Complex behavior of internal collapse due to self-generated radial electric field
Energy Technology Data Exchange (ETDEWEB)
Matsumoto, Taro; Tokuda, Shinji; Kishimoto, Yasuaki; Takizuka, Tomonori [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Naitou, Hiroshi [Department of Electical and Electronic Engineering, Yamaguchi University, Ube, Yamaguchi (Japan)
2000-07-01
The density gradient effect is taken into account in the gyro-kinetic nonlinear simulation of the kinetic m=1 internal kink mode to clarify the nonlinear behavior of the internal collapse. Even when the density gradient is not so large enough to change the process of the full reconnection, the later process is changed considerably due to the self-generated radial electric field. The nonlinear growth of the 0/0 mode after the internal collapse violates the symmetrical flow of the parallel current, restricting the secondary reconnection. (author)
Responses of the Brans-Dicke field due to gravitational collapses
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dong-il; Yeom, Dong-han, E-mail: enotsae@gmail.co, E-mail: innocent@muon.kaist.ac.k [Department of Physics, KAIST, Daejeon 305-701 (Korea, Republic of)
2010-10-21
We study responses of the Brans-Dicke field due to gravitational collapses of scalar field pulses using numerical simulations. Double-null formalism is employed to implement the numerical simulations. If we supply a scalar field pulse, it will asymptotically form a black hole via dynamical interactions of the Brans-Dicke field. Hence, we can observe the responses of the Brans-Dicke field by two different regions. First, we observe the late time behaviors after the gravitational collapse, which include formations of a singularity and an apparent horizon. Second, we observe the fully dynamical behaviors during the gravitational collapse and view the energy-momentum tensor components. For the late time behaviors, if the Brans-Dicke coupling is greater (or smaller) than -1.5, the Brans-Dicke field decreases (or increases) during the gravitational collapse. Since the Brans-Dicke field should be relaxed to the asymptotic value with the elapse of time, the final apparent horizon becomes time-like (or space-like). For the dynamical behaviors, we observed the energy-momentum tensors around {omega} {approx} -1.5. If the Brans-Dicke coupling is greater than -1.5, the T{sub uu} component can be negative at the outside of the black hole. This can allow an instantaneous inflating region during the gravitational collapse. If the Brans-Dicke coupling is less than -1.5, the oscillation of the T{sub vv} component allows the apparent horizon to shrink. This allows a combination that violates weak cosmic censorship. Finally, we discuss the implications of the violation of the null energy condition and weak cosmic censorship.
Field collapse due to band-tail charge in amorphous silicon solar cells
Energy Technology Data Exchange (ETDEWEB)
Wang, Qi; Crandall, R.S. [National Renewable Energy Lab., Golden, CO (United States); Schiff, E.A. [Syracuse Univ., NY (United States)
1996-05-01
It is common for the fill factor to decrease with increasing illumination intensity in hydrogenated amorphous silicon solar cells. This is especially critical for thicker solar cells, because the decrease is more severe than in thinner cells. Usually, the fill factor under uniformly absorbed red light changes much more than under strongly absorbed blue light. The cause of this is usually assumed to arise from space charge trapped in deep defect states. The authors model this behavior of solar cells using the Analysis of Microelectronic and Photonic Structures (AMPS) simulation program. The simulation shows that the decrease in fill factor is caused by photogenerated space charge trapped in the band-tail states rather than in defects. This charge screens the applied field, reducing the internal field. Owing to its lower drift mobility, the space charge due to holes exceeds that due to electrons and is the main cause of the field screening. The space charge in midgap states is small compared with that in the tails and can be ignored under normal solar-cell operating conditions. Experimentally, the authors measured the photocapacitance as a means to probe the collapsed field. They also explored the light intensity dependence of photocapacitance and explain the decrease of FF with the increasing light intensity.
Ekpyrotic collapse with multiple fields
Koyama, K; Koyama, Kazuya; Wands, David
2007-01-01
A scale invariant spectrum of isocurvature perturbations is generated during collapse in the scaling solution in models where two or more fields have steep negative exponential potentials. The scale invariance of the spectrum is realised by a tachyonic instability in the isocurvature field. We show that this instability is due to the fact that the scaling solution is a saddle point in the phase space. The late time attractor is identified with a single field dominated ekpyrotic collapse in which a steep blue spectrum for isocurvature perturbations is found. Although quantum fluctuations do not necessarily to disrupt the classical solution, an additional preceding stage is required to establish classical homogeneity.
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
Koyel Ganguly; Narayan Banerjee
2013-03-01
It is shown that a scalar field, minimally coupled to gravity, may have collapsing modes even when the energy condition is violated, that is, for ( + 3) < 0. This result may be useful in the investigation of the possible clustering of dark energy. All the examples dealt with have apparent horizons formed before the formation of singularity. The singularities formed are shell focussing in nature. The density of the scalar field distribution is seen to diverge at singularity. The Ricci scalar also diverges at the singularity. The interior spherically symmetric metric is matched with exterior Vaidya metric at the hypersurface and the appropriate junction conditions are obtained.
Self-similar scalar field collapse
Banerjee, Narayan; Chakrabarti, Soumya
2017-01-01
A spherically symmetric collapsing scalar field model is discussed with a dissipative fluid which includes a heat flux. This vastly general matter distribution is analyzed at the expense of a high degree of symmetry in the space-time, that of conformal flatness and self-similarity. Indeed collapsing models terminating into a curvature singularity can be obtained. The formation of black holes or the occurrence of naked singularities depends on the initial collapsing profiles.
Galactic Collapse of Scalar Field Dark Matter
Alcubierre, M; Matos, T; Núñez, D; Urena-Lopez, L A; Wiederhold, P; Alcubierre, Miguel; Matos, Tonatiuh; Nunez, Dario; Wiederhold, Petra
2002-01-01
We present a scenario for galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for galactic formation, which is in agreement with cosmological observations and phenomenological studies in galaxies.
Galactic Collapse of Scalar Field Dark Matter
2001-01-01
We present a scenario for galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for galactic formation, which is in agreement with cosmological observations and phenomenological studies in galaxies.
Scalar field collapse with an exponential potential
Chakrabarti, Soumya
2017-02-01
An analogue of the Oppenheimer-Synder collapsing model is treated analytically, where the matter source is a scalar field with an exponential potential. An exact solution is derived followed by matching to a suitable exterior geometry, and an analysis of the visibility of the singularity. In some situations, the collapse indeed leads to a finite time curvature singularity, which is always hidden from the exterior by an apparent horizon.
Newtonian Collapse of Scalar Field Dark Matter
Guzman, F S
2003-01-01
In this letter, we develop a Newtonian approach to the collapse of galaxy fluctuations of scalar field dark matter under initial conditions inferred from simple assumptions. The full relativistic system, the so called Einstein-Klein-Gordon, is reduced to the Schr\\"odinger-Newton one in the weak field limit. The scaling symmetries of the SN equations are exploited to track the non-linear collapse of single scalar matter fluctuations. The results can be applied to both real and complex scalar fields.
Galactic collapse of scalar field dark matter
Energy Technology Data Exchange (ETDEWEB)
Alcubierre, Miguel [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Guzman, F Siddhartha [Max-Planck-Institut fuer Gravitationsphysik, Am Muehlenberg 1, D-14476 Golm (Germany); Matos, Tonatiuh [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Nunez, Dario [Centre for Gravitational Physics and Geometry, Penn State University, University Park, PA 16802 (United States); Urena-Lopez, L Arturo [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico); Wiederhold, Petra [Departamento de Control Automatico, Centro de Investigacion y de Estudios Avanzados del IPN, AP 14-740, 07000 Mexico, DF (Mexico)
2002-10-07
We present a scenario for core galaxy formation based on the hypothesis of scalar field dark matter. We interpret galaxy formation through the collapse of a scalar field fluctuation. We find that a cosh potential for the self-interaction of the scalar field provides a reasonable scenario for the formation of a galactic core plus a remnant halo, which is in agreement with cosmological observations and phenomenological studies in galaxies.
Scalar field collapse with negative cosmological constant
Baier, R; Stricker, S A
2014-01-01
The formation of black holes or naked singularities is studied in a model in which a homogeneous time-dependent scalar field with an exponential potential couples to four dimensional gravity with negative cosmological constant. An analytic solution is derived and its consequences are discussed. The model depends only on one free parameter which determines the equation of state and decides the fate of the spacetime. Depending on the value of this parameter the collapse ends in a black hole or a naked singularity. The latter case violates the cosmic censorship conjecture.
Gravitational collapse of charged scalar fields
Torres, Jose M
2014-01-01
In order to study the gravitational collapse of charged matter we analyze the simple model of an self-gravitating massless scalar field coupled to the electromagnetic field in spherical symmetry. The evolution equations for the Maxwell-Klein-Gordon sector are derived in the 3+1 formalism, and coupled to gravity by means of the stress-energy tensor of these fields. To solve consistently the full system we employ a generalized Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of General Relativity that is adapted to spherical symmetry. We consider two sets of initial data that represent a time symmetric spherical thick shell of charged scalar field, and differ by the fact that one set has zero global electrical charge while the other has non-zero global charge. For compact enough initial shells we find that the configuration doesn't disperse and approaches a final state corresponding to a sub-extremal Reissner-N\\"ordstrom black hole with $|Q|
Enhanced direct collapse due to Lyman {\\alpha} feedback
Johnson, Jarrett L
2016-01-01
We assess the impact of trapped Lyman {\\alpha} cooling radiation on the formation of direct collapse black holes (DCBHs). We apply a one-zone chemical and thermal evolution model, accounting for the photodetachment of H$^-$ ions, precursors to the key coolant H$_{\\rm 2}$, by Lyman {\\alpha} photons produced during the collapse of a cloud of primordial gas in an atomic cooling halo at high redshift. We find that photodetachment of H$^-$ by trapped Lyman {\\alpha} photons can lower the level of the H$_{\\rm 2}$-dissociating background radiation field required for DCBH formation substantially, dropping the critical flux by up to an order of magnitude. This translates into a large increase in the expected number density of DCBHs in the early Universe, and implies that DCBHs may be the seeds for the BHs residing in the centers of a significant fraction of galaxies today. We find that detachment of H$^-$ by Lyman {\\alpha} has the strongest impact on the critical flux for the relatively high background radiation temper...
Review of collapse triggering mechanism of collapsible soils due to wetting
Directory of Open Access Journals (Sweden)
Ping Li
2016-04-01
Full Text Available Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world. These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting. Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils. For this reason, collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world. This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits. The collapse mechanism studies are summarized under three different categories, i.e. traditional approaches, microstructure approach, and soil mechanics-based approaches. The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature. The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior. Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils. Such studies would be more valuable for use in conventional geotechnical engineering practice applications.
Phantom collapse of electrically charged scalar field in dilaton gravity
Nakonieczna, Anna
2013-01-01
Our research focus on gravitational collapse of electrically charged scalar field in dilaton gravity and in the presence of phantom coupling. We examine dynamical behaviour of the scalar field coupled to Maxwell field when gravitational interactions have form consistent with the low-energy limit of the string theory. Moreover, we allow the evolving fields to have negative sign in front of the respective kinetic term of the Lagrangian. The main aim of our studies is to investigate in what manner does the phantom nature of either Maxwell or dilaton fields (or both of them) affect the outcomes of the collapse. It turns out that the influence is crucial to the obtained spacetime structures. Negative kinetic energy of one (or both) of the fields delays, changes the course or even prevents the collapse.
Calculation of reactivity changes due to bubble collapse. [LMFBR
Energy Technology Data Exchange (ETDEWEB)
Hoffman, T.J.; Petrie, L.M.
1977-01-01
Calculations based on Behrens' method indicate that a substantial increase in reactivity may accompany the collapse of a large number of small bubbles in an LMFBR core. More sophisticated transport approaches to this problem have encountered several difficulties: the large number of bubbles requires many mesh points; the desired effect can easily be masked by the movement of fuel to regions of greater (or lesser) importance; the reactivity is desired for a random distribution of spherical bubbles. This paper describes a transport approach to this problem which avoids the above difficulties by using the ''sub-group'' or ''probability table'' method.
Energy Technology Data Exchange (ETDEWEB)
Lin, Feng; Li, Yi [Department of Building Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Gu, Xianglin, E-mail: gxl@tongji.edu.cn [Department of Building Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Zhao, Xinyuan [Department of Building Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Tang, Dongsheng [Guangdong Electric Power Design Institute, No. 1 Tianfeng Road, Guangzhou, Guangdong 510663 (China)
2013-05-15
Highlights: ► Ground vibration due to the collapse of a huge cooling tower was predicted. ► Accidental loads with different characteristics caused different collapse modes. ► Effect of ground vibration on the nuclear-related facilities cannot be ignored. -- Abstract: A comprehensive approach is presented in this study for the prediction of the ground vibration due to the collapse of a 235 m high cooling tower, which can be caused by various accidental loads, e.g., explosion or strong wind. The predicted ground motion is to be used in the safety evaluation of nuclear-related facilities adjacent to the cooling tower, as well as the plant planning of a nuclear power station to be constructed in China. Firstly, falling weight tests were conducted at a construction site using the dynamic compaction method. The ground vibrations were measured in the form of acceleration time history. A finite element method based “falling weight-soil” model was then developed and verified by field test results. Meanwhile, the simulated collapse processes of the cooling tower under two accidental loads were completed in a parallel study, the results of which are briefly introduced in this paper. Furthermore, based on the “falling weight-soil” model, “cooling tower-soil” models were developed for the prediction of the ground vibrations induced by two collapse modes of the cooling tower. Finally, for a deep understanding of the vibration characteristics, a parametric study was also conducted with consideration of different collapse profiles, soil geologies as well as the arrangements of an isolation trench. It was found that severe ground vibration occurred in the vicinity of the cooling tower when the collapse happened. However, the vibration attenuated rapidly with the increase in distance from the cooling tower. Moreover, the “collapse in integrity” mode and the rock foundation contributed to exciting intense ground vibration. By appropriately arranging an isolation
Gravitational collapse of massless scalar field in $f(R)$ gravity
Zhang, Cheng-Yong; Wang, Bin
2016-01-01
We study the spherically symmetric gravitational collapse of massless scalar matter field in asymptotic flat spacetime in $f(R)$ gravity. In the Einstein frame of $f(R)$ gravity, an additional scalar field arises due to the conformal transformation. We find that besides the usual competition between gravitational energy and kinetic energy in the process of gravitational collapse, the new scalar field brought by the conformal transformation adds one more competing force in the dynamical system. The dynamical competition can be controlled by tuning the amplitudes of the initial perturbations of the new scalar field and the matter field. To understand the physical reasons behind these phenomena, we analyze the gravitational potential behavior and calculate the Ricci scalar at center with the change of initial amplitudes of perturbations. We find rich physics on the formation of black holes through gravitational collapse in $f(R)$ gravity.
Loop quantum effect and the fate of tachyon field collapse
Tavakoli, Y.; Moniz, P. Vargas; Marto, J.; Ziaie, A. H.
2012-01-01
We study the fate of gravitational collapse of a tachyon field matter. In presence of an inverse square potential a black hole forms. Loop quantum corrections lead to the avoidance of classical singularities, which is followed by an outward flux of energy.
Effects of Electromagnetic Field on The Collapse and Expansion of Anisotropic Gravitating Source
Abbas, G
2013-01-01
This paper is devoted to study the effects of electromagnetic on the collapse and expansion of anisotropic gravitating source. For this purpose, we have evaluated the generating solutions of Einstein-Maxwell field equations with spherically symmetric anisotropic gravitating source. Such solutions exit only due to the absence of heat flux in the source. We found that a single function generates the various anisotropic solutions. In this case every generating function involves an arbitrary function of time which can be chosen to fit several astrophysical time profiles. Two physical phenomenon occur, one is gravitational collapse and other is the cosmological expanding solution. In both cases electromagnetic field effects the anisotropy of the model. For collapse the anisotropy is increased while for expansion it deceases from maximum value to finite positive value. In case of collaps there exits two horizons like in case of Reissner-Nordstr$\\ddot{o}$m metric.
Collapse risk of buildings in the Pacific Northwest region due to subduction earthquakes
Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas
2015-01-01
Subduction earthquakes similar to the 2011 Japan and 2010 Chile events will occur in the future in the Cascadia subduction zone in the Pacific Northwest. In this paper, nonlinear dynamic analyses are carried out on 24 buildings designed according to outdated and modern building codes for the cities of Seattle, Washington, and Portland, Oregon. The results indicate that the median collapse capacity of the ductile (post-1970) buildings is approximately 40% less when subjected to ground motions from subduction, as compared to crustal earthquakes. Buildings are more susceptible to earthquake-induced collapse when shaken by subduction records (as compared to crustal records of the same intensity) because the subduction motions tend to be longer in duration due to their larger magnitude and the greater source-to-site distance. As a result, subduction earthquakes are shown to contribute to the majority of the collapse risk of the buildings analyzed.
Scalar field collapse in a conformally flat spacetime
Energy Technology Data Exchange (ETDEWEB)
Chakrabarti, Soumya; Banerjee, Narayan [Indian Institute of Science Education and Research, Kolkata, Department of Physical Sciences, Mohanpur, West Bengal (India)
2017-03-15
The collapse scenario of a scalar field along with a perfect fluid distribution was investigated for a conformally flat spacetime. The theorem for the integrability of an anharmonic oscillator has been utilized. For a pure power-law potential of the form φ{sup n+1}, it was found that a central singularity is formed which is covered by an apparent horizon for n > 0 and n < -3. Some numerical results have also been presented for a combination of two different powers of φ in the potential. (orig.)
Singular and non-singular endstates in massless scalar field collapse
Bhattacharya, Swastik
2011-01-01
We study the collapse of a massless scalar field coupled to gravity. A class of blackhole solutions are identified. We also report on a class of solutions where collapse starts from a regular spacelike surface but then the collapsing scalar field freezes. As a result, in these solutions, a black hole does not form, neither is there any singularity in the future.
Constitutive Laws of the Underground Opening Collapse due to Dynamic Load
Institute of Scientific and Technical Information of China (English)
Alexander BUDKOV; Gevorg KOCHARYAN
2008-01-01
The constitutive laws of the collapse of underground openings in a rock massif were investigated based on the results of laboratory and field experiments,and computations using analytical and numerical models.It is shown that the principal mechanism of failure of underground openings over important for practice peak particle velocity amplitude range of 1 to 10 m/s is the roof and wall breakage due to the fall of key blocks.Over this load range the material crushing is of considerably less importance.The geometry of discontinuities influences mainly the stability of key blocks.Further caving depends weakly on block structure of near-tunnel zone.The mean volume of fall material is a rather stable quantity for rock massifs of different structures.Lower tunnel stability in the zones of high fracturing is caused by a higher probability of the presence of the unstable key blocks and the decrease of strength characteristics of fractured bounding blocks.The decrease of average block size is a less important accompanying factor.
Obergaulinger, Martin; Toras, Miguel Angel Aloy
2014-01-01
We study the amplification of magnetic fields in the collapse and the post-bounce evolution of the core of a non-rotating star of 15 solar masses in axisymmetry. To this end, we solve the coupled equations of magnetohydrodynamics and neutrino transport in the two-moment approximation. The pre-collapse magnetic field is strongly amplified by compression in the infall. Initial fields of the order of 1010 G translate into proto-neutron star fields similar to the ones observed in pulsars, while stronger initial fields yield magnetar-like final field strengths. After core bounce, the field is advected through the hydrodynamically unstable neutrino-heating layer, where non-radial flows due to convection and the standing accretion shock instability amplify the field further. Consequently, the resulting amplification factor of order five is the result of the number of small-eddy turnovers taking place within the time scale of advection through the post-shock layer. Due to this limit, most of our models do not reach e...
Dark sector impact on gravitational collapse of an electrically charged scalar field
Energy Technology Data Exchange (ETDEWEB)
Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)
2015-11-04
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
Spherical collapse of dark matter haloes in tidal gravitational fields
Reischke, Robert; Pace, Francesco; Meyer, Sven; Schäfer, Björn Malte
2016-11-01
We study the spherical collapse model in the presence of external gravitational tidal shear fields for different dark energy scenarios and investigate the impact on the mass function and cluster number counts. While previous studies of the influence of shear and rotation on δc have been performed with heuristically motivated models, we try to avoid this model dependence and sample the external tidal shear values directly from the statistics of the underlying linearly evolved density field based on first-order Lagrangian perturbation theory. Within this self-consistent approach, in the sense that we restrict our treatment to scales where linear theory is still applicable, only fluctuations larger than the scale of the considered objects are included into the sampling process which naturally introduces a mass dependence of δc. We find that shear effects are predominant for smaller objects and at lower redshifts, i. e. the effect on δc is at or below the percent level for the ΛCDM model. For dark energy models we also find small but noticeable differences, similar to ΛCDM. The virial overdensity ΔV is nearly unaffected by the external shear. The now mass dependent δc is used to evaluate the mass function for different dark energy scenarios and afterwards to predict cluster number counts, which indicate that ignoring the shear contribution can lead to biases of the order of 1σ in the estimation of cosmological parameters like Ωm, σ8 or w.
Ambipolar diffusion regulated collapse of filaments threaded by perpendicular magnetic fields
Burge, C. A.; Van Loo, S.; Falle, S. A. E. G.; Hartquist, T. W.
2016-11-01
the collapse is governed by magnetically-regulated ambipolar diffusion. The gas collapses at velocities much lower than the sound speed. For X ≲ 10-8, the gas is weakly coupled to the magnetic field and the magnetic support is removed by gravitationally-dominated ambipolar diffusion. Here, neutrals and ions only collide sporadically, that is the ambipolar diffusion length scale is larger than the Jeans length, and the gas can attain high collapse velocities. When decaying turbulence is included, additional support is provided to the filament. This slows down the collapse of the filament even in the absence of a magnetic field. When a magnetic field is present, the collapse rate increases by a ratio smaller than for the non-magnetic case. This is because of a speed-up of the ambipolar diffusion due to larger magnetic field gradients generated by the turbulence and because the ambipolar diffusion aids the dissipation of turbulence below the ambipolar diffusion length scale. The highest increase in the rate is observed for the lowest ionisation coefficient and the highest turbulent intensity.
Variation of the temperature coefficient of collapse field in bismuth-based bubble garnets
Fratello, V. J.; Pierce, R. D.; Brandle, C. D.
1985-01-01
An approximation to the collapse-field formula is used to show its dependence on magnetization and wall energy and the effect of additions of Gd, Sm, and Eu on 1-micron Bi:YIG bubble materials. The collapse field, magnetization, and wall energy are fitted to quadratic functions of temperature from -50 to 150 C. It is shown that the addition of the various classes of rare earths reduces the temperature derivative of the collapse field in Bi:YIG. Gd influences the collapse field through the magnetization, Sm affects it through the domain wall energy, and Eu does both. The singular magnetic properties of Eu result in the most nearly constant temperature dependence of the collapse field and the best match to a barium-ferrite bias magnite.
Improved dynamics and gravitational collapse of tachyon field coupled with a barotropic fluid
Marto, Joao; Moniz, Paulo Vargas
2013-01-01
We consider a spherically symmetric gravitational collapse with a tachyon field coupled with a barotropic fluid, as matter source. The tachyonic potential is assumed to be of an inverse square form. By employing the holonomy correction imported from loop quantum gravity, we study the dynamics of the collapse within a semiclassical description. We find that the classical black hole and naked singularities, appearing in the corresponding standard general relativistic collapse, are avoided by quantum gravity induced effects.
Pulsar Recoil and Gravitational Radiation due to Asymetrical Stellar Collapse and Explosion
Burrows, Adam; Hayes, John C.
1995-12-01
New data imply that the average velocity of radio pulsars is high. Under the assumption that these data imply that a pulsar is born with an ``intrinsic'' kick, we investigate whether such kicks can be a consequence of asymmetrical collapse and explosion. We conclude that they can. The neutron star recoils in the direction opposite to that in which the ejecta preferentially emerge. In addition, we calculate the gravitational wave (GW) signature of such asymmetries due to anisotropic neutrino radiation and mass motions. We predict that any recoils imparted to the neutron star at birth will result in a gravitational wave strain, h() TT_zz, that does not go to zero with time. Hence, there may be a ``memory'' in the gravitational waveform from a protoneutron star that is correlated with its recoil and neutrino emissions. In principle, the recoil, neutrino emissions, and gravitational radiation can all be measured for a galactic supernova.
Compressible Heating in the Condense Phase due to Pore Collapse in HMX
Zhang, Ju; Jackson, Thomas
Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.
Hayıroğlu, Mert İlker; Yıldırımtürk, Özlem; Bozbay, Mehmet; Eren, Mehmet; Pehlivanoğlu, Seçkin
2015-12-01
Hypertensive emergency usually appears in older patients with previous recurrent episodes, and is among the most frequent admissions to emergency departments. A 29-year-old woman was referred to our clinic with the diagnosis of hypertensive emergency. The patient complained of severe headache, dyspnea, palpitation, diaphoresis, and confusion due to hypertensive encephalopathy. Her blood pressure was 250/150 mmHg on admission. At the referral hospital, the patient had undergone cranial CT because of her confused state and this excluded acute cerebral hemorrhage. Also at that hospital, thoracoabdominal CT for differential diagnosis depicted an adrenal mass with a necrotic core. After admission to our clinic, initial control of excessive blood pressure was not achieved despite high dose intravenous nitrate therapy. Thereafter intravenous esmolol treatment was initiated simultaneously with oral alpha blocker therapy in order to counterbalance the unopposed alpha adrenergic activity with beta blocker therapy. After 12 hours, sudden onset of hypotension developed and deepened despite IV saline, inotropic and vasopressor agents such as IV dopamine, noradrenaline and adrenaline. The patient died at the 24th hour due to hemodynamic collapse as a result of hyperadrenergic state due to possible pheochromocytoma crisis. This case is an exceptional example of hypertensive emergency secondary to fulminant pheochromocytoma crisis failing to respond to intensive antihypertensive treatment, and in which patient death was unavoidable due to uncontrolled excessive adrenergic activity which led to profound cardiogenic shock.
Field structure of collapsing wave packets in 3D strong Langmuir turbulence
Newman, D. L.; Robinson, P. A.; Goldman, M. V.
1989-01-01
A simple model is constructed for the electric fields in the collapsing wave packets found in 3D simulations of driven and damped isotropic strong Langmuir turbulence. This model, based on a spherical-harmonic decomposition of the electrostatic potential, accounts for the distribution of wave-packet shapes observed in the simulations, particularly the predominance of oblate wave packets. In contrast with predictions for undamped and undriven subsonic collapse of scalar fields, oblate vector-field wave packets do not flatten during collapse but, instead, remain approximately self-similar and rigid.
Formation of Schwarzschild black hole from the scalar field collapse in four-dimensions
Oliveira-Neto, G.; Takakura, F. I.
2003-01-01
We obtain a new self-similar solution to the Einstein's equations in four-dimensions, representing the collapse of a spherically symmetric, minimally coupled, massless, scalar field. Depending on the value of certain parameters, this solution represents the formation of naked singularities and black holes. Since the black holes are identified as the Schwarzschild ones, one may naturally see how these black holes are produced as remnants of the scalar field collapse.
Gravitational collapse of a homogeneous scalar field coupled kinematically to Einstein tensor
Koutsoumbas, George; Ntrekis, Konstantinos; Papantonopoulos, Eleftherios; Tsoukalas, Minas
2017-02-01
We study the gravitational collapse of a homogeneous time-dependent scalar field that, besides its coupling to curvature, is also kinematically coupled to the Einstein tensor. This coupling is a part of the Horndeski theory and we investigate its effect on the collapsing process. We find that the time required for the scalar field to collapse depends on the value of the derivative coupling and the singularity is protected by a horizon. Matching the internal solution with an external Schwarzschild-anti-de Sitter metric we show that a black hole is formed, while the weak energy condition is satisfied during the collapsing process. The scalar field takes on a finite value at the singularity.
Fusion arrest and collapse phenomena due to Kerr-nonlinearity in quadratic media
DEFF Research Database (Denmark)
Johansen, Steffen Kjær; Bang, Ole; Sørensen, Mads Peter
2000-01-01
Emphasizing collapse phenomena it is investigated to what extend the always present cubic nonlinearity affects the properties of soliton interaction in quadratic bulk media. An effective particle approach is applied and verified by numerical simulations....
Ambipolar diffusion regulated collapse of filaments threaded by perpendicular magnetic fields
Burge, C A; Falle, S A E G; Hartquist, T W
2016-01-01
We numerically reproduce the density profiles for filaments that are in magnetohydrostatic and pressure equilibrium with their surroundings obtained in Tomisaka (2014) and show that these equilibria are dynamically stable. If the effect of ambipolar diffusion is considered, these filaments lose magnetic support initiating cloud collapse. The filaments do not lose magnetic flux. Rather the magnetic flux is redistributed within the filament from the centre towards the envelope. The rate of the collapse is inversely proportional to the fractional ionisation and two gravitationally-driven ambipolar diffusion regimes for the collapse are observed as predicted in Mouschovias & Morton (1991). For high values of the ionisation coefficient, that is $X \\geq 10^{-7}$, the gas is strongly coupled to the magnetic field and the Jeans length is larger than the ambipolar diffusion length scale. Then the collapse is governed by magnetically-regulated ambipolar diffusion. For $X \\lesssim 10^{-8}$, the gas is weakly coupled...
Mesons in ultra-intense magnetic field: an evaded collapse
Kerbikov, B O; Simonov, Yu A
2016-01-01
Spectra of $q \\bar q$ mesons are investigated in the framework of the Hamiltonian obtained from the relativistic path integral in external homogeneous magnetic field. The spectra of all 12 spin-isospin s-wave states generated by $\\pi$- and $\\rho$-mesons with different spin projections, are studied analytically as functions of the field strength. Three types of behavior with characteristic splittings are found. The results are in agreement with recent lattice calculations.
Salvage procedures for degenerative osteoarthritis of the wrist due to advanced carpal collapse.
De Smet, Luc; Degreef, Ilse; Robijns, Filip; Truyen, Jan; Deprez, Patrick
2006-10-01
Arthrodesis of the wrist has been considered as the gold standard for osteoarthritis of the wrist. In 1984 Watson and Ballet identified a specific pattern of carpal collapse (scapholunate advanced collapse = SLAC) with progressive osteoarthritis. In order to preserve some motion, other alternative procedures have been proposed: proximal row carpectomy (PRC) and scaphoidectomy combined with a four-corner arthrodesis (4CA). In this cohort of 63 patients, three types of surgical treatment were performed (arthrodesis in 19, PRC in 26 and scaphoidectomy with 4CA in 18). The DASH questionnaire was used to evaluate the residual disability. PRC had a significantly better outcome (DASH=16), while there were no significant differences between full arthrodesis (DASH=45) and four corner arthrodesis (DASH=39). In PRC and in four corner arthrodesis a functional range of motion could be preserved (resepectively 44 degrees and 52 degrees flexion/extension arc). Gripping force remained inferior to the non operated side. There was a significant increase in gripping force in the PRC group, but not in the others. The final gripping force was not significantly different in the three treatment regimes.
Energy Technology Data Exchange (ETDEWEB)
Sadovskii, V. M., E-mail: sadov@icm.krasn.ru; Sadovskaya, O. V., E-mail: o-sadov@icm.krasn.ru [Institute of Computational Modeling, SB RAS, Akademgorodok 50/44, 660036 Krasnoyarsk (Russian Federation)
2015-10-28
Based on the generalized rheological method, the mathematical model describing small deformations of a single-phase porous medium without regard to the effects of a fluid or gas in pores is constructed. The change in resistance of a material to the external mechanical impacts at the moment of pore collapse is taken into account by means of the von Mises–Schleicher strength condition. In order to consider irreversible deformations, alongside with the classical yield conditions by von Mises and Tresca– Saint-Venant, the special condition modeling the plastic loss of stability of a porous skeleton is used. The random nature of the pore size distribution is taken into account. It is shown that the proposed mathematical model satisfies the principles of thermodynamics of irreversible processes. Phenomenological parameters of the model are determined on the basis of the approximate calculation of the problem on quasi-static loading of a cubic periodicity cell with spherical voids. In the framework of the obtained model, the process of propagation of plane longitudinal waves of the compression in a homogenous porous medium, accompanied by the plastic deformation of a skeleton and the collapse of pores, is analyzed.
Sur, Sharanya; Schleicher, Dominik R G; Banerjee, Robi; Klessen, Ralf S
2012-01-01
We study the influence of initial conditions on the magnetic field amplification during the collapse of a magnetised gas cloud. We focus on the dependence of the growth and saturation level of the dynamo generated field on the turbulent properties of the collapsing cloud. In particular, we explore the effect of varying the initial strength and injection scale of turbulence and the initial uniform rotation of the collapsing magnetised cloud. In order to follow the evolution of the magnetic field in both the kinematic and the nonlinear regime, we choose an initial field strength of $\\simeq 1\\,\\mkG$ with the magnetic to kinetic energy ratio, $E_{\\rm m}/E_{\\rm k} \\sim 10^{-4}$. Both gravitational compression and the small-scale dynamo initially amplify the magnetic field. Further into the evolution, the dynamo-generated magnetic field saturates but the total magnetic field continues to grow because of compression. The saturation of the small-scale dynamo is marked by a change in the slope of $B/\\rho^{2/3}$ and by...
Okawa, Hirotada; Pani, Paolo
2013-01-01
The nonlinear instability of anti-de Sitter spacetime has recently been established with the striking result that generic initial data collapses to form black holes. This outcome suggests that confined matter generically collapses, and that collapse can only be halted -- at most -- by nonlinear bound states. Here we provide evidence that such mechanism can operate even in asymptotically flat spacetimes, by studying the evolution of the Einstein-Klein-Gordon system for a self-interacting scalar field. We show that (i) configurations which do not collapse promptly can do so after successive reflections off the potential barrier, but (ii) that at intermediate amplitudes and Compton wavelengths, collapse to black holes is replaced by the appearance of oscillating soliton stars. Finally, (iii) for very small initial amplitudes, the field disperses away in a manner consistent with power-law tails of massive fields. Minkowski is stable against gravitational collapse. Our results provide one further piece to the rich...
Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo; Aloy, Miguel-Ángel; Müller, Ewald
2016-01-01
Whether the magnetorotational instability (MRI) can amplify initially weak magnetic fields to dynamically relevant strengths in core collapse supernovae is still a matter of active scientific debate. Recent numerical studies have shown that, in accordance with the parasitic model, given the core collapse supernova conditions, the MRI is terminated by parasitic instabilities of the Kelvin-Helmholtz type that disrupt MRI channel flows and quench further magnetic field growth. However, it remains to be properly assessed by what factor the initial magnetic field can be amplified and how it depends on the initial field strength and the amplitude of the perturbations. Different termination criteria which lead to different estimates of the amplification factor were proposed within the parasitic model. To determine the amplification factor and test which criterion is a better predictor of the MRI termination, we perform three-dimensional shearing-disc and shearing-box simulations of a region close to the surface of a...
Quasistationary solutions of self-gravitating scalar fields around collapsing stars
Sanchis-Gual, Nicolas; Montero, Pedro J; Font, José A; Mewes, Vassilios
2015-01-01
Recent work has shown that scalar fields around black holes can form long-lived, quasistationary configurations surviving for cosmological timescales. With this requirement, scalar fields cannot be discarded as viable candidates for dark matter halo models in galaxies around central supermassive black holes (SMBH). One hypothesis for the formation of most SMBHs at high redshift is the gravitational collapse of supermassive stars (SMS) with masses of $\\sim10^5 \\rm {M_{\\odot}}$. Therefore, a constraint for the existence of quasi-bound states of scalar fields is their survival to such dynamic events. To answer this question we present in this paper the results of a series of numerical relativity simulations of gravitationally collapsing, spherically symmetric stars surrounded by self-gravitating scalar fields. We use an ideal fluid equation of state with adiabatic index $\\Gamma=4/3$ which is adequate to simulate radiation-dominated isentropic SMSs. Our results confirm the existence of oscillating, long-lived, se...
Giambó, R; Magli, G
2008-01-01
The gravitational collapse of a wide class of self-interacting homogeneous scalar fields models is analyzed. The class is characterized by certain general conditions on the scalar field potential, which, in particular, include both asymptotically polynomial and exponential behaviors. Within this class, we show that the generic evolution is always divergent in a finite time, and then make use of this result to construct radiating star models of the Vaidya type. It turns out that blackholes are generically formed in such models.
Collapse and rebound of a gas-filled spherical bubble immersed in a diagnostic ultrasonic field.
Aymé-Bellegarda, E J
1990-08-01
This work is concerned with the influence of the finite-amplitude distortion of a driving diagnostic ultrasonic field on the collapse and rebound of a gas-filled spherical microbubble, present in the exposed compressible liquid. Such an analysis is especially important since one of the mechanisms for cavitation damage comes from the very large gas pressures generated at bubble collapse and in the subsequent pressure wave formed by bubble rebound. Gilmore's model [F.R. Gilmore, "The growth or collapse of a spherical bubble in a viscous compressible liquid," Hydrodynamics Lab. Rep. No. 26-4, California Institute of Technology, Pasadena, CA (1952)] for bubble dynamics is used to obtain the motion of the bubble interface when subjected to a pulsed diagnostic ultrasonic field of large amplitude. Knowledge of the bubble motion allows one to derive the pressure distribution around the bubble. Numerical results over a range of initial bubble sizes, acoustic pressures, and frequencies relevant to medical use show that the strength of the pressure spikes radiated by the rebounding bubble depends upon (i) the acoustic frequency (f), (ii) the initial bubble size (R0), and (iii) the magnitude of the pressure amplitude of the fundamental (PF) in a Fourier series description of the distorted pulse. As the pressure spikes propagate outward from the bubble wall, their strength is attenuated as the reciprocal of the distance from the center of collapse.
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
Institute of Scientific and Technical Information of China (English)
ZHANG Shao-hong; LIN Chang-rong
2008-01-01
On the standpoint of the disaster prevention from water inrush,discussed the genesis and geologic condition of karstic collapse column in one coal field,analyzed the geophysical characteristics of karstic collapse column by using high resolution 3D seismic data.It shows the effective result of the technology of high resolution 3D seismic prospecting in the exploration of the karstic collapse column,and presents some prediction methods and prevention measures.
Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas.
Christianen, Marjolijn J A; Herman, Peter M J; Bouma, Tjeerd J; Lamers, Leon P M; van Katwijk, Marieke M; van der Heide, Tjisse; Mumby, Peter J; Silliman, Brian R; Engelhard, Sarah L; van de Kerk, Madelon; Kiswara, Wawan; van de Koppel, Johan
2014-02-22
Marine protected areas (MPAs) are key tools for combatting the global overexploitation of endangered species. The prevailing paradigm is that MPAs are beneficial in helping to restore ecosystems to more 'natural' conditions. However, MPAs may have unintended negative effects when increasing densities of protected species exert destructive effects on their habitat. Here, we report on severe seagrass degradation in a decade-old MPA where hyper-abundant green turtles adopted a previously undescribed below-ground foraging strategy. By digging for and consuming rhizomes and roots, turtles create abundant bare gaps, thereby enhancing erosion and reducing seagrass regrowth. A fully parametrized model reveals that the ecosystem is approaching a tipping point, where consumption overwhelms regrowth, which could potentially lead to complete collapse of the seagrass habitat. Seagrass recovery will not ensue unless turtle density is reduced to nearly zero, eliminating the MPA's value as a turtle reserve. Our results reveal an unrecognized, yet imminent threat to MPAs, as sea turtle densities are increasing at major nesting sites and the decline of seagrass habitat forces turtles to concentrate on the remaining meadows inside reserves. This emphasizes the need for policy and management approaches that consider the interactions of protected species with their habitat.
Energy Technology Data Exchange (ETDEWEB)
Leon, Gabriel [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico DF 04510 (Mexico); De Unanue, Adolfo [C3 Centro de Ciencias de la Complejidad, Universidad Nacional Autonoma de Mexico, Torre de IngenierIa, Circuito Exterior S/N Ciudad Universitaria, Mexico DF 04510 (Mexico); Sudarsky, Daniel, E-mail: gabriel.leon@nucleares.unam.mx, E-mail: adolfo@nucleares.unam.mx, E-mail: sudarsky@nucleares.unam.mx [Instituto de AstronomIa y Fisica del Espacio (UBA-CONICET), Casilla de Correos 67, Sucursal 28, 1428 Buenos Aires (Argentina)
2011-08-07
The standard inflationary account for the origin of cosmic structure is, without a doubt, extremely successful. However, it is not fully satisfactory as has been argued in Perez et al (2006 Class. Quantum Grav. 23 2317). The central point is that, in the standard accounts, the inhomogeneity and anisotropy of our universe seem to emerge, unexplained, from an exactly homogeneous and isotropic initial state through processes that do not break those symmetries. The proposal made there to address this shortcoming calls for a dynamical and self-induced quantum collapse of the original homogeneous and isotropic state of the inflaton. In this paper, we consider the possibility of a multiplicity of collapses in each one of the modes of the quantum field. As we will see, the results are sensitive to a more detailed characterization of the collapse than those studied in the previous works, and in this regard two simple options will be studied. We find important constraints on the model, most remarkably on the number of possible collapses for each mode.
Holley-Bockelmann, Kelly; Dunn, Glenna; Bellovary, Jillian M.; Christensen, Charlotte
2016-01-01
Luminous quasars detected at redshifts z > 6 require that the first black holes form early and grow to ~109 solar masses within one Gyr. Our work uses cosmological simulations to study the formation and early growth of direct collapse black holes. In the pre-reionization epoch, molecular hydrogen (H2) causes gas to fragment and form Population III stars, but Lyman-Werner radiation can suppress H2 formation and allow gas to collapse directly into a massive black hole. The critical flux required to inhibit H2 formation, Jcrit, is hotly debated, largely due to the uncertainties in the source radiation spectrum, H2 self-shielding, and collisional dissociation rates. Here, we test the power of the direct collapse model in a non-uniform Lyman-Werner radiation field, using an updated version of the SPH+N-body tree code Gasoline with H2 non-equilibrium abundance tracking, H2 cooling, and a modern SPH implementation. We vary Jcrit from 30 to 104 J21 to study the effect on seed black holes, focusing on black hole formation as a function of environment, halo mass, metallicity, and proximity of the Lyman-Werner source. We discuss the constraints on massive black hole occupation fraction in the quasar epoch, and implications for reionization, high-redshift X-ray background radiation, and gravitational waves.
PIV measurements of the flow field just downstream of an oscillating collapsible tube.
Bertram, C D; Truong, N K; Hall, S D
2008-12-01
We probed the time-varying flow field immediately downstream of a flexible tube conveying an aqueous flow, during flow-induced oscillation of small amplitude, at time-averaged Reynolds numbers (Re) in the range 300-550. Velocity vector components in the plane of a laser sheet were measured by high-speed ("time-resolved") particle image velocimetry. The sheet was aligned alternately with both the major axis and the minor axis of the collapsing tube by rotating the pressure chamber in which the tube was mounted. The Womersley number of the oscillations was approximately 10. In the major-axis plane the flow fields were characterized by two jets that varied in lateral spacing. The rapid deceleration of flow at maximal collapse caused the jets momentarily to merge about one diameter into the downstream pipe, and strengthened and enlarged the existing retrograde flow lateral to each jet. Collapse also spread the jets maximally, allowing retrograde flow between them during the ascent from its minimum of the pressure at the end of the flexible tube. The minor-axis flow fields showed that the between-jet retrograde flow at this time extended all the way across the pipe. Whereas the retrograde flow lateral to the jets terminated within three diameters of the tube end at Re=335 at all times, it extended beyond three diameters at Re=525 for some 25% of the cycle including the time of maximal flow deceleration. Off-axis sheet positioning revealed the lateral jets to be crescent shaped. When the pressure outside the tube was increased, flattening the tube more, the jets retained a more consistent lateral position. These results illuminate the flows created by collapsible-tube oscillation in a laminar regime accessible to numerical modeling.
Quasistationary solutions of scalar fields around collapsing self-interacting boson stars
Escorihuela-Tomàs, Alejandro; Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Font, José A.
2017-07-01
There is increasing numerical evidence that scalar fields can form long-lived quasibound states around black holes. Recent perturbative and numerical relativity calculations have provided further confirmation in a variety of physical systems, including both static and accreting black holes, and collapsing fermionic stars. In this work, we investigate this issue yet again in the context of gravitationally unstable boson stars leading to black-hole formation. We build a large sample of spherically symmetric initial models, both stable and unstable, incorporating a self-interaction potential with a quartic term. The three different outcomes of unstable models, namely, migration to the stable branch, total dispersion, and collapse to a black hole, are also present for self-interacting boson stars. Our simulations show that for black hole-forming models, a scalar-field remnant is found outside the black-hole horizon, oscillating at a different frequency than that of the original boson star. This result is in good agreement with recent spherically symmetric simulations of unstable Proca stars collapsing to black holes [N. Sanchis-Gual, C. Herdeiro, E. Radu, J. C. Degollado, and J. A. Font, Phys. Rev. D 95, 104028 (2017)., 10.1103/PhysRevD.95.104028].
Collapse of the wave field in a one-dimensional system of weakly coupled light guides
Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.
2016-12-01
The analytical and numerical study of the radiation self-action in a system of coupled light guides is fulfilled on the basis of the discrete nonlinear Schrödinger equation (DNSE). We develop a variational method for qualitative study of DNSE and classify self-action modes. We show that the diffraction of narrow (in grating scale) wave beams weakens in discrete media and, consequently, the "collapse" of the one-dimensional wave field with power exceeding the critical value occurs. This results in the ability to self-channel radiation in the central fiber. Qualitative analytical results were confirmed by numerical simulation of DNSE, which also shows the stability of the collapse mode.
Critical collapse of a rotating scalar field in 2 +1 dimensions
JałmuŻna, Joanna; Gundlach, Carsten
2017-04-01
We carry out numerical simulations of the collapse of a complex rotating scalar field of the form Ψ (t ,r ,θ )=ei m θΦ (t ,r ), giving rise to an axisymmetric metric, in 2 +1 spacetime dimensions with cosmological constant Λ 0 is very different from the case m =0 we have considered before: the thresholds for mass scaling and Ricci scaling are significantly different (for the same family); scaling stops well above the scale set by Λ , and the exponents depend strongly on the family. Hence, in contrast to the m =0 case, and to many other self-gravitating systems, there is only weak evidence for the collapse threshold being controlled by a self-similar critical solution and no evidence for it being universal.
Evolution of geodesic congruences in a gravitationally collapsing scalar field background
Shaikh, Rajibul; DasGupta, Anirvan
2014-01-01
The evolution of timelike and null geodesic congruences in a non-static, inhomogeneous spacetime representing the gravitational collapse of a massless scalar field, is investigated in detail. We show explicitly how the initial values of the expansion, rotation and shear of a congruence, as well as the spacetime curvature along the congruence, influence the evolution and focusing of trajectories in different ways. The role of initial conditions on the focusing time is explored and highlighted. In certain specific cases, the expansion scalar is found to exhibit a finite jump (from negative to positive value) before focusing. The issue of singularity formation and the effect of the central inhomogeneity in the spacetime, on the evolution of the kinematic variables, is discussed. In summary, our analysis does seem to throw some light on how a family of trajectories evolve in a specific model of gravitational collapse.
Stability of naked singularity arising in gravitational collapse of Type I matter fields
Indian Academy of Sciences (India)
Sanjay B Sarwe; R V Saraykar
2005-07-01
Considering gravitational collapse of Type I matter fields, we prove that, given an arbitrary 2-mass function (, ) and a 1-function ℎ(, ) (through the corresponding 1-metric function (, )), there exist infinitely many choices of energy distribution function () such that the `true’ initial data (, ℎ(, )) leads the collapse to the formation of naked singularity. We further prove that the occurrence of such a naked singularity is stable with respect to small changes in the initial data. We remark that though the initial data leading to both black hole (BH) and naked singularity (NS) form a `big' subset of the true initial data set, their occurrence is not generic. The terms `stability' and `genericity’ are appropriately defined following the theory of dynamical systems. The particular case of radial pressure () has been illustrated in details to get a clear picture of how naked singularity is formed and how, it is stable with respect to initial data.
Scalar-field cosmological and collapse models with general self-interaction potentials
Energy Technology Data Exchange (ETDEWEB)
Giambo, Roberto; Giannoni, Fabio [Dipartimento di Matematica e Informatica, Universita di Camerino (Italy); Magli, Giulio, E-mail: roberto.giambo@unicam.i, E-mail: fabio.giannoni@unicam.i, E-mail: magli@mate.polimi.i [Dipartimento di Matematica, Politecnico di Milano (Italy)
2009-10-01
We present the results of the investigation of a wide class of self-interacting, self-gravitating homogeneous scalar fields models, characterized by quite general conditions on the scalar field potential, and including both asymptotically polynomial and exponential behaviors. We show that the generic evolution is always divergent in a finite time, and this result is used to construct cosmological models as well as radiating collapsing star models of the Vaidya type - for the latter it turns out that black holes are generically formed.
Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.
2015-06-01
In heterogeneous energetic materials, presence of porosity has been seen to increase its sensitivity towards shock initiation and ignition. Under the application of shock load, the viscoplastic deformation of voids and its collapse leads to the formation of local high temperature regions known as hot spots. The chemical reaction triggers at the hot spot depending on the local temperature and grows eventually leading to ignition and formation of detonation waves in the material. The temperature of the hot spot depends on various factors such as shock strength, void size, void arrangements, loading configuration etc. Hence, to gain deeper understanding on shock initiation and ignition study due to void collapse, a parametric study involving various factors which can affect the hot spot temperature is desired. In the current work, effects of void sizes, shock strength and loading configurations has been studied for shock initiation in HMX using massively parallel Eulerian code, SCIMITAR3D. The chemical reaction and decomposition for HMX has been modeled using Henson-Smilowitz multi step mechanism. The effect of heat conduction has also been taken into consideration. Ignition threshold criterion has been established for various factors as mentioned. The critical hot spot temperature and its size which can lead to ignition has been obtained from numerical experiments.
Dimension dependence of the critical phenomena in gravitational collapse of massless scalar field
Bland, Jason Bryan
2007-12-01
A study of the critical behaviour which is observed in numerical calculations of spherically symmetric scalar field collapse has been performed. The gravitational collapse calculations are carried out using the field equations of Einstein's general theory of relativity in the context of a two dimensional dilaton gravity theory. The problem is formulated by considering a spherically symmetric matter distribution in an arbitrary number of space-time dimensions greater than three. A spherical distribution will only depend on two space-time coordinates, therefore, the action of the model can be reduced to a specific case of a 1 + 1 dilaton gravity theory. The evolution equations of the problem are simplified by carrying out a conformal transformation of the metric field. The number of space-time dimensions then appears as an input parameter of the field equations. Initial data is defined on a discrete space-time grid and numerical simulations of gravitational collapse are carried out. The computer code is optimized to increase numerical stability near the critical solutions. Discrete self-similarity and mass scaling in the near critical solutions are observed for each of the dimensions studied. The critical phenomena are described with a high level of confidence by smooth functions of space-time dimension. It is hypothesized that the critical solution of the theory at the limit of large dimension is discretely self-similar with a period of 5/2 and contains critical scaling with a constant of 1/2. Evidence will also be presented which suggests the critical solution in three dimensions with zero cosmological constant is not discretely self-similar but contains a critical scaling constant of approximately 0.11.
Kotake, K; Sato, K; Sumiyoshi, K; Ono, H; Suzuki, H; Kotake, Kei; Yamada, Shoichi; Sato, Katsuhiko; Sumiyoshi, Kohsuke; Ono, Hiroyuki; Suzuki, Hideyuki
2004-01-01
We perform a series of two-dimensional, axisymmetric, magnetohydrodynamic simulations of the rotational collapse of a supernova core. In order to calculate the waveforms of the gravitational wave, we derive the quadrupole formula including the contributions from the electromagnetic fields. Recent stellar evolution calculations imply that the magnetic fields of the toroidal components are much stronger than those of the poloidal ones at the presupernova stage. Thus, we systematically investigate the effects of the toroidal magnetic fields on the amplitudes and waveforms. Furthermore, we employ the two kinds of the realistic equation of states, which are often used in the supernova simulations. Then, we investigate the effects of the equation of states on the gravitational wave signals. With these computations, we find that the peak amplitudes are lowered by an order of 10% for the models with the strongest toroidal magnetic fields. However, the peak amplitudes are mostly within sensitivity range of laser inter...
The Model for Final Stage of Gravitational Collapse Massless Scalar Field
Gladush, V. D.; Mironin, D. V.
It is known that in General relativity, for some spherically symmetric initial conditions, the massless scalar field (SF) experience the gravitational collapse (Choptuik, 1989), and arise a black hole (BH). According Bekenstein, a BH has no "hair scalar", so the SF is completely under the horizon. Thus, the study of the final stage for the gravitational collapse of a SF is reduced to the construction of a solution of Einstein's equations describing the evolution of a SF inside the BH. In this work, we build the Lagrangian for scalar and gravitationalfields in the spherically symmetric case, when the metric coefficients and SF depends only on the time. In this case, it is convenient to use the methods of classical mechanics. Since the metric allows an arbitrary transformation of time, then the corresponding field variable (g00) is included in the Lagrangian without time derivative. It is a non-dynamic variable, and is included in the Lagrangian as a Lagrange multiplier. A variation of the action on this variable gives the constraint. It turns out that Hamiltonian is proportional to the constraint, and so it is zero. The corresponding Hamilton-Jacobi equation easily integrated. Hence, we find the relation between the SF and the metric. To restore of time dependence we using an equation dL / dq' = dS / dq After using a gauge condition, it allows us to find solution. Thus, we find the evolution of the SF inside the BH, which describes the final stage of the gravitational collapse of a SF. It turns out that the mass BH associated with a scalar charge G of the corresponding SF inside the BH ratio M = G/(2√ κ).
Energy Technology Data Exchange (ETDEWEB)
Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin (Poland); Yeom, Dong-han [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan (China)
2016-02-08
There does not exist a notion of time which could be transferred straightforwardly from classical to quantum gravity. For this reason, a method of time quantification which would be appropriate for gravity quantization is being sought. One of the existing proposals is using the evolving matter as an intrinsic ‘clock’ while investigating the dynamics of gravitational systems. The objective of our research was to check whether scalar fields can serve as time variables during a dynamical evolution of a coupled multi-component matter-geometry system. We concentrated on a neutral case, which means that the elaborated system was not charged electrically nor magnetically. For this purpose, we investigated a gravitational collapse of a self-interacting complex and real scalar fields in the Brans-Dicke theory using the 2+2 spacetime foliation. We focused mainly on the region of high curvature appearing nearby the emerging singularity, which is essential from the perspective of quantum gravity. We investigated several formulations of the theory for various values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke field and the matter sector of the theory. The obtained results indicated that the evolving scalar fields can be treated as time variables in close proximity of the singularity due to the following reasons. The constancy hypersurfaces of the Brans-Dicke field are spacelike in the vicinity of the singularity apart from the case, in which the equation of motion of the field reduces to the wave equation due to a specific choice of free evolution parameters. The hypersurfaces of constant complex and real scalar fields are spacelike in the regions nearby the singularities formed during the examined process. The values of the field functions change monotonically in the areas, in which the constancy hypersurfaces are spacelike.
Peters, Thomas; Klessen, Ralf S; Banerjee, Robi; Federrath, Christoph; Smith, Rowan J; Sur, Sharanya
2012-01-01
Stars form by the gravitational collapse of interstellar gas. The thermodynamic response of the gas can be characterized by an effective equation of state. It determines how gas heats up or cools as it gets compressed, and hence plays a key role in regulating the process of stellar birth on virtually all scales, ranging from individual star clusters up to the galaxy as a whole. We present a systematic study of the impact of thermodynamics on gravitational collapse in the context of high-redshift star formation, but argue that our findings are also relevant for present-day star formation in molecular clouds. We consider a polytropic equation of state, P = k rho^Gamma, with both sub-isothermal exponents Gamma 1. We find significant differences between these two cases. For Gamma > 1, pressure gradients slow down the contraction and lead to the formation of a virialized, turbulent core. Weak magnetic fields are strongly tangled and efficiently amplified via the small-scale turbulent dynamo on timescales correspo...
Collapse and revival of a single-Cooper-pair box in a single-mode quantized field
Institute of Scientific and Technical Information of China (English)
姚延荪; 邹健; 邵彬
2003-01-01
We study the quantum dynamics of a single-Cooper-pair box biased by a classical voltage and also irradiated by a single-mode quantized field.We demonstrate that under weak damping of the quantized field,the collapse-revival phenomena can exist in this system,and the oscillations of the collapse and revival depend sensitively on the initial state of the single-mode quantized field and the damping rate κ.We also demonstrate that this system can show the beats phenomena.
Rembiasz, T.; Guilet, J.; Obergaulinger, M.; Cerdá-Durán, P.; Aloy, M. A.; Müller, E.
2016-08-01
Whether the magnetorotational instability (MRI) can amplify initially weak magnetic fields to dynamically relevant strengths in core-collapse supernovae is still a matter of active scientific debate. Recent numerical studies have shown that the first phase of MRI growth dominated by channel flows is terminated by parasitic instabilities of the Kelvin-Helmholtz type that disrupt MRI channel flows and quench further magnetic field growth. However, it remains to be properly assessed by what factor the initial magnetic field can be amplified and how it depends on the initial field strength and the amplitude of the perturbations. Different termination criteria leading to different estimates of the amplification factor were proposed within the parasitic model. To determine the amplification factor and test which criterion is a better predictor of the MRI termination, we perform three-dimensional shearing-disc and shearing-box simulations of a region close to the surface of a differentially rotating protoneutron star in non-ideal magnetohydrodynamics with two different numerical codes. We find that independently of the initial magnetic field strength, the MRI channel modes can amplify the magnetic field by, at most, a factor of 100. Under the conditions found in protoneutron stars, a more realistic value for the magnetic field amplification is of the order of 10. This severely limits the role of the MRI channel modes as an agent amplifying the magnetic field in protoneutron stars starting from small seed fields. A further amplification should therefore rely on other physical processes, such as for example an MRI-driven turbulent dynamo.
Energy Technology Data Exchange (ETDEWEB)
Ichihashi, Shigeo, E-mail: shigeoichihashi@yahoo.co.jp; Higashiura, Wataru; Itoh, Hirofumi; Sakaguchi, Shoji; Kichikawa, Kimihiko [Nara Medical University, Department of Radiology (Japan)
2012-12-15
We report a case of stent fracture and collapse of balloon-expandable stents caused by shiatsu massage. A 76-year-old man presented with complaints of intermittent claudication of the right lower extremity. Stenoses of the bilateral common iliac arteries (CIAs) were detected. Balloon-expandable stents were deployed in both CIAs, resulting in resolution of symptoms. Five months later, pelvis x-ray showed collapse of both stents. Despite the stent collapse, the patient was asymptomatic, and his ankle brachial index values were within the normal range. Further history showed that the patient underwent daily shiatsu therapy in the umbilical region, which may have triggered collapse of the stent. Physicians should advise patients to avoid compression of the abdominal wall after implantation of a stent in the iliac artery.
Collapsing Scalar Field with Kinematic Self-Similarity of the Second Kind in 2+1 Gravity
Chan, R; Rocha, J F V; Wang, A; Wang, Anzhong
2004-01-01
All the 2+1-dimensional circularly symmetric solutions with kinematic self-similarity of the second kind to the Einstein-massless-scalar field equations are found and their local and global properties are studied. It is found that some of them represent gravitational collapse of a massless scalar field, in which black holes are always formed.
Energy Technology Data Exchange (ETDEWEB)
Peters, Thomas; Klessen, Ralf S.; Federrath, Christoph; Smith, Rowan J. [Zentrum fuer Astronomie, Institut fuer Theoretische Astrophysik, Universitaet Heidelberg, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Schleicher, Dominik R. G. [Institut fuer Astrophysik, Georg-August-Universitaet, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Banerjee, Robi [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Sur, Sharanya, E-mail: tpeters@physik.uzh.ch [Raman Research Institute, C. V. Raman Avenue, Sadashivnagar, Bangalore 560080 (India)
2012-12-01
Stars form by the gravitational collapse of interstellar gas. The thermodynamic response of the gas can be characterized by an effective equation of state. It determines how gas heats up or cools as it gets compressed, and hence plays a key role in regulating the process of stellar birth on virtually all scales, ranging from individual star clusters up to the galaxy as a whole. We present a systematic study of the impact of thermodynamics on gravitational collapse in the context of high-redshift star formation, but argue that our findings are also relevant for present-day star formation in molecular clouds. We consider a polytropic equation of state, P = k{rho}{sup {Gamma}}, with both sub-isothermal exponents {Gamma} < 1 and super-isothermal exponents {Gamma} > 1. We find significant differences between these two cases. For {Gamma} > 1, pressure gradients slow down the contraction and lead to the formation of a virialized, turbulent core. Weak magnetic fields are strongly tangled and efficiently amplified via the small-scale turbulent dynamo on timescales corresponding to the eddy-turnover time at the viscous scale. For {Gamma} < 1, on the other hand, pressure support is not sufficient for the formation of such a core. Gravitational contraction proceeds much more rapidly and the flow develops very strong shocks, creating a network of intersecting sheets and extended filaments. The resulting magnetic field lines are very coherent and exhibit a considerable degree of order. Nevertheless, even under these conditions we still find exponential growth of the magnetic energy density in the kinematic regime.
Institute of Scientific and Technical Information of China (English)
ZHAO Zhixin; XU Jiren; Ryuji Kubota; Wakizawa Yasuhiko; Kajikawa Syozo
2004-01-01
The distribution characteristics of collapse ratios of buildings in Kobe city due to the 1995 M7.2 Hyogo-ken Nanbu, Japan (Kobe) earthquake and the interferences due to SH or P-SV and the second surface waves propagating in heterogeneous medium are discussed in this paper by using numerical simulation technique of wave equation. The staggered grid real value fast Fourier transform differentiation (SGRFFTD) is used in the pseudospectral method of ground motion simulations because of its speed, high stability and accuracy. The results show that the maximum amplitude of simulated acceleration waveforms on the ground coincides well with the complicated distributions of collapse ratios of buildings. The peak collapse ratio of buildings away from the earthquake fault also coincides well with the peak ground acceleration. The spatial interference process is analyzed by using the snap shots of seismic wave propagation. The peak ground acceleration is probably caused by the interferences due to the second surface wave transmitting from the bedrock to sedimentary basin and the upward body wave. Analyses of the interference process show that seismic velocity structure and geologic structure strongly influence the distribution of the maximum amplitude of acceleration waveforms. Interferences occurring near the basin boundary are probably the cause of the peak collapse ratio of buildings away from the fault. Therefore it is necessary to analyze wave propagations and interference process using numerical simulation strategy for studies on the seismic disasters.
Cosmic Electromagnetic Fields due to Perturbations in the Gravitational Field
Mongwane, Bishop; Osano, Bob
2012-01-01
We use non-linear gauge-invariant perturbation theory to study the interaction of an inflation produced seed magnetic field with density and gravitational wave perturbations in an almost Friedmann-Lema\\^itre-Robertson-Walker (FLRW) spacetime. We compare the effects of this coupling under the assumptions of poor conductivity, infinite conductivity and the case where the electric field is sourced via the coupling of velocity perturbations to the seed field in the ideal magnetohydrodynamic (MHD) regime, thus generalizing, improving on and correcting previous results. We solve our equations for long wavelength limits and numerically integrate the resulting equations to generate power spectra for the electromagnetic field variables, showing where the modes cross the horizon. We find that the rotation of the electric field dominates the power spectrum on small scales, in agreement with previous arguments.
Vacuum for a massless quantum scalar field outside a collapsing shell in anti-de Sitter space-time
Abel, Paul G
2015-01-01
We consider a massless quantum scalar field on a two-dimensional space-time describing a thin shell of matter collapsing to form a Schwarzschild-anti-de Sitter black hole. At early times, before the shell starts to collapse, the quantum field is in the vacuum state, corresponding to the Boulware vacuum on an eternal black hole space-time. The scalar field satisfies reflecting boundary conditions on the anti-de Sitter boundary. Using the Davies-Fulling-Unruh prescription for computing the renormalized expectation value of the stress-energy tensor, we find that at late times the black hole is in thermal equilibrium with a heat bath at the Hawking temperature, so the quantum field is in a state analogous to the Hartle-Hawking vacuum on an eternal black hole space-time.
Directory of Open Access Journals (Sweden)
Yu Sasaki
2013-01-01
Full Text Available We report an 85-year-old woman with an L3 vertebral body fracture who presented with back pain, bilateral leg pain, and weakness after four months of conservative treatment. Because of unstable pseudoarthrosis, the L3 vertebral body collapsed in the standing position and the L3 nerve root was compressed. The indicated surgery decompressed the L3-L4 foramen and fused the unstable segment. The back pain and neurologic symptoms improved significantly following surgery. We propose that delayed neurologic deficit following an osteoporotic fracture of the lumbar body may be caused not only by retropulsion of vertebral body fragments with significant canal compromise, but also by foraminal stenosis with the late collapse of the vertebral fracture. This new pathomechanism for delayed neurologic deficit has not been previously described. If a collapse takes place in the caudal part of the vertebral body below the base of the pedicle, spine surgeons should be aware of the possibility of foraminal stenosis.
Bergeles, G.; Koukouvinis, P.; Gavaises, M.; Li, J; Wang, L.
2015-01-01
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution...
Areu Rangel, O. S., Sr.; Mendoza-Sanchez, I.; Bonasia, R.
2015-12-01
The risk of flooding of settlements located downstream of a dam is high due to the large number of people living on natural waterways. Risk assessment of flooding could help in projecting containment and protection in case of a dam-break. For projecting containment and protection works, the assessment should take into account velocities, densities and impact pressure of the water on the villages in risk. Therefore, it is appealing to conduct a series of numerical simulations of downstream flooding including velocity and pressure fields, and their temporal and spatial fluctuations. The present work focuses on the real case of "La Esperanza" dam, located in the state of Hidalgo (Mexico). The dam was built 70 years ago and currently two thirds of its capacity is covered with silt, which implies a very high horizontal thrust. The simulation of the flood due to failure of the dam was carried on using the DualSPHysics code, a new implementation of the mesh-free Lagrangian Smoothed Particle Hydrodynamic (SPH) method. For the boundary conditions, a Digital Elevation Model of the potentially affected area was built using satellite images, the actual bathymetry of the dam and cross sections of the channel. In order to evaluate the hazard posed to the villages located downstream of the dam, different collapse scenarios were simulated, with particular focus on the consequences of the temporal variation of rainfall. Preliminary results show acceleration and dynamic pressure values of water in especially selected areas that are subjected to high risk for the elevated number of inhabitant.
Haines, Richard F.; Rositano, Salvador A.; Greenleaf, John E.
1976-01-01
The mechanisms that control the size of the visual field during positive acceleration are poorly understood, but involve mainly the arterial blood pressure at the eye level and intraocular pressure (IOP) (3). Fluid and electrolyte shifts that occur in the general circulation during acceleration may well influence the rate at which the visual field collapses. This could, in turn, suggest the relative influences that arterial blood pressure, IOP, and various compensatory mechanisms have upon acceleration tolerance. Such knowledge could also be of use in the design and development of protective techniques for use in the acceleration environment. The present investigation was performed to study blood withdrawal (hypovolemia) and subsequent reinfusion, oral fluid replacement upon IOP, and the rate at which the visual field collapses during gradual onset +G(sub z) acceleration (0.5 G/min).
Kirby, Larry
2008-01-01
The molecular cloud, DR21 Main, is an example of a large-scale gravitational collapse about an axis near the plane of the sky where the collapse is free of major disturbances due to rotation or other effects. Using flux maps, polarimetric maps, and measurements of the field inclination by comparing the line widths of ion and neutral species, we estimate the temperature, mass, magnetic field, and the turbulent kinetic, mean magnetic, and gravitational potential energies, and present a 3D model...
Institute of Scientific and Technical Information of China (English)
周幸叶; 冯志红; 王元刚; 顾国栋; 宋旭波; 蔡树军
2015-01-01
In this paper, two-dimensional (2D) transient simulations of an AlGaN/GaN high-electron-mobility transistor (HEMT) are carried out and analyzed to investigate the current collapse due to trapping effects. The coupling effect of the trapping and thermal effects are taken into account in our simulation. The turn-on pulse gate-lag transient responses with different quiescent biases are obtained, and the pulsed current–voltage (I–V ) curves are extracted from the transients. The experi-mental results of both gate-lag transient current and pulsed I–V curves are reproduced by the simulation, and the current collapse due to the trapping effect is explained from the view of physics based on the simulation results. In addition, the results show that bulk acceptor traps can influence the gate-lag transient characteristics of AlGaN/GaN HEMTs besides surface traps and that the thermal effect can accelerate the emission of captured electrons for traps. Pulse transient simu-lation is meaningful in analyzing the mechanism of dynamic current collapse, and the work in this paper will benefit the reliability study and model development of GaN-based devices.
Lelyakov, A. P.; Karpenko, A. S.
2017-01-01
We consider the dynamics of a probe null string in the gravitational field of a closed ( "thick") null string radially collapsing in a plane. Analysis of the obtained solutions suggests that there might exist several properties of a null-string gas interesting from the cosmological standpoint, such as acceleration of expansion or contraction, a granular structure of the gas, the emergence of stable polarized states, and a domain structure.
Geotechnical properties of Egyptian collapsible soils
Directory of Open Access Journals (Sweden)
Khaled E. Gaaver
2012-09-01
Full Text Available The risk of constructing structures on collapsible soils presents significant challenges to geotechnical engineers due to sudden reduction in volume upon wetting. Identifying collapsible soils when encountered in the field and taking the needed precautions should substantially reduce the risk of such problems usually reported in buildings and highways. Collapsible soils are those unsaturated soils that can withstand relatively high pressure without showing significant change in volume, however upon wetting; they are susceptible to a large and sudden reduction in volume. Collapsible soils cover significant areas around the world. In Egypt, collapsible soils were observed within the northern portion of the western desert including Borg El-Arab region, and around the city of Cairo in Six-of-October plateau, and Tenth-of-Ramadan city. Settlements associated with development on untreated collapsible soils usually lead to expensive repairs. One method for treating collapsible soils is to densify their structure by compaction. The ongoing study presents the effect of compaction on the geotechnical properties of the collapsible soils. Undisturbed block samples were recovered from test pits at four sites in Borg El-Arab district, located at about 20 km west of the city of Alexandria, Egypt. The samples were tested in both unsoaked and soaked conditions. Influence of water inundation on the geotechnical properties of collapsible soils was demonstrated. A comparative study between natural undisturbed and compacted samples of collapsible soils was performed. An attempt was made to relate the collapse potential to the initial moisture content. An empirical correlation between California Bearing Ratio of the compacted collapsible soils and liquid limit was adopted. The presented simple relationships should enable the geotechnical engineers to estimate the complex parameters of collapsible soils using simple laboratory tests with a reasonable accuracy.
Role of electron inertia and reconnection dynamics in a stressed X-point collapse with a guide-field
Graf von der Pahlen, J.; Tsiklauri, D.
2016-11-01
Aims: In previous simulations of collisionless 2D magnetic reconnection it was consistently found that the term in the generalised Ohm's law that breaks the frozen-in condition is the divergence of the electron pressure tensor's non-gyrotropic components. The motivation for this study is to investigate the effect of the variation of the guide-field on the reconnection mechanism in simulations of X-point collapse, and the related changes in reconnection dynamics. Methods: A fully relativistic particle-in-cell (PIC) code was used to model X-point collapse with a guide-field in two and three spatial dimensions. Results: We show that in a 2D X-point collapse with a guide-field close to the strength of the in-plane field, the increased induced shear flows along the diffusion region lead to a new reconnection regime in which electron inertial terms play a dominant role at the X-point. This transition is marked by the emergence of a magnetic island - and hence a second reconnection site - as well as electron flow vortices moving along the current sheet. The reconnection electric field at the X-point is shown to exceed all lower guide-field cases for a brief period, indicating a strong burst in reconnection. By extending the simulation to three spatial dimensions it is shown that the locations of vortices along the current sheet (visualised by their Q-value) vary in the out-of-plane direction, producing tilted vortex tubes. The vortex tubes on opposite sides of the diffusion region are tilted in opposite directions, similarly to bifurcated current sheets in oblique tearing-mode reconnection. The tilt angles of vortex tubes were compared to a theoretical estimation and were found to be a good match. Particle velocity distribution functions for different guide-field runs, for 2.5D and 3D simulations, are analysed and compared.
Institute of Scientific and Technical Information of China (English)
ZHANG Hong-Bao; CAO Zhou-Jian; GAO Chong-Shou
2004-01-01
Si-Jie Gao has recently investigated Hawking radiation from spherically symmetrical gravitational collapse to an extremal R-N black hole for a real scalar field. Especially he estimated the upper bound for the expected number of particles in any wave packet belonging to Hout spontaneously produced from the state |0＞in, which confirms the traditional belief that extremal black holes do not radiate particles. Making some modifications, we demonstrate that the analysis can go through for a charged scalar field.
Role of Electron Inertia and Reconnection Dynamics in a Stressed X-point Collapse with a Guide-Field
von der Pahlen, Jan Graf
2016-01-01
In previous simulations of collisionless 2D magnetic reconnection it was consistently found that the term in the generalised Ohm's law that breaks the frozen-in condition is the divergence of the electron pressure tensor's non-gyrotropic components. A fully relativistic particle-in-cell (PIC) code was used to model $X$-point collapse with a guide-field in two and three spatial dimensions. We show that in a 2D $X$-point collapse with a guide-field close to the strength of the in-plane field, the increased induced shear flows along the diffusion region lead to a new reconnection regime in which electron inertial terms play a dominant role at the $X$-point. This transition is marked by the emergence of a magnetic island - and hence a second reconnection site - as well as electron flow vortices moving along the current sheet. The reconnection electric field at the $X$-point is shown to exceed all lower guide-field cases for a brief period, indicating a strong burst in reconnection. By extending the simulation to ...
Mode-Coupling in Rotating Gravitational Collapse of a Scalar Field
Hod, S
2000-01-01
We present an analytic study of the mode-coupling phenomena for a scalar field propagating on a rotating Kerr background. Physically, this phenomena is caused by the dragging of reference frames, due to the black-hole (or star's) rotation. We find that different modes become mixed during the evolution and the asymptotic late-time tails are dominated by a mode which, in general, has an angular distribution different from the original one. We show that a rotating Kerr black hole becomes `bald' slower than a spherically-symmetric Schwarzschild black hole.
DUPERRET, A.; MARTINEZ, A.; GENTER, A.; MORTIMORE, R. N.; WATREMEZ, P.
2001-12-01
The chalk cliffs along the English Channel coast are currently retreating at a mean rate of 0.5 m/year. However, the erosion is not constant over time, but occurs by catastrophic collapses. For the last three years, a minimum of 40 collapses have been observed along the French chalk coastline (120 km long) and about 10 collapses along the English chalk coastline (40 km long). The observed collapsed volumes are varying from 150 000 m3 (Beachy Head, UK) to a few m3, whereas the cliff heights are varying from 20 to 200m. Two kinds of scar extension have been observed on the cliff face: either the lower part only with few volumes involved, either the whole cliff height for the largest events. Two main cases of scar shape have been evidenced: (1) scar with a vertical upper part and a curved lower part with large striations and crushed chalk (Puys, France). The rupture process is an overall sliding process, with tearing of the upper part of the cliff and shearing in its lower part. The failure is mainly controlled by rain-fall and occurred by water pressure increase on impervious marl seams of the chalk (Duperret et al., in press, JCR). (2) scar with a regular and rectilinear profile, without any striation (Birling Gap, UK). The rupture propagates along pre-existing joint sets, parallel oriented to the cliff face. Locally, pre-existing large-scale transverse fractures may bound the lateral propagation of the scar. Where the scars extend all over the cliff height, the failure is mainly controlled by continental water infiltration. However the role of water through fractured chalk may differ according to the fracture pattern. Where the scars are restrained to the lower part of the cliff, the upward extension of the scars are bounded by lithological features of the chalk, as horizontal flint bands or stratification. In this case, the role of marine parameters, as wave impact at the toe of the cliff may be invoked as a significant triggering parameter contributing to failure
Energy Technology Data Exchange (ETDEWEB)
Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)
2014-06-15
The out-of-plane magnetic field, generated by fast magnetic reconnection, during collisionless, stressed X-point collapse, was studied with a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code, using both closed (flux conserving) and open boundary conditions on a square grid. It was discovered that the well known quadrupolar structure in the out-of-plane magnetic field gains four additional regions of opposite magnetic polarity, emerging near the corners of the simulation box, moving towards the X-point. The emerging, outer, magnetic field structure has opposite polarity to the inner quadrupolar structure, leading to an overall octupolar structure. Using Ampere's law and integrating electron and ion currents, defined at grid cells, over the simulation domain, contributions to the out-of-plane magnetic field from electron and ion currents were determined. The emerging regions of opposite magnetic polarity were shown to be the result of ion currents. Magnetic octupolar structure is found to be a signature of X-point collapse, rather than tearing mode, and factors relating to potential discoveries in experimental scenarios or space-craft observations are discussed.
Katsuno, Takashi; Manaka, Takaaki; Ishikawa, Tsuyoshi; Soejima, Narumasa; Uesugi, Tsutomu; Iwamoto, Mitsumasa
2016-11-01
Three-dimensional (3D) current collapse imaging of Schottky gate AlGaN/GaN high electron mobility transistor devices was achieved by a combination of two-dimensional (2D) and depth directional electric field-induced optical second-harmonic generation (EFISHG) measurements. EFISHG can detect the electric field produced by trapped carriers, which causes the current collapse. In the 2D measurement, the strong second-harmonic (SH) signals appeared within 1 μm from the gate edge on the drain side at 0.8 μs after the transition from the off- to no bias- state in both unpassivated and passivated samples. In the depth measurement, the SH signals were generated mainly from the AlGaN surface region of the unpassivated sample due to the presence of high-density trap sites in the AlGaN layer, and SH signals from bulk GaN region were also detected at 50 μs after the transition from the off- to no bias- state in the passivated sample. The origin of the traps is presumably the nitrogen vacancies in the GaN buffer layer.
Anderson, Paul; Evans, Charles
2017-01-01
A method to compute the stress-energy tensor for a quantized massless minimally coupled scalar field outside the event horizon of a 4-D black hole that forms from the collapse of a spherically symmetric null shell is given. The method is illustrated in the corresponding 2-D case which is mathematically similar but is simple enough that the calculations can be done analytically. The approach to the Unruh state at late times is discussed. National Science Foundation Grant No. PHY-1505875 to Wake Forest University and National Science Foundation Grant No. PHY-1506182 to the University of North Carolina, Chapel Hill
Alignment of atmospheric mineral dust due to electric field
Ulanowski, Z.; Bailey, J.; Lucas, P. W.; Hough, J. H.; Hirst, E.
2007-12-01
Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction indicating the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here. It is also possible that the alignment and the electric field modify dust transport.
Biological effects due to weak magnetic field on plants
Belyavskaya, N. A.
2004-01-01
Throughout the evolution process, Earth's magnetic field (MF, about 50 μT) was a natural component of the environment for living organisms. Biological objects, flying on planned long-term interplanetary missions, would experience much weaker magnetic fields, since galactic MF is known to be 0.1-1 nT. However, the role of weak magnetic fields and their influence on functioning of biological organisms are still insufficiently understood, and is actively studied. Numerous experiments with seedlings of different plant species placed in weak magnetic field have shown that the growth of their primary roots is inhibited during early germination stages in comparison with control. The proliferative activity and cell reproduction in meristem of plant roots are reduced in weak magnetic field. Cell reproductive cycle slows down due to the expansion of G 1 phase in many plant species (and of G 2 phase in flax and lentil roots), while other phases of cell cycle remain relatively stabile. In plant cells exposed to weak magnetic field, the functional activity of genome at early pre-replicate period is shown to decrease. Weak magnetic field causes intensification of protein synthesis and disintegration in plant roots. At ultrastructural level, changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells were observed in pea roots exposed to weak magnetic field. Mitochondria were found to be very sensitive to weak magnetic field: their size and relative volume in cells increase, matrix becomes electron-transparent, and cristae reduce. Cytochemical studies indicate that cells of plant roots exposed to weak magnetic field show Ca 2+ over-saturation in all organelles and in cytoplasm unlike the control ones. The data presented suggest that prolonged exposures of plants to weak
On the vertigo due to static magnetic fields.
Mian, Omar S; Li, Yan; Antunes, Andre; Glover, Paul M; Day, Brian L
2013-01-01
Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC) cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25) deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence) with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05). Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient vestibular stimulation
On the vertigo due to static magnetic fields.
Directory of Open Access Journals (Sweden)
Omar S Mian
Full Text Available Vertigo is sometimes experienced in and around MRI scanners. Mechanisms involving stimulation of the vestibular system by movement in magnetic fields or magnetic field spatial gradients have been proposed. However, it was recently shown that vestibular-dependent ocular nystagmus is evoked when stationary in homogenous static magnetic fields. The proposed mechanism involves Lorentz forces acting on endolymph to deflect semicircular canal (SCC cupulae. To investigate whether vertigo arises from a similar mechanism we recorded qualitative and quantitative aspects of vertigo and 2D eye movements from supine healthy adults (n = 25 deprived of vision while pushed into the 7T static field of an MRI scanner. Exposures were variable and included up to 135s stationary at 7T. Nystagmus was mainly horizontal, persisted during long-exposures with partial decline, and reversed upon withdrawal. The dominant vertiginous perception with the head facing up was rotation in the horizontal plane (85% incidence with a consistent direction across participants. With the head turned 90 degrees in yaw the perception did not transform into equivalent vertical plane rotation, indicating a context-dependency of the perception. During long exposures, illusory rotation lasted on average 50 s, including 42 s whilst stationary at 7T. Upon withdrawal, perception re-emerged and reversed, lasting on average 30 s. Onset fields for nystagmus and perception were significantly correlated (p<.05. Although perception did not persist as long as nystagmus, this is a known feature of continuous SSC stimulation. These observations, and others in the paper, are compatible with magnetic-field evoked-vertigo and nystagmus sharing a common mechanism. With this interpretation, response decay and reversal upon withdrawal from the field, are due to adaptation to continuous vestibular input. Although the study does not entirely exclude the possibility of mechanisms involving transient
Aguirre-Diaz, G. J.; Marti, J.
2007-05-01
A collapse caldera is a volcanic explosive structure that forms during the collapse of crustal blocks on top of a shallow magma chamber. During this collapse, a large volume of magma is evacuated, first explosively, in the form of pyroclastic fallouts and pyroclastic flows, and then effusively, as lava domes or flows after collapse. The result is a catastrophic explosive volcanic collapse that forms a depression that could end with different shapes, circular, oval, rectangular, or irregular. Three main types of collapse calderas can be defined, 1) summit caldera, 2) classic caldera, and 3) graben caldera. Summit calderas are those formed at the top of large volcanoes and are related to relatively small-volume pyroclastic products that include plinian fallouts and ignimbrites, such as Crater Lake, Las Cañadas, and Somma-Vesuvio. Classic calderas are semi-circular to irregular-shaped large structures, several km in diameter that are related to relatively large-volume pyroclastic products including pumice fallouts and widespread ignimbrites, such as Long-Valley, Campi Flegrei, and Los Humeros. Graben calderas are explosive volcano-tectonic collapse structures from which large-volume, ignimbrite-forming eruptions occurred through several vents along the graben walls and the intra-graben block faults causing the collapse of the graben or of a sector of the graben. The main products of graben calderas are surge-deposits and large-volume widespread ignimbrite sheets. Pumice fallouts are practically absent. Examples include the Sierra Madre Occidental in Mexico, La Pacana (Andes), Catalan Pyrenees, and perhaps Scafell (United Kingdom). Any of the three caldera types mentioned above could have collapsed in three different ways, 1) piston, when the collapse occurs as a single crustal block; 2) trap-door, when collapse occurs unevenly along one side while the opposite side remains with no collapse; 3) piece-meal, when collapse occurs as broken pieces of the crust on top of
Springing Response Due to Directional Wave Field Excitation
DEFF Research Database (Denmark)
Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher
2004-01-01
This paper analyses the wave-induced high-frequency bending moment response of ships, denoted springing. The aim is to predict measured severe springing responses in a large bulk carrier. It is shown that the most important springing contribution is due to the resultant second order excitation...... in multidirectional sea. The incident pressure field from the second order bidirectional wave field is derived, including the non-linear cross-coupling terms between the two wave systems (e.g. wind driven waves and swell). The resulting effect of the super-harmonic cross-coupling interaction terms on the springing...... response is discussed. An example with opposing waves is given, representing probably the 'worst' case for energy exchange between the wave systems. Theoretical predictions of standard deviation of wave- and springing-induced stress amidships are compared with full-scale measurements for a bulk carrier....
Alignment of atmospheric mineral dust due to electric field
Directory of Open Access Journals (Sweden)
Z. Ulanowski
2007-09-01
Full Text Available Optical polarimetry observations on La Palma, Canary Islands, during a Saharan dust episode show dichroic extinction consistent with the presence of vertically aligned particles in the atmosphere. Modelling of the extinction together with particle orientation indicates that the alignment could have been due to an electric field of the order of 2 kV/m. Two alternative mechanisms for the origin of the field are examined: the effect of reduced atmospheric conductivity and charging of the dust layer, the latter effect being a more likely candidate. It is concluded that partial alignment may be a common feature of Saharan dust layers. The modelling also indicates that the alignment can significantly alter dust optical depth. This "Venetian blind effect" may have decreased optical thickness in the vertical direction by as much as 10% for the case reported here.
Ortiz, Néstor; Sarbach, Olivier
2014-04-01
A spherical dust cloud which is initially at rest and which has a monotonously decaying density profile collapses and forms a shell-focusing singularity. Provided the density profile is not too flat, meaning that its second radial derivative is negative at the centre, this singularity is visible to local, and sometimes even to global observers. According to the strong cosmic censorship conjecture, such naked singularities should be unstable under generic, non-spherical perturbations of the initial data or when more realistic matter models are considered. In an attempt to gain further insight into this stability issue, in this work we initiate the analysis of a simpler but related problem. We discuss the stability of test fields propagating in the vicinity of the Cauchy horizon associated to the naked central singularity. We first study the high-frequency limit and show that the fields undergo a blueshift as they approach the Cauchy horizon. However, in contrast to what occurs at inner horizons of black holes, we show that the blueshift is uniformly bounded along incoming and outgoing null rays. Motivated by this boundedness result, we take a step beyond the geometric optics approximation and consider the Cauchy evolution of spherically symmetric test scalar fields. We prove that under reasonable conditions on the initial data a suitable rescaled field can be continuously extended to the Cauchy horizon. In particular, this result implies that the physical field is everywhere finite on the Cauchy horizon away from the central singularity.
A scenario for critical scalar field collapse in $AdS_3$
Clément, Gérard
2014-01-01
We present a family of exact solutions, depending on two parameters $\\alpha$ and $b$ (related to the scalar field strength), to the three-dimensional Einstein-scalar field equations with negative cosmological constant $\\Lambda$. For $b=0$ these solutions reduce to the static BTZ family of vacuum solutions, with mass $M = -\\alpha$. For $b\
Nakonieczna, Anna
2016-01-01
Investigating the dynamics of gravitational systems, especially in the regime of quantum gravity, poses a problem of measuring time during the evolution. One of the approaches to this issue is using one of the internal degrees of freedom as a time variable. The objective of our research was to check whether a scalar field or any other dynamical quantity being a part of a coupled multi-component matter-geometry system can be treated as a `clock' during its evolution. We investigated a collapse of a self-gravitating electrically charged scalar field in the Einstein and Brans-Dicke theories using the 2+2 formalism. Our findings concentrated on the spacetime region of high curvature existing in the vicinity of the emerging singularity, which is essential for the quantum gravity applications. We investigated several values of the Brans-Dicke coupling constant and the coupling between the Brans-Dicke and the electrically charged scalar fields. It turned out that both evolving scalar fields and a function which meas...
Energy Technology Data Exchange (ETDEWEB)
Graf von der Pahlen, J.; Tsiklauri, D. [School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)
2014-01-15
Works of Tsiklauri and Haruki [Phys. Plasmas 15, 102902 (2008); 14, 112905 (2007)] are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection during collisionless, stressed X-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. For zero guide-field, cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved, respectively. It is found that reconnection rates, out-of-plane currents and density in the X-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case it is shown that an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current changes similarly with increasing guide-field; however for low guide-fields the reconnection current increases, giving an optimal value for the guide-field between 0.1 and 0.2 times the in-plane field in both cases. Also, in the open boundary case, it is found that for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of decoupled particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the X-point are found, ranging in frequency from approximately 1 to 2 ω{sub pe} and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern in the simulation domain. Mapping the out-of-plane electric field along the central lines of the domain over time and applying a 2D Fourier transform reveal that
Directory of Open Access Journals (Sweden)
Tamer Dawod
2015-01-01
Full Text Available Purpose: This work investigated the accuracy of prowess treatment planning system (TPS in dose calculation in a homogenous phantom for symmetric and asymmetric field sizes using collapse cone convolution / superposition algorithm (CCCS. Methods: The measurements were carried out at source-to-surface distance (SSD set to 100 cm for 6 and 10 MV photon beams. Data for a full set of measurements for symmetric fields and asymmetric fields, including inplane and crossplane profiles at various depths and percentage depth doses (PDDs were obtained during measurements on the linear accelerator.Results: The results showed that the asymmetric collimation dose lead to significant errors (up to approximately 7% in dose calculations if changes in primary beam intensity and beam quality. It is obvious that the most difference in the isodose curves was found in buildup and the penumbra regions. Conclusion: The results showed that the dose calculation using Prowess TPS based on CCCS algorithm is generally in excellent agreement with measurements.
Magnetic Field Fluctuations Due to Diel Vertical Migrations of Zooplankton
Dean, C.; Soloviev, A.
2016-12-01
Dean et al. (2016) have indicated that at high zooplankton concentrations, diel vertical migrations (DVM) cause velocity fluctuations and a respective increase of the dissipation rate of turbulent kinetic energy (TKE). In this work, we used a 3D non-hydrostatic computational fluid dynamics model with Lagrangian particle injections (a proxy for migrating organisms) via a discrete phase model to simulate the effect of turbulence generation by DVM. We tested a range of organism concentrations from 1000 to 10,000 organisms/m3. The simulation at an extreme concentration of zooplankton showed an increase in dissipation rate of TKE by two to three orders of magnitude during DVM over background turbulence, 10-8 W kg-1. At lower concentrations (migration times averaged over 11 months of observations (though interpretation of the current velocity measurements is complicated by physical factors such as tides, Florida current meandering, etc.). The deviations in the velocity profiles can in principle be explained by the increase in turbulent mixing during vertical migration periods. In addition, seawater is an electric conductor. Water movements in the magnetic field of the Earth induce electrical currents and, as a result, secondary magnetic fluctuations. The velocity fluctuations produced by DVM are, therefore, supposed to have a magnetic signature. In order to test this hypothesis, we have applied a magnetohydrodnamics add-on module to the hydrodynamic model. The model results indicate that DVM of an extreme concentration of zooplankton may create fluctuations of the total magnetic field on the order of 1 nT, which are comparable to the magnetic signature of surface or internal waves. These are relatively small magnetic fluctuations, compared to the Earth's magnetic field, but are well within the range of modern magnetometers. Dean, C., A. Soloviev, A. Hirons, T. Frank, J. Wood, 2016: Biomixing due to diel vertical migrations of zooplankton. Ocean Modelling 98, 51-64.
Biological effects due to weak magnetic fields on plants
Belyavskaya, N.
In the evolution process, living organisms have experienced the action of the Earth's magnetic field (MF) that is a natural component of our environment. It is known that a galactic MF induction does not exceed 0.1 nT, since investigations of weak magnetic field (WMF) effects on biological systems have attracted attention of biologists due to planning long-term space flights to other planets where the magnetizing force is near 10-5 Oe. However, the role of WMF and its influence on organisms' functioning are still insufficiently investigated. A large number of experiments with seedlings of different plant species placed in WMF has found that the growth of their primary roots is inhibited during the early terms of germination in comparison with control. The proliferation activity and cell reproduction are reduced in meristem of plant roots under WMF application. The prolongation of total cell reproductive cycle is registered due to the expansion of G phase in1 different plant species as well as of G phase in flax and lentil roots along with2 relative stability of time parameters of other phases of cell cycle. In plant cells exposed to WMF, the decrease in functional activity of genome at early prereplicate period is shown. WMF causes the intensification in the processes of proteins' synthesis and break-up in plant roots. Qualitative and quantitative changes in protein spectrum in growing and differentiated cells of plant roots exposed to WMF are revealed. At ultrastructural level, there are observed such ultrastructural peculiarities as changes in distribution of condensed chromatin and nucleolus compactization in nuclei, noticeable accumulation of lipid bodies, development of a lytic compartment (vacuoles, cytosegresomes and paramural bodies), and reduction of phytoferritin in plastids in meristem cells of pea roots exposed to WMF. Mitochondria are the most sensitive organelle to WMF application: their size and relative volume in cells increase, matrix is electron
Energy Technology Data Exchange (ETDEWEB)
Katsuno, Takashi, E-mail: e1417@mosk.tytlabs.co.jp; Ishikawa, Tsuyoshi; Ueda, Hiroyuki; Uesugi, Tsutomu [Toyota Central R and D Laboratories Inc., Nagakute, Aichi 480-1192 (Japan); Manaka, Takaaki; Iwamoto, Mitsumasa [Department of Physical Electronics, Tokyo Institute of Technology, Meguro, Tokyo 152-8552 (Japan)
2014-06-23
Two-dimensional current collapse imaging of a Schottky gate AlGaN/GaN high electron mobility transistor device was achieved by optical electric field-induced second-harmonic generation (EFISHG) measurements. EFISHG measurements can detect the electric field produced by carriers trapped in the on-state of the device, which leads to current collapse. Immediately after (e.g., 1, 100, or 800 μs) the completion of drain-stress voltage (200 V) in the off-state, the second-harmonic (SH) signals appeared within 2 μm from the gate edge on the drain electrode. The SH signal intensity became weak with time, which suggests that the trapped carriers are emitted from the trap sites. The SH signal location supports the well-known virtual gate model for current collapse.
Castellanza, R.; Orlandi, G. M.; di Prisco, C.; Frigerio, G.; Flessati, L.; Fernandez Merodo, J. A.; Agliardi, F.; Grisi, S.; Crosta, G. B.
2015-09-01
After the abandonment occurred in the '70s, the mining system (rooms and pillars) located in S. Lazzaro di Savena (BO, Italy), grown on three levels with the method rooms and pillars, has been progressively more and more affected by degradation processes due to water infiltration. The mine is located underneath a residential area causing significant concern to the local municipality. On the basis of in situ surveys, laboratory and in situ geomechanical tests, some critical scenarios were adopted in the analyses to simulate the progressive collapse of pillars and of roofs in the most critical sectors of the mine. A first set of numerical analyses using 3D geotechnical FEM codes were performed to predict the extension of the subsidence area and its interaction with buildings. Secondly 3D CFD analyses were used to evaluated the amount of water that could be eventually ejected outside the mine and eventually flooding the downstream village. The predicted extension of the subsidence area together with the predicted amount of the ejected water have been used to design possible remedial measurements.
Weak field collapse in AdS: introducing a charge density
Energy Technology Data Exchange (ETDEWEB)
Caceres, Elena [Facultad de Ciencias, Universidad de Colima,Bernal Diaz del Castillo 340, Colima (Mexico); Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin,2515 Speedway Stop C1608, Austin, TX 78712 (United States); Kundu, Arnab [Department de Física Fondamental & Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Saha Institute of Nuclear Physics,1/AF Bidhannagar, Kolkata 700064 (India); Pedraza, Juan F. [Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin,2515 Speedway Stop C1608, Austin, TX 78712 (United States); Perimeter Institute for Theoretical Physics,31 Caroline Street North Waterloo, Ontario N2L 2Y5 (Canada); Yang, Di-Lun [Crete Center for Theoretical Physics, Department of physics, University of Crete,71003, Heraklion (Greece); Department of physics, Chung-Yuan Christian University,Chung Pei Road, Chung-Li 32023, Taiwan (China)
2015-06-17
We study the effect of a non-vanishing chemical potential on the thermalization time of a strongly coupled large N{sub c} gauge theory in (2+1)-dimensions, using a specific bottom-up gravity model in asymptotically AdS space. We first construct a perturbative solution to the gravity-equations, which dynamically interpolates between two AdS black hole backgrounds with different temperatures and chemical potentials, in a perturbative expansion of a bulk neutral scalar field. In the dual field theory, this corresponds to a quench dynamics by a marginal operator, where the corresponding coupling serves as the small parameter in which the perturbation is carried out. The evolution of non-local observables, such as the entanglement entropy, suggests that thermalization time decreases with increasing chemical potential. We also comment on the validity of our perturbative analysis.
Weak Field Collapse in AdS: Introducing a Charge Density
Caceres, Elena; Pedraza, Juan F; Yang, Di-Lun
2014-01-01
We study the effect of a non-vanishing chemical potential on the thermalization time of a strongly coupled large Nc gauge theory in (2+1)-dimensions, using a specific bottom-up gravity model in asymptotically AdS space. We first construct a perturbative solution to the gravity-equations, which dynamically interpolates between two AdS black hole backgrounds with different temperatures and chemical potentials, in a perturbative expansion of a bulk neutral scalar field. In the dual field theory, this corresponds to a quench dynamics by a marginal operator, where the corresponding coupling serves as the small parameter in which the perturbation is carried out. The evolution of non-local observables, such as the entanglement entropy, suggests that thermalization time decreases with increasing chemical potential. We also comment on the validity of our perturbative analysis.
Nakonieczna, Anna
2015-01-01
There does not exist a notion of time which could be transferred straightforwardly from classical to quantum gravity. For this reason, a method of time quantification which would be appropriate for gravity quantization is being sought. One of the existing proposals is using the evolving matter as an intrinsic `clock' while investigating the dynamics of gravitational systems. The objective of our research was to check whether scalar fields can serve as time variables during a dynamical evolution of a coupled multi-component matter-geometry system. For this purpose, we investigated a gravitational collapse of a self-interacting complex and real scalar fields in the Brans-Dicke theory using the 2+2 spacetime foliation. We focused mainly on the region of high curvature appearing nearby the emerging singularity, which is essential from the perspective of quantum gravity. We investigated several formulations of the theory for various values of the Brans-Dicke coupling constant and the coupling between the Brans-Dic...
Ortiz, Néstor
2013-01-01
A spherical dust cloud which is initially at rest and which has a monotonously decaying density profile collapses and forms a shell-focussing singularity. Provided the density profile is not too flat, meaning that its second radial derivative is negative at the center, this singularity is visible to local, and sometimes even to global observers. According to the strong cosmic censorship conjecture, such naked singularities should be unstable under generic, nonspherical perturbations of the initial data or when more realistic matter models are considered. In an attempt to gain some understanding about this stability issue, in this work we initiate the analysis of a simpler but related problem. We discuss the stability of test fields propagating in the vicinity of the Cauchy horizon associated to the naked central singularity. We first study the high-frequency limit and show that the fields undergo a blueshift as they approach the Cauchy horizon. However, in contrast to what occurs at inner horizons of black ho...
Tehranirad, Babak; Harris, Jeffrey C.; Grilli, Annette R.; Grilli, Stephan T.; Abadie, Stéphane; Kirby, James T.; Shi, Fengyan
2015-12-01
In their pioneering work, Ward and Day suggested that a large scale flank collapse of the Cumbre Vieja Volcano (CVV) on La Palma (Canary Islands) could trigger a mega-tsunami throughout the North Atlantic Ocean basin, causing major coastal impact in the far-field. While more recent studies indicate that near-field waves from such a collapse would be more moderate than originally predicted by Ward and Day [Løvholt et al. (J Geophy Res 113:C09026, 2008); Abadie et al. (J Geophy Res 117:C05030, 2012)], these would still be formidable and devastate the Canary Island, while causing major impact in the far-field at many locations along the western European, African, and the US east coasts. Abadie et al. (J Geophy Res 117:C05030, 2012) simulated tsunami generation and near-field tsunami impact from a few CVV subaerial slide scenarios, with volumes ranging from 20 to 450 km^3; the latter representing the most extreme scenario proposed by Ward and Day. They modeled tsunami generation, i.e., the tsunami source, using THETIS, a 3D Navier-Stokes (NS) multi-fluid VOF model, in which slide material was considered as a nearly inviscid heavy fluid. Near-field tsunami impact was then simulated for each source using FUNWAVE-TVD, a dispersive and fully nonlinear long wave Boussinesq model [ Shi et al. (Ocean Modell 43-44:36-51, 2012); Kirby et al. (Ocean Modeling, 62:39-55, 2013)]. Here, using FUNWAVE-TVD for a series of nested grids of increasingly fine resolution, we model and analyze far-field tsunami impact from two of Abadie et al.'s extreme CVV flank collapse scenarios: (i) that deemed the most "credible worst case scenario" based on a slope stability analysis, with a 80 km^3 volume; and (ii) the most extreme scenario, similar to Ward and Day's, with a 450 km^3 volume. Simulations are performed using a one-way coupling scheme in between two given levels of nested grids. Based on the simulation results, the overall tsunami impact is first assessed in terms of maximum surface
A collapsed lung happens when air enters the pleural space, the area between the lung and the chest wall. If it is a ... is called pneumothorax. If only part of the lung is affected, it is called atelectasis. Causes of ...
Seismic Progressive Collapse: Qualitative Point of View
Directory of Open Access Journals (Sweden)
H. Wibowo
2009-01-01
Full Text Available Progressive collapse is a catastrophic structural phenomenon that can occur because of human-made and natural hazards. In progressive collapse mechanism, a single local failure may cause a significant deformation which then may lead to collapse of a structure. The current practices in progressive collapse analysis and design method generally focus on preventing progressive collapse due to abnormal gravity and blast loads. Progressive collapse behaviour of structures due to earthquake loads has not received as much attention. This paper presents a brief overview of the current state-of-knowledge, insights, and issues related to progressive collapse behaviour of structures caused by earthquake loading.
Students drop out of STEM fields due to poor grades
Balcerak, Ernie
2013-09-01
College students planning to major in science, technology, engineering, and mathematics (STEM) fields often drop out of those fields because of poorer than expected grades, according to a recent study. Conducted by Ralph Stinebrickner of Berea College in Kentucky and Todd Stinebrickner of the University of Western Ontario, the study is a National Bureau of Economic Research working paper published in June 2013.
Measuring Oscillatory Velocity Fields Due to Swimming Algae
Guasto, Jeffrey S; Gollub, J P
2010-01-01
In this fluid dynamics video, we present the first time-resolved measurements of the oscillatory velocity field induced by swimming unicellular microorganisms. Confinement of the green alga C. reinhardtii in stabilized thin liquid films allows simultaneous tracking of cells and tracer particles. The measured velocity field reveals complex time-dependent flow structures, and scales inversely with distance. The instantaneous mechanical power generated by the cells is measured from the velocity fields and peaks at 15 fW. The dissipation per cycle is more than four times what steady swimming would require.
Optical wavefront distortion due to supersonic flow fields
Institute of Scientific and Technical Information of China (English)
CHEN ZhiQiang; FU Song
2009-01-01
The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.
The Numerical Analysis of Transmission Tower-Line System Wind-Induced Collapsed Performance
Zhuoqun Zhang; Hongnan Li; Gang Li; Wenming Wang; Li Tian
2013-01-01
The numerical simulation of transmission tower-line systems' progressive collapse performance is considered as a major research hotspot and significant project, due to the increasing number of wind-induced collapse accidents recently. In this study, the finite element models for single tower and transmission tower-line system were established to simulate wind-induced progressive collapse by birth-to-death element technique in ABAQUS/Explicit. The wind field, based on the Kaimal fluctuating wi...
Cylindrical Collapse and Gravitational Waves
Herrera, L
2005-01-01
We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non zero on the surface of the cylinder and proportional to the time dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation - though non-gravitational - in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.
Brown, Justina L.; Battino, Rubin
1994-01-01
Describes variations on atmospheric pressure demonstrations and some systematic studies. Demonstrations use steam, generated either externally or internally to the container, to sweep out residual air. Preferred vessels collapsed slowly. Demonstrations use plastic milk jugs set in layers of aluminum foil, pop bottles immersed in 4-L beakers…
Cosmological Electromagnetic Fields due to Gravitational Wave Perturbations
Marklund, M; Brodin, G; Marklund, Mattias; Dunsby, Peter K. S.; Brodin, Gert
2000-01-01
We consider the dynamics of electromagnetic fields in an almost-Friedmann-Robertson-Walker universe using the covariant and gauge-invariant approach of Ellis and Bruni. Focusing on the situation where deviations from the background model are generated by tensor perturbations only, we demonstrate that the coupling between gravitational waves and a weak magnetic test field can generate electromagnetic waves. We show that this coupling leads to an initial pulse of electromagnetic waves whose width and amplitude is determined by the wavelengths of the magnetic field and gravitational waves. A number of implications for cosmology are discussed, in particular we calculate an upper bound of the magnitude of this effect using limits on the quadrapole anisotropy of the Cosmic Microwave Background.
Field enhancement at metallic interfaces due to quantum confinement
DEFF Research Database (Denmark)
Öztürk, Fatih; Xiao, Sanshui; Yan, Min;
2011-01-01
on which the dielectric function vanishes. This, in turn, leads to an enhancement of the normal component of the total electric field. We study this effect for a planar metal surface, with the inhomogeneous electron density accounted for by a Jellium model. We also illustrate the effect for equilateral...... triangular nanoislands via numerical solutions of the appropriate Maxwell equations, and show that the field enhancement is several orders of magnitude larger than what the conventional theory predicts. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3574159]...
Field enhancement at metallic interfaces due to quantum confinement
DEFF Research Database (Denmark)
Öztürk, Fatih; Xiao, Sanshui; Yan, Min
2011-01-01
triangular nanoislands via numerical solutions of the appropriate Maxwell equations, and show that the field enhancement is several orders of magnitude larger than what the conventional theory predicts. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3574159]......We point out an apparently overlooked consequence of the boundary conditions obeyed by the electric displacement vector at air-metal interfaces: the continuity of the normal component combined with the quantum mechanical penetration of the electron gas in the air implies the existence of a surface...... on which the dielectric function vanishes. This, in turn, leads to an enhancement of the normal component of the total electric field. We study this effect for a planar metal surface, with the inhomogeneous electron density accounted for by a Jellium model. We also illustrate the effect for equilateral...
Electromagnetic fields due to dipole antennas over stratified anisotropic media.
Kong, J. A.
1972-01-01
Solutions to the problem of radiation of dipole antennas in the presence of a stratified anisotropic media are facilitated by decomposing a general wave field into transverse magnetic (TM) and transverse electric (TE) modes. Employing the propagation matrices, wave amplitudes in any region are related to those in any other regions. The reflection coefficients, which embed all the information about the geometrical configuration and the physical constituents of the medium, are obtained in closed form. In view of the general formulation, various special cases are discussed.
DEFF Research Database (Denmark)
Allen, Nacho Ruiz
2015-01-01
Currently, when the socio-economic circumstances seem to announce another change of cultural paradigm for the 21st century, the interest in the urban fact seems to have been renewed in architecture. However, this is no longer focused on models of growth and efficiency, as happened in the 70s....... Nowadays the situation is quite different. The enthusiasm for the economic growth which had characterized late capitalism and much of the postmodern cultural production has disappeared, and has given place to some global unease on a possible system collapse. Once the economy does not grow, but threatens...... with its imminent breakdown, the architectural interests have shifted to urban environments like Tokyo, Detroit, Lagos or Rio de Janeiro; places that demonstrate, somehow, an urban culture of collapse....
Gosain, S
2012-01-01
We use high-resolution images of the sun obtained by the SDO/AIA instrument to study the evolution of the coronal loops in a flaring solar active region. During 15 February 2011 a X-2.2 class flare occurred in NOAA 11158, a $\\beta\\gamma\\delta$ sunspot complex. We identify three distinct phases of the coronal loop dynamics during this event: (i) {\\it Slow rise phase}: slow rising motion of the loop-tops prior to the flare in response to slow rise of the underlying flux rope, (ii) {\\it Collapse phase}: sudden contraction of the loop-tops with lower loops collapsing earlier than the higher loops, and (iii) {\\it Oscillation phase}: the loops exhibit global kink oscillations after the collapse phase at different periods, with period decreasing with decreasing height of the loops. The period of these loop oscillations is used to estimate the field strength in the coronal loops of different loop lengths in this active region. Further, we also use SDO/HMI observations to study the photospheric changes close to the po...
Energy Technology Data Exchange (ETDEWEB)
Mukherji, Debashish; Stuehn, Torsten; Kremer, Kurt [Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Marques, Carlos M. [Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz (Germany); Institut Charles Sadron, Université de Strasbourg, CNRS, Strasbourg (France)
2015-03-21
Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.
Mukherji, Debashish; Marques, Carlos M.; Stuehn, Torsten; Kremer, Kurt
2015-03-01
Smart polymers are a modern class of polymeric materials that often exhibit unpredictable behavior in mixtures of solvents. One such phenomenon is co-non-solvency. Co-non-solvency occurs when two (perfectly) miscible and competing good solvents, for a given polymer, are mixed together. As a result, the same polymer collapses into a compact globule within intermediate mixing ratios. More interestingly, polymer collapses when the solvent quality remains good and even gets increasingly better by the addition of the better cosolvent. This is a puzzling phenomenon that is driven by strong local concentration fluctuations. Because of the discrete particle based nature of the interactions, Flory-Huggins type mean field arguments become unsuitable. In this work, we extend the analysis of the co-non-solvency effect presented earlier [D. Mukherji et al., Nat. Commun. 5, 4882 (2014)]. We explain why co-non-solvency is a generic phenomenon, which can only be understood by the thermodynamic treatment of the competitive displacement of (co)solvent components. This competition can result in a polymer collapse upon improvement of the solvent quality. Specific chemical details are not required to understand these complex conformational transitions. Therefore, a broad range of polymers are expected to exhibit similar reentrant coil-globule-coil transitions in competing good solvents.
Modeling Core Collapse Supernovae
Mezzacappa, Anthony
2017-01-01
Core collapse supernovae, or the death throes of massive stars, are general relativistic, neutrino-magneto-hydrodynamic events. The core collapse supernova mechanism is still not in hand, though key components have been illuminated, and the potential for multiple mechanisms for different progenitors exists. Core collapse supernovae are the single most important source of elements in the Universe, and serve other critical roles in galactic chemical and thermal evolution, the birth of neutron stars, pulsars, and stellar mass black holes, the production of a subclass of gamma-ray bursts, and as potential cosmic laboratories for fundamental nuclear and particle physics. Given this, the so called ``supernova problem'' is one of the most important unsolved problems in astrophysics. It has been fifty years since the first numerical simulations of core collapse supernovae were performed. Progress in the past decade, and especially within the past five years, has been exponential, yet much work remains. Spherically symmetric simulations over nearly four decades laid the foundation for this progress. Two-dimensional modeling that assumes axial symmetry is maturing. And three-dimensional modeling, while in its infancy, has begun in earnest. I will present some of the recent work from the ``Oak Ridge'' group, and will discuss this work in the context of the broader work by other researchers in the field. I will then point to future requirements and challenges. Connections with other experimental, observational, and theoretical efforts will be discussed, as well.
Asubar, Joel T.; Yoshida, Satoshi; Tokuda, Hirokuni; Kuzuhara, Masaaki
2016-04-01
We report on the highly reduced current collapse in AlGaN/GaN high-electron-mobility transistors (HEMTs) by combined application of pre-passivation oxygen (O2) plasma treatment and gate field plate (FP) structures schemes. Four different devices were fabricated in this work: (1) conventional HEMT as reference device, (2) field-plated HEMT, (3) O2 plasma-treated HEMT, (4) both field-plated and O2 plasma-treated HEMT. Analysis of dependence of normalized dynamic R on (NDR) on gate pulse on-time (t on) revealed that gate-FP reduces the emission time constant (τ i ) of trapped electrons while O2-plasma treatment decreases the density of traps. For all measurement conditions, the device with both FP and O2 plasma treatment exhibited the least NDR compared to devices with either FP or O2 plasma treatment only, demonstrating for the first time the compatibility of both O2 plasma treatment and FP schemes in mitigating current collapse.
Inhomogeneous electromagnetic gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Stein-Schabes, J.A.
1985-04-15
The collapse of an inhomogeneous dust cloud in the presence of an electromagnetic field is investigated in detail. The possibility of a naked singularity arising is studied using some known solutions for a spherical charged inhomogeneous dust cloud. It is found that locally naked singularities may develop when the arbitrary functions in the solution are chosen in a special way, but that a global naked singularity will not form. Also the role of the electromagnetic pressure is discussed.
The entropy of Garfinkle-Horne dilaton black hole due to arbitrary spin fields
Institute of Scientific and Technical Information of China (English)
SHEN; Yougen(沈有根)
2002-01-01
Using the membrane model which is based on brick wall model, we calculated the free energy and entropy of Garfinkle-Horne dilatonic black hole due to arbitrary spin fields. The result shows that the entropy of scalar field and the entropy of Fermionic field have similar formulas. There is only a coefficient between them.
DEFF Research Database (Denmark)
Katika, Konstantina; Addassi, Mouadh; Alam, Mohammad Monzurul
2015-01-01
The effects of divalent ions on the elasticity and the pore collapse of chalk were studied through rock-mechanical testing and low-field Nuclear Magnetic Resonance (NMR) measurements. Chalk samples saturated with deionized water and brines containing sodium, magnesium, calcium and sulfate ions were...... subjected to petrophysical experiments, rock mechanical testing and low-field NMR spectroscopy. Petrophysical characterization involving ultrasonic elastic wave velocities in unconfined conditions, porosity and permeability measurements, specific surface and carbonate content determination and backscatter...... electron microscopy of the materials were conducted prior to the experiments. The iso-frame model was used to predict the bulk moduli in dry and saturated conditions from the compressional modulus of water-saturated rocks. The effective stress coefficient, as introduced by Biot, was also determined from...
Evaluation of magnetic field due to ferromagnetic vacuum vessel in Tokamak
Energy Technology Data Exchange (ETDEWEB)
Nakayama, Takeshi; Abe, Mitsushi; Tadokoro, Takahiro [Hitachi Ltd., Hitachi, Ibaraki (Japan). Power and Industrial Systems R and D Div.; Miura, Yukitoshi; Suzuki, Norio; Sato, Masayasu; Sengoku, Seio
1998-03-01
We evaluated magnetic fields due to the ferromagnetic vacuum vessel (FVV) in the Hitachi Tokamak HT-2 experimentally and computationally, the results were extrapolated to the JFT-2M and ITER. The maximum amount of local poloidal field on the magnetic axis induced by the FVV port was about 5 mT in the HT-2. This is the allowable amount of the field to discharge plasma in the HT-2. The proportion of external poloidal field shielded by FVV is in inverse proportion to external toroidal field. The stronger the field induced by FVV, the smaller the distance between plasma center and vacuum vessel wall. The delay time of poloidal field penetration due to the FVV is small, as long as the toroidal field is supplied. (author)
Hassani Nadiki, M.; Tavassoly, M. K.
2016-12-01
In this paper the interaction of a three-level atom in V-configuration with a two-mode quantized field in cavity optomechanics is studied. To achieve the purpose, we first deduce the effective Hamiltonian and evaluate the explicit time-dependent form of the state vector of the whole system by choosing special initial conditions for atom, field and the oscillatory mirror. Interestingly, we can obtain the time evolution of atomic linear entropy, population inversion, quantum statistics and squeezing, both analytically and numerically. The results show that the entanglement between the atom and the subsystem of field and mirror, and all above-mentioned physical quantities can be appropriately controlled by the initial atom-field state condition, the parameters of cavity optomechanics as well as atom-field coupling strengths. In particular, the appearance of collapse-revival phenomenon in the entanglement and quantum photon statistics, also the full sub-Poissonian statistics in the two modes of field as well as in the mechanical mode of optomechanical system are noticeable features of the work.
Deformed neutron stars due to strong magnetic field in terms of relativistic mean field theories
Yanase, Kota; Yoshinaga, Naotaka
2014-09-01
Some observations suggest that magnetic field intensity of neutron stars that have particularly strong magnetic field, magnetars, reaches values up to 1014-15G. It is expected that there exists more strong magnetic field of several orders of magnitude in the interior of such stars. Neutron star matter is so affected by magnetic fields caused by intrinsic magnetic moments and electric charges of baryons that masses of neutron stars calculated by using Tolman-Oppenheimer-Volkoff equation is therefore modified. We calculate equation of state (EOS) in density-dependent magnetic field by using sigma-omega-rho model that can reproduce properties of stable nuclear matter in laboratory Furthermore we calculate modified masses of deformed neutron stars.
The Direct Collapse of Supermassive Black Hole Seeds
Regan, John A.; Johansson, Peter H.; Wise, John H.
2016-10-01
The direct collapse model of supermassive black hole seed formation requires that thegas cools predominantly via atomic hydrogen. To this end we simulate the effect of ananisotropic radiation source on the collapse of a halo at high redshift. The radiationsource is placed at a distance of 3 kpc (physical) from the collapsing object and is setto emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiationemitted from the high redshift source is followed self-consistently using ray tracingtechniques. Due to self-shielding, a small amount of H2 is able to form at the verycenter of the collapsing halo even under very strong LW radiation. Furthermore, we find thata radiation source, emitting radiation field case,in terms of H2 fraction at an equivalent radius. These differences will significantly effectthe dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, thefinal mass of the collapsing object is found to be M ~ 105 M⊙. This is consistentwith predictions for the formation of a supermassive star or quasi-star leading to asupermassive black hole.
Nanoscale Heat Transfer Due to Near Field Radiation and Nanofluidic Flows
2015-07-21
AFRL-OSR-VA-TR-2015-0205 Nanoscale heat transfer due to near field radiation and nanofluidic flows Peter Taborek UNIVERSITY OF CALIFORNIA IRVINE...TITLE AND SUBTITLE Nanoscale heat transfer due to near field radiation and nanofluidic flows 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0065...liquid flows through the pipe would spontaneously form a liquid/vapor interface either inside the pie or near the exit. We developed a model which
Collapse of Electrostatic Waves in Magnetoplasmas
DEFF Research Database (Denmark)
Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens
1984-01-01
The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....
Pull-in control due to Casimir forces using external magnetic fields
Esquivel-Sirvent, R; Cocoletzi, G H
2009-01-01
We present a theoretical calculation of the pull-in control in capacitive micro switches actuated by Casimir forces, using external magnetic fields. The external magnetic fields induces an optical anisotropy due to the excitation of magneto plasmons, that reduces the Casimir force. The calculations are performed in the Voigt configuration, and the results show that as the magnetic field increases the system becomes more stable. The detachment length for a cantilever is also calculated for a cantilever, showing that it increases with increasing magnetic field. At the pull-in separation, the stiffness of the system decreases with increasing magnetic field.
Mode-Coupling in Realistic Rotating Gravitational Collapse
Hod, S
2000-01-01
We analyze the mode-coupling phenomena in realistic rotating gravitational collapse. Physically, this phenomena is caused by the dragging of reference frames, due to the black-hole (or star's) rotation. It is shown that different modes become coupled during the rotating collapse. As a consequence, the asymptotic late-time tails are dominated by modes which, in general, have an angular distribution different from the original one. We show that a rotating Kerr black hole becomes ``bald'' slower than a spherically-symmetric Schwarzschild black hole. This paper considers gravitational, electromagnetic and neutrino fields propagating on a Kerr background.
Collapsing granular suspensions
Kadau, D.; Andrade Jr, J. S.; Herrmann, H. J.
2009-01-01
A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with real data obtained from in situ measurements performed with a natural collapsing/suspension soil. We show that the shear strength behavior of our collapsing suspension/soil model is very similar to the behavior of this collapsing suspension soil, for...
Backreaction of Hawking radiation on a gravitationally collapsing star I: Black holes?
Directory of Open Access Journals (Sweden)
Laura Mersini-Houghton
2014-11-01
Full Text Available Particle creation leading to Hawking radiation is produced by the changing gravitational field of the collapsing star. The two main initial conditions in the far past placed on the quantum field from which particles arise, are the Hartle–Hawking vacuum and the Unruh vacuum. The former leads to a time-symmetric thermal bath of radiation, while the latter to a flux of radiation coming out of the collapsing star. The energy of Hawking radiation in the interior of the collapsing star is negative and equal in magnitude to its value at future infinity. This work investigates the backreaction of Hawking radiation on the interior of a gravitationally collapsing star, in a Hartle–Hawking initial vacuum. It shows that due to the negative energy Hawking radiation in the interior, the collapse of the star stops at a finite radius, before the singularity and the event horizon of a black hole have a chance to form. That is, the star bounces instead of collapsing to a black hole. A trapped surface near the last stage of the star's collapse to its minimum size may still exist temporarily. Its formation depends on the details of collapse. Results for the case of Hawking flux of radiation with the Unruh initial state, will be given in a companion paper II.
Gravitational collapse and naked singularities
Indian Academy of Sciences (India)
Tomohiro Harada
2004-10-01
Gravitational collapse is one of the most striking phenomena in gravitational physics. The cosmic censorship conjecture has provided strong motivation for research in this field. In the absence of a general proof for censorship, many examples have been proposed, in which naked singularity is the outcome of gravitational collapse. Recent developments have revealed that there are examples of naked singularity formation in the collapse of physically reasonable matter fields, although the stability of these examples is still uncertain. We propose the concept of `effective naked singularities', which will be quite helpful because general relativity has limitation in its application at the high-energy end. The appearance of naked singularities is not detestable but can open a window for the new physics of strongly curved space-times.
Endobronchial Cartilage Rupture: A Rare Cause of Lobar Collapse
Siddiqui, Nauman; Javaid, Toseef
2016-01-01
Endobronchial cartilage rupture is a rare clinical condition, which can present in patients with severe emphysema with sudden onset shortness of breath. We present a case of a 62-year-old male who presented to our emergency department with sudden onset shortness of breath. Chest X-ray showed lung hyperinflation and a right lung field vague small density. Chest Computed Tomography confirmed the presence of right middle lobe collapse. Bronchoscopy revealed partial right middle lobe atelectasis and an endobronchial cartilage rupture. Endobronchial cartilage rupture is a rare condition that can present as sudden onset shortness of breath due to lobar collapse in patients with emphysema and can be triggered by cough. Bronchoscopic findings include finding a collapsed lung lobe and a visible ruptured endobronchial cartilage. A high index of suspicion, chest imaging, and early bronchoscopy can aid in the diagnosis and help prevent complications. PMID:27525149
On the Lightning Electromagnetic Fields due to Channel with Variable Return Stroke Velocity
Directory of Open Access Journals (Sweden)
M. Izadi
2015-01-01
Full Text Available Numerical field expressions are proposed to evaluate the electromagnetic fields due to the lightning channel with variable values of return stroke velocity. Previous calculation methods generally use an average value for the return stroke velocity along a lightning channel. The proposed method can support different velocity profiles along a lightning channel in addition to the widely used channel-base current functions and also the general form of the engineering current models directly in the time domain without the need to apply any extra conversions. Moreover, a sample of the measured lightning current is used to validate the proposed method while the velocity profile is simulated by the general velocity function. The simulated fields based on constant and variable values of velocity are compared to the corresponding measured fields. The results show that the simulated fields based on the proposed method are in good agreement with the corresponding measured fields.
3-D modelling the electric field due to ocean tidal flow and comparison with observations
DEFF Research Database (Denmark)
Kuvshinov, A.; Junge, A.; Utada, H.
2006-01-01
of the global distribution of the electric signal due to tidal ocean flow. We simulate the electric signals for two tidal constituents - lunar semidiurnal (M2) and diurnal (O1) tides. We assume a realistic Earth's conductivity model with a surface thin shell and 1-D mantle underneath. Simulations demonstrate......The tidal motion of the ocean water through the ambient magnetic field, generates secondary electric field. This motionally induced electric field can be detected in the sea or inland and has a potential for electrical soundings of the Earth. A first goal of the paper is to gain an understanding...
Induced moment due to perpendicular field cycling in trained exchange bias system
Indian Academy of Sciences (India)
Amithesh Paul; S Mattauch
2013-04-01
Depth-sensitive polarized neutron scattering in specular and off-specular mode has recently revealed that perpendicular field cycling brings about a modification in the interfacial magnetization of a trained exchange coupled interface. We show here by various model fits to our neutron reflectivity data that a restoration of the untrained state is not possible in the case of our polycrystalline multilayer specimen. This is due to the magnetic moment at the interface induced only after perpendicular field cycling, changing the initial field-cooled state.
Corson, L. T.; Tsakonas, C.; Duffy, B. R.; Mottram, N. J.; Sage, I. C.; Brown, C. V.; Wilson, S. K.
2014-12-01
We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel-plate capacitor. Using both numerical and asymptotic approaches, we find solutions to the coupled electrostatic and augmented Young-Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely, to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle, and pressure as functions of the zero-field contact angle, drop radius, surface tension, and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained.
ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS
Energy Technology Data Exchange (ETDEWEB)
Chen Xu,Charles Reece,Michael Kelley
2012-07-01
The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.
Changes in cosmic ray cut-off rigidities due to secular variations of the geomagnetic field
Directory of Open Access Journals (Sweden)
A. Bhattacharyya
Full Text Available An analytical expression is derived for the cutoff rigidity of cosmic rays arriving at a point in an arbitrary direction, when the main geomagnetic field is approximated by that of an eccentric dipole. This expression is used to determine changes in geomagnetic cutoffs due to secular variation of the geomagnetic field since 1835. Effects of westward drift of the quadrupole field and decrease in the effective dipole moment are seen in the isorigidity contours. On account of the immense computer time required to determine the cutoff rigidities more accurately using the particle trajectory tracing technique, the present formulation may be useful in estimating the transmission factor of the geomagnetic field in cosmic ray studies, modulation of cosmogenic isotope production by geomagnetic secular variation, and the contribution of geomagnetic field variation to long term changes in climate through cosmic ray related modulation of the current flow in the global electric circuit.
Melt Motion Due to Peltier Marking During Bridgman Crystal Growth with an Axial Magnetic Field
Sellers, C. C.; Walker, John S.; Szofran, Frank R.; Motakef, Shariar
2000-01-01
This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier Current may produce important mixing in the molten semiconductor.
SIGNATURES OF STAR CLUSTER FORMATION BY COLD COLLAPSE
Energy Technology Data Exchange (ETDEWEB)
Kuznetsova, Aleksandra; Hartmann, Lee [Department of Astronomy, University of Michigan, 1085 S. University Ave., Ann Arbor, MI 48109 (United States); Ballesteros-Paredes, Javier, E-mail: kuza@umich.edu [Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 72-3 (Xangari), Morelia, Michocán 58089, México (Mexico)
2015-12-10
Subvirial gravitational collapse is one mechanism by which star clusters may form. Here we investigate whether this mechanism can be inferred from observations of young clusters. To address this question, we have computed smoothed particle hydrodynamics simulations of the initial formation and evolution of a dynamically young star cluster through cold (subvirial) collapse, starting with an ellipsoidal, turbulently seeded distribution of gas, and forming sink particles representing (proto)stars. While the initial density distributions of the clouds do not have large initial mass concentrations, gravitational focusing due to the global morphology leads to cluster formation. We use the resulting structures to extract observable morphological and kinematic signatures for the case of subvirial collapse. We find that the signatures of the initial conditions can be erased rapidly as the gas and stars collapse, suggesting that kinematic observations need to be made early in cluster formation and/or at larger scales, away from the growing cluster core. Our results emphasize that a dynamically young system is inherently evolving on short timescales, so that it can be highly misleading to use current-epoch conditions to study aspects such as star formation rates as a function of local density. Our simulations serve as a starting point for further studies of collapse including other factors such as magnetic fields and stellar feedback.
Collapsing granular suspensions.
Kadau, D; Andrade, J S; Herrmann, H J
2009-11-01
A 2D contact dynamics model is proposed as a microscopic description of a collapsing suspension/soil to capture the essential physical processes underlying the dynamics of generation and collapse of the system. Our physical model is compared with real data obtained from in situ measurements performed with a natural collapsing/suspension soil. We show that the shear strength behavior of our collapsing suspension/soil model is very similar to the behavior of this collapsing suspension soil, for both the unperturbed and the perturbed phases of the material.
Energy Technology Data Exchange (ETDEWEB)
Renn, J.; Steinmann, A.
1986-07-01
The upper bound for the ultraviolet stability of the two-dimensional cosine interaction ..integral../sub ..lambda../:cos ..cap alpha..phi/sub xi/:dxi, ..lambda..is contained inR/sup 2/, in finite volume ..lambda.. is proven for ..cap alpha../sup 2/ element of (4..pi..,8..pi..(, where the theory has been shown to be superrenormalizable (see, e.g., G. Gallavotti, Rev. Mod. Phys. 57, 471 (1985)). Ultraviolet stability in this interval was proven previously (F. Nicolo, J. Renn, and A.Steinmann, ''On the massive sine--Gordon equation in all regions of collapse,'' preprint II Universita di Roma, 1985). Here we give a second proof using renormalization group methods based on a multiscale decomposition of the field by showing that the large fluctuations may be controlled by their small probability. The method essentially follows the one given by Nicolo (F. Nicolo, Commun. Math. Phys. 88, 681 (1983)) for ..cap alpha../sup 2/ element of (4..pi.., (32)/(5) ..pi..(.
Matrix method for the solution of RF field perturbations due to local frequency shifts
Institute of Scientific and Technical Information of China (English)
SUN Zhi-Rui; PENG Jun; FU Shi-Nian
2009-01-01
To tune the accelerating field to the design value in a periodical radio frequency accelerating structure, Slater's perturbation theorem is commonly used. This theorem solves a second-order differential equation to obtain the electrical field variation due to a local frequency shift. The solution becomes very difficult for a complex distribution of the local frequency shifts. Noticing the similarity between the field perturbation equation and the equation describing the transverse motion of a particle in a quadrupole channel, we propose in this paper a new method in which the transfer matrix method is applied to the field calculation instead of directly solving the differential equation. The advantage of the matrix method is illustrated in examples.
Domain wall interactions due to vacuum Dirac field fluctuations in 2 +1 dimensions
Fosco, C. D.; Mazzitelli, F. D.
2016-07-01
We evaluate quantum effects due to a two-component Dirac field in 2 +1 spacetime dimensions, coupled to domain-wall-like defects with a smooth shape. We show that these effects induce nontrivial contributions to the (shape-dependent) energy of the domain walls. For a single defect, we study the divergences in the corresponding self-energy, and also consider the role of the massless zero mode—corresponding to the Callan-Harvey mechanism—by coupling the Dirac field to an external gauge field. For two defects, we show that the Dirac field induces a nontrivial, Casimir-like effect between them, and we provide an exact expression for that interaction in the case of two straight-line parallel defects. As is the case for the Casimir interaction energy, the result is finite and unambiguous.
Heat transfer in MHD flow due to a linearly stretching sheet with induced magnetic field
El-Mistikawy, Tarek M A
2016-01-01
The full MHD problem of the flow and heat transfer due to a linearly stretching sheet in the presence of a transverse magnetic field is put in a self-similar form. Traditionally ignored physical processes such as induced magnetic field, viscous dissipation, Joule heating, and work shear are included and their importance is established. Cases of prescribed surface temperature, prescribed heat flux, surface feed (injection or suction), velocity slip, and thermal slip are also considered. The problem is shown to admit self similarity. Sample numerical solutions are obtained for chosen combinations of the flow parameters.
PREFACE: Collapse Calderas Workshop
Gottsmann, Jo; Aguirre-Diaz, Gerardo
2008-10-01
(IAVCEI), the International Union of Geodesy and Geophysics (IUGG), the Universidad Nacional Autónoma de México (UNAM) through the Coordinación de la Investigación Científica, the Institute of Physics Publishing services, the Consejo Nacional de Ciencia y Tecnología de Querétaro (CONCYTEQ). The workshop represented the key activity of the IAVCEI Commission on Collapse Calderas in 2008. We, the workshop organizers, would like to express our gratitude to all workshop participants, the staff of Misión La Muralla, the Centro de Geociencias of UNAM for administrative and logistic support, to Adelina Geyer for web support, to María Inés Rojano for organization of logistics, the Universidad Autónoma de San Luis Potosí for logistics support, the Comisiòn Nacional de Electricidad for authorizing a visit to Los Azufres geothermal field, and to all sponsors that provided financial support. We expect these proceedings to stimulate further fruitful discussions, which we hope will be continued at a future meeting. Jo Gottsmann and Gerardo Aguirre-Diaz October 2008
Frequency shifts in NIST Cs Primary Frequency Standards due To Transverse RF Field Gradients
Ashby, Neil; Heavner, Thomas; Jefferts, Steven
2014-01-01
A single-particle Green's function (propagator) is introduced to study the detection of laser-cooled Cesium atoms in an atomic fountain due to RF ?field gradients in the Ramsey TE011 cavity. The detection results in a state-dependent loss of atoms at apertures in the physics package, resulting in a frequency bias. A model accounting only for motion in one dimension transverse to the symmetry axis of the fountain is discussed in detail and then generalized to two transverse dimensions. Results for fractional frequency shifts due to transverse field gradients are computed for NIST F-1 and F-2 Cesium fountains. The shifts are found to be negligible except in cases of higher RF power applied to the cavities.
First quantum correction to entropy of Vaidya-Bonner black holes due to arbitrary spin fields
Institute of Scientific and Technical Information of China (English)
高长军; 沈有根
2002-01-01
Using the improved brick-wall model, we have calculated the first quantum correction to the entropy of non-staticblack holes, Vaidya-Bonner black holes, due to the gravitational, electro-magnetic and neutrino fields. The result showsthat both bosonic entropy and fermionic entropy are exactly proportional to the area of the event horizon. Thus, theentropy-area law still holds in such a non-static case.
Enhancement of the thermoelectric figure of merit in a quantum dot due to external ac field
Energy Technology Data Exchange (ETDEWEB)
Chen, Qiao, E-mail: cqhy1127@yahoo.com.cn [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Wang, Zhi-yong, E-mail: wzyong@cqut.edu.cn [School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Xie, Zhong-Xiang [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China)
2013-08-15
We investigate the figure of merit of a quantum dot (QD) system irradiated with an external microwave filed by nonequilibrium Green's function (NGF) technique. Results show that the frequency of microwave field influence the figure of merit ZT significantly. At low temperature, a sharp peak can be observed in the figure of merit ZT as the frequency of ac field increases. As the frequency varies, several zero points and resonant peaks emerge in the figure of merit ZT. By adjusting the frequency of the microwave field, we can obtain high ZT. The figure of merit ZT increases with the decreasing of linewidth function Γ. In addition, Wiedemann–Franz law does not hold, particularly in the low frequency region due to multi-photon emission and absorption. Some novel thermoelectric properties are also found in two-level QD system.
A change of H-mode dynamics due to edge electric field shear
Energy Technology Data Exchange (ETDEWEB)
Toda, Shinichiro; Itoh, Sanae [Kyushu Univ., Fukuoka (Japan)
1996-05-01
An extended model theory for Edge Localized Modes (ELMs) is presented with inclusion of the effects of the radial electric field shear, E`{sub r}, for high temperature plasmas in tokamaks. The dynamic model consists of an electric bifurcation model for the L/H transition, which contains a hysteresis characteristic due to E`{sub r}, and of a dynamic transport equation for the plasma gradient parameter. The self-generated oscillation is found to occur even if the effects of E`{sub r} are included: in addition to those of the radial electric field. The condition for the occurrence of a self-generated oscillation is examined. The wider region in the parameter space is found for the case with a negative electric field shear than for the case with a positive one. (author)
Wetting dynamics of a collapsing fluid hole
Bostwick, J. B.; Dijksman, J. A.; Shearer, M.
2017-01-01
The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the quasistatic spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. Surface tension forces dominate the collapse dynamics for small holes with the collapse time appearing as a power law whose exponent compares favorably to experiments in the literature. Gravity accelerates the collapse process. Volume dependence is predicted and compared with experiment. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.
Mapping collapsed columns in coal mines utilizing Microtremor Survey Methods
Energy Technology Data Exchange (ETDEWEB)
Xu, P.F.; Li, C.J.; Ling, S.Q.; Zhang, Y.B.; Hou, Z.; Sun, Y.J. [Chinese Academy of Sciences, Beijing (China)
2009-07-15
Collapsed columns post one of the deadly safety risks to coal miners. Therefore, how to effectively map collapsed columns has become an urgent business matter for improving coal mine safety and coal production. This article documents the first application of the microtremor survey method to map geological hazards in the coal mining areas. Our results demonstrated the usefulness and effectiveness of the method, primarily due to the sensitivity of shear waves to the low-velocity collapsed columns. In the 2002 working region within the Shanxi Lu'an Zhangcun coal mine area, both the S-wave velocity structure inverted using the simple-point inversion method and the apparent S-wave velocity section obtained using the 2D microtremor profiling method clearly display the known collapsed columns. The collapsed column positions displayed in the 2D microtremor section are consistent with those seen from the tunnel, having a boundary error approximately 10 m. The microtremor method has been proved a very effective and useful geophysical tool to improve coal mining safety, because of the following characteristics: (1) high resolution, (2) no need of using the artificial source, (3) convenient and low-cost field data acquisition, and (4) little effect from local cultural structures. The microtremor survey method is also technically superior to any other geophysical method in detecting or mapping these low or high S-wave velocity anomalies. Therefore, it has a bright future in many geological and geophysical applications, such as investigation of coal seam structures and collapsed columns underneath villages.
Heating rate and spin flip lifetime due to near field noise in layered superconducting atom chips
Fermani, Rachele; Zhang, Bo; Lim, Michael J; Dumke, Rainer
2009-01-01
We theoretically investigate the heating rate and spin flip lifetimes due to near field noise for atoms trapped close to layered superconducting structures. In particular, we compare the case of a gold layer deposited above a superconductor with the case of a bare superconductor. We study a niobium-based and a YBCO-based chip. For both niobium and YBCO chips at a temperature of 4.2 K, we find that the deposition of the gold layer can have a significant impact on the heating rate and spin flip lifetime, as a result of the increase of the near field noise. At a chip temperature of 77 K, this effect is less pronounced for the YBCO chip.
Li, Shucai; Wang, Lu; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai
2016-10-01
The dynamics of relativistic electrons are analyzed using the relativistic Fokker-Planck equation including deceleration due to synchrotron radiation (SR) and radial diffusion loss caused by magnetic fluctuation (MF). Threshold electric field for avalanche growth is enhanced, and the growth rate is reduced by the combined effect of MF and SR as compared to the case with only SR. The threshold electric field is determined by the time scales balance between momentum evolution and radial diffusion loss induced by MF, and increased with level of MF. More importantly, the hysteresis behavior of runaway pointed out by does not exist anymore. This is because the ``seed electrons'' cannot be sustained as a result of diffusion loss. This work was supported by NSFC Grant No. 11305071, and the Ministry of Science and technology of China, under Contract Nos. 2013GB112002, 2015GB111002 and 2015GB111001.
Magnetic field shift due to mechanical vibration in functional magnetic resonance imaging.
Foerster, Bernd U; Tomasi, Dardo; Caparelli, Elisabeth C
2005-11-01
Mechanical vibrations of the gradient coil system during readout in echo-planar imaging (EPI) can increase the temperature of the gradient system and alter the magnetic field distribution during functional magnetic resonance imaging (fMRI). This effect is enhanced by resonant modes of vibrations and results in apparent motion along the phase encoding direction in fMRI studies. The magnetic field drift was quantified during EPI by monitoring the resonance frequency interleaved with the EPI acquisition, and a novel method is proposed to correct the apparent motion. The knowledge on the frequency drift over time was used to correct the phase of the k-space EPI dataset. Since the resonance frequency changes very slowly over time, two measurements of the resonance frequency, immediately before and after the EPI acquisition, are sufficient to remove the field drift effects from fMRI time series. The frequency drift correction method was tested "in vivo" and compared to the standard image realignment method. The proposed method efficiently corrects spurious motion due to magnetic field drifts during fMRI. (c) 2005 Wiley-Liss, Inc.
Tsang, L.; Brown, R.; Kong, J. A.; Simmons, G.
1974-01-01
Two numerical methods are used to evaluate the integrals that express the em fields due to dipole antennas radiating in the presence of a stratified medium. The first method is a direct integration by means of Simpson's rule. The second method is indirect and approximates the kernel of the integral by means of the fast Fourier transform. In contrast to previous analytical methods that applied only to two-layer cases the numerical methods can be used for any arbitrary number of layers with general properties.
Gravitational Collapse End States
Joshi, Pankaj S.
2004-01-01
Recent developments on the final state of a gravitationally collapsing massive matter cloud are summarized and reviewed here. After a brief background on the problem, we point out how the black hole and naked singularity end states arise naturally in spherical collapse. We see that it is the geometry of trapped surfaces that governs this phenomena.
Gravitational and electric energies in collapse of spherically thin capacitor
Ruffini, Remo
2013-01-01
In our previous article (PHYSICAL REVIEW D 86, 084004 (2012)), we present a study of strong oscillating electric fields and electron-positron pair-production in gravitational collapse of a neutral stellar core at or over nuclear densities. In order to understand the back-reaction of such electric energy building and radiating on collapse, we adopt a simplified model describing the collapse of a spherically thin capacitor to give an analytical description how gravitational energy is converted to both kinetic and electric energies in collapse. It is shown that (i) averaged kinetic and electric energies are the same order, about an half of gravitational energy of spherically thin capacitor in collapse; (ii) caused by radiating and rebuilding electric energy, gravitational collapse undergoes a sequence of "on and off" hopping steps in the microscopic Compton scale. Although such a collapse process is still continuous in terms of macroscopic scales, it is slowed down as kinetic energy is reduced and collapsing tim...
On the quantum corrected gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Torres, Ramón, E-mail: ramon.torres-herrera@upc.edu; Fayos, Francesc, E-mail: f.fayos@upc.edu
2015-07-30
Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.
On the quantum corrected gravitational collapse
Directory of Open Access Journals (Sweden)
Ramón Torres
2015-07-01
Full Text Available Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.
Unveiling the High Energy Obscured Universe: Hunting Collapsed Objects Physics
Ubertini, P.; Bazzano, A.; Cocchi, M.; Natalucci, L.; Bassani, L.; Caroli, E.; Stephen, J. B.; Caraveo, P.; Mereghetti, S.; Villa, G.
2005-01-01
A large part of energy from space is coming from collapsing stars (SN, Hypernovae) and collapsed stars (black holes, neutron stars and white dwarfs). The peak of their energy release is in the hard-X and gamma-ray wavelengths where photons are insensitive to absorption and can travel from the edge the Universe or the central core of the Galaxy without loosing the primordial information of energy, time signature and polarization. The most efficient process to produce energetic photons is gravitational accretion of matter from a "normal" star onto a collapsed companion (LGxMcollxdMacc/dtx( 1Rdisc)-dMacc/dt x c2), exceeding by far the nuclear reaction capability to generate high energy quanta. Thus our natural laboratory for "in situ" investigations are collapsed objects in which matter and radiation co-exist in extreme conditions of temperature and density due to gravitationally bent geometry and magnetic fields. This is a unique opportunity to study the physics of accretion flows in stellar mass and super-massive Black Holes (SMBHs), plasmoids generated in relativistic jets in galactic microQSOs and AGNs, ionised plasma interacting at the touching point of weakly magnetized NS surface, GRB/Supernovae connection, and the mysterious origins of "dark" GRB and X-ray flash.
Directory of Open Access Journals (Sweden)
Fuangpian Phanupong
2016-01-01
Full Text Available Nowadays, using of High Voltage Direct Current (HVDC transmission to maximize the transmission efficiency, bulk power transmission, connection of renewable power source from wind farm to the grid is of prime concern for the utility. However, due to the high electric field stress from Direct Current (DC line, the corona discharge can easily be occurred at the conductor surface leading to transmission loss. Therefore, the polarity effect of DC lines on corona inception and breakdown voltage should be investigated. In this work, the effect of DC polarity and Alternating Current (AC field stress on corona inception voltage and corona discharge is investigated on various test objects, such as High Voltage (HV needle, needle at ground plane, internal defect, surface discharge, underground cable without cable termination, cable termination with simulated defect and bare overhead conductor. The corona discharge is measured by partial discharge measurement device with high-frequency current transformer. Finally, the relationship between supply voltage and discharge intensity on each DC polarity and AC field stress can be successfully determined.
Regan, John A.; Johansson, Peter H.; Wise, John H.
2014-11-01
The direct collapse model of supermassive black hole seed formation requires that the gas cools predominantly via atomic hydrogen. To this end we simulate the effect of an anisotropic radiation source on the collapse of a halo at high redshift. The radiation source is placed at a distance of 3 kpc (physical) from the collapsing object and is set to emit monochromatically in the center of the Lyman-Werner (LW) band. The LW radiation emitted from the high redshift source is followed self-consistently using ray tracing techniques. Due to self-shielding, a small amount of H2 is able to form at the very center of the collapsing halo even under very strong LW radiation. Furthermore, we find that a radiation source, emitting >1054 (~ 103 J21) photons s-1, is required to cause the collapse of a clump of M ~ 105 M ⊙. The resulting accretion rate onto the collapsing object is ~0.25 M ⊙ yr-1. Our results display significant differences, compared to the isotropic radiation field case, in terms of the H2 fraction at an equivalent radius. These differences will significantly affect the dynamics of the collapse. With the inclusion of a strong anisotropic radiation source, the final mass of the collapsing object is found to be M ~ 105 M ⊙. This is consistent with predictions for the formation of a supermassive star or quasi-star leading to a supermassive black hole.
Electron spin relaxation due to reorientation of a permanent zero field splitting tensor.
Schaefle, Nathaniel; Sharp, Robert
2004-09-15
Electron spin relaxation of transition metal ions with spin S> or =1 results primarily from thermal modulation of the zero field splitting (zfs) tensor. This occurs both by distortion of the zfs tensor due to intermolecular collisions and, for complexes with less than cubic symmetry, by reorientational modulation of the permanent zfs tensor. The reorientational mechanism is much less well characterized in previous work than the distortional mechanism although it is an important determinant of nuclear magnetic resonance (NMR) paramagnetic relaxation enhancement phenomena (i.e., the enhancement of NMR relaxation rates produced by paramagnetic ions in solution or NMR-PRE). The classical density matrix theory of spin relaxation does not provide an appropriate description of the reorientational mechanism at low Zeeman field strengths because the zero-order spin wave functions are stochastic functions of time. Using spin dynamics simulation techniques, the time correlation functions of the spin operators have been computed and used to determine decay times for the reorientational relaxation mechanism for S=1. In the zfs limit of laboratory field strengths (H(Zeem)spin decay is exponential, the spin relaxation time, tau(S) (composite function) approximately 0.53tau(R)((1)), where tau(R)((1)) is the reorientational correlation time of a molecule-fixed vector. The value of tau(S) (composite function) is independent of the magnitude of the cylindrical zfs parameter (D), but it depends strongly on low symmetry zfs terms (the E/D ratio). Other spin dynamics (SD) simulations examined spin decay in the intermediate regime of field strengths where H(Zeem) approximately H(zfs) (composite function), and in the vicinity of the Zeeman limit. The results demonstrate that the reorientational electron spin relaxation mechanism is often significant when H(zfs) (composite function)> or =H(Zeem), and that its neglect can lead to serious errors in the interpretation of NMR-PRE data.
Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits.
Halgamuge, Malka N
2013-05-01
The International Agency for Research on Cancer (IARC) classifies electromagnetic fields (EMFs) as 'possibly carcinogenic' to humans that might transform normal cells into cancer cells. Owing to high utilisation of electricity in day-to-day life, exposure to power-frequency (50 or 60 Hz) EMFs is unavoidable. Melatonin is a natural hormone produced by pineal gland activity in the brain that regulates the body's sleep-wake cycle. How man-made EMFs may influence the pineal gland is still unsolved. The pineal gland is likely to sense EMFs as light but, as a consequence, may decrease the melatonin production. In this study, more than one hundred experimental data of human and animal studies of changes in melatonin levels due to power-frequency electric and magnetic fields exposure were analysed. Then, the results of this study were compared with the International Committee of Non-Ionizing Radiation Protection (ICNIRP) limit and also with the existing experimental results in the literature for the biological effect of magnetic fields, in order to quantify the effects. The results show that this comparison does not seem to be consistent despite the fact that it offers an advantage of drawing attention to the importance of the exposure limits to weak EMFs. In addition to those inconsistent results, the following were also observedfrom this work: (i) the ICNIRP recommendations are meant for the well-known acute effects, because effects of the exposure duration cannot be considered and (ii) the significance of not replicating the existing experimental studies is another limitation in the power-frequency EMFs. Regardless of these issues, the above observation agrees with our earlier study in which it was confirmed that it is not a reliable method to characterise biological effects by observing only the ratio of AC magnetic field strength to frequency. This is because exposure duration does not include the ICNIRP limit. Furthermore, the results show the significance of
Eby, Joshua; Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L. C. R.
2016-12-01
Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.
Eby, Joshua; Suranyi, Peter; Wijewardhana, L C R
2016-01-01
Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. These dense configurations, which are the endpoints of collapse, have extremely high binding energy, and as a result, decay through number changing $3\\,a\\rightarrow a$ interactions with an extremely short lifetime.
Pearle, Philip
2010-01-01
Some possible benefits of dynamical collapse for a quantum theory of cosmogenesis are discussed. These are a possible long wait before creation begins, creation of energy and space, and choice of a particular universe out of a superposition.
Energy Technology Data Exchange (ETDEWEB)
Eby, Joshua [Department of Physics, University of Cincinnati,2600 Clifton Ave, Cincinnati, OH, 45221 (United States); Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL, 60510 (United States); Leembruggen, Madelyn; Suranyi, Peter; Wijewardhana, L.C.R. [Department of Physics, University of Cincinnati,2600 Clifton Ave, Cincinnati, OH, 45221 (United States)
2016-12-15
Axion stars, gravitationally bound states of low-energy axion particles, have a maximum mass allowed by gravitational stability. Weakly bound states obtaining this maximum mass have sufficiently large radii such that they are dilute, and as a result, they are well described by a leading-order expansion of the axion potential. Heavier states are susceptible to gravitational collapse. Inclusion of higher-order interactions, present in the full potential, can give qualitatively different results in the analysis of collapsing heavy states, as compared to the leading-order expansion. In this work, we find that collapsing axion stars are stabilized by repulsive interactions present in the full potential, providing evidence that such objects do not form black holes. In the last moments of collapse, the binding energy of the axion star grows rapidly, and we provide evidence that a large amount of its energy is lost through rapid emission of relativistic axions.
2004-01-01
[figure removed for brevity, see original site] We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form. This image of the Alba Patera region has both lava tube collapse pits (running generally east/west) and subsidence related collapse within structural grabens. Image information: IR instrument. Latitude 26.9, Longitude 256.5 East (103.5 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science
2004-01-01
[figure removed for brevity, see original site] We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form. These collapse pits are found in the southern hemisphere of Mars. They are likely lava tube collapse pits related to flows from Hadriaca Patera. Image information: VIS instrument. Latitude -36.8, Longitude 89.6 East (270.4 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D
2004-01-01
[figure removed for brevity, see original site] We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form. These collapse pits are found on the flank of Ascraeus Mons. The pits and channels are all related to lava tube formation and emptying. Image information: IR instrument. Latitude 8, Longitude 253.9 East (106.1 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal
2004-01-01
[figure removed for brevity, see original site] We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form. This is the Noctis Labyrinthus region of Mars. These collapse pits are forming along structural fractures that are allowing the release of volatiles from the subsurface. This is believed to be the way that chaos terrain forms on Mars. This area represents the early stage of chaos formation. Image information: VIS instrument. Latitude -12.6, Longitude 264 East (96 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project
2004-01-01
[figure removed for brevity, see original site] We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form. These collapse pits are found within the extensive lava flows of the Tharsis region. They are related to lava tubes, likely coming from Ascraeus Mons. Image information: VIS instrument. Latitude 22.8, Longitude 266.8 East (93.2 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington
2004-01-01
[figure removed for brevity, see original site] We will be looking at collapse pits for the next two weeks. Collapse pits on Mars are formed in several ways. In volcanic areas, channelized lava flows can form roofs which insulate the flowing lava. These features are termed lava tubes on Earth and are common features in basaltic flows. After the lava has drained, parts of the roof of the tube will collapse under its own weight. These collapse pits will only be as deep as the bottom of the original lava tube. Another type of collapse feature associated with volcanic areas arises when very large eruptions completely evacuate the magma chamber beneath the volcano. The weight of the volcano will cause the entire edifice to subside into the void space below it. Structural features including fractures and graben will form during the subsidence. Many times collapse pits will form within the graben. In addition to volcanic collapse pits, Mars has many collapse pits formed when volatiles (such as subsurface ice) are released from the surface layers. As the volatiles leave, the weight of the surrounding rock causes collapse pits to form. These collapse pits are found in graben located in Tractus Catena. These features are related to subsidence after magma chamber evacuation of Alba Patera. Image information: VIS instrument. Latitude 35.8, Longitude 241.7 East (118.3 West). 19 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science
Loop quantum dynamics of the gravitational collapse
Tavakoli, Yaser; Dapor, Andrea
2013-01-01
We consider a quantum description for a spherically symmetric gravitational collapse of a massless scalar field. The effective scenario from loop quantum gravity is applied to a homogeneous interior spacetime. Classical singularity that arises at the final stage of our collapsing system, is resolved and replaced by a quantum bounce. Our main purpose is to investigate the evolution of trapped surfaces during the collapse in semiclassical regime. We show that, in this regime, there exists a threshold scale bellow which no horizon can form as collapse evolves towards the bounce. By employing the matching conditions at the boundary shell, quantum effects are carried out to the exterior region, leading to an improved Vaidya geometry. In addition, the effective mass loss emerging in this model predicts an outward energy flux from the interior quantum geometry regime.
Signatures of star formation by cold collapse
Kuznetsova, Aleksandra; Ballesteros-Paredes, Javier
2015-01-01
Sub-virial gravitational collapse is one mechanism by which star clusters may form. Here we investigate whether this mechanism can be inferred from observations of young clusters. To address this question, we have computed SPH simulations of the initial formation and evolution of a dynamically young star cluster through cold (sub-virial) collapse, starting with an ellipsoidal, turbulently seeded distribution of gas, and forming sink particles representing (proto)stars. While the initial density distributions of the clouds do not have large initial mass concentrations, gravitational focusing due to the global morphology leads to cluster formation. We use the resulting structures to extract observable morphological and kinematic signatures for the case of sub-virial collapse. We find that the signatures of the initial conditions can be erased rapidly as the gas and stars collapse, suggesting that kinematic observations need to be made either early in cluster formation and/or at larger scales, away from the grow...
Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.
2017-03-01
Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric Lorentz force density vanishes. However, a Lorentz surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use Hooke's law with a small-strain approximation, resulting in the Lamé- Navier equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by Hiramatsu and Oka (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the Lorentz tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the Lorentz tractions are illustrated and discussed.
Reich, Felix A.; Rickert, Wilhelm; Stahn, Oliver; Müller, Wolfgang H.
2016-12-01
Based on the principles of rational continuum mechanics and electrodynamics (see Truesdell and Toupin in Handbuch der Physik, Springer, Berlin, 1960 or Kovetz in Electromagnetic theory, Oxford University Press, Oxford, 2000), we present closed-form solutions for the mechanical displacements and stresses of two different magnets. Both magnets are initially of spherical shape. The first (hard) magnet is uniformly magnetized and deforms due to the field induced by the magnetization. In the second problem of a (soft) linear-magnetic sphere, the deformation is caused by an applied external field, giving rise to magnetization. Both problems can be used for modeling parts of general magnetization processes. We will address the similarities between both settings in context with the solutions for the stresses and displacements. In both problems, the volumetric uc(Lorentz) force density vanishes. However, a uc(Lorentz) surface traction is present. This traction is determined from the magnetic flux density. Since the obtained displacements and stresses are small in magnitude, we may use uc(Hooke's) law with a small-strain approximation, resulting in the uc(Lamé)-uc(Navier) equations of linear elasticity theory. If gravity is neglected and azimuthal symmetry is assumed, these equations can be solved in terms of a series. This has been done by uc(Hiramatsu) and uc(Oka) (Int J Rock Mech Min Sci Geomech Abstr 3(2):89-90, 1966) before. We make use of their series solution for the displacements and the stresses and expand the uc(Lorentz) tractions of the analyzed problems suitably in order to find the expansion coefficients. The resulting algebraic system yields finite numbers of nonvanishing coefficients. Finally, the resulting stresses, displacements, principal strains and the uc(Lorentz) tractions are illustrated and discussed.
Directory of Open Access Journals (Sweden)
Lakshika Girihagama
Full Text Available Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m. Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section, with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet, and the bubbles were produced using a syringe located at the cave floor.
Mapping Orbits regarding Perturbations due to the Gravitational Field of a Cube
Directory of Open Access Journals (Sweden)
Flaviane C. F. Venditti
2015-01-01
Full Text Available The orbital dynamics around irregular shaped bodies is an actual topic in astrodynamics, because celestial bodies are not perfect spheres. When it comes to small celestial bodies, like asteroids and comets, it is even more import to consider the nonspherical shape. The gravitational field around them may generate trajectories that are different from Keplerian orbits. Modeling an irregular body can be a hard task, especially because it is difficult to know the exact shape when observing it from the Earth, due to their small sizes and long distances. Some asteroids have been observed, but it is still a small amount compared to all existing asteroids in the Solar System. An approximation of their shape can be made as a sum of several known geometric shapes. Some three-dimensional figures have closed equations for the potential and, in this work, the formulation of a cube is considered. The results give the mappings showing the orbits that are less perturbed and then have a good potential to be used by spacecrafts that need to minimize station-keeping maneuvers. Points in the orbit that minimizes the perturbations are found and they can be used for constellations of nanosatellites.
Bei, N.; Li, G.; Molina, L. T.
2013-05-01
The purpose of the present study is to investigate the uncertainties in simulating secondary organic aerosol (SOA) in Mexico City metropolitan area (MCMA) due to meteorological initial uncertainties using the WRF-CHEM model through ensemble simulations. The simulated periods (24 and 29 March 2006) represent two typical meteorological episodes ("Convection-South" and "Convection-North", respectively) in the Mexico City basin during the MILAGRO-2006 field campaign. The organic aerosols are simulated using a non-traditional SOA model including the volatility basis-set modeling method and the contributions from glyoxal and methylglyoxal. Model results demonstrate that uncertainties in meteorological initial conditions have significant impacts on SOA simulations, including the peak time concentrations, the horizontal distributions, and the temporal variations. The ensemble spread of the simulated peak SOA at T0 can reach up to 4.0 μg m-3 during the daytime, which is around 35% of the ensemble mean. Both the basin wide wind speed and the convergence area affect the magnitude and the location of the simulated SOA concentrations inside the Mexico City basin. The wind speed, especially during the previous midnight and the following early morning, influences the magnitude of the peak SOA concentration through ventilation. The surface horizontal convergence zone generally determines the area with high SOA concentrations. The magnitude of the ensemble spreads may vary with different meteorological episodes but the ratio of the ensemble spread to mean does not change significantly.
Stuchlík, Zdeněk
2015-01-01
To test the role of large-scale magnetic fields in accretion processes, we study dynamics of charged test particles in vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes od the charged particle dynamics provides mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is larg...
Design of Pneumatic Collapsible Steering
Directory of Open Access Journals (Sweden)
Anish Nair
2013-08-01
Full Text Available The steering wheel is the important cause of fatal injury for drivers in frontal collision. When frontal collision occurs, due to the kinetic energy of driver or occupant body, it moves forward against steering wheel and wind shield. Actually in a frontal collision forces will be first transmitted through driver’s feet which act as fulcrum so the body will rotate about it. For the taller driver steering works as fulcrum. Driver head & chest hit the steering or windshield which may cause severe injury or death. Considering the injury potential of steering wheel we are presenting a new idea Pneumatic Collapsible Steering Column (PCS.
Cook, Geoffrey M W; Jareonsettasin, Prem; Keynes, Roger J
2014-01-01
The growth cone collapse assay has proved invaluable in detecting and purifying axonal repellents. Glycoproteins/proteins present in detergent extracts of biological tissues are incorporated into liposomes, added to growth cones in culture and changes in morphology are then assessed. Alternatively purified or recombinant molecules in aqueous solution may be added directly to the cultures. In both cases after a defined period of time (up to 1 h), the cultures are fixed and then assessed by inverted phase contrast microscopy for the percentage of growth cones showing a collapsed profile with loss of flattened morphology, filopodia, and lamellipodia.
Yeh, Harry H.; Ghazali, A.
1988-06-01
Using the laser-induced fluorescent method, the transition process from bore to runup mode, i.e., "bore collapse," is investigated experimentally. The observed process appears to be different from both previous analytical and numerical predictions. The results indicate that momentum exchange takes place between the incident bore and the quiescent water body along the shoreline. Turbulence generated in a bore nearshore is highly three-dimensional and sporadic. Very close to the shore, turbulence is advected with the bore front, and consequently, the bore collapse process involves strong turbulent action onto the dry beach bed.
STATISTICAL-MECHANICAL ENTROPY OF THE GENERAL STATIC BLACK HOLE DUE TO ELECTROMAGNETIC FIELD
Institute of Scientific and Technical Information of China (English)
JING JI-LIANG; YAN MU-LIN
2000-01-01
Statistical-mechanical entropy arising from the electromagnetic field in the general four-dimensional static blackhole spacetime is investigated by means of the "brick wall" model. An expression for the entropy is obtained and some examples are considered. The results show that the entropy arising from the electromagnetic field is exactly twice the one for a massless scalar field.
Distinct Element modeling of geophysical signatures during sinkhole collapse
Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Dahm, Torsten
2017-04-01
A sinkhole forms due to the collapse of rocks or soil near the Earth's surface into an underground cavity. Such cavities represent large secondary pore spaces derived by dissolution and subrosion in the underground. By changing the stress field in the surrounding material, the growth of cavities can lead to a positive feedback, in which expansion and mechanical instability in the surrounding material increases or generates new secondary pore space (e.g. by fracturing), which in turn increases the cavity size, etc. A sinkhole forms due to the eventual subsidence or collapse of the overburden that becomes destabilized and fails all the way to the Earth's surface. Both natural processes like (sub)surface water movement and earthquakes, and human activities, such as mining, construction and groundwater extraction, intensify such feedbacks. The development of models for the mechanical interaction of a growing cavity and fracturing of its surrounding material, thus capturing related precursory geophysical signatures, has been limited, however. Here we report on the advances of a general, simplified approach to simulating cavity growth and sinkhole formation by using 2D Distinct Element Modeling (DEM) PFC5.0 software and thereby constraining pre-, syn- and post-collapse geophysical and geodetic signatures. This physically realistic approach allows for spontaneous cavity development and dislocation of rock mass to be simulated by bonded particle formulation of DEM. First, we present calibration and validation of our model. Surface subsidence above an instantaneously excavated circular cavity is tracked and compared with an incrementally increasing dissolution zone both for purely elastic and non-elastic material.This validation is important for the optimal choice of model dimensions and particles size with respect to simulation time. Second, a cavity growth approach is presented and compared to a well-documented case study, the deliberately intensified sinkhole collapse at
Collapsible Geostrut Structure
Robertson, Glen A.
1994-01-01
Portable truss structure collapsible into smaller volume for storage and transportation. At new site, reerected quickly, without need to reassemble parts. Structure could be tent, dome, tunnel, or platform. Key element in structure joint, called "geostrut joint," includes internal cable. Structure is network of struts attached to geostrut joints. Pulling cables taut in all joints makes structure rigid. Releasing cables relaxes structure.
Scapholunate advanced collapse.
Pomeranz, Stephen J; Salazar, Peter
2015-01-01
This case study reviews the pathophysiology of scapholunate advanced collapse (SLAC), which is the most common etiology of degenerative arthritis in the wrist. The scapholunate ligament serves a critical role in stability of the carpus. Disruption of the scapholunate ligament, its sequela, and the magnetic resonance imaging evaluation are discussed, with review of the defining features of this disease and its progression.
Dancing building prevents collapse
Visscher, R.
2007-01-01
In future, anybody caught inside a building during an earthquake need no longer fear the roof collapsing on them. Thanks to the use of composite materials, all the building will do is dance along, riding the waves of the earthquake. At least, according to Professor Ir. Adriaan Beukers of the
Melosh, H. J.; Ivanov, B. A.
The detailed morphology of impact craters is now believed to be mainly caused by the collapse of a geometrically simple, bowl-shaped "transient crater." The transient crater forms immediately after the impact. In small craters, those less than approximately 15 km diameter on the Moon, the steepest part of the rim collapses into the crater bowl to produce a lens of broken rock in an otherwise unmodified transient crater. Such craters are called "simple" and have a depth-to-diameter ratio near 1:5. Large craters collapse more spectacularly, giving rise to central peaks, wall terraces, and internal rings in still larger craters. These are called "complex" craters. The transition between simple and complex craters depends on 1/g, suggesting that the collapse occurs when a strength threshold is exceeded. The apparent strength, however, is very low: only a few bars, and with little or no internal friction. This behavior requires a mechanism for temporary strength degradation in the rocks surrounding the impact site. Several models for this process, including acoustic fluidization and shock weakening, have been considered by recent investigations. Acoustic fluidization, in particular, appears to produce results in good agreement with observations, although better understanding is still needed.
Dancing building prevents collapse
Visscher, R.
2007-01-01
In future, anybody caught inside a building during an earthquake need no longer fear the roof collapsing on them. Thanks to the use of composite materials, all the building will do is dance along, riding the waves of the earthquake. At least, according to Professor Ir. Adriaan Beukers of the Aerospa
Wilschut, A.N.; van Zwol, Roelof; Flokstra, Jan; Brasa, Niek; Quak, Wilko
1998-01-01
This paper describes the implementation of a triangulation based collapse algorithm in the general-purpose object oriented DBMS Magnum. The contribution of the paper is twofold. First, we show that true integration of complex spatial functionality in a DBMS can be achieved. Second, we worked out a c
Dancing building prevents collapse
Visscher, R.
2007-01-01
In future, anybody caught inside a building during an earthquake need no longer fear the roof collapsing on them. Thanks to the use of composite materials, all the building will do is dance along, riding the waves of the earthquake. At least, according to Professor Ir. Adriaan Beukers of the Aerospa
Magnetization collapse in polycrystalline YBCO under transport current cycles
Energy Technology Data Exchange (ETDEWEB)
Giordano, J L [Departamento de Ciencias de la IngenierIa, Universidad de Talca (Chile); Luzuriaga, J [Centro Atomico Bariloche, CNEA, Instituto Balseiro, UNC (Argentina); BadIa-Majos, A [Departamento de Fisica de la Materia Condensada-ICMA, Universidad de Zaragoza (Spain); Nieva, G [Centro Atomico Bariloche, CNEA, Instituto Balseiro, UNC (Argentina); RuIz-Tagle, I [Instituto de QuImica de Recursos Naturales, Universidad de Talca (Chile)
2006-04-15
We report measurements of the hysteretic magnetization of YBCO under superimposed transport current cycles, together with numerical simulations of magnetization and current density profiles in the corresponding parallel configuration. Field cooled (FC) and zero-field-cooled (ZFC) experiments were carried out on polycrystalline YBa{sub 2}Cu{sub 3}O{sub 7-x} cylinders, with both the applied magnetic field and transport current in the axial direction, and the current cycled several times, around and above the dissipative threshold. As in previously reported multicomponent field configuration experiments, the magnetization is seen to collapse to a more stable state both in FC and ZFC, because of the interplay between the shielding and transport currents. The results of our numerical simulations are in good qualitative agreement with the measurements, and the competition between shielding and transport due to vortex-pinning interactions and equilibrium magnetization effects are shown to play an important role in the range of our experiments.
Inner Core Anisotropy Due to the Magnetic Field--induced Preferred Orientation of Iron.
Karato, S
1993-12-10
Anisotropy of the inner core of the Earth is proposed to result from the lattice preferred orientation of anisotropic iron crystals during their solidification in the presence of a magnetic field. The resultant seismic anisotropy is related to the geometry of the magnetic field in the core. This hypothesis implies that the observed anisotropy (fast velocity along the rotation axis) indicates a strong toroidal field in the core, which supports a strong field model for the geodynamo if the inner core is made of hexagonal close-packed iron.
Energy Technology Data Exchange (ETDEWEB)
Claesson, J.; Probert, T. [Lund Univ. (Sweden). Dept. of Building Physics and Mathematical Physics
1996-01-01
The temperature field in rock due to a large rectangular grid of heat releasing canisters containing nuclear waste is studied. The solution is by superposition divided into different parts. There is a global temperature field due to the large rectangular canister area, while a local field accounts for the remaining heat source problem. The global field is reduced to a single integral. The local field is also solved analytically using solutions for a finite line heat source and for an infinite grid of point sources. The local solution is reduced to three parts, each of which depends on two spatial coordinates only. The temperatures at the envelope of a canister are given by a single thermal resistance, which is given by an explicit formula. The results are illustrated by a few numerical examples dealing with the KBS-3 concept for storage of nuclear waste. 8 refs.
Glacier Acceleration and Thinning after Ice Shelf Collapse in the Larsen B Embayment, Antarctica
Scambos, T. A.; Bohlander, J. A.; Shuman, C. A.; Skvarca, P.
2004-01-01
Ice velocities derived from five Landsat 7 images acquired between January 2000 and February 2003 show a two- to six-fold increase in centerline speed of four glaciers flowing into the now-collapsed section of the Larsen B Ice Shelf. Satellite laser altimetry from ICEsat indicates the surface of Hektoria Glacier lowered by up to 38 +/- 6 m a six-month period beginning one year after the break-up in March 2002. Smaller elevation losses are observed for Crane and Jorum glaciers over a later 5-month period. Two glaciers south of the collapse area, Flask and Leppard, show little change in speed or elevation. Seasonal variations in speed preceding the large post-collapse velocity increases suggest that both summer melt percolation and changes in the stress field due to shelf removal play a major role in glacier dynamics.
Collapsibility and Wettability of Hydrothermally Treated Wood
Directory of Open Access Journals (Sweden)
Ghane Mirzaee
2012-06-01
Full Text Available Study on collapsibility of oriental beech (Fagus orientalis and paulownia (Paulownia fortune woods due to their hydrothermal modification as well as the wettability and the water absorption were the main concerns of this research work. Out of these species, blocks of sizes 50×6×6cm were prepared and treated at temperatures of 130 and 150°C with a holding time of 30min in a stainless steel reactor containing the water. Oven dried weights and dimensions of the blocks were measured before and after the hydrothermal treatment to determine the density, collapsibility and mass loss due to applied treatment. Furthermore, small blocks of the treated wood were prepared and soaked in water for 1000-hr to determine their water absorption. The wettability of the woods were also measured to determine the water repellency. Results revealed that any raise of treatment temperature up to 150°C increases the density and the collapsibility. Treated wood collapsed in all directions; however, tangential collapse was much worse than the other directions. The contact angle was increased by rise of the treatment temperature. Hydrothermal treatment has reduced water absorption and increased the hydrophobicity of the woods.
Magnetic field deformation due to electron drift in a Hall thruster
Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu
2017-01-01
The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.
Magnetic field deformation due to electron drift in a Hall thruster
Directory of Open Access Journals (Sweden)
Han Liang
2017-01-01
Full Text Available The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM. The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.
MHD flow and heat transfer due to the axisymmetric stretching of a sheet with induced magnetic field
El-Mistikawy, Tarek M A
2016-01-01
The full MHD equations, governing the flow due to the axisymmetric stretching of a sheet in the presence of a transverse magnetic field, can be cast in a self similar form. This allows evaluation of the induced magnetic field and its effect on the flow and heat transfer. The problem involves three parameters- the magnetic Prandtl number, the magnetic interaction number, and the Prandtl number. Numerical solutions are obtained for the velocity field, the magnetic field, and the temperature, at different values of the magnetic Prandtl number and the magnetic interaction number. The contributions of the viscous dissipation, Joule heating, and streamwise diffusion to the heat flux toward the sheet are assessed.
Tulasi Ram, S.; Ajith, K. K.; Yamamoto, M.; Otsuka, Y.; Yokoyama, T.; Niranjan, K.; Gurubaran, S.
2015-07-01
The unusual evolution of fresh and intense field-aligned irregularities (FAI) near sunrise terminator which further sustained for more than 90 min of postsunrise period was observed by Equatorial Atmosphere Radar at Kototabang during a minor geomagnetic storm period. These FAI echoes were initially observed around 250-350 km altitudes, growing upward under eastward polarization electric fields indicating the plasma bubbles that are fully depleted along the flux tube. The background low-latitude F layer dynamics that lead to the development of these dawn time FAI have been investigated from two ionosondes at near magnetic conjugate low-latitude locations. A minor geomagnetic storm was in progress which did not appear to cause any large electric field perturbations at preceding postsunset to midnight period over Indonesian sector. However, the prompt penetration of overshielding electric fields associated with sudden northward turning of interplanetary magnetic field Bz caused spectacular ascent of F layer and development of fresh, intense, and upward evolutionary plasma bubbles near sunrise terminator.
Experimental demonstration of a fifth force due to chameleon field via cold atoms
Zhang, Hai-Chao
2017-01-01
We tested a fifth force using cold atom experiments. The accelerated expansion of the universe implies the possibility of the presence of a scalar field throughout the universe driving the acceleration. This field would result in a detectable force between normal-matter objects. Theory of the chameleon field states that the force should be strong in a thin shell near the surface of a source object but greatly suppressed inside and outside of the source object. We used two atom clouds: one as ...
Quantum transport of the semiconductor pump: Due to an axial external field
Energy Technology Data Exchange (ETDEWEB)
Xiao, Yun-Chang, E-mail: phyxiaofan@163.com [College of Electrical and Information Engineering, Hunan University of Arts and Science, Changde 415000 (China); Wang, Ri-Xing, E-mail: wangrixing@sina.com [College of Electrical and Information Engineering, Hunan University of Arts and Science, Changde 415000 (China); Deng, Wei-Ying, E-mail: weiyindeng@gmail.com [Department of Physics, South China University of Technology, Guangzhou 510640 (China)
2014-09-15
Parametric semiconductor pump modulated by the external field is investigated. The pump center attaching to two normal leads is driven by the potentials formed in the interfaces. With the Floquet scattering matrix method, the pumped currents modulated by the parameters are studied. Results reveal that the charge and spin currents pumped from the system can be strengthen by the external field besides the potentials. Directed spin currents can be pumped more strongly than the charge currents, and even the pure spin currents can be achieved in some external field couplings to the pump parameters.
Circulation in the high-latitude thermosphere due to electric fields and Joule heating
Heaps, M. G.; Megill, L. R.
1975-01-01
Electric fields in the earth's upper atmosphere are capable of setting the neutral atmosphere in motion via ion-neutral collisions as well as pressure gradients from resultant Joule heating. By means of simple models for the high-latitude thermosphere and electric fields a simplified set of coupled equations is solved which show that moderate electric fields, when present for a period of several hours, are capable of displacing the neutral atmosphere of the order of 50 km in the vertical, a few hundred kilometers in the north-south direction and over 1000 km in the east-west direction.
Collapse in the Endurance Athlete
Institute of Scientific and Technical Information of China (English)
Robert Sallis
2005-01-01
@@ KEY POINTS · Most cases of collapse are benign in nature and occur after an athlete crosses the finish line or stops exercising. Athletes who collapse before finishing are more likely to have a serious condition.
Spreading and collapse of big basaltic volcanoes
Puglisi, Giuseppe; Bonforte, Alessandro; Guglielmino, Francesco; Peltier, Aline; Poland, Michael
2016-04-01
Among the different types of volcanoes, basaltic ones usually form the most voluminous edifices. Because volcanoes are growing on a pre-existing landscape, the geologic and structural framework of the basement (and earlier volcanic landforms) influences the stress regime, seismicity, and volcanic activity. Conversely, the masses of these volcanoes introduce a morphological anomaly that affects neighboring areas. Growth of a volcano disturbs the tectonic framework of the region, clamps and unclamps existing faults (some of which may be reactivated by the new stress field), and deforms the substratum. A volcano's weight on its basement can trigger edifice spreading and collapse that can affect populated areas even at significant distance. Volcano instability can also be driven by slow tectonic deformation and magmatic intrusion. The manifestations of instability span a range of temporal and spatial scales, ranging from slow creep on individual faults to large earthquakes affecting a broad area. In the frame of MED-SVU project, our work aims to investigate the relation between basement setting and volcanic activity and stability at three Supersite volcanoes: Etna (Sicily, Italy), Kilauea (Island of Hawaii, USA) and Piton de la Fournaise (La Reunion Island, France). These volcanoes host frequent eruptive activity (effusive and explosive) and share common features indicating lateral spreading and collapse, yet they are characterized by different morphologies, dimensions, and tectonic frameworks. For instance, the basaltic ocean island volcanoes of Kilauea and Piton de la Fournaise are near the active ends of long hotspot chains while Mt. Etna has developed at junction along a convergent margin between the African and Eurasian plates and a passive margin separating the oceanic Ionian crust from the African continental crust. Magma supply and plate velocity also differ in the three settings, as to the sizes of the edifices and the extents of their rift zones. These
Corrections to the Casimir Force Due to Interactions of Plasmons and Electromagnetic Field
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Considering the interaction between the electromagnetic field and matter field, a concise method is used to calculate the ground-state energy of the interacting system. With the assumption of squeezed-like state, a new vacuum state is obtained for the interacting system. The energy of the new vacuum state is obviously lower than that of unperturbed vacuum state. Based on the new vacuum state, the correction to the Casimir force is obtained.The result shows that the contribution of the interaction is a repulsive one and the Casimir effect is attributed to both electromagnetic field and matter field. On the basis of the obtained results, the recent experimental data can be explained reasonably.
Electromagnetic field generation in the downstream of electrostatic shocks due to electron trapping
Stockem, A; Fonseca, R A; Silva, L O
2014-01-01
A new magnetic field generation mechanism in electrostatic shocks is found, which can produce fields with magnetic energy density as high as 0.01 of the kinetic energy density of the flows on time scales $ \\tilde \\, 10^4 \\, {\\omega}_{pe}^{-1}$. Electron trapping during the shock formation process creates a strong temperature anisotropy in the distribution function, giving rise to the pure Weibel instability. The generated magnetic field is well-confined to the downstream region of the electrostatic shock. The shock formation process is not modified and the features of the shock front responsible for ion acceleration, which are currently probed in laser-plasma laboratory experiments, are maintained. However, such a strong magnetic field determines the particle trajectories downstream and has the potential to modify the signatures of the collisionless shock.
Neutron star deformation due to arbitrary-order multipolar magnetic fields
Mastrano, Alpha; Melatos, Andrew
2013-01-01
Certain multi-wavelength observations of neutron stars, such as intermittent radio emissions from rotation-powered pulsars beyond the pair-cascade death line, the pulse profile of the magnetar SGR 1900+14 after its 1998 August 27 giant flare, and X-ray spectral features of PSR J0821-4300 and SGR 0418+5729, suggest that the magnetic fields of non-accreting neutron stars are not purely dipolar and may contain higher-order multipoles. Here, we calculate the ellipticity of a non-barotropic neutron star with (i) a quadrupole poloidal-toroidal field, and (ii) a purely poloidal field containing arbitrary multipoles, deriving the relation between the ellipticity and the multipole amplitudes. We present, as a worked example, a purely poloidal field comprising dipole, quadrupole, and octupole components. We show the correlation between field energy and ellipticity for each multipole, that the l=4 multipole has the lowest energy, and that l=5 has the lowest ellipticity. We show how a mixed multipolar field creates an ob...
A blood-oxygenation-dependent increase in blood viscosity due to a static magnetic field.
Yamamoto, Toru; Nagayama, Yuki; Tamura, Mamoru
2004-07-21
As the magnetic field of widely used MR scanners is one of the strongest magnetic fields to which people are exposed, the biological influence of the static magnetic field of MR scanners is of great concern. One magnetic interaction in biological subjects is the magnetic torque on the magnetic moment induced by biomagnetic substances. The red blood cell is a major biomagnetic substance, and the blood flow may be influenced by the magnetic field. However, the underlying mechanisms have been poorly understood. To examine the mechanisms of the magnetic influence on blood viscosity, we measured the time for blood to fall through a glass capillary inside and outside a 1.5 T MR scanner. Our in vitro results showed that the blood viscosity significantly increased in a 1.5 T MR scanner, and also clarified the mechanism of the interaction between red blood cells and the external magnetic field. Notably, the blood viscosity increased depending on blood oxygenation and the shear rate of the blood flow. Thus, our findings suggest that even a 1.5 T magnetic field may modulate blood flow.
Directory of Open Access Journals (Sweden)
G. Chisham
2004-12-01
Full Text Available This study presents, for the first time, detailed spatiotemporal measurements of the reconnection electric field in the Northern Hemisphere ionosphere during an extended interval of northward interplanetary magnetic field. Global convection mapping using the SuperDARN HF radar network provides global estimates of the convection electric field in the northern polar ionosphere. These are combined with measurements of the ionospheric footprint of the reconnection X-line to determine the spatiotemporal variation of the reconnection electric field along the whole X-line. The shape of the spatial variation is stable throughout the interval, although its magnitude does change with time. Consequently, the total reconnection potential along the X-line is temporally variable but its typical magnitude is consistent with the cross-polar cap potential measured by low-altitude satellite overpasses. The reconnection measurements are mapped out from the ionosphere along Tsyganenko model magnetic field lines to determine the most likely reconnection location on the lobe magnetopause. The X-line length on the lobe magnetopause is estimated to be ~6–11 R_{E} in extent, depending on the assumptions made when determining the length of the ionospheric X-line. The reconnection electric field on the lobe magnetopause is estimated to be ~0.2mV/m in the peak reconnection region.
Key words. Space plasma physics (Magnetic reconnection – Magnetospheric physics (Magnetopause, cusp and boundary layers – Ionosphere (Plasma convection
Rigid collapsible dish structure
Palmer, William B. (Inventor); Giebler, Martin M. (Inventor)
1982-01-01
A collapsible dish structure composed of a plurality of rows of rigid radial petal assemblies concentric with the axis of the dish. The petal assemblies consist of a center petal and two side petals, the center petal hinged on an axis tangent to a circle concentric with the axis of the dish and the side petals hinged to the center petal at their mating edge. The center petal is foldable inwardly and the side petals rotate about their hinges such that the collapsed dish structure occupies a much smaller volume than the deployed dish. Means of controlling the shape of the dish to compensate for differential expansion of the deployed dish are also provided.
Directory of Open Access Journals (Sweden)
Ovidiu Cristinel Stoica
2016-01-01
Full Text Available Wavefunction collapse is usually seen as a discontinuous violation of the unitary evolution of a quantum system, caused by the observation. Moreover, the collapse appears to be nonlocal in a sense which seems at odds with general relativity. In this article the possibility that the wavefunction evolves continuously and hopefully unitarily during the measurement process is analyzed. It is argued that such a solution has to be formulated using a time symmetric replacement of the initial value problem in quantum mechanics. Major difficulties in apparent conflict with unitary evolution are identified, but eventually its possibility is not completely ruled out. This interpretation is in a weakened sense both local and realistic, without contradicting Bell's theorem. Moreover, if it is true, it makes general relativity consistent with quantum mechanics in the semiclassical framework.Quanta 2016; 5: 19–33.
Skidmore, Jonathan; Doyle, Hugo; Tully, Brett; Betney, Matthew; Foster, Peta; Ringrose, Tim; Ramasamy, Rohan; Parkin, James; Edwards, Tom; Hawker, Nicholas
2016-10-01
Results from the experimental investigation of cavity collapse driven by a strong planar shock (>6km/s) are presented. Data from high speed framing cameras, laser backlit diagnostics and time-resolved pyromety are used to validate the results of hydrodynamic front-tracking simulations. As a code validation exercise, a 2-stage light gas gun was used to accelerate a 1g Polycarbonate projectile to velocities exceeding 6km/s; impact with a PMMA target containing a gas filled void results in the formation of a strong shockwave with pressures exceeding 1Mbar. The subsequent phenomena associated with the collapse of the void and excitation of the inert gas fill are recorded and compared to simulated data. Variation of the mass density and atomic number of the gas fill is used to alter the plasma parameters furthering the extent of the code validation.
Dynamics of apparent horizons in quantum gravitational collapse
Tavakoli, Yaser; Dapor, Andrea
2013-01-01
We study the gravitational collapse of a massless scalar field within the effective scenario of loop quantum gravity. Classical singularity is avoided and replaced by a quantum bounce in this model. It is shown that, quantum gravity effects predict a threshold scale below which no horizon can form as the collapse evolves towards the bounce.
Zhao, Chuanzhen; Xu, Xiaobin; Yang, Qing; Man, Tianxing; Jonas, Steven J; Schwartz, Jeffrey J; Andrews, Anne M; Weiss, Paul S
2017-08-09
We report a facile, high-throughput soft lithography process that utilizes nanoscale channels formed naturally at the edges of microscale relief features on soft, elastomeric stamps. Upon contact with self-assembled monolayer (SAM) functionalized substrates, the roof of the stamp collapses, resulting in the selective removal of SAM molecules via a chemical lift-off process. With this technique, which we call self-collapse lithography (SCL), sub-30 nm patterns were achieved readily using masters with microscale features prepared by conventional photolithography. The feature sizes of the chemical patterns can be varied continuously from ∼2 μm to below 30 nm by decreasing stamp relief heights from 1 μm to 50 nm. Likewise, for fixed relief heights, reducing the stamp Young's modulus from ∼2.0 to ∼0.8 MPa resulted in shrinking the features of resulting patterns from ∼400 to ∼100 nm. The self-collapse mechanism was studied using finite element simulation methods to model the competition between adhesion and restoring stresses during patterning. These results correlate well with the experimental data and reveal the relationship between the line widths, channel heights, and Young's moduli of the stamps. In addition, SCL was applied to pattern two-dimensional arrays of circles and squares. These chemical patterns served as resists during etching processes to transfer patterns to the underlying materials (e.g., gold nanostructures). This work provides new insights into the natural propensity of elastomeric stamps to self-collapse and demonstrates a means of exploiting this behavior to achieve patterning via nanoscale chemical lift-off lithography.
Lee, C. J.; Jang, G. H.
2008-04-01
This paper investigates the distortion of magnetic field of a brushless dc (BLDC) motor due to deformed rubber magnet. Global or local deformation of rubber magnet in the BLDC motor is mathematically modeled by using the Fourier series. Distorted magnetic field is calculated by using the finite element method, and unbalanced magnetic force is calculated by using the Maxwell stress tensor. When the rubber magnet is globally or locally deformed, the unbalanced magnetic force has the frequencies with the first harmonic and the harmonics of slot number ±1. However, the harmonic deformation with multiple of common divisor of pole and slot does not generate unbalanced magnetic force due to the rotational symmetry.
Stability of Reflection Symmetric Collapsing Structures
Sharif, M
2015-01-01
In this paper, we explore instability regions of non-static axial reflection symmetric spacetime with anisotropic source in the interior. We impose linear perturbation on the Einstein field equations and dynamical equations to establish the collapse equation. The effects of different physical factors like energy density and anisotropic stresses on the instability regions are studied under Newtonian and post-Newtonian limits. We conclude that stiffness parameter has a significant role in this analysis while the reflection terms increase instability ranges of non-static axial collapse.
Buschauer, Robert
2014-01-01
In undergraduate E&M courses the magnetic field due to a finite length, current-carrying wire can be calculated using the Biot-Savart law. However, to the author's knowledge, no textbook presents the calculation of this field using the Ampere-Maxwell law: ?B [multiplied by] dl = µ[subscript 0] (I + e[subscript 0] dF/dt) [multiplied by] 1
Gravitational blueshift from a collapsing object
Directory of Open Access Journals (Sweden)
Lingyao Kong
2015-02-01
Full Text Available We discuss a counterintuitive phenomenon of classical general relativity, in which a significant fraction of the radiation emitted by a collapsing object and detected by a distant observer may be blueshifted rather than redshifted. The key-point is that when the radiation propagates inside the collapsing body, it is blueshifted, and this time interval may be sufficiently long for the effect to be larger than the later redshift due to the propagation in the vacuum exterior, from the surface of the body to the distant observer. Unfortunately, the phenomenon can unlikely have direct observational implications, but it is interesting by itself as a pure relativistic effect.
Gravitational blueshift from a collapsing object
Energy Technology Data Exchange (ETDEWEB)
Kong, Lingyao; Malafarina, Daniele; Bambi, Cosimo, E-mail: bambi@fudan.edu.cn
2015-02-04
We discuss a counterintuitive phenomenon of classical general relativity, in which a significant fraction of the radiation emitted by a collapsing object and detected by a distant observer may be blueshifted rather than redshifted. The key-point is that when the radiation propagates inside the collapsing body, it is blueshifted, and this time interval may be sufficiently long for the effect to be larger than the later redshift due to the propagation in the vacuum exterior, from the surface of the body to the distant observer. Unfortunately, the phenomenon can unlikely have direct observational implications, but it is interesting by itself as a pure relativistic effect.
Role of evaporation in gravitational collapse
Baccetti, Valentina; Terno, Daniel R
2016-01-01
We study collapse of evaporating thin dust shells using two families of metrics to describe the {exterior geometry: the outgoing Vaidya metric and the retarded Schwarzschild metric. Both allow incorporation of Page's evaporation law (the latter in terms of the time at infinity), resulting in a modified equation} of motion for the shell. In these scenarios we find in each case that the collapse is accelerated due to evaporation, but the Schwarzschild radius is not crossed. Instead the shell is always at a certain sub-Planckian distance from this would-be horizon that depends only on the mass and evaporation rate.
Abadie, S. M.; Harris, J. C.; Grilli, S. T.; Fabre, R.
2012-05-01
In this work, we study waves generated by the potential collapse of the west flank of the Cumbre Vieja Volcano (CVV; La Palma, Canary Island, Spain) through numerical simulations performed in two stages: (i) the initial slide motion and resulting free surface elevation are first calculated using a 3D Navier-Stokes model; (ii) generated waves are then input into a 2D (horizontal) Boussinesq model to further simulate propagation to the nearby islands. Unlike in earlier work on CVV, besides a similar extreme slide volume scenario of 450 km3, in our simulations: (i) we consider several slide scenarios featuring different volumes (i.e., 20, 40, 80 km3), which partly result from a geotechnical slope stability analysis; (ii) we use a more accurate bathymetry; and (iii) an incompressible version of a multiple-fluid/material Navier-Stokes model. We find wave trains for each scenario share common features in terms of wave directivity, frequency, and time evolution, but maximum elevations near CVV significantly differ, ranging from 600 to 1200 m (for increasing slide volume). Additionally, our computations show that significant energy transfer from slide to waves only lasts for a short duration (order 200 s), which justifies concentrating our best modeling efforts on the early slide motion phase. The anticipated consequences of such wave trains on La Palma and other Canary Islands are assessed in detail in the paper.
Collapse, environment, and society.
Butzer, Karl W
2012-03-06
Historical collapse of ancient states poses intriguing social-ecological questions, as well as potential applications to global change and contemporary strategies for sustainability. Five Old World case studies are developed to identify interactive inputs, triggers, and feedbacks in devolution. Collapse is multicausal and rarely abrupt. Political simplification undermines traditional structures of authority to favor militarization, whereas disintegration is preconditioned or triggered by acute stress (insecurity, environmental or economic crises, famine), with breakdown accompanied or followed by demographic decline. Undue attention to stressors risks underestimating the intricate interplay of environmental, political, and sociocultural resilience in limiting the damages of collapse or in facilitating reconstruction. The conceptual model emphasizes resilience, as well as the historical roles of leaders, elites, and ideology. However, a historical model cannot simply be applied to contemporary problems of sustainability without adjustment for cumulative information and increasing possibilities for popular participation. Between the 14th and 18th centuries, Western Europe responded to environmental crises by innovation and intensification; such modernization was decentralized, protracted, flexible, and broadly based. Much of the current alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. It fails to appreciate that resilience and readaptation depend on identified options, improved understanding, cultural solidarity, enlightened leadership, and opportunities for participation and fresh ideas.
Silo Collapse under Granular Discharge
Gutiérrez, G.; Colonnello, C.; Boltenhagen, P.; Darias, J. R.; Peralta-Fabi, R.; Brau, F.; Clément, E.
2015-01-01
We investigate, at a laboratory scale, the collapse of cylindrical shells of radius R and thickness t induced by a granular discharge. We measure the critical filling height for which the structure fails upon discharge. We observe that the silos sustain filling heights significantly above an estimation obtained by coupling standard shell-buckling and granular stress distribution theories. Two effects contribute to stabilize the structure: (i) below the critical filling height, a dynamical stabilization due to granular wall friction prevents the localized shell-buckling modes to grow irreversibly; (ii) above the critical filling height, collapse occurs before the downward sliding motion of the whole granular column sets in, such that only a partial friction mobilization is at play. However, we notice also that the critical filling height is reduced as the grain size d increases. The importance of grain size contribution is controlled by the ratio d /√{R t }. We rationalize these antagonist effects with a novel fluid-structure theory both accounting for the actual status of granular friction at the wall and the inherent shell imperfections mediated by the grains. This theory yields new scaling predictions which are compared with the experimental results.
Formation of electric dipoles in pea stem tissue due to an electric field
Ahmadi, Fatemeh; Farahani, Elham
2016-07-01
For examining the effect of an electrical field (DC) on pea seed, we exposed the pea seeds to electric fields with intensities 1, 4 and 7 kV/cm for 30, 230, 430 and 630 seconds. The tests were repeated three times, and each iteration had 5 seeds. Then, the seeds were moved to packaged plates. Finally, microscopic observation of the pea stem tissue showed that the application of a DC electrical field caused a deformation in the pea stem tissue. The results led us to examine the deformation of the tissue theoretically and to address that deformation as an electrostatic problem. In this regard, we modeled the pea stem based on the formation of electric dipoles. Then, theoretically, we calculated the force acting on each xylem section by coding, and the results were consistent with the experimental data.
Bingham, Richard J; Smye, Stephen W
2010-01-01
Bilayer lipid membranes [BLMs] are an essential component of all biological systems, forming a functional barrier for cells and organelles from the surrounding environment. The lipid molecules that form membranes contain both permanent and induced dipoles, and an electric field can induce the formation of pores when the transverse field is sufficiently strong (electroporation). Here, a phenomenological free energy is constructed to model the response of a BLM to a transverse static electric field. The model contains a continuum description of the membrane dipoles and a coupling between the headgroup dipoles and the membrane tilt. The membrane is found to become unstable through buckling modes, which are weakly coupled to thickness fluctuations in the membrane. The thickness fluctuations, along with the increase in interfacial area produced by membrane buckling, increase the probability of localized membrane breakdown, which may lead to pore formation. The instability is found to depend strongly on the strengt...
Estes, Robert D.
1989-01-01
A method is presented for calculating the electromagnetic wave field on the earth's surface associated with the operation of an electrodynamic tethered satellite system of constant or slowly varying current in the upper ionosphere. The wave field at the ionospheric boundary and on the earth's surface is obtained by numerical integration. The results suggest that the ionospheric waves do not propagate into the atmosphere and that the image of the Alfven wings from a steady-current tether should be greatly broadened on the earth's surface.
Non-locality in quantum field theory due to general relativity
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier; Croon, Djuna; Fritz, Christopher [University of Sussex, Physics and Astronomy, Brighton (United Kingdom)
2015-12-15
We show that general relativity coupled to a quantum field theory generically leads to non-local effects in the matter sector. These non-local effects can be described by non-local higher dimensional operators which remarkably have an approximate shift symmetry. When applied to inflationary models, our results imply that small non-Gaussianities are a generic feature of models based on general relativity coupled to matter fields. However, these effects are too small to be observable in the cosmic microwave background. (orig.)
Effects of Blood Flow on the Heating of Cardiac Stents Due to Radio Frequency Fields
Elder, Nate Ian
2013-01-01
A safety concern during MRI scans with implanted medical devices is heating induced by the incident RF field. This research was performed to better understand the heating of cardiac stents during MRI. Heating of cardiac stents tends to occur at their ends. The temperature rise will be affected by blood flow through the lumen of the stent. In this work, an experiment was performed to simulate heating of a cardiac stent in the presence of blood flow during exposure to the electric field induced...
Institute of Scientific and Technical Information of China (English)
DING Chi-Kun; JING Ji-Liang
2007-01-01
@@ The statistical-mechanical entropies of the Schwarzschild black hole arising from the scalar, Weyl neutrino, electromagnetic, Rarita-Schwinger and gravitational fields are investigated in the Painlevé and Lernaitre coordinates.Although the metrics in the Painlevé and the Lemaitre coordinates do not obviously possess the singularity as that in the Schwarzschild coordinate, we find that the entropies of the arbitrary spin fields in both the Painlevé and Lemaitre coordinates are exactly equivalent to that in the Schwarzschild coordinate.
Chirped Auger electron emission due to field-assisted post-collision interaction
Directory of Open Access Journals (Sweden)
Bonitz M.
2013-03-01
Full Text Available We have investigated the Auger decay in the temporal domain by applying a terahertz streaking light field. Xenon and krypton atoms were studied by implementing the free-electron laser in Hamburg (FLASH as well as a source of high-order harmonic radiation combined with terahertz pulses from an optical rectification source. The observed linewidth asymmetries in the streaked spectra suggest a chirped Auger electron emission which is understood in terms of field-assisted post-collision interaction. The experimentally obtained results agree well with model calculations.
Non-locality in quantum field theory due to general relativity
Energy Technology Data Exchange (ETDEWEB)
Calmet, Xavier, E-mail: x.calmet@sussex.ac.uk; Croon, Djuna, E-mail: d.croon@sussex.ac.uk; Fritz, Christopher, E-mail: c.fritz@sussex.ac.uk [Physics and Astronomy, University of Sussex, Falmer, BN1 9QH, Brighton (United Kingdom)
2015-12-19
We show that general relativity coupled to a quantum field theory generically leads to non-local effects in the matter sector. These non-local effects can be described by non-local higher dimensional operators which remarkably have an approximate shift symmetry. When applied to inflationary models, our results imply that small non-Gaussianities are a generic feature of models based on general relativity coupled to matter fields. However, these effects are too small to be observable in the cosmic microwave background.
Protostellar collapse and fragmentation using an MHD GADGET
Bürzle, Florian; Stasyszyn, Federico; Greif, Thomas; Dolag, Klaus; Klessen, Ralf S; Nielaba, Peter
2010-01-01
Although the influence of magnetic fields is regarded as vital in the star formation process, only a few magnetohydrodynamics (MHD) simulations have been performed on this subject within the smoothed particle hydrodynamics (SPH) method. This is largely due to the unsatisfactory treatment of non-vanishing divergence of the magnetic field. Recently smoothed particle magnetohydrodynamics (SPMHD) simulations based on Euler potentials have proven to be successful in treating MHD collapse and fragmentation problems, however these methods are known to have some intrinsical difficulties. We have performed SPMHD simulations based on a traditional approach evolving the magnetic field itself using the induction equation. To account for the numerical divergence, we have chosen an approach that subtracts the effects of numerical divergence from the force equation, and additionally we employ artificial magnetic dissipation as a regularization scheme. We apply this realization of SPMHD to a widely known setup, a variation o...
Gravitational collapse of generalised Vaidya spacetime
Mkenyeleye, Maombi D; Maharaj, Sunil D
2014-01-01
We study the gravitational collapse of a generalised Vaidya spacetime in the context of the Cosmic Censorship hypothesis. We develop a general mathematical framework to study the conditions on the mass function so that future directed non-spacelike geodesics can terminate at the singularity in the past. Thus our result generalises earlier works on gravitational collapse of the combinations of Type-I and Type-II matter fields. Our analysis shows transparently that there exist classes of generalised Vaidya mass functions for which the collapse terminates with a locally naked central singularity. We calculate the strength of the these singularities to show that they are strong curvature singularities and there can be no extension of spacetime through them.
Blue straggler formation at core collapse
Banerjee, Sambaran
2016-01-01
Among the most striking feature of blue straggler stars (BSS) is the presence of multiple sequences of BSSs in the colour-magnitude diagrams (CMDs) of several globular clusters. It is often envisaged that such a multiple BSS sequence would arise due a recent core collapse of the host cluster, triggering a number of stellar collisions and binary mass transfers simultaneously over a brief episode of time. Here we examine this scenario using direct N-body computations of moderately massive star clusters (of order 10^4 Msun ). As a preliminary attempt, these models are initiated with approx. 8-10 Gyr old stellar population and King profiles of high concentrations, being "tuned" to undergo core collapse quickly. BSSs are indeed found to form in a "burst" at the onset of the core collapse and several of such BS-bursts occur during the post-core-collapse phase. In those models that include a few percent primordial binaries, both collisional and binary BSSs form after the onset of the (near) core-collapse. However, t...
Enhanced ion acoustic lines due to strong ion cyclotron wave fields
Directory of Open Access Journals (Sweden)
H. Bahcivan
2008-07-01
Full Text Available The Fast Auroral Snapshot Explorer (FAST satellite detected intense and coherent 5–20 m electric field structures in the high-latitude topside auroral ionosphere between the altitudes of 350 km and 650 km. These electric fields appear to belong to electrostatic ion cyclotron (EIC waves in terms of their frequency and wavelengths. Numerical simulations of the response of an electron plasma to the parallel components of these fields show that the waves are likely to excite a wave-driven parallel ion acoustic (IA instability, through the creation of a highly non-Maxwellian electron distribution function, which when combined with the (assumed Maxwellian ion distribution function provides inverse Landau damping. Because the counter-streaming threshold for excitation of EIC waves is well below that for excitation of IA waves (assuming Maxwellian statistics our results suggest a possible two step mechanism for destabilization of IA waves. Combining this simulation result with the observational fact that these EIC waves share a common phenomenology with the naturally enhanced IA lines (NEIALS observed by incoherent scatter radars, especially that they both occur near field-aligned currents, leads to the proposition that this two-step mechanism is an alternative path to NEIALS.
RF fields due to Schottky noise in a coasting particle beam
Faltin, L
1977-01-01
The RF fields inside a rectangular chamber excited by the Schottky noise current inherently present in a coasting particle beam are calculated, using a simple beam model. Vertical betatron oscillations are assumed. The power flow accompanying the beam is given as well as the resulting characteristic impedance. Numerical results are presented.
Locally varying particle masses due to a scalar fifth-force field
Energy Technology Data Exchange (ETDEWEB)
Fujii, Yasunori (Tokyo Univ. (Japan). Inst. of Physics)
1991-02-14
If a scalar field mediates a fifth force, masses of elementary particles will be affected locally by massive sources, resulting in a change of size of macroscopic objects. The effect is shown to be testable by using an ultra-sensitive laser interferometric technique when it is fully developed for the use in gravity-wave detectors. (orig.).
Annual losses of weed seeds due to predation in organic cereal fields
Westerman, P.R.; Wes, J.S.; Kropff, M.J.; Werf, van der W.
2003-01-01
1. Post-dispersal seed losses in annual arable weed species are poorly quantified, but may be of significance for natural population control, especially if they can be manipulated. We hypothesized that weed seed predation on the soil surface was significant, so we measured rates in the field to esti
Dynamo action due to alpha fluctuations in a shear flow: mean--field theory
Sridhar, S
2013-01-01
We present an analytical theory of the growth of a large-scale mean magnetic field in a linear shear flow with fluctuations in time of the alpha parameter (equivalently, kinetic helicity). Using shearing coordinates and Fourier variables we derive a set of coupled integro-differential equations, governing the dynamics of the mean magnetic field, that are non perturbative in the rate of shear. When the alpha fluctuations are of white-noise form, the mean electromotive force (EMF) is identical to the negative diffusive form derived by Kraichnan for the case of no shear; the physical reason is that shear takes time to act, and white-noise fluctuations have zero correlation time. We demonstrate that the white-noise case does not allow for large-scale dynamo action. We then allow for a small but non zero correlation time and show that, for a slowly varying mean magnetic field, the mean EMF has additional terms that depend on a combination of shear and alpha fluctuations; the mean-field equations now reduce to a se...
Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response.
Toscano, Giuseppe; Raza, Søren; Jauho, Antti-Pekka; Mortensen, N Asger; Wubs, Martijn
2012-02-13
We study the effect of nonlocal optical response on the optical properties of metallic nanowires, by numerically implementing the hydrodynamical Drude model for arbitrary nanowire geometries. We first demonstrate the accuracy of our frequency-domain finite-element implementation by benchmarking it in a wide frequency range against analytical results for the extinction cross section of a cylindrical plasmonic nanowire. Our main results concern more complex geometries, namely cylindrical and bow-tie nanowire dimers that can strongly enhance optical fields. For both types of dimers we find that nonlocal response can strongly affect both the field enhancement in between the dimers and their respective extinction cross sections. In particular, we give examples of blueshifted maximal field enhancements near hybridized plasmonic dimer resonances that are still large but nearly two times smaller than in the usual local-response description. For the same geometry at a fixed frequency, the field enhancement and cross section can also be significantly more enhanced in the nonlocal-response model.
Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER
Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari
2016-06-01
Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n = 1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n > 4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n = 1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n = 1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.
Energy conversion of the flare due to direct electric fields from the sheared reconnection
Hirayama, T.
In this paper we present a new mechanism of the main energy conversion of the solar flare. Since a flare inducing prominence (flux tube) rises Vz ⩽ 300 km s-1, the plasmas below it cannot continuously eject with Alfvén speeds of VA = 3000 km s-1 but probably with Vz ≈ ±100 km s-1. Plasma up and downflows with VA will within a short duration be blocked between the chromosphere where reconnected flux tubes are piling up, and the slowly rising flux rope. Hence the Petschek slow shock mechanism is difficult to be realized as a major energy converting mechanism. Adopting a conventional reconnecting morphology, we assume a magnetic component parallel to the photospheric neutral line, i.e. sheared fields of By ≠ 0. Then Gauss’s law leads to non-vanishing electric charges σ; 4πσ = -div(V × B/c) ≈ By∂Vz/c∂x where the horizontal inflow velocity Vx changes to vertical down-flow Vz (e.g. By ≈ Bz = 40G and Δx ≈ 104 km). Then the electric field parallel to the magnetic fields E∥ calculated from Coulomb’s law from this σ is found to be far greater than the Dreicer field, and accelerates electrons and protons. Thus the horizontally inflowing Poynting energy flux in area Sx is immediately converted to the kinetic energy of electron beams along the magnetic field in area Sz; BVxSx/4π=12menVbeam3Sz with Sx/Sz ≈ 4. The particle beam energy flux cannot exceed the Poynting energy flux however large E∥ may be. The total energy can be supplied by 10 keV electrons and nbeam = 2 × 107 cm-3 for Vx = 40 km s-1. This inflow velocity Vx, though restricted by the rising prominence speed, explains the short flare duration consistent to observations. The electron beam flux nbeamVbeam will be simultaneously and co-spatially compensated by the slowly back-flowing bulk electrons, avoiding possible enormous charge pile-up. Instead of the conventional diffusion region, which contains serious difficulties if there is the shear as one should normally expect, we propose
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Tsang, L.; Kong, J. A.
1974-01-01
With applications to geophysical subsurface probings, electromagnetic fields due to a horizontal electric dipole laid on the surface of a two-layer medium are solved by a combination of analytic and numerical methods. Interference patterns are calculated for various layer thickness. The results are interpreted in terms of normal modes, and the accuracies of the methods are discussed.
Quasi-static electromagnetic fields due to dipole antennas in bounded conducting media
Habashy, T. M.; Kong, J. A.; Tsang, L.
1985-05-01
Several techniques are employed to model dipole fields in a two-layer dissipative medium. The upper layer is assumed lossless, the lower lossy. Attention is limited to solutions of integrals over the vertical field by quasi-static approximation (QSA), steepest descent image-source (SDIS), residue and hybrid solution approaches. A comparison of the solutions with experimental data delineates the realms of effectiveness for each computational technique: QSA is good for frequencies below 100 kHz and measurements of less than 1/30 wavelength; SDIS is valid at high frequencies on thick layers; and, normal mode residue is applicable for low frequency thin layers. Finally, intermediate conditions require all three techniques.
Resonance tuning due to Coulomb interaction in strong near-field coupled metamaterials
Energy Technology Data Exchange (ETDEWEB)
Roy Chowdhury, Dibakar, E-mail: dibakar.roychowdhury@anu.edu.au [Center for Sustainable Energy Systems, College of Engineering and Computer Science, Australian National University, Canberra 0200 (Australia); College of Engineering, Mahindra Ecole Centrale, Jeedimetla, Hyderabad, 500043 (India); Xu, Ningning; Zhang, Weili [School of Electrical Engineering and Computer Science, Oklahoma State University, Stillwater, Oklahoma 87074 (United States); Singh, Ranjan, E-mail: ranjans@ntu.edu.sg [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore); Centre for Disruptive Photonic Technologies, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 (Singapore)
2015-07-14
Coulomb's law is one of the most fundamental laws of physics that describes the electrostatic interaction between two like or unlike point charges. Here, we experimentally observe a strong effect of Coulomb interaction in tightly coupled terahertz metamaterials where the split-ring resonator dimers in a unit cell are coupled through their near fields across the capacitive split gaps. Using a simple analytical model, we evaluated the Coulomb parameter that switched its sign from negative to positive values indicating the transition in the nature of Coulomb force from being repulsive to attractive depending upon the near field coupling between the split ring resonators. Apart from showing interesting effects in the strong coupling regime between meta-atoms, Coulomb interaction also allows an additional degree of freedom to achieve frequency tunable dynamic metamaterials.
Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response
DEFF Research Database (Denmark)
Toscano, Giuseppe; Raza, Søren; Jauho, Antti-Pekka
2012-01-01
We study the effect of nonlocal optical response on the optical properties of metallic nanowires, by numerically implementing the hydrodynamical Drude model for arbitrary nanowire geometries. We first demonstrate the accuracy of our frequency-domain finite-element implementation by benchmarking...... in the usual local-response description. For the same geometry at a fixed frequency, the field enhancement and cross section can also be significantly more enhanced in the nonlocal-response model....... it in a wide frequency range against analytical results for the extinction cross section of a cylindrical plasmonic nanowire. Our main results concern more complex geometries, namely cylindrical and bow-tie nanowire dimers that can strongly enhance optical fields. For both types of dimers we find that nonlocal...
Transmission of electric fields due to distributed cloud charges in the atmosphere-ionosphere system
Paul, Suman; De, S. S.; Haldar, D. K.; Guha, G.
2017-10-01
The transmission of electric fields in the lower atmosphere by thunder clouds with a suitable charge distribution profile has been modeled. The electromagnetic responses of the atmosphere are presented through Maxwell's equations together with a time-varying source charge distribution. The conductivities are taken to be exponentially graded function of altitude. The radial and vertical electric field components are derived for isotropic, anisotropic and thundercloud regions. The analytical solutions for the total Maxwell's current which flows from the cloud into the ionosphere under DC and quasi-static conditions are obtained for isotropic region. We found that the effect of charge distribution in thunderclouds produced by lightning discharges diminishes rapidly with increasing altitudes. Also, it is found that time to reach Maxwell's currents a maximum is higher for higher altitudes.
Quantum Correction to Entropy of the Kerr Black Hole due to Rarita-Schwinger Fields
Institute of Scientific and Technical Information of China (English)
荆继良
2003-01-01
Quantum correction to entropy of the Kerr black hole arising from Rarita-Schwinger fields is studied by using the Newman-Penrose formalism and brick-wall model. It is shown that contribution of spin to the logarithmic term of the quantum correction is dependent on both the square of spin of the particle and the rotation of the black hole. For different values of a/r+, the subleading term can increase or decrease, or cannot affect the entropy.
Modelling resonant field amplification due to low-n peeling modes in JET
Energy Technology Data Exchange (ETDEWEB)
Liu Yueqiang; Saarelma, S; Gryaznevich, M P; Hender, T C; Howell, D F, E-mail: yueqiang.liu@ukaea.org.u [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)
2010-04-15
The MHD code MARS-F is used to model low-n, low-frequency, large-amplitude resonant field amplification peaks observed in JET low-pressure plasmas. The resonant response of a marginally stable, n = 1 ideal peeling mode is offered as a candidate to explain the experimental observation. It is found that, unlike the response of a stable resistive wall mode, the peeling mode response is not sensitive to the plasma rotation, nor to the kinetic effects.
Ahadzi, G M; Liston, A D; Bayford, R H; Holder, D S
2004-02-01
The holy grail of neuroimaging would be to have an imaging system, which could image neuronal electrical activity over milliseconds. One way to do this would be by imaging the impedance changes associated with ion channels opening in neuronal membranes in the brain during activity. In principle, we could measure this change by using electrical impedance tomography (EIT) but it is close to its threshold of detectability. With the inherent limitation in the use of electrodes, we propose a new scheme based on recording the magnetic field resulting from an injected current with superconducting quantum interference devices (SQUIDs), used in magnetoencephalography (MEG). We have performed a feasibility study using computer simulation. The head was modelled as concentric spheres to mimic the scalp, skull, cerebrospinal fluid and brain using the finite element method. The magnetic field 1 cm away from the scalp was estimated. An impedance change of 1% in a 2 cm radius volume in the brain was modelled as the region of depolarization. A constant current of 100 microA was injected into the head from diametrically opposite electrodes. The model predicts that the standing magnetic field is about 10 pT and changed by about 3 fT (0.03%) on depolarization. The spectral noise density in a typical MEG system in the frequency band 1-100 Hz is about 7 fT, so this places the change at the limit of detectability. This is similar to electrical recording, as in conventional EIT systems, but there may be advantages to MEG in that the magnetic field directly traverses the skull and instrumentation errors from the electrode-skin interface will be obviated.
Occupational exposure in MR facilities due to movements in the static magnetic field.
Andreuccetti, Daniele; Biagi, Laura; Burriesci, Giancarlo; Cannatà, Vittorio; Contessa, Gian Marco; Falsaperla, Rosaria; Genovese, Elisabetta; Lodato, Rossella; Lopresto, Vanni; Merla, Caterina; Napolitano, Antonio; Pinto, Rosanna; Tiberi, Gianluigi; Tosetti, Michela; Zoppetti, Nicola
2017-08-30
The exposure of operators moving in the static field of magnetic resonance (MR) facilities was assessed through measurements of the magnetic flux density, which is experienced as variable in time because of the movement. Collected data were processed to allow the comparison with most recent and authoritative safety standards. Measurements of the experienced magnetic flux density B were performed using a probe worn by volunteers moving in MR environments. A total of 55 datasets were acquired nearby a 1.5T, 3T and 7T whole body scanners. Three different metrics were applied: the maximum intensity of B, to be compared with 2013/35/EU Directive exposure limit values for static fields; the maximum variation of the vector B on every 3s-interval, for comparison with the ICNIRP-2014 basic restriction aimed at preventing vertigo effects; two weighted peak indices (for "sensory" and "health" effects: SENS-WP, HLTH-WP), assessing compliance with ICNIRP-2014 and EU Directive recommendations intended to prevent stimulation effects. Peak values of |B| were greater than 2T in 9 of the 55 datasets. All the datasets at 1.5T and 3T were compliant with the limit for vertigo effects, whereas 6 datasets at 7T turned out to be non-compliant. At 7T, all 36 datasets were non-compliant for the SENS-WP index and 26 datasets even for the HLTH-WP one. Results demonstrate that compliance with EU Directive limits for static fields does not guarantee compliance with ICNIRP-2014 reference levels and clearly show that movements in the static field could be the key component of the occupational exposure to EMF in MR facilities. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Aissani, Sarra; Guendouz, Laouès; Marande, Pierre-Louis; Canet, Daniel
2015-01-01
As demonstrated before, the application of a weak static B0 magnetic field (less than 10 G) may produce definite effects on the ¹⁴N Quadrupole Resonance line when the electric field gradient tensor at the nitrogen nucleus level is of axial symmetry. Here, we address more precisely the problem of the relative orientation of the two magnetic fields (the static field and the radio-frequency field of the pure NQR experiment). For a field of 6G, the evolution of the signal intensity, as a function of this relative orientation, is in very good agreement with the theoretical predictions. There is in particular an intensity loss by a factor of three when going from the parallel configuration to the perpendicular configuration. By contrast, when dealing with a very weak magnetic field (as the earth field, around 0.5 G), this effect drops to ca. 1.5 in the case Hexamethylenetetramine (HMT).This is explained by the fact that the Zeeman shift (due to the very weak magnetic field) becomes comparable to the natural line-width. The latter can therefore be determined by accounting for this competition. Still in the case of HMT, the estimated natural line-width is half the observed line-width. The extra broadening is thus attributed to earth magnetic field. The latter constitutes therefore the main cause of the difference between the natural transverse relaxation time (T₂) and the transverse relaxation time derived from the observed line-width (T₂(⁎)).
The onset of layer undulations in smectic A liquid crystals due to a strong magnetic field
Contreras, A.; Garcia-Azpeitia, C.; García-Cervera, C. J.; Joo, S.
2016-08-01
We investigate the effect of a strong magnetic field on a three dimensional smectic A liquid crystal. We identify a critical field above which the uniform layered state loses stability; this is associated to the onset of layer undulations. In a previous work García-Cervera and Joo (2012 Arch. Ration. Mech. Anal. 203 1-43), García-Cervera and Joo considered the two dimensional case and analyzed the transition to the undulated state via a simple bifurcation. In dimension n = 3 the situation is more delicate because the first eigenvalue of the corresponding linearized problem is not simple. We overcome the difficulties inherent to this higher dimensional setting by identifying the irreducible representations for natural actions on the functional that take into account the invariances of the problem thus allowing for reducing the bifurcation analysis to a subspace with symmetries. We are able to describe at least two bifurcation branches, highlighting the richer landscape of energy critical states in the three dimensional setting. Finally, we analyze a reduced two dimensional problem, assuming the magnetic field is very strong, and are able to relate this to a model in micromagnetics studied in Alouges et al (2002 ESAIM Control Optim. Calc. Var. 8 31-68), from where we deduce the periodicity property of minimizers.
Collapse Analysis of Timber Structures
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard
2008-01-01
A probabilistic based collapse analysis has been performed for a glulam frame structure supporting the roof over the main court in a Norwegian sports centre. The robustness analysis is based on the framework for robustness analysis introduced in the Danish Code of Practice for the Safety...... of Structures and a probabilistic modelling of the timber material proposed in the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS). Due to the framework in the Danish Code the timber structure has to be evaluated with respect to the following criteria where at least one shall...... be fulfilled: a) demonstrating that those parts of the structure essential for the safety only have little sensitivity with respect to unintentional loads and defects, or b) demonstrating a load case with „removal of a limited part of the structure‟ in order to document that an extensive failure...
Acoustic radiation force in tissue-like solids due to modulated sound field
Dontsov, Egor V.; Guzina, Bojan B.
2012-10-01
The focus of this study is the sustained body force (the so-called acoustic radiation force) in homogeneous tissue-like solids generated by an elevated-intensity, focused ultrasound field (Mach number=O(10-3)) in situations when the latter is modulated by a low-frequency signal. This intermediate-asymptotics problem, which bears relevance to a number of emerging biomedical applications, is characterized by a number of small (but non-vanishing) parameters including the Mach number, the ratio between the modulation and ultrasound frequency, the ratio of the shear to bulk modulus, and the dimensionless attenuation coefficient. On approximating the response of soft tissues as that of a nonlinear viscoelastic solid with heat conduction, the featured second-order problem is tackled via a scaling paradigm wherein the transverse coordinates are scaled by the width of the focal region, while the axial and temporal coordinate are each split into a "fast" and "slow" component with the twin aim of: (i) canceling the linear terms from the field equations governing the propagation of elevated-intensity ultrasound, and (ii) accounting for the effect of ultrasound modulation. In the context of the focused ultrasound analyses, the key feature of the proposed study revolves around the dual-time-scale treatment of the temporal variable, which allows one to parse out the contribution of ultrasound and its modulation in the nonlinear solution. In this way the acoustic radiation force (ARF), giving rise to the mean tissue motion, is exacted by computing the "fast" time average of the germane field equations. A comparison with the existing theory reveals a number of key features that are brought to light by the new formulation, including the contributions to the ARF of ultrasound modulation and thermal expansion, as well as the precise role of constitutive nonlinearities in generating the sustained body force in tissue-like solids by a focused ultrasound beam.
Developing empirical collapse fragility functions for global building types
Jaiswal, K.; Wald, D.; D'Ayala, D.
2011-01-01
Building collapse is the dominant cause of casualties during earthquakes. In order to better predict human fatalities, the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program requires collapse fragility functions for global building types. The collapse fragility is expressed as the probability of collapse at discrete levels of the input hazard defined in terms of macroseismic intensity. This article provides a simple procedure for quantifying collapse fragility using vulnerability criteria based on the European Macroseismic Scale (1998) for selected European building types. In addition, the collapse fragility functions are developed for global building types by fitting the beta distribution to the multiple experts’ estimates for the same building type (obtained from EERI’s World Housing Encyclopedia (WHE)-PAGER survey). Finally, using the collapse probability distributions at each shaking intensity level as a prior and field-based collapse-rate observations as likelihood, it is possible to update the collapse fragility functions for global building types using the Bayesian procedure.
Glover, P M; Bowtell, R
2008-01-21
A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s(-1) near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s(-1) rate of change of magnetic field were 0.15+/-0.02, 0.077+/-0.003 and 0.015+/-0.002 V m(-1) respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m(-1) s(-1) the measured rate-of-change of magnetic field was 2.2+/-0.1 T s(-1) and the peak electric field was 0.30+/-0.01 V m(-1) on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.
Glover, P. M.; Bowtell, R.
2008-01-01
A dual dipole electric field probe has been used to measure surface electric fields in vivo on a human subject over a frequency range of 0.1-800 Hz. The low-frequency electric fields were induced by natural body movements such as walking and turning in the fringe magnetic fields of a 3 T magnetic resonance whole-body scanner. The rate-of-change of magnetic field (dB/dt) was also recorded simultaneously by using three orthogonal search coils positioned near to the location of the electric field probe. Rates-of-change of magnetic field for natural body rotations were found to exceed 1 T s-1 near the end of the magnet bore. Typical electric fields measured on the upper abdomen, head and across the tongue for 1 T s-1 rate of change of magnetic field were 0.15 ± 0.02, 0.077 ± 0.003 and 0.015 ± 0.002 V m-1 respectively. Electric fields on the abdomen and chest were measured during an echo-planar sequence with the subject positioned within the scanner. With the scanner rate-of-change of gradient set to 10 T m-1 s-1 the measured rate-of-change of magnetic field was 2.2 ± 0.1 T s-1 and the peak electric field was 0.30 ± 0.01 V m-1 on the chest. The values of induced electric field can be related to dB/dt by a 'geometry factor' for a given subject and sensor position. Typical values of this factor for the abdomen or chest (for measured surface electric fields) lie in the range of 0.10-0.18 m. The measured values of electric field are consistent with currently available numerical modelling results for movement in static magnetic fields and exposure to switched magnetic field gradients.
Netzer, Moshe
2013-06-01
Overhead isolated powerline conductors (hereinafter: "OIPLC") are the most compact form for distributing low voltage currents. From the known physics of magnetic field emission from 3-phase power lines, it is expected that excellent symmetry of the 120° shifted phase currents and where compact configuration of the 3-phase+neutral line exist, the phase current vectorial summation of the magnetic field flux density (MFFD) is expected to be extremely low. However, despite this estimation, an unexpectedly very high MFFD was found in at least three towns in Israel. This paper explains the reasons leading to high MFFD emissions from compact OIPLC and the proper technique to fix it. Analysis and measurement results had led to the failure hypothsis of neutral line poor connection design and poor grounding design of the HV-LV utility transformers. The paper elaborates on the low MFFD exposure level setup by the Israeli Environmental Protection Office which adopted a rather conservative precaution principal exposure level (2 mG averaged over 24 h).
Electron residual energy due to stochastic heating in field-ionized plasma
Energy Technology Data Exchange (ETDEWEB)
Khalilzadeh, Elnaz [Department of Physics, Kharazmi University, 49 Mofateh Ave, Tehran (Iran, Islamic Republic of); The Plasma Physics and Fusion Research School, Tehran (Iran, Islamic Republic of); Yazdanpanah, Jam, E-mail: jamal.yazdan@gmail.com; Chakhmachi, Amir [The Plasma Physics and Fusion Research School, Tehran (Iran, Islamic Republic of); Jahanpanah, Jafar [Department of Physics, Kharazmi University, 49 Mofateh Ave, Tehran (Iran, Islamic Republic of); Yazdani, Elnaz [Laser and Optics Research School, Tehran (Iran, Islamic Republic of)
2015-11-15
The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.
Global Simulation of Proton Precipitation Due to Field Line Curvature During Substorms
Gilson, M. L.; Raeder, J.; Donovan, E.; Ge, Y. S.; Kepko, L.
2012-01-01
The low latitude boundary of the proton aurora (known as the Isotropy Boundary or IB) marks an important boundary between empty and full downgoing loss cones. There is significant evidence that the IB maps to a region in the magnetosphere where the ion gyroradius becomes comparable to the local field line curvature. However, the location of the IB in the magnetosphere remains in question. In this paper, we show simulated proton precipitation derived from the Field Line Curvature (FLC) model of proton scattering and a global magnetohydrodynamic simulation during two substorms. The simulated proton precipitation drifts equatorward during the growth phase, intensifies at onset and reproduces the azimuthal splitting published in previous studies. In the simulation, the pre-onset IB maps to 7-8 RE for the substorms presented and the azimuthal splitting is caused by the development of the substorm current wedge. The simulation also demonstrates that the central plasma sheet temperature can significantly influence when and where the azimuthal splitting takes place.
Electron residual energy due to stochastic heating in field-ionized plasma
Khalilzadeh, Elnaz; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz
2015-01-01
The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is here investigated. The optical response of plasma is initially modeled by using the concept of two counter-propagating electromagnetic waves. The solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared to the case without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will significantly be changed by applying a minor change to the initial conditions. Extensive kinetic 1D-3V particle-in-cell (PIC) simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in sufficient long pulse length is high enough to act as a second counter-propagating wave for triggering the stochastic e...
Electron residual energy due to stochastic heating in field-ionized plasma
Khalilzadeh, Elnaz; Yazdanpanah, Jam; Jahanpanah, Jafar; Chakhmachi, Amir; Yazdani, Elnaz
2015-11-01
The electron residual energy originated from the stochastic heating in under-dense field-ionized plasma is investigated here. Initially, the optical response of plasma is modeled by using two counter-propagating electromagnetic waves. In this case, the solution of motion equation of a single electron indicates that by including the ionization, the electron with higher residual energy compared with that without ionization could be obtained. In agreement with chaotic nature of the motion, it is found that the electron residual energy will be significantly changed by applying a minor change in the initial conditions. Extensive kinetic 1D-3V particle-in-cell simulations have been performed in order to resolve full plasma reactions. In this way, two different regimes of plasma behavior are observed by varying the pulse length. The results indicate that the amplitude of scattered fields in a proper long pulse length is high enough to act as a second counter-propagating wave and trigger the stochastic electron motion. On the contrary, the analyses of intensity spectrum reveal the fact that the dominant scattering mechanism tends to Thomson rather than Raman scattering by increasing the pulse length. A covariant formalism is used to describe the plasma heating so that it enables us to measure electron temperature inside and outside of the pulse region.
Alignment of iron nanoparticles in a magnetic field due to shape anisotropy
Energy Technology Data Exchange (ETDEWEB)
Radhakrishnan, B., E-mail: radhakrishnb@ornl.gov; Nicholson, D.M.; Eisenbach, M.; Parish, C.; Ludtka, G.M.; Rios, O.
2015-11-15
During high magnetic field solidification processing there is evidence for the alignment of nanoscale metallic particles with elongated morphologies that nucleate from a liquid metal. Such alignment occurs well above the Curie temperature of the particle where the magneto-crystalline anisotropy energy and exchange energy contributions are negligible. The main driving force for alignment is the magnetic shape anisotropy. Current understanding of the phenomenon is not adequate to quantify the effect of particle size, aspect ratio, temperature and the magnetic field on particle alignment. We demonstrate a Monte Carlo approach coupled with a scaling law for the dipole–dipole interaction energy as a function of the particle size to identify the conditions under which such alignment is possible. - Highlights: • Monte Carlo simulation of net magnetic moment at super-Curie temperatures. • Simulation based scaling law for dipole–dipole interaction energy. • Scaled dipole–dipole interaction energy used to simulate magnetic texturing. • Simulations used to explain magnetic texturing in a Fe–Ni–Co–Al–B alloy.
Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter
Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen
2017-01-01
Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial “DOK.” We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0–0.25, 0.25–0.5, 0.5–0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and
Overestimation of Crop Root Biomass in Field Experiments Due to Extraneous Organic Matter.
Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Hammelehle, Andreas; Mayer, Jochen
2017-01-01
Root biomass is one of the most relevant root parameters for studies of plant response to environmental change, soil carbon modeling or estimations of soil carbon sequestration. A major source of error in root biomass quantification of agricultural crops in the field is the presence of extraneous organic matter in soil: dead roots from previous crops, weed roots, incorporated above ground plant residues and organic soil amendments, or remnants of soil fauna. Using the isotopic difference between recent maize root biomass and predominantly C3-derived extraneous organic matter, we determined the proportions of maize root biomass carbon of total carbon in root samples from the Swiss long-term field trial "DOK." We additionally evaluated the effects of agricultural management (bio-organic and conventional), sampling depth (0-0.25, 0.25-0.5, 0.5-0.75 m) and position (within and between maize rows), and root size class (coarse and fine roots) as defined by sieve mesh size (2 and 0.5 mm) on those proportions, and quantified the success rate of manual exclusion of extraneous organic matter from root samples. Only 60% of the root mass that we retrieved from field soil cores was actual maize root biomass from the current season. While the proportions of maize root biomass carbon were not affected by agricultural management, they increased consistently with soil depth, were higher within than between maize rows, and were higher in coarse (>2 mm) than in fine (≤2 and >0.5) root samples. The success rate of manual exclusion of extraneous organic matter from root samples was related to agricultural management and, at best, about 60%. We assume that the composition of extraneous organic matter is strongly influenced by agricultural management and soil depth and governs the effect size of the investigated factors. Extraneous organic matter may result in severe overestimation of recovered root biomass and has, therefore, large implications for soil carbon modeling and estimations
Staszek, M.; Orlecka-Sikora, B.; Leptokaropoulos, K.; Kwiatek, G.; Martínez-Garzón, P.
2017-07-01
We use a high-quality data set from the NW part of The Geysers geothermal field to determine statistical significance of temporal static stress drop variations and their relation to injection rate changes. We use a group of 322 seismic events which occurred in the proximity of Prati-9 and Prati-29 injection wells to examine the influence of parameters such as moment magnitude, focal mechanism, hypocentral depth, and normalized hypocentral distances from open-hole sections of injection wells on static stress drop changes. Our results indicate that (1) static stress drop variations in time are statistically significant, (2) statistically significant static stress drop changes are inversely related to injection rate fluctuations. Therefore, it is highly expected that static stress drop of seismic events is influenced by pore pressure in underground fluid injection conditions and depends on the effective normal stress and strength of the medium.
Second Law Violations by Means of a Stratification of Temperature Due to Force Fields
Trupp, Andreas
2002-11-01
In 1868 J.C. Maxwell proved that a perpetual motion machine of the second kind would become possible, if the equilibrium temperature in a vertical column of gas subject to gravity were a function of height. However, Maxwell had claimed that the temperature had to be the same at all points of the column. So did Boltzmann. Their opponent was Loschmidt. He claimed that the equilibrium temperature declined with height, and that a perpetual motion machine of the second kind operating by means of such column was compatible with the second law of thermodynamics. Extending the general idea behind Loschmidt's concept to other force fields, gravity can be replaced by molecular forces acting on molecules that try to escape from the surface of a liquid into the vapor space. Experiments proving the difference of temperature between the liquid and the vapor phase were conducted in the 19th century already.
Velinov, Peter; Velinov, Peter; Tonev, Peter
The electric currents created by the thunderstorms and the electrified shower clouds over the Earth flow into the global atmospheric electric circuit and are responsible for the formation in fair-weather regions of ionosphere-ground current of about 2 pA per square meter, as well as for the related fair-weather electric field of the order of 100 V/m at sea level. The link of the diurnal variations of the fair-weather electric field with the global thunderstorm activity has been widely studied with connection to the Wilson's hypothesis. To confirm this hypothesis directly, also the fair-weather electric field response to a strong single lightning discharge has being examined. Here we study theoretically the variations of the electric currents and fields in fair-weather regions at different altitudes of the lower and middle atmosphere, which are provoked by distant lightning discharges. The electric field variations can play an important role at higher altitudes (in the upper troposphere and above), where they are much larger and possibly influence the physical and chemical processes. For our goals we realize a globalscale model of the electric fields and currents generated by a lightning discharge, which is based on the Maxwell's equations. The fair-weather electric characteristics are studied by our model depending on the lightning parameters, location and distance. We also examine how variations of the conductivity in the strato/mesosphere due to changes of solar and geomagnetic activity affect the characteristics studied. Another question discussed is whether and how the mesospheric electric response to a remote lightning discharge is influenced by the conductivity anisotropy above 70 km and by the geomagnetic field geometry. The variations of the fairweather electric fields due to a distant lightning at tropospheric heights are also studied with respect to their presumable role in the cloud physics.
CAUSES AND COUNTERMEASURES FOR CHAOHU LAKESHORE COLLAPSE
Institute of Scientific and Technical Information of China (English)
GAO Chao; WANG Xin-yuan; YANG Ze-dong; LU Ying-cheng; HE Hui
2005-01-01
By interpreting the remote sensing data of aerial photos and satellite images in different time, combining with field investigation, landform and water level observation, collecting data of weather, hydrology in Chaohu Lake, Anhui Province from 1957 to 2003, the reasons for collapse of Chaohu lakeshore were analyzed. The results are as follows: 1) The collapse of the Chaohu lakeshore is controlled macroscopically by two sets of north-east and the north-west faults, and the degree of collapse is determined microcosmically by lithology. 2) The constant change of water level, resulting from precipitation, wind speed and its direction, is one of the main reasons for intermittence collapse. 3) The soil and water loss or mud and sand filling up, resulting from artificial factors, such as inconsequence control of Chaohu sluice or irrational agricultural and industrial activities, etc., can uplift the lake's bed and drive water level up. The high water level also results in the collapse. Judging from the above mentioned reasons for the collapse, we have proposed some countermeasures: 1) Putting the lakeshore slope protection project such as stone and cement mortar into practice, and upstream slope should be 1:2.5 or 1:3, some parts of them should be 1:4, if they were not stable. The back slope, which is from Gui Mountain to Zhongmiao Temple, should be 1:1.5-1:3.2) Constructing a greenbelt for the lakeshore, planting some vegetation such as osier, bulrush and poplar, to resist waves between the high and the low water level. 3) Controlling Chaohu Lake water level scientifically. Corrosion of lakeshore that contains gravel clay and ferruginous-manganese concretionary structures, can decrease at low water level. 4) Renovating Chaohu Lake drainage area, strengthening the administration and supervision, breaking regionalism and establishing special administration organization.
Energy Technology Data Exchange (ETDEWEB)
Andrade Landeta, J.; Lascano, I.
2017-07-01
A theorical model has been developed based on the theory of Ginzburg-Landau-Devonshire to study and predict the effects the decreasing of size particle in a nanosphere of PbTiO3 subjected to the action of depolarization fields and mechanical stress. It was considered that the nanosphere is surrounded by a layer of space charges on its surface, and containing 180° domains generated by minimizing free energy of depolarization. Energy density of depolarization, wall domain and electro-elastic energy have been incorporated into the free energy of the theory Ginzburg-Landau-Devonshire. Free energy minimization was performed to determine the spontaneous polarization and transition temperature system. These results show that the transition temperature for nanosphere is substantially smaller than the corresponding bulk material. Also, it has been obtained that the stability of the ferroelectric phase of nanosphere is favored for configurations with a large number of 180° domains, with the decreasing of thickness space charge layer, and the application of tensile stress and decreases with compressive stress. (Author)
Montaz, Julie; Jacquot, Marion; Coeurdassier, Michaël
2014-11-01
Worldwide, agricultural uses of anticoagulant rodenticides (ARs) cause poisonings of non-target wildlife as observed in France where bromadiolone is used to control water vole outbreaks. Following bromadiolone field application, a part of the vole population may die aboveground of the treated plots and thus, can represent an important risk of secondary poisoning for scavengers. In this study, water voles were trapped in a non-treated area and their carcasses were placed aboveground in plots located in an area where a vole outbreak occurred. Then, the environmental persistence, the diurnal and nocturnal scavenging rates of water vole carcasses were assessed in autumn 2011 and in spring 2012. The diurnal scavenger species were also identified. The environmental persistence of the carcasses to reach at least a scavenging rate of 87.5 % was 0.5-1.5 day. The average rates of diurnal and nocturnal scavenging ranged from 67 to 100 % and 5 to 100 %, respectively. They depended on the composition of the scavenger community present near the monitored plots; diurnal scavenging rates being higher with corvids than with raptors. In autumn, the red kite and the common buzzard were the main scavengers in one of the plots, what suggests a high risk of poisoning for these raptors during post-nuptial migration. So, the collection of vole carcasses after treatments and the limitations of bromadiolone applications when high densities of predators/scavengers are observed could be implemented to mitigate the risks of secondary poisoning.
Enhanced O2 Loss at Mars Due to an Ambipolar Electric Field from Electron Heating
Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; Delory, G. T.; Andrews, D. J.; Eriksson, A. I.; Mcenulty, T.; Morooka, M. W.;
2016-01-01
Recent results from the MAVEN Langmuir Probe and Waves (LPW) instrument suggest higher than predicted electron temperatures (T sub e) in Mars dayside ionosphere above approx. 180 km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer (NGIMS) indicate significant abundances of O2+ up to approx. 500 km in altitude, suggesting that O2+ may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher T(sub e) (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher T(sub e) may greatly increase O2+ loss at Mars. In particular, enhanced T(sub e) in Mars ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (e) of several k(sub b)T(sub e), which draws ions out of the region allowing for enhanced escape. With active solar wind, electron and ion heating, direct O2+ loss could match or exceed loss via dissociative recombination of O2+. These results suggest that direct loss of O2+ may have played a significant role in the loss of oxygen at Mars over time.
Microstructural changes in a cementitious membrane due to the application of a DC electric field.
Covelo, Alba; Diaz, Belen; Freire, Lorena; Novoa, X Ramon; Perez, M Consuelo
2008-07-01
The use of electromigration techniques to accelerate chloride ions motion is commonly employed to characterise the permeability of cementitious samples to chlorides, a relevant parameter in reinforced concrete corrosion. This paper is devoted to the study of microstructure's changes occurring in mortar samples when submitted to natural diffusion and migration experiments. The application of an electric field reduces testing time in about one order of magnitude with respect to natural diffusion experiments. Nevertheless, the final sample's microstructure differs in both tests. Impedance Spectroscopy is employed for real time monitoring of microstructural changes. During migration experiments the global impedance undergoes important increase in shorter period of time compared to natural diffusion tests. So, the forced motion of ions through the concrete membrane induces significant variations in the porous structure, as confirmed by Mercury Intrusion Porosimetry. After migration experiments, an important increase in the capillary pore size (10-100 nm) was detected. Conversely, no relevant variations are found after natural diffusion tests. Results presented in this work cast doubt on the significance of diffusion coefficient values obtained under accelerated conditions.
Moen, Erick K.; Beier, Hope T.; Thompson, Gary L.; Roth, Caleb C.; Ibey, Bennett L.
2014-03-01
Nonlinear optical probes, especially those involving second harmonic generation (SHG), have proven useful as sensors for near-instantaneous detection of alterations to orientation or energetics within a substance. This has been exploited to some success for observing conformational changes in proteins. SHG probes, therefore, hold promise for reporting rapid and minute changes in lipid membranes. In this report, one of these probes is employed in this regard, using nanosecond electric pulses (nsEPs) as a vehicle for instigating subtle membrane perturbations. The result provides a useful tool and methodology for the observation of minute membrane perturbation, while also providing meaningful information on the phenomenon of electropermeabilization due to nsEP. The SHG probe Di- 4-ANEPPDHQ is used in conjunction with a tuned optical setup to demonstrate nanoporation preferential to one hemisphere, or pole, of the cell given a single square shaped pulse. The results also confirm a correlation of pulse width to the amount of poration. Furthermore, the polarity of this event and the membrane physics of both hemispheres, the poles facing either electrode, were tested using bipolar pulses consisting of two pulses of opposite polarity. The experiment corroborates findings by other researchers that these types of pulses are less effective in causing repairable damage to the lipid membrane of cells.
Electromagnetic Field Interference on Transmission Lines due to On-Board Antenna
Directory of Open Access Journals (Sweden)
Heekwon Lee
2015-01-01
Full Text Available As the available space in the board of a mobile device becomes smaller and more compact, circuit elements and transmission lines are arranged in very close proximity, especially from the antennas which are usually installed on the same board. Due to the various on-board antennas which are designed in small space, the transmission lines on the board are electromagnetically interfered, resulting in the performance degradation of the circuit. So the engineers and circuit designers should find the least interfered place for the transmission lines and components to minimize the electromagnetic interferences. This paper discusses and presents a methodology to find the least sensitive position in the induced current distribution as well as in the noise power delivered from the antenna. For this purpose some vertical, horizontal, and bent transmission lines with antenna on the same board are designed and fabricated with and without common ground, and the transferred powers to the transmission lines were measured and were also simulated using a full-wave simulator. The results predicted by the EM simulation model were successfully confirmed through the measurement of S-parameters in the experimental setup, which shows the validness of the suggested analysis method.
Disproportionate Collapse in Building Structures.
JANSSENS, VICTORIA MARIA; O'DWYER, DERMOT WILLIAM
2010-01-01
PUBLISHED Cork, Ireland The failure of the Ronan Point apartment tower focused interest in disproportionate collapse, and prompted the ?Fifth Amendment? to the UK Building Regulations which was introduced in 1970. From this point on structures were required to exhibit a minimum level of robustness to resist progressive collapse. These rules have remained relatively unchanged for over 40 years. This paper presents a review of the concepts relating to structural collapse, and the robustne...
On collapsibilities of Yule's measure
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
impson's paradox reminds people that the statistical inference in a low-dimensional space probably distorts the reality in a high one seriously.To study the paradox with respect to Yule's measure,this paper discusses simple collapsibility,strong collapsibility and consecutive collapsibility,and presents necessary and sufficient conditions of them.In fact,these conditions are of great importance for observational and experimental designs,eliminating confounding bias,categorizing discrete variables and so on.
Modeling of surface cleaning by cavitation bubble dynamics and collapse.
Chahine, Georges L; Kapahi, Anil; Choi, Jin-Keun; Hsiao, Chao-Tsung
2016-03-01
Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid-structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.
Effect of Rotation in Cloud Core Collapse
Tsuribe, T.
The collapse of rotating clouds is investigated.At first, isothermal collapse of an initially uniform-density, uniform-rotating, molecular cloud core with pressure and self-gravity is investigated to determine the conditions under which a cloud is unstable to fragmentation. A semianalytic model for the collapse of rotating spheroids is developed with the method of characteristics for inwardly propagating rarefaction waves. Three-dimensional self-gravitating hydrodynamical calculations are performed for the initially uniform-density rigid-rotating sphere. Both investigations show that the criterion for fragmentation is modified from the one in the literature if the property of the non-homologous collapse is taken into account. It is shown that the central flatness, that is, the axial ratio of the isodensity contour in the central region, is a good indicator for the fate of the cloud. We derive the criterion for the fragmentation considering the evolution of the flatness of the central core. If the central flatness becomes greater than the critical value ˜ 4π, a collapsing cloud with moderate perturbations is unstable for fragmentation, while if the central flatness stays smaller than the critical value, it does not fragment at least before adiabatic core formation. Warm clouds (α0 ≳ 0.5) are not expected to fragment before adiabatic core formation almost independent of the initial rotation (β0) and the properties of the initial perturbation. The effect of the initial density central concentration is also investigated. If it exists, distortion or flattening of a cloud core is suppressed even if α0 ≲ 0.5 in small rotation cases due to stronger nonhomologous property of the collapse. We conclude that the binary fragmentation is difficult during isothermal stage if a core collapse had started from near spherical configurations with moderate thermal energy or small rotation. We suggest that the close binary fragmentation may be possible in the nonisothermal
Oulton, R; Greilich, A; Verbin, S Yu; Cherbunin, R V; Auer, T; Yakovlev, D R; Bayer, M; Merkulov, I A; Stavarache, V; Reuter, D; Wieck, A D
2007-03-09
A key to ultralong electron spin memory in quantum dots (QDs) at zero magnetic field is the polarization of the nuclei, such that the electron spin is stabilized along the average nuclear magnetic field. We demonstrate that spin-polarized electrons in n-doped (In,Ga)As/GaAs QDs align the nuclear field via the hyperfine interaction. A feedback onto the electrons occurs, leading to stabilization of their polarization due to formation of a nuclear spin polaron [I. A. Merkulov, Phys. Solid State 40, 930 (1998)]. Spin depolarization of both systems is consequently greatly reduced, and spin memory of the coupled electron-nuclear spin system is retained over 0.3 sec at temperature of 2 K.
Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Shibata, Masaru
2015-01-01
We explore magnetic-field amplification due to the Kelvin-Helmholtz instability during binary neutron star mergers. By performing high-resolution general relativistic magnetohydrodynamics simulations with a resolution of $17.5$ m for $4$--$5$ ms after the onset of the merger on the Japanese supercomputer "K", we find that an initial magnetic field of moderate maximum strength $10^{13}$ G is amplified at least by a factor of $\\approx 10^3$. We also explore the saturation of the magnetic-field energy and our result shows that it is likely to be $\\gtrsim 4 \\times 10^{50}$ erg, which is $\\gtrsim 0.1\\%$ of the bulk kinetic energy of the merging binary neutron stars.
Suess, D; Fuger, M; Abert, C; Bruckner, F; Vogler, C
2016-06-01
We report two effects that lead to a significant reduction of the switching field distribution in exchange spring media. The first effect relies on a subtle mechanism of the interplay between exchange coupling between soft and hard layers and anisotropy that allows significant reduction of the switching field distribution in exchange spring media. This effect reduces the switching field distribution by about 30% compared to single-phase media. A second effect is that due to the improved thermal stability of exchange spring media over single-phase media, the jitter due to thermal fluctuation is significantly smaller for exchange spring media than for single-phase media. The influence of this overall improved switching field distribution on the transition jitter in granular recording and the bit error rate in bit-patterned magnetic recording is discussed. The transition jitter in granular recording for a distribution of Khard values of 3% in the hard layer, taking into account thermal fluctuations during recording, is estimated to be a = 0.78 nm, which is similar to the best reported calculated jitter in optimized heat-assisted recording media.
Cosmic-ray ionisation in collapsing clouds
Padovani, Marco; Galli, Daniele
2013-01-01
Cosmic rays (CR) play an important role in dense molecular cores, affecting their thermal and dynamical evolution and initiating the chemistry. Several studies have shown that the formation of protostellar discs in collapsing clouds is severely hampered by the braking torque exerted by the entrained magnetic field on the infalling gas, as long as the field remains frozen to the gas. We examine the possibility that the concentration and twisting of the field lines in the inner region of collapse can produce a significant reduction of the ionisation fraction. To check whether the CR ionisation rate (CRir) can fall below the critical value required to maintain good coupling, we first study the propagation of CRs in a model of a static magnetised cloud varying the relative strength of the toroidal/poloidal components and the mass-to-flux ratio. We then follow the path of CRs using realistic magnetic field configurations generated by numerical simulations of a rotating collapsing core. We find that an increment of...
Tavassoly, M. K.; Rastegarzadeh, M.
2016-10-01
In this paper based on a generalization of the Jaynes-Cummings model we solve the dynamical Hamiltonian describing the interaction between a (Λ or V-type) three-level atom and a single-mode field in the "full nonlinear regime" and then the analytical form of state vector of the system is explicitly obtained. In this manner, we encountered with "intensity-dependent detuning" as well as "intensity-dependent atom-field coupling" in our two models. Via choosing an appropriate deformation function (which imposes nonlinearity to the system) we consider the influence of Kerr-like medium from which the resonance condition for a selected number of quanta is achieved (selective transition is occurred). Furthermore, by these considerations, we may find the optimum values for atom-field coupling constants which provide a regular periodic behavior of probability amplitudes for the two considered atomic systems. Moreover, to show this periodic time behavior, the temporal evolution of the probability of the allowed atomic transitions as well as the Mandel parameter (as a non-classical sign) is depicted for various circumstances. As is observed, complete revivals may appear in some particular situations.
Mathews, G J; Olson, J P; Suh, I-S; Kajino, T; Maruyama, T; Hidaka, J; Ryu, C-Y; Cheoun, M-K; Lan, N Q
2013-01-01
We summarize several new developments in the nuclear equation of state for supernova simulations and neutron stars. We discuss an updated and improved Notre-Dame-Livermore Equation of State (NDL EoS) for use in supernovae simulations. This Eos contains many updates. Among them are the effects of 3- body nuclear forces at high densities and the possible transition to a QCD chiral and/or super-conducting color phase at densities. We also consider the neutron star equation of state and neutrino transport in the presence of strong magnetic fields. We study a new quantum hadrodynamic (QHD) equation of state for neutron stars (with and without hyperons) in the presence of strong magnetic fields. The parameters are constrained by deduced masses and radii. The calculated adiabatic index for these magnetized neutron stars exhibit rapid changes with density. This may provide a mechanism for star-quakes and flares in magnetars. We also investigate the strong magnetic field effects on the moments of inertia and spin down...
Collapse of modern carbonate platform margins
Energy Technology Data Exchange (ETDEWEB)
Mullins, H.T.; Hine, A.C.; Gardulski, A.
1985-01-01
Modern carbonate platform margins in the Florida-Bahama region have been viewed as depositional or constructional features. However, recent studies have shown that carbonate escarpments, such as the Blake-Bahama and West Florida Escarpments, are erosional in origin where the platform margins have a scalloped or horse-shoe shape. Seismic reflection data from one of these crescentic features along the west Florida platform margin indicate that it originated by large scale gravity collapse (slump). This collapse structure extends for at least 120 km along the margin and has removed about 350 m of strata as young as early Neogene. Although at least three generations of slope failure are recognized, catastrophic collapse appears to have occurred in the mid-Miocene. Gravitational instability due to high rates of sediment accumulation may have been the triggering mechanism. These data suggest that submarine slumping is an important process in the retreat of limestone escarpments and in the generation of carbonate megabreccia debris flows. Scalloped platform margins occur on satellite images of northern Exuma Sound and Columbus Basin in the Bahamas. The authors suggest that large-scale submarine slumping can cause elongation of structurally controlled intraplatform basins (Exuma South), and produce anomalous horse-shoe shaped basins (Columbus Basin) by mega-collapse processes.
Caldera types and collapse styles
Aguirre-Diaz, G. J.
2008-12-01
Three main types of collapse calderas can be defined, 1) summit caldera, 2) classic caldera, and 3) graben caldera. Summit calderas are those formed at the top of large volcanoes and are related to relatively small- volume pyroclastic products that include plinian fallouts and ignimbrites, such as Crater Lake, Las Cañadas, and Somma-Vesuvio. Classic calderas are semi-circular to irregular-shaped large structures, several km in diameter that are related to relatively large-volume pyroclastic products including pumice fallouts and widespread ignimbrites, such as Long-Valley, Campi Flegrei, and Los Humeros. Graben calderas are explosive volcano-tectonic collapse structures from which large-volume, ignimbrite-forming eruptions occurred through several vents along the graben walls and the intra-graben block faults causing the collapse of the graben or of a sector of the graben. The main products of graben calderas are surge-deposits and large-volume widespread ignimbrite sheets. Pumice fallouts are practically absent. Examples include the Sierra Madre Occidental in Mexico, La Pacana (Andes), Catalan Pyrenees, and perhaps Scafell (United Kingdom). Any of the three caldera types mentioned above could have collapsed at least in three different ways, 1) piston, when the collapse occurs as a single crustal block; 2) trap-door, when collapse occurs unevenly along one side while the opposite side remains with no collapse; 3) piece-meal, when collapse occurs as broken pieces of the crust on top of the magma chamber.
The collapsed football pla yer
African Journals Online (AJOL)
There are several reasons why football players collapse or appear to have collapsed on ... minor, resulting in mild concussion (brain injury), but ... after being struck by lightning. The match ... does occur, it attracts a great deal of media attention ...
Internal thermal origin mechanism of Karstic collapse column with no smoothly extrinsic cycle
Institute of Scientific and Technical Information of China (English)
LI Yong-jun; PENG Su-ping; LI Pei-quan; LIU Deng-xian; LIAN Hui-qing
2008-01-01
Huainan coal field as main object, investigation of Karstic hydrogeological conditions were developed in Huainan structureal unit, and the basic conditions, features and rules of Karstic growth were summarized. Geology background and causes of Karstic collapse columns were analyzed. Combined with ancient physiognomy, environment and litho-facies features. After studying synthetically Karstic collapse columns, shape of collapse body, filling feature, hydrodynamic condition and agglutinate material in Huainan area, considering mine hydrogeological conditions of Xuhuai coal field and referenced Karstic collapse columns characters of other mines in North China, the internal thermal origin theory is elementarily formed for Karstic collapse columns extrinsic cycle can not operate smoothly. Finaly, three aspects including distributing features of different kinds of Karstic collapse columns in north China type coal field, conditions of Karstic collapse columns origined from internal thermal with no smoothly extrinsic cycle, mechanics of causes were analyzed and demonstrated.
Superdiffusion versus Alfvenic collapse: plasma flow bounding and penetration
Savin, S.; Amata, A.; Zelenyi, L.; Budaev, V.; Kuznetsov, E. A.; Consolini, G.; Blecki, J.; Buechner, J.; Rauch, J. L.
2009-04-01
A geophysical flow is the solar plasma one around the Earth's magnetosphere. We discuss an anomalous MHD plasma mixing with concentrated kinetic energy bursts - ‘plasma jets' - in view of common features of the geophysical flows, along with the laboratory and astrophysical plasma ones. While the plasma flows are quite dilute, they probably can lead to electric power system collapses on the ground, radiation hazards in space, including geostationary spacecraft faults, and communication interrupts etc. We would like to concentrate on a unique case of plasma mixing by the jets in the streamlining flow with quite effective transport barrier , most probably, due to Alfvenic collapse of the magnetic field at the interface of their streaming and stagnant plasma ahead the Earth magnetopause on February 2, 2003 from the Cluster spacecraft data. On the basis of outer magnetospheric spacecraft observations in the magnetosheath (MSH) we provide evidence for the temporary existence of the anomalously concentrated plasma jets as well in the region close to the bow shock (BS) as near the magnetopause (MP). Disturbed zones of duration of up to 2 hours are regularly detected in the MSH, preferably downstream of the quasi-parallel and oblique BS with average energy density well above that of the un-shocked solar wind (SW). These zones are similar to high-latitude MSH near the MP, known as the ‘turbulent boundary layer' (TBL), which is the result of the interaction of the MSH flow with the throat of the cusp. In both these disturbed zones the field and plasma fluctuations have comparable intensity and similar spectral properties. Determination of the structure functions of the magnetic field and ion flux also reveals similar multifractal and intermittent properties. The same holds for fitting a Log-Poisson cascade model. A new phenomenon - Alfvenic collapse - is discussed as a ‘tool' for separating of the MHD flows: in the MHD limit it predicts infinite field rising due to
Experiences Acquired by a Building Collapse
Directory of Open Access Journals (Sweden)
Murat Durusu
2012-04-01
Full Text Available In this study, it has been purposed to share practice of event-scene administration, search and rescue and evacuation of injured and acquired experiences carried out throughout a building collapse. After an explosion at Diyarbakir Kurdoglu housings at 11 December 2006 about 08:20AM, five flats of an apartment that has five floors-ten flats were collapsed. Local military hospital ambulances, city ambulances, and fire-fighting vehicles arrived to event-place 10 minutes later. It has been found out that there were 13 people inside, 6 of which were children. Army rescue team arrived event-place about 01:30PM, then all non-professional persons has been sent away from region. Eight dead including five children, and five injured including one child have been taken out. Two people from close area have been also injured mildly due to the explosion. It has been found out that accident caused by boiler tank exploding. Sixth of total eight injured had only superficial wounds. Other two injured have been followed because of head trauma at first one and hepatic contusion and rib fracture at the other one. No complication observed after follow-up. Building collapses can create disaster potential according to the number of people inside and facilities of nearby region of the place accident taken place. The evaluation of the direction of building collapse during search and rescue operation would enhance possibility to reach more living in shorter time. Building collapses which can be considered as a miniature of big disaster potentials like earthquakes can be appraised as an important practical training and experience source on event-place administration, search and rescue operations and injured evacuation. We believe that share of the analysis and acquired experiences of this kind of studies would contribute interfering big disaster potentials. [TAF Prev Med Bull 2012; 11(2.000: 241-244
Filimonov, M. Yu; Vaganova, N. A.
2016-10-01
Significant amount of oil and gas is producted in Russian Federation on the territories with permafrost soils. Ice-saturated rocks thawing due to global warming or effects of various human activity will be accompanied by termocarst and others dangerous geological processes in permafrost. Design and construction of well pads in permafrost zones have some special features. The main objective is to minimize the influence of different heat sources (engineering objects) inserted into permafrost and accounting long-term forecast of development of permafrost degradation due to different factors in particular generated by human activity. In this work on the basis a mathematical model and numerical algorithms approved on 11 northern oil and gas fields some effects obtained by carrying out numerical simulations for various engineering systems are discussed.
Zhang, Y. C.; Shen, C.; Marchaudon, A.; Rong, Z. J.; Lavraud, B.; Fazakerley, A.; Yao, Z.; Mihaljcic, B.; Ji, Y.; Ma, Y. H.; Liu, Z. X.
2016-05-01
Theory predicts that the first adiabatic invariant of a charged particle may be violated in a region of highly curved field lines, leading to significant pitch angle scattering for particles whose gyroradius are comparable to the radius of the magnetic field line curvature. This scattering generates more isotropic particle distribution functions, with important impacts on the presence or absence of plasma instabilities. Using magnetic curvature analysis based on multipoint Cluster spacecraft observations, we present the first investigation of magnetic curvature in the vicinity of an ion diffusion region where reconnected field lines are highly curved. Electrons at energies > 8 keV show a clear pitch angle ordering between bidirectional and trapped distribution in surrounding regions, while we show that in the more central part of the ion diffusion region electrons above such energies become isotropic. By contrast, colder electrons (~1 keV) retain their bidirectional character throughout the diffusion regions. The calculated adiabatic parameter K2 for these electrons is in agreement with theory. This study provides the first observational evidence for particle pitch angle scattering due to magnetic field lines with well characterized curvature in a space plasma.
Energy Technology Data Exchange (ETDEWEB)
J. Dai, K. Zhao, G.V. Eremeev, R.L. Geng, A.D. Palczewski; Dai, J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, A. D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Eremeev, G. V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Geng, R. L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhao, K. [Institute of Heavy Ion Physics, Peking University, Beijing (China)
2011-07-01
A computer program which was used to simulate and analyze the thermal behaviors of SRF cavities has been developed at Jefferson Lab using C++ code. This code was also used to verify the quench initiation due to geometrical defects in high magnetic field region of SRF cavities. We built a CEBAF single cell cavity with 4 artificial defects near equator, and this cavity has been tested with T-mapping. The preheating behavior and quench initiation analysis of this cavity will be presented here using the computer program.
Gravitational collapse, shear-free anisotropic radiating star
Tewari, B C
2015-01-01
We present a class of exact solutions of Einstein field equations for a shear-free spherically symmetric anisotropic fluid undergoing radial heat flow. The interior metric fulfilled all the relevant physical and thermodynamic conditions and matched with Vaidya exterior metric over the boundary. Initially the interior solutions represent a static configuration of dissipative fluid which then gradually starts evolving into radiating collapse. The apparent luminosity observed by the distant observer at rest at infinity and the effective surface temperature are zero in remote past at the instance when collapse begins and at the stage when collapsing configuration reach the horizon of the black hole.
Vapour and air bubble collapse analysis in viscous compressible water
Directory of Open Access Journals (Sweden)
Gil Bazanini
2001-01-01
Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.
Simultaneous monitoring of a collapsing landslide with video cameras
Directory of Open Access Journals (Sweden)
K. Fujisawa
2008-01-01
Full Text Available Effective countermeasures and risk management to reduce landslide hazards require a full understanding of the processes of collapsing landslides. While the processes are generally estimated from the features of debris deposits after collapse, simultaneous monitoring during collapse provides more insights into the processes. Such monitoring, however, is usually very difficult, because it is rarely possible to predict when a collapse will occur. This study introduces a rare case in which a collapsing landslide (150 m in width and 135 m in height was filmed with three video cameras in Higashi-Yokoyama, Gifu Prefecture, Japan. The cameras were set up in the front and on the right and left sides of the slide in May 2006, one month after a series of small slope failures in the toe and the formation of cracks on the head indicated that a collapse was imminent.
The filmed images showed that the landslide collapse started from rock falls and slope failures occurring mainly around the margin, that is, the head, sides and toe. These rock falls and slope failures, which were individually counted on the screen, increased with time. Analyzing the images, five of the failures were estimated to have each produced more than 1000 m^{3} of debris, and the landslide collapsed with several surface failures accompanied by a toppling movement. The manner of the collapse suggested that the slip surface initially remained on the upper slope, and then extended down the slope as the excessive internal stress shifted downwards. Image analysis, together with field measurements using a ground-based laser scanner after the collapse, indicated that the landslide produced a total of 50 000 m^{3} of debris.
As described above, simultaneous monitoring provides valuable information about landslide processes. Further development of monitoring techniques will help clarify landslide processes qualitatively as well as quantitatively.
The role of fluid viscosity in an immersed granular collapse
Directory of Open Access Journals (Sweden)
Yang Geng Chao
2017-01-01
Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.
Condensation-Induced Steam Bubble Collapse in a Pipeline
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Steam bubbles often occur in pipelines due to the pipeline structure or operational errors. The water hammer force induced by the steam bubble collapse is a hidden safety concern. This paper experimentally and numerically investigates the conditions for steam bubble formation and collapse. A series of video pictures taken in the laboratory show that steam bubbles form and collapse over several cycles. The pressure history of the steam bubbles is measured in conjunction with the pictures. In the experiment, the liquid column cavitated at the low pressures and then the cavities collapsed due to condensation causing high pressure pulses. The process was also simulated numerically. The results suggest that coolant pipeline design and operation must include procedures to avoid steam bubble formation.
Closed String Tachyon: Inflation and Cosmological Collapse
Escamilla-Rivera, Celia; Loaiza-Brito, Oscar; Obregon, Octavio
2011-01-01
By compactifying a critical bosonic string theory on an internal non-flat space with a constant volume, we study the role played by the closed string tachyon in the cosmology of the effective four-dimensional space-time. The effective tachyon potential consists on a negative constant related to the internal curvature space and a polynomial with only quadratic and quartic terms of the tachyon field. Based on it, we present a solution for the tachyon field and the scale factor, which describes an accelerated universe which expands to a maximum value before collapsing. At early times, the closed string tachyon potential behaves as a cosmological constant driving the Universe to an expansion. The value of the cosmological constant is determined by the curvature of the internal space which also fixes the value of the vacuum energy. As time evolves, inflation is present in our models, and it finishes long before the collapsing. At late times, we show that the collapse of the Universe starts as soon as the tachyon f...
Chameleonic equivalence postulate and wave function collapse
Zanzi, Andrea
2014-01-01
A chameleonic solution to the cosmological constant problem and the non-equivalence of different conformal frames at the quantum level have been recently suggested [Phys. Rev. D82 (2010) 044006]. In this article we further discuss the theoretical grounds of that model and we are led to a chameleonic equivalence postulate (CEP). Whenever a theory satisfies our CEP (and some other additional conditions), a density-dependence of the mass of matter fields is naturally present. Let us summarize the main results of this paper. 1) The CEP can be considered the microscopic counterpart of the Einstein's Equivalence Principle and, hence, a chameleonic description of quantum gravity is obtained: in our model, (quantum) gravitation is equivalent to a conformal anomaly. 2) To illustrate one of the possible applications of the CEP, we point out a connection between chameleon fields and quantum-mechanical wave function collapse. The collapse is induced by the chameleonic nature of the theory. We discuss the collapse for a S...
Singularity in Gravitational Collapse of Plane Symmetric Charged Vaidya Spacetime
Sharif, M
2010-01-01
We study the final outcome of gravitational collapse resulting from the plane symmetric charged Vaidya spacetime. Using the field equations, we show that the weak energy condition is always satisfied by collapsing fluid. It is found that the singularity formed is naked. The strength of singularity is also investigated by using Nolan's method. This turns out to be a strong curvature singularity in Tipler's sense and hence provides a counter example to the cosmic censorship hypothesis.
Drying Induced Hydrophobic Polymer Collapse
ten Wolde, Pieter Rein; Chandler, David
2002-01-01
We have used computer simulation to study the collapse of a hydrophobic chain in water. We find that the mechanism of collapse is much like that of a first-order phase transition. The evaporation of water in the vicinity of the polymer provides the driving force for collapse, and the rate limiting step is the nucleation of a sufficiently large vapor bubble. The study is made possible through the application of transition path sampling and a coarse-grained treatment of liquid water. Relevance ...
Collapse and Revival in Holographic Quenches
da Silva, Emilia; Mas, Javier; Serantes, Alexandre
2014-01-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
Collapse and revival in holographic quenches
da Silva, Emilia; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2015-04-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
Cosmic no hair for collapsing universes
Energy Technology Data Exchange (ETDEWEB)
Lidsey, James E [Astronomy Unit, School of Mathematical Sciences Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)
2006-05-21
It is shown that all contracting, spatially homogeneous, orthogonal Bianchi cosmologies that are sourced by an ultra-stiff fluid with an arbitrary and, in general, varying equation of state asymptote to the spatially flat and isotropic universe in the neighbourhood of the big crunch singularity. This result is employed to investigate the asymptotic dynamics of a collapsing Bianchi type IX universe sourced by a scalar field rolling down a steep, negative exponential potential. A toroidally compactified version of M*-theory that leads to such a potential is discussed and it is shown that the isotropic attractor solution for a collapsing Bianchi type IX universe is supersymmetric when interpreted in an 11-dimensional context.
Jiang, Xiang; Liu, Hanlong; Main, Ian G.; Salje, Ekhard K. H.
2017-08-01
The quest for predictive indicators for the collapse of coal mines has led to a robust criterion from scale-model tests in the laboratory. Mechanical collapse under uniaxial stress forms avalanches with a power-law probability distribution function of radiated energy P ˜E-ɛ , with exponent ɛ =1.5 . Impending major collapse is preceded by a reduction of the energy exponent to the mean-field value ɛ =1.32 . Concurrently, the crackling noise increases in intensity and the waiting time between avalanches is reduced when the major collapse is approaching. These latter criteria were so-far deemed too unreliable for safety assessments in coal mines. We report a reassessment of previously collected extensive collapse data sets using "record-breaking analysis," based on the statistical appearance of "superjerks" within a smaller spectrum of collapse events. Superjerks are defined as avalanche signals with energies that surpass those of all previous events. The final major collapse is one such superjerk but other "near collapse" events equally qualify. In this way a very large data set of events is reduced to a sparse sequence of superjerks (21 in our coal sample). The main collapse can be anticipated from the sequence of energies and waiting times of superjerks, ignoring all weaker events. Superjerks are excellent indicators for the temporal evolution, and reveal clear nonstationarity of the crackling noise at constant loading rate, as well as self-similarity in the energy distribution of superjerks as a function of the number of events so far in the sequence Es j˜nδ with δ =1.79 . They are less robust in identifying the precise time of the final collapse, however, than the shift of the energy exponents in the whole data set which occurs only over a short time interval just before the major event. Nevertheless, they provide additional diagnostics that may increase the reliability of such forecasts.
Spherical collapse for unified dark matter models
Caramês, Thiago R P; Velten, Hermano E S
2014-01-01
We study the non-linear spherical "top hat" collapse for Chaplygin and viscous unified cosmologies. The term unified refers to models where dark energy and dark matter are replaced by one single component. For the generalized Chaplygin gas (GCG) we extend previous results of [R. A. A. Fernandes {\\it et al}. Physical Review D 85, 083501 (2012)]. We discuss the differences at non-linear level between the GCG with $\\alpha=0$ and the $\\Lambda$CDM model. We show that both are indeed different. The bulk viscous model which differs from the GCG due to the existence of non-adiabatic perturbations is also studied. In this case, the clustering process is in general suppressed and the viable parameter space of the viscous model that accelerates the background expansion does not lead to collapsed structures. This result challenges the viability of unified viscous models.
Impact of zonal flows on edge pedestal collapse
Jhang, Hogun; Kaang, Helen H.; Kim, S. S.; Rhee, T.; Singh, R.; Hahm, T. S.
2017-02-01
We perform a computational study of the role of zonal flows in edge pedestal collapse on the basis of a nonlinear three-field reduced magnetohydrodynamic (MHD) model. A dramatic change of dynamics takes place when ideal ballooning modes are completely stabilized. Analyses show that a new instability is developed due to a strong excitation of zonal vorticity, resulting in a series of secondary crashes. The presence of subsidiary bursts after a main crash increases the effective crash time and energy loss. These simulation results resemble the behavior of compound edge localized modes (ELMs). Analyses in this paper indicate that a complete understanding of ELM crash dynamics requires the self-consistent inclusion of nonlinear zonal flows-MHD interaction and transport physics.
Nurhandoko, Bagus Endar B.
2015-09-01
Extraordinary mudflow has happened in Sidoarjo, East Java, Indonesia since 2006. This mud comes from the giant crater that is located close to the BJP - 01. Thousands of homes have been submerged due to mudflow. Till today this giant mud crater is still has great strength despite the mud flowing over 8 years. This is a very rare phenomenon in the world. This mud flow mechanism raises big questions, because it has been going on for years, naturally the mudflow will stop by itself because the pressure should be reduced. This research evaluates all aspects of integrated observations, laboratory tests and field observations since the beginning of this ongoing mudflow. Laboratory tests were done by providing hot air bubbles into the fluid inside the inverted funnel showed that the fluid can flow with a high altitude. It is due to the mechanism of buoyant force from air bubbles to the water where the contrast density of the water and the air is quite large. Quantity of air bubbles provides direct effect to the debit of fluid flow. Direct observation in the field, in 2006 and 2007, with TIMNAS and LPPM ITB showed the large number of air bubbles on the surface of the mud craters. Temperature observation on the surface of mud crater is around 98 degree C whereas at greater depth shows the temperature is increasingly rising. This strengthens the hypothesis or proves that the mud pumping mechanism comes from buoyant force of hot air bubbles. Inversion gravity images show that the deep subsurface of main crater is close to volcanic layers or root of Arjuna mountain. Based on the simulation laboratory and field observation data, it can be concluded that the geothermal factor plays a key role in the mudflow mechanism.
Protostellar collapse of magneto-turbulent cloud cores: shape during collapse and outflow formation
Matsumoto, Tomoaki
2010-01-01
We investigate protostellar collapse of molecular cloud cores by numerical simulations, taking into account turbulence and magnetic fields. By using the adaptive mesh refinement technique, the collapse is followed over a wide dynamic range from the scale of a turbulent cloud core to that of the first core. The cloud core is lumpy in the low density region owing to the turbulence, while it has a smooth density distribution in the dense region produced by the collapse. The shape of the dense region depends mainly on the mass of the cloud core; a massive cloud core tends to be prolate while a less massive cloud core tends to be oblate. In both cases, anisotropy of the dense region increases during the isothermal collapse. The minor axis of the dense region is always oriented parallel to the local magnetic field. All the models eventually yield spherical first cores supported mainly by the thermal pressure. Most of turbulent cloud cores exhibit protostellar outflows around the first cores. These outflows are clas...
Muñoz, P. A.; Büchner, J.
2016-10-01
Non-Maxwellian electron velocity space distribution functions (EVDFs) are useful signatures of plasma conditions and non-local consequences of collisionless magnetic reconnection. In the past, EVDFs were obtained mainly for antiparallel reconnection and under the influence of weak guide-fields in the direction perpendicular to the reconnection plane. EVDFs are, however, not well known, yet, for oblique (or component-) reconnection in case and in dependence on stronger guide-magnetic fields and for the exhaust (outflow) region of reconnection away from the diffusion region. In view of the multi-spacecraft Magnetospheric Multiscale Mission (MMS), we derived the non-Maxwellian EVDFs of collisionless magnetic reconnection in dependence on the guide-field strength bg from small ( b g ≈ 0 ) to very strong (bg = 8) guide-fields, taking into account the feedback of the self-generated turbulence. For this sake, we carried out 2.5D fully kinetic Particle-in-Cell simulations using the ACRONYM code. We obtained anisotropic EVDFs and electron beams propagating along the separatrices as well as in the exhaust region of reconnection. The beams are anisotropic with a higher temperature in the direction perpendicular rather than parallel to the local magnetic field. The beams propagate in the direction opposite to the background electrons and cause instabilities. We also obtained the guide-field dependence of the relative electron-beam drift speed, threshold, and properties of the resulting streaming instabilities including the strongly non-linear saturation of the self-generated plasma turbulence. This turbulence and its non-linear feedback cause non-adiabatic parallel electron acceleration. We further obtained the resulting EVDFs due to the non-linear feedback of the saturated self-generated turbulence near the separatrices and in the exhaust region of reconnection in dependence on the guide field strength. We found that the influence of the self-generated plasma turbulence
Simulated cytoskeletal collapse via tau degradation.
Directory of Open Access Journals (Sweden)
Austin Sendek
Full Text Available We present a coarse-grained two dimensional mechanical model for the microtubule-tau bundles in neuronal axons in which we remove taus, as can happen in various neurodegenerative conditions such as Alzheimers disease, tauopathies, and chronic traumatic encephalopathy. Our simplified model includes (i taus modeled as entropic springs between microtubules, (ii removal of taus from the bundles due to phosphorylation, and (iii a possible depletion force between microtubules due to these dissociated phosphorylated taus. We equilibrate upon tau removal using steepest descent relaxation. In the absence of the depletion force, the transverse rigidity to radial compression of the bundles falls to zero at about 60% tau occupancy, in agreement with standard percolation theory results. However, with the attractive depletion force, spring removal leads to a first order collapse of the bundles over a wide range of tau occupancies for physiologically realizable conditions. While our simplest calculations assume a constant concentration of microtubule intercalants to mediate the depletion force, including a dependence that is linear in the detached taus yields the same collapse. Applying percolation theory to removal of taus at microtubule tips, which are likely to be the protective sites against dynamic instability, we argue that the microtubule instability can only obtain at low tau occupancy, from 0.06-0.30 depending upon the tau coordination at the microtubule tips. Hence, the collapse we discover is likely to be more robust over a wide range of tau occupancies than the dynamic instability. We suggest in vitro tests of our predicted collapse.
Geophysical observations at cavity collapse
Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe
2010-01-01
International audience; In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to ...
Vibrational Collapse of Hexapod Packings
Zhao, Yuchen; Ding, Jingqiu; Barés, Jonathan; Dierichs, Karola; Behringer, Robert
2016-11-01
Columns made of convex noncohesive grains like sand collapse after being released from a confining container. However, structures built from concave grains can be stable without external support. Previous research show that the stability of the columns depends on column diameter and height, by observing column stability after carefully lifting their confinement tubes. Thinner and taller columns collapse with higher probability. While the column stability weakly depends on packing density, it strongly depends on inter-particle friction. Experiments that cause the column to collapse also reveal similar trends, as more effort (such as heavier loading or shearing) is required to destabilize columns that are intrinsically more stable. In the current experiments, we invesitage the effect of vibration on destructing a column. Short columns collapse following the relaxation dynamics of disorder systems, which coincides with similar experiments on staple packings. However, tall columns collapse faster at the beginning, in addition to the relaxation process coming after. Using high-speed imaging, we analyze column collapse data from different column geometries. Ongoing work is focusing on characterizing the stability of hexapod packings to vibration. We thanks NSF-DMR-1206351 and the William M. Keck Foundation.
Fivel, D I
1998-01-01
The spin state of two magnetically inequivalent protons in contiguous atoms of a molecule becomes entangeled by the indirect spin-spin interaction (j-coupling). The degree of entanglement oscillates at the beat frequency resulting from the splitting of a degeneracy. This beating is manifest in NMR spectroscopy as an envelope of the transverse magnetization and should be visible in the free induction decay signal. The period (approximately 1 sec) is long enough for interference between the linear dynamics and collapse of the wave-function induced by a Stern-Gerlach inhomogeneity to significantly alter the shape of that envelope. Various dynamical collapse theories can be distinguished by their observably different predictions with respect to this alteration. Adverse effects of detuning due to the Stern-Gerlach inhomogeneity can be reduced to an acceptable level by having a sufficiently thin sample or a strong rf field.
From the Gyration of Electrons to Cosmic Magnetic Fields
Wang, Xia-Wei
2010-01-01
Employing Bohr's quantum theory, the author deduces three limits, which correspond to the magnetic fields of white dwarfs, neutron stars and the strongest in the universe. The author discusses the possible origins of magnetic fields due to collapse of stars, which produces a magnetic field of 10[superscript 8] T. Although the complete analysis…
Averett, Rodney D; Scogin, Tyler; Walker, Mitchell L R
2016-01-01
Blood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions. In this study, a fibrin matrix embedded with magnetic micro particles was subjected to a magnetic field to determine the plastic deformation of the clot. Using finite element analysis, we estimate the magnetic force from an electromagnet at a sample space located approximately 3 cm away from the coil center. This electromagnetic force along with gravity is applied on a fibrin sub model to calculate the stresses and displacements. Initial analyses show the forces are not sufficient to create fibrinolysis and hence we extended the study using parametric sweep analysis and redesign the coil paramete...
Analysis of error field due to ferritic steel in the advanced material testing program of JFT-2M
Energy Technology Data Exchange (ETDEWEB)
Sato, M.; Miura, Y.; Takeji, S.; Kimura, H.; Shiba, K. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)
1998-10-01
The reduction of ripple due to the use of a ferritic steel is studied computationally for two types of vacuum vessel (VV): one is made of nonmagnetic material with a ferritic section, and the other is made of ferritic steel. The appropriate setting of the ferritic section in the nonmagnetic material VV results in a ripple reduction in the whole plasma region of the low field side and the ripple amplitude can be reduced by a factor of 3: the ripple amplitude is reduced from 1.8% to 0.6% on the plasma boundary. The ripple amplitude in the case of the ferritic VV with the realistic horizontal port is comparable with that in the case of the nonmagnetic VV with the ferritic section. (orig.) 7 refs.
Fröb, Markus B
2016-01-01
We derive the leading quantum corrections to the gravitational potentials in a de Sitter background, due to the vacuum polarization from loops of conformal fields. Our results are valid for arbitrary conformal theories, even strongly interacting ones, and are expressed using the coefficients $b$ and $b'$ appearing in the trace anomaly. Apart from the de Sitter generalization of the known flat-space results, we find two additional contributions: one which depends on the finite coefficients of terms quadratic in the curvature appearing in the renormalized effective action, and one which grows logarithmically with physical distance. While the first contribution corresponds to a rescaling of the effective mass, the second contribution leads to a faster fall-off of the Newton potential at large distances, and is potentially measurable.
Directory of Open Access Journals (Sweden)
Antonino Magliano
2016-05-01
Full Text Available Conventional dielectrophoresis (DEP force on cell and particle is altered in the proximity of the electrodes due to the failure of the dipole approximation. In these conditions an anomalous DEP (aDEP force rules the particle manipulation. Anyhow, the role of the aDEP is barely considered in the design of DEP devices. Here we analyze, using a multiscale simulation approach, the aDEP effects in micro-fluidic device coupled with interdigitated channel commonly used in continuous mode field flow fractionation dielectrophoretic (FFF-DEP devices for the separation of circulating tumor cells (MDA and Lymphocytes (LYM. We study the propagation of an injected density of MDA and LYM respectively and evaluate how the aDEP changes the migrations of the cells.
Hybrid excitations due to crystal field, spin-orbit coupling, and spin waves in LiFePO4
Yiu, Yuen; Le, Manh Duc; Toft-Peterson, Rasmus; Ehlers, Georg; McQueeney, Robert J.; Vaknin, David
2017-03-01
We report on the spin waves and crystal field excitations in single crystal LiFePO4 by inelastic neutron scattering over a wide range of temperatures, below and above the antiferromagnetic transition of this system. In particular, we find extra excitations below TN=50 K that are nearly dispersionless and are most intense around magnetic zone centers. We show that these excitations correspond to transitions between thermally occupied excited states of Fe2 + due to splitting of the S =2 levels that arise from the crystal field and spin-orbit interactions. These excitations are further amplified by the highly distorted nature of the oxygen octahedron surrounding the iron atoms. Above TN, magnetic fluctuations are observed up to at least 720 K, with an additional inelastic excitation around 4 meV, which we attribute to single-ion effects, as its intensity weakens slightly at 720 K compared to 100 K, which is consistent with the calculated cross sections using a single-ion model. Our theoretical analysis, using the MF-RPA model, provides both detailed spectra of the Fe d shell and estimates of the average ordered magnetic moment and TN. By applying the MF-RPA model to a number of existing spin-wave results from other Li M PO4 (M =Mn , Co, and Ni), we are able to obtain reasonable predictions for the moment sizes and transition temperatures.
Institute of Scientific and Technical Information of China (English)
Banibrata Mukhopadhyay; Kanak Saha
2011-01-01
The origin of hydrodynamic turbulence in rotating shear flow is a long standing puzzle.Resolving it is especially important in astrophysics when the flow's angular momentum profile is Keplerian which forms an accretion disk having negligible molecular viscosity.Hence, any viscosity in such systems must be due to turbulence, arguably governed by magnetorotational instability, especially when temperature T (≥)105.However, such disks around quiescent cataclysmic variables, protoplanetary and star-forming disks, and the outer regions of disks in active galactic nuclei are practically neutral in charge because of their low temperature, and thus are not expected to be coupled with magnetic fields enough to generate any transport due to the magnetorotational instability.This flow is similar to plane Couette flow including the Coriolis force, at least locally.What drives their turbulence and then transport,when such flows do not exhibit any unstable mode under linear hydrodynamic perturbation? We demonstrate that the three-dimensional secondary disturbance to the primarily perturbed flow that triggers elliptical instability may generate significant turbulent viscosity in the range 0.0001 (≤) vt (≤) 0.1, which can explain transport in accretion flows.
Formation of satellites from cold collapse
Benhaiem, David; Sylos Labini, Francesco
2017-02-01
We study the collapse of an isolated, initially cold, irregular (but almost spherical) and slightly inhomogeneous cloud of self-gravitating particles.The cloud is driven towards a virialized quasi-equilibrium state by a fast relaxation mechanism, occurring in a typical time τc, whose signature is a large change in the particle energy distribution. Post-collapse particles are divided into two main species: bound and free, the latter being ejected from the system. Because of the initial system's anisotropy, the time varying gravitational field breaks spherical symmetry so that the ejected mass can carry away angular momentum and the bound system can gain a non-zero angular momentum. In addition, while strongly bound particles form a compact core, weakly bound ones may form, in a time scale of the order of τc, several satellite sub-structures. These satellites have a finite lifetime that can be longer than τc and generally form a flattened distribution. Their origin and their abundance are related to the amplitude and nature ofinitial density fluctuations and to the initial cloud deviations from spherical symmetry, which are both amplified during the collapse phase. Satellites show a time dependent virial ratio that can be different from the equilibrium value b ≈ -1: although they are bound to the main virialized object, they are not necessarily virially relaxed.
Properties of Neutron Star Critical Collapses
Wan, Mew-Bing
2010-01-01
Critical phenomena in gravitational collapse opened a new mathematical vista into the theory of general relativity and may ultimately entail fundamental physical implication in observations. However, at present, the dynamics of critical phenomena in gravitational collapse scenarios are still largely unknown. My thesis seeks to understand the properties of the threshold in the solution space of the Einstein field equations between the black hole and neutron star phases, understand the properties of the neutron star critical solution and clarify the implication of these results on realistic astrophysical scenarios. We develop a new set of neutron star-like initial data to establish the universality of the neutron star critical solution and analyze the structure of neutron star and neutron star-like critical collapses via the study of the phase spaces. We also study the different time scales involved in the neutron star critical solution and analyze the properties of the critical index via comparisons between neutron star and neutron star-like initial data. Finally, we explore the boundary of the attraction basin of the neutron star critical solution and its transition to a known set of non-critical fixed points.
MHD Simulations of Core Collapse Supernovae with Cosmos++
Akiyama, Shizuka
2010-01-01
We performed 2D, axisymmetric, MHD simulations with Cosmos++ in order to examine the growth of the magnetorotational instability (MRI) in core--collapse supernovae. We have initialized a non--rotating 15 solar mass progenitor, infused with differential rotation and poloidal magnetic fields. The collapse of the iron core is simulated with the Shen EOS, and the parametric Ye and entropy evolution. The wavelength of the unstable mode in the post--collapse environment is expected to be only ~ 200 m. In order to achieve the fine spatial resolution requirement, we employed remapping technique after the iron core has collapsed and bounced. The MRI unstable region appears near the equator and angular momentum and entropy are transported outward. Higher resolution remap run display more vigorous overturns and stronger transport of angular momentum and entropy. Our results are in agreement with the earlier work by Akiyama et al. (2003) and Obergaulinger et al. (2009).
Cardiovascular collapse due to intravenous verapamil in two ...
African Journals Online (AJOL)
Unpleasant side-effects (e.g. chest discomfort) are therefore short-lived. Hypotension, if it ... Hasin Y. Gotsman MS. The use of calcium with ... applicatio support. The boo reading a reader's a illustration and techn .and is als followed t years.
Collapse of amphibian communities due to an introduced Ranavirus.
Price, Stephen J; Garner, Trenton W J; Nichols, Richard A; Balloux, François; Ayres, César; Mora-Cabello de Alba, Amparo; Bosch, Jaime
2014-11-01
The emergence of infectious diseases with a broad host range can have a dramatic impact on entire communities and has become one of the main threats to biodiversity. Here, we report the simultaneous exploitation of entire communities of potential hosts with associated severe declines following invasion by a novel viral pathogen. We found two phylogenetically related, highly virulent viruses (genus Ranavirus, family Iridoviridae) causing mass mortality in multiple, diverse amphibian hosts in northern Spain, as well as a third, relatively avirulent virus. We document host declines in multiple species at multiple sites in the region. Our work reveals a group of pathogens that seem to have preexisting capacity to infect and evade immunity in multiple diverse and novel hosts, and that are exerting massive impacts on host communities. This report provides an exceptional record of host population trends being tracked in real time following emergence of a wildlife disease and a striking example of a novel, generalist pathogen repeatedly crossing the species barrier with catastrophic consequences at the level of host communities.
Geophysical observations at cavity collapse
Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe
2010-05-01
In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.
Gravitational collapse of a magnetized fermion gas with finite temperature
Energy Technology Data Exchange (ETDEWEB)
Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)
2013-07-15
We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)
Classical static final state of collapse with supertranslation memory
Compère, Geoffrey
2016-01-01
The Kerr metric models the final classical black hole state after gravitational collapse of matter and radiation. Any stationary metric which is close to the Kerr metric has been proven to be diffeomorphic to it. Now, finite supertranslation diffeomorphisms are symmetries which map solutions to inequivalent solutions, as illustrated by the classical memory effect. Such diffeomorphisms generate conserved superrotation charges. The final state of gravitational collapse is therefore parameterized by its mass, angular momentum and supertranslation field, signaled by its conserved superrotation charges. In this paper, we first derive the angle-dependent energy conservation law relating the asymptotic value of the supertranslation field of the final state to the details of the collapse and subsequent evolution of the system. We then generate the static solution with an asymptotic supertranslation field and we study some of its properties. The deviation from the Schwarzschild metric could therefore be predicted on a...
Magnetohydrodynamic Simulations of A Rotating Massive Star Collapsing to A Black Hole
Fujimoto, S; Kotake, K; Sato, K; Yamada, S; Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Kotake, Kei; Sato, Katsuhiko; Yamada, Shoichi
2006-01-01
We perform two-dimensional, axisymmetric, magnetohydrodynamic simulations of the collapse of a rotating star of 40 Msun and in the light of the collapsar model of gamma-ray burst. Considering two distributions of angular momentum, up to \\sim 10^{17} cm^2/s, and the uniform vertical magnetic field, we investigate the formation of an accretion disk around a black hole and the jet production near the hole. After material reaches to the black hole with the high angular momentum, the disk is formed inside a surface of weak shock. The disk becomes in a quasi-steady state for stars whose magnetic field is less than 10^{10} G before the collapse. We find that the jet can be driven by the magnetic fields even if the central core does not rotate as rapidly as previously assumed and outer layers of the star has sufficiently high angular momentum. The magnetic fields are chiefly amplified inside the disk due to the compression and the wrapping of the field. The fields inside the disk propagate to the polar region along t...
Zhu, Baojun; Yuan, Dawei; Li, Yanfei; Li, Fang; Liao, Guoqian; Zhao, Jiarui; Zhong, Jiayong; Xue, Feibiao; Wei, Huigang; Zhang, Kai; Han, Bo; Pei, Xiaoxing; Liu, Chang; Zhang, Zhe; Wang, Weimin; Zhu, Jianqiang; Zhao, Gang; Zhang, Jie
2015-01-01
A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7x10^15 Wcm^-2. Theoretical analysis indicates that the magnetic field strength is proportional to laser intensity. Such a strong magnetic field offers a new experimental test bed to study laser-plasma physics, in particular, fast-ignition laser fusion research and laboratory astrophysics.
Qualitative analysis of collapsing isotropic fluid spacetimes
Giambò, Roberto
2013-01-01
The structure of the Einstein field equations describing the gravitational collapse of spherically symmetric isotropic fluids is analyzed here for general equations of state. A suitable system of coordinates is constructed which allows us, under a hypothesis of Taylor-expandability with respect to one of the coordinates, to approach the problem of the nature of the final state without knowing explicitely the metric. The method is applied to investigate the singularities of linear barotropic perfect fluids solutions and to a family of accelerating fluids.
Electromagnetic wave collapse in a radiation background.
Marklund, Mattias; Brodin, Gert; Stenflo, Lennart
2003-10-17
The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed.
Collapsing glomerulopathy in systemic lupus erythematosus.
Abadeer, Kerolos; Alsaad, Ali A; Geiger, Xochiquetzal J; Porter, Ivan E
2017-02-27
Collapsing glomerulopathy (CG) is a rare disease that can be associated with multiple other disorders. It usually leads to poor prognosis with a high percentage of patients progressing to end-stage renal disease. In this article, we illustrate a clinical case of CG associated with systemic lupus erythematosus that had a prompt response to mycophenolate and prednisone. The condition started after sudden cessation of the already established mycophenolate treatment regimen. The patient then presented with acute kidney injury due to kidney biopsy-proven CG. In that circumstance, we hypothesised that mycophenolate may play a role in prevention and development of CG.
Moduli destabilization via gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics
2013-06-15
We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.
Directory of Open Access Journals (Sweden)
Moh'd A. Al-Nimr
2004-06-01
Full Text Available Magnetic field effect on local entropy generation due to steady two-dimensional laminar forced convection flow past a horizontal plate was numerically investigated. This study was focused on the entropy generation characteristics and its dependency on various dimensionless parameters. The effect of various dimensionless parameters, such as Hartmann number (Ha, Eckert number (Ec, Prandtl number (Pr, Joule heating parameter (R and the free stream temperature parameter (ÃŽÂ¸Ã¢ÂˆÂž on the entropy generation characteristics is analyzed. The dimensionless governing equations in Cartesian coordinate were solved by an implicit finite difference technique. The solutions were carried out for Ha2=0.5-3, Ec=0.01-0.05, Pr=1-5 and ÃŽÂ¸Ã¢ÂˆÂž=1.1-2.5. It was found that, the entropy generation increased with increasing Ha, Ec and R. While, increasing the free stream temperature parameter, and Prandtl number tend to decrease the local entropy generation.
Collapse of ordered spatial pattern in neuronal network
Song, Xinlin; Wang, Chunni; Ma, Jun; Ren, Guodong
2016-06-01
Spatiotemporal systems can emerge some regular spatial patterns due to self organization or under external periodical pacing while external attack or intrinsic collapse can destroy the regularity in the spatial system. For an example, the electrical activities of neurons in nervous system show regular spatial distribution under appropriate coupling and connection. It is believed that distinct regularity could be induced in the media by appropriate forcing or feedback, while a diffusive collapse induced by continuous destruction can cause breakdown of the media. In this paper, the collapse of ordered spatial distribution is investigated in a regular network of neurons (Morris-Lecar, Hindmarsh-Rose) in two-dimensional array. A stable target wave is developed regular spatial distribution emerges by imposing appropriate external forcing with diversity, or generating heterogeneity (parameter diversity in space). The diffusive invasion could be produced by continuous parameter collapse or switch in local area, e.g, the diffusive poisoning in ion channels of potassium in Morris-Lecar neurons causes breakdown in conductance of channels. It is found that target wave-dominated regularity can be suppressed when the collapsed area is diffused in random. Statistical correlation functions for sampled nodes (neurons) are defined to detect the collapse of ordered state by series analysis.
Electron acceleration by magnetic collapse during decoupling
Bennet, Euan D.; Potts, Hugh E.; Teodoro, Luis F. A.; Diver, Declan A.
2014-12-01
This paper identifies the non-equilibrium evolution of magnetic field structures at the onset of large-scale recombination of an inhomogeneously ionized plasma. The context for this is the Universe during the epoch of recombination. The electromagnetic treatment of this phase transition can produce energetic electrons scattered throughout the Universe, localized near the edges of magnetic domains. This is confirmed by a numerical simulation in which a magnetic domain is modelled as a uniform field region produced by a thin surrounding current sheet. Conduction currents sustaining the magnetic structure are removed as the charges comprising them combine into neutrals. The induced electric field accompanying the magnetic collapse is able to accelerate ambient stationary electrons (that is, electrons not participating in the current sheet) to energies of up to order 10keV. This is consistent with theoretical predictions. The localized electron acceleration leads to local imbalances of charge which has implications for charge separation in the early Universe.
Thermal and Chemical Evolution of Collapsing Filaments
Energy Technology Data Exchange (ETDEWEB)
Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration
2013-01-15
Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z_{⊙} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10^{-3}Z_{⊙} filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.
Thermal and Chemical Evolution of Collapsing Filaments
Energy Technology Data Exchange (ETDEWEB)
Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration
2013-01-15
Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z_{⊙} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10^{-3}Z_{⊙} filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.
Energy Technology Data Exchange (ETDEWEB)
Sawai, Hidetomo; Yamada, Shoichi, E-mail: hsawai@heap.phys.waseda.ac.jp [Waseda University, Shinjuku, Tokyo 169-8555 (Japan)
2014-03-20
We investigated the impact of magnetorotational instability (MRI) on the dynamics of weakly magnetized, rapidly rotating core-collapse supernovae by conducting high-resolution axisymmetric MHD simulations with simplified neutrino transfer. We found that an initially sub-magnetar-class magnetic field is drastically amplified by MRI and substantially affects the dynamics thereafter. Although the magnetic pressure is not strong enough to eject matter, the amplified magnetic field efficiently transfers angular momentum from small to large radii and from higher to lower latitudes, which causes the expansion of the heating region due to the extra centrifugal force. This then enhances the efficiency of neutrino heating and eventually leads to neutrino-driven explosion. This is a new scenario of core-collapse supernovae that has never been demonstrated by past numerical simulations.
Critical behavior of collapsing surfaces
DEFF Research Database (Denmark)
Olsen, Kasper; Sourdis, C.
2009-01-01
We consider the mean curvature evolution of rotationally symmetric surfaces. Using numerical methods, we detect critical behavior at the threshold of singularity formation resembling that of gravitational collapse. In particular, the mean curvature simulation of a one-parameter family of initial...
Energy Technology Data Exchange (ETDEWEB)
Souza, Rafael S. de, E-mail: Rafael@astro.iag.usp.br [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil); Opher, Reuven, E-mail: Opher@astro.iag.usp.br [IAG, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, CEP 05508-900, Sao Paulo, SP (Brazil)
2011-11-17
The origin of magnetic fields in astrophysical objects is a challenging problem in astrophysics. Throughout the years, many scientists have suggested that non-minimal gravitational-electromagnetic coupling (NMGEC) could be the origin of the ubiquitous astrophysical magnetic fields. We investigate the possible origin of intense magnetic fields by NMGEC near rotating black holes, connected with quasars and gamma-ray bursts. Whereas these intense magnetic fields are difficult to explain astrophysically, we find that they are easily explained by NMGEC.
Null fluid collapse in brane world models
Harko, Tiberiu; Lake, Matthew J.
2014-03-01
The brane world description of our Universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high-density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black holes over naked singularities, we find that, for the types of fluid considered, this is not the case. However, the black hole solutions differ substantially from their general-relativistic counterparts and brane world corrections often play a role analogous to charge in general relativity. As an astrophysical application of this work, the possibility that energy emission from a Hagedorn fluid collapsing to form a naked singularity may be a source of GRBs in the brane world is also considered.
Classical Collapse to Black Holes and Quantum Bounces: A Review
Directory of Open Access Journals (Sweden)
Daniele Malafarina
2017-05-01
Full Text Available In the last four decades, different programs have been carried out aiming at understanding the final fate of gravitational collapse of massive bodies once some prescriptions for the behaviour of gravity in the strong field regime are provided. The general picture arising from most of these scenarios is that the classical singularity at the end of collapse is replaced by a bounce. The most striking consequence of the bounce is that the black hole horizon may live for only a finite time. The possible implications for astrophysics are important since, if these models capture the essence of the collapse of a massive star, an observable signature of quantum gravity may be hiding in astrophysical phenomena. One intriguing idea that is implied by these models is the possible existence of exotic compact objects, of high density and finite size, that may not be covered by an horizon. The present article outlines the main features of these collapse models and some of the most relevant open problems. The aim is to provide a comprehensive (as much as possible overview of the current status of the field from the point of view of astrophysics. As a little extra, a new toy model for collapse leading to the formation of a quasi static compact object is presented.
Hierarchical gravitational fragmentation. I. Collapsing cores within collapsing clouds
Romero, Raúl Naranjo; Loughnane, Robert M
2015-01-01
We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor-Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like $r^-2$ density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with t...
Null fluid collapse in brane world models
Harko, Tiberiu
2013-01-01
The brane world description of our universe entails a large extra dimension and a fundamental scale of gravity that may be lower than the Planck scale by several orders of magnitude. An interesting consequence of this scenario occurs in the nature of spherically-symmetric vacuum solutions to the brane gravitational field equations, which often have properties quite distinct from the standard black hole solutions of general relativity. In this paper, the spherically-symmetric collapse on the brane world of four types of null fluid, governed by the barotropic, polytropic, strange quark "bag" model and Hagedorn equations of state, is investigated. In each case, we solve the approximate gravitational field equations, obtained in the high density limit, determine the equation which governs the formation of apparent horizons and investigate the conditions for the formation of naked singularities. Though, naively, one would expect the increased effective energy density on the brane to favor the formation of black ho...
Computational Models of Stellar Collapse and Core-Collapse Supernovae
Ott, C D; Burrows, A; Livne, E; O'Connor, E; Löffler, F
2009-01-01
Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar col...
Sabbatini, Simone; Fratini, Gerardo; Fidaleo, Marcello; Papale, Dario
2017-04-01
Among several sources of uncertainty characterising the fluxes of atmospheric constituents to and from a given ecosystem calculated using the eddy covariance (EC) methodology, the systematic error due to the corrections applied in the post-field raw data processing is still relatively unknown. We performed an extensive analysis aiming at quantifying this portion of the uncertainty for the CO2 exchange, and at defining a strategy of processing to be generically applied as to understand this uncertainty. We selected 11 years of raw EC data from 9 stations all over the Europe, corresponding to 4 different setups. Then we chose 2 or 3 possible valid options for each of the 8 most relevant corrections to be applied to the raw data, and produced as many outputs (1-year-long calculated hourly and half-hourly fluxes) as the combinations of all the different options (full-factorial design). Statistical analysis was used to quantify and characterise the uncertainty (n-way ANOVA) both on the (half-)hourly and the yearly cumulative fluxes. Factorial design of Experiment (DOE) was used to select a relatively small sub-group of combinations of processing options (fractional factorial design) to be applied to a given dataset in order to quantify the processing uncertainty, with a limited loss of information as compared to the full factorial. Our results show that: (i) the variability as expressed by the inter-quartile range (IQR) of the cumulate CO2 flux is between 50 and 400 gC m-2 year-1. (ii) The importance of the single corrections (factors) in terms of variance explained is not constant among datasets, but a general trend is found such that the coordinate rotation (CR) and the trend removal (TR) have often a high weight on the overall uncertainty (i.e. between 10% and 50%), while the importance of the time-lag compensation (TL) is highly variable. (iii) 2x2 interactions between factors have some importance, mostly between the most relevant ones. (iv) The percentage error of
How fast is protein hydrophobic collapse?
Sadqi, Mourad; Lapidus, Lisa J.; Muñoz, Victor
2003-01-01
One of the most recurring questions in protein folding refers to the interplay between formation of secondary structure and hydrophobic collapse. In contrast with secondary structure, it is hard to isolate hydrophobic collapse from other folding events. We have directly measured the dynamics of protein hydrophobic collapse in the absence of competing processes. Collapse was triggered with laser-induced temperature jumps in the acid-denatured form of a simple protein and monitored by fluoresce...
Atomic Structure and Energy Distribution of Collapsed Carbon Nanotubes of Different Chiralities
Directory of Open Access Journals (Sweden)
Julia A. Baimova
2015-01-01
Full Text Available For carbon nanotubes of sufficiently large diameter at sufficiently low temperature, due to the action of the van der Waals forces, the ground state is a bilayer graphene with closed edges, the so-called collapsed configuration. Molecular dynamics simulation of collapsed carbon nanotubes is performed. The effect of length, diameter, and chirality of the nanotubes on their properties is investigated. It is shown that collapsed nanotubes after relaxation have rippled structure which is strongly dependent on the nanotube chirality. The structural properties are studied by calculating the radial distribution function and energy distribution along various regions in the collapsed carbon nanotubes.
Massive Computation for Understanding Core-Collapse Supernova Explosions
Ott, Christian D
2016-01-01
How do massive stars explode? Progress toward the answer is driven by increases in compute power. Petascale supercomputers are enabling detailed three-dimensional simulations of core-collapse supernovae. These are elucidating the role of fluid instabilities, turbulence, and magnetic field amplification in supernova engines.
Impact on liquids : void collapse and jet formation
Gekle, Stephan
2009-01-01
A spectacular example of free surface flow is the impact of a solid object on a liquid: At impact a “crown” splash is created and a surface cavity (void) emerges which immediately starts to collapse due to the hydrostatic pressure of the surrounding liquid. Eventually the cavity closes in a single
Impact on liquids : void collapse and jet formation
Gekle, Stephan
2009-01-01
A spectacular example of free surface flow is the impact of a solid object on a liquid: At impact a “crown” splash is created and a surface cavity (void) emerges which immediately starts to collapse due to the hydrostatic pressure of the surrounding liquid. Eventually the cavity closes in a single p
Impact on liquids : void collapse and jet formation
Gekle, Stephan
2009-01-01
A spectacular example of free surface flow is the impact of a solid object on a liquid: At impact a “crown” splash is created and a surface cavity (void) emerges which immediately starts to collapse due to the hydrostatic pressure of the surrounding liquid. Eventually the cavity closes in a single p
Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko
2012-01-01
Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE.
Zhu, S.; Zijlstra, T.; Golubov, A.A.; Van den Bemt, M.; Baryshev, A.M.; Klapwijk, T.M.
2009-01-01
The coupling efficiency of a Nb superconducting transmission line has been measured using a Fourier transform spectrometer for different magnetic fields. It is found that the coupling decreases with increasing magnetic field when the frequency is close to the gap of the Nb superconductor. This is at
Bouwmeester, Lies; Heutink, Joost; Lucas, Cees
2007-01-01
The objective of this review was to evaluate whether systematic visual training leads to ( 1) a restitution of the visual field ( restoration), ( 2) an increase in the visual search field size or an improvement in scanning strategies (compensation) and ( 3) a transfer of training-related improvement
On collapsibilities of Yule's measure
Institute of Scientific and Technical Information of China (English)
GUO; Jianhua
2001-01-01
［1］Simpson,E.H.,The interpretation of interaction in contingency tables,J.R.Statist.Soc.B,1951,13:238-241.［2］Bishop,Y.M.M.,Effects of collapsing multidimensional contingency tables,Biometrics,1971,27:545-562.［3］Whittemore,A.S.,Collapsibility of multidimensional contingency tables,J.R.Statist.Soc.B,1978,40:328-340.［4］Good,I.J.,Mittal,Y.,The amalgamation and geometry of two-by-two contingency tables,Ann.Statist.,1987,15:694-711.［5］Gail,M.H.,Adjusting for covariates that have the same distribution in exposed and unexposed cohorts,Modern Statistical Methods in Chronic Disease Epidemiology (eds.Moolgavkar,S.H.,Prentice,R.L.),New York:Wiley,1986,3-18.［6］Wermuth,N.,Parametric collapsibility and the lack of moderating effects in contingency tables with a dichotomous response variable,J.R.Statist.Soc.B,1987,49:353-364.［7］Wermuth,N.,Moderating effects of subgroups in linear models,Biometrika,1989,76:81-92.［8］Ducharme,G.R.,Lepage,Y.,Testing collapsibility in contingency tables,J.R.Statist.Soc.B,1986,48:197-205.［9］Geng Zhi,Collapsibility of relative risk in contingency tables with a response variable,J.R.Statist.Soc.B,1992,54:585-593.［10］Guo Jianhua,Geng Zhi,Collapsibility of logistic regression coefficients,J.R.Statist.Soc.B,1995,57:263-267.［11］Rosenbaum,P.,Rubin,D.B.,The central role of the propensity score in observational studies for causal effects,Biometrika,1983,70:41-55.［12］Greenland,S.,Robins,J.M.,Pearl,J.,Confounding and collapsibility in causal inference,Statist.Sci.,1999,14:29-46.［13］Freedman,D.,From association to causation:some remarks on the history of statistics,Statist.Sci.,1999,14:243-258.［14］Geng,Z.,Guo,J.H.,Lau,T.S.et al.,Confounding,consistency and collapsibility for causal effects in epidemiologic studies,To appear in Statist.Sinica,2001.［15］Yule,G.U.,Notes on the theory of association of attributes in statistics,Biometrika,1903,2:121-134.［16］Lancaster,H.O.,The Chi-squared Distribution
Spreadsheets and the Financial Collapse
Croll, Grenville J
2009-01-01
We briefly review the well-known risks, weaknesses and limitations of spreadsheets and then introduce some more. We review and slightly extend our previous work on the importance and criticality of spreadsheets in the City of London, introducing the notions of ubiquity, centrality, legality and contagion. We identify the sector of the financial market that we believed in 2005 to be highly dependant on the use of spreadsheets and relate this to its recent catastrophic financial performance. We outline the role of spreadsheets in the collapse of the Jamaican banking system in the late 1990's and then review the UK financial regulator's knowledge of the risks of spreadsheets in the contemporary financial system. We summarise the available evidence and suggest that there is a link between the use of spreadsheets and the recent collapse of the global financial system. We provide governments and regulating authorities with some simple recommendations to reduce the risks of continued overdependence on unreliable spr...
Prediction of Collapse Scope of Deep-Buried Tunnels Using Pressure Arch Theory
Directory of Open Access Journals (Sweden)
Yingchao Wang
2016-01-01
Full Text Available Tunnel collapse remains a serious problem in practice. Effective prediction methods on tunnel collapse are necessary for tunnel engineering. In this study, systematic study on the pressure arch was presented to predict tunnel collapse. Multiple factors under different conditions were considered. First, the pressure arch was described as a certain scope in comparison with the lowest pressure arch line. Then, a deep-buried circular tunnel was selected as the investigated object. Its collapse scope was analyzed using the lowest pressure arch line. Meanwhile, the main influence from the ground stress field was considered. Different modes of ground stress fields were investigated in detail. The results indicate that the collapse scope varies with different ground stress fields. Determination on the collapse scope is strongly affected by the judgment standard of the pressure arch. Furthermore, a selected case was analyzed with the pressure arch. The area and the height of tunnel collapse were calculated with multiple factors, including ground stress field, judgment standard, and lateral pressure coefficient. Finally, selected results were compared with relevant previous researches, and reasonable results were obtained. The present results are helpful for further understanding of the tunnel collapse and could provide suitable guidance for tunnel projects.
Radiation decoherence, state vector collapse and QED nonequivalent representations
Mayburov, S
1996-01-01
The state vector evolution in the interaction of initial measured pure state with collective quantum system or the field with a very large number of degrees of freedom N is analysed in a nonperturbative QED formalism. As the example the measurement of the electron final state scattered on nucleus or neutrino is considered.In the nonperturbative field theory the complete manifold of the system states is nonseparable i.e. is described by tensor product of infinitely many independent Hilbert spaces. The interaction of this system with the measured state can result in the final states which belong to different Hilbert spaces which corresponds to different values of some classical observables,i.e. spontaneous symmetry breaking occurs. Interference terms (IT) between such states in the measurement of any Hermitian observable are infinitely small and due to it the final pure states can't be distinguished from the mixed ones, characteristic for the state collapse. The evolution from initial to final system state is n...
Collapsing floating-point operations
Defour, David
2004-01-01
This paper addresses the issue of collapsing dependent floating-point operations. The presentation focuses on studying the dataflow graph of benchmark involving a large number of floating-point instructions. In particular, it focuses on the relevance of new floating-point operators performing two dependent operations which are similar to "fused multiply and add". Finally, this paper examines the implementation cost and critical path reduction from this strategy.
Preventing State Collapse in Syria
2017-01-01
region.4 The longer the war goes on, the higher the probability of state collapse, fragmentation, endemic terrorism, and continued refugee flows. The...fighting extremism, sectarianism, and non-interference in the internal affairs of Syria, a political solution, respect for minority rights , human rights ...Even the Muslim Brotherhood had de-emphasized sectarian loyalties in favor of human rights and rule of law.56 A tradition of centralized governance
Temperature evolution during dissipative collapse
Indian Academy of Sciences (India)
S D Maharaj; G Govender; M Govender
2011-09-01
We investigate the gravitational collapse of a radiating sphere evolving into a ﬁnal static conﬁguration described by the interior Schwarzschild solution. The temperature proﬁles of this particular model are obtained within the framework of causal thermodynamics. The overall temperature evolution is enhanced by contributions from the temperature gradient induced by perturbations as well as relaxational effects within the stellar core.
Understanding Core-Collapse Supernovae
Burrows, A
2004-01-01
I summarize, in the form of an extended abstract, the ongoing efforts at the University of Arizona (and in collaboration) to understand core-collapse supernovae theoretically. Included are short discussions of 1D (SESAME) and 2D (VULCAN/2D) codes and results, as well as discussions of the possible role of rotation. Highlighted are recent developments in multi-dimensional radiation hydrodynamics and the essential physics of the neutrino-driven mechanism.
Colony collapse disorder in Europe.
Dainat, Benjamin; Vanengelsdorp, Dennis; Neumann, Peter
2012-02-01
Colony collapse disorder (CCD) is a condition of honey bees, which has contributed in part to the recent major losses of honey bee colonies in the USA. Here we report the first CCD case from outside of the USA. We suggest that more standardization is needed for the case definition to diagnose CCD and to compare data on a global scale. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Neutrino pair emission from thermally excited nuclei in stellar collapse
Dzhioev, Alan A
2013-01-01
We examine the rate of neutrino-antineutrino pair emission by hot nuclei in collapsing stellar cores. The rates are calculated assuming that only allowed charge-neutral Gamow-Teller (GT$_0$) transitions contribute to the decay of thermally excited nuclear states. To obtain the GT$_0$ transition matrix elements, we employ the quasiparticle random phase approximation extended to finite temperatures within the thermo field dynamics formalism. The decay rates and the energy emission rates are calculated for the sample nuclei ${}^{56}$Fe and $^{82}$Ge at temperatures relevant to core collapse supernovae.
An Elastoplastic Model for Partially Saturated Collapsible Rocks
Ma, Jianjun
2016-02-01
A unified elastoplastic model for describing the stress-strain behavior of partially saturated collapsible rocks is proposed. The elastic-plastic response due to loading and unloading is captured using bounding surface plasticity. The coupling effect of hydraulic and mechanical responses is addressed by applying the effective stress concept. Special attention is paid to the rock-fluid characteristic curve (RFCC), effective stress parameter, and suction hardening. A wide range of saturation degree is considered. The characteristics of mechanical behavior in partially saturated collapsible rocks are captured for all cases considered.
Ion-mediated RNA structural collapse: effect of spatial confinement
Tan, Zhi-Jie
2013-01-01
RNAs are negatively charged molecules residing in macromolecular crowding cellular environments. Macromolecular confinement can influence the ion effects in RNA folding. In this work, using the recently developed tightly bound ion model for ion fluctuation and correlation, we investigate the confinement effect on the ion-mediated RNA structural collapse for a simple model system. We found that, for both Na$^+$ and Mg$^{2+}$, ion efficiencies in mediating structural collapse/folding are significantly enhanced by the structural confinement. Such an enhancement in the ion efficiency is attributed to the decreased electrostatic free energy difference between the compact conformation ensemble and the (restricted) extended conformation ensemble due to the spatial restriction.
Sudden Trust Collapse in Networked Societies
Batista, João da Gama; Challet, Damien
2014-01-01
Trust is a collective, self-fulfilling phenomenon that suggests analogies with phase transitions. We introduce a stylized model for the build-up and collapse of trust in networks, which generically displays a first order transition. The basic assumption of our model is that whereas trust begets trust, panic also begets panic, in the sense that a small decrease in trust may be amplified and ultimately lead to a sudden and catastrophic drop of trust. We show, using both numerical simulations and mean-field analytic arguments, that there are extended regions of the parameter space where two equilibrium states coexist: a well-connected network where confidence is high, and a poorly connected network where confidence is low. In these coexistence regions, spontaneous jumps from the well-connected state to the poorly connected state can occur, corresponding to a sudden collapse of trust that is not caused by any major external catastrophe. In large systems, spontaneous crises are replaced by history dependence: whet...
Holographic probes of collapsing black holes
Hubeny, Veronika E
2013-01-01
We continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. ...
Directory of Open Access Journals (Sweden)
S. Mahdiuon-Rad
2013-08-01
Full Text Available This paper investigates both static and dynamic eccentricities in single phase brushless DC (BLDC motors and analyzes the effect of the PM magnetization field on unbalanced magnetic forces acting on the rotor. Three common types of PM magnetization field patterns including radial, parallel and sinusoidal magnetizations are considered. In both static and dynamic eccentricities, harmonic components of the unbalanced magnetic forces on the rotor are extracted and analyzed. Based on simulation results, the magnetization fields that produce the lowest and highest unbalanced magnetic forces are determined in rotor eccentricity conditions.
Generalized stochastic Schroedinger equations for state vector collapse
Adler, Stephen Louis; Adler, Stephen L.; Brun, Todd A.
2001-01-01
A number of authors have proposed stochastic versions of the Schr\\"odinger equation, either as effective evolution equations for open quantum systems or as alternative theories with an intrinsic collapse mechanism. We discuss here two directions for generalization of these equations. First, we study a general class of norm preserving stochastic evolution equations, and show that even after making several specializations, there is an infinity of possible stochastic Schr\\"odinger equations for which state vector collapse is provable. Second, we explore the problem of formulating a relativistic stochastic Schr\\"odinger equation, using a manifestly covariant equation for a quantum field system based on the interaction picture of Tomonaga and Schwinger. The stochastic noise term in this equation can couple to any local scalar density that commutes with the interaction energy density, and leads to collapse onto spatially localized eigenstates. However, as found in a similar model by Pearle, the equation predicts an...
Observing atomic collapse resonances in artificial nuclei on graphene.
Wang, Yang; Wong, Dillon; Shytov, Andrey V; Brar, Victor W; Choi, Sangkook; Wu, Qiong; Tsai, Hsin-Zon; Regan, William; Zettl, Alex; Kawakami, Roland K; Louie, Steven G; Levitov, Leonid S; Crommie, Michael F
2013-05-10
Relativistic quantum mechanics predicts that when the charge of a superheavy atomic nucleus surpasses a certain threshold, the resulting strong Coulomb field causes an unusual atomic collapse state; this state exhibits an electron wave function component that falls toward the nucleus, as well as a positron component that escapes to infinity. In graphene, where charge carriers behave as massless relativistic particles, it has been predicted that highly charged impurities should exhibit resonances corresponding to these atomic collapse states. We have observed the formation of such resonances around artificial nuclei (clusters of charged calcium dimers) fabricated on gated graphene devices via atomic manipulation with a scanning tunneling microscope. The energy and spatial dependence of the atomic collapse state measured with scanning tunneling microscopy revealed unexpected behavior when occupied by electrons.
Multiple critical gravitational collapse of charged scalar with reflecting wall
Cai, Rong-Gen
2016-01-01
In this paper, we present the results on the gravitational collapse of charged massless scalar field in asymptotically flat spacetime with a perfectly reflecting wall. Differing from previous works, we study the system in the double null coordinates, by which we could simulate the system until the black hole forms with higher precision but less performance time. We investigate the influence of charge on the black hole formation and the scaling behavior near the critical collapses. The gapless and gapped critical behaviors for black hole mass and charge are studied numerically. We find that they satisfy the scaling laws for critical gravitational collapse but the gapped critical behavior is different from its AdS counterpart.
Rojas, R.; Garcia, R. D.; Rodríguez, A. O.
2008-08-01
The increasing use of high fields in Magnetic Resonance Systems poses new challenges for their operation within safety limits. At high frequencies, electromagnetic fields induce current densities that may damage the organs to be imaged. These eddy currents are transformed in heat via the Joule's effect causing possible severe damage in tissues and organs. The electric field effects in a rat's brain were studied from numerically computed induced currents using a pixel-based model. Numerical simulations were calculated solving the Maxwell's equations with a Finite Element Method for a circular-shaped coil and the pixel model of a rat's brain. Simulations of the electric field were computed and graphically displayed as bi-dimensional transversal images. Profiles of current density as a function of position for four different frequencies were computed from the simulations. An increment of the induced currents can be appreciates at the surface of the brain, and it vanished towards the centre.
Lee, Kwan; Jang, Jung-tak; Nakano, Hiroshi; Nakagawa, Shigeki; Paek, Sun Ha; Bae, Seongtae
2017-02-01
Although the blocking temperature of superparamagnetic nanoparticles (SPNPs) is crucial for various spintronics and biomedical applications, the precise determination of the blocking temperature is still not clear. Here, we present ‘intrinsic’ and ‘extrinsic’ characteristics of the blocking temperature in SPNP systems. In zero-field-cooled/field-cooled (ZFC-FC) curves, there was no shift of ‘intrinsic blocking temperature’ at different applied external (excitation) magnetic fields. However, ‘extrinsic blocking temperature’ shift is clearly dependent on the external (excitation) magnetic field. According to our newly proposed physical model, the ‘intermediate spin layer’ located between the core and surface disordered spin layers is primarily responsible for the physical nature of the shift of extrinsic blocking temperature. Our new findings offer possibilities for characterizing the thermally induced physical properties of SPNPs. Furthermore, these findings provide a new empirical approach to indirectly estimate the qualitative degree of the disordered surface spin status in SPNPs.
Collapse Mechanisms Of Masonry Structures
Zuccaro, G.; Rauci, M.
2008-07-01
The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362
Modeling colony collapse disorder in honeybees as a contagion.
Kribs-Zaleta, Christopher M; Mitchell, Christopher
2014-12-01
Honeybee pollination accounts annually for over $14 billion in United States agriculture alone. Within the past decade there has been a mysterious mass die-off of honeybees, an estimated 10 million beehives and sometimes as much as 90% of an apiary. There is still no consensus on what causes this phenomenon, called Colony Collapse Disorder, or CCD. Several mathematical models have studied CCD by only focusing on infection dynamics. We created a model to account for both healthy hive dynamics and hive extinction due to CCD, modeling CCD via a transmissible infection brought to the hive by foragers. The system of three ordinary differential equations accounts for multiple hive population behaviors including Allee effects and colony collapse. Numerical analysis leads to critical hive sizes for multiple scenarios and highlights the role of accelerated forager recruitment in emptying hives during colony collapse.
Einstein-Cartan gravitational collapse of a homogeneous Weyssenhoff fluid
Energy Technology Data Exchange (ETDEWEB)
Ziaie, Amir Hadi; Sepangi, Hamid Reza [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Vargas Moniz, Paulo [Universidade da Beira Interior, Departamento de Fisica, Covilha (Portugal); Universidade da Beira Interior, Centro de Matematica e Aplicacoes (CMA-UBI), Covilha (Portugal); Ranjbar, Arash [Shahid Beheshti University, Department of Physics, Tehran (Iran, Islamic Republic of); Centro de Estudios Cientficos (CECs), Valdivia (Chile); Universidad Andres Bello, Santiago (Chile)
2014-11-15
We consider the gravitational collapse of a spherically symmetric homogeneous matter distribution consisting of a Weyssenhoff fluid in the presence of a negative cosmological constant. Our aim is to investigate the effects of torsion and spin averaged terms on the final outcome of the collapse. For a specific interior space-time setup, namely the homogeneous and isotropic FLRW metric, we obtain two classes of solutions to the field equations where depending on the relation between spin source parameters, (i) the collapse procedure culminates in a space-time singularity or (ii) it is replaced by a non-singular bounce. We show that, under certain conditions, for a specific subset of the former solutions, the formation of trapped surfaces is prevented and thus the resulted singularity could be naked. The curvature singularity that forms could be gravitationally strong in the sense of Tipler. Our numerical analysis for the latter solutions shows that the collapsing dynamical process experiences four phases, so that two of which occur at the pre-bounce and the other two at post-bounce regimes. We further observe that there can be found a minimum radius for the apparent horizon curve, such that the main outcome of which is that there exists an upper bound for the size of the collapsing body, below which no horizon forms throughout the whole scenario. (orig.)
Subsidence and collapse sinkholes in soluble rock: a numerical perspective
Kaufmann, Georg; Romanov, Douchko; Hiller, Thomas
2016-04-01
Soluble rocks such as limestone, gypsum, anhydrite, and salt are prone to subsidence and the sudden creation of collapse sinkholes. The reason for this behaviour stems from the solubility of the rock: Water percolating through fissures and bedding partings can remove material from the rock walls and thus increase the permeability of the host rock by orders of magnitudes. This process occurs on time scales of 1,000-100,000 years, resulting in enlarged fractures, voids and cavities, which then carry flow efficiently through the rock. The enlargement of sub-surface voids to the meter-size within such short times creates mechanical conditions prone to collapse. The collapse initiates at depth, but then propagates to the surface. By means of numerical modelling, we discuss the long-term evolution of secondary porosity in gypsum rocks, resulting in zones of sub-surface voids, which then become mechanically unstable and collapse. We study two real-world case scenarios, in which we can relate field observations to our numerical model: (i) A dam-site scenario, where flow around the dam caused widespread dissolution of gypsum and subsequent subsidence of the dam and a nearby highway. (ii) A natural collapse sinkhole forming as a result of freshwater inflow into a shallow anhydrite formation with rapid evolution of voids in the sub-surface.
Muñoz, P. A.; J. Büchner
2016-01-01
Non-Maxwellian electron velocity space distribution functions (EVDF) are useful signatures of plasma conditions and non-local consequences of collisionless magnetic reconnection. In the past, EVDFs were obtained mainly for antiparallel reconnection and under the influence of weak guide-fields in the direction perpendicular to the reconnection plane. EVDFs are, however, not well known, yet, for oblique (or component-) reconnection in dependence on stronger guide-magnetic fields and for the exh...
Constraining quantum collapse inflationary models with CMB data
Benetti, Micol; Landau, Susana J.; Alcaniz, Jailson S.
2016-12-01
The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.
Constraining quantum collapse inflationary models with CMB data
Benetti, Micol; Alcaniz, Jailson S
2016-01-01
The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmolog...
Aftershock collapse vulnerability assessment of reinforced concrete frame structures
Raghunandan, Meera; Liel, Abbie B.; Luco, Nicolas
2015-01-01
In a seismically active region, structures may be subjected to multiple earthquakes, due to mainshock–aftershock phenomena or other sequences, leaving no time for repair or retrofit between the events. This study quantifies the aftershock vulnerability of four modern ductile reinforced concrete (RC) framed buildings in California by conducting incremental dynamic analysis of nonlinear MDOF analytical models. Based on the nonlinear dynamic analysis results, collapse and damage fragility curves are generated for intact and damaged buildings. If the building is not severely damaged in the mainshock, its collapse capacity is unaffected in the aftershock. However, if the building is extensively damaged in the mainshock, there is a significant reduction in its collapse capacity in the aftershock. For example, if an RC frame experiences 4% or more interstory drift in the mainshock, the median capacity to resist aftershock shaking is reduced by about 40%. The study also evaluates the effectiveness of different measures of physical damage observed in the mainshock-damaged buildings for predicting the reduction in collapse capacity of the damaged building in subsequent aftershocks. These physical damage indicators for the building are chosen such that they quantify the qualitative red tagging (unsafe for occupation) criteria employed in post-earthquake evaluation of RC frames. The results indicated that damage indicators related to the drift experienced by the damaged building best predicted the reduced aftershock collapse capacities for these ductile structures.
Institute of Scientific and Technical Information of China (English)
WANG Xing-zhe
2008-01-01
Based on the magnetoelastic generalized variational principle and Hamilton's principle, a dynamic theoretical model characterizing the magnetoelastie interaction of a soft ferromagnetic medium in an applied magnetic field is developed in this paper. From the variational manipulation of magnetic scale potential and elastic displacement, all the fundamental equations for the magnetic field and mechanical deformation, as well as the magnetic body force and magnetic traction for describing magnetoelastic interaction are derived. The theoretical model is applied to a ferromagnetic rod vibrating in an applied magnetic field using a perturbation technique and the Galerkin method. The results show that the magnetic field will change the natural frequencies of the ferromagnetic rod by causing a decrease with the bending motion along the applied magnetic field where the magnetoelastic buckling will take place, and by causing an increase when the bending motion of the rod is perpendicular to the field. The prediction by the mode presented in this paper qualitatively agrees with the natural frequency changes of the ferromagnetic rod observed in the experiment.
Energy Technology Data Exchange (ETDEWEB)
Stuchlik, Zdenek; Kolos, Martin [Silesian University in Opava, Faculty of Philosophy and Science, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Opava (Czech Republic)
2016-01-15
To test the role of large-scale magnetic fields in accretion processes, we study the dynamics of the charged test particles in the vicinity of a black hole immersed into an asymptotically uniform magnetic field. Using the Hamiltonian formalism of the charged particle dynamics, we examine chaotic scattering in the effective potential related to the black hole gravitational field combined with the uniform magnetic field. Energy interchange between the translational and oscillatory modes of the charged particle dynamics provides a mechanism for charged particle acceleration along the magnetic field lines. This energy transmutation is an attribute of the chaotic charged particle dynamics in the combined gravitational and magnetic fields only, the black hole rotation is not necessary for such charged particle acceleration. The chaotic scatter can cause a transition to the motion along the magnetic field lines with small radius of the Larmor motion or vanishing Larmor radius, when the speed of the particle translational motion is largest and it can be ultra-relativistic. We discuss the consequences of the model of ionization of test particles forming a neutral accretion disc, or heavy ions following off-equatorial circular orbits, and we explore the fate of heavy charged test particles after ionization where no kick of heavy ions is assumed and only the switch-on effect of the magnetic field is relevant. We demonstrate that acceleration and escape of the ionized particles can be efficient along the Kerr black hole symmetry axis parallel to the magnetic field lines. We show that a strong acceleration of the ionized particles to ultra-relativistic velocities is preferred in the direction close to the magnetic field lines. Therefore, the process of ionization of Keplerian discs around the Kerr black holes can serve as a model of relativistic jets. (orig.)
Magnetic Fields in Stars: Origin and Impact
Langer, N
2013-01-01
Various types of magnetic fields occur in stars: small scale fields, large scale fields, and internal toroidal fields. While the latter may be ubiquitous in stars due to differential rotation, small scale fields (spots) may be associated with envelop convection in all low and high mass stars. The stable large scale fields found in only about 10 per cent of intermediate mass and massive stars may be understood as a consequence of dynamical binary interaction, e.g., the merging of two stars in a binary. We relate these ideas to magnetic fields in white dwarfs and neutron stars, and to their role in core-collapse and thermonuclear supernova explosions.
Quantum dust collapse in 2 +1 dimension
Sarkar, Souvik; Vaz, Cenalo; Wijewardhana, L. C. R.
2016-02-01
In this paper we will examine the consequence of a canonical theory of quantum dust collapse in 2 +1 dimensions. The solution of the Wheeler-DeWitt equation describing the collapse indicates that collapsing shells outside the apparent horizon are accompanied by outgoing shells within the apparent horizon during their collapse phase and stop collapsing once they reach the apparent horizon. Taking this picture of quantum collapse seriously, we determine a static solution with energy density corresponding to a dust ball whose collapse has terminated at the apparent horizon. We show that the boundary radius of the ball is larger than the Banados-Teitelboim-Zanelli radius confirming that no event horizon is formed. The ball is sustained by radial pressure which we determine and which we attribute to the Unruh radiation within it.
Indian Academy of Sciences (India)
D Kanjilal; S Saha
2009-05-01
Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed grid geometry has marginally higher gain at larger electric fields close to the avalanche region. The spatial uniformity of response in the two wire grid configurations is also compared.
Favre, Mario; Wyndham, Edmund; Veloso, Felipe; Bhuyan, Heman; Reyes, Sebastian; Ruiz, Hugo Marcelo; Caballero-Bendixsen, Luis Sebastian
2016-10-01
We present further detailed studies of the dynamics and plasma properties of a laser produced Carbon plasma expanding in a static axial magnetic field. The laser plasmas are produced in vacuum, 1 .10-6 Torr, using a graphite target, with a Nd:YAG laser, 3.5 ns, 340 mJ at 1.06 μm, focused at 2 .109 W/cm2, and propagate in static magnetic fields of maximum value 0.2 T. 15 ns time and spaced resolved OES is used to investigate plasma composition. 50 ns time resolved plasma imaging is used to visualize the plasma dynamics. A mm size B-dot probe is used, in combination with a Faraday cup, to characterize the interaction between the expanding plasma and the magnetic field. As a result of time and space correlated measurements, unique features of the laser plasma dynamics in the presence of the magnetic field are identified, which highlight the confinement effects of the static magnetic field Funded by project FONDECYT 1141119.
Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Johnston, D. C.
2017-01-01
Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions. PMID:28211520
Magnetic field response of NaCl:Eu crystal plasticity due to spin-dependent Eu2+ aggregation
Morgunov, R. B.; Buchachenko, A. L.
2010-07-01
Magnetic field impulse (7 T amplitude 10 ms duration) was found to affect microhardness of NaCl:Eu crystals at room temperature. Dimers (pairs of Eu2+ paramagnetic ions) were shown to be responsible for the crystal softening induced by magnetic field. Theoretical treatment of the magnetoplastic effect based on the spin dependence of processes resulting in transformation of the dimers in crystals is developed and applied to the description of the long-term magnetic memory. Activation energies of the dimer formation, E1=0.23±0.04eV and decomposition, E2=0.33±0.06eV were extracted from thermoactivation analysis of magnetic field controlled Eu2+ aggregation in 77-473 K temperature range.
Pandey, Abhishek; Mazumdar, Chandan; Ranganathan, R.; Johnston, D. C.
2017-02-01
Studies on the phenomenon of magnetoresistance (MR) have produced intriguing and application-oriented outcomes for decades–colossal MR, giant MR and recently discovered extremely large MR of millions of percents in semimetals can be taken as examples. We report here the discovery of novel multiple sign changes versus applied magnetic field of the MR in the cubic intermetallic compound GdPd3. Our study shows that a very strong correlation between magnetic, electrical and magnetotransport properties is present in this compound. The magnetic structure in GdPd3 is highly fragile since applied magnetic fields of moderate strength significantly alter the spin arrangement within the system–a behavior that manifests itself in the oscillating MR. Intriguing magnetotransport characteristics of GdPd3 are appealing for field-sensitive device applications, especially if the MR oscillation could materialize at higher temperature by manipulating the magnetic interaction through perturbations caused by chemical substitutions.
Training of the Ni-Mn-Fe-Ga ferromagnetic shape-memory alloys due cycling in high magnetic field
Cherechukin, A. A.; Khovailo, V. V.; Koposov, R. V.; Krasnoperov, E. P.; Takagi, T.; Tani, J.
2003-03-01
The temperature and magnetic field dependences of Ni-Mn-Ga polycrystals deformation are investigated. Ingots were prepared by arc-melting in argon atmosphere and further annealing. A training procedure (cycling across the martensitic transition point) for the two-way shape-memory effect was performed with Ni 2.16Fe 0.04Mn 0.80Ga samples. Changes in sample deformations were noticed with changing the magnetic field at constant temperature. The first cycle deformation increment as compared with the initial value (in austenitic state, at zero field) in the course of the martensitic transition was 0.29%, and 0.41% and 0.48% for the second and third cycles, respectively.
Training of the Ni-Mn-Fe-Ga ferromagnetic shape-memory alloys due cycling in high magnetic field
Energy Technology Data Exchange (ETDEWEB)
Cherechukin, A.A. E-mail: cherechukin@mail.ru; Khovailo, V.V.; Koposov, R.V.; Krasnoperov, E.P.; Takagi, T.; Tani, J
2003-03-01
The temperature and magnetic field dependences of Ni-Mn-Ga polycrystals deformation are investigated. Ingots were prepared by arc-melting in argon atmosphere and further annealing. A training procedure (cycling across the martensitic transition point) for the two-way shape-memory effect was performed with Ni{sub 2.16}Fe{sub 0.04}Mn{sub 0.80}Ga samples. Changes in sample deformations were noticed with changing the magnetic field at constant temperature. The first cycle deformation increment as compared with the initial value (in austenitic state, at zero field) in the course of the martensitic transition was 0.29%, and 0.41% and 0.48% for the second and third cycles, respectively.
McCubbin, A. J.; Smith, S. P.; Ferraro, N. M.; Callen, J. D.; Meneghini, O.
2012-10-01
Understanding the torque applied by resonant and non-resonant magnetic perturbations and its effect on rotation is essential to predict confinement and stability in burning plasmas. Non-axisymmetric 3D fields produced in the DIII-D tokamak apply a torque to the plasma, which can be evaluated through its effect on the plasma rotation. One explanation for this torque is Neoclassical Toroidal Viscosity (NTV) acting through non-resonant field components [1]. We have developed a software framework in which magnetic perturbations calculated by the state of the art two fluid MHD code M3D-C1 can be used in NTV calculations. For discharges with applied external magnetic fields in DIII-D, the experimentally determined torques will be analyzed and compared with NTV models.[4pt] [1] J.D. Callen, Nucl. Fusion 51, 094026 (2011).
Energy Technology Data Exchange (ETDEWEB)
Röben, B., E-mail: roeben@pdi-berlin.de; Wienold, M.; Schrottke, L.; Grahn, H. T. [Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Hausvogteiplatz 5–7, 10117 Berlin (Germany)
2016-06-15
The far-field distribution of the emission intensity of terahertz (THz) quantum-cascade lasers (QCLs) frequently exhibits multiple lobes instead of a single-lobed Gaussian distribution. We show that such multiple lobes can result from self-interference related to the typically large beam divergence of THz QCLs and the presence of an inevitable cryogenic operation environment including optical windows. We develop a quantitative model to reproduce the multiple lobes. We also demonstrate how a single-lobed far-field distribution can be achieved.
A Pseudospectral Method for Gravitational Wave Collapse
Hilditch, David; Bruegmann, Bernd
2015-01-01
We present a new pseudospectral code, bamps, for numerical relativity written with the evolution of collapsing gravitational waves in mind. We employ the first order generalized harmonic gauge formulation. The relevant theory is reviewed and the numerical method is critically examined and specialized for the task at hand. In particular we investigate formulation parameters, gauge and constraint preserving boundary conditions well-suited to non-vanishing gauge source functions. Different types of axisymmetric twist-free moment of time symmetry gravitational wave initial data are discussed. A treatment of the axisymmetric apparent horizon condition is presented with careful attention to regularity on axis. Our apparent horizon finder is then evaluated in a number of test cases. Moving on to evolutions, we investigate modifications to the generalized harmonic gauge constraint damping scheme to improve conservation in the strong field regime. We demonstrate strong-scaling of our pseudospectral penalty code. We em...
The Radiative Tail of Realistic Gravitational Collapse
Hod, S
2000-01-01
An astrophysically realistic model of wave dynamics in black-hole spacetimes must involve a {\\it non}-spherical background geometry with {\\it angular momentum}. We consider the evolution of {\\it gravitational} (and electromagnetic) perturbations in {\\it rotating} Kerr spacetimes. We show that a rotating Kerr black hole becomes ``bald'' {\\it slower} than the corresponding spherically-symmetric Schwarzschild black hole. Moreover, our results {\\it turn over} the traditional belief (which has been widely accepted during the last three decades) that the late-time tail of gravitational collapse is universal. In particular, we show that different fields have {\\it different} decaying rates. Our results are also of importance both to the study of the no-hair conjecture and the mass-inflation scenario (stability of Cauchy horizons).
Non-linear cosmological collapse of quintessence
Rekier, Jeremy; Cordero-Carrion, Isabel
2015-01-01
We present a study of the fully relativistic spherical collapse in presence of quintessence using on Numerical Relativity, following the method proposed by the authors in a previous article [arXiv:1409.3476]. We ascertain the validity of the method by studying the evolution of a spherically symmetric quintessence inhomogeneity on a de Sitter background and we find that it has an impact on the local expansion around the centre of coordinates. We then proceed to compare the results of our method to those of the more largely adopted top-hat model. We find that quintessence inhomogeneities do build up under the effect that matter inhomogeneities have on the local space-time yet remain very small due to the presence of momentum transfer from the over-dense to the background regions. We expect that these might have an even more important role in modified theories of gravitation.
Santos, A. M.; Abdu, M. A.; Souza, J. R.; Sobral, J. H. A.; Batista, I. S.; Denardini, C. M.
2016-06-01
The dynamics of equatorial ionospheric plasma bubbles over Brazilian sector during two magnetic storm events are investigated in this work. The observations were made at varying phases of magnetic disturbances when the bubble zonal drift velocity was found to reverse westward from its normally eastward velocity. Calculation of the zonal drift based on a realistic low-latitude ionosphere modeled by the Sheffield University Plasmasphere-Ionosphere Model showed on a quantitative basis a clear competition between vertical Hall electric field and disturbance zonal winds on the variations observed in the zonal velocity of the plasma bubble. The Hall electric field arising from enhanced ratio of field line-integrated conductivities, ΣH/ΣP, is most often generated by an increase in the integrated Hall conductivity, arising from enhanced energetic particle precipitation in the South American Magnetic Anomaly region for which evidence is provided from observation of anomalous sporadic E layers over Cachoeira Paulista and Fortaleza. Such sporadic E layers are also by themselves evidence for the development of the Hall electric field that modifies the zonal drift.
Inoue, Shusaku; Wijeyewickrema, Anil C.; Matsumoto, Hiroyuki; Miura, Hiroyuki; Gunaratna, Priyantha; Madurapperuma, Manoj; Sekiguchi, Toru
2007-03-01
The December 26, 2004 Sumatra-Andaman earthquake that registered a moment magnitude (M w ) of 9.1 was one of the largest earthquakes in the world since 1900. The devastating tsunami that resulted from this earthquake caused more casualties than any previously reported tsunami. The number of fatalities and missing persons in the most seriously affected countries were Indonesia - 167,736, Sri Lanka - 35,322, India - 18,045 and Thailand - 8,212. This paper describes two field visits to assess tsunami effects in Sri Lanka by a combined team of Japanese and Sri Lankan researchers. The first field visit from December 30, 2004 January 04, 2005 covered the western and southern coasts of Sri Lanka including the cities of Moratuwa, Beruwala, Bentota, Pereliya, Hikkaduwa, Galle, Talpe, Matara, Tangalla and Hambantota. The objectives of the first field visit were to investigate the damage caused by the tsunami and to obtain eyewitness information about wave arrival times. The second field visit from March 10 18, 2005 covered the eastern and southern coasts of Sri Lanka and included Trincomalee, Batticaloa, Arugam Bay, Yala National Park and Kirinda. The objectives of the second visit were mainly to obtain eyewitness information about wave arrival times and inundation data, and to take relevant measurements using GPS instruments.
Thermodynamics of a collapsed object
Energy Technology Data Exchange (ETDEWEB)
Chaubey, N. (Inst. of Science and Techn., Sultanpur (India). Technological Faculty); De Sabbata, V. (Bologna Univ. (Italy). Ist. di Fisica)
1981-06-20
Here is presented a thermodynamic study in the Reissner-Nordstroem blackhole which leads to a beautiful conclusion that the product of surface gravities of the outer horizon and the inner horizon of the blackhole is equal to the inverse square of charge distribution over it. If one considers a more general collapsed object wherein rotation is also considered, a similar inference is that the product of surface gravities of the inner and the outer horizon is equal to the inverse of the sum of squares of the charge distribution and angular momentum per unit mass of the rotation.
Indian Academy of Sciences (India)
C M Dudhe; P R Arjunwadkar
2015-09-01
A study of nucleation and evaporation of 90° and 180° domains by external direct current (dc) electric field at room temperature in barium titanate single crystals has been carried out using reflecting microscope. It was observed that both the 90° and 180° domains were nucleated at some sites, while evaporated at some other sites of the crystal surface. The 90° domain follows the mechanism of micro-domain wall nucleation as well as the evaporation based on impurity dipoles, like reported for KNbO3. The mechanism of the 180° domain nucleation is not established yet. However, in both cases, nucleation and evaporation are operative simultaneously by the same electric field, which seems to be quite interesting and which can be attributed to the different critical lengths of the domains.
Directory of Open Access Journals (Sweden)
V. See
2013-04-01
Full Text Available Under sufficiently high electric field gradients, electron behaviour within exactly perpendicular shocks is unstable to the so-called trajectory instability. We extend previous work paying special attention to short-scale, high-amplitude structures as observed within the electric field profile. Via test particle simulations, we show that such structures can cause the electron distribution to heat in a manner that violates conservation of the first adiabatic invariant. This is the case even if the overall shock width is larger than the upstream electron gyroradius. The spatial distance over which these structures occur therefore constitutes a new scale length relevant to the shock heating problem. Furthermore, we find that the spatial location of the short-scale structure is important in determining the total effect of non-adiabatic behaviour – a result that has not been previously noted.
Bottura, V; Cappio Borlino, M; Carta, N; Cerise, L; Imperial, E
2009-12-01
The regional environment protection agency (ARPA) of the Aosta Valley region in north Italy performed a survey of magnetic field triggered by the power supply network in high, medium and low voltages on the entire area of Aosta town. The electrical distribution system for houses was not however taken into account. The aim of the survey was to evaluate the global population exposure and not simply the assessment of the legal exposure limit compliance.
Pleshakov, I. V.; Popov, P. S.; Kuzmin, Yu. I.; Dudkin, V. I.
2016-07-01
We consider a spin echo processor that uses a magnetically ordered material (ferrite) as a working substance. It is shown that it is possible to achieve suppression of the crosstalk (spurious signals) excited by radio-frequency pulses from different chains arriving at the system if the working substance is affected by sufficiently long magnetic field pulses. Thus, time-division multiplexing of the information processes can be carried out.
Tufekci, Nesrin; Schoups, Gerrit; Mahapatra, Pooja; van de Giesen, Nick; Hanssen, Ramon F.
2014-05-01
The Tazerbo well field is one of the well fields designed within the Great Man-Made River Project (GMMRP), which aims to deliver water to the eastern coast of Libya through an underground pipe network. It consists of 108 wells in three rows, where the wells are separated 1.3 km in longitude and 10 km in latitude. The planned total groundwater withdrawal from all wells is 1 million m3/day. The water is pumped from the deep sandstone aquifer (Nubian sandstone), which is overlaid by a thick mudstone-siltstone aquitard. Being heavily pumped, the aquifer and fine-grained sediments of the aquitard are expected to compact in time resulting in land subsidence. In order to investigate the surface deformation caused by groundwater pumping in the Tazerbo well field, Interferometric Synthetic Aperture Radar (InSAR) technique was utilized. InSAR is widely used for monitoring land subsidence and can provide sub-cm scale deformation information over large areas. Using the Persistent Scatterer method, SAR time series of 20 Envisat images, spanning from 2004 to 2010, are employed to analyze spatial and temporal distribution of land subsidence induced by groundwater withdrawal. The results are in a good agreement with simulated subsidence. In addition, the spatial distribution of InSAR observations seems to be promising in terms of detecting spatial heterogeneity of aquifer material.
Muñoz, P A
2016-01-01
Non-Maxwellian electron velocity space distribution functions (EVDF) are useful signatures of plasma conditions and non-local consequences of collisionless magnetic reconnection. In the past, the evolution of the EVDFs was investigated mainly for antiparallel or weak-guide-field reconnection. The shape of EVDFs is, however, not well known yet for oblique (or component-) reconnection in dependence on a finite guide magnetic field component perpendicular to the reconnection plane. In view of the multi-spacecraft mission MMS, we derive the non-Maxwellian features of EVDFs formed by collisionless magnetic reconnection starting from very weak ($b_g\\approx0$) up to very strong ($b_g=8$) guide-field strengths $b_g$, taking into account the feedback of the self-generated turbulence. For this sake, we carry out 2.5D fully-kinetic Particle-in-Cell (PiC) simulations using the ACRONYM code. We obtained anisotropic EVDFs and the distribution of electron beams propagating along the separatrices as well as in the exhaust re...
Honeycutt, Rebecca L.; Johnson, Steven J.
1993-04-01
The sound scattering due to an ambient noise field, approximated by a squared cosine function, is considered for infinite rigid and elastic cylinders and rigid spheres. For the cylinders, it is assumed that the acoustic wave front is parallel to the axis of the cylinder (informally incident). For this assumption, a closed form expression for the scattered sound field-to-incident ambient noise field (signal-to-noise) ratio is obtained not only for the cosine squared directivity, but for any arbitrary directivity which can be expressed in terms of a Fourier series. For the sphere, it is assumed that the noise is circumferentially symmetric which leads to a closed form expression for the signal-to-noise ratio due to a cosine squared directivity.
Partially saturated granular column collapse
Turnbull, Barbara; Johnson, Chris
2017-04-01
Debris flows are gravity-driven sub-aerial mass movements containing water, sediments, soil and rocks. These elements lead to characteristics common to dry granular media (e.g. levee formation) and viscous gravity currents (viscous fingering and surge instabilities). The importance of pore fluid in these flows is widely recognised, but there is significant debate over the mechanisms of build up and dissipation of pore fluid pressure within debris flows, and the resultant effect this has on dilation and mobility of the grains. Here we specifically consider the effects of the liquid surface in the flow. We start with a simple experiment constituting a classical axisymmetric granular column collapse, but with fluid filling the column up to a depth comparable to the depth of grains. Thus, as the column collapses, capillary forces may be generated between the grains that prevent dilation. We explore a parameter space to uncover the effects of fluid viscosity, particle size, column size, aspect ratio, grain shape, saturation level, initial packing fraction and significantly, the effects of fine sediments in suspension which can alter the capillary interaction between wetted macroscopic grains. This work presents an initial scaling analysis and attempts to relate the findings to current debris flow modelling approaches.
Protostellar disk formation and transport of angular momentum during magnetized core collapse
Joos, Marc; Ciardi, Andrea
2012-01-01
Theoretical studies of collapsing clouds found that the presence of a relatively strong magnetic field may prevent the formation of disks and their fragmentation. However most previous studies have been limited to cases where the magnetic field and the rotation axis of the cloud are aligned. We study the transport of angular momentum, and the effects on disk formation, for non-aligned initial configurations, and for a range magnetic intensities. We perform three-dimensional, adaptive mesh, numerical simulations of magnetically supercritical collapsing dense cores using the magneto-hydrodynamic code Ramses. At variance to earlier analysis, we show that the transport of angular momentum acts less efficiently in collapsing cores with non-aligned rotation and magnetic field. Analytically this result can be understood by taking into account the bending of field lines occurring during the gravitational collapse. We find that massive disks, containing at least 10% of the intial core mass, can form during the earlies...
Core-collapse and Type Ia supernovae with the SKA
Pérez-Torres, M A; Beswick, R J; Lundqvist, P; Herrero-Illana, R; Romero-Cañizales, C; Ryder, S; della Valle, M; Conway, J; Marcaide, J M; Mattila, S; Murphy, T; Ros, E
2014-01-01
Core-collapse SNe (CCSNe): Systematic searches of radio emission from CCSNe are still lacking, and only targeted searches of radio emission from just some of the optically discovered CCSNe in the local universe have been carried out. Optical searches miss a significant fraction of CCSNe due to dust obscuration; therefore, CCSN radio searches are much more promising for yielding the complete, unobscured star-formation rates in the local universe. The forthcoming SKA yields the possibility to piggyback for free in this area of research by carrying out commensal, wide-field, blind transient survey observations. SKA1-sur should be able to discover several hundreds of CCSNe in just one year, compared to about a dozen CCSNe that the VLASS would be able to detect in one year, at most. SKA, with an expected sensitivity ten times that of SKA1, is expected to detect CCSNe in the local Universe by the thousands. Therefore, commensal SKA observations could easily result in an essentially complete census of all CCSNe in t...
Jumper, E. J.; Hugo, R. J.
1992-07-01
This paper discusses the small-aperture beam technique, a relatively new way of experimentally quantifying optically-active, turbulent-fluid-flow-induced optical degradation. The paper lays out the theoretical basis for the technique, and the relationship of the measured jitter of the beam to optical path difference. A numerical simulation of a two-dimensional heated jet is used to explore the validity of beam jitter to obtain optical path difference in a flow region where eddy production constitutes the major character of the 'turbulent' flow field.
Time symmetry in wave-function collapse
Bedingham, D. J.; Maroney, O. J. E.
2017-04-01
The notion of a physical collapse of the wave function is embodied in dynamical collapse models. These involve a modification of the unitary evolution of the wave function so as to give a dynamical account of collapse. The resulting dynamics is at first sight time asymmetric for the simple reason that the wave function depends on those collapse events in the past but not those in the future. Here we show that dynamical wave-function collapse models admit a general description that has no built-in direction of time. Given some simple constraints, we show that there exist empirically equivalent pictures of collapsing wave functions in both time directions, each satisfying the same dynamical rules. A preferred direction is singled out only by the asymmetric initial and final time constraints on the state of the universe.
Seismic fragility analysis of typical pre-1990 bridges due to near- and far-field ground motions
Mosleh, Araliya; Razzaghi, Mehran S.; Jara, José; Varum, Humberto
2016-03-01
Bridge damages during the past earthquakes caused several physical and economic impacts to transportation systems. Many of the existing bridges in earthquake prone areas are pre-1990 bridges and were designed with out of date regulation codes. The occurrences of strong motions in different parts of the world show every year the vulnerability of these structures. Nonlinear dynamic time history analyses were conducted to assess the seismic vulnerability of typical pre-1990 bridges. A family of existing concrete bridge representative of the most common bridges in the highway system in Iran is studied. The seismic demand consists in a set of far-field and near-field strong motions to evaluate the likelihood of exceeding the seismic capacity of the mentioned bridges. The peak ground accelerations (PGAs) were scaled and applied incrementally to the 3D models to evaluate the seismic performance of the bridges. The superstructure was assumed to remain elastic and the nonlinear behavior in piers was modeled by assigning plastic hinges in columns. In this study the displacement ductility and the PGA are selected as a seismic performance indicator and intensity measure, respectively. The results show that pre-1990 bridges subjected to near-fault ground motions reach minor and moderate damage states.
Riis, Lisbeth; Bellotti, Anthony Charles; Castaño, Oscar
2003-12-01
The hypothesis that cyanogenic potential in cassava roots deters polyphagous insects in the field is relevant to current efforts to reduce or eliminate the cyanogenic potential in cassava. To test this hypothesis, experiments were conducted in the field under natural selection pressure of the polyphagous root feeder Cyrtomenus bergi Froeschner (Hemiptera: Cydnidae). A number of cassava varieties (33) as well as 13 cassava siblings and their parental clone, each representing a determined level of cyanogenic potential (CNP), were scored for damage caused by C. bergi and related to CNP and nonglycosidic cyanogens, measured as hydrogen cyanide. Additionally, 161 low-CNP varieties (Agricultura Tropical (CIAT) were screened for resistance/tolerance to C. bergi. Low root damage scores were registered at all levels of CNP. Nevertheless, CNP and yield (or root size) partly explained the damage in cassava siblings (r2 = 0.82) and different cassava varieties (r2 = 0.42), but only when mean values of damage scores were used. This relation was only significant in one of two crop cycles. A logistic model describes the underlying negative relation between CNP and damage. An exponential model describes the underlying negative relation between root size and damage. Damage, caused by C. bergi feeding, released nonglycosidic cyanogens, and an exponential model fits the underlying positive relation. Fifteen low-CNP clones were selected for potential resistance/tolerance against C. bergi.
Interpretation of collapsed terrain on Mars
Ewa Zalewska, Natalia; Skocki, Krzysztof
2016-10-01
On the images from HiRISE camera within volcanoes and circumpolar areas there are depressions that can be explained in two ways, either by melting subsurface layer of ice or by cooling of lava which forms branch intrusion and flank craters underneath. On many pictures from Mars similar cavities are found on the slopes of Martian craters on Arsia Mons , Pavonis Mons on northern hemisphere and Alba Patera on southern hemisphere. Such cavities can be compared to a Hawaiian type volcanoes. At the top of Mauna Loa linearly arranged craters can be seen, strikingly similar to those on Arsia Mons . Basing on map ice content measured by Odyssey GRS apparatus, in this place of the volcanic cone, quite small ice content can be observed that varies in the range of 2-4% hydrogen abundance. It is therefore difficult to explain these collapses by unfreezing of subsurface ice. In an infrared spectrum of these areas there are no bands of water in the CRISM spectra, although it does not say that the water in the form of ice couldn't have been there before. In the central part of Chryse, there are series of chains depressions caused most likely by the collapse of land. These forms have been associated with an open pingo type system additionally with assisted topography of the area or tectonics and internal cracks in the rocks. These are noticed on the slopes of craters or wherever the area decline. Then flowing subsurface water or brine coming from the ice layer could while freezing accumulate and create a longitudinal hill that collapsed due to seasonal thawing forming gullies or canyons . At the end of these gullies remaining trace of the leak can be seen, as if there was a crack in the ground and liquid flew out on the surface. Cryosubsurface processes on Mars can support the hypothesis of geochemical origin of water, which separates from the magma, and its primary source comes from the protoplanetary disk. The water separated from the magma migrates up to the surface and if the
Decoupling light and matter: permanent dipole moment induced collapse of Rabi oscillations
Baranov, Denis G; Krasnok, Alexander E
2016-01-01
Rabi oscillations is a key phenomenon among the variety of quantum optical effects that manifests itself in the periodic oscillations of a two-level system between the ground and excited states when interacting with electromagnetic field. Commonly, the rate of these oscillations scales proportionally with the magnitude of the electric field probed by the two-level system. Here, we investigate the interaction of light with a two-level quantum emitter possessing permanent dipole moments. The semi-classical approach to this problem predicts slowing down and even full suppression of Rabi oscillations due to asymmetry in diagonal components of the dipole moment operator of the two-level system. We consider behavior of the system in the fully quantized picture and establish the analytical condition of Rabi oscillations collapse. These results for the first time emphasize the behavior of two-level systems with permanent dipole moments in the few photon regime, and suggest observation of novel quantum optical effects...
Late-Time Evolution of Charged Gravitational Collapse and Decay of Charged Scalar Hair, 2
Hod, S; Hod, Shahar; Piran, Tsvi
1998-01-01
We study analytically the initial value problem for a charged massless scalar-field on a Reissner-Nordström spacetime. Using the technique of spectral decomposition we extend recent results on this problem. Following the no-hair theorem we reveal the dynamical physical mechanism by which the charged hair is radiated away. We show that the charged perturbations decay according to an inverse power-law behaviour at future timelike infinity and along future null infinity. Along the future outer horizon we find an oscillatory inverse power-law relaxation of the charged fields. We find that a charged black hole becomes ``bald'' slower than a neutral one, due to the existence of charged perturbations. Our results are also important to the study of mass-inflation and the stability of Cauchy horizons during a dynamical gravitational collapse of charged matter in which a charged black-hole is formed.
Radiation driven collapse of protein crystals.
Boutet, Sébastien; Robinson, Ian K
2006-01-01
During coherent X-ray diffraction measurements on crystals of ferritin at room temperature using monochromatic undulator radiation from the Advanced Photon Source, a sudden lattice contraction was observed following a characteristic latent period and ultimately leading to the collapse of the crystal. The progression of this collapse is analysed using a two-state Hendricks-Teller model. It reveals that 55% of the layers collapse by 1.6% before the crystal completely stops diffracting.
Energy Technology Data Exchange (ETDEWEB)
Kidambi, R.; Newton, P.K. [Southern California Univ., Los Angeles (United States). Dept. of Aerospace Engineering, Center for Applied Mathematical Sciences
1999-12-01
The self-similar collapse of three vortices moving on the surface of a sphere of radius R is analysed and compared with known results of critical literature. Formulas for the collapsing trajectories are derived and compared with the planar formulas. The Hamiltonian system is derived governing the vortex motion. In this projected plane, the solutions are not self-similar. In the last section, the collapse process is studied using tri-linear coordinates, which reduces the system to a planar one.
Collapsing cycloidal structures in the magnetic phase diagram of erbium
DEFF Research Database (Denmark)
Jehan, D.A.; McMorrow, D.F.; Simpson, J.A.;
1994-01-01
how it distorts as the field is increased. In low fields, there is a spin reorientation, so that the plane of the cycloid becomes perpendicular to the applied field, while in larger fields, the cycloid collapses through a series of fanlike structures. At lower temperatures, as the field is increased......The magnetic structure of Er with a magnetic field applied in the hexagonal basal plane has been studied using a combination of experimental techniques and mean-field modeling. From neutron-scattering and magnetization measurements, phase diagrams are constructed. At temperatures above...... approximately 20 K, the application of a field is found to favor cycloidal structures with modulation wave vectors of q(c) = (6/23)c*, (4/15)c*, and (2/7)c*. For fields above almost-equal-to 40 kOe, the (2/7) structure dominates the phase diagram. From a detailed study of this most stable cycloid, we determine...
de Angelis, S.; Bodin, P.; Hagel, K.; Fletcher, D.
2010-12-01
Long-period noise generated by the elastic response of the Earth to atmospheric pressure fluctuations has long been recognized as a limiting factor for seismic investigations. The quality of seismic data recorded by sensitive, near-surface broadband seismometers can be severely corrupted by this effect. During the recent installation of a new broadband site on the Olympic Peninsula in Washington, the Pacific Northwest Seismic Network recorded and investigated elevated daytime noise levels at periods exceeding 30 seconds. Substantial power spectral density variations of the background noise field, 15-20 dB, were observed in the horizontal component seismograms. The pattern of the long-period noise exhibited striking correlations with local fluctuations of the air temperature and wind speed as measured nearby the seismic station by the National Weather Service Forecast Office, Seattle, Washington, and the National Oceanic and Atmospheric Administration. Several past studies have demonstrated that local wind systems may lead to variations of the atmospheric pressure field that deform the ground and perturb seismograms. The rotational component of this motion is detected by horizontal-component seismometers because at periods longer than the sensor’s low corner frequency the sensor is acting essentially as a tiltmeter. We obtained a transfer function that describes the response of the broadband seismometer to a tilt step change and estimated the amplitude of tilt noise to be on the order of 10-9 - 10-8 radians. Within the seismic pass-band of the sensor, it is not possible to remove the tilt signal from the observed seismograms because the details of the tilting depend on the pressure field variations, the compliance of the near surface to pressure variations, and the design and construction of the seismometer vault itself. At longer periods, using the seismic data to recover tilts of tectonic origin is made challenging because of the needed instrument correction
Variation of bulk Lorentz factor in AGN jets due to Compton rocket in a complex photon field
Vuillaume, Thomas; Petrucci, Pierre-Olivier
2015-01-01
Radio-loud active galactic nuclei are among the most powerful objects in the universe. In these objects, most of the emission comes from relativistic jets getting their power from the accretion of matter onto supermassive black holes. However, despite the number of studies, a jet's acceleration to relativistic speeds is still poorly understood. It is widely known that jets contain relativistic particles that emit radiation through several physical processes, one of them being the inverse Compton scattering of photons coming from external sources. In the case of a plasma composed of electrons and positrons continuously heated by the turbulence, inverse Compton scattering can lead to relativistic bulk motions through the Compton rocket effect. We investigate this process and compute the resulting bulk Lorentz factor in the complex photon field of an AGN composed of several external photon sources. We consider various sources here: the accretion disk, the dusty torus, and the broad line region. We take their geo...
Catastrophic volcanic collapse: relation to hydrothermal processes.
López, D L; Williams, S N
1993-06-18
Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.
Collapse of granular media subjected to wetting
Directory of Open Access Journals (Sweden)
El Korchi Fatima Zahra
2017-01-01
Full Text Available This paper focuses on the collapse of granular materials subjected to wetting action. For soils, the collapse potential depends on several parameters such as liquid limit, matric suction, compactness, initial water content and the amount of fine particles. The effect of grain size, which plays a key role in the rearrangement of grains, remains little studied and poorly understood. To investigate the capillary origin of the collapse phenomenon, we present an experimental study on macroscopic and local scales. Our results show the effect of grain size and water content on collapse.
Simioni, Stephan; Sidler, Rolf; Dual, Jürg; Schweizer, Jürg
2015-04-01
Avalanche control by explosives is among the key temporary preventive measures. Yet, little is known about the mechanism involved in releasing avalanches by the effect of an explosion. Here, we test the hypothesis that the stress induced by acoustic waves exceeds the strength of weak snow layers. Consequently the snow fails and the onset of rapid crack propagation might finally lead to the release of a snow slab avalanche. We performed experiments with explosive charges over a snowpack. We installed microphones above the snowpack to measure near-surface air pressure and accelerometers within three snow pits. We also recorded pit walls of each pit with high speed cameras to detect weak layer failure. Empirical relationships and a priori information from ice and air were used to characterize a porous layered model from density measurements of snow profiles in the snow pits. This model was used to perform two-dimensional numerical simulations of wave propagation in Biot-type porous material. Locations of snow failure were identified in the simulation by comparing the axial and deviatoric stress field of the simulation to the corresponding snow strength. The identified snow failure locations corresponded well with the observed failure locations in the experiment. The acceleration measured in the snowpack best correlated with the modeled acceleration of the fluid relative to the ice frame. Even though the near field of the explosion is expected to be governed by non-linear effects as for example the observed supersonic wave propagation in the air above the snow surface, the results of the linear poroelastic simulation fit well with the measured air pressure and snowpack accelerations. The results of this comparison are an important step towards quantifying the effectiveness of avalanche control by explosives.
A quantitative examination of the collapse of spin splitting in the quantum Hall regime
Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.
2012-02-01
There is a great deal of current interest in understanding electron spin physics in semiconductors for potential quantum computation applications. The quantum Hall effect in the two-dimensional electron system (2DES) has proved to be a unique system in this avenue due to a tunability in the difference of spin population and thus the strength of exchange interaction provided by the formation of Landau levels. In this talk, we want to present our experimental results to quantitatively examine the theoretical model of spin splitting collapse in the quantum Hall regime [by Fogler and Shklovskii, Phys. Rev. B 52, 17366 (1995)] at fixed magnetic fields as a function of electron density in a high quality heterojunction insulated-gate field effect transistor. In the density range between n = 2x10^10 and 2x10^11 cm-2, the Landau level number N follows a power-law dependence on the critical electron density nc, where the spin splitting collapses, and N=11.47xnc^0.64±0.01. This power law dependence is in good agreement with the theoretical prediction in the low density regime.
Gravitational Collapse in Gravity's Rainbow
Ali, Ahmed Farag; Majumder, Barun; Mistry, Ravi
2015-01-01
In this paper, we will analyze the gravitational collapse in the framework of gravity's rainbow. We will demonstrate that the position of the horizon for a particle inside the black hole depends on the energy of that particle. It will also be observe that the position of the horizon for a particle falling radially into the black hole also depends on its energy. Thus, it is possible for a particle coming from outside to interact with a particle inside the black, and take some information outside the black hole. This is because for both these particles the position of horizon is different. So, even though the particle from inside the black hole is in its own horizon, it is not in the horizon of the particle coming from outside. Thus, we will demonstrate that in gravity's rainbow information can get out of a black hole.
Critical perspectives on historical collapse.
Butzer, Karl W; Endfield, Georgina H
2012-03-06
Historical collapse of ancient states or civilizations has raised new awareness about its possible relevance to current issues of sustainability, in the context of global change. This Special Feature examines 12 case studies of societies under stress, of which seven suffered severe transformation. Outcomes were complex and unpredictable. Five others overcame breakdown through environmental, political, or socio-cultural resilience, which deserves as much attention as the identification of stressors. Response to environmental crises of the last millennium varied greatly according to place and time but drew from traditional knowledge to evaluate new information or experiment with increasing flexibility, even if modernization or intensification were decentralized and protracted. Longer-term diachronic experience offers insight into how societies have dealt with acute stress, a more instructive perspective for the future than is offered by apocalyptic scenarios.
Higgs portals to pulsar collapse
Bramante, Joseph
2015-01-01
Pulsars apparently missing from the galactic center could have been destroyed by asymmetric fermionic dark matter ($m_X = 1-100$ GeV) coupled to a light scalar ($m_{\\phi}= 5-20$ MeV), which mixes with the Higgs boson. We point out that this pulsar-collapsing dark sector can resolve the core-cusp problem and will either be excluded or discovered by upcoming direct detection experiments. Another implication is a maximum pulsar age curve that increases with distance from the galactic center, with a normalization that depends on the couplings and masses of dark sector particles. In addition, we use old pulsars outside the galactic center to place bounds on asymmetric Higgs portal models.
Calderón, Alicia; González-Sánchez, F J; Martínez-Rivero, C; Matorras, Francisco; Rodrigo, Teresa; Martínez, P; Scodellaro, Luca; Sobrón, M; Vila, Ivan; Virto, A L; Alberdi, Javier; Arce, Pedro; Barcala, Jose Miguel; Calvo, Enrique; Ferrando, Antonio; Josa-Mutuberria, I; Molinero, Antonio; Navarrete, Jose Javier; Oller, Juan Carlos; Yuste, Ceferino
2008-01-01
This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.
Energy Technology Data Exchange (ETDEWEB)
Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Martinez, P.; Scodellaro, L.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander (Spain)], E-mail: sobron@ifca.unican.es; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)] (and others)
2009-07-21
This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.
Collapse dynamics of a fluid hole in a rotating thin film
Bostwick, Joshua
2015-01-01
We study the collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating bucket bound by vertical sidewalls. Lubrication theory is applied to the governing field equations for the thin film to yield an evolution equation that captures the effect of capillary, gravitational and centrifugal forces on this converging flow. We focus on the quasi-static spreading regime, whereby contact-line motion is governed by a constitutive law relating the contact-angle to the contact-line speed. We report the collapse time, as it depends upon the initial hole size, showing that gravity accelerates the collapse process. Surface tension forces dominate the collapse dynamics for small holes leading to a universal power law whose exponent compares favorably to experiments reported in the literature. Centrifugal forces slow the collapse process and lead to complex dynamics characterized by stalled spreading behavior that separates the large and small hole asymptotic regimes.
Investigation of bubble-bubble interaction effect during the collapse of multi-bubble system
Shao, Xueming; Zhang, Lingxin; Wang, Wenfeng
2014-11-01
Bubble collapse is not only an important subject among bubble dynamics, but also a key consequence of cavitation. It has been demonstrated that the structural damage is associated with the rapid change in flow fields during bubble collapse. How to model and simulate the behavior of the bubble collapse is now of great interest. In the present study, both theoretical analysis and a direct numerical simulation on the basis of VOF are performed to investigate the collapses of single bubble and bubble cluster. The effect of bubble-bubble interaction on the collapse of multi-bubble system is presented. The work was supported by the National Natural Science Foundation of China (11272284, 11332009).
Collapse Modeling of a Masonry Arch Dam Using the Cohesive Interface Elements
Directory of Open Access Journals (Sweden)
Jianwen Pan
2015-01-01
Full Text Available A finite element (FE approach with zero-thickness cohesive interface elements is presented to simulate collapse of continuum structures. The element removal technique merged with the general contact algorithm is adapted in the FE approach to achieve modeling for a transition from continua to discontinua, that is, fracture, fragmentation, and collapse. Collapse process of Meihua masonry arch dam, which is a famous disaster in dam engineering in China, is simulated and the failure mechanism is studied. The collapse process obtained from the presented procedure coincides with the field observation after the dam failure. The failure of Meihua arch dam can be attributed to reducing shear strength of the peripheral joint between the dam body and the concrete pedestal by daubing a layer of asphalt there. With low sliding resistance strength, the masonry dam body may slide upwards along the peripheral joint under hydrostatic pressure, leading to weakening of the arch action, fracturing, and final collapse of the dam.
Annoyance and self-reported sleep disturbance due to night-time railway noise examined in the field.
Pennig, Sibylle; Quehl, Julia; Mueller, Uwe; Rolny, Vinzent; Maass, Hartmut; Basner, Mathias; Elmenhorst, Eva-Maria
2012-11-01
Railway noise interferes with daytime activities and disturbs sleep leading to annoyance of exposed residents. The main objective of this paper was to establish exposure-response relationships between nocturnal railway noise exposure and annoyance and to examine self-reported sleep disturbances as short-term reactions to noise. In a field study 33 residents living close to railway tracks in the Cologne/Bonn area (Germany) were investigated. Railway noise was measured indoors during nine consecutive nights at each site. Questionnaires referring to annoyance and non-acoustical factors were performed. Annoyance ratings increased significantly with the total number of trains and freight trains per night, and non-significantly with rising number of passenger trains and energy equivalent sound pressure level (L(Aeq)), when adjusting the model for non-acoustical variables. The total number of trains and the number of freight trains also significantly affected self-reported awakening frequency, but no other aspects of subjective sleep disturbances. The responses of this subject sample referring to railway noise in the previous night point to rather low impairments of exposed residents.
Black hole free energy during charged collapse: a numerical study
Beauchesne, Hugues
2012-01-01
We perform a numerical investigation of the thermodynamics during the collapse of a charged (complex) scalar field to a Reissner-Nordstr\\"om (RN) black hole in isotropic coordinates. Numerical work on gravitational collapse in isotropic coordinates has recently shown that the negative of the total Lagrangian approaches the Helmholtz free energy F= E-TS of a Schwarzschild black hole at late times of the collapse (where E is the black hole mass, T the temperature and S the entropy). The relevant thermodynamic potential for the RN black hole is the Gibbs free energy G=E-TS-$\\Phi_H$ Q where Q is the charge and $\\Phi_H$ the electrostatic potential at the outer horizon. In charged collapse, there is a large outgoing matter wave which prevents the exterior from settling quickly to a static state. However, the interior region is not affected significantly by the wave. We find numerically that the interior contribution to the Gibbs free energy is entirely gravitational and accumulates in a thin shell just inside the h...
Collapse of composite tubes under uniform external hydrostatic pressure
Smith, P. T.; Ross, C. T. F.; Little, A. P. F.
2009-08-01
This paper describes an experimental and a theoretical investigation into the collapse of 22 circular cylindrical composite tubes under external hydrostatic pressure. The investigations were on the collapse of fibre reinforced plastic tube specimens made from a mixture of three carbon and two E-glass fibre layers. The theoretical investigations were carried out using an in-house finite element computer program called BCLAM, together with the commercial computer package, namely ANSYS. It must be emphasised here that BS 5500 does not appear to exclusively cater for the buckling of composite shells under external hydrostatic pressure, so the work presented here is novel and should be useful to industry. The experimental investigations showed that the composite specimens behaved similarly to isotropic materials previously tested, in that the short vessels collapsed through axisymmetric deformation while the longer tubes collapsed through non-symmetric bifurcation buckling. Furthermore it was discovered that the models failed at changes of the composite lay-up due to the manufacturing process of these models. These changes seemed to be the weak points of the specimens.
Collapse of composite tubes under uniform external hydrostatic pressure
Energy Technology Data Exchange (ETDEWEB)
Smith, P T; Ross, C T F; Little, A P F, E-mail: Carl.ross@ntlworld.co [University of Portsmouth, Portsmouth, PO1 3DJ (United Kingdom)
2009-08-01
This paper describes an experimental and a theoretical investigation into the collapse of 22 circular cylindrical composite tubes under external hydrostatic pressure. The investigations were on the collapse of fibre reinforced plastic tube specimens made from a mixture of three carbon and two E-glass fibre layers. The theoretical investigations were carried out using an in-house finite element computer program called BCLAM, together with the commercial computer package, namely ANSYS. It must be emphasised here that BS 5500 does not appear to exclusively cater for the buckling of composite shells under external hydrostatic pressure, so the work presented here is novel and should be useful to industry. The experimental investigations showed that the composite specimens behaved similarly to isotropic materials previously tested, in that the short vessels collapsed through axisymmetric deformation while the longer tubes collapsed through non-symmetric bifurcation buckling. Furthermore it was discovered that the models failed at changes of the composite lay-up due to the manufacturing process of these models. These changes seemed to be the weak points of the specimens.
Mangane, P. O.; Gouze, P.; Luquot, L.
2012-12-01
Geological storage of CO2 in reservoir pore fluid (e.g. deep saline aquifers), is one of the diverse technologies being explored for deacreasing atmospheric CO2 concentration. After injecting the CO2 as a supercritical fluid at depth, it will slowly dissolve into the pore water producing low pH fluids with a high capacity for dissolving carbonates and consequently changing irreversibly the hydrodynamical properties of the reservoir. Characterizing these changes is essential for modelling flow and CO2 transport during and after the CO2 injection. Here we report experimental results from the injection of the CO2-saturated brine into two distinct limestone cores (a bioclastic carbonate and an oolitic carbonate) of 9 mm diameter, 18 mm length. 3D high-resolution X-ray microtomography (XRMT) of the rock sample have been performed before and after the experiments. The experiments were performed using in-situ sequestration conditions (P = 12MPa and T = 100°C), and notably, under chemical conditions given at the position far away from the well injection site (i.e area where the volume of dissolved CO2 into the brine is low, due to CO2 consumption by the dissolution processes occured during its transport from the well injection site). Permeability k is calculated from the pressure drop across the sample and porosity Φ is deduced from chemical concentration of the outlet fluid. The change of the pore structure is analysed in terms of connectivity, tortuosity and fluid-rock interface from processing the XRMT images. These experiments show that far from the well injection site, dissolution processes are characterized by slow mass tranfer including, in the case of carbonate rock, transport of fine particles, which locally clog the porous space. Then, that leads to the damage of the carbonate reservoir both in terms of connectivity of the porous space and CO2 hydrodynamical storage capacity. In fact, the results of the two experiments show that the porosity decreased locally
Spherically Collapsing Matter in AdS, Holography and Shellons
Danielsson, U H; Kruczenski, M; Danielsson, Ulf H.; Keski-Vakkuri, Esko; Kruczenski, Martin
1999-01-01
We investigate the collapse of a spherical shell of matter in an anti-de Sitter space. We search for a holographic description of the collapsing shell in the boundary theory. It turns out that in the boundary theory it is possible to find information about the radial size of the shell. The shell deforms the background spacetime, and the deformed background metric enters into the action of a generic bulk field. As a consequence, the correlators of operators coupling to the bulk field are modified. By studying the analytic structure of the correlators, we find that in the boundary theory there are unstable excitations ("shellons") whose masses are multiples of a scale set by the radius of the shell. We also comment on the relation between black hole formation in the bulk and thermalization in the boundary.
Ensslin, Torsten A.
2003-01-01
Many compact radio sources like quasars, blazars, radio galaxies, and micro-quasars emit circular polarisation (CP) with surprising temporal persistent handedness. We propose that the CP is caused by Faraday conversion of linear polarisation synchrotron light which propagates along a line-of-sight through helical magnetic fields. Jet outflows from radio galaxies should have the required magnetic helicity in the emission region due to the magnetic torque of the accretion disc. Also advection d...
Non-linear dark matter collapse under diffusion
Velten, Hermano E S
2014-01-01
Diffusion is one of the physical processes allowed for describing the large scale dark matter dynamics. At the same time, it can be seen as a possible mechanism behind the interacting cosmologies. We study the non-linear spherical "top-hat" collapse of dark matter which undergoes velocity diffusion into a solvent dark energy field. We show constraints on the maximum magnitude allowed for the dark matter diffusion. Our results reinforce previous analysis concerning the linear perturbation theory.
Globally Causal Solutions for Gravitational Collapse
Chafin, Clifford E
2014-01-01
Through an illuminating thought experiment we demonstrate that the nonsingular "continued collapse" picture of a black hole is the only consistent and physical one. We provide a class exact solutions on the boundary of the space of physical configurations. This will show that all the other known exact solutions are unphysical near the surface of the event horizon or in the interior. This will have important consequences for the no-hair conjecture and the kinds of persistent fields that can emerge from a black hole as well as the evolution during collisions and near grazing events. The interior of these holes are characterized by a limiting degenerate metric and these regions tend to well defined volumes and radii in contrast with what is inferred from singular solutions. Surprisingly, these depend on past history and not simply the mass or external fields of the body. It is shown that there is often a well defined "hidden" flat background that can be used to equivalently reformulate GR in terms of a classical...
Magnetic processes in a collapsing dense core. II. Fragmentation. Is there a fragmentation crisis?
Hennebelle, P.; Teyssier, R.
2008-01-01
Context: A large fraction of stars are found in binary systems. It is therefore important for our understanding of the star formation process, to investigate the fragmentation of dense molecular cores. Aims: We study the influence of the magnetic field, ideally coupled to the gas, on the fragmentation in multiple systems of collapsing cores. Methods: We present high resolution numerical simulations performed with the RAMSES MHD code starting with a uniform sphere in solid body rotation and a uniform magnetic field parallel to the rotation axis. We pay particular attention to the strength of the magnetic field and interpret the results using the analysis presented in a companion paper. Results: The results depend much on the amplitude, A, of the perturbations seeded initially. For a low amplitude, A=0.1, we find that for values of the mass-to-flux over critical mass-to-flux ratio, μ, as high as μ = 20, the centrifugally supported disk which fragments in the hydrodynamical case is stabilized and remains axisymmetric. Detailed investigations reveal that this is due to the rapid growth of the toroidal magnetic field induced by the differential motions within the disk. For values of μ smaller than ≃5, corresponding to higher magnetic intensities, there is no centrifugally supported disk because of magnetic braking. When the amplitude of the perturbation is equal to A=0.5, each initial peak develops independently and the core fragments for a large range of μ. Only for values of μ close to 1 is the magnetic field able to prevent the fragmentation. Conclusions: Since a large fraction of stars are binaries, the results of low magnetic intensities preventing the fragmentation in the case of weak perturbations is problematic. We discuss three possible mechanisms which could lead to the formation of binary systems, namely the presence of high amplitude fluctuations in the core initially, ambipolar diffusion and fragmentation during the second collapse.
Stochastically Induced Critical Depensation and Risk of Stock Collapse
Diwakar Poudel; Sandal, Leif K.; Kvamsdal, Sturla F.
2015-01-01
This article investigates the risk of stock collapse due to stochastically induced critical depensation in managed fisheries. We use a continuous-time surplus production model and an economic model with downward-sloping demand and stock-dependent costs. First, we derive an optimal exploitation policy as a feedback control rule by applying the Hamilton-Jacobi-Bellman approach and analyze the effects of stochasticity on the optimal policy. Then, we characterize the long-term sustainable optimal...
The Collapse of the 'Celtic Tiger' Narrative
DEFF Research Database (Denmark)
Böss, Michael
2011-01-01
An account of the factors that led to the collapse of the 'Celtic Tiger' economy in 2008 and an explanation of the political effects and implications for Irish identity.......An account of the factors that led to the collapse of the 'Celtic Tiger' economy in 2008 and an explanation of the political effects and implications for Irish identity....
Critical gravitational collapse with angular momentum
Gundlach, Carsten
2016-01-01
We derive a theoretical model of mass and angular momentum scaling in type-II critical collapse with rotation. We focus on the case where the critical solution has precisely one, spherically symmetric, unstable mode. We demonstrate excellent agreement with numerical results for critical collapse of a rotating radiation fluid, which falls into this case.
Sharper criteria for the wave collapse
DEFF Research Database (Denmark)
Kuznetsov, E.A.; Juul Rasmussen, J.; Rypdal, K.
1995-01-01
Sharper criteria for three-dimensional wave collapse described by the Nonlinear Schrodinger Equation (NLSE) are derived. The collapse threshold corresponds to the ground state soliton which is known to be unstable. Thus, for nonprefocusing distributions this represents the separatrix between...
Contagious cooperation, temptation and ecosystem collapse
Richter, A.P.; Soest, van D.; Grasman, J.
2013-01-01
Real world observations suggest that social norms of cooperation can be effective in overcoming social dilemmas such as the joint management of a common pool resource—but also that they can be subject to slow erosion and sudden collapse. We show that these patterns of erosion and collapse emerge end
Collapse dynamics of bubble raft under compression
Kuo, Chin-Chang; Kachan, Devin; Levine, Alexander; Dennin, Michael; Department of Physics; Astronomy, University of California, Irvine Collaboration; Department of Physics; Astronomy, University of California, Los Angeles Collaboration
2015-03-01
We report on the collapse of bubble rafts under compression in a closed rectangular geometry. A bubble raft is a single layer of bubbles at the air-water interface. A collapse event occurs when bubbles submerge beneath the neighboring bubbles under applied compression causing the structure of the bubble raft to go from single-layer to multi-layer. We studied the collapse dynamics as a function of compression velocity. At higher compression velocity we observe a more uniform distribution of collapse events, whereas at lower compression velocities, the collapse events accumulate at the system boundaries. We will present results that compare the distribution of collapse probability in the experiments to simulations based on a one-dimensional Ising model with elastic coupling between spin elements. Both the experimental system and simulations are excellent models for collapse in a number of complex systems. By comparing the two systems, we can tune the simulation to better understand the role of the Ising and elastic couplings in determining the collapse dynamics. We acknowledge DMR-1309402.
Collapsing cavities in reactive and nonreactive media
Bourne, Neil K.; Field, John E.
1991-04-01
This paper presents results of a high-speed photographic study of cavities collapsed asymmetrically by shocks of strengths in the range 0.26 GPa to 3.5 GPa. Two-dimensional collapses of cavity configurations punched into a 12% by weight gelatine in water sheet, and an ammonium nitrate/sodium nitrate (AN/SN) emulsion explosive were photographed using schlieren optics. The single cavity collapses were characterized by the velocity of the liquid jet formed by the upstream wall as it was accelerated by the shock and by the time taken for the cavity to collapse. The shock pressure did not qualitatively affect the collapse behaviour but jet velocities were found to exceed incident shock velocities at higher pressures. The more violent collapses induced light emission from the compressed gas in the cavity. When an array of cavities collapsed, a wave, characterized by the particle velocity in the medium, the cavity diameter and the inter-cavity spacing, was found to run through the array. When such an array was created within an emulsion explosive, ignition of the reactive matrix occurred ahead of the collapse wave when the incident shock was strong.
Hierarchical Cluster Assembly in Globally Collapsing Clouds
Vazquez-Semadeni, Enrique; Colin, Pedro
2016-01-01
We discuss the mechanism of cluster formation in a numerical simulation of a molecular cloud (MC) undergoing global hierarchical collapse (GHC). The global nature of the collapse implies that the SFR increases over time. The hierarchical nature of the collapse consists of small-scale collapses within larger-scale ones. The large-scale collapses culminate a few Myr later than the small-scale ones and consist of filamentary flows that accrete onto massive central clumps. The small-scale collapses form clumps that are embedded in the filaments and falling onto the large-scale collapse centers. The stars formed in the early, small-scale collapses share the infall motion of their parent clumps. Thus, the filaments feed both gaseous and stellar material to the massive central clump. This leads to the presence of a few older stars in a region where new protostars are forming, and also to a self-similar structure, in which each unit is composed of smaller-scale sub-units that approach each other and may merge. Becaus...
Shinohara, K.; Tani, K.; Oikawa, T.; Putvinski, S.; Schaffer, M.; Loarte, A.
2012-09-01
The energetic ion loss has been assessed using the F3D-OFMC code for a 15 MA inductive scenario with Q = 10 and the latest information on the first wall geometry, the implementation of ferritic inserts (FI) and the ELM mitigation/control coils. Alpha particles and NB ions generated by the neutral beam injectors with the injection energy of 1 MeV are well confined and the heat load on the first wall is negligibly small and allowable for the magnetic background by the toroidal field coils and FI. However, an increase in the loss of these energetic ions is observed when the magnetic field by the ELM coils is applied. The increase in the loss fraction is larger for NB ions than for alpha particles under the ELM coil field. The origin of the expelled NB ions is dominantly trapped ions generated in the peripheral region due to a high-density plasma of the 15 MA scenario.
Exploring the Environments of Core-Collapse Supernovae
Habergham, Stacey; Anderson, Joe; James, Phil; Lyman, Joe
2015-06-01
Despite years of intense research on the exact nature of core-collapse supernovae (CCSNe), much uncertainty still surrounds the progenitor systems of these explosions. Only the most common subtype (SNIIP) has a known origin, thanks to numerous direct observations of the progenitor stars. However, direct detections are limited by the frequency of nearby events. This led to the analysis of the host galaxies, in the assumption that trends in large samples of events could give indications of the progenitor systems of SNe. Indeed it was these investigations which concluded that CCSNe must originate from young, massive stars, due to their sole presence in star-forming galaxies. Over the past 20 years a new field of research has aimed to straddle these two techniques, looking at the local environment of the progenitor within the host galaxy. This technique is effective out to a larger distance than direct detections ( 80 Mpc), but is limited by the requirement to be able to resolve the regions at the location of, or close to the SN coordinates. These regions are significantly smaller than the entire galaxy but may still contain thousands of stars, if not more. The compromise here is between gathering large enough samples for meaningful statistical analysis, and gathering information on the environment local to the SN. This technique allows statistical constraints to be made on progenitor properties such as mass and metallicity, and this review talk will highlight the progress that has been made in this field, including; differences in the explosion sites of SNe types II and Ibc, the fact that SNe Ic are significantly more associated with host star formation than SNe Ib, and that the interacting SNe IIn do not explode in regions containing the most massive stars.
Classical static final state of collapse with supertranslation memory
Compère, Geoffrey; Long, Jiang
2016-10-01
The Kerr metric models the final classical black hole state after gravitational collapse of matter and radiation. Any stationary metric which is close to the Kerr metric has been proven to be diffeomorphic to it. Now, finite supertranslation diffeomorphisms are symmetries which map solutions to inequivalent solutions as such diffeomorphisms generate conserved superrotation charges. The final state of gravitational collapse is therefore parameterized by its mass, angular momentum and supertranslation field, signaled by its conserved superrotation charges. In this paper, we first derive the angle-dependent energy conservation law relating the asymptotic value of the supertranslation field of the final state to the details of the collapse and subsequent evolution of the system. We then generate the static solution with an asymptotic supertranslation field and we study some of its properties. Up to a caveat, the deviation from the Schwarzschild metric could therefore be predicted on a case-by-case basis from accurate modeling of the angular dependence of the ingoing and outgoing energy fluxes leading to the final state.
Fire-induced collapses of steel structures
DEFF Research Database (Denmark)
Dondera, Alexandru; Giuliani, Luisa
Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...
Four Tails Problems for Dynamical Collapse Theories
McQueen, Kelvin J
2015-01-01
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem di...
Continuous Observations and the Wave Function Collapse
Marchewka, A
2011-01-01
We propose to modify the collapse axiom of quantum measurement theory by replacing the instantaneous with a continuous collapse of the wave function in finite time $\\tau$. We apply it to coordinate measurement of a free quantum particle that is initially confined to a domain $D\\subset\\rR^d$ and is observed continuously by illuminating $\\rR^d-D$. The continuous collapse axiom (CCA) defines the post-measurement wave function (PMWF)in $D$ after a negative measurement as the solution of Schr\\"odinger's equation at time $\\tau$ with instantaneously collapsed initial condition and homogeneous Dirichlet condition on the boundary of $D$. The CCA applies to all cases that exhibit the Zeno effect. It rids quantum mechanics of the unphysical artifacts caused by instantaneous collapse and introduces no new artifacts.
Im, Song-Jin
2014-01-01
We theoretically study on non-perturbative effective nonlinear responses of metal nanocomposites based on the intrinsic third-order nonlinear response of metal nanoparticles. The large intrinsic third-order nonlinear susceptibility of metal nanoparticles and an irradiation by ultrashort control pulse of light with a sufficiently high peak intensity and moderate fluence can induce a local-field-depression and a saturated plasmon-bleaching in metal nanoparticles. If the control pulse is on, the metal nanocomposites can behave like a dielectric due to the local-field-depression, while if the control pulse is off, the metal nanocomposites can behave like a metal showing a high absorption due to the local-field-enhancement at the plasmon-resonance. This phenomenon can be applied to an ultrafast and remote control of light in metal nanocomposites.
Key variables influencing patterns of lava dome growth and collapse
Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.
2013-12-01
Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a
Scapholunate advanced collapse wrist salvage.
Ashmead, D; Watson, H K; Damon, C; Herber, S; Paly, W
1994-09-01
Patients with scapholunate advanced collapse (SLAC) wrist do not have to undergo total wrist arthrodesis; the SLAC pattern spares the radiolunate articulation, providing a basis for salvage. We report the results of 100 cases in which a technique comprised of scaphoid excision and limited wrist arthrodesis was used. The average followup period of 44 months revealed excellent functional status and a high rate of patient satisfaction. The majority of employed patients were able to return to their original jobs, and many chose to resume wrist-related recreational activities. Pain relief was good to excellent in most cases. Extension/flexion averaged 72 degrees (53% of a normal opposite wrist), radioulnar deviation 37 degrees (59%), and grip strength 80% of the opposite side. X-ray films revealed only two instances of radiolunate destruction, both in conjunction with ulnar translation of the carpus. The other 98 patients demonstrated a well-preserved radiolunate joint regardless of followup interval. Complications were few. Nonunion occurred in three cases. A dorsal impingement of the capitate and radius (12%) was felt to be technique-related and avoidable by careful capitolunate alignment.
Septianto, R. D.; Suhendra, D.; Iskandar, F.
2017-01-01
This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic sensor in the smartphone has to be considered by way of value mapping of a magnetic field due to permanent magnet. The magnetostatics experiment investigated in this research was the measurement of magnetic field due to electrical currents in two shapes of wire, straight and looped. The current flow, the distance between the observation point and the wire, and the diameter of the loop were the variable parameters investigated to test the smartphone’s capabilities as a measurement tool. To evaluate the experimental results, the measured data were compared with theoretical values that were calculated by using both an analytical and a numerical approach. According to the experiment results, the measured data had good agreement with the results from the analytical and the numerical approach. This means that the use of the magnetic sensor in a smartphone in physics experiments is viable, especially for magnetic field measurement.
Energy Technology Data Exchange (ETDEWEB)
Dai, De-Chang, E-mail: diedachung@gmail.com [Institute of Natural Sciences, Shanghai Key Lab for Particle Physics and Cosmology, and Center for Astrophysics and Astronomy, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Stojkovic, Dejan [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)
2016-07-10
We study radiation emitted during the gravitational collapse from two different types of shells. We assume that one shell is made of dark matter and is completely transparent to the test scalar (for simplicity) field which belongs to the standard model, while the other shell is made of the standard model particles and is totally reflecting to the scalar field. These two shells have exactly the same mass, charge and angular momentum (though we set the charge and angular momentum to zero), and therefore follow the same geodesic trajectory. However, we demonstrate that they radiate away different amount of energy during the collapse. This difference can in principle be used by an asymptotic observer to reconstruct the physical properties of the initial collapsing object other than mass, charge and angular momentum. This result has implications for the information paradox and expands the list of the type of information which can be released from a collapsing object.
Dai, De-Chang
2016-01-01
We study radiation emitted during the gravitational collapse from two different types of shells. We assume that one shell is made of dark matter and is completely transparent to the test scalar (for simplicity) field which belongs to the standard model, while the other shell is made of the standard model particles and is totally reflecting to the scalar field. These two shells have exactly the same mass, charge and angular momentum (though we set the charge and angular momentum to zero), and therefore follow the same geodesic trajectory. However, we demonstrate that they radiate away different amount of energy during the collapse. This difference can in principle be used by an asymptotic observer to reconstruct the physical properties of the initial collapsing object other than mass, charge and angular momentum. This result has implications for the information paradox and expands the list of the type of information which can be released from a collapsing object.
Motion of three vortices near collapse
Leoncini, X.; Kuznetsov, L.; Zaslavsky, G. M.
2000-08-01
A system of three point vortices in an unbounded plane has a special family of self-similarly contracting or expanding solutions: during the motion, the vortex triangle remains similar to the original one, while its area decreases (grows) at a constant rate. A contracting configuration brings three vortices to a single point in a finite time; this phenomenon known as vortex collapse is of principal importance for many-vortex systems. Dynamics of close-to-collapse vortex configurations depends on the way the collapse conditions are violated. Using an effective potential representation, a detailed quantitative analysis of all the different types of near-collapse dynamics is performed when two of the vortices are identical. We discuss time and length scales, emerging in the problem, and their behavior as the initial vortex triangle is approaching an exact collapse configuration. Different types of critical behaviors, such as logarithmic or power-law divergences are exhibited, which emphasize the importance of the way the collapse is approached. Period asymptotics for all singular cases are presented as functions of the initial vortice's configurations. Special features of passive particle mixing by near-collapse flows are illustrated numerically.
Identification of collapse patterns of cavitation bubbles close to a solid wall
Directory of Open Access Journals (Sweden)
Zima P.
2013-04-01
Full Text Available The article describes different patterns of bubble deformation during the cavitation bubble collapse close to a solid wall for different bubble-wall distances. The bubble is generated by energy discharge in water. The collapse patterns are investigated using high-speed photography. The magnitude of the bubble-wall interaction is measured using the PVDF film. The shock wave pressure in the far field is measured using the PVDF hydrophone.
Biological effects of stellar collapse neutrinos
Collar, J I
1996-01-01
Massive stars in their final stages of collapse radiate most of their binding energy in the form of MeV neutrinos. The recoil atoms that they produce in elastic scattering off nuclei in organic tissue create a radiation damage which is highly effective in the production of irreparable DNA harm, leading to cellular mutation, neoplasia and oncogenesis. Using a conventional model of the galaxy and of the collapse mechanism, the periodicity of nearby stellar collapses and the radiation dose are calculated. The possible contribution of this process to the paleontological record of mass extinctions is examined.
Core-Collapse supernovae and its progenitors
Bose, Subhash; Misra, Kuntal
2016-01-01
Massive stars unable to sustain gravitational collapse, at the end of nuclear burning stage, turns out into core-collapse supernovae, leaving behind compact objects like neutron stars or black holes. The progenitor properties like mass and metallicity primarily governs the explosion parameters and type of compact remnant. In this contribution we summarize observational study of three Core Collapse type IIP SNe 2012aw, 2013ab and 2013ej, which are rigorously observed from ARIES and other Indian observatories and discuss their progenitor and explosion properties.
How fast is the wave function collapse?
Ignatiev, A Yu
2012-01-01
Using complex quantum Hamilton-Jacobi formulation, a new kind of non-linear equations is proposed that have almost classical structure and extend the Schroedinger equation to describe the collapse of the wave function as a finite-time process. Experimental bounds on the collapse time are reported (of order 0.1 ms to 0.1 ps) and its convenient dimensionless measure is introduced. This parameter helps to identify the areas where sensitive probes of the possible collapse dynamics can be done. Examples are experiments with Bose-Einstein condensates, ultracold neutrons or ultrafast optics.
Matter and gravitons in the gravitational collapse
Casadio, Roberto; Giusti, Andrea
2016-01-01
We consider the effects of gravitons in the collapse of baryonic matter that forms a black hole. We first note that the effective number of (soft off-shell) gravitons that account for the (negative) Newtonian potential energy generated by the baryons is conserved and always in agreement with the area law of black holes. Moreover, their (positive) interaction energy reproduces the expected post-Newtonian correction and becomes of the order of the total ADM mass of the system when the size of the collapsing object approaches its gravitational radius. This supports a scenario in which the gravitational collapse of regular baryonic matter produces a corpuscular black hole without singularity.
Tulsa oklahoma oktoberfest tent collapse report.
Deal, Kelly E; Synovitz, Carolyn K; Goodloe, Jeffrey M; King, Brandi; Stewart, Charles E
2012-01-01
Background. On October 17, 2007, a severe weather event collapsed two large tents and several smaller tents causing 23 injuries requiring evacuation to emergency departments in Tulsa, OK. Methods. This paper is a retrospective analysis of the regional health system's response to this event. Data from the Tulsa Fire Department, The Emergency Medical Services Authority (EMSA), receiving hospitals and coordinating services were reviewed and analyzed. EMS patient care reports were reviewed and analyzed using triage designators assigned in the field, injury severity scores, and critical mortality. Results. EMT's and paramedics from Tulsa Fire Department and EMSA provided care at the scene under unified incident command. Of the 23 patients transported by EMS, four were hospitalized, one with critical spinal injury and one with critical head injury. One patient is still in ongoing rehabilitation. Discussion. Analysis of the 2007 Tulsa Oktoberfest mass casualty incident revealed rapid police/fire/EMS response despite challenges of operations at dark under severe weather conditions and the need to treat a significant number of injured victims. There were no fatalities. Of the patients transported by EMS, a minority sustained critical injuries, with most sustaining injuries amenable to discharge after emergency department care.
Tulsa Oklahoma Oktoberfest Tent Collapse Report
Directory of Open Access Journals (Sweden)
Kelly E. Deal
2012-01-01
Full Text Available Background. On October 17, 2007, a severe weather event collapsed two large tents and several smaller tents causing 23 injuries requiring evacuation to emergency departments in Tulsa, OK. Methods. This paper is a retrospective analysis of the regional health system’s response to this event. Data from the Tulsa Fire Department, The Emergency Medical Services Authority (EMSA, receiving hospitals and coordinating services were reviewed and analyzed. EMS patient care reports were reviewed and analyzed using triage designators assigned in the field, injury severity scores, and critical mortality. Results. EMT's and paramedics from Tulsa Fire Department and EMSA provided care at the scene under unified incident command. Of the 23 patients transported by EMS, four were hospitalized, one with critical spinal injury and one with critical head injury. One patient is still in ongoing rehabilitation. Discussion. Analysis of the 2007 Tulsa Oktoberfest mass casualty incident revealed rapid police/fire/EMS response despite challenges of operations at dark under severe weather conditions and the need to treat a significant number of injured victims. There were no fatalities. Of the patients transported by EMS, a minority sustained critical injuries, with most sustaining injuries amenable to discharge after emergency department care.
Analyzing Risk of Stock Collapse in a Fishery under Stochastic Profit Maximization
Poudel, Diwakar; Sandal, Leif Kristoffer; Kvamsdal, Sturla Furunes
2012-01-01
In commercial fisheries, stock collapse is an intrinsic problem caused by overexploitation or due to pure stochasticity. To analyze the risk of stock collapse, we apply a relatively simple Monte Carlo approach which can capture complex stock dynamics. We use an economic model with downward sloping demand and stock dependent costs. First, we derive an optimal exploitation policy as a feedback control rule and analyze the effects of stochasticity. We observe that the stochastic s...