, Ariel
2011-10-01
Forecasting hazardous gradual solar energetic particle (SEP) bursts at Earth requires accurately modeling field line connections between Earth and the locations of coronal or interplanetary shocks that accelerate the particles. We test the accuracy of field lines reconstructed using four different models of the ambient coronal and inner heliospheric magnetic field, through which these shocks must propagate, including the coupled Wang-Sheeley-Arge (WSA)/ENLIL model. Evaluating the WSA/ENLIL model performance is important since it is the most sophisticated model currently available to space weather forecasters which can model interplanetary coronal mass ejections and, when coupled with particle acceleration and transport models, will provide a complete model for gradual SEP bursts. Previous studies using a simpler Archimedean spiral approach above 2.5 solar radii have reported poor performance. We test the accuracy of the model field lines connecting Earth to the Sun at the onset times of 15 impulsive SEP bursts, comparing the foot points of these field lines with the locations of surface events believed to be responsible for the SEP bursts. We find the WSA/ENLIL model performance is no better than the simplest spiral model, and the principal source of error is the model's inability to reproduce sufficient low-latitude open flux. This may be due to the model's use of static synoptic magnetograms, which fail to account for transient activity in the low corona, during which reconnection events believed to initiate the SEP acceleration may contribute short-lived open flux at low latitudes. Time-dependent coronal models incorporating these transient events may be needed to significantly improve Earth/Sun field line forecasting.
The effective field theory of inflation models with sharp features
International Nuclear Information System (INIS)
Bartolo, Nicola; Cannone, Dario; Matarrese, Sabino
2013-01-01
We describe models of single-field inflation with small and sharp step features in the potential (and sound speed) of the inflaton field, in the context of the Effective Field Theory of Inflation. This approach allows us to study the effects of features in the power-spectrum and in the bispectrum of curvature perturbations, from a model-independent point of view, by parametrizing the features directly with modified ''slow-roll'' parameters. We can obtain a self-consistent power-spectrum, together with enhanced non-Gaussianity, which grows with a quantity β that parametrizes the sharpness of the step. With this treatment it is straightforward to generalize and include features in other coefficients of the effective action of the inflaton field fluctuations. Our conclusion in this case is that, excluding extrinsic curvature terms, the only interesting effects at the level of the bispectrum could arise from features in the first slow-roll parameter ε or in the speed of sound c s . Finally, we derive an upper bound on the parameter β from the consistency of the perturbative expansion of the action for inflaton perturbations. This constraint can be used for an estimation of the signal-to-noise ratio, to show that the observable which is most sensitive to features is the power-spectrum. This conclusion would change if we consider the contemporary presence of a feature and a speed of sound c s < 1, as, in such a case, contributions from an oscillating folded configuration can potentially make the bispectrum the leading observable for feature models
Weathering of oils at sea: model/field data comparisons
International Nuclear Information System (INIS)
Daling, Per S.; Stroem, Tove
1999-01-01
The SINTEF Oil Weathering Model (OWM) has been extensively tested with results from full-scale field trials with experimental oil slicks in the Norwegian NOFO Sea trials in 1994 and 1995 and the AEA 1997 trials in UK. The comparisons between oil weathering values predicted by the model and ground-truth obtained from the field trials are presented and discussed. Good laboratory weathering data of the specific oil as input to the model is essential for obtaining reliable weathering predictions. Predications provided by the SINTEF-OWM enable oil spill personnel to estimate the most appropriate 'window of opportunity' for use of chemical dispersants under various spill situations. Pre-spill scenario analysis with the SINTEF Oil Spill Contingency and Response (OSCAR) model system, in which the SINTEF-OWM is one of several components, has become an important part of contingency plans as well as contingency training of oil spill personnel at refineries, oil terminals and offshore installations in Norway. (Author)
Phase diagram of the mean field model of simplicial gravity
International Nuclear Information System (INIS)
Bialas, P.; Burda, Z.; Johnston, D.
1999-01-01
We discuss the phase diagram of the balls in boxes model, with a varying number of boxes. The model can be regarded as a mean-field model of simplicial gravity. We analyse in detail the case of weights of the form p(q) = q -β , which correspond to the measure term introduced in the simplicial quantum gravity simulations. The system has two phases: elongated (fluid) and crumpled. For β ε (2, ∞) the transition between these two phases is first-order, while for β ε (1, 2) it is continuous. The transition becomes softer when β approaches unity and eventually disappears at β = 1. We then generalise the discussion to an arbitrary set of weights. Finally, we show that if one introduces an additional kinematic bound on the average density of balls per box then a new condensed phase appears in the phase diagram. It bears some similarity to the crinkled phase of simplicial gravity discussed recently in models of gravity interacting with matter fields
Relativistic Chiral Mean Field Model for Finite Nuclei
Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.
2009-08-01
We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}
Individual based and mean-field modeling of direct aggregation
Burger, Martin
2013-10-01
We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.
Individual based and mean-field modeling of direct aggregation
Burger, Martin; Haskovec, Jan; Wolfram, Marie-Therese
2013-01-01
We introduce two models of biological aggregation, based on randomly moving particles with individual stochasticity depending on the perceived average population density in their neighborhood. In the firstorder model the location of each individual is subject to a density-dependent random walk, while in the second-order model the density-dependent random walk acts on the velocity variable, together with a density-dependent damping term. The main novelty of our models is that we do not assume any explicit aggregative force acting on the individuals; instead, aggregation is obtained exclusively by reducing the individual stochasticity in response to higher perceived density. We formally derive the corresponding mean-field limits, leading to nonlocal degenerate diffusions. Then, we carry out the mathematical analysis of the first-order model, in particular, we prove the existence of weak solutions and show that it allows for measure-valued steady states. We also perform linear stability analysis and identify conditions for pattern formation. Moreover, we discuss the role of the nonlocality for well-posedness of the first-order model. Finally, we present results of numerical simulations for both the first- and second-order model on the individual-based and continuum levels of description. 2012 Elsevier B.V. All rights reserved.
Rigorously testing multialternative decision field theory against random utility models.
Berkowitsch, Nicolas A J; Scheibehenne, Benjamin; Rieskamp, Jörg
2014-06-01
Cognitive models of decision making aim to explain the process underlying observed choices. Here, we test a sequential sampling model of decision making, multialternative decision field theory (MDFT; Roe, Busemeyer, & Townsend, 2001), on empirical grounds and compare it against 2 established random utility models of choice: the probit and the logit model. Using a within-subject experimental design, participants in 2 studies repeatedly choose among sets of options (consumer products) described on several attributes. The results of Study 1 showed that all models predicted participants' choices equally well. In Study 2, in which the choice sets were explicitly designed to distinguish the models, MDFT had an advantage in predicting the observed choices. Study 2 further revealed the occurrence of multiple context effects within single participants, indicating an interdependent evaluation of choice options and correlations between different context effects. In sum, the results indicate that sequential sampling models can provide relevant insights into the cognitive process underlying preferential choices and thus can lead to better choice predictions. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Phase-field modelling of microstructural evolution and properties
Zhu, Jingzhi
As one of the most powerful techniques in computational materials science, the diffuse-interface phase-field model has been widely employed for simulating various meso-scale microstructural evolution processes. The main purpose of this thesis is to develop a quantitative phase-field model for predicting microstructures and properties in real alloy systems which can be linked to existing thermodynamic/kinetic databases and parameters obtained from experimental measurements or first-principle calculations. To achieve this goal; many factors involved in complicated real systems are investigated, many of which are often simplified or ignored in existing models, e.g. the dependence of diffusional atomic mobility and elastic constants on composition. Efficient numerical techniques must be developed to solve those partial differential equations that are involved in modelling microstructural evolutions and properties. In this thesis, different spectral methods were proposed for the time-dependent phase-field kinetic equations and diffusion equations. For solving the elastic equilibrium equation with the consideration of elastic inhomogeneity, a conjugate gradient method was utilized. The numerical approaches developed were generally found to be more accurate and efficient than conventional approach such as finite difference method. A composition-dependent Cahn-Hilliard equation was solved by using a semi-implicit Fourier-spectral method. It was shown that the morphological evolutions in bulk-diffusion-controlled coarsening and interface-diffusion-controlled developed similar patterns and scaling behaviors. For bulk-diffusion-controlled coarsening, a cubic growth law was obeyed in the scaling regime, whereas a fourth power growth law was observed for interface-diffusion-controlled coarsening. The characteristics of a microstructure under the influence of elastic energy depend on elastic properties such as elastic anisotropy, lattice mismatch, elastic inhomogeneity and
Large-scale modeling of rain fields from a rain cell deterministic model
FéRal, Laurent; Sauvageot, Henri; Castanet, Laurent; Lemorton, JoëL.; Cornet, FréDéRic; Leconte, Katia
2006-04-01
A methodology to simulate two-dimensional rain rate fields at large scale (1000 × 1000 km2, the scale of a satellite telecommunication beam or a terrestrial fixed broadband wireless access network) is proposed. It relies on a rain rate field cellular decomposition. At small scale (˜20 × 20 km2), the rain field is split up into its macroscopic components, the rain cells, described by the Hybrid Cell (HYCELL) cellular model. At midscale (˜150 × 150 km2), the rain field results from the conglomeration of rain cells modeled by HYCELL. To account for the rain cell spatial distribution at midscale, the latter is modeled by a doubly aggregative isotropic random walk, the optimal parameterization of which is derived from radar observations at midscale. The extension of the simulation area from the midscale to the large scale (1000 × 1000 km2) requires the modeling of the weather frontal area. The latter is first modeled by a Gaussian field with anisotropic covariance function. The Gaussian field is then turned into a binary field, giving the large-scale locations over which it is raining. This transformation requires the definition of the rain occupation rate over large-scale areas. Its probability distribution is determined from observations by the French operational radar network ARAMIS. The coupling with the rain field modeling at midscale is immediate whenever the large-scale field is split up into midscale subareas. The rain field thus generated accounts for the local CDF at each point, defining a structure spatially correlated at small scale, midscale, and large scale. It is then suggested that this approach be used by system designers to evaluate diversity gain, terrestrial path attenuation, or slant path attenuation for different azimuth and elevation angle directions.
Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification
Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.
2017-12-01
Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data
Field Trial Measurements to Validate a Stochastic Aircraft Boarding Model
Directory of Open Access Journals (Sweden)
Michael Schultz
2018-03-01
Full Text Available Efficient boarding procedures have to consider both operational constraints and the individual passenger behavior. In contrast to the aircraft handling processes of fueling, catering and cleaning, the boarding process is more driven by passengers than by airport or airline operators. This paper delivers a comprehensive set of operational data including classification of boarding times, passenger arrival times, times to store hand luggage, and passenger interactions in the aircraft cabin as a reliable basis for calibrating models for aircraft boarding. In this paper, a microscopic approach is used to model the passenger behavior, where the passenger movement is defined as a one-dimensional, stochastic, and time/space discrete transition process. This model is used to compare measurements from field trials of boarding procedures with simulation results and demonstrates a deviation smaller than 5%.
Coalescing colony model: Mean-field, scaling, and geometry
Carra, Giulia; Mallick, Kirone; Barthelemy, Marc
2017-12-01
We analyze the coalescing model where a `primary' colony grows and randomly emits secondary colonies that spread and eventually coalesce with it. This model describes population proliferation in theoretical ecology, tumor growth, and is also of great interest for modeling urban sprawl. Assuming the primary colony to be always circular of radius r (t ) and the emission rate proportional to r (t) θ , where θ >0 , we derive the mean-field equations governing the dynamics of the primary colony, calculate the scaling exponents versus θ , and compare our results with numerical simulations. We then critically test the validity of the circular approximation for the colony shape and show that it is sound for a constant emission rate (θ =0 ). However, when the emission rate is proportional to the perimeter, the circular approximation breaks down and the roughness of the primary colony cannot be discarded, thus modifying the scaling exponents.
Neural field model of memory-guided search.
Kilpatrick, Zachary P; Poll, Daniel B
2017-12-01
Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.
Neural field model of memory-guided search
Kilpatrick, Zachary P.; Poll, Daniel B.
2017-12-01
Many organisms can remember locations they have previously visited during a search. Visual search experiments have shown exploration is guided away from these locations, reducing redundancies in the search path before finding a hidden target. We develop and analyze a two-layer neural field model that encodes positional information during a search task. A position-encoding layer sustains a bump attractor corresponding to the searching agent's current location, and search is modeled by velocity input that propagates the bump. A memory layer sustains persistent activity bounded by a wave front, whose edges expand in response to excitatory input from the position layer. Search can then be biased in response to remembered locations, influencing velocity inputs to the position layer. Asymptotic techniques are used to reduce the dynamics of our model to a low-dimensional system of equations that track the bump position and front boundary. Performance is compared for different target-finding tasks.
Magnetic islands modelled by a phase-field-crystal approach
Faghihi, Niloufar; Mkhonta, Simiso; Elder, Ken R.; Grant, Martin
2018-03-01
Using a minimal model based on the phase-field-crystal formalism, we study the coupling between the density and magnetization in ferromagnetic solids. Analytical calculations for the square phase in two dimensions are presented and the small deformation properties of the system are examined. Furthermore, numerical simulations are conducted to study the influence of an external magnetic field on various phase transitions, the anisotropic properties of the free energy functional, and the scaling behaviour of the growth of the magnetic domains in a crystalline solid. It is shown that the energy of the system can depend on the direction of the magnetic moments, with respect to the crystalline direction. Furthermore, the growth of the magnetic domains in a crystalline solid is studied and is shown that the growth of domains is in agreement with expected behaviour.
Modelling of the Global Geopotential Energy & Stress Field
DEFF Research Database (Denmark)
Schiffer, Christian; Nielsen, S.B.
Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through...... the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid...... flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications....
Renormalization of supersymmetric models without using auxiliary fields
International Nuclear Information System (INIS)
Urbanek, P.
1986-01-01
Previously a linear representation of supersymmetry (Ss) was used in investigations of renormalizability. There auxiliary fields have been introduced in order that the Ss-algebra closes 'off-shell'. When the auxiliary fields are eliminated by their equations of motion, the Ss representation becomes nonlinear and Ss closes only 'on-shell'. Following O.Piguet and K.Sibold 1984 Ss is expressed through Ward identities which are formulated as functional variations of the generating functional of the Green functions. These functional operators form a closed algebra, a fact essential for the proof of renormalizability, which is given. It is not necessary to use a specific subtraction scheme in the Green functions. The procedure is applied to the Wess-Zumino model and the supersymmetric extension of the quantum electrodynamics. 15 refs. (qui)
FDTD modeling of EM field inside microwave cavities
Narayan, Shiv; Kanth, V Krushna
2017-01-01
This book deals with the EM analysis of closed microwave cavities based on a three-dimensional FDTD method. The EM analysis is carried out for (i) rectangular microwave ovens and (ii) hybrid-cylindrical microwave autoclaves at 2.45 GHz. The field distribution is first estimated inside domestic rectangular ovens in xy-, yz-, and zx-plane. Further, the RF leakage from the oven door is determined to study the effect of leakage radiation on wireless communication at 2.45 GHz. Furthermore, the EM analysis of the autoclave is carried out based on 3D FDTD using staircase approximation. In order to show the capability of autoclaves (excited with five source) for curing the aerospace components and materials, the field distribution inside autoclave cavity is studied in presence of aerospace samples. The FDTD based modelling of oven and autoclave are explained with the appropriate expressions and illustrations.
Consistent constraints on the Standard Model Effective Field Theory
International Nuclear Information System (INIS)
Berthier, Laure; Trott, Michael
2016-01-01
We develop the global constraint picture in the (linear) effective field theory generalisation of the Standard Model, incorporating data from detectors that operated at PEP, PETRA, TRISTAN, SpS, Tevatron, SLAC, LEPI and LEP II, as well as low energy precision data. We fit one hundred and three observables. We develop a theory error metric for this effective field theory, which is required when constraints on parameters at leading order in the power counting are to be pushed to the percent level, or beyond, unless the cut off scale is assumed to be large, Λ≳ 3 TeV. We more consistently incorporate theoretical errors in this work, avoiding this assumption, and as a direct consequence bounds on some leading parameters are relaxed. We show how an S,T analysis is modified by the theory errors we include as an illustrative example.
A novel mathematical model for controllable near-field electrospinning
International Nuclear Information System (INIS)
Ru, Changhai; Chen, Jie; Shao, Zhushuai; Pang, Ming; Luo, Jun
2014-01-01
Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers
A novel mathematical model for controllable near-field electrospinning
Ru, Changhai; Chen, Jie; Shao, Zhushuai; Pang, Ming; Luo, Jun
2014-01-01
Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.
A novel mathematical model for controllable near-field electrospinning
Energy Technology Data Exchange (ETDEWEB)
Ru, Changhai, E-mail: rchhai@gmail.com, E-mail: luojun@shu.edu.cn [College of Automation, Harbin Engineering University, Harbin 150001 (China); Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China); Chen, Jie; Shao, Zhushuai [Robotics and Microsystems Center, Soochow University, Suzhou 215021 (China); Pang, Ming [College of Automation, Harbin Engineering University, Harbin 150001 (China); Luo, Jun, E-mail: rchhai@gmail.com, E-mail: luojun@shu.edu.cn [School of Mechatronics Engineering and Automation, Shanghai University, Shanghai 200072 (China)
2014-01-15
Near-field electrospinning (NFES) had better controllability than conventional electrospinning. However, due to the lack of guidance of theoretical model, precise deposition of micro/nano fibers could only accomplished by experience. To analyze the behavior of charged jet in NFES using mathematical model, the momentum balance equation was simplified and a new expression between jet cross-sectional radius and axial position was derived. Using this new expression and mass conservation equation, expressions for jet cross-sectional radius and velocity were derived in terms of axial position and initial jet acceleration in the form of exponential functions. Based on Slender-body theory and Giesekus model, a quadratic equation for initial jet acceleration was acquired. With the proposed model, it was able to accurately predict the diameter and velocity of polymer fibers in NFES, and mathematical analysis rather than experimental methods could be applied to study the effects of the process parameters in NFES. Moreover, the movement velocity of the collector stage can be regulated by mathematical model rather than experience. Therefore, the model proposed in this paper had important guiding significance to precise deposition of polymer fibers.
Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin
2011-05-01
The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is
MODELING OF TEMPERATURE FIELDS IN A SOLID HEAT ACCUMULLATORS
Directory of Open Access Journals (Sweden)
S. S. Belimenko
2016-10-01
Full Text Available Purpose. Currently, one of the priorities of energy conservation is a cost savings for heating in commercial and residential buildings by the stored thermal energy during the night and its return in the daytime. Economic effect is achieved due to the difference in tariffs for the cost of electricity in the daytime and at night. One of the most common types of devices that allow accumulating and giving the resulting heat are solid heat accumulators. The main purpose of the work: 1 software development for the calculation of the temperature field of a flat solid heat accumulator, working due to the heat energy accumulation in the volume of thermal storage material without phase transition; 2 determination the temperature distribution in its volumes at convective heat transfer. Methodology. To achieve the study objectives a heat transfer theory and Laplace integral transform were used. On its base the problems of determining the temperature fields in the channels of heat accumulators, having different cross-sectional shapes were solved. Findings. Authors have developed the method of calculation and obtained solutions for the determination of temperature fields in channels of the solid heat accumulator in conditions of convective heat transfer. Temperature fields over length and thickness of channels were investigated. Experimental studies on physical models and industrial equipment were conducted. Originality. For the first time the technique of calculating the temperature field in the channels of different cross-section for the solid heat accumulator in the charging and discharging modes was proposed. The calculation results are confirmed by experimental research. Practical value. The proposed technique is used in the design of solid heat accumulators of different power as well as full-scale production of them was organized.
Pesticide uptake in potatoes: model and field experiments.
Juraske, Ronnie; Vivas, Carmen S Mosquera; Velásquez, Alexander Erazo; Santos, Glenda García; Moreno, Mónica B Berdugo; Gomez, Jaime Diaz; Binder, Claudia R; Hellweg, Stefanie; Dallos, Jairo A Guerrero
2011-01-15
A dynamic model for uptake of pesticides in potatoes is presented and evaluated with measurements performed within a field trial in the region of Boyacá, Colombia. The model takes into account the time between pesticide applications and harvest, the time between harvest and consumption, the amount of spray deposition on soil surface, mobility and degradation of pesticide in soil, diffusive uptake and persistence due to crop growth and metabolism in plant material, and loss due to food processing. Food processing steps included were cleaning, washing, storing, and cooking. Pesticide concentrations were measured periodically in soil and potato samples from the beginning of tuber formation until harvest. The model was able to predict the magnitude and temporal profile of the experimentally derived pesticide concentrations well, with all measurements falling within the 90% confidence interval. The fraction of chlorpyrifos applied on the field during plant cultivation that eventually is ingested by the consumer is on average 10(-4)-10(-7), depending on the time between pesticide application and ingestion and the processing step considered.
Multiagent model and mean field theory of complex auction dynamics
Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng
2015-09-01
Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.
Multiagent model and mean field theory of complex auction dynamics
International Nuclear Information System (INIS)
Chen, Qinghua; Wang, Yougui; Huang, Zi-Gang; Lai, Ying-Cheng
2015-01-01
Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena. (paper)
Modeling stretched solitary waves along magnetic field lines
Directory of Open Access Journals (Sweden)
L. Muschietti
2002-01-01
Full Text Available A model is presented for a new type of fast solitary waves which is observed in downward current regions of the auroral zone. The three-dimensional, coherent structures are electrostatic, have a positive potential, and move along the magnetic field lines with speeds on the order of the electron drift. Their parallel potential profile is flattened and cannot fit to the Gaussian shape used in previous work. We develop a detailed BGK model which includes a flattened potential and an assumed cylindrical symmetry around a centric magnetic field line. The model envisions concentric shells of trapped electrons slowly drifting azimuthally while bouncing back and forth in the parallel direction. The electron dynamics is analysed in terms of three basic motions that occur on different time scales characterized by the cyclotron frequency We , the bounce frequency wb , and the azimuthal drift frequency wg. The ordering We >> wb >> wg is required. Self-consistent distribution functions are calculated in terms of approximate constants of motion. Constraints on the parameters characterizing the amplitude and shape of the stretched solitary wave are discussed.
Pairing gaps from nuclear mean-field models
International Nuclear Information System (INIS)
Bender, M.; Rutz, K.; Maruhn, J.A.
2000-01-01
We discuss the pairing gap, a measure for nuclear pairing correlations, in chains of spherical, semi-magic nuclei in the framework of self-consistent nuclear mean-field models. The equations for the conventional BCS model and the approximate projection-before-variation Lipkin-Nogami method are formulated in terms of local density functionals for the effective interaction. We calculate the Lipkin-Nogami corrections of both the mean-field energy and the pairing energy. Various definitions of the pairing gap are discussed as three-point, four-point and five-point mass-difference formulae, averaged matrix elements of the pairing potential, and single-quasiparticle energies. Experimental values for the pairing gap are compared with calculations employing both a delta pairing force and a density-dependent delta interaction in the BCS and Lipkin-Nogami model. Odd-mass nuclei are calculated in the spherical blocking approximation which neglects part of the the core polarization in the odd nucleus. We find that the five-point mass difference formula gives a very robust description of the odd-even staggering, other approximations for the gap may differ from that up to 30% for certain nuclei. (orig.)
Spikes and matter inhomogeneities in massless scalar field models
International Nuclear Information System (INIS)
Coley, A A; Lim, W C
2016-01-01
We shall discuss the general relativistic generation of spikes in a massless scalar field or stiff perfect fluid model. We first investigate orthogonally transitive (OT) G 2 stiff fluid spike models both heuristically and numerically, and give a new exact OT G 2 stiff fluid spike solution. We then present a new two-parameter family of non-OT G 2 stiff fluid spike solutions, obtained by the generalization of non-OT G 2 vacuum spike solutions to the stiff fluid case by applying Geroch’s transformation on a Jacobs seed. The dynamics of these new stiff fluid spike solutions is qualitatively different from that of the vacuum spike solutions in that the matter (stiff fluid) feels the spike directly and the stiff fluid spike solution can end up with a permanent spike. We then derive the evolution equations of non-OT G 2 stiff fluid models, including a second perfect fluid, in full generality, and briefly discuss some of their qualitative properties and their potential numerical analysis. Finally, we discuss how a fluid, and especially a stiff fluid or massless scalar field, affects the physics of the generation of spikes. (paper)
International Nuclear Information System (INIS)
Baseilhac, P.; Fateev, V.A.
1998-01-01
We calculate the vacuum expectation values of local fields for the two-parameter family of integrable field theories introduced and studied by Fateev (1996). Using this result we propose an explicit expression for the vacuum expectation values of local operators in parafermionic sine-Gordon models and in integrable perturbed SU(2) coset conformal field theories. (orig.)
Yanqing solar field: Dynamic optical model and operational safety analysis
International Nuclear Information System (INIS)
Zhao, Dongming; Wang, Zhifeng; Xu, Ershu; Zhu, Lingzhi; Lei, Dongqiang; Xu, Li; Yuan, Guofeng
2017-01-01
Highlights: • A dynamic optical model of the Yanqing solar field was built. • Tracking angle characteristics were studied with different SCA layouts and time. • The average energy flux was simulated across four clear days. • Influences of defocus angles for energy flux were analyzed. - Abstract: A dynamic optical model was established for the Yanqing solar field at the parabolic trough solar thermal power plant and a simulation was conducted on four separate days of clear weather (March 3rd, June 2nd, September 25th, December 17th). The solar collector assembly (SCA) was comprised of a North-South and East-West layout. The model consisted of the following modules: DNI, SCA operational, and SCA optical. The tracking angle characteristics were analyzed and the results showed that the East-West layout of the tracking system was the most viable. The average energy flux was simulated for a given time period and different SCA layouts, yielding an average flux of 6 kW/m 2 , which was then used as the design and operational standards of the Yanqing parabolic trough plant. The mass flow of North-South layout was relatively stable. The influences of the defocus angles on both the average energy flux and the circumferential flux distribution were also studied. The results provided a theoretical basis for the following components: solar field design, mass flow control of the heat transfer fluid, design and operation of the tracking system, operational safety of SCAs, and power production prediction in the Yanqing 1 MW parabolic trough plant.
Modeling transport and reaction in an electric DC field
Energy Technology Data Exchange (ETDEWEB)
Arnerdal, K.; Neretnieks, I. [Dept. of Chemical Engineering and Technology, Royal Inst. of Tech. (Sweden)
2001-07-01
Remediation of contaminated soils from heavy metals can be accomplished by subjecting the soil to an electric DC field. In an electric field dissolved metals will move to either the cathode or the anode depending on their charges. During the course of remediation, precipitated and sorbed species will dissolve as the solute is depleted. Our previous remediation experiments on kaolinite soil and sandy loam show high remediation efficiency. In new experiments we studied the reaction and transport of copper in sand and sand/bentonite mixtures with a constant applied potential. For clays with high pH buffer capacity and cation exchange capacity the results were not satisfying, because of insufficient desorption of the metals from the clay. The parameters measured at different time intervals were potential gradient, current density, pH and metal concentration. We present a mathematical and numerical model that is used for interpretation of the results from the remediation experiments. The model uses electromigration and diffusion to describe the transport of heavy metals and other ions. The remediation experiments are supplemented by batch experiments used to assess the acid neutralisation capacity and sorption distribution coefficients at different pH's for the heavy metal ions. These are essential data needed for the modelling and can be used to assess if a remediation could be accomplished within reasonable time. The results show that the reaction data used to explain acid neutralisation capacity estimated in batch experiments can be used to model the main trends of the development of the current density and the potential profile. However the pH profile and the free copper concentration can not be modelled with this equilibrium description. (orig.)
Effective Orthorhombic Anisotropic Models for Wave field Extrapolation
Ibanez Jacome, Wilson
2013-05-01
Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the
A mean-field game economic growth model
Gomes, Diogo A.
2016-08-05
Here, we examine a mean-field game (MFG) that models the economic growth of a population of non-cooperative, rational agents. In this MFG, agents are described by two state variables - the capital and consumer goods they own. Each agent seeks to maximize his/her utility by taking into account statistical data about the whole population. The individual actions drive the evolution of the players, and a market-clearing condition determines the relative price of capital and consumer goods. We study the existence and uniqueness of optimal strategies of the agents and develop numerical methods to compute these strategies and the equilibrium price.
Phase field modeling of dendritic coarsening during isothermal
Directory of Open Access Journals (Sweden)
Zhang Yutuo
2011-08-01
Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.
Dispersion of tracers by the oceanic eddy field modelling programme
International Nuclear Information System (INIS)
Richards, K.J.
1986-01-01
A numerical model has been developed to study the dispersion of tracers by the oceanic eddy field. The study is designed to investigate the horizontal and vertical structure of the eddies and how this structure is influenced by the bottom topography. It is found that hills and valleys have a strong effect on the eddies above them. The flow close to the bottom has a tendency to be steered by the height contours. The surface and bottom flows become decorrelated and the vertical variation of the kinetic energy of the eddies is increased with higher topographic features. (author)
Results of the ITER toroidal field model coil project
International Nuclear Information System (INIS)
Salpietro, E.; Maix, R.
2001-01-01
In the scope of the ITER EDA one of the seven largest projects was devoted to the development, manufacture and testing of a Toroidal Field Model Coil (TFMC). The industry consortium AGAN manufactured the TFMC based on on a conceptual design developed by the ITER EDA EU Home Team. The TFMC was completed and assembled in the test facility TOSKA of the Forschungszentrum Karlsruhe in the first half of 2001. The first testing phase started in June 2001 and lasted till October 2001. The first results have shown that the main goals of the project have been achieved
How to use the Standard Model effective field theory
Energy Technology Data Exchange (ETDEWEB)
Henning, Brian; Lu, Xiaochuan [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Murayama, Hitoshi [Department of Physics, University of California, Berkeley,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States); Kavli Institute for the Physics and Mathematics of the Universe (WPI),Todai Institutes for Advanced Study, University of Tokyo,Kashiwa 277-8583 (Japan)
2016-01-05
We present a practical three-step procedure of using the Standard Model effective field theory (SM EFT) to connect ultraviolet (UV) models of new physics with weak scale precision observables. With this procedure, one can interpret precision measurements as constraints on a given UV model. We give a detailed explanation for calculating the effective action up to one-loop order in a manifestly gauge covariant fashion. This covariant derivative expansion method dramatically simplifies the process of matching a UV model with the SM EFT, and also makes available a universal formalism that is easy to use for a variety of UV models. A few general aspects of RG running effects and choosing operator bases are discussed. Finally, we provide mapping results between the bosonic sector of the SM EFT and a complete set of precision electroweak and Higgs observables to which present and near future experiments are sensitive. Many results and tools which should prove useful to those wishing to use the SM EFT are detailed in several appendices.
Equilibrium modeling of the TFCX poloidal field coil system
International Nuclear Information System (INIS)
Strickler, D.J.; Miller, J.B.; Rothe, K.E.; Peng, Y.K.M.
1984-04-01
The Toroidal Fusion Core Experiment (TFCX) isproposed to be an ignition device with a low safety factor (q approx. = 2.0), rf or rf-assisted startup, long inductive burn pulse (approx. 300 s), and an elongated plasma cross section (kappa = 1.6) with moderate triangularity (delta = 0.3). System trade studies have been carried out to assist in choosing an appropriate candidate for TFCX conceptual design. This report describes an important element in these system studies - the magnetohydrodynamic (MHD) equilibrium modeling of the TFCX poloidal field (PF) coil system and its impact on the choice of machine size. Reference design points for the all-super-conducting toroidal field (TF) coil (TFCX-S) and hybrid (TFCX-H) options are presented that satisfy given PF system criteria, including volt-second requirements during burn, mechanical configuration constraints, maximum field constraints at the superconducting PF coils, and plasma shape parameters. Poloidal coil current waveforms for the TFCX-S and TFCX-H reference designs consistent with the equilibrium requirements of the plasma startup, heating, and burn phases of a typical discharge scenario are calculated. Finally, a possible option for quasi-steady-state operation is discussed
Photovoltaic performance models: an evaluation with actual field data
TamizhMani, Govindasamy; Ishioye, John-Paul; Voropayev, Arseniy; Kang, Yi
2008-08-01
Prediction of energy production is crucial to the design and installation of the building integrated photovoltaic systems. This prediction should be attainable based on the commonly available parameters such as system size, orientation and tilt angle. Several commercially available as well as free downloadable software tools exist to predict energy production. Six software models have been evaluated in this study and they are: PV Watts, PVsyst, MAUI, Clean Power Estimator, Solar Advisor Model (SAM) and RETScreen. This evaluation has been done by comparing the monthly, seasonaly and annually predicted data with the actual, field data obtained over a year period on a large number of residential PV systems ranging between 2 and 3 kWdc. All the systems are located in Arizona, within the Phoenix metropolitan area which lies at latitude 33° North, and longitude 112 West, and are all connected to the electrical grid.
Interaction with a field: a simple integrable model with backreaction
Mouchet, Amaury
2008-09-01
The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.
Multi-field plasma sandpile model in tokamaks and applications
Peng, X. D.; Xu, J. Q.
2016-08-01
A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.
Advanced prior modeling for 3D bright field electron tomography
Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.
2015-03-01
Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.
On unified field theories, dynamical torsion and geometrical models: II
International Nuclear Information System (INIS)
Cirilo-Lombardo, D.J.
2011-01-01
We analyze in this letter the same space-time structure as that presented in our previous reference (Part. Nucl, Lett. 2010. V.7, No.5. P.299-307), but relaxing now the condition a priori of the existence of a potential for the torsion. We show through exact cosmological solutions from this model, where the geometry is Euclidean RxO 3 ∼ RxSU(2), the relation between the space-time geometry and the structure of the gauge group. Precisely this relation is directly connected with the relation of the spin and torsion fields. The solution of this model is explicitly compared with our previous ones and we find that: i) the torsion is not identified directly with the Yang-Mills type strength field, ii) there exists a compatibility condition connected with the identification of the gauge group with the geometric structure of the space-time: this fact leads to the identification between derivatives of the scale factor a with the components of the torsion in order to allow the Hosoya-Ogura ansatz (namely, the alignment of the isospin with the frame geometry of the space-time), and iii) of two possible structures of the torsion the 'tratorial' form (the only one studied here) forbid wormhole configurations, leading only to cosmological instanton space-time in eternal expansion
Dispersion of tracers by the oceanic eddy field modelling programme
International Nuclear Information System (INIS)
Richards, K.J.; O'Farrell, S.P.
1987-01-01
A numerical model has been developed to study the dispersion of tracers by the oceanic eddy field. The present study is designed to study the dispersion of particles in a mesoscale eddy field produced by the numerical model. Dispersion rates are calculated for flows above three types of topography, a flat bottom, a random collection of hills and a ridge. The presence of topography is found to significantly affect the flow. The effective diffusion coefficient of the flow near the bottom is reduced by 20% for the random topography and 60% for the ridge from that for the flat bottom case. Estimates are given of the number of float years required to obtain a given accuracy for the diffusion coefficient. At the surface a modest number of floats (order 5) are required to obtain a 50% accuracy. However at the bottom, to be within a factor of 2 of the true value for the flows considered requires respectively 26, 42 and 103 float years for the flat, random and ridge cases. (author)
Modeling uptake kinetics of cadmium by field-grown lettuce
Energy Technology Data Exchange (ETDEWEB)
Chen Weiping [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States)], E-mail: chenweip@yahoo.com.cn; Li Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, Nanjing 210095 (China); Chang, Andrew C.; Wu Laosheng [Department of Environmental Sciences, University of California, 900 University Avenue, Riverside, CA 92521 (United States); Kwon, Soon-Ik [Agricultural Environmental and Ecology Division, National Institute of Agricultural Science and Technology, Suwon 441-707 (Korea, Republic of); Bottoms, Rick [Desert Research and Extension Center, 1004 East Holton Road, El Centro, CA 92243 (United States)
2008-03-15
Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C{sub Plant} = C{sub Solution} . PUF{sub max} . exp[-b . t], where C{sub Plant} and C{sub Solution} refer to the Cd content in plant tissue and soil solution, respectively, PUF{sub max} and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions.
Modeling uptake kinetics of cadmium by field-grown lettuce
International Nuclear Information System (INIS)
Chen Weiping; Li Lianqing; Chang, Andrew C.; Wu Laosheng; Kwon, Soon-Ik; Bottoms, Rick
2008-01-01
Cadmium uptake by field grown Romaine lettuce treated with P-fertilizers of different Cd levels was investigated over an entire growing season. Results indicated that the rate of Cd uptake at a given time of the season can be satisfactorily described by the Michaelis-Menten kinetics, that is, plant uptake increases as the Cd concentration in soil solution increases, and it gradually approaches a saturation level. However, the rate constant of the Michaelis-Menten kinetics changes over the growing season. Under a given soil Cd level, the cadmium content in plant tissue decreases exponentially with time. To account for the dynamic nature of Cd uptake, a kinetic model integrating the time factor was developed to simulate Cd plant uptake over the growing season: C Plant = C Solution . PUF max . exp[-b . t], where C Plant and C Solution refer to the Cd content in plant tissue and soil solution, respectively, PUF max and b are kinetic constants. - A kinetic model was developed to evaluate the uptake of Cd under field conditions
Model parameter uncertainty analysis for annual field-scale P loss model
Phosphorous (P) loss models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. All P loss models, however, have an inherent amount of uncertainty associated with them. In this study, we conducted an uncertainty analysis with ...
Model parameter uncertainty analysis for an annual field-scale phosphorus loss model
Phosphorous (P) loss models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. All P loss models, however, have an inherent amount of uncertainty associated with them. In this study, we conducted an uncertainty analysis with ...
Joint modeling of ChIP-seq data via a Markov random field model
Bao, Yanchun; Vinciotti, Veronica; Wit, Ernst; 't Hoen, Peter A C
Chromatin ImmunoPrecipitation-sequencing (ChIP-seq) experiments have now become routine in biology for the detection of protein-binding sites. In this paper, we present a Markov random field model for the joint analysis of multiple ChIP-seq experiments. The proposed model naturally accounts for
Viscoacoustic model for near-field ultrasonic levitation
Melikhov, Ivan; Chivilikhin, Sergey; Amosov, Alexey; Jeanson, Romain
2016-11-01
Ultrasonic near-field levitation allows for contactless support and transportation of an object over vibrating surface. We developed an accurate model predicting pressure distribution in the gap between the surface and levitating object. The formulation covers a wide range of the air flow regimes: from viscous squeezed flow dominating in small gap to acoustic wave propagation in larger gap. The paper explains derivation of the governing equations from the basic fluid dynamics. The nonreflective boundary conditions were developed to properly define air flow at the outlet. Comparing to direct computational fluid dynamics modeling our approach allows achieving good accuracy while keeping the computation cost low. Using the model we studied the levitation force as a function of gap distance. It was shown that there are three distinguished flow regimes: purely viscous, viscoacoustic, and acoustic. The regimes are defined by the balance of viscous and inertial forces. In the viscous regime the pressure in the gap is close to uniform while in the intermediate viscoacoustic and the acoustic regimes the pressure profile is wavy. The model was validated by a dedicated levitation experiment and compared to similar published results.
Lorentz Violation of the Photon Sector in Field Theory Models
Directory of Open Access Journals (Sweden)
Lingli Zhou
2014-01-01
Full Text Available We compare the Lorentz violation terms of the pure photon sector between two field theory models, namely, the minimal standard model extension (SME and the standard model supplement (SMS. From the requirement of the identity of the intersection for the two models, we find that the free photon sector of the SMS can be a subset of the photon sector of the minimal SME. We not only obtain some relations between the SME parameters but also get some constraints on the SMS parameters from the SME parameters. The CPT-odd coefficients (kAFα of the SME are predicted to be zero. There are 15 degrees of freedom in the Lorentz violation matrix Δαβ of free photons of the SMS related with the same number of degrees of freedom in the tensor coefficients (kFαβμν, which are independent from each other in the minimal SME but are interrelated in the intersection of the SMS and the minimal SME. With the related degrees of freedom, we obtain the conservative constraints (2σ on the elements of the photon Lorentz violation matrix. The detailed structure of the photon Lorentz violation matrix suggests some applications to the Lorentz violation experiments for photons.
Finite element modeling of TFTR poloidal field coils
International Nuclear Information System (INIS)
Baumgartner, J.A.; O'Toole, J.A.
1986-01-01
The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope
Radiative transfer modeling of upwelling light field in coastal waters
International Nuclear Information System (INIS)
Sundarabalan, Balasubramanian; Shanmugam, Palanisamy; Manjusha, Sadasivan
2013-01-01
Numerical simulations of the radiance distribution in coastal waters are a complex problem, but playing a growingly important role in optical oceanography and remote sensing applications. The present study attempts to modify the Inherent Optical Properties (IOPs) to allow the phase function to vary with depth, and the bottom boundary to take into account a sloping/irregular surface and the effective reflectance of the bottom material. It then uses the Hydrolight numerical model to compute Apparent Optical Properties (AOPs) for modified IOPs and bottom boundary conditions compared to the default values available in the standard Hydrolight model. The comparison of the profiles of upwelling radiance simulated with depth-dependent IOPs as well as modified bottom boundary conditions for realistic cases of coastal waters off Point Calimere of southern India shows a good match between the simulated and measured upwelling radiance profile data, whereas there is a significant drift between the upwelling radiances simulated from the standard Hydrolight model (with default values) and measured data. Further comparison for different solar zenith conditions at a coastal station indicates that the upwelling radiances simulated with the depth-dependent IOPs and modified bottom boundary conditions are in good agreement with the measured radiance profile data. This simulation captures significant changes in the upwelling radiance field influenced by the bottom boundary layer as well. These results clearly emphasize the importance of using realistic depth-dependent IOPs as well as bottom boundary conditions as input to Hydrolight in order to obtain more accurate AOPs in coastal waters. -- Highlights: ► RT model with depth-dependent IOPs and modified bottom boundary conditions provides accurate L u profiles in coastal waters. ► The modified phase function model will be useful for coastal waters. ► An inter-comparison with measured upwelling radiance gives merits of the
Geomechanical Model Calibration Using Field Measurements for a Petroleum Reserve
Park, Byoung Yoon; Sobolik, Steven R.; Herrick, Courtney G.
2018-03-01
A finite element numerical analysis model has been constructed that consists of a mesh that effectively captures the geometries of Bayou Choctaw (BC) Strategic Petroleum Reserve (SPR) site and multimechanism deformation (M-D) salt constitutive model using the daily data of actual wellhead pressure and oil-brine interface location. The salt creep rate is not uniform in the salt dome, and the creep test data for BC salt are limited. Therefore, the model calibration is necessary to simulate the geomechanical behavior of the salt dome. The cavern volumetric closures of SPR caverns calculated from CAVEMAN are used as the field baseline measurement. The structure factor, A 2, and transient strain limit factor, K 0, in the M-D constitutive model are used for the calibration. The value of A 2, obtained experimentally from BC salt, and the value of K 0, obtained from Waste Isolation Pilot Plant salt, are used for the baseline values. To adjust the magnitude of A 2 and K 0, multiplication factors A 2 F and K 0 F are defined, respectively. The A 2 F and K 0 F values of the salt dome and salt drawdown skins surrounding each SPR cavern have been determined through a number of back analyses. The cavern volumetric closures calculated from this model correspond to the predictions from CAVEMAN for six SPR caverns. Therefore, this model is able to predict behaviors of the salt dome, caverns, caprock, and interbed layers. The geotechnical concerns associated with the BC site from this analysis will be explained in a follow-up paper.
Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai
2011-01-01
The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...
A conceptual data model and modelling language for fields and agents
de Bakker, Merijn; de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek
2016-04-01
Modelling is essential in order to understand environmental systems. Environmental systems are heterogeneous because they consist of fields and agents. Fields have a value defined everywhere at all times, for example surface elevation and temperature. Agents are bounded in space and time and have a value only within their bounds, for example biomass of a tree crown or the speed of a car. Many phenomena have properties of both fields and agents. Although many systems contain both fields and agents and integration of these concepts would be required for modelling, existing modelling frameworks concentrate on either agent-based or field-based modelling and are often low-level programming frameworks. A concept is lacking that integrates fields and agents in a way that is easy to use for modelers who are not software engineers. To address this issue, we develop a conceptual data model that represents fields and agents uniformly. We then show how the data model can be used in a high-level modelling language. The data model represents fields and agents in space-time. Also relations and networks can be represented using the same concepts. Using the conceptual data model we can represent static and mobile agents that may have spatial and temporal variation within their extent. The concepts we use are phenomenon, property set, item, property, domain and value. The phenomenon is the thing that is modelled, which can be any real world thing, for example trees. A phenomenon usually consists of several items, e.g. single trees. The domain is the spatiotemporal location and/or extent for which the items in the phenomenon are defined. Multiple different domains can coexist for a given phenomenon. For example a domain describing the extent of the trees and a domain describing the stem locations. The same goes for the property, which is an attribute of the thing that is being modeled. A property has a value, which is possibly discretized, for example the biomass over the tree crown
Computation of multiphase systems with phase field models
International Nuclear Information System (INIS)
Badalassi, V.E.; Ceniceros, H.D.; Banerjee, S.
2003-01-01
Phase field models offer a systematic physical approach for investigating complex multiphase systems behaviors such as near-critical interfacial phenomena, phase separation under shear, and microstructure evolution during solidification. However, because interfaces are replaced by thin transition regions (diffuse interfaces), phase field simulations require resolution of very thin layers to capture the physics of the problems studied. This demands robust numerical methods that can efficiently achieve high resolution and accuracy, especially in three dimensions. We present here an accurate and efficient numerical method to solve the coupled Cahn-Hilliard/Navier-Stokes system, known as Model H, that constitutes a phase field model for density-matched binary fluids with variable mobility and viscosity. The numerical method is a time-split scheme that combines a novel semi-implicit discretization for the convective Cahn-Hilliard equation with an innovative application of high-resolution schemes employed for direct numerical simulations of turbulence. This new semi-implicit discretization is simple but effective since it removes the stability constraint due to the nonlinearity of the Cahn-Hilliard equation at the same cost as that of an explicit scheme. It is derived from a discretization used for diffusive problems that we further enhance to efficiently solve flow problems with variable mobility and viscosity. Moreover, we solve the Navier-Stokes equations with a robust time-discretization of the projection method that guarantees better stability properties than those for Crank-Nicolson-based projection methods. For channel geometries, the method uses a spectral discretization in the streamwise and spanwise directions and a combination of spectral and high order compact finite difference discretizations in the wall normal direction. The capabilities of the method are demonstrated with several examples including phase separation with, and without, shear in two and three
Equations of motion for a (non-linear) scalar field model as derived from the field equations
International Nuclear Information System (INIS)
Kaniel, S.; Itin, Y.
2006-01-01
The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)
Phase field modeling of twinning in indentation of transparent crystals
International Nuclear Information System (INIS)
Clayton, J D; Knap, J
2011-01-01
Continuum phase field theory is applied to study elastic twinning in calcite and sapphire single crystals subjected to indentation loading by wedge-shaped indenters. An order parameter is associated with the magnitude of stress-free twinning shear. Geometrically linear and nonlinear theories are implemented and compared, the latter incorporating neo-Hookean elasticity. Equilibrium configurations of deformed and twinned crystals are attained numerically via direct energy minimization. Results are in qualitative agreement with experimental observations: a long thin twin forms asymmetrically under one side of the indenter, the tip of the twin is sharp and the length of the twin increases with increasing load. Qualitatively similar results are obtained using isotropic and anisotropic elastic constants, though the difference between isotropic and anisotropic results is greater in sapphire than in calcite. Similar results are also obtained for nanometer-scale specimens and millimeter-scale specimens. Indentation forces are greater in the nonlinear model than the linear model because of the increasing tangent bulk modulus with increasing pressure in the former. Normalized relationships between twin length and indentation force are similar for linear and nonlinear theories at both nanometer and millimeter scales. Twin morphologies are similar for linear and nonlinear theories for indentation with a 90° wedge. However, in the nonlinear model, indentation with a 120° wedge produces a lamellar twin structure between the indenter and the long sharp primary twin. This complex microstructure is not predicted by the linear theory
Numerical solution of a model for a superconductor field problem
International Nuclear Information System (INIS)
Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L.
1979-01-01
A model of a magnetic field problem occurring in connection with Josephson junction devices is derived, and numerical solutions are obtained. The model is of mathematical interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. Moreover, the inhomogeneities are the guage constants for the potential, which are different for each superconductor, and their magnitudes are proportional to the currents flowing in the superconductors. These constants are directly related to the self and mutual inductances of the superconducting elements in the device. The numerical solution is obtained by the iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number of iterations required to obtain a solution. A typical problem involves solving 100,000 simultaneous equations, which the algorithm used with this model does in 20 iterations, requiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is obtained between calculated and observed values for the inductances
Link between laboratory/field observations and models
International Nuclear Information System (INIS)
Cole, C.R.; Foley, M.G.
1985-10-01
The various linkages in system performance assessments that integrate disposal program elements must be understood. The linkage between model development and field/laboratory observations is described as the iterative program of site and system characterization for development of an observational-confirmatory data base to develop, improve, and support conceptual models for site and system behavior. The program consists of data gathering and experiments to demonstrate understanding at various spatial and time scales and degrees of complexity. Understanding and accounting for the decreasing characterization certainty that arises with increasing space and time scales is an important aspect of the link between models and observations. The performance allocation process for setting performance goals and confidence levels coupled with a performance assessment approach that provides these performance and confidence estimates will resolve when sufficient characterization has been achieved. At each iteration performance allocation goals are reviewed and revised as necessary. The updated data base and appropriate performance assessment tools and approaches are utilized to identify and design additional tests and data needs necessary to meet current performance allocation goals. 9 refs
A dynamic neural field model of temporal order judgments.
Hecht, Lauren N; Spencer, John P; Vecera, Shaun P
2015-12-01
Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).
The link between laboratory/field observations and models
International Nuclear Information System (INIS)
Cole, C.R.; Foley, M.G.
1986-01-01
The various linkages in system performance assessments that integrate disposal program elements must be understood. The linkage between model development and field/laboratory observations is described as the iterative program of site and system characterization for development of an observational-confirmatory data base. This data base is designed to develop, improve, and support conceptual models for site and system behavior. The program consists of data gathering and experiments to demonstrate understanding at various spatial and time scales and degrees of complexity. Understanding and accounting for the decreasing characterization certainty that arises with increasing space and time scales is an important aspect of the link between models and observations. The performance allocation process for setting performance goals and confidence levels, coupled with a performance assessment approach that provides these performance and confidence estimates, will determine when sufficient characterization has been achieved. At each iteration, performance allocation goals are reviewed and revised as necessary. The updated data base and appropriate performance assessment tools and approaches are utilized to identify and design additional tests and data needs necessary to meet current performance allocation goals
Cellular Automata for Modeling the field-scale erosion
International Nuclear Information System (INIS)
Diaz Suarez, Jorge; Bagarotti Marin, Angel; Ruiz Perez, Maria Elena
2008-01-01
Full text: The Cellular Automaton (CA) is a system used discrete dynamic modeling of many physical systems. Their fundamental properties are the interaction at the local level, homogeneity and parallelism. It has been used as a secondary for the simulation of large systems where the use of equations in partial derivatives is complex and costly from the computational point of view. On the other hand, the high complexity of spatial interaction in the processes involved in the erosion-transport-deposition of sediments at field level, considerably limiting the use of base models physics. The objective of this study is to model the main processes involved in erosion water supply of soils through the use of the CAMELot system, based on an extension of the original paradigm of the CA. The CAMELot system has been used in the simulation of systems of large spatial extent, where the laws of local interaction between automata have a deep physical sense. This system guarantees both the input of the necessary specifications and simulation in parallel, as the visualization and the general management of the system. They are exposed to each of the submodels used in it and the overall dynamics of the system is analyzed. (author)
Effective media models for unsaturated fractured rock: A field experiment
International Nuclear Information System (INIS)
Nicholl, M.J.; Glass, R.J.
1995-01-01
A thick unsaturated rock mass at Yucca Mountain is currently under consideration as a potential repository site for disposal of high level radioactive waste. In accordance with standard industry and scientific practices, abstract numerical models will be used to evaluate the potential for radionuclide release through the groundwater system. At this time, currently available conceptual models used to develop effective media properties are based primarily on simplistic considerations. The work presented here is part of an integrated effort to develop effective media models at the intermediate block scale (approximately 8-125m) through a combination of physical observations, numerical simulations and theoretical considerations. A multi-purpose field experiment designed and conducted as part of this integrated effort is described. Specific goals of this experimental investigation were to: (1) obtain fracture network data from Topopah Spring Tuff for use in block scale simulations; (2) identity positions of the network conducting flow under three different boundary conditions; (3) visualize preferential flow paths and small-scale flow structures; (4) collect samples for subsequent hydraulic testing and use in block-scale simulations; and (5) demonstrate the ability of Electrical Resistance Tomography (ERT) to delineate fluid distribution within fractured rock
Evaluating secular acceleration in geomagnetic field model GRIMM-3
Lesur, V.; Wardinski, I.
2012-12-01
Secular acceleration of the magnetic field is the rate of change of its secular variation. One of the main results of studying magnetic data collected by the German survey satellite CHAMP was the mapping of field acceleration and its evolution in time. Questions remain about the accuracy of the modeled acceleration and the effect of the applied regularization processes. We have evaluated to what extent the regularization affects the temporal variability of the Gauss coefficients. We also obtained results of temporal variability of the Gauss coefficients where alternative approaches to the usual smoothing norms have been applied for regularization. Except for the dipole term, the secular acceleration of the Gauss coefficients is fairly well described up to spherical harmonic degree 5 or 6. There is no clear evidence from observatory data that the spectrum of this acceleration is underestimated at the Earth surface. Assuming a resistive mantle, the observed acceleration supports a characteristic time scale for the secular variation of the order of 11 years.
Field measurements in the wake of a model wind turbine
International Nuclear Information System (INIS)
Pol, Suhas; Taylor, Amelia; Doostalab, Ali; Novoa, Santiago; Castillo, Luciano; Bilbao, Argenis; Sheng, Jian; Giesselmann, Michael; Westergaard, Carsten; Hussain, Fazle; Ren, Beibei; Glauser, Mark
2014-01-01
As a first step to study the dynamics of a wind farm' we experimentally explored the flow field behind a single wind turbine of diameter 1.17 m at a hub height of 6.25 m. A 10 m tower upstream of the wind farm characterizes the atmospheric conditions and its influence on the wake evolution. A vertical rake of sonic anemometers is clustered around the hub height on a second tower' 6D downstream of the turbine. We present preliminary observations from a 1- hour block of data recorded in near-neutral atmospheric conditions. The ratio of the standard deviation of power to the inflow velocity is greater than three' revealing adverse effects of inflow turbulence on the power and load fluctuations. Furthermore' the wake defect and Reynolds stress and its gradient are pronounced at 6D. The flux of energy due to Reynolds stresses is similar to that reported in wind tunnel studies. The swirl and mixing produces a constant temperature wake which results in a density jump across the wake interface. Further field measurements will explore the dynamics of a model wind farm' including the effects of atmospheric variability
Probing the Importance of Charge Flux in Force Field Modeling.
Sedghamiz, Elaheh; Nagy, Balazs; Jensen, Frank
2017-08-08
We analyze the conformational dependence of atomic charges and molecular dipole moments for a selection of ∼900 conformations of peptide models of the 20 neutral amino acids. Based on a set of reference density functional theory calculations, we partition the changes into effects due to changes in bond distances, bond angles, and torsional angles and into geometry and charge flux contributions. This allows an assessment of the limitations of fixed charge force fields and indications for how to design improved force fields. The torsional degrees of freedom are the main contribution to conformational changes of atomic charges and molecular dipole moments, but indirect effects due to change in bond distances and angles account for ∼25% of the variation. Charge flux effects dominate for changes in bond distances and are also the main component of the variation in bond angles, while they are ∼25% compared to the geometry variations for torsional degrees of freedom. The geometry and charge flux contributions to some extent produce compensating effects.
Using the Agent-Based Modeling in Economic Field
Directory of Open Access Journals (Sweden)
Nora Mihail
2006-12-01
Full Text Available The last ten years of the XX century has been the witnesses of the apparition of a new scientific field, which is usually defined as the study of “Complex adaptive systems”. This field, generic named Complexity Sciences, shares its subject, the general proprieties of complex systems across traditional disciplinary boundaries, with cybernetics and general systems theory. But the development of Complexity Sciences approaches is determined by the extensive use of Agent-Based-Models (ABM as a research tool and an emphasis on systems, such as markets, populations or ecologies, which are less integrated or “organized” than the ones, such as companies and economies, intensively studied by the traditional disciplines. For ABM, a complex system is a system of individual agents who have the freedom to act in ways that are not always totally predictable, and whose actions are interconnected such that one agent’s actions changes the context (environment for other agents. These are many examples of such complex systems: the stock market, the human body immune system, a business organization, an institution, a work-team, a family etc.
Nambu-Jona-Lasinio model in a parallel electromagnetic field
Wang, Lingxiao; Cao, Gaoqing; Huang, Xu-Guang; Zhuang, Pengfei
2018-05-01
We explore the features of the UA (1) and chiral symmetry breaking of the Nambu-Jona-Lasinio model without the Kobayashi-Maskawa-'t Hooft determinant term in the presence of a parallel electromagnetic field. We show that the electromagnetic chiral anomaly can induce both finite neutral pion condensate and isospin-singlet pseudo-scalar η condensate and thus modifies the chiral symmetry breaking pattern. In order to characterize the strength of the UA (1) symmetry breaking, we evaluate the susceptibility associated with the UA (1) charge. The result shows that the susceptibility contributed from the chiral anomaly is consistent with the behavior of the corresponding η condensate. The spectra of the mesonic excitations are also studied.
DsixTools: the standard model effective field theory toolkit
Energy Technology Data Exchange (ETDEWEB)
Celis, Alejandro [Ludwig-Maximilians-Universitaet Muenchen, Fakultaet fuer Physik, Arnold Sommerfeld Center for Theoretical Physics, Munich (Germany); Fuentes-Martin, Javier; Vicente, Avelino [Universitat de Valencia-CSIC, Instituto de Fisica Corpuscular, Valencia (Spain); Virto, Javier [University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland)
2017-06-15
We present DsixTools, a Mathematica package for the handling of the dimension-six standard model effective field theory. Among other features, DsixTools allows the user to perform the full one-loop renormalization group evolution of the Wilson coefficients in the Warsaw basis. This is achieved thanks to the SMEFTrunner module, which implements the full one-loop anomalous dimension matrix previously derived in the literature. In addition, DsixTools also contains modules devoted to the matching to the ΔB = ΔS = 1, 2 and ΔB = ΔC = 1 operators of the Weak Effective Theory at the electroweak scale, and their QCD and QED Renormalization group evolution below the electroweak scale. (orig.)
On the possibility on constructing covariant chromomagnetic field models
International Nuclear Information System (INIS)
Cabo, A.; Penaranda, S.; Martinez, R.
1995-03-01
Expressions for SO(4) invariant euclidean QCD generating functionals are introduced which should produce non-vanishing gluon condensates. Their investigation is started here by initially considering the loop expansion of the corresponding effective action searching for a description differing from the usual perturbation theory. At this level, we consider special free propagators showing a sort or off-diagonal long range order. The calculation of the polarization tensor leads to a gluon mass term which is proportional to the squared root of the also finite value for 2 >. The summation of all the one-loop contributions to the energy having only mass insertions, indicates the spontaneous generation of the condensate from the perturbative grounds state in a way resembling the similar effect in the case of the chromomagnetic field models. This initial inspection suggests the need for a closer investigation which will be considered elsewhere. (author). 22 refs
Numerical modeling for an electric-field hyperthermia applicator
Wu, Te-Kao; Chou, C. K.; Chan, K. W.; Mcdougall, J.
1993-01-01
Hyperthermia, in conjunction with radiation and chemotherapy for treatment of cancers, is an area of current concern. Experiments have shown that hyperthermia can increase the potency of many chemotherapy drugs and the effectiveness of radiation for treating cancer. A combination of whole body or regional hyperthermia with chemotherapy or radiation should improve treatment results. Conventional methods for inducing whole body hyperthermia, such as exposing a patient in a radiant cabinet or under a hot water blanket, conduct heat very slowly from the skin to the body core. Thus a more efficient system, such as the three-plate electric-field hyperthermia applicator (EHA), is developed. This three-plate EHA has one top plate over and two lower plates beneath the patient. It is driven at 27.12 MHz with 500 Watts through a matching circuit. Using this applicator, a 50 kg pig was successfully heated to 42 C within 45 minutes. However, phantom and animal studies have indicated non-uniform heating near the side of the body. In addition, changes in the size and distance between the electrode plates can affect the heating (or electromagnetic field) pattern. Therefore, numerical models using the method of moments (MOM) or the finite difference time domain (FDTD) technique are developed to optimize the heating pattern of this EHA before it is used for human trials. The accuracy of the numerical modeling has been achieved by the good agreement between the MOM and FDTD results for the three-plate EHA without a biological body. The versatile FDTD technique is then applied to optimize the EHA design with a human body. Both the numerical and measured data in phantom blocks will be presented. The results of this study will be used to design an optimized system for whole body or regional hyperthermia.
Models of Quantum Space Time: Quantum Field Planes
Mack, G.; Schomerus, V.
1994-01-01
Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.
High-Resolution Gravity Field Modeling for Mercury to Estimate Crust and Lithospheric Properties
Goossens, S.; Mazarico, E.; Genova, A.; James, P. B.
2018-05-01
We estimate a gravity field model for Mercury using line-of-sight data to improve the gravity field model at short wavelengths. This can be used to infer crustal density and infer the support mechanism of the lithosphere.
DEFF Research Database (Denmark)
Koivisto, A.J.; Jensen, A.C.Ø.; Levin, Marcus
2015-01-01
A Near Field/Far Field (NF/FF) model is a well-accepted tool for precautionary exposure assessment but its capability to estimate particulate matter (PM) concentrations is not well studied. The main concern is related to emission source characterization which is not as well defined for PM emitters...
International Nuclear Information System (INIS)
Haba, Z.
1981-01-01
In the usual models of Euclidean field theory the Schwinger functions are moments of a positive measure. In this paper the author discusses the basic properties of the measure μ, i.e. properties of the sample paths of the random field. (Auth.)
Maus, Stefan
2017-08-01
Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.
Determining Student Competency in Field Placements: An Emerging Theoretical Model
Directory of Open Access Journals (Sweden)
Twyla L. Salm
2016-06-01
Full Text Available This paper describes a qualitative case study that explores how twenty-three field advisors, representing three human service professions including education, nursing, and social work, experience the process of assessment with students who are struggling to meet minimum competencies in field placements. Five themes emerged from the analysis of qualitative interviews. The field advisors primary concern was the level of professional competency achieved by practicum students. Related to competency were themes concerned with the field advisor's role in being accountable and protecting the reputation of his/her profession as well as the reputation of the professional program affiliated with the practicum student's professional education. The final theme – teacher-student relationship –emerged from the data, both as a stand-alone and global or umbrella theme. As an umbrella theme, teacher-student relationship permeated each of the other themes as the participants interpreted their experiences of the process of assessment through the mentor relationships. A theoretical model was derived from these findings and the description of the model is presented. Cet article décrit une étude de cas qualitative qui explore comment vingt-trois conseillers de stages, représentant trois professions de services sociaux comprenant l’éducation, les soins infirmiers et le travail social, ont vécu l’expérience du processus d’évaluation avec des étudiants qui ont des difficultés à acquérir les compétences minimales durant les stages. Cinq thèmes ont été identifiés lors de l’analyse des entrevues qualitatives. La préoccupation principale des conseillers de stages était le niveau de compétence professionnelle acquis par les stagiaires. Les thèmes liés à la compétence étaient le rôle des conseillers de stages dans leur responsabilité pour protéger la réputation de leur profession ainsi que la réputation d’un programme professionnel
Modeling field scale unsaturated flow and transport processes
International Nuclear Information System (INIS)
Gelhar, L.W.; Celia, M.A.; McLaughlin, D.
1994-08-01
The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data
Predicting bias in perceived position using attention field models
Klein, Barrie P; Paffen, Chris L E; Pas, Susan F Te; Dumoulin, Serge O
2016-01-01
Attention is the mechanism through which we select relevant information from our visual environment. We have recently demonstrated that attention attracts receptive fields across the visual hierarchy (Klein, Harvey, & Dumoulin, 2014). We captured this receptive field attraction using an attention
Positive random fields for modeling material stiffness and compliance
DEFF Research Database (Denmark)
Hasofer, Abraham Michael; Ditlevsen, Ove Dalager; Tarp-Johansen, Niels Jacob
1998-01-01
Positive random fields with known marginal properties and known correlation function are not numerous in the literature. The most prominent example is the log\\-normal field for which the complete distribution is known and for which the reciprocal field is also lognormal. It is of interest to supp...
Kuroishi, Y.; Lemoine, F. G.; Rowlands, D. D.
2006-12-01
The latest gravimetric geoid model for Japan, JGEOID2004, suffers from errors at long wavelengths (around 1000 km) in a range of +/- 30 cm. The model was developed by combining surface gravity data with a global marine altimetric gravity model, using EGM96 as a foundation, and the errors at long wavelength are presumably attributed to EGM96 errors. The Japanese islands and their vicinity are located in a region of plate convergence boundaries, producing substantial gravity and geoid undulations in a wide range of wavelengths. Because of the geometry of the islands and trenches, precise information on gravity in the surrounding oceans should be incorporated in detail, even if the geoid model is required to be accurate only over land. The Kuroshio Current, which runs south of Japan, causes high sea surface variability, making altimetric gravity field determination complicated. To reduce the long-wavelength errors in the geoid model, we are investigating GRACE data for regional gravity field modeling at long wavelengths in the vicinity of Japan. Our approach is based on exclusive use of inter- satellite range-rate data with calibrated accelerometer data and attitude data, for regional or global gravity field recovery. In the first step, we calibrate accelerometer data in terms of scales and biases by fitting dynamically calculated orbits to GPS-determined precise orbits. The calibration parameters of accelerometer data thus obtained are used in the second step to recover a global/regional gravity anomaly field. This approach is applied to GRACE data obtained for the year 2005 and resulting global/regional gravity models are presented and discussed.
Predictive hydrogeochemical modelling of bauxite residue sand in field conditions.
Wissmeier, Laurin; Barry, David A; Phillips, Ian R
2011-07-15
The suitability of residue sand (the coarse fraction remaining from Bayer's process of bauxite refining) for constructing the surface cover of closed bauxite residue storage areas was investigated. Specifically, its properties as a medium for plant growth are of interest to ensure residue sand can support a sustainable ecosystem following site closure. The geochemical evolution of the residue sand under field conditions, its plant nutrient status and soil moisture retention were studied by integrated modelling of geochemical and hydrological processes. For the parameterization of mineral reactions, amounts and reaction kinetics of the mineral phases natron, calcite, tricalcium aluminate, sodalite, muscovite and analcime were derived from measured acid neutralization curves. The effective exchange capacity for ion adsorption was measured using three independent exchange methods. The geochemical model, which accounts for mineral reactions, cation exchange and activity corrected solution speciation, was formulated in the geochemical modelling framework PHREEQC, and partially validated in a saturated-flow column experiment. For the integration of variably saturated flow with multi-component solute transport in heterogeneous 2D domains, a coupling of PHREEQC with the multi-purpose finite-element solver COMSOL was established. The integrated hydrogeochemical model was applied to predict water availability and quality in a vertical flow lysimeter and a cover design for a storage facility using measured time series of rainfall and evaporation from southwest Western Australia. In both scenarios the sand was fertigated and gypsum-amended. Results show poor long-term retention of fertilizer ions and buffering of the pH around 10 for more than 5 y of leaching. It was concluded that fertigation, gypsum amendment and rainfall leaching alone were insufficient to render the geochemical conditions of residue sand suitable for optimal plant growth within the given timeframe. The
Unconventional antiferromagnetic correlations of the doped Haldane gapsystem Y 2 BaNi 1 - x Zn x O 5
Villar, V.; Mélin, R.; Paulsen, C.; Souletie, J.; Janod, E.; Payen, C.
2002-01-01
We make a new proposal to describe the very low temperature susceptibility of the doped Haldane gap compound Y2BaNi1-xZnxO5. We propose a new mean field model relevant for this compound. The ground state of this mean field model is unconventional because antiferromagnetism coexists with random dimers. We present new susceptibility experiments at very low temperature. We obtain a Curie-Weiss susceptibility χ(T) C/(Θ + T) as expected for antiferromagnetic correlations but we do not obtain a direct signature of antiferromagnetic long range order. We explain how to obtain the ``impurity'' susceptibility (T) by subtracting the Haldane gap contribution to the total susceptibility. In the temperature range [1 K, 300 K] the experimental data are well fitted by T (T) = Cimp 1 + Timp/T . In the temperature range [100 mK, 1 K] the experimental data are well fitted by T (T) = A ln(T/Tc), where Tc increases with x. This fit suggests the existence of a finite Néel temperature which is however too small to be probed directly in our experiments. We also obtain a maximum in the temperature dependence of the ac-susceptibility (T) which suggests the existence of antiferromagnetic correlations at very low temperature.
Imagining Future Forests: What Models Can Learn from Field Data.
Ward, E. J.; Domec, J. C.; Laviner, M. A.; Fox, T. D.; Sun, G.; McNulty, S. G.; King, J.; Noormets, A.
2014-12-01
General circulation models predict that future forests in the U.S. Southeast will experience higher temperatures and more variable precipitation in the future, resulting in a moderate decrease in water availability (precipitation minus evapotranspiration), though considerable uncertainty in and disagreement between projections remain. The Pine Integrated Network: Education, Mitigation, and Adaptation Project (PINEMAP) represents an effort to understand the future of 20 million acres of planted pine forests managed by private landowners in the Atlantic and Gulf coastal states. Decades of productivity research on loblolly pine (Pinus taeda) has led to a widespread practice of mid-rotation fertilization of loblolly plantations, supplying additional nutrients as stands approach canopy closure. It remains an open question what the effects of fertilization of pine forests in this region will be in the face of periodic or persistent droughts, in terms of forest water use and its implications to other water uses downstream. Therefore, we will review key results from past ecophysiological research on the responses of loblolly pine to fertilization, elevated CO2 and water availability, as well as a recent PINEMAP field trial of fertilization and drought imposed through rainfall displacement over two growing seasons. Despite high rainfall in 2013 (1224 mm compared an average 1120 mm) and a lack of leaf area response, transpiration decreased in response to fertilization and through rainfall displacement. Treatment differences were greatest in the growing season of 2013, when transpiration was on average 13.6, 20.2 and 28.7% lower in the rainfall displacement, fertilization and combined treatment than the control (46 mm/month), respectively. We will conclude by reviewing the important lessons from this research for regional models of future forests in this region in terms of LAI, transpiration, growth and water use efficiency.
Near-field modeling in Frenchman Flat, Nevada Test Site
International Nuclear Information System (INIS)
Pohlmann, K.; Shirley, C.; Andricevic, R.
1996-12-01
The US Department of Energy (DOE) is investigating the effects of nuclear testing in underground test areas (the UGTA program) at the Nevada Test Site. The principal focus of the UGTA program is to better understand and define subsurface radionuclide migration. The study described in this report focuses on the development of tools for generating maps of hydrogeologic characteristics of subsurface Tertiary volcanic units at the Frenchman Flat corrective Action Unit (CAU). The process includes three steps. The first step involves generation of three-dimensional maps of the geologic structure of subsurface volcanic units using geophysical logs to distinguish between two classes: densely welded tuff and nonwelded tuff. The second step generates three-dimensional maps of hydraulic conductivity utilizing the spatial distribution of the two geologic classes obtained in the first step. Each class is described by a correlation structure based on existing data on hydraulic conductivity, and conditioned on the generated spatial location of each class. The final step demonstrates the use of the maps of hydraulic conductivity for modeling groundwater flow and radionuclide transport in volcanic tuffs from an underground nuclear test at the Frenchman Flat CAU. The results indicate that the majority of groundwater flow through the volcanic section occurs through zones of densely welded tuff where connected fractures provide the transport pathway. Migration rates range between near zero to approximately four m/yr, with a mean rate of 0.68 m/yr. This report presents the results of work under the FY96 Near-Field Modeling task of the UGTA program
Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils
International Nuclear Information System (INIS)
Salinas, F S; Lancaster, J L; Fox, P T
2007-01-01
Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured)
The Gaussian streaming model and convolution Lagrangian effective field theory
Energy Technology Data Exchange (ETDEWEB)
Vlah, Zvonimir [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)
2016-12-01
We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.
Numerical modelling of GPR electromagnetic fields for locating burial sites
Directory of Open Access Journals (Sweden)
Carcione José M.
2017-01-01
Full Text Available Ground-penetrating radar (GPR is commonly used for locating burial sites. In this article, we acquired radargrams at a site where a domestic pig cadaver was buried. The measurements were conducted with the ProEx System GPR manufactured by the Swedish company Mala Geoscience with an antenna of 500MHz. The event corresponding to the pig can be clearly seen in the measurements. In order to improve the interpretation, the electromagnetic field is compared to numerical simulations computed with the pseudo-spectral Fourier method. A geological model has been defined on the basis of assumed electromagnetic properties (permittivity, conductivity and magnetic permeability. The results, when compared with the GPR measurements, show a dissimilar amplitude behaviour, with a stronger reflection event from the bottom of the pit. We have therefore performed another simulation by decreasing the electrical conductivity of the body very close to that of air. The comparison improved, showing more reflections, which could be an indication that the body contains air or has been degraded to a certain extent that the electrical resistivity has greatly increased.
Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data
Directory of Open Access Journals (Sweden)
Richard Amlôt
2012-10-01
Full Text Available In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS. The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination process. Having removed all clothing and having showered, the re-dressing (termed re-robing of casualties was found to be a bottleneck in the mass decontamination process during both exercises. Computer simulations showed that increasing the capacity of each lane of the re-robe section to accommodate 10 rather than five casualties would be optimal in general, but that a capacity of 15 might be required to accommodate vulnerable individuals. If the duration of the shower was decreased from three minutes to one minute then a per lane re-robe capacity of 20 might be necessary to maximise the throughput of casualties. In conclusion, one practical enhancement to the FRS response may be to provide at least one additional re-robe section per mass decontamination unit.
International Nuclear Information System (INIS)
Guo, Y.; Ding, M. D.; Liu, Y.; Sun, X. D.; DeRosa, M. L.; Wiegelmann, T.
2012-01-01
We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry using an analytical solution from Low and Lou. Several tests are run, ranging from idealized cases where exact vector field data are provided on all boundaries, to cases where noisy vector data are provided on only the lower boundary (approximating the solar problem). Analytical tests also show that the NLFFF code in the spherical geometry performs better than that in the Cartesian one when the field of view of the bottom boundary is large, say, 20° × 20°. Additionally, we apply the NLFFF model to an active region observed by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO) both before and after an M8.7 flare. For each observation time, we initialize the models using potential field source surface (PFSS) extrapolations based on either a synoptic chart or a flux-dispersal model, and compare the resulting NLFFF models. The results show that NLFFF extrapolations using the flux-dispersal model as the boundary condition have slightly lower, therefore better, force-free, and divergence-free metrics, and contain larger free magnetic energy. By comparing the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the Atmospheric Imaging Assembly on board SDO, we find that the NLFFF performs better than the PFSS not only for the core field of the flare productive region, but also for large EUV loops higher than 50 Mm.
Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models
Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An
2007-01-01
Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...
Bioenergy Ecosystem Land-Use Modelling and Field Flux Trial
McNamara, Niall; Bottoms, Emily; Donnison, Iain; Dondini, Marta; Farrar, Kerrie; Finch, Jon; Harris, Zoe; Ineson, Phil; Keane, Ben; Massey, Alice; McCalmont, Jon; Morison, James; Perks, Mike; Pogson, Mark; Rowe, Rebecca; Smith, Pete; Sohi, Saran; Tallis, Mat; Taylor, Gail; Yamulki, Sirwan
2013-04-01
Climate change impacts resulting from fossil fuel combustion and concerns about the diversity of energy supply are driving interest to find low-carbon energy alternatives. As a result bioenergy is receiving widespread scientific, political and media attention for its potential role in both supplying energy and mitigating greenhouse (GHG) emissions. It is estimated that the bioenergy contribution to EU 2020 renewable energy targets could require up to 17-21 million hectares of additional land in Europe (Don et al., 2012). There are increasing concerns that some transitions into bioenergy may not be as sustainable as first thought when GHG emissions from the crop growth and management cycle are factored into any GHG life cycle assessment (LCA). Bioenergy is complex and encapsulates a wide range of crops, varying from food crop based biofuels to dedicated second generation perennial energy crops and forestry products. The decision on the choice of crop for energy production significantly influences the GHG mitigation potential. It is recognised that GHG savings or losses are in part a function of the original land-use that has undergone change and the management intensity for the energy crop. There is therefore an urgent need to better quantify both crop and site-specific effects associated with the production of conventional and dedicated energy crops on the GHG balance. Currently, there is scarcity of GHG balance data with respect to second generation crops meaning that process based models and LCAs of GHG balances are weakly underpinned. Therefore, robust, models based on real data are urgently required. In the UK we have recently embarked on a detailed program of work to address this challenge by combining a large number of field studies with state-of-the-art process models. Through six detailed experiments, we are calculating the annual GHG balances of land use transitions into energy crops across the UK. Further, we are quantifying the total soil carbon gain or
International Nuclear Information System (INIS)
Muller, J.; Parent, G.; Fumeron, S.; Jeandel, G.; Lacroix, D.
2011-01-01
The detection of surface waves through scanning near-field optical microscopy (SNOM) is a promising technique for thermal measurements at very small scales. Recent studies have shown that electromagnetic waves, in the vicinity of a scattering structure such as an atomic force microscopy (AFM) tip, can be scattered from near to far-field and thus detected. In the present work, a model based on the finite difference time domain (FDTD) method and the near-field to far-field (NFTFF) transformation for electromagnetic waves propagation is presented. This model has been validated by studying the electromagnetic field of a dipole in vacuum and close to a dielectric substrate. Then simulations for a tetrahedral tip close to an interface are presented and discussed.
Three-field modeling with droplet entrainment and de-entrainment models for TRAC-M
International Nuclear Information System (INIS)
Lee, Sang Ik
2005-02-01
A three-field modeling has been developed and implemented to the basic one-dimensional components of TRAC-M/F90 (Modernized Transient Reactor Analysis Code, Fortran90) to improve the estimation of the behavior of droplet entrainment. the divide and conquer algorithmic technique is adjusted for the implementation after considering the verifications. The governing equations are composed of the conservation equations of each field with thermal-equilibrium assumption between the two liquid fields. As a result, three momentum equations, four mass equations including noncondensable gas mass equation and two energy equations are used. In the development of the momentum equation for an entrained droplet, two different kinds of approaches are tested: the simple force balance on a single droplet and the field-type equation based on the continuum assumption. The first showed unstable nature and the latter was chosen. All of the necessary empirical correlations were obtained from literatures, in particular, the physical models of COBRA-TF. The sensitivities of each empirical correlation were investigated where the effect of droplet diameter and droplet drag was found to be negligible. The advantages of the SETS numerical scheme in comparison with the semi-implicit nimerical scheme were addressed in the simulation time and the maximum allowed time-step size. Finally, the simulations of Collier and Hewitt's experiment were performed and it is concluded that the three-field model developed in the present study is reasonable. The predictions by the present code agree with the measured values within the RMS errors of 16.5% and 9.6% in the entrained liquid mass flow rates and the pressure gradients, respectively. Assessment on the physical models is performed. The wall and interfacial drag models were determined at first. After that, the assessments of entrainment model were performed. Wurtz's entrainment model, which was used in COBRA-TF and Kataoka and Ishii's model, were mainly
Bianchi type-I model with conformally invariant scalar and electromagnetic field
International Nuclear Information System (INIS)
Accioly, A.J.; Vaidya, A.N.; Som, M.M.
1983-01-01
A Bianchi type-I exact solution of the Einstein theory representing the homogeneous anisotropic models with the electromagnetic field and the conformally invariant scalar field is studied. The solution contains Kasner model, pure electromagnetic and pure scalar models as special cases. It is found that the models evolve from an initial Kasner type to a final open Friedmann type universe. (Author) [pt
International Nuclear Information System (INIS)
Hirata, A.; Wake, K.; Watanabe, S.; Taki, M.
2009-01-01
The present study quantified the in situ electric field and induced current density in anatomically based numeric Japanese male and female models for exposure to extremely low-frequency magnetic fields. A quasi-static FDTD method was applied to analyse this problem. The computational results obtained herein reveal that the 99. percentile value of the in situ electric field in the nerve tissue and the current density averaged over an area of 1 cm 2 of the nerve tissue (excluding non-nerve tissues in the averaging region) in the female models were less than 35 and 25%, respectively. These induced quantities in the Japanese models were smaller than those for European models reported in a previous study, which is mainly due to the difference in cross-sectional area of the body. (authors)
Ainslie, M. D.; Fujishiro, H.; Ujiie, T.; Zou, J.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.
2014-06-01
The ability to generate a permanent, stable magnetic field unsupported by an electromotive force is fundamental to a variety of engineering applications. Bulk high temperature superconducting (HTS) materials can trap magnetic fields of magnitude over ten times higher than the maximum field produced by conventional magnets, which is limited practically to rather less than 2 T. In this paper, two large c-axis oriented, single-grain YBCO and GdBCO bulk superconductors are magnetized by the pulsed field magnetization (PFM) technique at temperatures of 40 and 65 K and the characteristics of the resulting trapped field profile are investigated with a view of magnetizing such samples as trapped field magnets (TFMs) in situ inside a trapped flux-type superconducting electric machine. A comparison is made between the temperatures at which the pulsed magnetic field is applied and the results have strong implications for the optimum operating temperature for TFMs in trapped flux-type superconducting electric machines. The effects of inhomogeneities, which occur during the growth process of single-grain bulk superconductors, on the trapped field and maximum temperature rise in the sample are modelled numerically using a 3D finite-element model based on the H-formulation and implemented in Comsol Multiphysics 4.3a. The results agree qualitatively with the observed experimental results, in that inhomogeneities act to distort the trapped field profile and reduce the magnitude of the trapped field due to localized heating within the sample and preferential movement and pinning of flux lines around the growth section regions (GSRs) and growth sector boundaries (GSBs), respectively. The modelling framework will allow further investigation of various inhomogeneities that arise during the processing of (RE)BCO bulk superconductors, including inhomogeneous Jc distributions and the presence of current-limiting grain boundaries and cracks, and it can be used to assist optimization of
Realistic edge field model code REFC for designing and study of isochronous cyclotron
International Nuclear Information System (INIS)
Ismail, M.
1989-01-01
The focussing properties and the requirements for isochronism in cyclotron magnet configuration are well-known in hard edge field model. The fact that they quite often change considerably in realistic field can be attributed mainly to the influence of the edge field. A solution to this problem requires a field model which allows a simple construction of equilibrium orbit and yield simple formulae. This can be achieved by using a fitted realistic edge field (Hudson et al 1975) in the region of the pole edge and such a field model is therefore called a realistic edge field model. A code REFC based on realistic edge field model has been developed to design the cyclotron sectors and the code FIELDER has been used to study the beam properties. In this report REFC code has been described along with some relevant explaination of the FIELDER code. (author). 11 refs., 6 figs
Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3-δ
Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Chakrabarti, P. K.
2018-05-01
Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3-δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region ( 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature ( M- T) curve in the entire temperature range (300-5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie-Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.
Flow field bipolar plates in a proton exchange membrane fuel cell: Analysis & modeling
International Nuclear Information System (INIS)
Kahraman, Huseyin; Orhan, Mehmet F.
2017-01-01
Highlights: • Covers a comprehensive review of available flow field channel configurations. • Examines the main design considerations and limitations for a flow field network. • Explores the common materials and material properties used for flow field plates. • Presents a case study of step-by-step modeling for an optimum flow field design. - Abstract: This study investigates flow fields and flow field plates (bipolar plates) in proton exchange membrane fuel cells. In this regard, the main design considerations and limitations for a flow field network have been examined, along with a comprehensive review of currently available flow field channel configurations. Also, the common materials and material properties used for flow field plates have been explored. Furthermore, a case study of step-by-step modeling for an optimum flow field design has been presented in-details. Finally, a parametric study has been conducted with respect to many design and performance parameters in a flow field plate.
Reduction of static field equation of Faddeev model to first order PDE
International Nuclear Information System (INIS)
Hirayama, Minoru; Shi Changguang
2007-01-01
A method to solve the static field equation of the Faddeev model is presented. For a special combination of the concerned field, we adopt a form which is compatible with the field equation and involves two arbitrary complex functions. As a result, the static field equation is reduced to a set of first order partial differential equations
Integrated modelling of near field and engineered barrier system processes
International Nuclear Information System (INIS)
Lamont, A.; Gansemer, J.
1994-01-01
The Yucca Mountain Integrating Model (YMIM) is an integrated model of the Engineered barrier System has been developed to assist project managers at LLNL in identifying areas where research emphasis should be placed. The model was designed to be highly modular so that a model of an individual process could be easily modified or replaced without interfering with the models of other processes. The modules modelling container failure and the dissolution of nuclides include particularly detailed, temperature dependent models of their corresponding processes
Application of the weighted total field-scattering field technique to 3D-PSTD light scattering model
Hu, Shuai; Gao, Taichang; Liu, Lei; Li, Hao; Chen, Ming; Yang, Bo
2018-04-01
PSTD (Pseudo Spectral Time Domain) is an excellent model for the light scattering simulation of nonspherical aerosol particles. However, due to the particularity of its discretization form of the Maxwell's equations, the traditional Total Field/Scattering Field (TF/SF) technique for FDTD (Finite Differential Time Domain) is not applicable to PSTD, and the time-consuming pure scattering field technique is mainly applied to introduce the incident wave. To this end, the weighted TF/SF technique proposed by X. Gao is generalized and applied to the 3D-PSTD scattering model. Using this technique, the incident light can be effectively introduced by modifying the electromagnetic components in an inserted connecting region between the total field and the scattering field region with incident terms, where the incident terms are obtained by weighting the incident field by a window function. To optimally determine the thickness of connection region and the window function type for PSTD calculations, their influence on the modeling accuracy is firstly analyzed. To further verify the effectiveness and advantages of the weighted TF/SF technique, the improved PSTD model is validated against the PSTD model equipped with pure scattering field technique in both calculation accuracy and efficiency. The results show that, the performance of PSTD seems to be not sensitive to variation of window functions. The number of the connection layer required decreases with the increasing of spatial resolution, where for spatial resolution of 24 grids per wavelength, a 6-layer region is thick enough. The scattering phase matrices and integral scattering parameters obtained by the improved PSTD show an excellent consistency with those well-tested models for spherical and nonspherical particles, illustrating that the weighted TF/SF technique can introduce the incident precisely. The weighted TF/SF technique shows higher computational efficiency than pure scattering technique.
A method of evaluating quantitative magnetospheric field models by an angular parameter alpha
Sugiura, M.; Poros, D. J.
1979-01-01
The paper introduces an angular parameter, termed alpha, which represents the angular difference between the observed, or model, field and the internal model field. The study discusses why this parameter is chosen and demonstrates its usefulness by applying it to both observations and models. In certain areas alpha is more sensitive than delta-B (the difference between the magnitude of the observed magnetic field and that of the earth's internal field calculated from a spherical harmonic expansion) in expressing magnetospheric field distortions. It is recommended to use both alpha and delta-B in comparing models with observations.
Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.
2017-12-01
Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are
Leptophobic Z' in models with multiple Higgs doublet fields
Chiang, Cheng-Wei; Nomura, Takaaki; Yagyu, Kei
2015-05-01
We study the collider phenomenology of the leptophobic Z' boson from an extra U(1)' gauge symmetry in models with N -Higgs doublet fields. We assume that the Z' boson at tree level has (i) no Z- Z' mixing, (ii) no interaction with the charged leptons, and (iii) no flavour-changing neutral current. Under such a setup, it is shown that in the N = 1 case, all the U(1)' charges of left-handed quark doublets and right-handed up- and down- type quarks are required to be the same, while in the N ≥ 3 case one can take different charges for the three types of quarks. The N = 2 case is not well-defined under the above three requirements. We study the processes ( V = γ , Z and W ±) with the leptonic decays of Z and W ± at the LHC. The most promising discovery channel or the most stringent constraint on the U(1)' gauge coupling constant comes from the Z'γ process below the threshold and from the process above the threshold. Assuming the collision energy of 8 TeV and integrated luminosity of 19.6 fb-1, we find that the constraint from the Z'γ search in the lower mass regime can be stronger than that from the UA2 experiment. In the N ≥ 3 case, we consider four benchmark points for the Z' couplings with quarks. If such a Z' is discovered, a careful comparison between the Z'γ and Z' W signals is crucial to reveal the nature of Z' couplings with quarks. We also present the discovery reach of the Z' boson at the 14-TeV LHC in both N = 1 and N ≥ 3 cases.
Modelling soil properties in a crop field located in Croatia
Bogunovic, Igor; Pereira, Paulo; Millan, Mesic; Percin, Aleksandra; Zgorelec, Zeljka
2016-04-01
Development of tillage activities had negative effects on soil quality as destruction of soil horizons, compacting and aggregates destruction, increasing soil erosion and loss of organic matter. For a better management in order to mitigate the effects of intensive soil management in land degradation it is fundamental to map the spatial distribution of soil properties (Brevik et al., 2016). The understanding the distribution of the variables in space is very important for a sustainable management, in order to identify areas that need a potential intervention and decrease the economic losses (Galiati et al., 2016). The objective of this work is study the spatial distribution of some topsoil properties as clay, fine silt, coarse silt, fine sand, coarse sand, penetration resistance, moisture and organic matter in a crop field located in Croatia. A grid with 275x25 (625 m2) was designed and a total of 48 samples were collected. Previous to data modelling, data normality was checked using the Shapiro wilk-test. As in previous cases (Pereira et al., 2015), data did not followed the normal distribution, even after a logarithmic (Log), square-root, and box cox transformation. Thus, for modeling proposes, we used the log transformed data, since was the closest to the normality. In order to identify groups among the variables we applied a principal component analysis (PCA), based on the correlation matrix. On average clay content was 15.47% (±3.23), fine silt 24.24% (±4.08), coarse silt 35.34% (±3.12), fine sand 20.93% (±4.68), coarse sand 4.02% (±1.69), penetration resistance 0.66 MPa (±0.28), organic matter 1.51% (±0.25) and soil moisture 32.04% (±3.27). The results showed that the PCA identified three factors explained at least one of the variables. The first factor had high positive loadings in soil clay, fine silt and organic matter and a high negative loading in fine sand. The second factor had high positive loadings in coarse sand and moisture and a high
Directory of Open Access Journals (Sweden)
Emmanuel Frenod
2002-01-01
Full Text Available We study the qualitative behavior of solutions to the Vlasov equation with strong external magnetic field and oscillating electric field. This model is relevant to the understanding of isotop resonant separation. We show that the effective equation is a kinetic equation with a memory term. This memory term involves a pseudo-differential operator whose kernel is characterized by an integral equation involving Bessel functions. The kernel is explicitly given in some particular cases.
International Nuclear Information System (INIS)
Hong, Cheng-Shong; Chu, Sheng-Yuan; Hsu, Chi-Cheng
2010-01-01
In this paper, the effect of the sintering temperature on the low-field dielectric behavior of nonstoichiometric Pb 0.95 La 0.05 (Fe 2/3 W 1/3 ) 0.65 Ti 0.35 O 3 relaxor ferroelectrics is investigated. The x-ray patterns and the scanning electron microscope images are used to detect the pyrochlore phase and the perovskite structure. The electric properties of the resistivity, the space charge polarization, the temperature-dependent dielectric constant and dielectric loss are discussed. The diffused phase transition and the ordering state are fitted and discussed by using the empirical law and two ordering models. Furthermore, the glassy behavior is determined by using the Curie-Weiss law and the spin-glass model. According to the experimental data and fitting results, the dielectric picture is changed from the short range order relaxorlike behavior to the long range order normal ferroelectric state as increasing the sintering temperature and the glassy behavior is weakened at the lowest and highest sintering temperature at which the pyrochlore phase PWO 4 is induced. Therefore, it is suggested that the 1:1 ordered domain is enhanced by increasing the sintering temperature and the glassy behavior is related to not only the ordering degree also the polar defect pairs. For more ordering degree and polar defect pairs, the glassy is weakened and the correlation of neighboring polar microregions is enhanced.
A comprehensive model of the quiet-time, near-Earth magnetic field: phase 3
DEFF Research Database (Denmark)
Sabaka, T.J.; Olsen, Nils; Langel, R.A.
2002-01-01
been modelled simultaneously, with fields from other sources being modelled separately. Such a scheme, however, can introduce spurious features, especially when the spatial and temporal scales of the fields overlap. A new model, designated CM3 (Comprehensive Model: phase 3), is the third in a series...... of efforts to coestimate fields from all of these sources. This model has been derived from quiet-time Magsat and POGO satellite and observatory hourly means measurements for the period 1960-1985. It represents a significant advance in the treatment of the aforementioned field sources over previous attempts...... parametrization and estimation of the lithospheric field. The result is a model that describes well the 591 432 data with 16 594 parameters, implying a data-to-parameter ratio of 36, which is larger than several popular field models....
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
Hidden spin-3/2 field in the standard model
Energy Technology Data Exchange (ETDEWEB)
Demir, Durmus; Karahan, Canan; Sargin, Ozan [Izmir Institute of Technology, Department of Physics, Urla (Turkey); Korutlu, Beste [TUeBITAK National Metrology Institute, Gebze, Kocaeli (Turkey)
2017-09-15
Here we show that a massive spin-3/2 field can hide in the SM spectrum in a way revealing itself only virtually. We study collider signatures and loop effects of this field, and determine its role in Higgs inflation and its potential as dark matter. We show that this spin-3/2 field has a rich linear collider phenomenology and motivates consideration of a neutrino-Higgs collider. We also show that the study of Higgs inflation, dark matter and dark energy can reveal more about the neutrino and dark sector. (orig.)
Magnetic field of Mercury and models of thermal evolution
International Nuclear Information System (INIS)
Sharpe, H.N.; Strangway, D.W.
1976-01-01
Recent planetary probes have performed in situ measurements of the magnetic fields of all the terrestrial planets. Consideration is given to the origin of these fields, with attention to the equilibrium-- condensation hypothesis for the formation of the solar system. In particular, it is shown that Mercury's present day magnetic field could have been acquired during or shortly after a cold accretion or that it could be due to a presently operating dynamo, resulting from a 'hot evolution'. Two parameters which would help to distinguish between these possibilities are the present-day surface heat flow and the moment of inertia
Stabilization of the extra dimension size in RS model by bulk Higgs field
International Nuclear Information System (INIS)
Egorov, V O; Volobuev, I P
2017-01-01
An extension of the Standard Model is considered, which is built on the basis of a stabilized Randall-Sundrum model with two branes. The stabilization of the extra dimension size is achieved with the help of a five-dimensional Higgs field, which plays the role of the Goldberger-Wise field. The stabilization makes the radion massive, and all the fermion fields, which are assumed to be localized on the TeV brane, get their masses due to the interaction with the boundary value of the Higgs field. The gauge invariance of the theory demands that the electroweak gauge fields also live in the bulk. The equations of motion for the background field configurations and for the field fluctuations against a background solution are obtained. The interaction of the bulk Higgs field with the multidimensional gauge field is studied and possible values of the model parameters are estimated. (paper)
Boundary conformal field theory analysis of the H+3 model
International Nuclear Information System (INIS)
Adorf, Hendrik
2008-01-01
The central topic of this thesis is the study of consistency conditions for the maximally symmetric branes of the H + 3 model. It is carried out by deriving constraints in the form of so-called shift equations and analysing their solutions. This results in explicit expressions for the one point functions in the various brane backgrounds. The brane spectrum becomes organized in certain continuous and discrete series. In the first part, we give an introduction to two dimensional conformal field theory (CFT) in the framework of vertex operator algebras and their modules. As this approach has been developed along with rational CFT, we pay attention to adapt it to the special needs of the nonrational H + 3 model. Part two deals with boundary CFT only. We start with a review of some basic techniques of boundary CFT and the Cardy-Lewellen sewing relations that will be at the heart of all following constructions. Afterwards, we introduce the systematics of brane solutions that we are going to follow. With the distinction between regular and irregular one point functions, we propose a new additional pattern according to which the brane solutions must be organized. We argue that all isospin dependencies must be subjected to the sewing constraints. At this point, the programme to be carried out is established and we are ready to derive the missing 1/2-shift equations for the various types of AdS 2 branes in order to make the list of this kind of equation complete. Then we address the b -2 /2-shift equations. It turns out that their derivation is not straightforward: One needs to extend the initial region of definition of a certain (boundary CFT) two point function to a suitable patch. Therefore, a continuation prescription has to be assumed. The most natural candidate is analytic continuation. We show that it can be carried out, although it is rather technical and involves the use of certain generalized hypergeometric functions in two variables. In this way, we derive a
An integrated model for interaction of electromagnetic fields with biological systems
International Nuclear Information System (INIS)
Apollonio, F.; Liberti, M.; Cavagnaro, M.; D'Inzeo, G.; Tarricone, L.
1999-01-01
In this work is described a methodology for evaluation of interaction of high frequency electromagnetic field. Biological systems via connection of many macroscopic models. In particular the analysis of neuronal membrane exposed to electromagnetic fields [it
Athreya, C. N.; Mukilventhan, A.; Suwas, Satyam; Vedantam, Srikanth; Subramanya Sarma, V.
2018-04-01
The influence of the mode of deformation on recrystallisation behaviour of Ti was studied by experiments and modelling. Ti samples were deformed through torsion and rolling to the same equivalent strain of 0.5. The deformed samples were annealed at different temperatures for different time durations and the recrystallisation kinetics were compared. Recrystallisation is found to be faster in the rolled samples compared to the torsion deformed samples. This is attributed to the differences in stored energy and number of nuclei per unit area in the two modes of deformation. Considering decay in stored energy during recrystallisation, the grain boundary mobility was estimated through a mean field model. The activation energy for recrystallisation obtained from experiments matched with the activation energy for grain boundary migration obtained from mobility calculation. A multi-phase field model (with mobility estimated from the mean field model as a constitutive input) was used to simulate the kinetics, microstructure and texture evolution. The recrystallisation kinetics and grain size distributions obtained from experiments matched reasonably well with the phase field simulations. The recrystallisation texture predicted through phase field simulations compares well with experiments though few additional texture components are present in simulations. This is attributed to the anisotropy in grain boundary mobility, which is not accounted for in the present study.
Model of Dipole Field Variations in the LEP Bending Magnets
Bravin, Enrico; Drees, A; Mugnai, G
1998-01-01
The determination of the Z mass at LEP requires a knowledge of the relative beam energy in the order of 10 ppm, therefore it is essential to understand the dipole field variations to the same level of accuracy. In LEP the bending magnet field shows a relative increase of the order of 100 ppm over 10 hours, which was found to be caused by leakage currents from railways flowing along the vacuum cham ber and temperature variations. A LEP dipole test bench was set up for systematic investigations. Field variations were monitored with NMR probes while the cooling water temperature of both coil and vacuum chamber was kept under control. The results lead to a parametrisation of the magnetic field variation as a function of the vacuum chamber current and temperature.
A New Model of Jupiter's Magnetic Field from Juno's First Nine Orbits
DEFF Research Database (Denmark)
Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.
2018-01-01
A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter......'s magnetic field with a coarse longitudinal separation of ~45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary (“internal”) field, combined with a simple model of the magnetodisc for the field (“external”) due to distributed magnetospheric...... currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model (“Juno Reference Model through Perijove 9”) of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed...
A New Model of Jupiter's Magnetic Field From Juno's First Nine Orbits
Connerney, J. E. P.; Kotsiaros, S.; Oliversen, R. J.; Espley, J. R.; Joergensen, J. L.; Joergensen, P. S.; Merayo, J. M. G.; Herceg, M.; Bloxham, J.; Moore, K. M.; Bolton, S. J.; Levin, S. M.
2018-03-01
A spherical harmonic model of the magnetic field of Jupiter is obtained from vector magnetic field observations acquired by the Juno spacecraft during its first nine polar orbits about the planet. Observations acquired during eight of these orbits provide the first truly global coverage of Jupiter's magnetic field with a coarse longitudinal separation of 45° between perijoves. The magnetic field is represented with a degree 20 spherical harmonic model for the planetary ("internal") field, combined with a simple model of the magnetodisc for the field ("external") due to distributed magnetospheric currents. Partial solution of the underdetermined inverse problem using generalized inverse techniques yields a model ("Juno Reference Model through Perijove 9") of the planetary magnetic field with spherical harmonic coefficients well determined through degree and order 10, providing the first detailed view of a planetary dynamo beyond Earth.
Force-free field model of ball lightning
International Nuclear Information System (INIS)
Tsui, K.H.
2001-01-01
Due to the nature that the force-free magnetic field, whose current carried by the conducting plasma is everywhere parallel to the magnetic field it generates, is the minimum energy configuration under the constraint of magnetic helicity conservation, ball lightning is considered as a self-organized phenomenon with a plasma fireball immersed in a spherical force-free magnetic field. Since this field does not exert force on the plasma, the plasma pressure, by itself, is in equilibrium with the surrounding environment, and the force-free magnetic field can take on any value without affecting the plasma. Due to this second feature, singular solutions of the magnetic field that are otherwise excluded are allowed, which enable a large amount of energy to be stored to sustain the ball lightning. The singularity is truncated only by the physical limit of current density that a plasma can carry. Scaling the customary soccer-size fireball to larger dimensions could account for day and night sightings of luminous objects in the sky
The generalized Fenyes-Nelson model for free scalar field theory
International Nuclear Information System (INIS)
Davidson, M.
1980-01-01
The generalized Fenyes-Nelson model of quantum mechanics is applied to the free scalar field. The resulting Markov field is equivalent to the Euclidean Markov field with the times scaled by a common factor which depends on the diffusion parameter. This result is consistent with Guerra's earlier work on stochastic quantization of scalar fields. It suggests a deep connection between Euclidean field theory and the stochastic interpretation of quantum mechanics. The question of Lorentz covariance is also discussed. (orig.)
Linear velocity fields in non-Gaussian models for large-scale structure
Scherrer, Robert J.
1992-01-01
Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.
Thermodynamically Consistent Algorithms for the Solution of Phase-Field Models
Vignal, Philippe
2016-01-01
of thermodynamically consistent algorithms for time integration of phase-field models. The first part of this thesis focuses on an energy-stable numerical strategy developed for the phase-field crystal equation. This model was put forward to model microstructure
DEFF Research Database (Denmark)
Gillet, N.; Jault, D.; Finlay, Chris
2013-01-01
Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core-mantle boundary together with its associated model covariances. However, most currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....
DEFF Research Database (Denmark)
Gillet, Nicolas; Jault, D.; Finlay, Chris
2013-01-01
Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge of the magnetic field at the core mantle boundary together with its associated model covariances. However, all currently available field models have been built using regularization conditions...... variation error model in core flow inversions and geomagnetic data assimilation studies....
A Comprehensive Model of the Near-Earth Magnetic Field. Phase 3
Sabaka, Terence J.; Olsen, Nils; Langel, Robert A.
2000-01-01
The near-Earth magnetic field is due to sources in Earth's core, ionosphere, magnetosphere, lithosphere, and from coupling currents between ionosphere and magnetosphere and between hemispheres. Traditionally, the main field (low degree internal field) and magnetospheric field have been modeled simultaneously, and fields from other sources modeled separately. Such a scheme, however, can introduce spurious features. A new model, designated CMP3 (Comprehensive Model: Phase 3), has been derived from quiet-time Magsat and POGO satellite measurements and observatory hourly and annual means measurements as part of an effort to coestimate fields from all of these sources. This model represents a significant advancement in the treatment of the aforementioned field sources over previous attempts, and includes an accounting for main field influences on the magnetosphere, main field and solar activity influences on the ionosphere, seasonal influences on the coupling currents, a priori characterization of ionospheric and magnetospheric influence on Earth-induced fields, and an explicit parameterization and estimation of the lithospheric field. The result of this effort is a model whose fits to the data are generally superior to previous models and whose parameter states for the various constituent sources are very reasonable.
Topological-Sector Fluctuations and Curie-Law Crossover in Spin Ice
Directory of Open Access Journals (Sweden)
L. D. C. Jaubert
2013-02-01
Full Text Available At low temperatures, a spin ice enters a Coulomb phase—a state with algebraic correlations and topologically constrained spin configurations. We show how analytical and numerical approaches for model spin-ice systems reveal a crossover between two Curie laws. One of these laws characterizes the high-temperature paramagnetic regime, while the other, which we call the “spin-liquid Curie law,” characterizes the low-temperature Coulomb-phase regime, which provides implicit evidence that the topological sector fluctuates. We compare our theory with experiment for Ho_{2}Ti_{2}O_{7}, where this process leads to a nonstandard temperature evolution of the bulk susceptibility and the wave-vector-dependent magnetic susceptibility, as measured by neutron scattering. Theory and experiment agree for bulk quantities and at large scattering wave vectors, but differences at small wave vectors indicate that the classical spin-ice states are not equally populated at low temperatures. More generally, the crossover appears to be a generic property of the emergent gauge field for a classical spin liquid, and it sheds light on the experimental difficulty of measuring a precise Curie-Weiss temperature in frustrated materials. The susceptibility at finite wave vectors is shown to be a local probe of fluctuations among topological sectors on varying length scales.
Thermodynamic properties of a layered S = 7/2 Heisenberg magnet Gd(OH)CO3
Orendac, Martin; Ulicny, Martin; Cizmar, Erik; Orendacova, Alzbeta; Chen, Yan-Cong; Meng, Zhao-Sha; Tong, Ming-Liang
2015-03-01
Thermodynamic quantities and ESR spectra of Gd(OH)CO3 (I) are reported. The material may be considered to consist of weakly coupled layers with potentially triangular arrangement of exchange paths within each layer. Different bridging groups and distances among Gd3+ ions may be responsible for spatial anisotropy of magnetic coupling. Preliminary analysis of magnetic susceptibility using Curie-Weiss law yielded θ = -1.05 K indicating weak antiferromagnetic coupling and consequently, spin frustration in (I). More detailed simultaneous analysis of specific heat, susceptibility and magnetization studied down to nominally 0.45 K revealed non-negligible role of single-ion anisotropy. Using the model of weakly interacting S =7/2 trimers, the gross features of measured data may be explained while assuming single-ion anisotropy D /kB ~ 0.6 K and effective intratrimer magnetic coupling | J /kB | ~0.3 K. The obtained D value reasonably reproduces the position and shape of ESR line. The performed analysis suggests that magnetism in (I) is governed predominantly by crystal field effects and frustration plays a minor role. Supported by ITMS26220120005 and VEGA 1/0143/13.
Zhu, Zhi; Tang, Xingui; Jiang, Yanping; Liu, Qiuxiang; Zhang, Tianfu; Li, Wenhua
2017-03-28
This work evaluated the resistance switching characteristics in the (100)-oriented Pb(Zn 1/3 Nb 2/3 ) 0.91 Ti 0.09 O₃ (PZNT) single crystal. The current hysteresis can be closely related to the ferroelectric polarization and we provided a possible explanation using a model about oxygen vacancies to analyze the mechanism of switching. The obvious frequency dispersion of the relative permittivity signified the relaxer-type behavior of the sample. The value of the relaxation parameter γ = 1.48 was estimated from the linear fit of the modified Curie-Weiss law, indicating the relaxer nature. High-temperature dielectric relaxation behaviors were revealed in the temperature region of 400-650 °C. In addition, under the measuring frequency of 10 kHz, ε r was tunable by changing the electric field and the largest tunability of ε r reached 14.78%. At room temperature, the high pyroelectric coefficient and detectivity figure of merit were reported.
Mathematical modelling of deuterium transport in field lysimeters
International Nuclear Information System (INIS)
Maloszewski, P.; Klotz, D.; Trimborn, P.; Maciejewski, S.
1999-01-01
The results yielded by the Variable Flow Model (VFDM) permitted determining water flow velocities and degrees of dispersiveness. It transpired that it is not possible to isolate immobile water, which is to say that the available measuring and modelling data permit no conclusion as to whether or not the system contains immobile water. Comparison with the results obtained with the Dispersion Model (DM) showed that the simpler DM model yields tracer concentration curves in the system output that are almost as good as those of the more complicated VFDM model while entailing less work. The two models yield very similar calculations of lysimeter water content [de
Quantification of source-term profiles from near-field geochemical models
International Nuclear Information System (INIS)
McKinley, I.G.
1985-01-01
A geochemical model of the near-field is described which quantitatively treats the processes of engineered barrier degradation, buffering of aqueous chemistry by solid phases, nuclide solubilization and transport through the near-field and release to the far-field. The radionuclide source-terms derived from this model are compared with those from a simpler model used for repository safety analysis. 10 refs., 2 figs., 2 tabs
A Note on Equivalence Among Various Scalar Field Models of Dark Energies
Mandal, Jyotirmay Das; Debnath, Ujjal
2017-08-01
In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.
International Nuclear Information System (INIS)
Ogawa, Takeshi; Kayano, Mitsunaga; Kikuchi, Hideo; Abe, Takeo; Saga, Kyoji
1995-01-01
In Environmental Radioactivity Research Institute, the verification and investigation of the wind velocity field forecast model 'EXPRESS-1' have been carried out since 1991. In fiscal year 1994, as the general analysis, the validity of weather observation data, the local features of wind field, and the validity of the positions of monitoring stations were investigated. The EXPRESS which adopted 500 m mesh so far was improved to 250 m mesh, and the heightening of forecast accuracy was examined, and the comparison with another wind velocity field forecast model 'SPEEDI' was carried out. As the results, there are the places where the correlation with other points of measurement is high and low, and it was found that for the forecast of wind velocity field, by excluding the data of the points with low correlation or installing simplified observation stations to take their data in, the forecast accuracy is improved. The outline of the investigation, the general analysis of weather observation data and the improvements of wind velocity field forecast model and forecast accuracy are reported. (K.I.)
The International Geomagnetic Reference Field (IGRF) generation 12: BGS candidates and final models
Beggan, Ciaran D.; Hamilton, Brian; Taylor, Victoria; Macmillan, Susan; Thomson, Alan
2015-01-01
The International Geomagnetic Reference Field (IGRF) model is a reference main field magnetic model updated on a quinquennial basis. The latest revision (generation 12) was released in January 2015. The IGRF-12 consists of a definitive model (DGRF2010) of the main field for 2010.0, a model for the field at 2015.0 (IGRF2015) and a prediction of secular variation (IGRF-12 SV) for the forthcoming five years until 2020.0. The remaining coefficients of IGRF-12 are unchanged from IGRF-11. Nin...
Evaluation of using digital gravity field models for zoning map creation
Loginov, Dmitry
2018-05-01
At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.
International Nuclear Information System (INIS)
Fateev, V.; Lukyanov, S.; Zamolodchikov, A.; Zamolodchikov, A.
1998-01-01
Exact expectation values of the fields e aφ in the Bullough-Dodd model are derived by adopting the ''''reflection relations'''' which involve the reflection S-matrix of the Liouville theory, as well as a special analyticity assumption. Using this result we propose explicit expressions for expectation values of all primary operators in the c 1,2 or Φ 2,1 . Some results concerning the Φ 1,5 perturbed minimal models are also presented. (orig.)
Constraints on Interacting Scalars in 2T Field Theory and No Scale Models in 1T Field Theory
Bars, Itzhak
2010-01-01
In this paper I determine the general form of the physical and mathematical restrictions that arise on the interactions of gravity and scalar fields in the 2T field theory setting, in d+2 dimensions, as well as in the emerging shadows in d dimensions. These constraints on scalar fields follow from an underlying Sp(2,R) gauge symmetry in phase space. Determining these general constraints provides a basis for the construction of 2T supergravity, as well as physical applications in 1T-field theory, that are discussed briefly here, and more detail elsewhere. In particular, no scale models that lead to a vanishing cosmological constant at the classical level emerge naturally in this setting.
Kalliokoski, Tuomo; Ronkko, Toni; Poso, Antti
2008-06-01
Algorithms were developed for ligand-based virtual screening of molecular databases. FieldChopper (FC) is based on the discretization of the electrostatic and van der Waals field into three classes. A model is built from a set of superimposed active molecules. The similarity of the compounds in the database to the model is then calculated using matrices that define scores for comparing field values of different categories. The method was validated using 12 publicly available data sets by comparing the method to the electrostatic similarity comparison program EON. The results suggest that FC is competitive with more complex descriptors and could be used as a molecular sieve in virtual screening experiments when multiple active ligands are known.
DEFF Research Database (Denmark)
Finlay, Chris; Olsen, Nils; Tøffner-Clausen, Lars
th order spline representation with knot points spaced at 0.5 year intervals. The resulting field model is able to consistently fit data from six independent low Earth orbit satellites: Oersted, CHAMP, SAC-C and the three Swarm satellites. As an example, we present comparisons of the excellent model...... therefore conclude that Swarm data is suitable for building high-resolution models of the large-scale internal field, and proceed to extract IGRF-12 candidate models for the main field in epochs 2010 and 2015, as well as the predicted linear secular variarion for 2015-2020. The properties of these IGRF...... candidate models are briefly presented....
Algebraic structure of cohomological field theory models and equivariant cohomology
International Nuclear Information System (INIS)
Stora, R.; Thuillier, F.; Wallet, J.Ch.
1994-01-01
The definition of observables within conventional gauge theories is settled by general consensus. Within cohomological theories considered as gauge theories of an exotic type, that question has a much less obvious answer. It is shown here that in most cases these theories are best defined in terms of equivariant cohomologies both at the field level and at the level of observables. (author). 21 refs
Agent-based modelling of shifting cultivation field patterns, Vietnam
DEFF Research Database (Denmark)
Jepsen, Martin Rudbeck; Leisz, S.; Rasmussen, K.
2006-01-01
Shifting cultivation in the Nghe An Province of Vietnam's Northern Mountain Region produces a characteristic land-cover pattern of small and larger fields. The pattern is the result of farmers cultivating either individually or in spatially clustered groups. Using spatially explicit agent...
TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527
International Nuclear Information System (INIS)
Davidson, J. A.; Li, Z.-Y.; Hull, C. L. H.; Plambeck, R. L.; Kwon, W.; Crutcher, R. M.; Looney, L. W.; Novak, G.; Chapman, N. L.; Matthews, B. C.; Stephens, I. W.; Tobin, J. J.; Jones, T. J.
2014-01-01
For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse
TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527
Energy Technology Data Exchange (ETDEWEB)
Davidson, J. A. [University of Western Australia, School of Physics, 35 Stirling Highway, Crawley, WA 6009 (Australia); Li, Z.-Y. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Hull, C. L. H.; Plambeck, R. L. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen (Netherlands); Crutcher, R. M.; Looney, L. W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Novak, G.; Chapman, N. L. [Northwestern University, Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Matthews, B. C. [Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Stephens, I. W. [Boston University, Institute for Astrophysical Research, Boston, MA 02215 (United States); Tobin, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Jones, T. J., E-mail: jackie.davidson@uwa.edu.au [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)
2014-12-20
For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.
Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)
Kim, Yeong E.; Braswell, W. Danny
1989-01-01
Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.
Modeling the wind-fields of accidental releases with an operational regional forecast model
International Nuclear Information System (INIS)
Albritton, J.R.; Lee, R.L.; Sugiyama, G.
1995-01-01
The Atmospheric Release Advisory Capability (ARAC) is an operational emergency preparedness and response organization supported primarily by the Departments of Energy and Defense. ARAC can provide real-time assessments of atmospheric releases of radioactive materials at any location in the world. ARAC uses robust three-dimensional atmospheric transport and dispersion models, extensive geophysical and dose-factor databases, meteorological data-acquisition systems, and an experienced staff. Although it was originally conceived and developed as an emergency response and assessment service for nuclear accidents, the ARAC system has been adapted to also simulate non-radiological hazardous releases. For example, in 1991 ARAC responded to three major events: the oil fires in Kuwait, the eruption of Mt. Pinatubo in the Philippines, and the herbicide spill into the upper Sacramento River in California. ARAC's operational simulation system, includes two three-dimensional finite-difference models: a diagnostic wind-field scheme, and a Lagrangian particle-in-cell transport and dispersion scheme. The meteorological component of ARAC's real-time response system employs models using real-time data from all available stations near the accident site to generate a wind-field for input to the transport and dispersion model. Here we report on simulation studies of past and potential release sites to show that even in the absence of local meteorological observational data, readily available gridded analysis and forecast data and a prognostic model, the Navy Operational Regional Atmospheric Prediction System, applied at an appropriate grid resolution can successfully simulate complex local flows
International Nuclear Information System (INIS)
Birn, J.; Hones, E.W. Jr.; Craven, J.D.; Frank, L.A.; Elphinstone, R.D.; Stern, D.P.
1991-01-01
Using the empirical Tsyganenko (1987) long model as a prime example of a megnetospheric field model, the authors have attempted to identify the boundary between open and closed field lines. They define as closed all field lines that are connested with the Earth at both ends and cross the equatorial plane earthward of x = -70 R E , the tailward validity limit of the Tsyganenko model. They find that the form of the open/closed boundary at the Earth's surface, identified with the polar cap boundary, can exhibit the arrowhead shape, pointed toward the Sun, observed in horse collar auroras (Hones et al., 1989). The polar cap size in the Tsyganenko model increases with increasing K p values, and it becomes rounder and less pointed. The superposition of a net B y field, which is the expected consequence of an IMF B y , rotates the polar cap pattern and, for larger values, degrades the arrowhead shape, resulting in polar cap configurations consistent with known asymmetries in the aurora. The pointedness of the polar cap shape also diminishes or even completely disappears if the low-latitude magnetopause is assumed open and located considerably inside of the outermost magnetic flux surface in the Tsyganenko model. The arrowhead shape of the polar cap is found to be associated with a strong increase of B z from midnight toward the tail flanks, which is observed independently, and is possibly related to the NBZ field-aligned current system, observed during quiet times and strongly northward IMF B z . The larger B z values near the flanks of the tail cause more magnetic flux to close through these regions than through the midnight equatorial region
Quantification Model for Estimating Temperature Field Distributions of Apple Fruit
Zhang , Min; Yang , Le; Zhao , Huizhong; Zhang , Leijie; Zhong , Zhiyou; Liu , Yanling; Chen , Jianhua
2009-01-01
International audience; A quantification model of transient heat conduction was provided to simulate apple fruit temperature distribution in the cooling process. The model was based on the energy variation of apple fruit of different points. It took into account, heat exchange of representative elemental volume, metabolism heat and external heat. The following conclusions could be obtained: first, the quantification model can satisfactorily describe the tendency of apple fruit temperature dis...
Spectral element model for 2-D electrostatic fields in a linear synchronous motor
van Beek, T.A.; Curti, M.; Jansen, J.W.; Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.A.
2017-01-01
This paper presents a fast and accurate 2-D spectral element model for analyzing electric field distributions in linear synchronous motors. The electric field distribution is derived using the electric scalar potential for static cases. The spatial potential and electric field distributions obtained
Enabling full-field physics-based optical proximity correction via dynamic model generation
Lam, Michael; Clifford, Chris; Raghunathan, Ananthan; Fenger, Germain; Adam, Kostas
2017-07-01
As extreme ultraviolet lithography becomes closer to reality for high volume production, its peculiar modeling challenges related to both inter and intrafield effects have necessitated building an optical proximity correction (OPC) infrastructure that operates with field position dependency. Previous state-of-the-art approaches to modeling field dependency used piecewise constant models where static input models are assigned to specific x/y-positions within the field. OPC and simulation could assign the proper static model based on simulation-level placement. However, in the realm of 7 and 5 nm feature sizes, small discontinuities in OPC from piecewise constant model changes can cause unacceptable levels of edge placement errors. The introduction of dynamic model generation (DMG) can be shown to effectively avoid these dislocations by providing unique mask and optical models per simulation region, allowing a near continuum of models through the field. DMG allows unique models for electromagnetic field, apodization, aberrations, etc. to vary through the entire field and provides a capability to precisely and accurately model systematic field signatures.
Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.
Humphrey, V F
2000-03-01
In high amplitude ultrasonic fields, such as those used in medical ultrasound, nonlinear propagation can result in waveform distortion and the generation of harmonics of the initial frequency. In the nearfield of a transducer this process is complicated by diffraction effects associated with the source. The results of a programme to study the nonlinear propagation in the fields of circular, focused and rectangular transducers are described, and comparisons made with numerical predictions obtained using a finite difference solution to the Khokhlov-Zabolotskaya-Kuznetsov (or KZK) equation. These results are extended to consider nonlinear propagation in tissue-like media and the implications for ultrasonic measurements and ultrasonic heating are discussed. The narrower beamwidths and reduced side-lobe levels of the harmonic beams are illustrated and the use of harmonics to form diagnostic images with improved resolution is described.
Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy
International Nuclear Information System (INIS)
Karami, K; Fahimi, K
2013-01-01
We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)
DEFF Research Database (Denmark)
Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten
2010-01-01
FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....
Statistical analysis and modelling of surface runoff from arable fields
P. Fiener; K. Auerswald; F. Winter; M. Disse
2013-01-01
Surface runoff generation on arable fields is an important driver of (local) flooding, on-site and off-site damages by erosion, and of nutrient and agrochemical transport. In general, three different processes generate surface runoff (Hortonian runoff, saturation excess runoff, and return of subsurface flow). Despite the developments in our understanding of these processes it remains difficult to predict, which processes govern runoff generation during the course of an event or through...
Data Modeling for Measurements in the Metrology and Testing Fields
Pavese, Franco
2009-01-01
Offers a comprehensive set of modeling methods for data and uncertainty analysis. This work develops methods and computational tools to address general models that arise in practice, allowing for a more valid treatment of calibration and test data and providing an understanding of complex situations in measurement science
Neutron field control cybernetics model of RBMK reactor operator
International Nuclear Information System (INIS)
Polyakov, V.V.; Postnikov, V.V.; Sviridenkov, A.N.
1992-01-01
Results on parameter optimization for cybernetics model of RBMK reactor operator by power release control function are presented. Convolutions of various criteria applied previously in algorithms of the program 'Adviser to reactor operator' formed the basis of the model. 7 refs.; 4 figs
Conceptual models in the field of library catalogues
Directory of Open Access Journals (Sweden)
Marija Petek
2000-01-01
Full Text Available The publishing world is changing quickly and so must also bibliographic control. It is tirne to re-examine cataloguing rules and MARC formats. This can be done by the method of conceptual modelling. Some conceptual models are presented; an IFLA study on the functional requirements for bibliographic records is described in detail.
Dose loading mathematical modelling of moving through heterogeneous radiation fields
International Nuclear Information System (INIS)
Batyij, Je.V.; Kotlyarov, V.T.
2006-01-01
Software component for management of data on gamma exposition dose spatial distribution was created in the frameworks of the Ukryttya information model creation. Availability of state-of-the-art programming technologies (NET., ObjectARX) for integration of different models of radiation-hazardous condition to digital engineer documentation system (AutoCAD) was shown on the basis of the component example
Hydrogeochemistry and reservoir model of Fuzhou geothermal field, China
Huang, H. F.; Goff, Fraser
1986-03-01
Fuzhou geothermal field is a low- to intermediate-temperature geothermal system consisting of meteoric water that circulates deeply along faults. The area of the field is about 9 km 2 but it is elongated in a NNW-trending direction. Fluids in the field are controlled by a series of four NNW extensional faults in Cretaceous granitic basement (Fuzhou fault zone). These faults feed warm waters into overlying permeable Quaternary sediments. The hydrothermal system consists of north and south parts whose chemical compositions are subtly different. In the northern part the system discharges sulfate/chloride waters with relatively low chloride concentrations, but in the south the system discharges chloride waters having relatively high chloride concentrations. Maximum wellhead temperatures are 97°C, which agrees with the chalcedony geothermometer in many cases. Based on the solubility of quartz, the deep-reservoir temperature cannot exceed 123 to 131°C. From heat and mass balance calculations, we conclude that the present total extracted capacity of fluid from the reservoir (20,000 tons/day) could be doubled without noticeable drawdown. We estimate the recoverable heat in the reservoir to be about 1.71 × 10 11 MJ.
Review of international near-field modeling for high-level waste disposal
International Nuclear Information System (INIS)
Apted, M.J.; Andersson, K.; Pescatore, C.
1993-01-01
The primary components of nuclear waste repositories that mitigate radionuclide release are the near-field and the far-field subsystems. The near-field encompasses the waste package, which is composed of engineered barriers; the far-field includes the natural barriers. An international survey and review is being conducted on the latest developments in modeling of near-field performance, with particular emphasis on the conceptual and mathematical models for source-term calculations. The objectives of this review will be to establish the status and commonality among models and methods for assessing near-field performance, as well as to identify possible future needs for continued comparison and collaboration. In parallel with the technical evaluation, an international technical Workshop on near-field performance assessment will be held, in association with the Nuclear Energy Agency, on May 11-13, 1993 in Cadarache, France
Energy Technology Data Exchange (ETDEWEB)
Zhuk, Alexander [The International Center of Future Science of the Jilin University, Changchun City (China); Odessa National University, Astronomical Observatory, Odessa (Ukraine); Chopovsky, Alexey; Fakhr, Seyed Hossein [Odessa National University, Astronomical Observatory, Odessa (Ukraine); Shulga, Valerii [The International Center of Future Science of the Jilin University, Changchun City (China); Institut of Radio Astronomy of National Academy of Sciences of Ukraine, Kharkov (Ukraine); Wei, Han [The International Center of Future Science of the Jilin University, Changchun City (China)
2017-11-15
In a multidimensional Kaluza-Klein model with Ricci-flat internal space, we study the gravitational field in the weak-field limit. This field is created by two coupled sources. First, this is a point-like massive body which has a dust-like equation of state in the external space and an arbitrary parameter Ω of equation of state in the internal space. The second source is a static spherically symmetric massive scalar field centered at the origin where the point-like massive body is. The found perturbed metric coefficients are used to calculate the parameterized post-Newtonian (PPN) parameter γ. We define under which conditions γ can be very close to unity in accordance with the relativistic gravitational tests in the solar system. This can take place for both massive or massless scalar fields. For example, to have γ ∼ 1 in the solar system, the mass of scalar field should be μ >or similar 5.05 x 10{sup -49} g ∝ 2.83 x 10{sup -16} eV. In all cases, we arrive at the same conclusion that to be in agreement with the relativistic gravitational tests, the gravitating mass should have tension: Ω = -1/2. (orig.)
Topology of magnetic fields in particle physics, implications on the quark model
Energy Technology Data Exchange (ETDEWEB)
Jehle, H.
1977-01-01
The flux-loop model of quarks is considered covering electomagnetic gauge invariance, flux quantization, topological conditions for the magnetic field, the extended source model, the electric field, linkage of loop forms, topology and motion of flux loop forms, coalial loops of hadrons having weak interactions, magnetic moments of hadrons, strong interactions, some remarks about string models, and the implications of he topological quark model on the ground and excited states of mesons. 80 references. (JFP)
Effective field treatment of the annealed bond-dilute transverse Ising model
International Nuclear Information System (INIS)
Silva, P.R.; Sa Barreto, F.C. de
1983-01-01
The dilution of the spin-1/2 transverse Ising Model is studied by means of an effective field type treatment based on an extension of Callen's relation to the present model. The thermodynamics of the diluted model is obtained and the results are shown to be an improvement over the standard mean field treatment. The results are also compared with the Monte Carlo calculation for the spin-infinite transverse Ising Model. (Author) [pt
Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays
Energy Technology Data Exchange (ETDEWEB)
Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba
2013-01-26
This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate
Magnetic field measurements and data acquisition of a model magnet for the B-factory
International Nuclear Information System (INIS)
Zhou Wenming; Endo, Kuninori
1994-01-01
In this paper we describe magnetic field measurements and the field data-acquisition system used to measure the model magnet for the B-factory booster. The results of the measurements indicate that the method adopted here is good for acquiring field data. This type of measurement is highly accurate and involves almost no temperature coefficient. The instrument is used not only for ac, but also dc field measurements. It is especially good for field measurements in the case of simultaneous ac and dc field excitation. (author)
Modeling spin magnetization transport in a spatially varying magnetic field
International Nuclear Information System (INIS)
Picone, Rico A.R.; Garbini, Joseph L.; Sidles, John A.
2015-01-01
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of
Modeling spin magnetization transport in a spatially varying magnetic field
Energy Technology Data Exchange (ETDEWEB)
Picone, Rico A.R., E-mail: rpicone@stmartin.edu [Department of Mechanical Engineering, University of Washington, Seattle (United States); Garbini, Joseph L. [Department of Mechanical Engineering, University of Washington, Seattle (United States); Sidles, John A. [Department of Orthopædics, University of Washington, Seattle (United States)
2015-01-15
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]). - Highlights: • A framework for modeling the transport of conserved magnetic and thermodynamic quantities in any spatial configuration. • A thermodynamically grounded model of spin magnetization transport valid in new regimes, including high-polarization. • Analysis of the separative quality of
Massive mu pair production in a vector field theory model
Halliday, I G
1976-01-01
Massive electrodynamics is treated as a model for the production of massive mu pairs in high-energy hadronic collisions. The dominant diagrams in perturbation theory are identified and analyzed. These graphs have an eikonal structure which leads to enormous cancellations in the two-particle inclusive cross section but not in the n-particle production cross sections. Under the assumption that these cancellations are complete, a Drell-Yan structure appears in the inclusive cross section but the particles accompanying the mu pairs have a very different structure compared to the parton model. The pionization region is no longer empty of particles as in single parton models. (10 refs).
Fuzzy Universal Model Approximator for Distributed Solar Collector Field Control
Elmetennani, Shahrazed
2014-07-01
This paper deals with the control of concentrating parabolic solar collectors by forcing the outlet oil temperature to track a set reference. A fuzzy universal approximate model is introduced in order to accurately reproduce the behavior of the system dynamics. The proposed model is a low order state space representation derived from the partial differential equation describing the oil temperature evolution using fuzzy transform theory. The resulting set of ordinary differential equations simplifies the system analysis and the control law design and is suitable for real time control implementation. Simulation results show good performance of the proposed model.
Efficient and Enhanced Diffusion of Vector Field for Active Contour Model
Liu, Guoqi; Sun, Lin; Liu, Shangwang
2015-01-01
Gradient vector flow (GVF) is an important external force field for active contour models. Various vector fields based on GVF have been proposed. However, these vector fields are obtained with many iterations and have difficulty in capturing the whole image area. On the other hand, the ability to converge to deep and complex concavity with these vector fields is also needed to improve. In this paper, by analyzing the diffusion equation of GVF, a normalized set is defined and a dynamically nor...
Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields
Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.
1996-01-01
The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...
DEFF Research Database (Denmark)
Xu, Chang; Li, Chen Qi; Han, Xing Xing
2015-01-01
Study on the aerodynamic field in complex terrain is significant to wind farm micro-sitting and wind power prediction. This paper modeled the wind turbine through an actuator disk model, and solved the aerodynamic field by CFD to study the influence of meshing, boundary conditions and turbulence ...
Statistical Shape Modelling and Markov Random Field Restoration (invited tutorial and exercise)
DEFF Research Database (Denmark)
Hilger, Klaus Baggesen
This tutorial focuses on statistical shape analysis using point distribution models (PDM) which is widely used in modelling biological shape variability over a set of annotated training data. Furthermore, Active Shape Models (ASM) and Active Appearance Models (AAM) are based on PDMs and have proven...... deformation field between shapes. The tutorial demonstrates both generative active shape and appearance models, and MRF restoration on 3D polygonized surfaces. ''Exercise: Spectral-Spatial classification of multivariate images'' From annotated training data this exercise applies spatial image restoration...... using Markov random field relaxation of a spectral classifier. Keywords: the Ising model, the Potts model, stochastic sampling, discriminant analysis, expectation maximization....
Construction of classical and quantum integrable field models ...
Indian Academy of Sciences (India)
Theory Division, Saha Institute of Nuclear Physics, Kolkata 700 064, India .... above models takes only two different forms: rational or trigonometric ..... parameters c, α, μ, which for different continuum choices for these parameters allows to. 910.
Seismically integrated geologic modelling: Guntong Field, Malay Basin
Energy Technology Data Exchange (ETDEWEB)
Calvert, Craig S.; Bhuyan, K.; Sterling, J. Helwick; Hill, Rob E.; Hubbard, R. Scott; Khare, Vijay; Wahrmund, Leslie A.; Wang, Gann-Shyong
1998-12-31
This presentation relates to a research project on offshore seismically reservoir modelling. The goal of the project was to develop and test a process for interpreting reservoir properties from 3-D seismic data and for integrating these data into the building of 3-D geologic models that would be suitable for use in flow simulation studies. The project produced a 3-D geologic model for three reservoir intervals and three predominantly non-reservoir intervals. Each reservoir interval was subdivided into faces that were determined by integrating core, well log, and seismic interpretations. predictions of porosity and lithology used in building the geologic model were made using seismic attributes calculated from acoustic impedance data. 8 figs.
Lyapunov exponent and criticality in the Hamiltonian mean field model
Filho, L. H. Miranda; Amato, M. A.; Rocha Filho, T. M.
2018-03-01
We investigate the dependence of the largest Lyapunov exponent (LLE) of an N-particle self-gravitating ring model at equilibrium with respect to the number of particles and its dependence on energy. This model has a continuous phase-transition from a ferromagnetic to homogeneous phase, and we numerically confirm with large scale simulations the existence of a critical exponent associated to the LLE, although at variance with the theoretical estimate. The existence of strong chaos in the magnetized state evidenced by a positive Lyapunov exponent is explained by the coupling of individual particle oscillations to the diffusive motion of the center of mass of the system and also results in a change of the scaling of the LLE with the number of particles. We also discuss thoroughly for the model the validity and limits of the approximations made by a geometrical model for their analytic estimate.
New exact models for anisotropic matter with electric field
Indian Academy of Sciences (India)
Jefta M Sunzu
2017-09-05
Sep 5, 2017 ... The exact solutions corresponding to our models are found explicitly in terms of elementary ...... PD extends his appre- ciation to the President Office (Local Governments and ... Kwazulu-Natal, Howard College, April 2004).
Cosmological models in globally geodesic coordinates. II. Near-field approximation
International Nuclear Information System (INIS)
Liu Hongya
1987-01-01
A near-field approximation dealing with the cosmological field near a typical freely falling observer is developed within the framework established in the preceding paper [J. Math. Phys. 28, xxxx(1987)]. It is found that for the matter-dominated era the standard cosmological model of general relativity contains the Newtonian cosmological model, proposed by Zel'dovich, as its near-field approximation in the observer's globally geodesic coordinate system
Field theory modelling of vortex tube entanglement in turbulent magnetohydrodynamics
International Nuclear Information System (INIS)
Moriconi, L.; Nobre, F.A. S.
2000-01-01
Full text follows: We study the dynamics of interacting closed vortex tubes in magnetohydrodynamics, in terms of a (1+1)-dimensional field theory derived within the context of the Martin-Siggia-Rose formalism. The fluid is stirred by large scale stochastic forces which affect smaller scales through foldings of the velocity and magnetic vortex tubes. Numerical computations are done by means of a length-preserving scheme, motivated by the usual self-induction approximation. In order to understand the origin of intermittency effects, we investigate the multifractal exponents for the equilibrium vortex tube configurations, as well as correlations developed between different tubes. (author)
Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils
Energy Technology Data Exchange (ETDEWEB)
Salinas, F S; Lancaster, J L; Fox, P T [Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 (United States)
2007-05-21
Previous models neglected contributions from current elements spanning the full geometric extent of wires in transcranial magnetic stimulation (TMS) coils. A detailed account of TMS coil wiring geometry is shown to provide significant improvements in the accuracy of electric field (E-field) models. Modeling E-field dependence based on the TMS coil's wire width, height, shape and number of turns clearly improved the fit of calculated-to-measured E-fields near the coil body. Detailed E-field models were accurate up to the surface of the coil body (within 0.5% of measured) where simple models were often inadequate (up to 32% different from measured)
A Self-Interaction Leading to Fluctuations of Order $n^{5/6}$
Gorny, Matthias
2014-01-01
In arXiv:1301.6911, we built and studied a Curie-Weiss model exhibiting self-organized criticality : it is a model with a self-interaction leading to fluctuations of order $n^{3/4}$ and a limiting law proportional to $\\exp(-x^4/12)$. In this paper we modify our model in order to "kill the term $x^4$" and to obtain a self-interaction leading to fluctuations of order $n^{5/6}$ and a limiting law $C\\,\\exp(-\\lambda x^6)\\,dx$, for suitable positive constants $C$ and $\\lambda$.
Modeling spin magnetization transport in a spatially varying magnetic field
Picone, Rico A. R.; Garbini, Joseph L.; Sidles, John A.
2015-01-01
We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]).
Sustainability analysis of the Ahuachapan geothermal field: management and modeling
Energy Technology Data Exchange (ETDEWEB)
Monterrosa, Manuel; Montalvo Lopez, Francisco E. [LaGeo S.A. de C.V., Reservoir Engineering, 15 Av. Sur, Colonia Utila, Santa Tecla, La Libertad (El Salvador)
2010-12-15
The Ahuachapan geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapan geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MW{sub e}. Several activities were carried out in the period 1997-2005 as part of ''stabilization'' and ''optimization'' projects to increase the electric energy generation to 85 MW{sub e}, with a total mass extraction of 850 kg/s. LaGeo is assessing the sustainability of geothermal reservoir utilization. Preliminary results indicate the planned power production and mass extraction (95 MW, 900 kg/s) cannot be sustained for more than 50 years using current power plant technology. To sustain the exploitation for at least 100 years, the following changes should be implemented: (1) improve the gathering system using large-diameter steam pipelines, (2) expand the exploitation area to the southeast and southwest, and (3) reduce the inlet pressure of the turbines to less than 4 bars. (author)
Testing of an accident consequence assessment model using field data
International Nuclear Information System (INIS)
Homma, Toshimitsu; Matsubara, Takeshi; Tomita, Kenichi
2007-01-01
This paper presents the results obtained from the application of an accident consequence assessment model, OSCAAR to the Iput dose reconstruction scenario of BIOMASS and also to the Chernobyl 131 I fallout scenario of EMRAS, both organized by International Atomic Energy Agency. The Iput Scenario deals with 137 Cs contamination of the catchment basin and agricultural area in the Bryansk Region of Russia, which was heavily contaminated after the Chernobyl accident. This exercise was used to test the chronic exposure pathway models in OSCAAR with actual measurements and to identify the most important sources of uncertainty with respect to each part of the assessment. The OSCAAR chronic exposure pathway models had some limitations but the refined model, COLINA almost successfully reconstructed the whole 10-year time course of 137 Cs activity concentrations in most requested types of agricultural products and natural foodstuffs. The Plavsk scenario provides a good opportunity to test not only the food chain transfer model of 131 I but also the method of assessing 131 I thyroid burden. OSCAAR showed in general good capabilities for assessing the important 131 I exposure pathways. (author)
COMPARATIVE STUDY ON MAIN SOLVENCY ASSESSMENT MODELS FOR INSURANCE FIELD
Directory of Open Access Journals (Sweden)
Daniela Nicoleta SAHLIAN
2015-07-01
Full Text Available During the recent financial crisis of insurance domain, there were imposed new aspects that have to be taken into account concerning the risks management and surveillance activity. The insurance societies could develop internal models in order to determine the minimum capital requirement imposed by the new regulations that are to be adopted on 1 January 2016. In this respect, the purpose of this research paper is to offer a real presentation and comparing with the main solvency regulation systems used worldwide, the accent being on their common characteristics and current tendencies. Thereby, we would like to offer a better understanding of the similarities and differences between the existent solvency regimes in order to develop the best regime of solvency for Romania within the Solvency II project. The study will show that there are clear differences between the existent Solvency I regime and the new approaches based on risk and will also point out the fact that even the key principles supporting the new solvency regimes are convergent, there are a lot of approaches for the application of these principles. In this context, the question we would try to find the answer is "how could the global solvency models be useful for the financial surveillance authority of Romania for the implementation of general model and for the development of internal solvency models according to the requirements of Solvency II" and "which would be the requirements for the implementation of this type of approach?". This thing makes the analysis of solvency models an interesting exercise.
Comparison between two scalar field models using rotation curves of spiral galaxies
Fernández-Hernández, Lizbeth M.; Rodríguez-Meza, Mario A.; Matos, Tonatiuh
2018-04-01
Scalar fields have been used as candidates for dark matter in the universe, from axions with masses ∼ 10-5eV until ultra-light scalar fields with masses ∼ Axions behave as cold dark matter while the ultra-light scalar fields galaxies are Bose-Einstein condensate drops. The ultra-light scalar fields are also called scalar field dark matter model. In this work we study rotation curves for low surface brightness spiral galaxies using two scalar field models: the Gross-Pitaevskii Bose-Einstein condensate in the Thomas-Fermi approximation and a scalar field solution of the Klein-Gordon equation. We also used the zero disk approximation galaxy model where photometric data is not considered, only the scalar field dark matter model contribution to rotation curve is taken into account. From the best-fitting analysis of the galaxy catalog we use, we found the range of values of the fitting parameters: the length scale and the central density. The worst fitting results (values of χ red2 much greater than 1, on the average) were for the Thomas-Fermi models, i.e., the scalar field dark matter is better than the Thomas- Fermi approximation model to fit the rotation curves of the analysed galaxies. To complete our analysis we compute from the fitting parameters the mass of the scalar field models and two astrophysical quantities of interest, the dynamical dark matter mass within 300 pc and the characteristic central surface density of the dark matter models. We found that the value of the central mass within 300 pc is in agreement with previous reported results, that this mass is ≈ 107 M ⊙/pc2, independent of the dark matter model. And, on the contrary, the value of the characteristic central surface density do depend on the dark matter model.
Sensitivity and uncertainty analysis for a field-scale P loss model
Models are often used to predict phosphorus (P) loss from agricultural fields. While it is commonly recognized that there are inherent uncertainties with model predictions, limited studies have addressed model prediction uncertainty. In this study we assess the effect of model input error on predict...
van Kasteren, T.L.M.; Noulas, A.K.; Kröse, B.J.A.; Smit, G.J.M.; Epema, D.H.J.; Lew, M.S.
2008-01-01
Conditional Random Fields are a discriminative probabilistic model which recently gained popularity in applications that require modeling nonindependent observation sequences. In this work, we present the basic advantages of this model over generative models and argue about its suitability in the
Progress in the development of the GMM-2 gravity field model for Mars
Lemoine, F. G.; Smith, D. E.; Lerch, F. J.; Zuber, M. T.; Patel, G. B.
1994-01-01
Last year we published the GMM-1 (Goddard Mars Model-1) gravity model for Mars. We have completely re-analyzed the Viking and Mariner 9 tracking data in the development of the new field, designated GMM-2. The model is complete to degree and order 70. Various aspects of the model are discussed.
Spin fluctuation theory of itinerant electron magnetism
Takahashi, Yoshinori
2013-01-01
This volume shows how collective magnetic excitations determine most of the magnetic properties of itinerant electron magnets. Previous theories were mainly restricted to the Curie-Weiss law temperature dependence of magnetic susceptibilities. Based on the spin amplitude conservation idea including the zero-point fluctuation amplitude, this book shows that the entire temperature and magnetic field dependence of magnetization curves, even in the ground state, is determined by the effect of spin fluctuations. It also shows that the theoretical consequences are largely in agreement with many experimental observations. The readers will therefore gain a new comprehensive perspective of their unified understanding of itinerant electron magnetism.
Magnetic properties of the high-Tsub(c) superconductors RBa2Cu3Osub(9-delta) (R=Gd, Dy, Er)
International Nuclear Information System (INIS)
Groot, P.A.J. de; Rainford, B.D.; McK-Paul, D.; Balakrishnan, G.; Lanchester, P.C.; Weller, M.T.; Grasmeder, J.
1987-01-01
Magnetic properties of RBa 2 Cu 3 Osub(9-delta) with R = Y, Gd, Dy, Er have been measured for 4.2 K < T < 300 K and magnetic fields up to 7 T. They exhibit a superconductive transition around 91 K, above which temperature the magnetisation can be described by a Curie-Weiss law. The magnetic and superconductive properties develop independently below the phase transition. Magnetic hysteresis is prominent at low temperatures (T < or approx. 25 K) and varies for different samples. Estimates for critical densities are given. (author)
Energy Technology Data Exchange (ETDEWEB)
Groot, P.A.J. de; Rainford, B.D.; McK-Paul, D.; Balakrishnan, G.; Lanchester, P.C.; Weller, M.T.; Grasmeder, J.
1987-08-01
Magnetic properties of RBa/sub 2/Cu/sub 3/Osub(9-delta) with R = Y, Gd, Dy, Er have been measured for 4.2 K < T < 300 K and magnetic fields up to 7 T. They exhibit a superconductive transition around 91 K, above which temperature the magnetisation can be described by a Curie-Weiss law. The magnetic and superconductive properties develop independently below the phase transition. Magnetic hysteresis is prominent at low temperatures (T
Paramagnetism: an alternative view. Pt. 1
International Nuclear Information System (INIS)
Oudet, X.
1991-01-01
A new calculation of the paramagnetic susceptibility χ is proposed on the basis of the statistical distribution of the thermal energy using the mean value U of this energy as statistical variable. This allows us to replace the molecular field by an equivalent energy barrier that the paramagnetic moment of an atom has to cross to contribute to χ. The variation of χ with U, or T as well, shows a maximum when there is no magnetic order. The asymptotic character of the Curie-Weiss law appears in close connection with that of the Dulong and Petit law. (orig.)
Modelling the Grimsel migration field experiments at PSI
International Nuclear Information System (INIS)
Heer, W.
1997-01-01
For several years tracer migration experiments have been performed at Nagra's Grimsel Test Site as a joint undertaking of Nagra, PNC and PSI. The aims of modelling the migration experiments are (1) to better understand the nuclide transport through crystalline rock; (2) to gain information on validity of methods and correlating parameters; (3) to improve models for safety assessments. The PSI modelling results, presented here, show a consistent picture for the investigated tracers (the non-sorbing uranine, the weakly sorbing sodium, the moderately sorbing strontium and the more strongly sorbing cesium). They represent an important step in building up confidence in safety assessments for radioactive waste repositories. (author) 5 figs., 1 tab., 12 refs
LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry
Directory of Open Access Journals (Sweden)
Raj Bali
2013-01-01
Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.
Birn, J.; Hones, E. W., Jr.; Craven, J. D.; Frank, L. A.; Elphinstone, R. D.; Stern, D. P.
1991-01-01
The boundary between open and closed field lines is investigated in the empirical Tsyganenko (1987) magnetic field model. All field lines extending to distances beyond -70 R(E), the tailward velocity limit of the Tsyganenko model are defined as open, while all other field lines, which cross the equatorial plane earthward of -70 R(E) and are connected with the earth at both ends, are assumed closed. It is found that this boundary at the surface of the earth, identified as the polar cap boundary, can exhibit the arrowhead shape, pointed toward the sun, which is found in horse collar auroras. For increasing activity levels, the polar cap increases in area and becomes rounder, so that the arrowhead shape is less pronounced. The presence of a net B(y) component can also lead to considerable rounding of the open flux region. The arrowhead shape is found to be closely associated with the increase of B(z) from the midnight region to the flanks of the tail, consistent with a similar increase of the plasma sheet thickness.
Impact Of GOCE On The Nordic Gravity Field Modelling
DEFF Research Database (Denmark)
Yidiz, Hasan; Forsberg, René; Tscherning, C. C.
2011-01-01
GOCE level-2 Tzz and Txx gravity gradients at satellite altitude are used in combination as input data to predict surface free air gravity anomalies over the Nordic region using Least Square Collocation. We test the performance of using covariance functions created separately from Tzz gradients a...... Surface model, both the NKG-2004 quasi-geoid model of the Nordic and Baltic Area and the one obtained using second generation GOCE spherical harmonic coefficients based on time-wise method can successfully reproduce the higher level of the Baltic Sea relative to the Atlantic Ocean....
Fermion: field nontopological solitons. II. Models for hadrons
International Nuclear Information System (INIS)
Friedberg, R.; Lee, T.D.
1977-01-01
The possibility, and its consequences, are examined that in a relativistic local field theory, consisting of color quarks q, scalar gluon sigma, color gauge field V/sub mu/ and color Higgs field phi, the mass of the soliton solution may be much lower than any mass of the plane wave solutions; i.e., m/sub q/ the quark mass, m/sub sigma/ the gluon mass, etc. There appears a rather clean separation between the physics of these low mass solitons and that of the high energy excitations, in the range of m/sub q/ and m/sub sigma/, provided that the parameters xi identical with (μ/m/sub q/) 2 and eta identical with μ/m/sub sigma/ are both much less than 1, where μ is an overall low energy scale appropriate for the solitons (but the ratio eta/xi is assumed to be O(1), though otherwise arbitrary). Under very general assumptions, it is shown that independently of the number of parameters in the original Lagrangian, the mathematical problem of finding the quasiclassical soliton solutions reduces, through scaling, to that of a simple set of two coupled first-order differential equations, neither of which contains any explicit free parameters. The general properties and the numerical solutions of this reduced set of differential equations are given. The resulting solitons exhibit physical characteristics very similar to those of a ''gas bubble'' immersed in a ''medium'': there is a constant surface tension and a constant pressure exerted by the medium on the gas; in addition, there are the ''thermodynamical'' energy of the gas and the related gas pressure, which are determined by the solutions of the reduced equations. Both a SLAC-like bag and the Creutz-Soh version of the MIT bag may appear, but only as special limiting cases. These soliton solutions are applied to the physical hadrons; their static properties are calculated and, within a 10 to 15 percent accuracy, agree with observations
Simplified realistic human head model for simulating Tumor Treating Fields (TTFields).
Wenger, Cornelia; Bomzon, Ze'ev; Salvador, Ricardo; Basser, Peter J; Miranda, Pedro C
2016-08-01
Tumor Treating Fields (TTFields) are alternating electric fields in the intermediate frequency range (100-300 kHz) of low-intensity (1-3 V/cm). TTFields are an anti-mitotic treatment against solid tumors, which are approved for Glioblastoma Multiforme (GBM) patients. These electric fields are induced non-invasively by transducer arrays placed directly on the patient's scalp. Cell culture experiments showed that treatment efficacy is dependent on the induced field intensity. In clinical practice, a software called NovoTalTM uses head measurements to estimate the optimal array placement to maximize the electric field delivery to the tumor. Computational studies predict an increase in the tumor's electric field strength when adapting transducer arrays to its location. Ideally, a personalized head model could be created for each patient, to calculate the electric field distribution for the specific situation. Thus, the optimal transducer layout could be inferred from field calculation rather than distance measurements. Nonetheless, creating realistic head models of patients is time-consuming and often needs user interaction, because automated image segmentation is prone to failure. This study presents a first approach to creating simplified head models consisting of convex hulls of the tissue layers. The model is able to account for anisotropic conductivity in the cortical tissues by using a tensor representation estimated from Diffusion Tensor Imaging. The induced electric field distribution is compared in the simplified and realistic head models. The average field intensities in the brain and tumor are generally slightly higher in the realistic head model, with a maximal ratio of 114% for a simplified model with reasonable layer thicknesses. Thus, the present pipeline is a fast and efficient means towards personalized head models with less complexity involved in characterizing tissue interfaces, while enabling accurate predictions of electric field distribution.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)
2017-08-01
Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.
Phase-field model of insulator-to-metal transition in VO2 under an electric field
Shi, Yin; Chen, Long-Qing
2018-05-01
The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.