WorldWideScience

Sample records for fidelity medical simulation

  1. High-Fidelity Simulation: Preparing Dental Hygiene Students for Managing Medical Emergencies.

    Science.gov (United States)

    Bilich, Lisa A; Jackson, Sarah C; Bray, Brenda S; Willson, Megan N

    2015-09-01

    Medical emergencies can occur at any time in the dental office, so being prepared to properly manage the situation can be the difference between life and death. The entire dental team must be properly trained regarding all aspects of emergency management in the dental clinic. The aim of this study was to evaluate a new educational approach using a high-fidelity simulator to prepare dental hygiene students for medical emergencies. This study utilized high-fidelity simulation (HFS) to evaluate the abilities of junior dental hygiene students at Eastern Washington University to handle a medical emergency in the dental hygiene clinic. Students were given a medical emergency scenario requiring them to assess the emergency and implement life-saving protocols in a simulated "real-life" situation using a high-fidelity manikin. Retrospective data were collected for four years from the classes of 2010 through 2013 (N=114). The results indicated that learning with simulation was effective in helping the students identify the medical emergency in a timely manner, implement emergency procedures correctly, locate and correctly utilize contents of the emergency kit, administer appropriate intervention/treatment for a specific patient, and provide the patient with appropriate follow-up instructions. For dental hygiene programs seeking to enhance their curricula in the area of medical emergencies, this study suggests that HFS is an effective tool to prepare students to appropriately handle medical emergencies. Faculty calibration is essential to standardize simulation.

  2. Simulation based medical education; teaching normal delivery on intermediate fidelity simulator to medical students.

    Science.gov (United States)

    Shah, Nighat; Baig, Lubna; Shah, Nusrat; Hussain, Riffat; Aly, Syed Moyn

    2017-10-01

    To assess the effectiveness of medium fidelity simulator in teaching normal vaginal delivery to medical students. The quasi-experimental study was conducted at the professional development centre of the Jinnah Sindh Medical University, Karachi, from June to December 2015, and comprised medical students. Third-year medical students were included. They were divided into two groups. Group A was taught normal delivery through traditional PowerPoint and group B through simulator. The instruments used for assessing knowledge were pre-test and post-test, for skills of labour/delivery checklist of performance was used, and perception forms were filled to evaluate workshops/learning environment by students. Of the 76 participants, there were 36(47.4%) in group A and 40(52.6%) in group B. The overall mean age of the participants was 20.86±0.76 years in group B and 20.60±0.95 years in group A (p=0.19). The mean grade point average of the participants was 2.89±0.47 in group A and 2.87±0.48 in group B (p=0.81).Group B performed much better in skill of delivery having a mean score of 8.91±3.20compared to group A which had mean of 5.67±1.84 (pSimulation-based skill learning showed significantly better results.

  3. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review.

    Science.gov (United States)

    Issenberg, S Barry; McGaghie, William C; Petrusa, Emil R; Lee Gordon, David; Scalese, Ross J

    2005-01-01

    1969 to 2003, 34 years. Simulations are now in widespread use in medical education and medical personnel evaluation. Outcomes research on the use and effectiveness of simulation technology in medical education is scattered, inconsistent and varies widely in methodological rigor and substantive focus. Review and synthesize existing evidence in educational science that addresses the question, 'What are the features and uses of high-fidelity medical simulations that lead to most effective learning?'. The search covered five literature databases (ERIC, MEDLINE, PsycINFO, Web of Science and Timelit) and employed 91 single search terms and concepts and their Boolean combinations. Hand searching, Internet searches and attention to the 'grey literature' were also used. The aim was to perform the most thorough literature search possible of peer-reviewed publications and reports in the unpublished literature that have been judged for academic quality. Four screening criteria were used to reduce the initial pool of 670 journal articles to a focused set of 109 studies: (a) elimination of review articles in favor of empirical studies; (b) use of a simulator as an educational assessment or intervention with learner outcomes measured quantitatively; (c) comparative research, either experimental or quasi-experimental; and (d) research that involves simulation as an educational intervention. Data were extracted systematically from the 109 eligible journal articles by independent coders. Each coder used a standardized data extraction protocol. Qualitative data synthesis and tabular presentation of research methods and outcomes were used. Heterogeneity of research designs, educational interventions, outcome measures and timeframe precluded data synthesis using meta-analysis. Coding accuracy for features of the journal articles is high. The extant quality of the published research is generally weak. The weight of the best available evidence suggests that high-fidelity medical

  4. A study on the usefulness of high fidelity patient simulation in undergraduate medical education

    Directory of Open Access Journals (Sweden)

    Bikramjit Pal

    2018-01-01

    Full Text Available Introduction: Simulation is the imitation of the operation of a real-world process or system over time. Innovative simulation training solutions are now being used to train medical professionals in an attempt to reduce the number of safety concerns that have adverse effects on the patients. Objectives: (a To determine its usefulness as a teaching or learning tool for management of surgical emergencies, both in the short term and medium term by students’ perception. (b To plan future teaching methodology regarding hi-fidelity simulation based on the study outcomes and re-assessment of the current training modules. Methods: Quasi-experimental time series design with pretest-posttest interventional study. Quantitative data was analysed in terms of Mean, Standard Deviation and standard error of Mean. Statistical tests of significance like Repeated Measure of Analysis of Variance (ANOVA were used for comparisons. P value < 0.001 was considered to be statistically significant. Results: The students opined that the simulated sessions on high fidelity simulators had encouraged their active participation which was appropriate to their current level of learning. It helped them to think fast and the training sessions resembled a real life situation. The study showed that learning had progressively improved with each session of simulation with corresponding decrease in stress. Conclusion: Implementation of high fidelity simulation based learning in our Institute had been perceived favourably by a large number of students in enhancing their knowledge over time in management of trauma and surgical emergencies.

  5. Patterns of communication in high-fidelity simulation.

    Science.gov (United States)

    Anderson, Judy K; Nelson, Kimberly

    2015-01-01

    High-fidelity simulation is commonplace in nursing education. However, critical thinking, decision making, and psychomotor skills scenarios are emphasized. Scenarios involving communication occur in interprofessional or intraprofessional settings. The importance of effective nurse-patient communication is reflected in statements from the American Nurses Association and Quality and Safety Education for Nurses, and in the graduate outcomes of most nursing programs. This qualitative study examined the patterns of communication observed in video recordings of a medical-surgical scenario with 71 senior students in a baccalaureate program. Thematic analysis revealed patterns of (a) focusing on tasks, (b) communicating-in-action, and (c) being therapeutic. Additional categories under the patterns included missing opportunities, viewing the "small picture," relying on informing, speaking in "medical tongues," offering choices…okay?, feeling uncomfortable, and using therapeutic techniques. The findings suggest the importance of using high-fidelity simulation to develop expertise in communication. In addition, the findings reinforce the recommendation to prioritize communication aspects of scenarios and debriefing for all simulations. Copyright 2015, SLACK Incorporated.

  6. Fidelity in clinical simulation

    DEFF Research Database (Denmark)

    Jensen, Sanne; Nøhr, Christian; Rasmussen, Stine Loft

    2013-01-01

    Clinical simulation may be used to identify user needs for context sensitive functionalities in e-Health. The objective with this paper is to describe how user requirements and use cases in a large EHR-platform procurement may be validated by clinical simulation using a very low-fidelity prototype...... without any existing test data. Instead of using test scenarios and use cases, the healthcare professionals who are participating in the clinical simulation are generating both scenario and patient data themselves. We found that this approach allows for an imaginative discussion, not restricted by known...... functionalities and limitations, of the ideal EHR-platform. Subsequently, we discuss benefits and challenges of using an extremely low fidelity environment and discuss the degree of fidelity necessary for conducting clinical simulation....

  7. High fidelity medical simulation in the difficult environment of a helicopter: feasibility, self-efficacy and cost

    Directory of Open Access Journals (Sweden)

    Holland Carolyn

    2006-10-01

    Full Text Available Abstract Background This study assessed the feasibility, self-efficacy and cost of providing a high fidelity medical simulation experience in the difficult environment of an air ambulance helicopter. Methods Seven of 12 EM residents in their first postgraduate year participated in an EMS flight simulation as the flight physician. The simulation used the Laerdal SimMan™ to present a cardiac and a trauma case in an EMS helicopter while running at flight idle. Before and after the simulation, subjects completed visual analog scales and a semi-structured interview to measure their self-efficacy, i.e. comfort with their ability to treat patients in the helicopter, and recognition of obstacles to care in the helicopter environment. After all 12 residents had completed their first non-simulated flight as the flight physician; they were surveyed about self-assessed comfort and perceived value of the simulation. Continuous data were compared between pre- and post-simulation using a paired samples t-test, and between residents participating in the simulation and those who did not using an independent samples t-test. Categorical data were compared using Fisher's exact test. Cost data for the simulation experience were estimated by the investigators. Results The simulations functioned correctly 5 out of 7 times; suggesting some refinement is necessary. Cost data indicated a monetary cost of $440 and a time cost of 22 hours of skilled instructor time. The simulation and non-simulation groups were similar in their demographics and pre-hospital experiences. The simulation did not improve residents' self-assessed comfort prior to their first flight (p > 0.234, but did improve understanding of the obstacles to patient care in the helicopter (p = 0.029. Every resident undertaking the simulation agreed it was educational and it should be included in their training. Qualitative data suggested residents would benefit from high fidelity simulation in other

  8. Utilizing Three-Dimensional Printing Technology to Assess the Feasibility of High-Fidelity Synthetic Ventricular Septal Defect Models for Simulation in Medical Education.

    Science.gov (United States)

    Costello, John P; Olivieri, Laura J; Krieger, Axel; Thabit, Omar; Marshall, M Blair; Yoo, Shi-Joon; Kim, Peter C; Jonas, Richard A; Nath, Dilip S

    2014-07-01

    The current educational approach for teaching congenital heart disease (CHD) anatomy to students involves instructional tools and techniques that have significant limitations. This study sought to assess the feasibility of utilizing present-day three-dimensional (3D) printing technology to create high-fidelity synthetic heart models with ventricular septal defect (VSD) lesions and applying these models to a novel, simulation-based educational curriculum for premedical and medical students. Archived, de-identified magnetic resonance images of five common VSD subtypes were obtained. These cardiac images were then segmented and built into 3D computer-aided design models using Mimics Innovation Suite software. An Objet500 Connex 3D printer was subsequently utilized to print a high-fidelity heart model for each VSD subtype. Next, a simulation-based educational curriculum using these heart models was developed and implemented in the instruction of 29 premedical and medical students. Assessment of this curriculum was undertaken with Likert-type questionnaires. High-fidelity VSD models were successfully created utilizing magnetic resonance imaging data and 3D printing. Following instruction with these high-fidelity models, all students reported significant improvement in knowledge acquisition (P 3D printing technology to create high-fidelity heart models with complex intracardiac defects. Furthermore, this tool forms the foundation for an innovative, simulation-based educational approach to teach students about CHD and creates a novel opportunity to stimulate their interest in this field. © The Author(s) 2014.

  9. Judicious use of simulation technology in continuing medical education.

    Science.gov (United States)

    Curtis, Michael T; DiazGranados, Deborah; Feldman, Moshe

    2012-01-01

    Use of simulation-based training is fast becoming a vital source of experiential learning in medical education. Although simulation is a common tool for undergraduate and graduate medical education curricula, the utilization of simulation in continuing medical education (CME) is still an area of growth. As more CME programs turn to simulation to address their training needs, it is important to highlight concepts of simulation technology that can help to optimize learning outcomes. This article discusses the role of fidelity in medical simulation. It provides support from a cross section of simulation training domains for determining the appropriate levels of fidelity, and it offers guidelines for creating an optimal balance of skill practice and realism for efficient training outcomes. After defining fidelity, 3 dimensions of fidelity, drawn from the human factors literature, are discussed in terms of their relevance to medical simulation. From this, research-based guidelines are provided to inform CME providers regarding the use of simulation in CME training. Copyright © 2012 The Alliance for Continuing Education in the Health Professions, the Society for Academic Continuing Medical Education, and the Council on CME, Association for Hospital Medical Education.

  10. Nuclear power plant training simulator fidelity assessment

    International Nuclear Information System (INIS)

    Carter, R.J.; Laughery, K.R.

    1985-01-01

    The fidelity assessment portion of a methodology for evaluating nuclear power plant simulation facilities in regard to their appropriateness for conducting the Nuclear Regulatory Commission's operating test was described. The need for fidelity assessment, data sources, and fidelity data to be collected are addressed. Fidelity data recording, collection, and analysis are discussed. The processes for drawing conclusions from the fidelity assessment and evaluating the adequacy of the simulator control-room layout were presented. 3 refs

  11. Physiological Based Simulator Fidelity Design Guidance

    Science.gov (United States)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  12. Simulation-based rhomboid flap skills training during medical education: comparing low- and high-fidelity bench models.

    Science.gov (United States)

    Denadai, Rafael; Saad-Hossne, Rogerio; Raposo-Amaral, Cassio Eduardo

    2014-11-01

    To assess if the bench model fidelity interferes in the acquisition of rhomboid flap skills by medical students. Sixty novice medical students were randomly assigned to 5 practice conditions with instructor-directed Limberg rhomboid flap skills training: didactic materials (control group 1), low-fidelity rubberized line (group 2) or ethylene-vinyl acetate (group 3) bench models; high-fidelity chicken leg skin (group 4) or pig foot skin (group 5) bench models. Pretests and posttests were applied, and Global Rating Scale, effect size, and self-perceived confidence were used to evaluate all flap performances. Medical students from groups 2 to 5 showed better flap performances based on the Global Rating Scale (all P 0.05). The magnitude of the effect was considered large (>0.80) in all measurements. There was acquisition of rhomboid flap skills regardless of bench model fidelity.

  13. The Effect of Model Fidelity on Learning Outcomes of a Simulation-Based Education Program for Central Venous Catheter Insertion.

    Science.gov (United States)

    Diederich, Emily; Mahnken, Jonathan D; Rigler, Sally K; Williamson, Timothy L; Tarver, Stephen; Sharpe, Matthew R

    2015-12-01

    Simulation-based education for central venous catheter (CVC) insertion has been repeatedly documented to improve performance, but the impact of simulation model fidelity has not been described. The aim of this study was to examine the impact of the physical fidelity of the simulation model on learning outcomes for a simulation-based education program for CVC insertion. Forty consecutive residents rotating through the medical intensive care unit of an academic medical center completed a simulation-based education program for CVC insertion. The curriculum was designed in accordance with the principles of deliberate practice and mastery learning. Each resident underwent baseline skills testing and was then randomized to training on a commercially available CVC model with high physical fidelity (High-Fi group) or a simply constructed model with low physical fidelity (Low-Fi group) in a noninferiority trial. Upon completion of their medical intensive care unit rotation 4 weeks later, residents returned for repeat skills testing on the high-fidelity model using a 26-item checklist. The mean (SD) posttraining score on the 26-item checklist for the Low-Fi group was 23.8 (2.2) (91.5%) and was not inferior to the mean (SD) score for the High-Fi group of 22.5 (2.6) (86.5%) (P Simulation-based education using equipment with low physical fidelity can achieve learning outcomes comparable with those with high-fidelity equipment, as long as other aspects of fidelity are maintained and robust educational principles are applied during the design of the curriculum.

  14. Importance of debriefing in high-fidelity simulations

    Directory of Open Access Journals (Sweden)

    Igor Karnjuš

    2014-04-01

    Full Text Available Debriefing has been identified as one of the most important parts of a high-fidelity simulation learning process. During debriefing, the mentor invites learners to critically assess the knowledge and skills used during the execution of a scenario. Regardless of the abundance of studies that have examined simulation-based education, debriefing is still poorly defined.The present article examines the essential features of debriefing, its phases, techniques and methods with a systematic review of recent publications. It emphasizes the mentor’s role, since the effectiveness of debriefing largely depends on the mentor’s skills to conduct it. The guidelines that allow the mentor to evaluate his performance in conducting debriefing are also presented. We underline the importance of debriefing in clinical settings as part of continuous learning process. Debriefing allows the medical teams to assess their performance and develop new strategies to achieve higher competencies.Although the debriefing is the cornerstone of high-fidelity simulation learning process, it also represents an important learning strategy in the clinical setting. Many important aspects of debriefing are still poorly explored and understood, therefore this part of the learning process should be given greater attention in the future.

  15. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    Science.gov (United States)

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  16. High Fidelity BWR Fuel Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Su Jong [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    This report describes the Consortium for Advanced Simulation of Light Water Reactors (CASL) work conducted for completion of the Thermal Hydraulics Methods (THM) Level 3 milestone THM.CFD.P13.03: High Fidelity BWR Fuel Simulation. High fidelity computational fluid dynamics (CFD) simulation for Boiling Water Reactor (BWR) was conducted to investigate the applicability and robustness performance of BWR closures. As a preliminary study, a CFD model with simplified Ferrule spacer grid geometry of NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) benchmark has been implemented. Performance of multiphase segregated solver with baseline boiling closures has been evaluated. Although the mean values of void fraction and exit quality of CFD result for BFBT case 4101-61 agreed with experimental data, the local void distribution was not predicted accurately. The mesh quality was one of the critical factors to obtain converged result. The stability and robustness of the simulation was mainly affected by the mesh quality, combination of BWR closure models. In addition, the CFD modeling of fully-detailed spacer grid geometry with mixing vane is necessary for improving the accuracy of CFD simulation.

  17. Towards developing high-fidelity simulated learning environment training modules in audiology.

    Science.gov (United States)

    Dzulkarnain, A A; Rahmat, S; Mohd Puzi, N A F; Badzis, M

    2017-02-01

    This discussion paper reviews and synthesises the literature on simulated learning environment (SLE) from allied health sciences, medical and nursing in general and audiology specifically. The focus of the paper is on discussing the use of high-fidelity (HF) SLE and describing the challenges for developing a HF SLE for clinical audiology training. Through the review of the literature, this paper discusses seven questions, (i) What is SLE? (ii) What are the types of SLEs? (iii) How is SLE classified? (iv) What is HF SLE? (v) What types of SLEs are available in audiology and their level of fidelity? (vi) What are the components needed for developing HF SLE? (vii) What are the possible types of HF SLEs that are suitable for audiology training? Publications were identified by structured searches from three major databases PubMed, Web of Knowledge and PsychInfo and from the reference lists of relevant articles. The authors discussed and mapped the levels of fidelity of SLE audiology training modules from the literature and the learning domains involved in the clinical audiology courses. The discussion paper has highlighted that most of the existing SLE audiology training modules consist of either low- or medium-fidelity types of simulators. Those components needed to achieve a HF SLE for audiology training are also highlighted. Overall, this review recommends that the combined approach of different levels and types of SLE could be used to obtain a HF SLE training module in audiology training.

  18. The Validity and Incremental Validity of Knowledge Tests, Low-Fidelity Simulations, and High-Fidelity Simulations for Predicting Job Performance in Advanced-Level High-Stakes Selection

    Science.gov (United States)

    Lievens, Filip; Patterson, Fiona

    2011-01-01

    In high-stakes selection among candidates with considerable domain-specific knowledge and experience, investigations of whether high-fidelity simulations (assessment centers; ACs) have incremental validity over low-fidelity simulations (situational judgment tests; SJTs) are lacking. Therefore, this article integrates research on the validity of…

  19. Fidelity considerations for simulation-based usability assessments of mobile ICT for hospitals

    DEFF Research Database (Denmark)

    Dahl, Yngve; Alsos, Ole A; Svanæs, Dag

    2010-01-01

    training simulation fidelity theories. Based on a review of the training simulation literature, a set of fidelity dimensions through which training simulations are often adjusted to meet specific goals are identified. It is argued that the same mechanisms can be used in usability assessments of mobile ICT...... for hospitals. Our argument is substantiated by using the identified set of fidelity dimensions in a retrospective analysis of two usability assessments. The analysis explains how the configuration of fidelity dimensions, each reflecting various degrees of realism vis-à-vis the actual performance context...

  20. Interprofessional education in pharmacology using high-fidelity simulation.

    Science.gov (United States)

    Meyer, Brittney A; Seefeldt, Teresa M; Ngorsuraches, Surachat; Hendrickx, Lori D; Lubeck, Paula M; Farver, Debra K; Heins, Jodi R

    2017-11-01

    This study examined the feasibility of an interprofessional high-fidelity pharmacology simulation and its impact on pharmacy and nursing students' perceptions of interprofessionalism and pharmacology knowledge. Pharmacy and nursing students participated in a pharmacology simulation using a high-fidelity patient simulator. Faculty-facilitated debriefing included discussion of the case and collaboration. To determine the impact of the activity on students' perceptions of interprofessionalism and their ability to apply pharmacology knowledge, surveys were administered to students before and after the simulation. Attitudes Toward Health Care Teams scale (ATHCT) scores improved from 4.55 to 4.72 on a scale of 1-6 (p = 0.005). Almost all (over 90%) of the students stated their pharmacology knowledge and their ability to apply that knowledge improved following the simulation. A simulation in pharmacology is feasible and favorably affected students' interprofessionalism and pharmacology knowledge perceptions. Pharmacology is a core science course required by multiple health professions in early program curricula, making it favorable for incorporation of interprofessional learning experiences. However, reports of high-fidelity interprofessional simulation in pharmacology courses are limited. This manuscript contributes to the literature in the field of interprofessional education by demonstrating that an interprofessional simulation in pharmacology is feasible and can favorably affect students' perceptions of interprofessionalism. This manuscript provides an example of a pharmacology interprofessional simulation that faculty in other programs can use to build similar educational activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Teaching childbirth with high-fidelity simulation. Is it better observing the scenario during the briefing session?

    Science.gov (United States)

    Cuerva, Marcos J; Piñel, Carlos S; Martin, Lourdes; Espinosa, Jose A; Corral, Octavio J; Mendoza, Nicolás

    2018-02-12

    The design of optimal courses for obstetric undergraduate teaching is a relevant question. This study evaluates two different designs of simulator-based learning activity on childbirth with regard to respect to the patient, obstetric manoeuvres, interpretation of cardiotocography tracings (CTG) and infection prevention. This randomised experimental study which differs in the content of their briefing sessions consisted of two groups of undergraduate students, who performed two simulator-based learning activities on childbirth. The first briefing session included the observations of a properly performed scenario according to Spanish clinical practice guidelines on care in normal childbirth by the teachers whereas the second group did not include the observations of a properly performed scenario, and the students observed it only after the simulation process. The group that observed a properly performed scenario after the simulation obtained worse grades during the simulation, but better grades during the debriefing and evaluation. Simulator use in childbirth may be more fruitful when the medical students observe correct performance at the completion of the scenario compared to that at the start of the scenario. Impact statement What is already known on this subject? There is a scarcity of literature about the design of optimal high-fidelity simulation training in childbirth. It is known that preparing simulator-based learning activities is a complex process. Simulator-based learning includes the following steps: briefing, simulation, debriefing and evaluation. The most important part of high-fidelity simulations is the debriefing. A good briefing and simulation are of high relevance in order to have a fruitful debriefing session. What do the results of this study add? Our study describes a full simulator-based learning activity on childbirth that can be reproduced in similar facilities. The findings of this study add that high-fidelity simulation training in

  2. High Fidelity Simulation of Atomization in Diesel Engine Sprays

    Science.gov (United States)

    2015-09-01

    state Figure 5. Q criterion isosurface colored by streamwise velocity in the diesel spray injector as viewed from the nozzle exit. Figure 6. U contour...fidelity simulation approach was adopted to study the atom- ization physics of a diesel injector with detailed nozzle internal geometry. The nozzle flow...26; Stanford, CA 14. ABSTRACT A high fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector has been

  3. Prospective randomized comparison of standard didactic lecture versus high-fidelity simulation for radiology resident contrast reaction management training.

    Science.gov (United States)

    Wang, Carolyn L; Schopp, Jennifer G; Petscavage, Jonelle M; Paladin, Angelisa M; Richardson, Michael L; Bush, William H

    2011-06-01

    The objective of our study was to assess whether high-fidelity simulation-based training is more effective than traditional didactic lecture to train radiology residents in the management of contrast reactions. This was a prospective study of 44 radiology residents randomized into a simulation group versus a lecture group. All residents attended a contrast reaction didactic lecture. Four months later, baseline knowledge was assessed with a written test, which we refer to as the "pretest." After the pretest, the 21 residents in the lecture group attended a repeat didactic lecture and the 23 residents in the simulation group underwent high-fidelity simulation-based training with five contrast reaction scenarios. Next, all residents took a second written test, which we refer to as the "posttest." Two months after the posttest, both groups took a third written test, which we refer to as the "delayed posttest," and underwent performance testing with a high-fidelity severe contrast reaction scenario graded on predefined critical actions. There was no statistically significant difference between the simulation and lecture group pretest, immediate posttest, or delayed posttest scores. The simulation group performed better than the lecture group on the severe contrast reaction simulation scenario (p = 0.001). The simulation group reported improved comfort in identifying and managing contrast reactions and administering medications after the simulation training (p ≤ 0.04) and was more comfortable than the control group (p = 0.03), which reported no change in comfort level after the repeat didactic lecture. When compared with didactic lecture, high-fidelity simulation-based training of contrast reaction management shows equal results on written test scores but improved performance during a high-fidelity severe contrast reaction simulation scenario.

  4. High-Fidelity Simulation for Neonatal Nursing Education: An Integrative Review of the Literature.

    Science.gov (United States)

    Cooper, Allyson

    2015-01-01

    The lack of safe avenues to develop neonatal nursing competencies using human subjects leads to the notion that simulation education for neonatal nurses might be an ideal form of education. This integrative literature review compares traditional, teacher-centered education with high-fidelity simulation education for neonatal nurses. It examines the theoretical frameworks used in neonatal nursing education and outlines the advantages of this type of training, including improving communication and teamwork; providing an innovative pedagogical approach; and aiding in skill acquisition, confidence, and participant satisfaction. The importance of debriefing is also examined. High-fidelity simulation is not without disadvantages, including its significant cost, the time associated with training, the need for very complex technical equipment, and increased faculty resource requirements. Innovative uses of high-fidelity simulation in neonatal nursing education are suggested. High-fidelity simulation has great potential but requires additional research to fully prove its efficacy.

  5. Simulator fidelity and training effectiveness: a comprehensive bibliography with selected annotations

    International Nuclear Information System (INIS)

    Rankin, W.L.; Bolton, P.A.; Shikiar, R.; Saari, L.M.

    1984-05-01

    This document contains a comprehensive bibliography on the topic of simulator fidelity and training effectiveness, prepared during the preliminary phases of work on an NRC-sponsored project on the Role of Nuclear Power Plant Simulators in Operator Licensing and Training. Section A of the document is an annotated bibliography consisting of articles and reports with relevance to the psychological aspects of simulator fidelity and the effectiveness of training simulators in a variety of settings, including military. The annotated items are drawn from a more comprehensive bibliography, presented in Section B, listing documents treating the role of simulators in operator training both in the nuclear industry and elsewhere

  6. Recommendations on Model Fidelity for Wind Turbine Gearbox Simulations: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.; Keller, J.; La Cava, W.; Austin, J.; Nejad, A. R.; Halse, C.; Bastard, L.; Helsen, J.

    2015-01-01

    This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential design parameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.

  7. RELAP5: Applications to high fidelity simulation

    International Nuclear Information System (INIS)

    Johnsen, G.W.; Chen, Y.S.

    1988-01-01

    RELAP5 is a pressurized water reactor system transient simulation code for use in nuclear power plant safety analysis. The latest version, MOD2, may be used to simulate and study a wide variety of abnormal events, including loss-of-coolant accidents, operational transients, and transients in which the entire secondary system must be modeled. In this paper, a basic overview of the code is given, its assessment and application illustrated, and progress toward its use as a high fidelity simulator described. 7 refs., 7 figs

  8. Realism in paediatric emergency simulations: A prospective comparison of in situ, low fidelity and centre-based, high fidelity scenarios.

    Science.gov (United States)

    O'Leary, Fenton; Pegiazoglou, Ioannis; McGarvey, Kathryn; Novakov, Ruza; Wolfsberger, Ingrid; Peat, Jennifer

    2018-02-01

    To measure scenario participant and faculty self-reported realism, engagement and learning for the low fidelity, in situ simulations and compare this to high fidelity, centre-based simulations. A prospective survey of scenario participants and faculty completing in situ and centre-based paediatric simulations. There were 382 responses, 276 from scenario participants and 106 from faculty with 241 responses from in situ and 141 from centre-based simulations. Scenario participant responses showed significantly higher ratings for the centre-based simulations for respiratory rate (P = 0.007), pulse (P = 0.036), breath sounds (P = 0.002), heart sounds (P realism for engagement and learning. © 2017 The Authors Emergency Medicine Australasia published by John Wiley & Sons Australia, Ltd on behalf of Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  9. Exploring the use of high-fidelity simulation training to enhance clinical skills.

    Science.gov (United States)

    Ann Kirkham, Lucy

    2018-02-07

    The use of interprofessional simulation training to enhance nursing students' performance of technical and non-technical clinical skills is becoming increasingly common. Simulation training can involve the use of role play, virtual reality or patient simulator manikins to replicate clinical scenarios and assess the nursing student's ability to, for example, undertake clinical observations or work as part of a team. Simulation training enables nursing students to practise clinical skills in a safe environment. Effective simulation training requires extensive preparation, and debriefing is necessary following a simulated training session to review any positive or negative aspects of the learning experience. This article discusses a high-fidelity simulated training session that was used to assess a group of third-year nursing students and foundation level 1 medical students. This involved the use of a patient simulator manikin in a scenario that required the collaborative management of a deteriorating patient. ©2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  10. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Carolyn L., E-mail: wangcl@uw.edu [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Schopp, Jennifer G.; Kani, Kimia [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States); Petscavage-Thomas, Jonelle M. [Penn State Hershey Medical Center, Department of Radiology, 500 University Drive, Hershey, PA 17033 (United States); Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H. [Department of Radiology, University of Washington, Box 357115, 1959 NE Pacific Street, Seattle, WA 98195-7115 (United States)

    2013-12-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation.

  11. Prospective randomized study of contrast reaction management curricula: Computer-based interactive simulation versus high-fidelity hands-on simulation

    International Nuclear Information System (INIS)

    Wang, Carolyn L.; Schopp, Jennifer G.; Kani, Kimia; Petscavage-Thomas, Jonelle M.; Zaidi, Sadaf; Hippe, Dan S.; Paladin, Angelisa M.; Bush, William H.

    2013-01-01

    Purpose: We developed a computer-based interactive simulation program for teaching contrast reaction management to radiology trainees and compared its effectiveness to high-fidelity hands-on simulation training. Materials and methods: IRB approved HIPAA compliant prospective study of 44 radiology residents, fellows and faculty who were randomized into either the high-fidelity hands-on simulation group or computer-based simulation group. All participants took separate written tests prior to and immediately after their intervention. Four months later participants took a delayed written test and a hands-on high-fidelity severe contrast reaction scenario performance test graded on predefined critical actions. Results: There was no statistically significant difference between the computer and hands-on groups’ written pretest, immediate post-test, or delayed post-test scores (p > 0.6 for all). Both groups’ scores improved immediately following the intervention (p < 0.001). The delayed test scores 4 months later were still significantly higher than the pre-test scores (p ≤ 0.02). The computer group's performance was similar to the hands-on group on the severe contrast reaction simulation scenario test (p = 0.7). There were also no significant differences between the computer and hands-on groups in performance on the individual core competencies of contrast reaction management during the contrast reaction scenario. Conclusion: It is feasible to develop a computer-based interactive simulation program to teach contrast reaction management. Trainees that underwent computer-based simulation training scored similarly on written tests and on a hands-on high-fidelity severe contrast reaction scenario performance test as those trained with hands-on high-fidelity simulation

  12. High-Fidelity Roadway Modeling and Simulation

    Science.gov (United States)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  13. Using a high-fidelity patient simulator with first-year medical students to facilitate learning of cardiovascular function curves.

    Science.gov (United States)

    Harris, David M; Ryan, Kathleen; Rabuck, Cynthia

    2012-09-01

    Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into preclinical medical education represents more of a challenge, and there is limited literature regarding its implementation. The main objective of this study was to implement a HFPS activity into a problem-based curriculum to enhance the learning of basic sciences. More specifically, the focus was to aid in student learning of cardiovascular function curves and help students develop heart failure treatment strategies based on basic cardiovascular physiology concepts. Pretests and posttests, along with student surveys, were used to determine student knowledge and perception of learning in two first-year medical school classes. There was an increase of 21% and 22% in the percentage of students achieving correct answers on a posttest compared with their pretest score. The median number of correct questions increased from pretest scores of 2 and 2.5 to posttest scores of 4 and 5 of a possible total of 6 in each respective year. Student survey data showed agreement that the activity aided in learning. This study suggests that a HFPS activity can be implemented during the preclinical years of medical education to address basic science concepts. Additionally, it suggests that student learning of cardiovascular function curves and heart failure strategies are facilitated.

  14. Technical Basis for Physical Fidelity of NRC Control Room Training Simulators for Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Minsk, Brian S.; Branch, Kristi M.; Bates, Edward K.; Mitchell, Mark R.; Gore, Bryan F.; Faris, Drury K.

    2009-10-09

    The objective of this study is to determine how simulator physical fidelity influences the effectiveness of training the regulatory personnel responsible for examination and oversight of operating personnel and inspection of technical systems at nuclear power reactors. It seeks to contribute to the U.S. Nuclear Regulatory Commission’s (NRC’s) understanding of the physical fidelity requirements of training simulators. The goal of the study is to provide an analytic framework, data, and analyses that inform NRC decisions about the physical fidelity requirements of the simulators it will need to train its staff for assignment at advanced reactors. These staff are expected to come from increasingly diverse educational and experiential backgrounds.

  15. High-fidelity hybrid simulation of allergic emergencies demonstrates improved preparedness for office emergencies in pediatric allergy clinics.

    Science.gov (United States)

    Kennedy, Joshua L; Jones, Stacie M; Porter, Nicholas; White, Marjorie L; Gephardt, Grace; Hill, Travis; Cantrell, Mary; Nick, Todd G; Melguizo, Maria; Smith, Chris; Boateng, Beatrice A; Perry, Tamara T; Scurlock, Amy M; Thompson, Tonya M

    2013-01-01

    Simulation models that used high-fidelity mannequins have shown promise in medical education, particularly for cases in which the event is uncommon. Allergy physicians encounter emergencies in their offices, and these can be the source of much trepidation. To determine if case-based simulations with high-fidelity mannequins are effective in teaching and retention of emergency management team skills. Allergy clinics were invited to Arkansas Children's Hospital Pediatric Understanding and Learning through Simulation Education center for a 1-day workshop to evaluate skills concerning the management of allergic emergencies. A Clinical Emergency Preparedness Team Performance Evaluation was developed to evaluate the competence of teams in several areas: leadership and/or role clarity, closed-loop communication, team support, situational awareness, and scenario-specific skills. Four cases, which focus on common allergic emergencies, were simulated by using high-fidelity mannequins and standardized patients. Teams were evaluated by multiple reviewers by using video recording and standardized scoring. Ten to 12 months after initial training, an unannounced in situ case was performed to determine retention of the skills training. Clinics showed significant improvements for role clarity, teamwork, situational awareness, and scenario-specific skills during the 1-day workshop (all P clinics (all P ≤ .004). Clinical Emergency Preparedness Team Performance Evaluation scores demonstrated improved team management skills with simulation training in office emergencies. Significant recall of team emergency management skills was demonstrated months after the initial training. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  16. Evaluation of high-fidelity simulation training in radiation oncology using an outcomes logic model

    International Nuclear Information System (INIS)

    Giuliani, Meredith; Gillan, Caitlin; Wong, Olive; Harnett, Nicole; Milne, Emily; Moseley, Doug; Thompson, Robert; Catton, Pamela; Bissonnette, Jean-Pierre

    2014-01-01

    To evaluate the feasibility and educational value of high-fidelity, interprofessional team-based simulation in radiation oncology. The simulation event was conducted in a radiation oncology department during a non-clinical day. It involved 5 simulation scenarios that were run over three 105 minute timeslots in a single day. High-acuity, low-frequency clinical situations were selected and included HDR brachytherapy emergency, 4D CT artifact management, pediatric emergency clinical mark-up, electron scalp trial set-up and a cone beam CT misregistration incident. A purposive sample of a minimum of 20 trainees was required to assess recruitment feasibility. A faculty radiation oncologist (RO), medical physicist (MP) or radiation therapist (RTT), facilitated each case. Participants completed a pre event survey of demographic data and motivation for participation. A post event survey collected perceptions of familiarity with the clinical content, comfort with interprofessional practice, and event satisfaction, scored on a 1–10 scale in terms of clinical knowledge, clinical decision making, clinical skills, exposure to other trainees and interprofessional communication. Means and standard deviations were calculated. Twenty-one trainees participated including 6 ROs (29%), 6 MPs (29%), and 9 RTTs (43%). All 12 cases (100%) were completed within the allocated 105 minutes. Nine faculty facilitators, (3MP, 2 RO, 4 RTTs) were required for 405 minutes each. Additional costs associated with this event were 154 hours to build the high fidelity scenarios, 2 standardized patients (SPs) for a total of 15.5 hours, and consumables.The mean (±SD) educational value score reported by participants with respect to clinical knowledge was 8.9 (1.1), clinical decision making 8.9 (1.3), clinical skills 8.9 (1.1), exposure to other trainees 9.1 (2.3) and interprofessional communication 9.1 (1.0). Fifteen (71%) participants reported the cases were of an appropriate complexity. The importance

  17. Fidelity Witnesses for Fermionic Quantum Simulations

    Science.gov (United States)

    Gluza, M.; Kliesch, M.; Eisert, J.; Aolita, L.

    2018-05-01

    The experimental interest and developments in quantum spin-1 /2 chains has increased uninterruptedly over the past decade. In many instances, the target quantum simulation belongs to the broader class of noninteracting fermionic models, constituting an important benchmark. In spite of this class being analytically efficiently tractable, no direct certification tool has yet been reported for it. In fact, in experiments, certification has almost exclusively relied on notions of quantum state tomography scaling very unfavorably with the system size. Here, we develop experimentally friendly fidelity witnesses for all pure fermionic Gaussian target states. Their expectation value yields a tight lower bound to the fidelity and can be measured efficiently. We derive witnesses in full generality in the Majorana-fermion representation and apply them to experimentally relevant spin-1 /2 chains. Among others, we show how to efficiently certify strongly out-of-equilibrium dynamics in critical Ising chains. At the heart of the measurement scheme is a variant of importance sampling specially tailored to overlaps between covariance matrices. The method is shown to be robust against finite experimental-state infidelities.

  18. Simulation-based medical education in clinical skills laboratory.

    Science.gov (United States)

    Akaike, Masashi; Fukutomi, Miki; Nagamune, Masami; Fujimoto, Akiko; Tsuji, Akiko; Ishida, Kazuko; Iwata, Takashi

    2012-01-01

    Clinical skills laboratories have been established in medical institutions as facilities for simulation-based medical education (SBME). SBME is believed to be superior to the traditional style of medical education from the viewpoint of the active and adult learning theories. SBME can provide a learning cycle of debriefing and feedback for learners as well as evaluation of procedures and competency. SBME offers both learners and patients a safe environment for practice and error. In a full-environment simulation, learners can obtain not only technical skills but also non-technical skills, such as leadership, team work, communication, situation awareness, decision-making, and awareness of personal limitations. SBME is also effective for integration of clinical medicine and basic medicine. In addition, technology-enhanced simulation training is associated with beneficial effects for outcomes of knowledge, skills, behaviors, and patient-related outcomes. To perform SBME, effectively, not only simulators including high-fidelity mannequin-type simulators or virtual-reality simulators but also full-time faculties and instructors as professionals of SBME are essential in a clinical skills laboratory for SBME. Clinical skills laboratory is expected to become an integrated medical education center to achieve continuing professional development, integrated learning of basic and clinical medicine, and citizens' participation and cooperation in medical education.

  19. High Fidelity In Situ Shoulder Dystocia Simulation

    Directory of Open Access Journals (Sweden)

    Andrew Pelikan, MD

    2018-04-01

    Full Text Available Audience: Resident physicians, emergency department (ED staff Introduction: Precipitous deliveries are high acuity, low occurrence in most emergency departments. Shoulder dystocia is a rare but potentially fatal complication of labor that can be relieved by specific maneuvers that must be implemented in a timely manner. This simulation is designed to educate resident learners on the critical management steps in a shoulder dystocia presenting to the emergency department. A special aspect of this simulation is the unique utilization of the “Noelle” model with an instructing physician at bedside maneuvering the fetus through the stations of labor and providing subtle adjustments to fetal positioning not possible though a mechanized model. A literature search of “shoulder dystocia simulation” consists primarily of obstetrics and mid-wife journals, many of which utilize various mannequin models. None of the reviewed articles utilized a bedside provider maneuvering the fetus with the Noelle model, making this method unique. While the Noelle model is equipped with a remote-controlled motor that automatically rotates and delivers the baby either to the head or to the shoulders and can produce a turtle sign and which will prevent delivery of the baby until signaled to do so by the instructor, using the bedside instructor method allows this simulation to be reproduced with less mechanistically advanced and lower cost models.1-5 Objectives: At the end of this simulation, learners will: 1 Recognize impending delivery and mobilize appropriate resources (ie, both obstetrics [OB] and NICU/pediatrics; 2 Identify risk factors for shoulder dystocia based on history and physical; 3 Recognize shoulder dystocia during delivery; 4 Demonstrate maneuvers to relieve shoulder dystocia; 5 Communicate with team members and nursing staff during resuscitation of a critically ill patient. Method: High-fidelity simulation. Topics: High fidelity, in situ, Noelle model

  20. Striving for Better Medical Education: the Simulation Approach.

    Science.gov (United States)

    Sakakushev, Boris E; Marinov, Blagoi I; Stefanova, Penka P; Kostianev, Stefan St; Georgiou, Evangelos K

    2017-06-01

    Medical simulation is a rapidly expanding area within medical education due to advances in technology, significant reduction in training hours and increased procedural complexity. Simulation training aims to enhance patient safety through improved technical competency and eliminating human factors in a risk free environment. It is particularly applicable to a practical, procedure-orientated specialties. Simulation can be useful for novice trainees, experienced clinicians (e.g. for revalidation) and team building. It has become a cornerstone in the delivery of medical education, being a paradigm shift in how doctors are educated and trained. Simulation must take a proactive position in the development of metric-based simulation curriculum, adoption of proficiency benchmarking definitions, and should not depend on the simulation platforms used. Conversely, ingraining of poor practice may occur in the absence of adequate supervision, and equipment malfunction during the simulation can break the immersion and disrupt any learning that has occurred. Despite the presence of high technology, there is a substantial learning curve for both learners and facilitators. The technology of simulation continues to advance, offering devices capable of improved fidelity in virtual reality simulation, more sophisticated procedural practice and advanced patient simulators. Simulation-based training has also brought about paradigm shifts in the medical and surgical education arenas and ensured that the scope and impact of simulation will continue to broaden.

  1. Pharmacy Students' Learning and Satisfaction With High-Fidelity Simulation to Teach Drug-Induced Dyspepsia

    Science.gov (United States)

    2013-01-01

    Objective. To assess second-year pharmacy students’ acquisition of pharmacotherapy knowledge and clinical competence from participation in a high-fidelity simulation, and to determine the impact on the simulation experience of implementing feedback from previous students. Design. A high-fidelity simulation was used to present a patient case scenario of drug-induced dyspepsia with gastrointestinal bleeding. The simulation was revised based on feedback from a previous class of students to include a smaller group size, provision of session material to students in advance, and an improved learning environment. Assessment. Student performance on pre- and post-simulation knowledge and clinical competence tests documented significant improvements in students' knowledge of dyspepsia and associated symptoms, with the greatest improvement on questions relating to the hemodynamic effects of gastrointestinal bleeding. Students were more satisfied with the simulation experience compared to students in the earlier study. Conclusion. Participation in a high-fidelity simulation allowed pharmacy students to apply knowledge and skills learned in the classroom. Improved student satisfaction with the simulation suggests that implementing feedback obtained through student course evaluations can be an effective means of improving the curriculum. PMID:23519773

  2. The effect of high fidelity simulated learning methods on physiotherapy pre-registration education: a systematic review protocol.

    Science.gov (United States)

    Roberts, Fiona; Cooper, Kay

    2017-11-01

    The objective of this review is to identify if high fidelity simulated learning methods are effective in enhancing clinical/practical skills compared to usual, low fidelity simulated learning methods in pre-registration physiotherapy education.

  3. High-Fidelity Simulation of Pediatric Emergency Care: An Eye-Opening Experience for Baccalaureate Nursing Students.

    Science.gov (United States)

    Small, Sandra P; Colbourne, Peggy A; Murray, Cynthia L

    2018-01-01

    Background Little attention has been given to in-depth examination of what high-fidelity simulation is like for nursing students within the context of a pediatric emergency, such as a cardiopulmonary arrest. It is possible that such high-fidelity simulation could provoke in nursing students intense psychological reactions. Purpose The purpose of this study was to learn about baccalaureate nursing students' lived experience of high-fidelity simulation of pediatric cardiopulmonary arrest. Method Phenomenological methods were used. Twenty-four interviews were conducted with 12 students and were analyzed for themes. Results The essence of the experience is that it was eye-opening. The students found the simulation to be a surprisingly realistic nursing experience as reflected in their perceiving the manikin as a real patient, thinking that they were saving their patient's life, feeling like a real nurse, and feeling relief after mounting stress. It was a surprisingly valuable learning experience in that the students had an increased awareness of the art and science of nursing and increased understanding of the importance of teamwork and were feeling more prepared for clinical practice and wanting more simulation experiences. Conclusion Educators should capitalize on the benefits of high-fidelity simulation as a pedagogy, while endeavoring to provide psychologically safe learning.

  4. The experiences of last-year student midwives with High-Fidelity Perinatal Simulation training: A qualitative descriptive study.

    Science.gov (United States)

    Vermeulen, Joeri; Beeckman, Katrien; Turcksin, Rivka; Van Winkel, Lies; Gucciardo, Léonardo; Laubach, Monika; Peersman, Wim; Swinnen, Eva

    2017-06-01

    Simulation training is a powerful and evidence-based teaching method in healthcare. It allows students to develop essential competences that are often difficult to achieve during internships. High-Fidelity Perinatal Simulation exposes them to real-life scenarios in a safe environment. Although student midwives' experiences need to be considered to make the simulation training work, these have been overlooked so far. To explore the experiences of last-year student midwives with High-Fidelity Perinatal Simulation training. A qualitative descriptive study, using three focus group conversations with last-year student midwives (n=24). Audio tapes were transcribed and a thematic content analysis was performed. The entire data set was coded according to recurrent or common themes. To achieve investigator triangulation and confirm themes, discussions among the researchers was incorporated in the analysis. Students found High-Fidelity Perinatal Simulation training to be a positive learning method that increased both their competence and confidence. Their experiences varied over the different phases of the High-Fidelity Perinatal Simulation training. Although uncertainty, tension, confusion and disappointment were experienced throughout the simulation trajectory, they reported that this did not affect their learning and confidence-building. As High-Fidelity Perinatal Simulation training constitutes a helpful learning experience in midwifery education, it could have a positive influence on maternal and neonatal outcomes. In the long term, it could therefore enhance the midwifery profession in several ways. The present study is an important first step in opening up the debate about the pedagogical use of High-Fidelity Perinatal Simulation training within midwifery education. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  5. Effect of High-Fidelity Simulation on Medical Students' Knowledge about Advanced Life Support: A Randomized Study.

    Directory of Open Access Journals (Sweden)

    Andrea Cortegiani

    Full Text Available High-fidelity simulation (HFS is a learning method which has proven effective in medical education for technical and non-technical skills. However, its effectiveness for knowledge acquisition is less validated. We performed a randomized study with the primary aim of investigating whether HFS, in association with frontal lessons, would improve knowledge about advanced life support (ALS, in comparison to frontal lessons only among medical students. The secondary aims were to evaluate the effect of HFS on knowledge acquisition of different sections of ALS and personal knowledge perception. Participants answered a pre-test questionnaire consisting of a subjective (evaluating personal perception of knowledge and an objective section (measuring level of knowledge containing 100 questions about algorithms, technical skills, team working/early warning scores/communication strategies according to ALS guidelines. All students participated in 3 frontal lessons before being randomized in group S, undergoing a HFS session, and group C, receiving no further interventions. After 10 days from the end of each intervention, both groups answered a questionnaire (post-test with the same subjective section but a different objective one. The overall number of correct answers of the post-test was significantly higher in group S (mean 74.1, SD 11.2 than in group C (mean 65.5, SD 14.3, p = 0.0017, 95% C.I. 3.34 - 13.9. A significantly higher number of correct answers was reported in group S than in group C for questions investigating knowledge of algorithms (p = 0.0001; 95% C.I 2.22-5.99 and team working/early warning scores/communication strategies (p = 0.0060; 95% C.I 1.13-6.53. Students in group S showed a significantly higher score in the post-test subjective section (p = 0.0074. A lower proportion of students in group S confirmed their perception of knowledge compared to group C (p = 0.0079. HFS showed a beneficial effect on knowledge of ALS among medical students

  6. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    Science.gov (United States)

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  7. An Investigation of the Impact of Aerodynamic Model Fidelity on Close-In Combat Effectiveness Prediction in Piloted Simulation

    Science.gov (United States)

    Persing, T. Ray; Bellish, Christine A.; Brandon, Jay; Kenney, P. Sean; Carzoo, Susan; Buttrill, Catherine; Guenther, Arlene

    2005-01-01

    Several aircraft airframe modeling approaches are currently being used in the DoD community for acquisition, threat evaluation, training, and other purposes. To date there has been no clear empirical study of the impact of airframe simulation fidelity on piloted real-time aircraft simulation study results, or when use of a particular level of fidelity is indicated. This paper documents a series of piloted simulation studies using three different levels of airframe model fidelity. This study was conducted using the NASA Langley Differential Maneuvering Simulator. Evaluations were conducted with three pilots for scenarios requiring extensive maneuvering of the airplanes during air combat. In many cases, a low-fidelity modified point-mass model may be sufficient to evaluate the combat effectiveness of the aircraft. However, in cases where high angle-of-attack flying qualities and aerodynamic performance are a factor or when precision tracking ability of the aircraft must be represented, use of high-fidelity models is indicated.

  8. Effect on High versus Low Fidelity Haptic Feedback in a Virtual Reality Baseball Simulation

    DEFF Research Database (Denmark)

    Ryge, Andreas Nicolaj; Thomsen, Lui Albæk; Berthelsen, Theis

    2017-01-01

    In this paper we present a within-subjects study (n=26) comparing participants' experience of three kinds of haptic feedback (no haptic feedback, low fidelity haptic feedback and high fidelity haptic feedback) simulating the impact between a virtual baseball bat and ball. We noticed some minor ef...

  9. An Evaluation of Navy En Route Care Training Using a High-Fidelity Medical Simulation Scenario of Interfacility Patient Transport.

    Science.gov (United States)

    DeForest, Christine A; Blackman, Virginia; Alex, John E; Reeves, Lauren; Mora, Alejandra; Perez, Crystal; Maddry, Joseph; Selby, Domenique; Walrath, Benjamin

    2018-03-14

    Military prehospital and en route care (ERC) directly impacts patient morbidity and mortality. Provider knowledge and skills are critical variables in the effectiveness of ERC. No Navy doctrine defines provider choice for patient transport or requires standardized provider training. Frequently, Search and Rescue Medical Technicians (SMTs) and Navy Nurses (ERC RNs) are tasked with this mission though physicians have also been used. Navy ERC provider training varies greatly by professional role. Historically, evaluations of ERC and patient outcomes have been based on retrospective analyses of incomplete data sets that provide limited insight on ERC practices. Little evidence exists to determine if current training is adequate to care for the most common injuries seen in combat trauma patients. Simulation technology facilitates a standardized patient encounter to enable complete, prospective data collection while studying provider type as the independent variable. Information acquired through skill performance observation can be used to make evidence-based recommendations to improve ERC training. This IRB approved multi-center study funded through a Congressionally Directed Medical Research Program grant from the Combat Casualty Care Intramural Research Joint En Route Care portfolio evaluated Navy ERC providers. The study evaluated 84 SMT, ERC RN, and physician participants in the performance of critical and secondary actions during an immersive, high-fidelity, patient transport simulation scenario focused on the care during an interfacility transfer. Simulation evaluators with military ERC expertise, blinded to participant training and background, graded each participant's performance. Inter-rater reliability was calculated using Cohen's Kappa to evaluate concordance between evaluator assessments. Categorical data were reported as frequencies and percentages. Performance attempt and accuracy rates were compared with likelihood ratio chi-square or Fisher's exact test

  10. Use of high fidelity operating room simulation to assess and teach communication, teamwork and laparoscopic skills: initial experience.

    Science.gov (United States)

    Gettman, Matthew T; Pereira, Claudio W; Lipsky, Katja; Wilson, Torrence; Arnold, Jacqueline J; Leibovich, Bradley C; Karnes, R Jeffrey; Dong, Yue

    2009-03-01

    Structured opportunities for learning communication, teamwork and laparoscopic principles are limited for urology residents. We evaluated and taught teamwork, communication and laparoscopic skills to urology residents in a simulated operating room. Scenarios related to laparoscopy (insufflator failure, carbon dioxide embolism) were developed using mannequins, urology residents and nurses. These scenarios were developed based on Accreditation Council for Graduate Medical Education core competencies and performed in a simulation center. Between the pretest scenario (insufflation failure) and the posttest scenario (carbon dioxide embolism) instruction was given on teamwork, communication and laparoscopic skills. A total of 19 urology residents participated in the training that involved participation in at least 2 scenarios. Performance was evaluated using validated teamwork instruments, questionnaires and videotape analysis. Significant improvement was noted on validated teamwork instruments between scenarios based on resident (pretest 24, posttest 27, p = 0.01) and expert (pretest 16, posttest 25, p = 0.008) evaluation. Increased teamwork and team performance were also noted between scenarios on videotape analysis with significant improvement for adherence to best practice (p = 0.01) and maintenance of positive rapport among team members (p = 0.02). Significant improvement in the setup of the laparoscopic procedure was observed (p = 0.01). Favorable face and content validity was noted for both scenarios. Teamwork, intraoperative communication and laparoscopic skills of urology residents improved during the high fidelity simulation course. Face and content validity of the individual sessions was favorable. In this study high fidelity simulation was effective for assessing and teaching Accreditation Council for Graduate Medical Education core competencies related to intraoperative communication, teamwork and laparoscopic skills.

  11. GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport

    International Nuclear Information System (INIS)

    Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.

    2006-01-01

    A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)

  12. Recommendations on Model Fidelity for Wind Turbine Gearbox Simulations; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Lacava, W.; Austin, J.; Nejad, A.; Halse, C.; Bastard, L.; Helsen, J.

    2015-02-01

    This work investigates the minimum level of fidelity required to accurately simulate wind turbine gearboxes using state-of-the-art design tools. Excessive model fidelity including drivetrain complexity, gearbox complexity, excitation sources, and imperfections, significantly increases computational time, but may not provide a commensurate increase in the value of the results. Essential designparameters are evaluated, including the planetary load-sharing factor, gear tooth load distribution, and sun orbit motion. Based on the sensitivity study results, recommendations for the minimum model fidelities are provided.

  13. Hand ultrasound: a high-fidelity simulation of lung sliding.

    Science.gov (United States)

    Shokoohi, Hamid; Boniface, Keith

    2012-09-01

    Simulation training has been effectively used to integrate didactic knowledge and technical skills in emergency and critical care medicine. In this article, we introduce a novel model of simulating lung ultrasound and the features of lung sliding and pneumothorax by performing a hand ultrasound. The simulation model involves scanning the palmar aspect of the hand to create normal lung sliding in varying modes of scanning and to mimic ultrasound features of pneumothorax, including "stratosphere/barcode sign" and "lung point." The simple, reproducible, and readily available simulation model we describe demonstrates a high-fidelity simulation surrogate that can be used to rapidly illustrate the signs of normal and abnormal lung sliding at the bedside. © 2012 by the Society for Academic Emergency Medicine.

  14. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    Full Text Available Abstract Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents.

  15. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    Science.gov (United States)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  16. Low vs. high fidelity: the importance of 'realism' in the simulation of a stone treatment procedure.

    Science.gov (United States)

    Sarmah, Piyush; Voss, Jim; Ho, Adrian; Veneziano, Domenico; Somani, Bhaskar

    2017-07-01

    Simulation training for stone surgery is now increasingly used as part of training curricula worldwide. A combination of low and high fidelity simulators has been used with varying degrees of 'realism' provided by them. In this review, we discuss low and high fidelity simulators used for ureteroscopy (URS) and percutaneous nephrolithotomy (PCNL) stone procedures with their advantages, disadvantages and future direction for endourological simulation surgery. The final goal will be to understand whether or not 'realism' has to be considered as a critical element in simulation for this field. There is a wide range of simulators available for URS and PCNL training ranging from basic bench-type model to advanced virtual reality and cadaveric models, all providing various levels of realism. Although basic models might be more useful to novices, advanced models allow for complex and more realistic simulation training. With a wide variety of simulators now available and given the latest novelties in modular training curriculums, combination of low and high fidelity simulators that provide a realistic and cost-effective option seems to be the way forward. It is unavoidable that simulators will play an increasing role in endourological training.

  17. Inspiring Careers in STEM and Healthcare Fields through Medical Simulation Embedded in High School Science Education

    Science.gov (United States)

    Berk, Louis J.; Muret-Wagstaff, Sharon L.; Goyal, Riya; Joyal, Julie A.; Gordon, James A.; Faux, Russell; Oriol, Nancy E.

    2014-01-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school…

  18. Self-Reflection of Video-Recorded High-Fidelity Simulations and Development of Clinical Judgment.

    Science.gov (United States)

    Bussard, Michelle E

    2016-09-01

    Nurse educators are increasingly using high-fidelity simulators to improve prelicensure nursing students' ability to develop clinical judgment. Traditionally, oral debriefing sessions have immediately followed the simulation scenarios as a method for students to connect theory to practice and therefore develop clinical judgment. Recently, video recording of the simulation scenarios is being incorporated. This qualitative, interpretive description study was conducted to identify whether self-reflection on video-recorded high-fidelity simulation (HFS) scenarios helped prelicensure nursing students to develop clinical judgment. Tanner's clinical judgment model was the framework for this study. Four themes emerged from this study: Confidence, Communication, Decision Making, and Change in Clinical Practice. This study indicated that self-reflection of video-recorded HFS scenarios is beneficial for prelicensure nursing students to develop clinical judgment. [J Nurs Educ. 2016;55(9):522-527.]. Copyright 2016, SLACK Incorporated.

  19. High-fidelity haptic and visual rendering for patient-specific simulation of temporal bone surgery.

    Science.gov (United States)

    Chan, Sonny; Li, Peter; Locketz, Garrett; Salisbury, Kenneth; Blevins, Nikolas H

    2016-12-01

    Medical imaging techniques provide a wealth of information for surgical preparation, but it is still often the case that surgeons are examining three-dimensional pre-operative image data as a series of two-dimensional images. With recent advances in visual computing and interactive technologies, there is much opportunity to provide surgeons an ability to actively manipulate and interpret digital image data in a surgically meaningful way. This article describes the design and initial evaluation of a virtual surgical environment that supports patient-specific simulation of temporal bone surgery using pre-operative medical image data. Computational methods are presented that enable six degree-of-freedom haptic feedback during manipulation, and that simulate virtual dissection according to the mechanical principles of orthogonal cutting and abrasive wear. A highly efficient direct volume renderer simultaneously provides high-fidelity visual feedback during surgical manipulation of the virtual anatomy. The resulting virtual surgical environment was assessed by evaluating its ability to replicate findings in the operating room, using pre-operative imaging of the same patient. Correspondences between surgical exposure, anatomical features, and the locations of pathology were readily observed when comparing intra-operative video with the simulation, indicating the predictive ability of the virtual surgical environment.

  20. High-Fidelity Simulation in Occupational Therapy Curriculum: Impact on Level II Fieldwork Performance

    Directory of Open Access Journals (Sweden)

    Rebecca Ozelie

    2016-10-01

    Full Text Available Simulation experiences provide experiential learning opportunities during artificially produced real-life medical situations in a safe environment. Evidence supports using simulation in health care education yet limited quantitative evidence exists in occupational therapy. This study aimed to evaluate the differences in scores on the AOTA Fieldwork Performance Evaluation for the Occupational Therapy Student of Level II occupational therapy students who received high-fidelity simulation training and students who did not. A retrospective analysis of 180 students from a private university was used. Independent samples nonparametric t tests examined mean differences between Fieldwork Performance Evaluation scores of those who did and did not receive simulation experiences in the curriculum. Mean ranks were also analyzed for subsection scores and practice settings. Results of this study found no significant difference in overall Fieldwork Performance Evaluation scores between the two groups. The students who completed simulation and had fieldwork in inpatient rehabilitation had the greatest increase in mean rank scores and increases in several subsections. The outcome measure used in this study was found to have limited discriminatory capability and may have affected the results; however, this study finds that using simulation may be a beneficial supplement to didactic coursework in occupational therapy curriculums.

  1. [Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study].

    Science.gov (United States)

    Mejía, Vilma; Gonzalez, Carlos; Delfino, Alejandro E; Altermatt, Fernando R; Corvetto, Marcia A

    The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects' performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025), prioritization of initial actions of management (p = 0.003), recognize complications (p = 0.025) and communication (p = 0.025). Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032). Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Copyright © 2018 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights

  2. Use of Low-Fidelity Simulation Laboratory Training for Teaching Radiology Residents CT-Guided Procedures.

    Science.gov (United States)

    Picard, Melissa; Nelson, Rachel; Roebel, John; Collins, Heather; Anderson, M Bret

    2016-11-01

    To determine the benefit of the addition of low-fidelity simulation-based training to the standard didactic-based training in teaching radiology residents common CT-guided procedures. This was a prospective study involving 24 radiology residents across all years in a university program. All residents underwent standard didactic lecture followed by low-fidelity simulation-based training on three common CT-guided procedures: random liver biopsy, lung nodule biopsy, and drain placement. Baseline knowledge, confidence, and performance assessments were obtained after the didactic session and before the simulation training session. Approximately 2 months later, all residents participated in a simulation-based training session covering all three of these procedures. Knowledge, confidence, and performance data were obtained afterward. These assessments covered topics related to preprocedure workup, intraprocedure steps, and postprocedure management. Knowledge data were collected based on a 15-question assessment. Confidence data were obtained based on a 5-point Likert-like scale. Performance data were obtained based on successful completion of predefined critical steps. There was significant improvement in knowledge (P = .005), confidence (P simulation-based training to the standard didactic curriculum for all procedures. This study suggests that the addition of low-fidelity simulation-based training to a standard didactic-based curriculum is beneficial in improving resident knowledge, confidence, and tested performance of common CT-guided procedures. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Getting a head start: high-fidelity, simulation-based operating room team training of interprofessional students.

    Science.gov (United States)

    Paige, John T; Garbee, Deborah D; Kozmenko, Valeriy; Yu, Qingzhao; Kozmenko, Lyubov; Yang, Tong; Bonanno, Laura; Swartz, William

    2014-01-01

    Effective teamwork in the operating room (OR) is often undermined by the "silo mentality" of the differing professions. Such thinking is formed early in one's professional experience and is fostered by undergraduate medical and nursing curricula lacking interprofessional education. We investigated the immediate impact of conducting interprofessional student OR team training using high-fidelity simulation (HFS) on students' team-related attitudes and behaviors. Ten HFS OR interprofessional student team training sessions were conducted involving 2 standardized HFS scenarios, each of which was followed by a structured debriefing that targeted team-based competencies. Pre- and post-session mean scores were calculated and analyzed for 15 Likert-type items measuring self-efficacy in teamwork competencies using the t-test. Additionally, mean scores of observer ratings of team performance after each scenario and participant ratings after the second scenario for an 11-item Likert-type teamwork scale were calculated and analyzed using one-way ANOVA and t-test. Eighteen nursing students, 20 nurse anesthetist students, and 28 medical students participated in the training. Statistically significant gains from mean pre- to post-training scores occurred on 11 of the 15 self-efficacy items. Statistically significant gains in mean observer performance scores were present on all 3 subscales of the teamwork scale from the first scenario to the second. A statistically significant difference was found in comparisons of mean observer scores with mean participant scores for the team-based behaviors subscale. High-fidelity simulation OR interprofessional student team training improves students' team-based attitudes and behaviors. Students tend to overestimate their team-based behaviors. Copyright © 2014 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  4. An information theoretic approach to use high-fidelity codes to calibrate low-fidelity codes

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Allison, E-mail: lewis.allison10@gmail.com [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Smith, Ralph [Department of Mathematics, North Carolina State University, Raleigh, NC 27695 (United States); Williams, Brian [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Figueroa, Victor [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2016-11-01

    For many simulation models, it can be prohibitively expensive or physically infeasible to obtain a complete set of experimental data to calibrate model parameters. In such cases, one can alternatively employ validated higher-fidelity codes to generate simulated data, which can be used to calibrate the lower-fidelity code. In this paper, we employ an information-theoretic framework to determine the reduction in parameter uncertainty that is obtained by evaluating the high-fidelity code at a specific set of design conditions. These conditions are chosen sequentially, based on the amount of information that they contribute to the low-fidelity model parameters. The goal is to employ Bayesian experimental design techniques to minimize the number of high-fidelity code evaluations required to accurately calibrate the low-fidelity model. We illustrate the performance of this framework using heat and diffusion examples, a 1-D kinetic neutron diffusion equation, and a particle transport model, and include initial results from the integration of the high-fidelity thermal-hydraulics code Hydra-TH with a low-fidelity exponential model for the friction correlation factor.

  5. High Fidelity Simulation of Littoral Environments: Applications and Coupling of Participating Models

    National Research Council Canada - National Science Library

    Allard, Richard

    2003-01-01

    The High Fidelity Simulation of Littoral Environments (HFSoLE) Challenge Project (C75) encompasses a suite of seven oceanographic models capable of exchanging information in a physically meaningful sense across the littoral environment...

  6. First experiences of high-fidelity simulation training in junior nursing students in Korea.

    Science.gov (United States)

    Lee, Suk Jeong; Kim, Sang Suk; Park, Young-Mi

    2015-07-01

    This study was conducted to explore first experiences of high-fidelity simulation training in Korean nursing students, in order to develop and establish more effective guidelines for future simulation training in Korea. Thirty-three junior nursing students participated in high-fidelity simulation training for the first time. Using both qualitative and quantitative methods, data were collected from reflective journals and questionnaires of simulation effectiveness after simulation training. Descriptive statistics were used to analyze simulation effectiveness and content analysis was performed with the reflective journal data. Five dimensions and 31 domains, both positive and negative experiences, emerged from qualitative analysis: (i) machine-human interaction in a safe environment; (ii) perceived learning capability; (iii) observational learning; (iv) reconciling practice with theory; and (v) follow-up debriefing effect. More than 70% of students scored high on increased ability to identify changes in the patient's condition, critical thinking, decision-making, effectiveness of peer observation, and debriefing in effectiveness of simulation. This study reported both positive and negative experiences of simulation. The results of this study could be used to set the level of task difficulty in simulation. Future simulation programs can be designed by reinforcing the positive experiences and modifying the negative results. © 2014 The Authors. Japan Journal of Nursing Science © 2014 Japan Academy of Nursing Science.

  7. A Low Fidelity Simulation To Examine The Design Space For An Expendable Active Decoy

    Science.gov (United States)

    2017-12-01

    SIMULATIONS FOR ANALYSIS ................................11 C. BENEFITS OF MODELING AND SIMULATION IN THE SYSTEM ENGINEERING PROCESS ... simulation may be able to predict the performance parameters of the system of interest (SOI) accurately. The systems engineering process utilizes the low...fidelity simulation developed in this thesis during the early phases of the systems acquisition process : namely, the concept exploration, concept of

  8. Severe Trauma Stress Inoculation Training for Combat Medics using High Fidelity Simulation

    Science.gov (United States)

    2013-12-01

    expressions; and improved sensors and communication systems for current medical training simulators. He has prior experience in software development for DoD...the "look and feel" of such injuries by providing the highly realistic visual, auditory, and haptic (touch) stimuli necessary to elicit stress...addressed during development included the following: • Microcontroller-based control system for monitoring sensors and automating the actions of the

  9. The effect of high-fidelity patient simulation on the critical thinking and clinical decision-making skills of new graduate nurses.

    Science.gov (United States)

    Maneval, Rhonda; Fowler, Kimberly A; Kays, John A; Boyd, Tiffany M; Shuey, Jennifer; Harne-Britner, Sarah; Mastrine, Cynthia

    2012-03-01

    This study was conducted to determine whether the addition of high-fidelity patient simulation to new nurse orientation enhanced critical thinking and clinical decision-making skills. A pretest-posttest design was used to assess critical thinking and clinical decision-making skills in two groups of graduate nurses. Compared with the control group, the high-fidelity patient simulation group did not show significant improvement in mean critical thinking or clinical decision-making scores. When mean scores were analyzed, both groups showed an increase in critical thinking scores from pretest to posttest, with the high-fidelity patient simulation group showing greater gains in overall scores. However, neither group showed a statistically significant increase in mean test scores. The effect of high-fidelity patient simulation on critical thinking and clinical decision-making skills remains unclear. Copyright 2012, SLACK Incorporated.

  10. Developing High-Fidelity Health Care Simulation Scenarios: A Guide for Educators and Professionals

    Science.gov (United States)

    Alinier, Guillaume

    2011-01-01

    The development of appropriate scenarios is critical in high-fidelity simulation training. They need to be developed to address specific learning objectives, while not preventing other learning points from emerging. Buying a patient simulator, finding a volunteer to act as the patient, or even obtaining ready-made scenarios from another simulation…

  11. Barriers and enablers to the use of high-fidelity patient simulation manikins in nurse education: an integrative review.

    Science.gov (United States)

    Al-Ghareeb, Amal Z; Cooper, Simon J

    2016-01-01

    This integrative review identified, critically appraised and synthesised the existing evidence on the barriers and enablers to using high-fidelity human patient simulator manikins (HPSMs) in undergraduate nursing education. In nursing education, specifically at the undergraduate level, a range of low to high-fidelity simulations have been used as teaching aids. However, nursing educators encounter challenges when introducing new teaching methods or technology, despite the prevalence of high-fidelity HPSMs in nursing education. An integrative review adapted a systematic approach. Medline, CINAHL plus, ERIC, PsychINFO, EMBASE, SCOPUS, Science Direct, Cochrane database, Joanna Brigge Institute, ProQuest, California Simulation Alliance, Simulation Innovative Recourses Center and the search engine Google Scholar were searched. Keywords were selected and specific inclusion/exclusion criteria were applied. The review included all research designs for papers published between 2000 and 2015 that identified the barriers and enablers to using high-fidelity HPSMs in undergraduate nursing education. Studies were appraised using the Critical Appraisal Skills Programme criteria. Thematic analysis was undertaken and emergent themes were extracted. Twenty-one studies were included in the review. These studies adopted quasi-experimental, prospective non-experimental and descriptive designs. Ten barriers were identified, including "lack of time," "fear of technology" and "workload issues." Seven enablers were identified, including "faculty training," "administrative support" and a "dedicated simulation coordinator." Barriers to simulation relate specifically to the complex technologies inherent in high-fidelity HPSMs approaches. Strategic approaches that support up-skilling and provide dedicated technological support may overcome these barriers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. HIGH-FIDELITY SIMULATION-DRIVEN MODEL DEVELOPMENT FOR COARSE-GRAINED COMPUTATIONAL FLUID DYNAMICS

    Energy Technology Data Exchange (ETDEWEB)

    Hanna, Botros N.; Dinh, Nam T.; Bolotnov, Igor A.

    2016-06-01

    Nuclear reactor safety analysis requires identifying various credible accident scenarios and determining their consequences. For a full-scale nuclear power plant system behavior, it is impossible to obtain sufficient experimental data for a broad range of risk-significant accident scenarios. In single-phase flow convective problems, Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) can provide us with high fidelity results when physical data are unavailable. However, these methods are computationally expensive and cannot be afforded for simulation of long transient scenarios in nuclear accidents despite extraordinary advances in high performance scientific computing over the past decades. The major issue is the inability to make the transient computation parallel, thus making number of time steps required in high-fidelity methods unaffordable for long transients. In this work, we propose to apply a high fidelity simulation-driven approach to model sub-grid scale (SGS) effect in Coarse Grained Computational Fluid Dynamics CG-CFD. This approach aims to develop a statistical surrogate model instead of the deterministic SGS model. We chose to start with a turbulent natural convection case with volumetric heating in a horizontal fluid layer with a rigid, insulated lower boundary and isothermal (cold) upper boundary. This scenario of unstable stratification is relevant to turbulent natural convection in a molten corium pool during a severe nuclear reactor accident, as well as in containment mixing and passive cooling. The presented approach demonstrates how to create a correction for the CG-CFD solution by modifying the energy balance equation. A global correction for the temperature equation proves to achieve a significant improvement to the prediction of steady state temperature distribution through the fluid layer.

  13. Developing a tool for observing group critical thinking skills in first-year medical students: a pilot study using physiology-based, high-fidelity patient simulations.

    Science.gov (United States)

    Nguyen, Khoa; Ben Khallouq, Bertha; Schuster, Amanda; Beevers, Christopher; Dil, Nyla; Kay, Denise; Kibble, Jonathan D; Harris, David M

    2017-12-01

    Most assessments of physiology in medical school use multiple choice tests that may not provide information about a student's critical thinking (CT) process. There are limited performance assessments, but high-fidelity patient simulations (HFPS) may be a feasible platform. The purpose of this pilot study was to determine whether a group's CT process could be observed over a series of HFPS. An instrument [Critical Thinking Skills Rating Instrument CTSRI)] was designed with the IDEAS framework. Fifteen groups of students participated in three HFPS that consisted of a basic knowledge quiz and introduction, HFPS session, and debriefing. HFPS were video recorded, and two raters reviewed and scored all HFPS encounters with the CTSRI independently. Interrater analysis suggested good reliability. There was a correlation between basic knowledge scores and three of the six observations on the CTSRI providing support for construct validity. The median CT ratings significantly increased for all observations between the groups' first and last simulation. However, there were still large percentages of video ratings that indicated students needed substantial prompting during the HFPS. The data from this pilot study suggest that it is feasible to observe CT skills in HFPS using the CTSRI. Based on the findings from this study, we strongly recommend that first-year medical students be competent in basic knowledge of the relevant physiology of the HFPS before participating, to minimize the risk of a poor learning experience. Copyright © 2017 the American Physiological Society.

  14. Multi-fidelity uncertainty quantification in large-scale predictive simulations of turbulent flow

    Science.gov (United States)

    Geraci, Gianluca; Jofre-Cruanyes, Lluis; Iaccarino, Gianluca

    2017-11-01

    The performance characterization of complex engineering systems often relies on accurate, but computationally intensive numerical simulations. It is also well recognized that in order to obtain a reliable numerical prediction the propagation of uncertainties needs to be included. Therefore, Uncertainty Quantification (UQ) plays a fundamental role in building confidence in predictive science. Despite the great improvement in recent years, even the more advanced UQ algorithms are still limited to fairly simplified applications and only moderate parameter dimensionality. Moreover, in the case of extremely large dimensionality, sampling methods, i.e. Monte Carlo (MC) based approaches, appear to be the only viable alternative. In this talk we describe and compare a family of approaches which aim to accelerate the convergence of standard MC simulations. These methods are based on hierarchies of generalized numerical resolutions (multi-level) or model fidelities (multi-fidelity), and attempt to leverage the correlation between Low- and High-Fidelity (HF) models to obtain a more accurate statistical estimator without introducing additional HF realizations. The performance of these methods are assessed on an irradiated particle laden turbulent flow (PSAAP II solar energy receiver). This investigation was funded by the United States Department of Energy's (DoE) National Nuclear Security Administration (NNSA) under the Predicitive Science Academic Alliance Program (PSAAP) II at Stanford University.

  15. A New Design for Airway Management Training with Mixed Reality and High Fidelity Modeling.

    Science.gov (United States)

    Shen, Yunhe; Hananel, David; Zhao, Zichen; Burke, Daniel; Ballas, Crist; Norfleet, Jack; Reihsen, Troy; Sweet, Robert

    2016-01-01

    Restoring airway function is a vital task in many medical scenarios. Although various simulation tools have been available for learning such skills, recent research indicated that fidelity in simulating airway management deserves further improvements. In this study, we designed and implemented a new prototype for practicing relevant tasks including laryngoscopy, intubation and cricothyrotomy. A large amount of anatomical details or landmarks were meticulously selected and reconstructed from medical scans, and 3D-printed or molded to the airway intervention model. This training model was augmented by virtually and physically presented interactive modules, which are interoperable with motion tracking and sensor data feedback. Implementation results showed that this design is a feasible approach to develop higher fidelity airway models that can be integrated with mixed reality interfaces.

  16. Time to unravel the conceptual confusion of authenticity and fidelity and their contribution to learning within simulation-based nurse education. A discussion paper.

    Science.gov (United States)

    Bland, Andrew J; Topping, Annie; Tobbell, Jane

    2014-07-01

    High-fidelity patient simulation is a method of education increasingly utilised by educators of nursing to provide authentic learning experiences. Fidelity and authenticity, however, are not conceptually equivalent. Whilst fidelity is important when striving to replicate a life experience such as clinical practice, authenticity can be produced with low fidelity. A challenge for educators of undergraduate nursing is to ensure authentic representation of the clinical situation which is a core component for potential success. What is less clear is the relationship between fidelity and authenticity in the context of simulation based learning. Authenticity does not automatically follow fidelity and as a result, educators of nursing cannot assume that embracing the latest technology-based educational tools will in isolation provide a learning environment perceived authentic by the learner. As nursing education programmes increasingly adopt simulators that offer the possibility of representing authentic real world situations, there is an urgency to better articulate and understand the terms fidelity and authenticity. Without such understanding there is a real danger that simulation as a teaching and learning resource in nurse education will never reach its potential and be misunderstood, creating a potential barrier to learning. This paper examines current literature to promote discussion within nurse education, concluding that authenticity in the context of simulation-based learning is complex, relying on far more than engineered fidelity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A high fidelity model and code generator for the simulation of BOP systems

    International Nuclear Information System (INIS)

    Galen, S.; Vinay, M.

    1993-01-01

    TOPMERET represents a significant advance in the modelling fidelity of Balance of Plant systems (BOP). It is extremely flexible and can accommodate a variety of systems, including main steam, feedwater, turbine, condenser, offgas, large volumes, such as the containment, and water systems such as service water. It handles both normal and abnormal operating scenarios, including pipe break accidents. It was tested successfully on various simulators, and meets the fidelity required of BOP system models so as to successfully integrate with the high level of control automation of European designs. (Z.S.) 1 ref

  18. Hybrid High-Fidelity Modeling of Radar Scenarios Using Atemporal, Discrete-Event, and Time-Step Simulation

    Science.gov (United States)

    2016-12-01

    10 Figure 1.8 High-efficiency and high-fidelity radar system simulation flowchart . 15 Figure 1.9...Methodology roadmaps: experimental-design flowchart showing hybrid sensor models integrated from three simulation categories, followed by overall...simulation display and output produced by Java Simkit program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 4.5 Hybrid

  19. Evaluation of simulation motion fidelity criteria in the vertical and directional axes

    Science.gov (United States)

    Schroeder, Jeffery A.

    1993-01-01

    An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.

  20. Final year medical students' views on simulation-based teaching: a comparison with the Best Evidence Medical Education Systematic Review.

    Science.gov (United States)

    Paskins, Zoë; Peile, Ed

    2010-01-01

    Simulation is being increasingly used in medical education. The aim of this study was to explore in more depth the features of simulation-based teaching that undergraduate medical students value using the Best Evidence Medical Education (BEME) Systematic Review features that lead to effective learning as a framework. Thematic analysis of four semi-structured focus groups with final year medical students who had been taught acute care skills using a medium-fidelity whole-body simulator manikin (SimMan). Twelve key themes were identified, namely, feedback, integration into curriculum, learning style, learning environment, realism, teamwork, communication skills, confidence/increased self-efficacy, anxiety, performance, perceptions of foundation year 1 (FY1) and SimMan as a resource. Each theme is described with supporting quotes. Six of the ten features listed in the BEME review appeared to be of particular value to the medical students. This study provides a richer understanding of these features. In addition, new insights into the effect of simulation on confidence, anxiety and self-efficacy are discussed which may be affected by the 'performance' nature of simulation role-play. Students also contribute critical thought about the use of SimMan as a resource and provide novel ideas for reducing 'downtime'.

  1. Impact of High-Fidelity Simulation and Pharmacist-Specific Didactic Lectures in Addition to ACLS Provider Certification on Pharmacy Resident ACLS Performance.

    Science.gov (United States)

    Bartel, Billie J

    2014-08-01

    This pilot study explored the use of multidisciplinary high-fidelity simulation and additional pharmacist-focused training methods in training postgraduate year 1 (PGY1) pharmacy residents to provide Advanced Cardiovascular Life Support (ACLS) care. Pharmacy resident confidence and comfort level were assessed after completing these training requirements. The ACLS training requirements for pharmacy residents were revised to include didactic instruction on ACLS pharmacology and rhythm recognition and participation in multidisciplinary high-fidelity simulation ACLS experiences in addition to ACLS provider certification. Surveys were administered to participating residents to assess the impact of this additional education on resident confidence and comfort level in cardiopulmonary arrest situations. The new ACLS didactic and simulation training requirements resulted in increased resident confidence and comfort level in all assessed functions. Residents felt more confident in all areas except providing recommendations for dosing and administration of medications and rhythm recognition after completing the simulation scenarios than with ACLS certification training and the didactic components alone. All residents felt the addition of lectures and simulation experiences better prepared them to function as a pharmacist in the ACLS team. Additional ACLS training requirements for pharmacy residents increased overall awareness of pharmacist roles and responsibilities and greatly improved resident confidence and comfort level in performing most essential pharmacist functions during ACLS situations. © The Author(s) 2013.

  2. Improving medical student toxicology knowledge and self-confidence using mannequin simulation.

    Science.gov (United States)

    Halm, Brunhild M; Lee, Meta T; Franke, Adrian A

    2010-01-01

    Learning medicine without placing patients at increased risk of complications is of utmost importance in the medical profession. High-fidelity patient simulators can potentially achieve this and are therefore increasingly used in the training of medical students. Preclinical medical students have minimal exposure to clinical rotations and commonly feel anxious and apprehensive when starting their clinical years. The objective of this pilot study was to determine if toxicology knowledge and confidence of preclinical second-year medical students could be augmented with simulation training. We designed and implemented a simulation exercise for second-year medical students to enhance learning of Basic Life Support, toxidromes, and management of a semiconscious overdose victim. Groups of 5-6 students were tasked to identify abnormal findings, order tests, and initiate treatment on a mannequin. Faculty observers provided video-assisted feedback immediately afterwards. On-line pre- and posttests were completed in the simulation lab before and after the exercise. This simulation exercise, completed by 52 students, increased test scores on average from 60% to 71% compared to a pre-test. Among the topics tested, students scored worst in identifying normal/abnormal vital signs. Mean confidence increased from 2.0 to 2.6 using a 5-point Likert scale (1-very low to 5-very high). This study suggests that simulation exercises for second-year medical students may be a valuable tool to increase knowledge and student self-confidence at a key transition period prior to beginning clerkship experiences. Further research is needed to prove long-term educational benefits of simulation interventions in the preclinical setting.

  3. Are Simulation Stethoscopes a Useful Adjunct for Emergency Residents' Training on High-fidelity Mannequins?

    Science.gov (United States)

    Warrington, Steven J; Beeson, Michael S; Fire, Frank L

    2013-05-01

    Emergency medicine residents use simulation training for many reasons, such as gaining experience with critically ill patients and becoming familiar with disease processes. Residents frequently criticize simulation training using current high-fidelity mannequins due to the poor quality of physical exam findings present, such as auscultatory findings, as it may lead them down an alternate diagnostic or therapeutic pathway. Recently wireless remote programmed stethoscopes (simulation stethoscopes) have been developed that allow wireless transmission of any sound to a stethoscope receiver, which improves the fidelity of a physical examination and the simulation case. Following institutional review committee approval, 14 PGY1-3 emergency medicine residents were assessed during 2 simulation-based cases using pre-defined scoring anchors on multiple actions, such as communication skills and treatment decisions (Appendix 1). Each case involved a patient presenting with dyspnea requiring management based off physical examination findings. One case was a patient with exacerbation of heart failure, while the other was a patient with a tension pneumothorax. Each resident was randomized into a case associated with the simulation stethoscope. Following the cases residents were asked to fill out an evaluation questionnaire. Residents perceived the most realistic physical exam findings on those associated with the case using the simulation stethoscope (13/14, 93%). Residents also preferred the simulation stethoscope as an adjunct to the case (13/14, 93%), and they rated the simulation stethoscope case to have significantly more realistic auscultatory findings (4.4/5 vs. 3.0/5 difference of means 1.4, p=0.0007). Average scores of residents were significantly better in the simulation stethoscope-associated case (2.5/3 vs. 2.3/3 difference of means 0.2, p=0.04). There was no considerable difference in the total time taken per case. A simulation stethoscope may be a useful adjunct to

  4. A comparison of color fidelity metrics for light sources using simulation of color samples under lighting conditions

    Science.gov (United States)

    Kwon, Hyeokjun; Kang, Yoojin; Jang, Junwoo

    2017-09-01

    Color fidelity has been used as one of indices to evaluate the performance of light sources. Since the Color Rendering Index (CRI) was proposed at CIE, many color fidelity metrics have been proposed to increase the accuracy of the metric. This paper focuses on a comparison of the color fidelity metrics in an aspect of accuracy with human visual assessments. To visually evaluate the color fidelity of light sources, we made a simulator that reproduces the color samples under lighting conditions. In this paper, eighteen color samples of the Macbeth color checker under test light sources and reference illuminant for each of them are simulated and displayed on a well-characterized monitor. With only a spectrum set of the test light source and reference illuminant, color samples under any lighting condition can be reproduced. In this paper, the spectrums of the two LED and two OLED light sources that have similar values of CRI are used for the visual assessment. In addition, the results of the visual assessment are compared with the two color fidelity metrics that include CRI and IES TM-30-15 (Rf), proposed by Illuminating Engineering Society (IES) in 2015. Experimental results indicate that Rf outperforms CRI in terms of the correlation with visual assessment.

  5. A large-scale mass casualty simulation to develop the non-technical skills medical students require for collaborative teamwork.

    Science.gov (United States)

    Jorm, Christine; Roberts, Chris; Lim, Renee; Roper, Josephine; Skinner, Clare; Robertson, Jeremy; Gentilcore, Stacey; Osomanski, Adam

    2016-03-08

    There is little research on large-scale complex health care simulations designed to facilitate student learning of non-technical skills in a team-working environment. We evaluated the acceptability and effectiveness of a novel natural disaster simulation that enabled medical students to demonstrate their achievement of the non-technical skills of collaboration, negotiation and communication. In a mixed methods approach, survey data were available from 117 students and a thematic analysis undertaken of both student qualitative comments and tutor observer participation data. Ninety three per cent of students found the activity engaging for their learning. Three themes emerged from the qualitative data: the impact of fidelity on student learning, reflexivity on the importance of non-technical skills in clinical care, and opportunities for collaborative teamwork. Physical fidelity was sufficient for good levels of student engagement, as was sociological fidelity. We demonstrated the effectiveness of the simulation in allowing students to reflect upon and evidence their acquisition of skills in collaboration, negotiation and communication, as well as situational awareness and attending to their emotions. Students readily identified emerging learning opportunities though critical reflection. The scenarios challenged students to work together collaboratively to solve clinical problems, using a range of resources including interacting with clinical experts. A large class teaching activity, framed as a simulation of a natural disaster is an acceptable and effective activity for medical students to develop the non-technical skills of collaboration, negotiation and communication, which are essential to team working. The design could be of value in medical schools in disaster prone areas, including within low resource countries, and as a feasible intervention for learning the non-technical skills that are needed for patient safety.

  6. Debriefing after High-Fidelity Simulation and Knowledge Retention: A Quasi-Experimental Study

    Science.gov (United States)

    Olson, Susan L.

    2013-01-01

    High-fidelity simulation (HFS) use in nursing education has been a frequent research topic in recent years. Previous research included studies on the use of HFS with nursing students, focusing on their feelings of self-confidence and anxiety. However, research focused specifically on the debriefing portion of HFS was limited. This quantitative,…

  7. Advancing interprofessional education through the use of high fidelity human patient simulators

    Directory of Open Access Journals (Sweden)

    Kane-Gill SL

    2013-06-01

    Full Text Available Background: Modern medical care increasingly requires coordinated teamwork and communication between healthcare professionals of different disciplines. Unfortunately, healthcare professional students are rarely afforded the opportunity to learn effective methods of interprofessional (IP communication and teamwork strategies during their education. The question of how to best incorporate IP interactions in the curricula of the schools of health professions remains unanswered.Objective: We aim to solve the lack of IP education in the pharmacy curricula through the use of high fidelity simulation (HFS to allow teams of medical, pharmacy, nursing, physician assistant, and social work students to work together in a controlled environment to solve cases of complex medical and social issues.Methods: Once weekly for a 4-week time period, students worked together to complete complex simulation scenarios in small IP teams consisting of pharmacy, medical, nursing, social work, and physician assistant students. Student perception of the use of HFS was evaluated by a survey given at the conclusion of the HFS sessions. Team communication was evaluated through the use of Communication and Teamwork Skills (CATS Assessment by 2 independent evaluators external to the project.Results: The CATS scores improved from the HFS sessions 1 to 2 (p = 0.01, 2 to 3 (p = 0.035, and overall from 1 to 4 (p = 0.001. The inter-rater reliability between evaluators was high (0.85, 95% CI 0.71, 0.99. Students perceived the HFS improved: their ability to communicate with other professionals (median =4; confidence in patient care in an IP team (median=4. It also stimulated student interest in IP work (median=4.5, and was an efficient use of student time (median=4.5Conclusion: The use of HFS improved student teamwork and communication and was an accepted teaching modality. This method of exposing students of the health sciences to IP care should be incorporated throughout the

  8. Teaching Palatoplasty Using a High-Fidelity Cleft Palate Simulator.

    Science.gov (United States)

    Cheng, Homan; Podolsky, Dale J; Fisher, David M; Wong, Karen W; Lorenz, H Peter; Khosla, Rohit K; Drake, James M; Forrest, Christopher R

    2018-01-01

    Cleft palate repair is a challenging procedure for cleft surgeons to teach. A novel high-fidelity cleft palate simulator has been described for surgeon training. This study evaluates the simulator's effect on surgeon procedural confidence and palatoplasty knowledge among learners. Plastic surgery trainees attended a palatoplasty workshop consisting of a didactic session on cleft palate anatomy and repair followed by a simulation session. Participants completed a procedural confidence questionnaire and palatoplasty knowledge test immediately before and after the workshop. All participants reported significantly higher procedural confidence following the workshop (p cleft palate surgery experience had higher procedural confidence before (p cleft palate experience did not have higher mean baseline test scores than those with no experience (30 percent versus 28 percent; p > 0.05), but did have significantly higher scores after the workshop (61 percent versus 35 percent; p cleft palate simulator as a training tool to teach palatoplasty. Improved procedural confidence and knowledge were observed after a single session, with benefits seen among trainees both with and without previous cleft experience.

  9. Advanced High and Low Fidelity HPC Simulations of FCS Concept Designs for Dynamic Systems

    National Research Council Canada - National Science Library

    Sandhu, S. S; Kanapady, R; Tamma, K. K

    2004-01-01

    ...) resources of many Army initiatives. In this paper we present a new and advanced HPC based rigid and flexible modeling and simulation technology capable of adaptive high/low fidelity modeling that is useful in the initial design concept...

  10. Are Simulation Stethoscopes a Useful Adjunct for Emergency Residents' Training on High-Fidelity Mannequins?

    Directory of Open Access Journals (Sweden)

    Steven J Warrington

    2013-05-01

    Full Text Available Introduction: Emergency medicine residents use simulation training for many reasons, such as gaining experience with critically ill patients and becoming familiar with disease processes. Residents frequently criticize simulation training using current high-fidelity mannequins due to the poor quality of physical exam findings present, such as auscultatory findings, as it may lead them down an alternate diagnostic or therapeutic pathway. Recently wireless remote programmed stethoscopes (simulation stethoscopes have been developed that allow wireless transmission of any sound to a stethoscope receiver, which improves the fidelity of a physical examination and the simulation case. Methods: Following institutional review committee approval, 14 PGY1-3 emergency medicine residents were assessed during 2 simulation-based cases using pre-defined scoring anchors on multiple actions, such as communication skills and treatment decisions (Appendix 1. Each case involved a patient presenting with dyspnea requiring management based off physical examination findings. One case was a patient with exacerbation of heart failure, while the other was a patient with a tension pneumothorax. Each resident was randomized into a case associated with the simulation stethoscope. Following the cases residents were asked to fill out an evaluation questionnaire. Results: Residents perceived the most realistic physical exam findings on those associated with the case using the simulation stethoscope (13/14, 93%. Residents also preferred the simulation stethoscope as an adjunct to the case (13/14, 93%, and they rated the simulation stethoscope case to have significantly more realistic auscultatory findings (4.4/5 vs. 3.0/5 difference of means 1.4, P = 0.0007. Average scores of residents were significantly better in the simulation stethoscope-associated case (2.5/3 vs. 2.3/3 difference of means 0.2, P = 0.04. There was no considerable difference in the total time taken per case

  11. Status report on high fidelity reactor simulation

    International Nuclear Information System (INIS)

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere, M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-01-01

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool

  12. High-fidelity simulation among bachelor students in simulation groups and use of different roles.

    Science.gov (United States)

    Thidemann, Inger-Johanne; Söderhamn, Olle

    2013-12-01

    Cost limitations might challenge the use of high-fidelity simulation as a teaching-learning method. This article presents the results of a Norwegian project including two simulation studies in which simulation teaching and learning were studied among students in the second year of a three-year bachelor nursing programme. The students were organised into small simulation groups with different roles; nurse, physician, family member and observer. Based on experiences in different roles, the students evaluated the simulation design characteristics and educational practices used in the simulation. In addition, three simulation outcomes were measured; knowledge (learning), Student Satisfaction and Self-confidence in Learning. The simulation was evaluated to be a valuable teaching-learning method to develop professional understanding and insight independent of roles. Overall, the students rated the Student Satisfaction and Self-confidence in Learning as high. Knowledge about the specific patient focus increased after the simulation activity. Students can develop practical, communication and collaboration skills, through experiencing the nurse's role. Assuming the observer role, students have the potential for vicarious learning, which could increase the learning value. Both methods of learning (practical experience or vicarious learning) may bridge the gap between theory and practice and contribute to the development of skills in reflective and critical thinking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Evaluating Outcomes of High Fidelity Simulation Curriculum in a Community College Nursing Program

    Science.gov (United States)

    Denlea, Gregory Richard

    2017-01-01

    This study took place at a Wake Technical Community College, a multi-campus institution in Raleigh, North Carolina. An evaluation of the return on investment in high fidelity simulation used by an associate degree of nursing program was conducted with valid and reliable instruments. The study demonstrated that comparable student outcomes are…

  14. A Novel Approach to Medical Student Peer-assisted Learning Through Case-based Simulations.

    Science.gov (United States)

    Jauregui, Joshua; Bright, Steven; Strote, Jared; Shandro, Jamie

    2018-01-01

    Peer-assisted learning (PAL) is the development of new knowledge and skills through active learning support from peers. Benefits of PAL include introduction of teaching skills for students, creation of a safe learning environment, and efficient use of faculty time. We present a novel approach to PAL in an emergency medicine (EM) clerkship curriculum using an inexpensive, tablet-based app for students to cooperatively present and perform low-fidelity, case-based simulations that promotes accountability for student learning, fosters teaching skills, and economizes faculty presence. We developed five clinical cases in the style of EM oral boards. Fourth-year medical students were each assigned a unique case one week in advance. Students also received an instructional document and a video example detailing how to lead a case. During the 90-minute session, students were placed in small groups of 3-5 students and rotated between facilitating their assigned cases and participating as a team for the cases presented by their fellow students. Cases were supplemented with a half-mannequin that can be intubated, airway supplies, and a tablet-based app (SimMon, $22.99) to remotely display and update vital signs. One faculty member rotated among groups to provide additional assistance and clarification. Three EM faculty members iteratively developed a survey, based on the literature and pilot tested it with fourth-year medical students, to evaluate the course. 135 medical students completed the course and course evaluation survey. Learner satisfaction was high with an overall score of 4.6 on a 5-point Likert scale. In written comments, students reported that small groups with minimal faculty involvement provided a safe learning environment and a unique opportunity to lead a group of peers. They felt that PAL was more effective than traditional simulations for learning. Faculty reported that students remained engaged and required minimal oversight. Unlike other simulations, our

  15. High fidelity simulation based team training in urology: a preliminary interdisciplinary study of technical and nontechnical skills in laparoscopic complications management.

    Science.gov (United States)

    Lee, Jason Y; Mucksavage, Phillip; Canales, Cecilia; McDougall, Elspeth M; Lin, Sharon

    2012-04-01

    Simulation based team training provides an opportunity to develop interdisciplinary communication skills and address potential medical errors in a high fidelity, low stakes environment. We evaluated the implementation of a novel simulation based team training scenario and assessed the technical and nontechnical performance of urology and anesthesiology residents. Urology residents were randomly paired with anesthesiology residents to participate in a simulation based team training scenario involving the management of 2 scripted critical events during laparoscopic radical nephrectomy, including the vasovagal response to pneumoperitoneum and renal vein injury during hilar dissection. A novel kidney surgical model and a high fidelity mannequin simulator were used for the simulation. A debriefing session followed each simulation based team training scenario. Assessments of technical and nontechnical performance were made using task specific checklists and global rating scales. A total of 16 residents participated, of whom 94% rated the simulation based team training scenario as useful for communication skill training. Also, 88% of urology residents believed that the kidney surgical model was useful for technical skill training. Urology resident training level correlated with technical performance (p=0.004) and blood loss during renal vein injury management (p=0.022) but not with nontechnical performance. Anesthesia resident training level correlated with nontechnical performance (p=0.036). Urology residents consistently rated themselves higher on nontechnical performance than did faculty (p=0.033). Anesthesia residents did not differ in the self-assessment of nontechnical performance compared to faculty assessments. Residents rated the simulation based team training scenario as useful for interdisciplinary communication skill training. Urology resident training level correlated with technical performance but not with nontechnical performance. Urology residents

  16. Novel high-fidelity realistic explosion damage simulation for urban environments

    Science.gov (United States)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  17. A major trauma course based on posters, audio-guides and simulation improves the management skills of medical students: Evaluation via medical simulator.

    Science.gov (United States)

    Cuisinier, Adrien; Schilte, Clotilde; Declety, Philippe; Picard, Julien; Berger, Karine; Bouzat, Pierre; Falcon, Dominique; Bosson, Jean Luc; Payen, Jean-François; Albaladejo, Pierre

    2015-12-01

    Medical competence requires the acquisition of theoretical knowledge and technical skills. Severe trauma management teaching is poorly developed during internship. Nevertheless, the basics of major trauma management should be acquired by every future physician. For this reason, the major trauma course (MTC), an educational course in major traumatology, has been developed for medical students. Our objective was to evaluate, via a high fidelity medical simulator, the impact of the MTC on medical student skills concerning major trauma management. The MTC contains 3 teaching modalities: posters with associated audio-guides, a procedural workshop on airway management and a teaching session using a medical simulator. Skills evaluation was performed 1 month before (step 1) and 1 month after (step 3) the MTC (step 2). Nineteen students were individually evaluated on 2 different major trauma scenarios. The primary endpoint was the difference between steps 1 and 3, in a combined score evaluating: admission, equipment, monitoring and safety (skill set 1) and systematic clinical examinations (skill set 2). After the course, the combined primary outcome score improved by 47% (P<0.01). Scenario choice or the order of use had no significant influence on the skill set evaluations. This study shows improvement in student skills for major trauma management, which we attribute mainly to the major trauma course developed in our institution. Copyright © 2015 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier Masson SAS. All rights reserved.

  18. High-fidelity simulation in Neonatology and the Italian experience of Nina

    Directory of Open Access Journals (Sweden)

    Armando Cuttano

    2012-10-01

    Full Text Available The modern methodology of simulation was born in the aeronautical field. In medicine, anesthetists showed great attention for technological advances and simulation, closely followed by surgeons with minimally invasive surgery. In Neonatology training in simulation is actually useful in order to face unexpected dramatic events, to minimize clinical risk preventing errors and to optimize team work. Critical issues in simulation are: teachers-learners relationship, focus on technical and non-technical skills, training coordination, adequate scenarios, effective debriefing. Therefore, the quality of a simulation training center is multi-factorial and is not only related to the mannequin equipment. High-fidelity simulation is the most effective method in education. In Italy simulation for education in Medicine has been used for a few years only. In Pisa we founded Nina (that is the acronymous for the Italian name of the Center, CeNtro di FormazIone e SimulazioNe NeonAtale, the first neonatal simulation center dedicated but integrated within a Hospital Unit in Italy. This paper describes how we manage education in Nina Center, in order to offer a model for other similar experiences.

  19. A critical review of simulation-based medical education research: 2003-2009.

    Science.gov (United States)

    McGaghie, William C; Issenberg, S Barry; Petrusa, Emil R; Scalese, Ross J

    2010-01-01

    This article reviews and critically evaluates historical and contemporary research on simulation-based medical education (SBME). It also presents and discusses 12 features and best practices of SBME that teachers should know in order to use medical simulation technology to maximum educational benefit. This qualitative synthesis of SBME research and scholarship was carried out in two stages. Firstly, we summarised the results of three SBME research reviews covering the years 1969-2003. Secondly, we performed a selective, critical review of SBME research and scholarship published during 2003-2009. The historical and contemporary research synthesis is reported to inform the medical education community about 12 features and best practices of SBME: (i) feedback; (ii) deliberate practice; (iii) curriculum integration; (iv) outcome measurement; (v) simulation fidelity; (vi) skill acquisition and maintenance; (vii) mastery learning; (viii) transfer to practice; (ix) team training; (x) high-stakes testing; (xi) instructor training, and (xii) educational and professional context. Each of these is discussed in the light of available evidence. The scientific quality of contemporary SBME research is much improved compared with the historical record. Development of and research into SBME have grown and matured over the past 40 years on substantive and methodological grounds. We believe the impact and educational utility of SBME are likely to increase in the future. More thematic programmes of research are needed. Simulation-based medical education is a complex service intervention that needs to be planned and practised with attention to organisational contexts.

  20. Acquiring skills in malignant hyperthermia crisis management: comparison of high-fidelity simulation versus computer-based case study

    Directory of Open Access Journals (Sweden)

    Vilma Mejía

    2018-05-01

    Full Text Available Introduction: The primary purpose of this study was to compare the effect of high fidelity simulation versus a computer-based case solving self-study, in skills acquisition about malignant hyperthermia on first year anesthesiology residents. Methods: After institutional ethical committee approval, 31 first year anesthesiology residents were enrolled in this prospective randomized single-blinded study. Participants were randomized to either a High Fidelity Simulation Scenario or a computer-based Case Study about malignant hyperthermia. After the intervention, all subjects’ performance in was assessed through a high fidelity simulation scenario using a previously validated assessment rubric. Additionally, knowledge tests and a satisfaction survey were applied. Finally, a semi-structured interview was done to assess self-perception of reasoning process and decision-making. Results: 28 first year residents finished successfully the study. Resident's management skill scores were globally higher in High Fidelity Simulation versus Case Study, however they were significant in 4 of the 8 performance rubric elements: recognize signs and symptoms (p = 0.025, prioritization of initial actions of management (p = 0.003, recognize complications (p = 0.025 and communication (p = 0.025. Average scores from pre- and post-test knowledge questionnaires improved from 74% to 85% in the High Fidelity Simulation group, and decreased from 78% to 75% in the Case Study group (p = 0.032. Regarding the qualitative analysis, there was no difference in factors influencing the student's process of reasoning and decision-making with both teaching strategies. Conclusion: Simulation-based training with a malignant hyperthermia high-fidelity scenario was superior to computer-based case study, improving knowledge and skills in malignant hyperthermia crisis management, with a very good satisfaction level in anesthesia residents. Resumo: Introdução: O objetivo prim

  1. High-Fidelity Contrast Reaction Simulation Training: Performance Comparison of Faculty, Fellows, and Residents.

    Science.gov (United States)

    Pfeifer, Kyle; Staib, Lawrence; Arango, Jennifer; Kirsch, John; Arici, Mel; Kappus, Liana; Pahade, Jay

    2016-01-01

    Reactions to contrast material are uncommon in diagnostic radiology, and vary in clinical presentation from urticaria to life-threatening anaphylaxis. Prior studies have demonstrated a high error rate in contrast reaction management, with smaller studies using simulation demonstrating variable data on effectiveness. We sought to assess the effectiveness of high-fidelity simulation in teaching contrast reaction management for residents, fellows, and attendings. A 20-question multiple-choice test assessing contrast reaction knowledge, with Likert-scale questions assessing subjective comfort levels of management of contrast reactions, was created. Three simulation scenarios that represented a moderate reaction, a severe reaction, and a contrast reaction mimic were completed in a one-hour period in a simulation laboratory. All participants completed a pretest and a posttest at one month. A six-month delayed posttest was given, but was optional for all participants. A total of 150 radiologists participated (residents = 52; fellows = 24; faculty = 74) in the pretest and posttest; and 105 participants completed the delayed posttest (residents = 31; fellows = 17; faculty = 57). A statistically significant increase was found in the one-month posttest (P < .00001) and the six-month posttest scores (P < .00001) and Likert scores (P < .001) assessing comfort level in managing all contrast reactions, compared with the pretest. Test scores and comfort level for moderate and severe reactions significantly decreased at six months, compared with the one-month posttest (P < .05). High-fidelity simulation is an effective learning tool, allowing practice of "high-acuity" situation management in a nonthreatening environment; the simulation training resulted in significant improvement in test scores, as well as an increase in subjective comfort in management of reactions, across all levels of training. A six-month refresher course is suggested, to maintain knowledge and comfort level in

  2. Organizational fidelity to a medication management evidence-based practice in the treatment of schizophrenia.

    Science.gov (United States)

    El-Mallakh, Peggy; Howard, Patricia B; Rayens, Mary Kay; Roque, Autumn P; Adkins, Sarah

    2013-11-01

    Organizational support is essential for successful implementation of evidence-based practice (EBP) in clinical settings. This 3-year study used a mixed qualitative and quantitative design to implement a medication management EBP in the treatment of schizophrenia in six community mental health clinics in a south-central state of the United States. Findings from organizational fidelity assessments indicate that support for EBP implementation was moderate. Organizational support was highest for prescriber access to relevant patient information at each medication visit, scheduling flexibility for patients' urgent problems, and availability of medication guidelines. Organizational support was lowest for medication availability and identification of treatment refractory patients. Findings suggest that leadership is essential to support successful implementation. Nurse educators can incorporate implementation research and leadership training into graduate nursing programs to facilitate successful EBP implementation in practice settings. Copyright 2013, SLACK Incorporated.

  3. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen

    2009-02-02

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  4. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Im, Hong G [University of Michigan; Trouve, Arnaud [University of Maryland; Rutland, Christopher J [University of Wisconsin; Chen, Jacqueline H [Sandia National Laboratories

    2012-08-13

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  5. High fidelity simulation effectiveness in nursing students' transfer of learning.

    Science.gov (United States)

    Kirkman, Tera R

    2013-07-13

    Members of nursing faculty are utilizing interactive teaching tools to improve nursing student's clinical judgment; one method that has been found to be potentially effective is high fidelity simulation (HFS). The purpose of this time series design study was to determine whether undergraduate nursing students were able to transfer knowledge and skills learned from classroom lecture and a HFS clinical to the traditional clinical setting. Students (n=42) were observed and rated on their ability to perform a respiratory assessment. The observations and ratings took place at the bedside, prior to a respiratory lecture, following the respiratory lecture, and following simulation clinical. The findings indicated that there was a significant difference (p=0.000) in transfer of learning demonstrated over time. Transfer of learning was demonstrated and the use of HFS was found to be an effective learning and teaching method. Implications of results are discussed.

  6. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    Science.gov (United States)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  7. Proof-of-principle of high-fidelity coupled CRUD deposition and cycle depletion simulation

    International Nuclear Information System (INIS)

    Walter, Daniel J.; Kendrick, Brian K.; Petrov, Victor; Manera, Annalisa; Collins, Benjamin; Downar, Thomas

    2015-01-01

    A multiphysics framework for the high-fidelity simulation of CRUD deposition is developed to better understand the coupled physics and their respective feedback mechanisms. This framework includes the primary physics of lattice depletion, computational fluid dynamics, and CRUD chemistry. The three physics are coupled together via the operator-splitting technique, where predictor–corrector and fixed-point iteration schemes are utilized to converge the nonlinear solution. High-fidelity simulations may provide a means to predict and assess potential operating issues, including CRUD induced power shift and CRUD induced localized corrosion, known as CIPS and CILC, respectively. As a proof-of-principle, a coupled 500-day cycle depletion simulation of a pressurized water reactor fuel pin cell was performed using the coupled code suite; a burnup of 31 MWd/kgHM was reached. The simulation recreated the classic striped CRUD pattern often seen on pulled fuel rods containing CRUD. It is concluded that the striping is caused by the flow swirl induced by spacer grid mixing vanes. Two anti-correlated effects contribute to the striping: (1) the flow swirl yields significant azimuthal temperature variations, which impact the locations where CRUD deposits, and (2) the flow swirl is correlated to increased shear stress along the cladding surface and subsequent erosion of the CRUD layer. The CIPS condition of the core is concluded to be primarily controlled by lithium tetraborate precipitation, referred to as boron hideout, which occurs in regions experiencing subcooled nucleate boiling as soluble boron and lithium species reach their solubility limit within the CRUD layer. Subsequently, a localized reduction in power occurs due to the high neutron absorption cross section of boron-10

  8. ROSE: A realtime object oriented software environment for high fidelity replica simulation

    International Nuclear Information System (INIS)

    Abramovitch, A.

    1994-01-01

    An object oriented software environment used for the production testing and documentation of real time models for high fidelity training simulators encompasses a wide variety of software constructs including code generators for various classes of physical systems, model executive control programs, a high resolution graphics editor, as well as databases and associated access routines used to store and control information transfer among the various software entities. CAE Electronics' newly developed ROSE allows for the generation and integrated test of thermalhydraulic, analog control, digital control and electrical system models. Based on an iconical/standard subroutine representation of standard plant components along with an admittance matrix solution governed by the topology of the system under consideration, the ROSE blends together network solution algorithms and standard component models, both previously time tested via manual implementation into a single integrated automated software environment. The methodology employed to construct the ROSE, along with a synopsis of the various CASE tools integrated together to form a complete graphics based system for high fidelity real time code generation and validation is described in the presentation. (1 fig.)

  9. Multi-fidelity stochastic collocation method for computation of statistical moments

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xueyu, E-mail: xueyu-zhu@uiowa.edu [Department of Mathematics, University of Iowa, Iowa City, IA 52242 (United States); Linebarger, Erin M., E-mail: aerinline@sci.utah.edu [Department of Mathematics, University of Utah, Salt Lake City, UT 84112 (United States); Xiu, Dongbin, E-mail: xiu.16@osu.edu [Department of Mathematics, The Ohio State University, Columbus, OH 43210 (United States)

    2017-07-15

    We present an efficient numerical algorithm to approximate the statistical moments of stochastic problems, in the presence of models with different fidelities. The method extends the multi-fidelity approximation method developed in . By combining the efficiency of low-fidelity models and the accuracy of high-fidelity models, our method exhibits fast convergence with a limited number of high-fidelity simulations. We establish an error bound of the method and present several numerical examples to demonstrate the efficiency and applicability of the multi-fidelity algorithm.

  10. Benefits of computer screen-based simulation in learning cardiac arrest procedures.

    Science.gov (United States)

    Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc

    2010-07-01

    What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to

  11. High fidelity case-based simulation debriefing: everything you need to know.

    Science.gov (United States)

    Hart, Danielle; McNeil, Mary Ann; Griswold-Theodorson, Sharon; Bhatia, Kriti; Joing, Scott

    2012-09-01

    In this 30-minute talk, the authors take an in-depth look at how to debrief high-fidelity case-based simulation sessions, including discussion on debriefing theory, goals, approaches, and structure, as well as ways to create a supportive and safe learning environment, resulting in successful small group learning and self-reflection. Emphasis is placed on the "debriefing with good judgment" approach. Video clips of sample debriefing attempts, highlighting the "dos and don'ts" of simulation debriefing, are included. The goal of this talk is to provide you with the necessary tools and information to develop a successful and effective debriefing approach. There is a bibliography and a quick reference guide in Data Supplements S1 and S2 (available as supporting information in the online version of this paper). © 2012 by the Society for Academic Emergency Medicine.

  12. Collective efficacy in a high-fidelity simulation of an airline operations center

    Science.gov (United States)

    Jinkerson, Shanna

    This study investigated the relationships between collective efficacy, teamwork, and team performance. Participants were placed into teams, where they worked together in a high-fidelity simulation of an airline operations center. Each individual was assigned a different role to represent different jobs within an airline (Flight Operations Coordinator, Crew Scheduling, Maintenance, Weather, Flight Scheduling, or Flight Planning.) Participants completed a total of three simulations with an After Action Review between each. Within this setting, both team performance and teamwork behaviors were shown to be positively related to expectations for subsequent performance (collective efficacy). Additionally, teamwork and collective efficacy were not shown to be concomitantly related to subsequent team performance. A chi-square test was used to evaluate existence of performance spirals, and they were not supported. The results of this study were likely impacted by lack of power, as well as a lack of consistency across the three simulations.

  13. Fidelity of Simulation for Pilot Training

    Science.gov (United States)

    1980-12-01

    indicators of joint angles. The combination of all the pro- prioceptive senses permits subjects to perceive body accelerations based on the biomechanical ...constraints III. Controllers A. Flight controls 1. Center stick, column, side stick, collective 2. Pedals (yaw control, brakes) 3. Thrust controllers 4...the most sensitive elements in terms of fidelity require- ments. The force-generating systems associated with the stick or column and pedals are

  14. Use of simulated data sets to evaluate the fidelity of Metagenomicprocessing methods

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Barry, Kerri; Shapiro, Harris; Goltsman, Eugene; McHardy, Alice C.; Rigoutsos, Isidore; Salamov, Asaf; Korzeniewski, Frank; Land, Miriam; Lapidus, Alla; Grigoriev, Igor; Richardson, Paul; Hugenholtz, Philip; Kyrpides, Nikos C.

    2006-12-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity--based (blast hit distribution) and two sequence composition--based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.

  15. Fidelity imaging for atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, Sayan, E-mail: ghos0087@umn.edu; Salapaka, Murti, E-mail: murtis@umn.edu [Nanodynamics Systems Laboratory, Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  16. Evaluating Multiple Levels of an Interaction Fidelity Continuum on Performance and Learning in Near-Field Training Simulations.

    Science.gov (United States)

    Bhargava, Ayush; Bertrand, Jeffrey W; Gramopadhye, Anand K; Madathil, Kapil C; Babu, Sabarish V

    2018-04-01

    With costs of head-mounted displays (HMDs) and tracking technology decreasing rapidly, various virtual reality applications are being widely adopted for education and training. Hardware advancements have enabled replication of real-world interactions in virtual environments to a large extent, paving the way for commercial grade applications that provide a safe and risk-free training environment at a fraction of the cost. But this also mandates the need to develop more intrinsic interaction techniques and to empirically evaluate them in a more comprehensive manner. Although there exists a body of previous research that examines the benefits of selected levels of interaction fidelity on performance, few studies have investigated the constituent components of fidelity in a Interaction Fidelity Continuum (IFC) with several system instances and their respective effects on performance and learning in the context of a real-world skills training application. Our work describes a large between-subjects investigation conducted over several years that utilizes bimanual interaction metaphors at six discrete levels of interaction fidelity to teach basic precision metrology concepts in a near-field spatial interaction task in VR. A combined analysis performed on the data compares and contrasts the six different conditions and their overall effects on performance and learning outcomes, eliciting patterns in the results between the discrete application points on the IFC. With respect to some performance variables, results indicate that simpler restrictive interaction metaphors and highest fidelity metaphors perform better than medium fidelity interaction metaphors. In light of these results, a set of general guidelines are created for developers of spatial interaction metaphors in immersive virtual environments for precise fine-motor skills training simulations.

  17. See one, do one, teach one: advanced technology in medical education.

    Science.gov (United States)

    Vozenilek, John; Huff, J Stephen; Reznek, Martin; Gordon, James A

    2004-11-01

    The concept of "learning by doing" has become less acceptable, particularly when invasive procedures and high-risk care are required. Restrictions on medical educators have prompted them to seek alternative methods to teach medical knowledge and gain procedural experience. Fortunately, the last decade has seen an explosion of the number of tools available to enhance medical education: web-based education, virtual reality, and high fidelity patient simulation. This paper presents some of the consensus statements in regard to these tools agreed upon by members of the Educational Technology Section of the 2004 AEM Consensus Conference for Informatics and Technology in Emergency Department Health Care, held in Orlando, Florida. Web-based teaching: 1) Every ED should have access to medical educational materials via the Internet, computer-based training, and other effective education methods for point-of-service information, continuing medical education, and training. 2) Real-time automated tools should be integrated into Emergency Department Information Systems [EDIS] for contemporaneous education. Virtual reality [VR]: 1) Emergency physicians and emergency medicine societies should become more involved in VR development and assessment. 2) Nationally accepted protocols for the proper assessment of VR applications should be adopted and large multi-center groups should be formed to perform these studies. High-fidelity simulation: Emergency medicine residency programs should consider the use of high-fidelity patient simulators to enhance the teaching and evaluation of core competencies among trainees. Across specialties, patient simulation, virtual reality, and the Web will soon enable medical students and residents to... see one, simulate many, do one competently, and teach everyone.

  18. Benefits of a Unified LaSRS++ Simulation for NAS-Wide and High-Fidelity Modeling

    Science.gov (United States)

    Glaab, Patricia; Madden, Michael

    2014-01-01

    The LaSRS++ high-fidelity vehicle simulation was extended in 2012 to support a NAS-wide simulation mode. Since the initial proof-of-concept, the LaSRS++ NAS-wide simulation is maturing into a research-ready tool. A primary benefit of this new capability is the consolidation of the two modeling paradigms under a single framework to save cost, facilitate iterative concept testing between the two tools, and to promote communication and model sharing between user communities at Langley. Specific benefits of each type of modeling are discussed along with the expected benefits of the unified framework. Current capability details of the LaSRS++ NAS-wide simulations are provided, including the visualization tool, live data interface, trajectory generators, terminal routing for arrivals and departures, maneuvering, re-routing, navigation, winds, and turbulence. The plan for future development is also described.

  19. Embedding High-Fidelity Simulation Into a Foundations of Nursing Course.

    Science.gov (United States)

    Talbot, Megan Sary

    2015-01-01

    Delay in recognizing the need for and initiating lifesaving measures is unacceptable in health care. It is never too early to teach novice nursing students to recognize and respond to early warning signs of patient deterioration. The rapid response system was developed to expedite recognition of and response to changes in a patient's condition. Use of high-fidelity simulation by beginning nursing students to practice recognizing and responding to patient deterioration is vital to both the welfare of patients and the edification of students. Recognizing and responding quickly to patients' early warning signs of deterioration can determine a patient's outcome. This article discusses the importance of instructing beginning nursing students in identifying and reacting appropriately to early signs of patient deterioration and in following the chain of command to activate the rapid response team.

  20. Developing and Testing a High-Fidelity Simulation Scenario for an Uncommon Life-Threatening Disease: Severe Malaria

    Directory of Open Access Journals (Sweden)

    Andrew Kestler

    2011-01-01

    Full Text Available Background. Severe malaria is prevalent globally, yet it is an uncommon disease posing a challenge to education in nonendemic countries. High-fidelity simulation (sim may be well suited to teaching its management. Objective. To develop and evaluate a teaching tool for severe malaria, using sim. Methods. A severe malaria sim scenario was developed based on 5 learning objectives. Sim sessions, conducted at an academic center, utilized METI ECS mannequin. After sim, participants received standardized debriefing and completed a test assessing learning and a survey assessing views on sim efficacy. Results. 29 participants included 3rd year medical students (65%, 3rd year EM residents (28%, and EM nurses (7%. Participants scored average 85% on questions related to learning objectives. 93% felt that sim was effective or very effective in teaching severe malaria, and 83% rated it most effective. All respondents felt that sim increased their knowledge on malaria. Conclusion. Sim is an effective tool for teaching severe malaria in and may be superior to other modalities.

  1. Assessment of synthetic image fidelity

    Science.gov (United States)

    Mitchell, Kevin D.; Moorhead, Ian R.; Gilmore, Marilyn A.; Watson, Graham H.; Thomson, Mitch; Yates, T.; Troscianko, Tomasz; Tolhurst, David J.

    2000-07-01

    Computer generated imagery is increasingly used for a wide variety of purposes ranging from computer games to flight simulators to camouflage and sensor assessment. The fidelity required for this imagery is dependent on the anticipated use - for example when used for camouflage design it must be physically correct spectrally and spatially. The rendering techniques used will also depend upon the waveband being simulated, spatial resolution of the sensor and the required frame rate. Rendering of natural outdoor scenes is particularly demanding, because of the statistical variation in materials and illumination, atmospheric effects and the complex geometric structures of objects such as trees. The accuracy of the simulated imagery has tended to be assessed subjectively in the past. First and second order statistics do not capture many of the essential characteristics of natural scenes. Direct pixel comparison would impose an unachievable demand on the synthetic imagery. For many applications, such as camouflage design, it is important that nay metrics used will work in both visible and infrared wavebands. We are investigating a variety of different methods of comparing real and synthetic imagery and comparing synthetic imagery rendered to different levels of fidelity. These techniques will include neural networks (ICA), higher order statistics and models of human contrast perception. This paper will present an overview of the analyses we have carried out and some initial results along with some preliminary conclusions regarding the fidelity of synthetic imagery.

  2. The Effect of High-Fidelity Cardiopulmonary Resuscitation (CPR) Simulation on Athletic Training Student Knowledge, Confidence, Emotions, and Experiences

    Science.gov (United States)

    Tivener, Kristin Ann; Gloe, Donna Sue

    2015-01-01

    Context: High-fidelity simulation is widely used in healthcare for the training and professional education of students though literature of its application to athletic training education remains sparse. Objective: This research attempts to address a wide-range of data. This includes athletic training student knowledge acquisition from…

  3. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Shapiro, Harris [U.S. Department of Energy, Joint Genome Institute; Goltsman, Eugene [U.S. Department of Energy, Joint Genome Institute; McHardy, Alice C. [IBM T. J. Watson Research Center; Rigoutsos, Isidore [IBM T. J. Watson Research Center; Salamov, Asaf [U.S. Department of Energy, Joint Genome Institute; Korzeniewski, Frank [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Grigoriev, Igor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute

    2007-01-01

    Metagenomics is a rapidly emerging field of research for studying microbial communities. To evaluate methods presently used to process metagenomic sequences, we constructed three simulated data sets of varying complexity by combining sequencing reads randomly selected from 113 isolate genomes. These data sets were designed to model real metagenomes in terms of complexity and phylogenetic composition. We assembled sampled reads using three commonly used genome assemblers (Phrap, Arachne and JAZZ), and predicted genes using two popular gene-finding pipelines (fgenesb and CRITICA/GLIMMER). The phylogenetic origins of the assembled contigs were predicted using one sequence similarity-based ( blast hit distribution) and two sequence composition-based (PhyloPythia, oligonucleotide frequencies) binning methods. We explored the effects of the simulated community structure and method combinations on the fidelity of each processing step by comparison to the corresponding isolate genomes. The simulated data sets are available online to facilitate standardized benchmarking of tools for metagenomic analysis.

  4. Virtual Reality Compared with Bench-Top Simulation in the Acquisition of Arthroscopic Skill: A Randomized Controlled Trial.

    Science.gov (United States)

    Banaszek, Daniel; You, Daniel; Chang, Justues; Pickell, Michael; Hesse, Daniel; Hopman, Wilma M; Borschneck, Daniel; Bardana, Davide

    2017-04-05

    Work-hour restrictions as set forth by the Accreditation Council for Graduate Medical Education (ACGME) and other governing bodies have forced training programs to seek out new learning tools to accelerate acquisition of both medical skills and knowledge. As a result, competency-based training has become an important part of residency training. The purpose of this study was to directly compare arthroscopic skill acquisition in both high-fidelity and low-fidelity simulator models and to assess skill transfer from either modality to a cadaveric specimen, simulating intraoperative conditions. Forty surgical novices (pre-clerkship-level medical students) voluntarily participated in this trial. Baseline demographic data, as well as data on arthroscopic knowledge and skill, were collected prior to training. Subjects were randomized to 5-week independent training sessions on a high-fidelity virtual reality arthroscopic simulator or on a bench-top arthroscopic setup, or to an untrained control group. Post-training, subjects were asked to perform a diagnostic arthroscopy on both simulators and in a simulated intraoperative environment on a cadaveric knee. A more difficult surprise task was also incorporated to evaluate skill transfer. Subjects were evaluated using the Global Rating Scale (GRS), the 14-point arthroscopic checklist, and a timer to determine procedural efficiency (time per task). Secondary outcomes focused on objective measures of virtual reality simulator motion analysis. Trainees on both simulators demonstrated a significant improvement (p virtual reality simulation group consistently outperformed the bench-top model group in the diagnostic arthroscopy crossover tests and in the simulated cadaveric setup. Furthermore, the virtual reality group demonstrated superior skill transfer in the surprise skill transfer task. Both high-fidelity and low-fidelity simulation trainings were effective in arthroscopic skill acquisition. High-fidelity virtual reality

  5. High-fidelity simulations for clean and efficient combustion of alternative fuels

    Energy Technology Data Exchange (ETDEWEB)

    Oefelein, J C; Chen, J H [Reacting Flow Research Department, Sandia National Laboratories, Livermore, CA 94550 (United States); Sankaran, R, E-mail: oefelei@sandia.go [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2009-07-01

    There is an urgent and growing demand for high-fidelity simulations that capture complex turbulence-chemistry interactions in propulsion and power systems, and in particular, that capture and discriminate the effects of fuel variability. This project addresses this demand using the Large Eddy Simulation (LES) technique (led by Oefelein) and the Direct Numerical Simulation (DNS) technique (led by Chen). In particular, we are conducting research under the INCITE program that is tightly coupled with funded projects established under the DOE Basic Energy Sciences and Energy Efficiency and Renewable Energy programs that will provide the foundational science required to develop a predictive modeling capability for design of advanced engines for transportation. Application of LES provides the formal ability to treat the full range of multidimensional time and length scales that exist in turbulent reacting flows in a computationally feasible manner and thus provides a way to simulate reacting flow phenomena in complex internal-combustion engine geometries at device relevant conditions. Application of DNS provides a way to study fundamental issues related to small-scale combustion processes in canonical configurations to understand dynamics that occur over a range of reactive-diffusive scales. Here we describe the challenges and present representative examples of the types of simulations each respective tool has been used for as part of the INCITE program. We focus on recent experiences on the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS) Cray-XT Platform (i.e., Jaguar).

  6. Using "The Burns Suite" as a Novel High Fidelity Simulation Tool for Interprofessional and Teamwork Training.

    Science.gov (United States)

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2016-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. The authors recently published the concept of "The Burns Suite" (TBS) as a novel tool to advance the delivery of burns education for residents/clinicians. Effectively, TBS represents a low-cost, high-fidelity, portable, immersive simulation environment. Recently, simulation-based team training (SBTT) has been advocated as a means to improve interprofessional practice. The authors aimed to explore the role of TBS in SBTT. A realistic pediatric burn resuscitation scenario was designed based on "advanced trauma and life support" and "emergency management of severe burns" principles, refined utilizing expert opinion through cognitive task analysis. The focus of this analysis was on nontechnical and interpersonal skills of clinicians and nurses within the scenario, mirroring what happens in real life. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's alpha was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twenty-two participants completed TBS resuscitation scenario. Mean face and content validity ratings were high (4.4 and 4.7 respectively; range 4-5). The internal consistency of questions was high. Qualitative data analysis revealed two new themes. Participants reported that the experience felt particularly authentic because the simulation had high psychological and social fidelity, and there was a demand for such a facility to be made available to improve nontechnical skills and interprofessional relations. TBS provides a realistic, novel tool for SBTT, addressing both nontechnical and interprofessional team skills. Recreating clinical challenge is crucial to optimize SBTT. With a better understanding of the theories underpinning simulation and interprofessional education, future simulation scenarios can be designed to provide

  7. Perspective: fostering biomedical literacy among America's youth: how medical simulation reshapes the strategy.

    Science.gov (United States)

    Gordon, James A; Oriol, Nancy E

    2008-05-01

    Medicine is a uniquely powerful platform for teaching science and ethics, technology and humanity, life and death. Yet, society has historically limited medical education to a select few, and only after an advanced course of premedical studies. In an era when biomedical literacy is increasingly viewed as a national imperative, the authors hypothesized that advanced instruction in medicine could be intellectually transformative among a broad range of young people. Using high-fidelity patient simulators, a group of college and high school students was immersed in a weeklong course designed to replicate the practice of modern medicine. On the basis of the students' reported experiences, the authors feel that patient simulation can foster forceful interest in the life sciences at an early age. Such efforts could catalyze a significant expansion of interest in biomedical science among students nationwide.

  8. A randomized trial comparing didactics, demonstration, and simulation for teaching teamwork to medical residents.

    Science.gov (United States)

    Semler, Matthew W; Keriwala, Raj D; Clune, Jennifer K; Rice, Todd W; Pugh, Meredith E; Wheeler, Arthur P; Miller, Alison N; Banerjee, Arna; Terhune, Kyla; Bastarache, Julie A

    2015-04-01

    Effective teamwork is fundamental to the management of medical emergencies, and yet the best method to teach teamwork skills to trainees remains unknown. In a cohort of incoming internal medicine interns, we tested the hypothesis that expert demonstration of teamwork principles and participation in high-fidelity simulation would each result in objectively assessed teamwork behavior superior to traditional didactics. This was a randomized, controlled, parallel-group trial comparing three teamwork teaching modalities for incoming internal medicine interns. Participants in a single-day orientation at the Vanderbilt University Center for Experiential Learning and Assessment were randomized 1:1:1 to didactic, demonstration-based, or simulation-based instruction and then evaluated in their management of a simulated crisis by five independent, blinded observers using the Teamwork Behavioral Rater score. Clinical performance was assessed using the American Heart Association Advanced Cardiac Life Support algorithm and a novel "Recognize, Respond, Reassess" score. Participants randomized to didactics (n = 18), demonstration (n = 17), and simulation (n = 17) were similar at baseline. The primary outcome of average overall Teamwork Behavioral Rater score for those who received demonstration-based training was similar to simulation participation (4.40 ± 1.15 vs. 4.10 ± 0.95, P = 0.917) and significantly higher than didactic instruction (4.40 ± 1.15 vs. 3.10 ± 0.51, P = 0.045). Clinical performance scores were similar between the three groups and correlated only weakly with teamwork behavior (coefficient of determination [Rs(2)] = 0.267, P teamwork training by expert demonstration resulted in similar teamwork behavior to participation in high-fidelity simulation and was more effective than traditional didactics. Clinical performance was largely independent of teamwork behavior and did not differ between training modalities.

  9. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ames, David E.,

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  10. The Effects of Moderate- and High-Fidelity Patient Simulator Use on Critical Thinking in Associate Degree Nursing Students

    Science.gov (United States)

    Vieck, Jana

    2013-01-01

    The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…

  11. Assessing Technical Performance and Determining the Learning Curve in Cleft Palate Surgery Using a High-Fidelity Cleft Palate Simulator.

    Science.gov (United States)

    Podolsky, Dale J; Fisher, David M; Wong Riff, Karen W; Szasz, Peter; Looi, Thomas; Drake, James M; Forrest, Christopher R

    2018-06-01

    This study assessed technical performance in cleft palate repair using a newly developed assessment tool and high-fidelity cleft palate simulator through a longitudinal simulation training exercise. Three residents performed five and one resident performed nine consecutive endoscopically recorded cleft palate repairs using a cleft palate simulator. Two fellows in pediatric plastic surgery and two expert cleft surgeons also performed recorded simulated repairs. The Cleft Palate Objective Structured Assessment of Technical Skill (CLOSATS) and end-product scales were developed to assess performance. Two blinded cleft surgeons assessed the recordings and the final repairs using the CLOSATS, end-product scale, and a previously developed global rating scale. The average procedure-specific (CLOSATS), global rating, and end-product scores increased logarithmically after each successive simulation session for the residents. Reliability of the CLOSATS (average item intraclass correlation coefficient (ICC), 0.85 ± 0.093) and global ratings (average item ICC, 0.91 ± 0.02) among the raters was high. Reliability of the end-product assessments was lower (average item ICC, 0.66 ± 0.15). Standard setting linear regression using an overall cutoff score of 7 of 10 corresponded to a pass score for the CLOSATS and the global score of 44 (maximum, 60) and 23 (maximum, 30), respectively. Using logarithmic best-fit curves, 6.3 simulation sessions are required to reach the minimum standard. A high-fidelity cleft palate simulator has been developed that improves technical performance in cleft palate repair. The simulator and technical assessment scores can be used to determine performance before operating on patients.

  12. The effects of using high-fidelity simulators and standardized patients on the thorax, lung, and cardiac examination skills of undergraduate nursing students.

    Science.gov (United States)

    Tuzer, Hilal; Dinc, Leyla; Elcin, Melih

    2016-10-01

    Existing research literature indicates that the use of various simulation techniques in the training of physical examination skills develops students' cognitive and psychomotor abilities in a realistic learning environment while improving patient safety. The study aimed to compare the effects of the use of a high-fidelity simulator and standardized patients on the knowledge and skills of students conducting thorax-lungs and cardiac examinations, and to explore the students' views and learning experiences. A mixed-method explanatory sequential design. The study was conducted in the Simulation Laboratory of a Nursing School, the Training Center at the Faculty of Medicine, and in the inpatient clinics of the Education and Research Hospital. Fifty-two fourth-year nursing students. Students were randomly assigned to Group I and Group II. The students in Group 1 attended the thorax-lungs and cardiac examination training using a high-fidelity simulator, while the students in Group 2 using standardized patients. After the training sessions, all students practiced their skills on real patients in the clinical setting under the supervision of the investigator. Knowledge and performance scores of all students increased following the simulation activities; however, the students that worked with standardized patients achieved significantly higher knowledge scores than those that worked with the high-fidelity simulator; however, there was no significant difference in performance scores between the groups. The mean performance scores of students on real patients were significantly higher compared to the post-simulation assessment scores (psimulator in increasing the knowledge scores of students on thorax-lungs and cardiac examinations; however, practice on real patients increased performance scores of all students without any significant difference in two groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Perceived Barriers to the Use of High-Fidelity Hands-On Simulation Training for Contrast Reaction Management: Why Programs are Not Using It.

    Science.gov (United States)

    Chinnugounder, Sankar; Hippe, Daniel S; Maximin, Suresh; O'Malley, Ryan B; Wang, Carolyn L

    2015-01-01

    Although subjective and objective benefits of high-fidelity simulation have been reported in medicine, there has been slow adoption in radiology. The purpose of our study was to identify the perceived barriers in the use of high-fidelity hands-on simulation for contrast reaction management training. An IRB exempt 32 questions online web survey was sent to 179 non-military radiology residency program directors listed in the Fellowship and Residency Electronic Interactive Database Access system (FREIDA). Survey questions included the type of contrast reaction management training, cost, time commitment of residents and faculty, and the reasons for not using simulation training. Responses from the survey were summarized as count (percentage), mean ± standard deviation (SD), or median (range). 84 (47%) of 179 programs responded, of which 88% offered CRM training. Most (72%) conducted the CRM training annually while only 4% conducted it more frequently. Didactic lecture was the most frequently used training modality (97%), followed by HFS (30%) and computer-based simulation (CBS) (19%); 5.5% used both HFS and CBS. Of the 51 programs that offer CRM training but do not use HFS, the most common reason reported was insufficient availability (41%). Other reported reasons included cost (33%), no access to simulation centers (33%), lack of trained faculty (27%) and time constraints (27%). Although high-fidelity hands-on simulation training is the best way to reproduce real-life contrast reaction scenarios, many institutions do not provide this training due to constraints such as cost, lack of access or insufficient availability of simulation labs, and lack of trained faculty. As a specialty, radiology needs to better address these barriers at both an institutional and national level. Copyright © 2015 Mosby, Inc. All rights reserved.

  14. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Alex [Illinois Inst. of Technology, Chicago, IL (United States)

    2017-07-14

    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform for modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to

  15. Teaching medical students a clinical approach to altered mental status: simulation enhances traditional curriculum

    Directory of Open Access Journals (Sweden)

    Jeremy D. Sperling

    2013-04-01

    Full Text Available Introduction: Simulation-based medical education (SBME is increasingly being utilized for teaching clinical skills in undergraduate medical education. Studies have evaluated the impact of adding SBME to third- and fourth-year curriculum; however, very little research has assessed its efficacy for teaching clinical skills in pre-clerkship coursework. To measure the impact of a simulation exercise during a pre-clinical curriculum, a simulation session was added to a pre-clerkship course at our medical school where the clinical approach to altered mental status (AMS is traditionally taught using a lecture and an interactive case-based session in a small group format. The objective was to measure simulation's impact on students’ knowledge acquisition, comfort, and perceived competence with regards to the AMS patient. Methods: AMS simulation exercises were added to the lecture and small group case sessions in June 2010 and 2011. Simulation sessions consisted of two clinical cases using a high-fidelity full-body simulator followed by a faculty debriefing after each case. Student participation in a simulation session was voluntary. Students who did and did not participate in a simulation session completed a post-test to assess knowledge and a survey to understand comfort and perceived competence in their approach to AMS. Results: A total of 154 students completed the post-test and survey and 65 (42% attended a simulation session. Post-test scores were higher in students who attended a simulation session compared to those who did not (p<0.001. Students who participated in a simulation session were more comfortable in their overall approach to treating AMS patients (p=0.05. They were also more likely to state that they could articulate a differential diagnosis (p=0.03, know what initial diagnostic tests are needed (p=0.01, and understand what interventions are useful in the first few minutes (p=0.003. Students who participated in a simulation session

  16. Cognitive load, emotion, and performance in high-fidelity simulation among beginning nursing students: a pilot study.

    Science.gov (United States)

    Schlairet, Maura C; Schlairet, Timothy James; Sauls, Denise H; Bellflowers, Lois

    2015-03-01

    Establishing the impact of the high-fidelity simulation environment on student performance, as well as identifying factors that could predict learning, would refine simulation outcome expectations among educators. The purpose of this quasi-experimental pilot study was to explore the impact of simulation on emotion and cognitive load among beginning nursing students. Forty baccalaureate nursing students participated in teaching simulations, rated their emotional state and cognitive load, and completed evaluation simulations. Two principal components of emotion were identified representing the pleasant activation and pleasant deactivation components of affect. Mean rating of cognitive load following simulation was high. Linear regression identiffed slight but statistically nonsignificant positive associations between principal components of emotion and cognitive load. Logistic regression identified a negative but statistically nonsignificant effect of cognitive load on assessment performance. Among lower ability students, a more pronounced effect of cognitive load on assessment performance was observed; this also was statistically non-significant. Copyright 2015, SLACK Incorporated.

  17. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    Science.gov (United States)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce

  18. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation.

    Science.gov (United States)

    Sørensen, Jette Led; Østergaard, Doris; LeBlanc, Vicki; Ottesen, Bent; Konge, Lars; Dieckmann, Peter; Van der Vleuten, Cees

    2017-01-21

    Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities are called in-house training. In-house training facilities can be part of hospital departments and resemble to some extent simulation centres but often have less technical equipment. In situ simulation, introduced over the past decade, mainly comprises of team-based activities and occurs in patient care units with healthcare professionals in their own working environment. Thus, this intentional blend of simulation and real working environments means that in situ simulation brings simulation to the real working environment and provides training where people work. In situ simulation can be either announced or unannounced, the latter also known as a drill. This article presents and discusses the design of SBME and the advantage and disadvantage of the different simulation settings, such as training in simulation-centres, in-house simulations in hospital departments, announced or unannounced in situ simulations. Non-randomised studies argue that in situ simulation is more effective for educational purposes than other types of simulation settings. Conversely, the few comparison studies that exist, either randomised or retrospective, show that choice of setting does not seem to influence individual or team learning. However, hospital department-based simulations, such as in-house simulation and in situ simulation, lead to a gain in organisational learning. To our knowledge no studies have compared announced and unannounced in situ simulation. The literature suggests some improved organisational learning from unannounced in situ simulation; however, unannounced in situ simulation was also found to be challenging to plan and conduct, and more stressful among participants. The importance of

  19. Fidelity for kicked atoms with gravity near a quantum resonance.

    Science.gov (United States)

    Dubertrand, Rémy; Guarneri, Italo; Wimberger, Sandro

    2012-03-01

    Kicked atoms under a constant Stark or gravity field are investigated for experimental setups with cold and ultracold atoms. The parametric stability of the quantum dynamics is studied using the fidelity. In the case of a quantum resonance, it is shown that the behavior of the fidelity depends on arithmetic properties of the gravity parameter. Close to a quantum resonance, the long-time asymptotics of the fidelity is studied by means of a pseudoclassical approximation introduced by Fishman et al. [J. Stat. Phys. 110, 911 (2003)]. The long-time decay of fidelity arises from the tunneling out of pseudoclassical stable islands, and a simple ansatz is proposed which satisfactorily reproduces the main features observed in numerical simulations.

  20. Multi-Fidelity Uncertainty Propagation for Cardiovascular Modeling

    Science.gov (United States)

    Fleeter, Casey; Geraci, Gianluca; Schiavazzi, Daniele; Kahn, Andrew; Marsden, Alison

    2017-11-01

    Hemodynamic models are successfully employed in the diagnosis and treatment of cardiovascular disease with increasing frequency. However, their widespread adoption is hindered by our inability to account for uncertainty stemming from multiple sources, including boundary conditions, vessel material properties, and model geometry. In this study, we propose a stochastic framework which leverages three cardiovascular model fidelities: 3D, 1D and 0D models. 3D models are generated from patient-specific medical imaging (CT and MRI) of aortic and coronary anatomies using the SimVascular open-source platform, with fluid structure interaction simulations and Windkessel boundary conditions. 1D models consist of a simplified geometry automatically extracted from the 3D model, while 0D models are obtained from equivalent circuit representations of blood flow in deformable vessels. Multi-level and multi-fidelity estimators from Sandia's open-source DAKOTA toolkit are leveraged to reduce the variance in our estimated output quantities of interest while maintaining a reasonable computational cost. The performance of these estimators in terms of computational cost reductions is investigated for a variety of output quantities of interest, including global and local hemodynamic indicators. Sandia National Labs is a multimission laboratory managed and operated by NTESS, LLC, for the U.S. DOE under contract DE-NA0003525. Funding for this project provided by NIH-NIBIB R01 EB018302.

  1. Evaluating display fidelity and interaction fidelity in a virtual reality game.

    Science.gov (United States)

    McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B

    2012-04-01

    In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world).

  2. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    Science.gov (United States)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  3. Point-of-care ultrasound education: the increasing role of simulation and multimedia resources.

    Science.gov (United States)

    Lewiss, Resa E; Hoffmann, Beatrice; Beaulieu, Yanick; Phelan, Mary Beth

    2014-01-01

    This article reviews the current technology, literature, teaching models, and methods associated with simulation-based point-of-care ultrasound training. Patient simulation appears particularly well suited for learning point-of-care ultrasound, which is a required core competency for emergency medicine and other specialties. Work hour limitations have reduced the opportunities for clinical practice, and simulation enables practicing a skill multiple times before it may be used on patients. Ultrasound simulators can be categorized into 2 groups: low and high fidelity. Low-fidelity simulators are usually static simulators, meaning that they have nonchanging anatomic examples for sonographic practice. Advantages are that the model may be reused over time, and some simulators can be homemade. High-fidelity simulators are usually high-tech and frequently consist of many computer-generated cases of virtual sonographic anatomy that can be scanned with a mock probe. This type of equipment is produced commercially and is more expensive. High-fidelity simulators provide students with an active and safe learning environment and make a reproducible standardized assessment of many different ultrasound cases possible. The advantages and disadvantages of using low- versus high-fidelity simulators are reviewed. An additional concept used in simulation-based ultrasound training is blended learning. Blended learning may include face-to-face or online learning often in combination with a learning management system. Increasingly, with simulation and Web-based learning technologies, tools are now available to medical educators for the standardization of both ultrasound skills training and competency assessment.

  4. Medical Simulations for Exploration Medicine

    Science.gov (United States)

    Reyes, David; Suresh, Rahul; Pavela, James; Urbina, Michelle; Mindock, Jennifer; Antonsen, Erik

    2018-01-01

    Medical simulation is a useful tool that can be used to train personnel, develop medical processes, and assist cross-disciplinary communication. Medical simulations have been used in the past at NASA for these purposes, however they are usually created ad hoc. A stepwise approach to scenario development has not previously been used. The NASA Exploration Medical Capability (ExMC) created a medical scenario development tool to test medical procedures, technologies, concepts of operation and for use in systems engineering (SE) processes.

  5. Medical Simulation Practices 2010 Survey Results

    Science.gov (United States)

    McCrindle, Jeffrey J.

    2011-01-01

    Medical Simulation Centers are an essential component of our learning infrastructure to prepare doctors and nurses for their careers. Unlike the military and aerospace simulation industry, very little has been published regarding the best practices currently in use within medical simulation centers. This survey attempts to provide insight into the current simulation practices at medical schools, hospitals, university nursing programs and community college nursing programs. Students within the MBA program at Saint Joseph's University conducted a survey of medical simulation practices during the summer 2010 semester. A total of 115 institutions responded to the survey. The survey resus discuss overall effectiveness of current simulation centers as well as the tools and techniques used to conduct the simulation activity

  6. Simulation-based medical teaching and learning

    Directory of Open Access Journals (Sweden)

    Abdulmohsen H Al-Elq

    2010-01-01

    Full Text Available One of the most important steps in curriculum development is the introduction of simulation- based medical teaching and learning. Simulation is a generic term that refers to an artificial representation of a real world process to achieve educational goals through experiential learning. Simulation based medical education is defined as any educational activity that utilizes simulation aides to replicate clinical scenarios. Although medical simulation is relatively new, simulation has been used for a long time in other high risk professions such as aviation. Medical simulation allows the acquisition of clinical skills through deliberate practice rather than an apprentice style of learning. Simulation tools serve as an alternative to real patients. A trainee can make mistakes and learn from them without the fear of harming the patient. There are different types and classification of simulators and their cost vary according to the degree of their resemblance to the reality, or ′fidelity′. Simulation- based learning is expensive. However, it is cost-effective if utilized properly. Medical simulation has been found to enhance clinical competence at the undergraduate and postgraduate levels. It has also been found to have many advantages that can improve patient safety and reduce health care costs through the improvement of the medical provider′s competencies. The objective of this narrative review article is to highlight the importance of simulation as a new teaching method in undergraduate and postgraduate education.

  7. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    Science.gov (United States)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  8. Human factors in resuscitation: Lessons learned from simulator studies

    Directory of Open Access Journals (Sweden)

    Hunziker S

    2010-01-01

    Full Text Available Medical algorithms, technical skills, and repeated training are the classical cornerstones for successful cardiopulmonary resuscitation (CPR. Increasing evidence suggests that human factors, including team interaction, communication, and leadership, also influence the performance of CPR. Guidelines, however, do not yet include these human factors, partly because of the difficulties of their measurement in real-life cardiac arrest. Recently, clinical studies of cardiac arrest scenarios with high-fidelity video-assisted simulations have provided opportunities to better delineate the influence of human factors on resuscitation team performance. This review focuses on evidence from simulator studies that focus on human factors and their influence on the performance of resuscitation teams. Similar to studies in real patients, simulated cardiac arrest scenarios revealed many unnecessary interruptions of CPR as well as significant delays in defibrillation. These studies also showed that human factors play a major role in these shortcomings and that the medical performance depends on the quality of leadership and team-structuring. Moreover, simulated video-taped medical emergencies revealed that a substantial part of information transfer during communication is erroneous. Understanding the impact of human factors on the performance of a complex medical intervention like resuscitation requires detailed, second-by-second, analysis of factors involving the patient, resuscitative equipment such as the defibrillator, and all team members. Thus, high-fidelity simulator studies provide an important research method in this challenging field.

  9. Investigation of the impact of high liquid viscosity on jet atomization in crossflow via high-fidelity simulations

    Science.gov (United States)

    Li, Xiaoyi; Gao, Hui; Soteriou, Marios C.

    2017-08-01

    Atomization of extremely high viscosity liquid can be of interest for many applications in aerospace, automotive, pharmaceutical, and food industries. While detailed atomization measurements usually face grand challenges, high-fidelity numerical simulations offer the advantage to comprehensively explore the atomization details. In this work, a previously validated high-fidelity first-principle simulation code HiMIST is utilized to simulate high-viscosity liquid jet atomization in crossflow. The code is used to perform a parametric study of the atomization process in a wide range of Ohnesorge numbers (Oh = 0.004-2) and Weber numbers (We = 10-160). Direct comparisons between the present study and previously published low-viscosity jet in crossflow results are performed. The effects of viscous damping and slowing on jet penetration, liquid surface instabilities, ligament formation/breakup, and subsequent droplet formation are investigated. Complex variations in near-field and far-field jet penetrations with increasing Oh at different We are observed and linked with the underlying jet deformation and breakup physics. Transition in breakup regimes and increase in droplet size with increasing Oh are observed, mostly consistent with the literature reports. The detailed simulations elucidate a distinctive edge-ligament-breakup dominated process with long surviving ligaments for the higher Oh cases, as opposed to a two-stage edge-stripping/column-fracture process for the lower Oh counterparts. The trend of decreasing column deflection with increasing We is reversed as Oh increases. A predominantly unimodal droplet size distribution is predicted at higher Oh, in contrast to the bimodal distribution at lower Oh. It has been found that both Rayleigh-Taylor and Kelvin-Helmholtz linear stability theories cannot be easily applied to interpret the distinct edge breakup process and further study of the underlying physics is needed.

  10. Embedding Microethical Dilemmas in High-Fidelity Simulation Scenarios: Preparing Nursing Students for Ethical Practice.

    Science.gov (United States)

    Krautscheid, Lorretta C

    2017-01-01

    Despite the inclusion of ethics education in the formal curriculum, students felt ill-prepared to manage ethical issues and protect patients' health and well-being. Nursing students reported knowing what should be done to promote optimal patient care; however, they also reported an inability to act on their convictions due to fear of reprisal, powerlessness, and low confidence. Bloom's Taxonomy guided the development and implementation of experiential-applied ethics education via microethical dilemmas embedded in existing high-fidelity simulation (HFS) scenarios. Students were unaware that ethical dilemmas would be presented, replicating complex and spontaneous practice environments. Students reported that the educational strategy was powerful, increasing ethical decision-making confidence, empowering effective advocacy, and building courage to overcome fears and defend ethical practice. Simulation extends ethics education beyond the cognitive domain, ensuring the purposeful integration of affective and psychomotor learning, which promotes congruence between knowing what to do and acting on one's convictions. [J Nurs Educ. 2017;56(1):55-58.]. Copyright 2017, SLACK Incorporated.

  11. Driving Simulator Development and Performance Study

    OpenAIRE

    Juto, Erik

    2010-01-01

    The driving simulator is a vital tool for much of the research performed at theSwedish National Road and Transport Institute (VTI). Currently VTI posses three driving simulators, two high fidelity simulators developed and constructed by VTI, and a medium fidelity simulator from the German company Dr.-Ing. Reiner Foerst GmbH. The two high fidelity simulators run the same simulation software, developed at VTI. The medium fidelity simulator runs a proprietary simulation software. At VTI there is...

  12. How valid are commercially available medical simulators?

    Directory of Open Access Journals (Sweden)

    Stunt JJ

    2014-10-01

    Full Text Available JJ Stunt,1 PH Wulms,2 GM Kerkhoffs,1 J Dankelman,2 CN van Dijk,1 GJM Tuijthof1,2 1Orthopedic Research Center Amsterdam, Department of Orthopedic Surgery, Academic Medical Centre, Amsterdam, the Netherlands; 2Department of Biomechanical Engineering, Faculty of Mechanical, Materials and Maritime Engineering, Delft University of Technology, Delft, the Netherlands Background: Since simulators offer important advantages, they are increasingly used in medical education and medical skills training that require physical actions. A wide variety of simulators have become commercially available. It is of high importance that evidence is provided that training on these simulators can actually improve clinical performance on live patients. Therefore, the aim of this review is to determine the availability of different types of simulators and the evidence of their validation, to offer insight regarding which simulators are suitable to use in the clinical setting as a training modality. Summary: Four hundred and thirty-three commercially available simulators were found, from which 405 (94% were physical models. One hundred and thirty validation studies evaluated 35 (8% commercially available medical simulators for levels of validity ranging from face to predictive validity. Solely simulators that are used for surgical skills training were validated for the highest validity level (predictive validity. Twenty-four (37% simulators that give objective feedback had been validated. Studies that tested more powerful levels of validity (concurrent and predictive validity were methodologically stronger than studies that tested more elementary levels of validity (face, content, and construct validity. Conclusion: Ninety-three point five percent of the commercially available simulators are not known to be tested for validity. Although the importance of (a high level of validation depends on the difficulty level of skills training and possible consequences when skills are

  13. Development of a High-Fidelity Simulation Environment for Shadow-Mode Assessments of Air Traffic Concepts

    Science.gov (United States)

    Robinson, John E., III; Lee, Alan; Lai, Chok Fung

    2017-01-01

    This paper describes the Shadow-Mode Assessment Using Realistic Technologies for the National Airspace System (SMART-NAS) Test Bed. The SMART-NAS Test Bed is an air traffic simulation platform being developed by the National Aeronautics and Space Administration (NASA). The SMART-NAS Test Bed's core purpose is to conduct high-fidelity, real-time, human-in-the-loop and automation-in-the-loop simulations of current and proposed future air traffic concepts for the United States' Next Generation Air Transportation System called NextGen. The setup, configuration, coordination, and execution of realtime, human-in-the-loop air traffic management simulations are complex, tedious, time intensive, and expensive. The SMART-NAS Test Bed framework is an alternative to the current approach and will provide services throughout the simulation workflow pipeline to help alleviate these shortcomings. The principle concepts to be simulated include advanced gate-to-gate, trajectory-based operations, widespread integration of novel aircraft such as unmanned vehicles, and real-time safety assurance technologies to enable autonomous operations. To make this possible, SNTB will utilize Web-based technologies, cloud resources, and real-time, scalable, communication middleware. This paper describes the SMART-NAS Test Bed's vision, purpose, its concept of use, and the potential benefits, key capabilities, high-level requirements, architecture, software design, and usage.

  14. On the Fidelity of Semi-distributed Hydrologic Model Simulations for Large Scale Catchment Applications

    Science.gov (United States)

    Ajami, H.; Sharma, A.; Lakshmi, V.

    2017-12-01

    Application of semi-distributed hydrologic modeling frameworks is a viable alternative to fully distributed hyper-resolution hydrologic models due to computational efficiency and resolving fine-scale spatial structure of hydrologic fluxes and states. However, fidelity of semi-distributed model simulations is impacted by (1) formulation of hydrologic response units (HRUs), and (2) aggregation of catchment properties for formulating simulation elements. Here, we evaluate the performance of a recently developed Soil Moisture and Runoff simulation Toolkit (SMART) for large catchment scale simulations. In SMART, topologically connected HRUs are delineated using thresholds obtained from topographic and geomorphic analysis of a catchment, and simulation elements are equivalent cross sections (ECS) representative of a hillslope in first order sub-basins. Earlier investigations have shown that formulation of ECSs at the scale of a first order sub-basin reduces computational time significantly without compromising simulation accuracy. However, the implementation of this approach has not been fully explored for catchment scale simulations. To assess SMART performance, we set-up the model over the Little Washita watershed in Oklahoma. Model evaluations using in-situ soil moisture observations show satisfactory model performance. In addition, we evaluated the performance of a number of soil moisture disaggregation schemes recently developed to provide spatially explicit soil moisture outputs at fine scale resolution. Our results illustrate that the statistical disaggregation scheme performs significantly better than the methods based on topographic data. Future work is focused on assessing the performance of SMART using remotely sensed soil moisture observations using spatially based model evaluation metrics.

  15. Procedural wound geometry and blood flow generation for medical training simulators

    Science.gov (United States)

    Aras, Rifat; Shen, Yuzhong; Li, Jiang

    2012-02-01

    Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the variability of the training scenarios without the need of labor intensive remodeling of the 3D geometry. The procedural techniques described in this work are entirely handled by the graphics processing unit (GPU) to enable interactive real-time operation of the simulation and to relieve the CPU for other computational tasks. The visible human dataset is processed and used as a volumetric texture for the internal visualization of the wound geometry. To further enhance the fidelity of the simulation, we also employ a surface flow model for blood visualization. This model is realized as a dynamic texture that is composed of a height field and a normal map and animated at each simulation step on the GPU. The procedural wound geometry and the blood flow model are applied to a thigh model and the efficiency of the technique is demonstrated in a virtual surgery scene.

  16. How valid are commercially available medical simulators?

    Science.gov (United States)

    Stunt, JJ; Wulms, PH; Kerkhoffs, GM; Dankelman, J; van Dijk, CN; Tuijthof, GJM

    2014-01-01

    Background Since simulators offer important advantages, they are increasingly used in medical education and medical skills training that require physical actions. A wide variety of simulators have become commercially available. It is of high importance that evidence is provided that training on these simulators can actually improve clinical performance on live patients. Therefore, the aim of this review is to determine the availability of different types of simulators and the evidence of their validation, to offer insight regarding which simulators are suitable to use in the clinical setting as a training modality. Summary Four hundred and thirty-three commercially available simulators were found, from which 405 (94%) were physical models. One hundred and thirty validation studies evaluated 35 (8%) commercially available medical simulators for levels of validity ranging from face to predictive validity. Solely simulators that are used for surgical skills training were validated for the highest validity level (predictive validity). Twenty-four (37%) simulators that give objective feedback had been validated. Studies that tested more powerful levels of validity (concurrent and predictive validity) were methodologically stronger than studies that tested more elementary levels of validity (face, content, and construct validity). Conclusion Ninety-three point five percent of the commercially available simulators are not known to be tested for validity. Although the importance of (a high level of) validation depends on the difficulty level of skills training and possible consequences when skills are insufficient, it is advisable for medical professionals, trainees, medical educators, and companies who manufacture medical simulators to critically judge the available medical simulators for proper validation. This way adequate, safe, and affordable medical psychomotor skills training can be achieved. PMID:25342926

  17. Semiclassical approach to fidelity amplitude

    International Nuclear Information System (INIS)

    García-Mata, Ignacio; Vallejos, Raúl O; Wisniacki, Diego A

    2011-01-01

    The fidelity amplitude (FA) is a quantity of paramount importance in echo-type experiments. We use semiclassical theory to study the average FA for quantum chaotic systems under external perturbation. We explain analytically two extreme cases: the random dynamics limit - attained approximately by strongly chaotic systems - and the random perturbation limit, which shows a Lyapunov decay. Numerical simulations help us to bridge the gap between both the extreme cases. (paper)

  18. Web-Based versus High-Fidelity Simulation Training for Certified Registered Nurse Anesthetists in the Management of High Risk/Low Occurrence Anesthesia Events

    Science.gov (United States)

    Kimemia, Judy

    2017-01-01

    Purpose: The purpose of this project was to compare web-based to high-fidelity simulation training in the management of high risk/low occurrence anesthesia related events, to enhance knowledge acquisition for Certified Registered Nurse Anesthetists (CRNAs). This project was designed to answer the question: Is web-based training as effective as…

  19. Inspiring careers in STEM and healthcare fields through medical simulation embedded in high school science education.

    Science.gov (United States)

    Berk, Louis J; Muret-Wagstaff, Sharon L; Goyal, Riya; Joyal, Julie A; Gordon, James A; Faux, Russell; Oriol, Nancy E

    2014-09-01

    The most effective ways to promote learning and inspire careers related to science, technology, engineering, and mathematics (STEM) remain elusive. To address this gap, we reviewed the literature and designed and implemented a high-fidelity, medical simulation-based Harvard Medical School MEDscience course, which was integrated into high school science classes through collaboration between medical school and K-12 faculty. The design was based largely on the literature on concepts and mechanisms of self-efficacy. A structured telephone survey was conducted with 30 program alumni from the inaugural school who were no longer in high school. Near-term effects, enduring effects, contextual considerations, and diffusion and dissemination were queried. Students reported high incoming attitudes toward STEM education and careers, and these attitudes showed before versus after gains (P science or healthcare-related career to the program. Additionally, 63% subsequently took additional science or health courses, 73% participated in a job or educational experience that was science related during high school, and 97% went on to college. Four of every five program graduates cited a health-related college major, and 83% offered their strongest recommendation of the program to others. Further study and evaluation of simulation-based experiences that capitalize on informal, naturalistic learning and promote self-efficacy are warranted. Copyright © 2014 The American Physiological Society.

  20. Effects of Low- Versus High-Fidelity Simulations on the Cognitive Burden and Performance of Entry-Level Paramedicine Students: A Mixed-Methods Comparison Trial Using Eye-Tracking, Continuous Heart Rate, Difficulty Rating Scales, Video Observation and Interviews.

    Science.gov (United States)

    Mills, Brennen W; Carter, Owen B-J; Rudd, Cobie J; Claxton, Louise A; Ross, Nathan P; Strobel, Natalie A

    2016-02-01

    High-fidelity simulation-based training is often avoided for early-stage students because of the assumption that while practicing newly learned skills, they are ill suited to processing multiple demands, which can lead to "cognitive overload" and poorer learning outcomes. We tested this assumption using a mixed-methods experimental design manipulating psychological immersion. Thirty-nine randomly assigned first-year paramedicine students completed low- or high-environmental fidelity simulations [low-environmental fidelity simulations (LF(en)S) vs. high-environmental fidelity simulation (HF(en)S)] involving a manikin with obstructed airway (SimMan3G). Psychological immersion and cognitive burden were determined via continuous heart rate, eye tracking, self-report questionnaire (National Aeronautics and Space Administration Task Load Index), independent observation, and postsimulation interviews. Performance was assessed by successful location of obstruction and time-to-termination. Eye tracking confirmed that students attended to multiple, concurrent stimuli in HF(en)S and interviews consistently suggested that they experienced greater psychological immersion and cognitive burden than their LF(en)S counterparts. This was confirmed by significantly higher mean heart rate (P cognitive burden but this has considerable educational merit.

  1. Simulation in Medical Education: Focus on Anesthesiology and Critical Care Medicine

    Directory of Open Access Journals (Sweden)

    D. John Doyle

    2002-12-01

    Full Text Available Simulation refers to the artificial representation of a complex real-world process with sufficient fidelity to achieve a particular objective, usually for the purposes of training or performance testing. While simulation has been important from early times (as in the rehearsal of animal hunting activities or preparing for warfare, the needs of World War II greatly accelerated simulation technology for use in flight training. With the available of inexpensive computer technology in recent years, simulation technology has blossomed again, especially in the field of medicine, where applications range from scientific modeling to clinical performance appraisal in the setting of crisis management.

  2. A Review of the Literature on Training Simulators: Translators: Transfer of Training and Simulator Fidelity.

    Science.gov (United States)

    1984-04-01

    Noise is distracting especially in complex tasks that require close attention and concentration (Finkelman 1975). Improper lighting (Tinker 1943...before coping with . the entire systemi. However, the functional fidelity may be affected due to the isolation of a £ articular subsystem. Curry (1981

  3. Impact of high-fidelity simulation on the development of clinical judgment and motivation among Lebanese nursing students.

    Science.gov (United States)

    Fawaz, Mirna A; Hamdan-Mansour, Ayman M

    2016-11-01

    High-fidelity simulation (HFS) offers a strategy to facilitate cognitive, affective, and psychomotor outcomes and motivate the new generation of students. The purpose of this study was to examine the impact of using high-fidelity simulation on the development of clinical judgment and motivation among Lebanese nursing students. A post-test, quasi-experimental design was used. Two private universities in Lebanon were targeted to implement the intervention. A convenience sample of 56 nursing students from two private universities in Lebanon were recruited. Data were collected using the Lasater Clinical Judgment Rubric and the Motivated Strategies for Learning questionnaires. Nursing students exhibited significant improvement in clinical judgment and motivation due to exposure to HFS. There was a significant difference post HFS between the intervention group and the control group in clinical judgment intervention (t=5.23, pmotivation for academic achievement (t=-6.71, pstudents had higher mean scores of motivation (198.6, SD=10.5) in the intervention group than in the control group (161.6, SD=20). The analysis related to differences between the intervention and control groups in motivation and clinical judgment; controlling for previous experience in health care services, the analysis showed no significant difference (Wilk's lambda =0.77, F=1.09, p=0.374). There is a need for nursing educators to implement HFS in nursing curricula, where its integration can bridge the gap between theoretical knowledge and nursing practice and enhance critical thinking and motivation among nursing students. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. The effect of fidelity: how expert behavior changes in a virtual reality environment.

    Science.gov (United States)

    Ioannou, Ioanna; Avery, Alex; Zhou, Yun; Szudek, Jacek; Kennedy, Gregor; O'Leary, Stephen

    2014-09-01

    We compare the behavior of expert surgeons operating on the "gold standard" of simulation-the cadaveric temporal bone-against a high-fidelity virtual reality (VR) simulation. We aim to determine whether expert behavior changes within the virtual environment and to understand how the fidelity of simulation affects users' behavior. Five expert otologists performed cortical mastoidectomy and cochleostomy on a human cadaveric temporal bone and a VR temporal bone simulator. Hand movement and video recordings were used to derive a range of measures, to facilitate an analysis of surgical technique, and to compare expert behavior between the cadaveric and simulator environments. Drilling time was similar across the two environments. Some measures such as total time and burr change count differed predictably due to the ease of switching burrs within the simulator. Surgical strokes were generally longer in distance and duration in VR, but these measures changed proportionally to cadaveric measures across the stages of the procedure. Stroke shape metrics differed, which was attributed to the modeling of burr behavior within the simulator. This will be corrected in future versions. Slight differences in drill interaction between a virtual environment and the real world can have measurable effects on surgical technique, particularly in terms of stroke length, duration, and curvature. It is important to understand these effects when designing and implementing surgical training programs based on VR simulation--and when improving the fidelity of VR simulators to facilitate use of a similar technique in both real and simulated situations. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  5. Fidelity deviation in quantum teleportation

    OpenAIRE

    Bang, Jeongho; Ryu, Junghee; Kaszlikowski, Dagomir

    2018-01-01

    We analyze the performance of quantum teleportation in terms of average fidelity and fidelity deviation. The average fidelity is defined as the average value of the fidelities over all possible input states and the fidelity deviation is their standard deviation, which is referred to as a concept of fluctuation or universality. In the analysis, we find the condition to optimize both measures under a noisy quantum channel---we here consider the so-called Werner channel. To characterize our resu...

  6. Medical simulator with injection device

    NARCIS (Netherlands)

    2011-01-01

    medical simulator 611 comprises a vessel 609 representing a simulated blood vessel. The vessel comprises a simulated vessel wall capable of being punctured by an electrically conductive injection needle 503. The vessel wall comprises a first electrically conductive layer for closing an electric

  7. Developing a High Fidelity Martian Soil Simulant Based on MSL Measurements: Applications for Habitability, Exploration, and In-Situ Resource Utilization

    Science.gov (United States)

    Cannon, K.; Britt, D. T.; Smith, T. M.; Fritsche, R. F.; Covey, S. D.; Batcheldor, D.; Watson, B.

    2017-12-01

    Powerful instruments, that include CheMin and SAM on the MSL Curiosity rover, have provided an unprecedented look into the mineral, chemical, and volatile composition of Martian soils. Interestingly, the bulk chemistry of the Rocknest windblown soil is a close match to similar measurements from the Spirit and Opportunity rovers, suggesting the presence of a global basaltic soil component. The Martian regolith is likely composed of this global soil mixed with locally to regionally derived components that include alteration products and evolved volcanic compositions. Without returned soil samples, researchers have relied on terrestrial simulants to address fundamental Mars science, habitability, in-situ resource utilization, and hardware for future exploration. However, these past simulants have low fidelity compared to actual Martian soils: JSC Mars-1a is an amorphous palagonitic material with spectral similarities to Martian dust, not soil, and Mojave Mars is simply a ground up terrestrial basalt chosen for its convenient location. Based on our experience creating asteroid regolith simulants, we are developing a high fidelity Martian soil simulant (Mars Global) designed ab initio to match the mineralogy, chemistry, and volatile contents of the global basaltic soil on Mars. The crystalline portion of the simulant is based on CheMin measurements of Rocknest and includes plagioclase, two pyroxenes, olivine, hematite, magnetite, anhydrite, and quartz. The amorphous portion is less well constrained, but we are re-creating it with basaltic glass, synthetic ferrihydrite, ferric sulfate, and carbonates. We also include perchlorate and nitrate salts based on evolved gas analyses from the SAM instrument. Analysis and testing of Mars Global will include physical properties (shear strength, density, internal friction angle), spectral properties, magnetic properties, and volatile release patterns. The simulant is initially being designed for NASA agricultural studies, but

  8. Integrating Medical Simulation Into the Physician Assistant Physiology Curriculum.

    Science.gov (United States)

    Li, Lixin; Lopes, John; Zhou, Joseph Yi; Xu, Biao

    2016-12-01

    Medical simulation has recently been used in medical education, and evidence indicates that it is a valuable tool for teaching and evaluation. Very few studies have evaluated the integration of medical simulation in medical physiology education, particularly in PA programs. This study was designed to assess the value of integrating medical simulation into the PA physiology curriculum. Seventy-five students from the PA program at Central Michigan University participated in this study. Mannequin-based simulation was used to simulate a patient with hemorrhagic shock and congestive heart failure to demonstrate the Frank-Starling force and cardiac function curve. Before and after the medical simulation, students completed a questionnaire as a self-assessment. A knowledge test was also delivered after the simulation. Our study demonstrated a significant improvement in student confidence in understanding congestive heart failure, hemorrhagic shock, and the Frank-Starling curve after the simulation. Medical simulation may be an effective way to enhance basic science learning experiences for students and an ideal supplement to traditional, lecture-based teaching in PA education.

  9. Training Tomorrow's Doctors to Safeguard the Patients of Today: Using Medical Student Simulation Training to Explore Barriers to Recognition of Elder Abuse.

    Science.gov (United States)

    Fisher, James M; Rudd, Matthew P; Walker, Richard W; Stewart, Jane

    2016-01-01

    In recognition of the fact that elder abuse is a global problem that doctors underrecognize and underreport, a simulation training session for undergraduate medical students was developed. The primary objective of this qualitative study was to examine barriers to and drivers of medical students making a diagnosis of elder abuse in simulated practice, with the goal of refining teaching methods and informing future teaching sessions for other clinical teachers. Third-year medical students (Newcastle University, United Kingdom) undertook a simulation scenario with a high-fidelity mannequin representing an elder abuse victim. After the simulation scenario, students underwent a semistructured debriefing. A tripartite approach to data collection was employed that included audio recordings of the simulation, data sheets capturing students' thoughts during the scenario, and postscenario debriefing. A different researcher analyzed each data set in isolation before discussions were held to triangulate findings from the data sets. Forty-six students undertook the scenario; none declined to participate. A number of barriers to students diagnosing elder abuse were identified. Students held a low index of suspicion for elder abuse and were overly optimistic regarding the etiology of the individual's injuries. Students lacked the confidence to raise concerns about possible elder abuse, believing that certainty was required before doing so. There was widespread confusion about nomenclature. These findings provide clinical teachers with important topic areas to address in future teaching sessions. Simulation, as a method to teach about elder abuse in a reproducible and immersive fashion, is recommended to clinical teachers. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  10. Simulation in Medical School Education: Review for Emergency Medicine

    Directory of Open Access Journals (Sweden)

    Shahram Lotfipour

    2011-05-01

    Full Text Available Medical education is rapidly evolving. With the paradigm shift to small-group didactic sessions and focus on clinically oriented case-based scenarios, simulation training has provided educators a novel way to deliver medical education in the 21st century. The field continues to expand in scope and practice and is being incorporated into medical school clerkship education, and specifically in emergency medicine (EM. The use of medical simulation in graduate medical education is well documented. Our aim in this article is to perform a retrospective review of the current literature, studying simulation use in EM medical student clerkships. Studies have demonstrated the effectiveness of simulation in teaching basic science, clinical knowledge, procedural skills, teamwork, and communication skills. As simulation becomes increasingly prevalent in medical school curricula, more studies are needed to assess whether simulation training improves patient-related outcomes.

  11. Incomplete adherence to the ASA difficult airway algorithm is unchanged after a high-fidelity simulation session.

    Science.gov (United States)

    Borges, Bruno C R; Boet, Sylvain; Siu, Lyndon W; Bruppacher, Heinz R; Naik, Viren N; Riem, Nicole; Joo, Hwan S

    2010-07-01

    Although guidelines for difficult airway management have been published, the extent to which consultant anesthesiologists follow these guidelines has not been determined. The purpose of this study is to observe how consultant anesthesiologists manage a "cannot intubate, cannot ventilate" (CICV) scenario in a high-fidelity simulator and to evaluate whether a simulation teaching session improves their adherence to the American Society of Anesthesiologists (ASA) difficult airway algorithm. With Ethics Board approval and informed consent, all staff anesthesiologists in a single tertiary care institution were invited to enrol in this study where they managed a simulated unanticipated CICV scenario in a high-fidelity simulator. The scenario involved a patient with a difficult airway whose trachea could not be intubated and where it was impossible to ventilate the patient's lungs. Airway management options, including laryngeal mask airway, a fibreoptic bronchoscope, and a Glidescope were available for use but scripted to fail. A percutaneous cricothyroidotomy was required to re-establish adequate ventilation. Following the scenario, there was a personalized one-hour video-assisted expert debriefing focusing on the ASA difficult airway guidelines and "hands-on" cricothyroidotomy teaching. The second scenario followed immediately with an identical CICV scenario. The content to either scenario was not revealed beforehand. Outcome measures included: 1) major deviations from the ASA difficult airway guidelines; 2) time to start cricothyroidotomy; and 3) time to achieve ventilation. Thirty-eight anesthesiologists agreed to participate. The number of major deviations from the ASA algorithm was similar in the first and second sessions. These deviations included: multiple laryngoscopies (0 vs 2 pre-post; P = 0.49), use of fibreoptic bronchoscope (8 vs 7 pre-post; P = 1.0), bypass of laryngeal mask airway attempt (7 vs 13 pre-post; P = 0.19), and failure to call for anesthetic help

  12. A report on the piloting of a novel computer-based medical case simulation for teaching and formative assessment of diagnostic laboratory testing

    Directory of Open Access Journals (Sweden)

    Clarence D. Kreiter

    2011-01-01

    Full Text Available Objectives: Insufficient attention has been given to how information from computer-based clinical case simulations is presented, collected, and scored. Research is needed on how best to design such simulations to acquire valid performance assessment data that can act as useful feedback for educational applications. This report describes a study of a new simulation format with design features aimed at improving both its formative assessment feedback and educational function. Methods: Case simulation software (LabCAPS was developed to target a highly focused and well-defined measurement goal with a response format that allowed objective scoring. Data from an eight-case computer-based performance assessment administered in a pilot study to 13 second-year medical students was analyzed using classical test theory and generalizability analysis. In addition, a similar analysis was conducted on an administration in a less controlled setting, but to a much large sample (n=143, within a clinical course that utilized two random case subsets from a library of 18 cases. Results: Classical test theory case-level item analysis of the pilot assessment yielded an average case discrimination of 0.37, and all eight cases were positively discriminating (range=0.11–0.56. Classical test theory coefficient alpha and the decision study showed the eight-case performance assessment to have an observed reliability of σ=G=0.70. The decision study further demonstrated that a G=0.80 could be attained with approximately 3 h and 15 min of testing. The less-controlled educational application within a large medical class produced a somewhat lower reliability for eight cases (G=0.53. Students gave high ratings to the logic of the simulation interface, its educational value, and to the fidelity of the tasks. Conclusions: LabCAPS software shows the potential to provide formative assessment of medical students’ skill at diagnostic test ordering and to provide valid feedback to

  13. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome

    DEFF Research Database (Denmark)

    Andersen, Simone Nyholm; Broberg, Ole

    2015-01-01

    of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models’ high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity......Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full......-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups’ high fidelity of room layout and affordance...

  14. Judicious Use of Simulation Technology in Continuing Medical Education

    Science.gov (United States)

    Curtis, Michael T.; DiazGranados, Deborah; Feldman, Moshe

    2012-01-01

    Use of simulation-based training is fast becoming a vital source of experiential learning in medical education. Although simulation is a common tool for undergraduate and graduate medical education curricula, the utilization of simulation in continuing medical education (CME) is still an area of growth. As more CME programs turn to simulation to…

  15. Laser Welding Process Parameters Optimization Using Variable-Fidelity Metamodel and NSGA-II

    Directory of Open Access Journals (Sweden)

    Wang Chaochao

    2017-01-01

    Full Text Available An optimization methodology based on variable-fidelity (VF metamodels and nondominated sorting genetic algorithm II (NSGA-II for laser bead-on-plate welding of stainless steel 316L is presented. The relationships between input process parameters (laser power, welding speed and laser focal position and output responses (weld width and weld depth are constructed by VF metamodels. In VF metamodels, the information from two levels fidelity models are integrated, in which the low-fidelity model (LF is finite element simulation model that is used to capture the general trend of the metamodels, and high-fidelity (HF model which from physical experiments is used to ensure the accuracy of metamodels. The accuracy of the VF metamodel is verified by actual experiments. To slove the optimization problem, NSGA-II is used to search for multi-objective Pareto optimal solutions. The results of verification experiments show that the obtained optimal parameters are effective and reliable.

  16. How valid are commercially available medical simulators?

    NARCIS (Netherlands)

    Stunt, J.J.; Wulms, P.H.; Kerkhoffs, G.M.; Dankelman, J.; Van Dijk, C.N.; Tuijthof, G.J.M.

    2014-01-01

    Background: Since simulators offer important advantages, they are increasingly used in medical education and medical skills training that require physical actions. A wide variety of simulators have become commercially available. It is of high importance that evidence is provided that training on

  17. Site fidelity, mate fidelity, and breeding dispersal in American kestrels

    Science.gov (United States)

    Steenhof, K.; Peterson, B.E.

    2009-01-01

    We assessed mate fidelity, nest-box fidelity, and breeding dispersal distances of American Kestrels (falco sparverius) nesting in boxes in southwestern Idaho from 1990 through 2006. Seventy-seven percent of boxes had different males and 87% had different females where nest-box occupants were identified in consecutive years. High turnover rates were partly a result of box-switching. Forty-eight percent of males and 58% of females that nested within the study area in successive years used different boxes. The probability of changing boxes was unrelated to gender, nesting success in the prior year, or years of nesting experience. Breeding dispersal distances for birds that moved to different boxes averaged 2.2 km for males (max = 22 km) and 3.2 km for females (max = 32 km). Approximately 70% of birds that nested in consecutive years on the study area had a different mate in the second year. Mate fidelity was related to box fidelity but not to prior nesting success or years of nesting experience. Mate changes occurred 32% of the time when the previous mate was known to be alive and nesting in the area. Kestrels that switched mates and boxes did not improve or decrease their subsequent nesting success. Kestrels usually switched to mates with less experience and lower lifetime productivity than their previous mates. The costs of switching boxes and mates were low, and there were no obvious benefits to fidelity. The cost of "waiting" for a previous mate that might have died could be high in species with high annual mortality.

  18. Fidelity Susceptibility Made Simple: A Unified Quantum Monte Carlo Approach

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2015-07-01

    Full Text Available The fidelity susceptibility is a general purpose probe of phase transitions. With its origin in quantum information and in the differential geometry perspective of quantum states, the fidelity susceptibility can indicate the presence of a phase transition without prior knowledge of the local order parameter, as well as reveal the universal properties of a critical point. The wide applicability of the fidelity susceptibility to quantum many-body systems is, however, hindered by the limited computational tools to evaluate it. We present a generic, efficient, and elegant approach to compute the fidelity susceptibility of correlated fermions, bosons, and quantum spin systems in a broad range of quantum Monte Carlo methods. It can be applied to both the ground-state and nonzero-temperature cases. The Monte Carlo estimator has a simple yet universal form, which can be efficiently evaluated in simulations. We demonstrate the power of this approach with applications to the Bose-Hubbard model, the spin-1/2 XXZ model, and use it to examine the hypothetical intermediate spin-liquid phase in the Hubbard model on the honeycomb lattice.

  19. Effects of simulation fidelity on user experience in virtual fear of public speaking training - an experimental study.

    Science.gov (United States)

    Poeschl, Sandra; Doering, Nicola

    2014-01-01

    Realistic models in virtual reality training applications are considered to positively influence presence and performance. The experimental study presented, analyzed the effect of simulation fidelity (static vs. animated audience) on presence as a prerequisite for performance in a prototype virtual fear of public speaking application with a sample of N = 40 academic non-phobic users. Contrary to the state of research, no influence was shown on virtual presence and perceived realism, but an animated audience led to significantly higher effects in anxiety during giving a talk. Although these findings could be explained by an application that might not have been realistic enough, they still question the role of presence as a mediating factor in virtual exposure applications.

  20. Medical simulation in interventional cardiology: "More research is needed".

    Science.gov (United States)

    Tajti, Peter; Brilakis, Emmanouil S

    2018-05-01

    Medical simulation is being used for training fellows to perform coronary angiography. Medical simulation training was associated with 2 min less fluoroscopy time per case after adjustment. Whether medical simulation really works needs to be evaluated in additional, well-designed and executed clinical studies. © 2018 Wiley Periodicals, Inc.

  1. Multi-fidelity Gaussian process regression for prediction of random fields

    International Nuclear Information System (INIS)

    Parussini, L.; Venturi, D.; Perdikaris, P.; Karniadakis, G.E.

    2017-01-01

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.

  2. Multi-fidelity Gaussian process regression for prediction of random fields

    Energy Technology Data Exchange (ETDEWEB)

    Parussini, L. [Department of Engineering and Architecture, University of Trieste (Italy); Venturi, D., E-mail: venturi@ucsc.edu [Department of Applied Mathematics and Statistics, University of California Santa Cruz (United States); Perdikaris, P. [Department of Mechanical Engineering, Massachusetts Institute of Technology (United States); Karniadakis, G.E. [Division of Applied Mathematics, Brown University (United States)

    2017-05-01

    We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgers equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.

  3. Fidelity deviation in quantum teleportation

    Science.gov (United States)

    Bang, Jeongho; Ryu, Junghee; Kaszlikowski, Dagomir

    2018-04-01

    We analyze the performance of quantum teleportation in terms of average fidelity and fidelity deviation. The average fidelity is defined as the average value of the fidelities over all possible input states and the fidelity deviation is their standard deviation, which is referred to as a concept of fluctuation or universality. In the analysis, we find the condition to optimize both measures under a noisy quantum channel—we here consider the so-called Werner channel. To characterize our results, we introduce a 2D space defined by the aforementioned measures, in which the performance of the teleportation is represented as a point with the channel noise parameter. Through further analysis, we specify some regions drawn for different channel conditions, establishing the connection to the dissimilar contributions of the entanglement to the teleportation and the Bell inequality violation.

  4. THE CONCEPT OF FIDELITY IN COMICS TRANSLATION

    Directory of Open Access Journals (Sweden)

    Erico Assis

    2016-11-01

    Full Text Available The long-discussed – and frequently dismissed – concept of translation faithfulness or translation fidelity, though usually applied to literary texts, has its fair share of applications when considered for comics translation. In literary translation, non-linguistic portions such as illustrations are often considered addenda or “paratexts” relative to the main, linguistic text. Comics, by its turn, present a certain set of features which single them out as a form that demands a new concept of “text” and, therefore, of translation fidelity. The comic-reading process, as pertaining to cognitive apprehension, implies interpretative accords that differ from the ones in purely linguistic texts: each and every element of the comics page – non-linguistic (mainly imagetic signs, linguistic signs, panel borders, typography and such – are intertwined and should be perceived in regards to its spatial and topological relations. This approach to understanding comics is based on Groensteen (1999 and his concepts of arthrology, spatio-topia, page layout, breakdown and braiding. As for translation fidelity, we rely on authors such as Berman (1984, Guidere (2010 and Aubert (1993. On comics translation, Zanettin (2008, Rota (2008 and Yuste Frías (2010, 2011 are of particular interest. Based on various concepts of fidelity – supported by samples of translated comics with varied degrees of fidelity to the source text – we discuss the different grounds of source-text fidelity, target-reader fidelity and source-author fidelity in the following instances: linguistic sign fidelity, imagetic sign fidelity, spatio-topia fidelity, typographic fidelity and format fidelity.

  5. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    Science.gov (United States)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  6. [Clinical Simulation and Emotional Learning].

    Science.gov (United States)

    Afanador, Adalberto Amaya

    2012-01-01

    At present, the clinical simulation has been incorporated into medical school curriculum. It is considered that the simulation is useful to develop skills, and as such its diffusion. Within the acquisition of skills, meaningful learning is an essential emotional component for the student and this point is essential to optimize the results of the simulation experience. Narrative description on the subject of simulation and the degree of "emotionality." The taxonomy is described for the types of clinical simulation fidelity and correlates it with the degree of emotionality required to achieve significant and lasting learning by students. It is essential to take into account the student's level of emotion in the learning process through simulation strategy. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  7. A social cybernetic analysis of simulation-based, remotely delivered medical skills training in an austere environment: developing a test bed for spaceflight medicine.

    Science.gov (United States)

    Musson, David M; Doyle, Thomas E

    2012-01-01

    This paper describes analysis of medical skills training exercises that were conducted at an arctic research station. These were conducted as part of an ongoing effort to establish high fidelity medical simulation test bed capabilities in remote and extreme "space analogue" environments for the purpose studying medical care in spaceflight. The methodological orientation followed by the authors is that of "second order cybernetics," or the science of studying human systems where the observer is involved within the system in question. Analyses presented include the identification of three distinct phases of the training activity, and two distinct levels of work groups-- termed "first-order teams" and "second-order teams." Depending on the phase of activity, first-order and second-order teams are identified, each having it own unique structure, composition, communications, goals, and challenges. Several specific teams are highlighted as case examples. Limitations of this approach are discussed, as are potential benefits to ongoing and planned research activity in this area.

  8. Evaluation of a novel high-fidelity epistaxis task trainer.

    Science.gov (United States)

    Scott, Grace M; Roth, Kathryn; Rotenberg, Brian; Sommer, Doron D; Sowerby, Leigh; Fung, Kevin

    2016-07-01

    To assess the efficacy of a novel high-fidelity epistaxis simulator in teaching epistaxis management to junior otolaryngology head and neck surgery residents. Prospective cohort study. A novel high-fidelity epistaxis task trainer was developed using a cadaver head, intravenous tubing, and a food coloring-filled saline bag to emulate blood. Learners were instructed on two techniques of nasal packing (formal nasal pack and nasal tampon) for the management of epistaxis using the task trainer. Learners were videotaped attempting to pack the nose of the task trainer pre- and postintervention (verbal instruction, and practice time with task trainer). Five board-certified otolaryngologists (blinded to pre- and postintervention status) evaluated the packing technique using standardized subjective outcome measures. There were 13 junior otolaryngology residents enrolled in the study. This cohort showed a statistically significant increase in global rating scores (P epistaxis simulator has been successful in teaching and the practical application of various skills in epistaxis management. This task trainer appears to confer an educational benefit in technical skills acquisition in novice learners. Further studies are needed to determine long-term skill retention. Simulation is a promising educational adjunct that effectively enhances epistaxis management skills acquisition while maximizing patient safety. NA. Laryngoscope, 126:1501-1503, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  9. A typology of educationally focused medical simulation tools.

    Science.gov (United States)

    Alinier, Guillaume

    2007-10-01

    The concept of simulation as an educational tool in healthcare is not a new idea but its use has really blossomed over the last few years. This enthusiasm is partly driven by an attempt to increase patient safety and also because the technology is becoming more affordable and advanced. Simulation is becoming more commonly used for initial training purposes as well as for continuing professional development, but people often have very different perceptions of the definition of the term simulation, especially in an educational context. This highlights the need for a clear classification of the technology available but also about the method and teaching approach employed. The aims of this paper are to discuss the current range of simulation approaches and propose a clear typology of simulation teaching aids. Commonly used simulation techniques have been identified and discussed in order to create a classification that reports simulation techniques, their usual mode of delivery, the skills they can address, the facilities required, their typical use, and their pros and cons. This paper presents a clear classification scheme of educational simulation tools and techniques with six different technological levels. They are respectively: written simulations, three-dimensional models, screen-based simulators, standardized patients, intermediate fidelity patient simulators, and interactive patient simulators. This typology allows the accurate description of the simulation technology and the teaching methods applied. Thus valid comparison of educational tools can be made as to their potential effectiveness and verisimilitude at different training stages. The proposed typology of simulation methodologies available for educational purposes provides a helpful guide for educators and participants which should help them to realise the potential learning outcomes at different technological simulation levels in relation to the training approach employed. It should also be a useful

  10. Millennium conference 2005 on medical simulation: a summary report.

    Science.gov (United States)

    Huang, Grace C; Gordon, James A; Schwartzstein, Richard M

    2007-01-01

    Medical simulation takes advantage of contextual and experiential learning by allowing trainees to practice in realistic environments prior to actual patient care. Although proponents argue that patient simulation can fundamentally enhance both medical education and patient safety, large-scale experience with advanced simulation technologies is limited. To explore expert opinion on the topic, we convened a conference of educational leaders and simulation experts to provide recommendations for how this field should be directed on a broad scale to improve the training of future health professionals. This document summarizes the proceedings of that conference. We issued a request for applications to all U.S. and Canadian medical schools within the Association of American Medical Colleges (AAMC), seeking a diverse group of institutional teams committed to an in-depth exploration of the topic. Of 33 applications, nine medical schools were selected to participate. Once on site, eight working groups were formed, each comprised of representatives across sites and roles, including deans, clerkship and program directors, content experts, and trainees. We addressed four key topics, which are subsequently summarized for presentation in this report: 1) education (How can medical simulation contribute to the education of trainees?), 2) assessment (What is the role of simulation in evaluating trainees in the context of general competencies?), 3) research (How should we develop a research agenda to evaluate simulation?), and 4) implementation (How should simulation technologies be developed and managed within and across institutions?). Participants in the conference generally agreed that simulation offers a conducive environment for focused reflection and critical thought. Although there was consensus that medical simulation can provide a robust platform for performance assessment, most participants thought that the research basis for high-stakes assessment was still too immature

  11. Bridging burn care education with modern technology, an integration with high fidelity human patient simulation.

    Science.gov (United States)

    Reeves, Patrick T; Borgman, Matthew A; Caldwell, Nicole W; Patel, Leela; Aden, James; Duggan, John P; Serio-Melvin, Maria L; Mann-Salinas, Elizabeth A

    2018-08-01

    The Advanced Burn Life Support (ABLS) program is a burn-education curriculum nearly 30 years in the making, focusing on the unique challenges of the first 24h of care after burn injury. Our team applied high fidelity human patient simulation (HFHPS) to the established ABLS curriculum. Our hypothesis was that HFHPS would be a feasible, easily replicable, and valuable adjunct to the current curriculum that would enhance learner experience. This prospective, evidenced-based practice project was conducted in a single simulation center employing the American Burn Association's ABLS curriculum using HFHPS. Participants managed 7 separate simulated polytrauma and burn scenarios with resultant clinical complications. After training, participants completed written and practical examinations as well as satisfaction surveys. From 2012 to 2013, 71 students participated in this training. Simulation (ABLS-Sim) participants demonstrated a 2.5% increase in written post-test scores compared to traditional ABLS Provider Course (ABLS Live) (p=0.0016). There was no difference in the practical examination when comparing ABLS-Sim versus ABLS Live. Subjectively, 60 (85%) participants completed surveys. The Educational Practice Questionnaire showed best practices rating of 4.5±0.7; with importance of learning rated at 4.4±0.8. The Simulation Design Scale rating for design was 4.6±0.6 with an importance rating of 4.4±0.8. Overall Satisfaction and Self-Confidence with Learning were 4.4±0.7 and 4.5±0.7, respectfully. Integrating HFHPS with the current ABLS curriculum led to higher written exam scores, high levels of confidence, satisfaction, and active learning, and presented an evidenced-based model for education that is easily employable for other facilities nationwide. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.

  12. The introduction and effectiveness of simulation-based learning in medical education.

    Science.gov (United States)

    Nara, Nobuo; Beppu, Masashi; Tohda, Shuji; Suzuki, Toshiya

    2009-01-01

    To contribute to reforming the medical education system in Japan, we visited overseas medical schools and observed the methods utilized in medical education. We visited 28 medical schools and five institutes in the United States, Europe, Australia and Asia in 2008. We met deans and specialists in medical affairs and observed the medical schools' facilities. Among the several effective educational methods used in overseas medical schools, simulation-based learning was being used in all that we visited. Simulation-based learning is used to promote medical students' mastery of communication skills, medical interviewing, physical examination and basic clinical procedures. Students and tutors both recognize the effectiveness of simulation-based learning in medical education. In contrast to overseas medical schools, simulation-based learning is not common in Japan. There remain many barriers to introduce simulation-based education in Japan, such as a shortage of medical tutors, staff, mannequins and budget. However, enhancing the motivation of tutors is likely the most important factor to facilitate simulation-based education in Japanese medical schools to become common place.

  13. Participatory ergonomics simulation of hospital work systems: The influence of simulation media on simulation outcome.

    Science.gov (United States)

    Andersen, Simone Nyholm; Broberg, Ole

    2015-11-01

    Current application of work system simulation in participatory ergonomics (PE) design includes a variety of different simulation media. However, the actual influence of the media attributes on the simulation outcome has received less attention. This study investigates two simulation media: full-scale mock-ups and table-top models. The aim is to compare, how the media attributes of fidelity and affordance influence the ergonomics identification and evaluation in PE design of hospital work systems. The results illustrate, how the full-scale mock-ups' high fidelity of room layout and affordance of tool operation support ergonomics identification and evaluation related to the work system entities space and technologies & tools. The table-top models' high fidelity of function relations and affordance of a helicopter view support ergonomics identification and evaluation related to the entity organization. Furthermore, the study addresses the form of the identified and evaluated conditions, being either identified challenges or tangible design criteria. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  14. Implementation and outcome evaluation of high-fidelity simulation scenarios to integrate cognitive and psychomotor skills for Korean nursing students.

    Science.gov (United States)

    Ahn, Heejung; Kim, Hyun-Young

    2015-05-01

    This study is involved in designing high-fidelity simulations reflecting the Korean nursing education environment. In addition, it evaluated the simulations by nursing students' learning outcomes and perceptions of the simulation design features. A quantitative design was used in two separate phases. For the first phase, five nursing experts participated in verifying the appropriateness of two simulation scenarios that reflected the intended learning objectives. For the second phase, 69 nursing students in the third year of a bachelor's degree at a nursing school participated in evaluating the simulations and were randomized according to their previous course grades. The first phase verified the two simulation scenarios using a questionnaire. The second phase evaluated students' perceptions of the simulation design, self-confidence, and critical thinking skills using a quasi-experimental post-test design. ANCOVA was used to compare the experimental and control groups, and correlation coefficient analysis was used to determine the correlation among them. We created 2 simulation scenarios to integrate cognitive and psychomotor skills according to the learning objectives and clinical environment in Korea. The experimental group had significantly higher scores on self-confidence in the first scenario. The positive correlations between perceptions of the simulation design features, self-confidence, and critical thinking skill scores were statistically significant. Students with a more positive perception of the design features of the simulations had better learning outcomes. Based on this result, simulations need to be designed and implemented with more differentiation in order to be perceived more appropriately by students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effects of the Use of High-Fidelity Human Simulation in Nursing Education: A Meta-Analysis.

    Science.gov (United States)

    Lee, Jin; Oh, Pok-Ja

    2015-09-01

    This study was conducted to evaluate the effects of high-fidelity human simulation (HFHS) on cognitive, affective, and psychomotor outcomes of learning. PubMed, Cochrane Library, EMBASE, CINAHL, and Korean databases were searched. The RevMan program was used for analysis. A meta-analysis was conducted of 26 controlled trials, with a total of 2,031 nursing students. The use of HFHS tended to have beneficial effects on cognitive and psychomotor domains of learning. In analysis of cognitive outcomes, the weighted average effect size across studies was -0.97 for problem-solving competency, -0.67 for critical thinking, and -2.15 for clinical judgment. The effect size for clinical competence of the psychomotor domain was -0.81. Use of HFHS might positively impact a high level of cognitive skill and clinical skill acquisition. Further research is required to determine the effectiveness of use of HFHS as an educational strategy to improve knowledge acquisition and communication skills. Copyright 2015, SLACK Incorporated.

  16. The (human) science of medical virtual learning environments.

    Science.gov (United States)

    Stone, Robert J

    2011-01-27

    The uptake of virtual simulation technologies in both military and civilian surgical contexts has been both slow and patchy. The failure of the virtual reality community in the 1990s and early 2000s to deliver affordable and accessible training systems stems not only from an obsessive quest to develop the 'ultimate' in so-called 'immersive' hardware solutions, from head-mounted displays to large-scale projection theatres, but also from a comprehensive lack of attention to the needs of the end users. While many still perceive the science of simulation to be defined by technological advances, such as computing power, specialized graphics hardware, advanced interactive controllers, displays and so on, the true science underpinning simulation--the science that helps to guarantee the transfer of skills from the simulated to the real--is that of human factors, a well-established discipline that focuses on the abilities and limitations of the end user when designing interactive systems, as opposed to the more commercially explicit components of technology. Based on three surgical simulation case studies, the importance of a human factors approach to the design of appropriate simulation content and interactive hardware for medical simulation is illustrated. The studies demonstrate that it is unnecessary to pursue real-world fidelity in all instances in order to achieve psychological fidelity--the degree to which the simulated tasks reproduce and foster knowledge, skills and behaviours that can be reliably transferred to real-world training applications.

  17. Live defibrillation in simulation-based medical education--a survey of simulation center practices and attitudes.

    Science.gov (United States)

    Turban, Joseph W; Peters, Deborah P; Berg, Benjamin W

    2010-02-01

    Resuscitation from cardiac arrhythmia, requiring cardioversion/defibrillation is a common simulation training scenario. Use of live defibrillation enhances simulation fidelity but is not without risk. This survey was conducted to describe the prevalence of live defibrillation use during training scenarios in healthcare simulation centers, and when used, if safety training was required before using live defibrillation. A convenience sample of attendees at the 7th annual International Meeting on Simulation in Healthcare (January 2007) was surveyed using a closed-ended 23-item survey instrument. Survey domains included responder and simulation center demographics, simulation center defibrillation safety policies, and attitudes toward defibrillation practices in simulation training environments. Fifty-seven individuals representing 39 simulation centers returned surveys, 29 of which were in the United States. Live defibrillation was used in 35 of the 39 centers (90%). A defibrillation safety training policy was in effect at 14 of 39 centers (36%). Formal training before using live defibrillation was considered necessary by 48 of 55 responders (87%). Forty-eight of 54 responders (89%) strongly agreed or agreed with the statement, "I feel using live defibrillation plays an important role in simulation-based education." Although most responders consider use of live defibrillation important and believe formal defibrillator safety training should be conducted before use, only about one third of the centers had a training policy in effect. It remains to be determined whether safety training before the use of live defibrillation during simulation-based education increases user safety.

  18. Medical Students as Facilitators for Laparoscopic Simulator Training

    DEFF Research Database (Denmark)

    Vedel, Cathrine; Bjerrum, Flemming; Mahmood, Badar

    2015-01-01

    BACKGROUND: Teaching basic clinical skills to student peers and residents by medical students has previously been shown effective. This study examines if medical students can facilitate laparoscopic procedural tasks to residents using a virtual reality simulator. METHODS: This was a retrospective...... practicing on a laparoscopic virtual reality simulator....

  19. Fiscal loss and program fidelity: impact of the economic downturn on HIV/STI prevention program fidelity.

    Science.gov (United States)

    Catania, Joseph A; Dolcini, M Margaret; Gandelman, Alice A; Narayanan, Vasudha; McKay, Virginia R

    2014-03-01

    The economic downturn of 2007 created significant fiscal losses for public and private agencies conducting behavioral prevention. Such macro-economic changes may influence program implementation and sustainability. We examined how public and private agencies conducting RESPECT, a brief HIV/STI (sexually transmitted infection) counseling and testing intervention, adapted to fiscal loss and how these adaptations impacted program fidelity. We collected qualitative and quantitative data in a national sample of 15 agencies experiencing fiscal loss. Using qualitative analyses, we examined how program fidelity varied with different types of adaptations. Agencies reported three levels of adaptation: agency-level, program-level, and direct fiscal remedies. Private agencies tended to use direct fiscal remedies, which were associated with higher fidelity. Some agency-level adaptations contributed to reductions in procedural fit, leading to negative staff morale and decreased confidence in program effectiveness, which in turn, contributed to poor fidelity. Findings describe a "work stress pathway" that links program fiscal losses to poor staff morale and low program fidelity.

  20. [Simulation in medical education: a synopsis].

    Science.gov (United States)

    Corvetto, Marcia; Bravo, María Pía; Montaña, Rodrigo; Utili, Franco; Escudero, Eliana; Boza, Camilo; Varas, Julián; Dagnino, Jorge

    2013-01-01

    Clinical simulation is defined as a technique (not a technology) to replace or amplify real experiences with guided experiences that evoke or replicate substantial aspects of the real world in a fully interactive fashion. Over the past few years, there has been a significant growth in its use, both as a learning tool and as an assessment for accreditation. Example of this is the fact that simulation is an integral part of medical education curricula abroad. Some authors have cited it as an unavoidable necessity or as an ethical imperative. In Chile, its formal inclusion in Medical Schools' curricula has just begun. This review is an overview of this important educational tool, presenting the evidence about its usefulness in medical education and describing its current situation in Chile.

  1. Comparison of fresh-frozen cadaver and high-fidelity virtual reality simulator as methods of laparoscopic training.

    Science.gov (United States)

    Sharma, Mitesh; Horgan, Alan

    2012-08-01

    The aim of this study was to compare fresh-frozen cadavers (FFC) with a high-fidelity virtual reality simulator (VRS) as training tools in minimal access surgery for complex and relatively simple procedures. A prospective comparative face validity study between FFC and VRS (LAP Mentor(™)) was performed. Surgeons were recruited to perform tasks on both FFC and VRS appropriately paired to their experience level. Group A (senior) performed a laparoscopic sigmoid colectomy, Group B (intermediate) performed a laparoscopic incisional hernia repair, and Group C (junior) performed basic laparoscopic tasks (BLT) (camera manipulation, hand-eye coordination, tissue dissection and hand-transferring skills). Each subject completed a 5-point Likert-type questionnaire rating the training modalities in nine domains. Data were analysed using nonparametric tests. Forty-five surgeons were recruited to participate (15 per skill group). Median scores for subjects in Group A were significantly higher for evaluation of FFC in all nine domains compared to VRS (p < 0.01). Group B scored FFC significantly better (p < 0.05) in all domains except task replication (p = 0.06). Group C scored FFC significantly better (p < 0.01) in eight domains but not on performance feedback (p = 0.09). When compared across groups, juniors accepted VRS as a training model more than did intermediate and senior groups on most domains (p < 0.01) except team work. Fresh-frozen cadaver is perceived as a significantly overall better model for laparoscopic training than the high-fidelity VRS by all training grades, irrespective of the complexity of the operative procedure performed. VRS is still useful when training junior trainees in BLT.

  2. A resilient and efficient CFD framework: Statistical learning tools for multi-fidelity and heterogeneous information fusion

    Science.gov (United States)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-09-01

    Exascale-level simulations require fault-resilient algorithms that are robust against repeated and expected software and/or hardware failures during computations, which may render the simulation results unsatisfactory. If each processor can share some global information about the simulation from a coarse, limited accuracy but relatively costless auxiliary simulator we can effectively fill-in the missing spatial data at the required times by a statistical learning technique - multi-level Gaussian process regression, on the fly; this has been demonstrated in previous work [1]. Based on the previous work, we also employ another (nonlinear) statistical learning technique, Diffusion Maps, that detects computational redundancy in time and hence accelerate the simulation by projective time integration, giving the overall computation a "patch dynamics" flavor. Furthermore, we are now able to perform information fusion with multi-fidelity and heterogeneous data (including stochastic data). Finally, we set the foundations of a new framework in CFD, called patch simulation, that combines information fusion techniques from, in principle, multiple fidelity and resolution simulations (and even experiments) with a new adaptive timestep refinement technique. We present two benchmark problems (the heat equation and the Navier-Stokes equations) to demonstrate the new capability that statistical learning tools can bring to traditional scientific computing algorithms. For each problem, we rely on heterogeneous and multi-fidelity data, either from a coarse simulation of the same equation or from a stochastic, particle-based, more "microscopic" simulation. We consider, as such "auxiliary" models, a Monte Carlo random walk for the heat equation and a dissipative particle dynamics (DPD) model for the Navier-Stokes equations. More broadly, in this paper we demonstrate the symbiotic and synergistic combination of statistical learning, domain decomposition, and scientific computing in

  3. A practical discrete-adjoint method for high-fidelity compressible turbulence simulations

    International Nuclear Information System (INIS)

    Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.

    2015-01-01

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that

  4. A spectrum of power plant simulators for effective training

    International Nuclear Information System (INIS)

    Foulke, L.R.

    1987-01-01

    This paper discusses the subject of training simulator fidelity and describes a spectrum of fidelity levels of power plant simulators to optimize training effectiveness. The body of knowledge about the relationship between power plant simulator fidelity and training effectiveness is reviewed, and a number of conjectures about this relationship are made based on the perspective of over 20 simulator-years of experience in training nuclear power plant operators. Developments are described for a new class of emerging simulator which utilize high resolution graphics to emphasize the visualization step of effective training

  5. Cellular Scanning Strategy for Selective Laser Melting: Capturing Thermal Trends with a Low-Fidelity, Pseudo-Analytical Model

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2014-01-01

    Simulations of additivemanufacturing processes are known to be computationally expensive.The resulting large runtimes prohibit their application in secondary analysis requiring several complete simulations such as optimization studies, and sensitivity analysis. In this paper, a low-fidelity pseud...

  6. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  7. A High Fidelity Approach to Data Simulation for Space Situational Awareness Missions

    Science.gov (United States)

    Hagerty, S.; Ellis, H., Jr.

    2016-09-01

    Space Situational Awareness (SSA) is vital to maintaining our Space Superiority. A high fidelity, time-based simulation tool, PROXOR™ (Proximity Operations and Rendering), supports SSA by generating realistic mission scenarios including sensor frame data with corresponding truth. This is a unique and critical tool for supporting mission architecture studies, new capability (algorithm) development, current/future capability performance analysis, and mission performance prediction. PROXOR™ provides a flexible architecture for sensor and resident space object (RSO) orbital motion and attitude control that simulates SSA, rendezvous and proximity operations scenarios. The major elements of interest are based on the ability to accurately simulate all aspects of the RSO model, viewing geometry, imaging optics, sensor detector, and environmental conditions. These capabilities enhance the realism of mission scenario models and generated mission image data. As an input, PROXOR™ uses a library of 3-D satellite models containing 10+ satellites, including low-earth orbit (e.g., DMSP) and geostationary (e.g., Intelsat) spacecraft, where the spacecraft surface properties are those of actual materials and include Phong and Maxwell-Beard bidirectional reflectance distribution function (BRDF) coefficients for accurate radiometric modeling. We calculate the inertial attitude, the changing solar and Earth illumination angles of the satellite, and the viewing angles from the sensor as we propagate the RSO in its orbit. The synthetic satellite image is rendered at high resolution and aggregated to the focal plane resolution resulting in accurate radiometry even when the RSO is a point source. The sensor model includes optical effects from the imaging system [point spread function (PSF) includes aberrations, obscurations, support structures, defocus], detector effects (CCD blooming, left/right bias, fixed pattern noise, image persistence, shot noise, read noise, and quantization

  8. A Randomized Trial Comparing Didactics, Demonstration, and Simulation for Teaching Teamwork to Medical Residents

    Science.gov (United States)

    Keriwala, Raj D.; Clune, Jennifer K.; Rice, Todd W.; Pugh, Meredith E.; Wheeler, Arthur P.; Miller, Alison N.; Banerjee, Arna; Terhune, Kyla; Bastarache, Julie A.

    2015-01-01

    Rationale: Effective teamwork is fundamental to the management of medical emergencies, and yet the best method to teach teamwork skills to trainees remains unknown. Objectives: In a cohort of incoming internal medicine interns, we tested the hypothesis that expert demonstration of teamwork principles and participation in high-fidelity simulation would each result in objectively assessed teamwork behavior superior to traditional didactics. Methods: This was a randomized, controlled, parallel-group trial comparing three teamwork teaching modalities for incoming internal medicine interns. Participants in a single-day orientation at the Vanderbilt University Center for Experiential Learning and Assessment were randomized 1:1:1 to didactic, demonstration-based, or simulation-based instruction and then evaluated in their management of a simulated crisis by five independent, blinded observers using the Teamwork Behavioral Rater score. Clinical performance was assessed using the American Heart Association Advanced Cardiac Life Support algorithm and a novel “Recognize, Respond, Reassess” score. Measurements and Main Results: Participants randomized to didactics (n = 18), demonstration (n = 17), and simulation (n = 17) were similar at baseline. The primary outcome of average overall Teamwork Behavioral Rater score for those who received demonstration-based training was similar to simulation participation (4.40 ± 1.15 vs. 4.10 ± 0.95, P = 0.917) and significantly higher than didactic instruction (4.40 ± 1.15 vs. 3.10 ± 0.51, P = 0.045). Clinical performance scores were similar between the three groups and correlated only weakly with teamwork behavior (coefficient of determination [Rs2] = 0.267, P didactics. Clinical performance was largely independent of teamwork behavior and did not differ between training modalities. PMID:25730661

  9. Hospital simulated patient programme: a guide.

    Science.gov (United States)

    Barrett, Jenny; Hodgson, Jan

    2011-12-01

    Many university courses employ simulated patients to work with students in the development of communication skills. Our challenge was to build a sustainable programme that could be adapted for medical, nursing and allied health staff, and groups of students, on our hospital campus. In recognition of the need to provide practice opportunities for junior medical staff to hone their capacity to communicate effectively with parents, we employed professional actors who are also qualified teachers. Junior doctors have multiple opportunities over their training time to work one-to-one with an actor-tutor in the role of simulated parent. The simulated parents are skilled in helping the trainees reflect on the conversation, and the trainees are given a recording of their sessions for further reflection and feedback from a colleague. This model has been adapted to meet the 'topic' needs and scheduling requirements of other staff and hospital-based student groups. In adapting the original medical staff programme, we came to appreciate not only the logistical but also the ethical considerations inherent in a simulated parent/patient programme. Our guide highlights the importance of safeguarding the educational integrity of the design, maintaining the fidelity of the simulations and ensuring the safety of all involved. © Blackwell Publishing Ltd 2011.

  10. Clinical simulation training improves the clinical performance of Chinese medical students

    Directory of Open Access Journals (Sweden)

    Ming-ya Zhang

    2015-10-01

    Full Text Available Background: Modern medical education promotes medical students’ clinical operating capacity rather than the mastery of theoretical knowledge. To accomplish this objective, clinical skill training using various simulations was introduced into medical education to cultivate creativity and develop the practical ability of students. However, quantitative analysis of the efficiency of clinical skill training with simulations is lacking. Methods: In the present study, we compared the mean scores of medical students (Jinan University who graduated in 2013 and 2014 on 16 stations between traditional training (control and simulative training groups. In addition, in a clinical skill competition, the objective structured clinical examination (OSCE scores of participating medical students trained using traditional and simulative training were compared. The data were statistically analyzed and qualitatively described. Results: The results revealed that simulative training could significantly enhance the graduate score of medical students compared with the control. The OSCE scores of participating medical students in the clinical skill competition, trained using simulations, were dramatically higher than those of students trained through traditional methods, and we also observed that the OSCE marks were significantly increased for the same participant after simulative training for the clinical skill competition. Conclusions: Taken together, these data indicate that clinical skill training with a variety of simulations could substantially promote the clinical performance of medical students and optimize the resources used for medical education, although a precise analysis of each specialization is needed in the future.

  11. Low-Fidelity Haptic Simulation Versus Mental Imagery Training for Epidural Anesthesia Technical Achievement in Novice Anesthesiology Residents: A Randomized Comparative Study.

    Science.gov (United States)

    Lim, Grace; Krohner, Robert G; Metro, David G; Rosario, Bedda L; Jeong, Jong-Hyeon; Sakai, Tetsuro

    2016-05-01

    There are many teaching methods for epidural anesthesia skill acquisition. Previous work suggests that there is no difference in skill acquisition whether novice learners engage in low-fidelity (LF) versus high-fidelity haptic simulation for epidural anesthesia. No study, however, has compared the effect of LF haptic simulation for epidural anesthesia versus mental imagery (MI) training in which no physical practice is attempted. We tested the hypothesis that MI training is superior to LF haptic simulation training for epidural anesthesia skill acquisition. Twenty Post-Graduate Year 2 (PGY-2) anesthesiology residents were tested at the beginning of the training year. After a didactic lecture on epidural anesthesia, they were randomized into 2 groups. Group LF had LF simulation training for epidural anesthesia using a previously described banana simulation technique. Group MI had guided, scripted MI training in which they initially were oriented to the epidural kit components and epidural anesthesia was described stepwise in detail, followed by individual mental rehearsal; no physical practice was undertaken. Each resident then individually performed epidural anesthesia on a partial-human task trainer on 3 consecutive occasions under the direct observation of skilled evaluators who were blinded to group assignment. Technical achievement was assessed with the use of a modified validated skills checklist. Scores (0-21) and duration to task completion (minutes) were recorded. A linear mixed-effects model analysis was performed to determine the differences in scores and duration between groups and over time. There was no statistical difference between the 2 groups for scores and duration to task completion. Both groups showed similarly significant increases (P = 0.0015) in scores over time (estimated mean score [SE]: group MI, 15.9 [0.55] to 17.4 [0.55] to 18.6 [0.55]; group LF, 16.2 [0.55] to 17.7 [0.55] to 18.9 [0.55]). Time to complete the procedure decreased

  12. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    Science.gov (United States)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  13. Innovations in surgery simulation: a review of past, current and future techniques.

    Science.gov (United States)

    Badash, Ido; Burtt, Karen; Solorzano, Carlos A; Carey, Joseph N

    2016-12-01

    As a result of recent work-hours limitations and concerns for patient safety, innovations in extraclinical surgical simulation have become a desired part of residency education. Current simulation models, including cadaveric, animal, bench-top, virtual reality (VR) and robotic simulators are increasingly used in surgical training programs. Advances in telesurgery, three-dimensional (3D) printing, and the incorporation of patient-specific anatomy are paving the way for simulators to become integral components of medical training in the future. Evidence from the literature highlights the benefits of including simulations in surgical training; skills acquired through simulations translate into improvements in operating room performance. Moreover, simulations are rapidly incorporating new medical technologies and offer increasingly high-fidelity recreations of procedures. As a result, both novice and expert surgeons are able to benefit from their use. As dedicated, structured curricula are developed that incorporate simulations into daily resident training, simulated surgeries will strengthen the surgeon's skill set, decrease hospital costs, and improve patient outcomes.

  14. Simulation-based medical education in pediatrics.

    Science.gov (United States)

    Lopreiato, Joseph O; Sawyer, Taylor

    2015-01-01

    The use of simulation-based medical education (SBME) in pediatrics has grown rapidly over the past 2 decades and is expected to continue to grow. Similar to other instructional formats used in medical education, SBME is an instructional methodology that facilitates learning. Successful use of SBME in pediatrics requires attention to basic educational principles, including the incorporation of clear learning objectives. To facilitate learning during simulation the psychological safety of the participants must be ensured, and when done correctly, SBME is a powerful tool to enhance patient safety in pediatrics. Here we provide an overview of SBME in pediatrics and review key topics in the field. We first review the tools of the trade and examine various types of simulators used in pediatric SBME, including human patient simulators, task trainers, standardized patients, and virtual reality simulation. Then we explore several uses of simulation that have been shown to lead to effective learning, including curriculum integration, feedback and debriefing, deliberate practice, mastery learning, and range of difficulty and clinical variation. Examples of how these practices have been successfully used in pediatrics are provided. Finally, we discuss the future of pediatric SBME. As a community, pediatric simulation educators and researchers have been a leading force in the advancement of simulation in medicine. As the use of SBME in pediatrics expands, we hope this perspective will serve as a guide for those interested in improving the state of pediatric SBME. Published by Elsevier Inc.

  15. Analysis of Medication Errors in Simulated Pediatric Resuscitation by Residents

    Directory of Open Access Journals (Sweden)

    Evelyn Porter

    2014-07-01

    Full Text Available Introduction: The objective of our study was to estimate the incidence of prescribing medication errors specifically made by a trainee and identify factors associated with these errors during the simulated resuscitation of a critically ill child. Methods: The results of the simulated resuscitation are described. We analyzed data from the simulated resuscitation for the occurrence of a prescribing medication error. We compared univariate analysis of each variable to medication error rate and performed a separate multiple logistic regression analysis on the significant univariate variables to assess the association between the selected variables. Results: We reviewed 49 simulated resuscitations . The final medication error rate for the simulation was 26.5% (95% CI 13.7% - 39.3%. On univariate analysis, statistically significant findings for decreased prescribing medication error rates included senior residents in charge, presence of a pharmacist, sleeping greater than 8 hours prior to the simulation, and a visual analog scale score showing more confidence in caring for critically ill children. Multiple logistic regression analysis using the above significant variables showed only the presence of a pharmacist to remain significantly associated with decreased medication error, odds ratio of 0.09 (95% CI 0.01 - 0.64. Conclusion: Our results indicate that the presence of a clinical pharmacist during the resuscitation of a critically ill child reduces the medication errors made by resident physician trainees.

  16. Simulation-based medical education: time for a pedagogical shift.

    Science.gov (United States)

    Kalaniti, Kaarthigeyan; Campbell, Douglas M

    2015-01-01

    The purpose of medical education at all levels is to prepare physicians with the knowledge and comprehensive skills, required to deliver safe and effective patient care. The traditional 'apprentice' learning model in medical education is undergoing a pedagogical shift to a 'simulation-based' learning model. Experiential learning, deliberate practice and the ability to provide immediate feedback are the primary advantages of simulation-based medical education. It is an effective way to develop new skills, identify knowledge gaps, reduce medical errors, and maintain infrequently used clinical skills even among experienced clinical teams, with the overall goal of improving patient care. Although simulation cannot replace clinical exposure as a form of experiential learning, it promotes learning without compromising patient safety. This new paradigm shift is revolutionizing medical education in the Western world. It is time that the developing countries embrace this new pedagogical shift.

  17. The masked educator-innovative simulation in an Australian undergraduate Medical Sonography and Medical Imaging program.

    Science.gov (United States)

    Reid-Searl, Kerry; Bowman, Anita; McAllister, Margaret; Cowling, Cynthia; Spuur, Kelly

    2014-12-01

    Clinical learning experiences for sonography and medical imaging students can sometimes involve the practice of technical procedures with less of a focus on developing communication skills with patients. Whilst patient-based simulation scenarios have been widely reported in other health education programmes, there is a paucity of research in sonography and medical imaging. The aim of this study was to explore the effectiveness of Mask-Ed™ (KRS Simulation) in the learning and teaching of clinical communication skills to undergraduate medical sonography and medical imaging students. Mask-Ed™ (KRS Simulation) is a simulation technique where the educator is hidden behind wearable realistic silicone body props including masks. Focus group interviews were conducted with 11 undergraduate medical sonography and medical imaging students at CQUniversity, Australia. The number of participants was limited to the size of the cohort of students enrolled in the course. Prior to these interviews participants were engaged in learning activities that featured the use of the Mask-Ed™ (KRS Simulation) method. Thematic analysis was employed to explore how the introduction of Mask-Ed™ (KRS Simulation) contributed to students' learning in relation to clinical communication skills. Key themes included: benefits of interacting with someone real rather than another student, learning made fun, awareness of empathy, therapeutic communication skills, engaged problem solving and purposeful reflection. Mask-Ed™ (KRS Simulation) combined with interactive sessions with an expert facilitator, contributed positively to students' learning in relation to clinical communication skills. Participants believed that interacting with someone real, as in the Mask-Ed characters was beneficial. In addition to the learning being described as fun, participants gained an awareness of empathy, therapeutic communication skills, engaged problem solving and purposeful reflection.

  18. An adaptive sampling method for variable-fidelity surrogate models using improved hierarchical kriging

    Science.gov (United States)

    Hu, Jiexiang; Zhou, Qi; Jiang, Ping; Shao, Xinyu; Xie, Tingli

    2018-01-01

    Variable-fidelity (VF) modelling methods have been widely used in complex engineering system design to mitigate the computational burden. Building a VF model generally includes two parts: design of experiments and metamodel construction. In this article, an adaptive sampling method based on improved hierarchical kriging (ASM-IHK) is proposed to refine the improved VF model. First, an improved hierarchical kriging model is developed as the metamodel, in which the low-fidelity model is varied through a polynomial response surface function to capture the characteristics of a high-fidelity model. Secondly, to reduce local approximation errors, an active learning strategy based on a sequential sampling method is introduced to make full use of the already required information on the current sampling points and to guide the sampling process of the high-fidelity model. Finally, two numerical examples and the modelling of the aerodynamic coefficient for an aircraft are provided to demonstrate the approximation capability of the proposed approach, as well as three other metamodelling methods and two sequential sampling methods. The results show that ASM-IHK provides a more accurate metamodel at the same simulation cost, which is very important in metamodel-based engineering design problems.

  19. Medical simulation-based education improves medicos' clinical skills.

    Science.gov (United States)

    Wang, Zhaoming; Liu, Qiaoyu; Wang, Hai

    2013-03-01

    Clinical skill is an essential part of clinical medicine and plays quite an important role in bridging medicos and physicians. Due to the realities in China, traditional medical education is facing many challenges. There are few opportunities for students to practice their clinical skills and their dexterities are generally at a low level. Medical simulation-based education is a new teaching modality and helps to improve medicos' clinical skills to a large degree. Medical simulation-based education has many significant advantages and will be further developed and applied.

  20. An exploration of the relationship between knowledge and performance-related variables in high-fidelity simulation: designing instruction that promotes expertise in practice.

    Science.gov (United States)

    Hauber, Roxanne P; Cormier, Eileen; Whyte, James

    2010-01-01

    Increasingly, high-fidelity patient simulation (HFPS) is becoming essential to nursing education. Much remains unknown about how classroom learning is connected to student decision-making in simulation scenarios and the degree to which transference takes place between the classroom setting and actual practice. The present study was part of a larger pilot study aimed at determining the relationship between nursing students' clinical ability to prioritize their actions and the associated cognitions and physiologic outcomes of care using HFPS. In an effort to better explain the knowledge base being used by nursing students in HFPS, the investigators explored the relationship between common measures of knowledge and performance-related variables. Findings are discussed within the context of the expert performance approach and concepts from cognitive psychology, such as cognitive architecture, cognitive load, memory, and transference.

  1. Medical simulation technology: educational overview, industry leaders, and what's missing.

    Science.gov (United States)

    Spooner, Nicholas; Hurst, Stephen; Khadra, Mohamed

    2012-01-01

    Modern medical simulation technology (MST) debuted in 1960 with the development of Resusci Annie (Laerdal 2007), which assisted students in the acquisition of proper ventilation and compression techniques used during basic life support. Following a steady stream of subsequent technological advances and innovations, MST manufacturers are now able to offer training aids capable of facilitating innovative learning in such diverse areas as human patient simulators, simulated clinical environments, virtual procedure stations, virtual medical environments, electronic tutors, and performance recording. The authors list a number of the most popular MSTs presently available while citing evaluative efforts undertaken to date regarding the efficacy of MST to the medical profession. They conclude by proposing a variety of simulation innovations of prospective interest to both medical and technology personnel while offering healthcare administrators a series of recommended considerations when planning to integrate MST into existing medical systems.

  2. Characterization of a novel, highly integrated tubular solid oxide fuel cell system using high-fidelity simulation tools

    Science.gov (United States)

    Kattke, K. J.; Braun, R. J.

    2011-08-01

    A novel, highly integrated tubular SOFC system intended for small-scale power is characterized through a series of sensitivity analyses and parametric studies using a previously developed high-fidelity simulation tool. The high-fidelity tubular SOFC system modeling tool is utilized to simulate system-wide performance and capture the thermofluidic coupling between system components. Stack performance prediction is based on 66 anode-supported tubular cells individually evaluated with a 1-D electrochemical cell model coupled to a 3-D computational fluid dynamics model of the cell surroundings. Radiation is the dominate stack cooling mechanism accounting for 66-92% of total heat loss at the outer surface of all cells at baseline conditions. An average temperature difference of nearly 125 °C provides a large driving force for radiation heat transfer from the stack to the cylindrical enclosure surrounding the tube bundle. Consequently, cell power and voltage disparities within the stack are largely a function of the radiation view factor from an individual tube to the surrounding stack can wall. The cells which are connected in electrical series, vary in power from 7.6 to 10.8 W (with a standard deviation, σ = 1.2 W) and cell voltage varies from 0.52 to 0.73 V (with σ = 81 mV) at the simulation baseline conditions. It is observed that high cell voltage and power outputs directly correspond to tubular cells with the smallest radiation view factor to the enclosure wall, and vice versa for tubes exhibiting low performance. Results also reveal effective control variables and operating strategies along with an improved understanding of the effect that design modifications have on system performance. By decreasing the air flowrate into the system by 10%, the stack can wall temperature increases by about 6% which increases the minimum cell voltage to 0.62 V and reduces deviations in cell power and voltage by 31%. A low baseline fuel utilization is increased by decreasing the

  3. High Fidelity, Numerical Investigation of Cross Talk in a Multi-Qubit Xmon Processor

    Science.gov (United States)

    Najafi-Yazdi, Alireza; Kelly, Julian; Martinis, John

    Unwanted electromagnetic interference between qubits, transmission lines, flux lines and other elements of a superconducting quantum processor poses a challenge in engineering such devices. This problem is exacerbated with scaling up the number of qubits. High fidelity, massively parallel computational toolkits, which can simulate the 3D electromagnetic environment and all features of the device, are instrumental in addressing this challenge. In this work, we numerically investigated the crosstalk between various elements of a multi-qubit quantum processor designed and tested by the Google team. The processor consists of 6 superconducting Xmon qubits with flux lines and gatelines. The device also consists of a Purcell filter for readout. The simulations are carried out with a high fidelity, massively parallel EM solver. We will present our findings regarding the sources of crosstalk in the device, as well as numerical model setup, and a comparison with available experimental data.

  4. Medical simulation: Overview, and application to wound modelling and management

    Directory of Open Access Journals (Sweden)

    Dinker R Pai

    2012-01-01

    Full Text Available Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a overall increase in the number of medical students vis-à-vis the availability of patients; b increasing awareness among patients of their rights and consequent increase in litigations and c tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.

  5. Medical simulation: Overview, and application to wound modelling and management.

    Science.gov (United States)

    Pai, Dinker R; Singh, Simerjit

    2012-05-01

    Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a) overall increase in the number of medical students vis-à-vis the availability of patients; b) increasing awareness among patients of their rights and consequent increase in litigations and c) tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body) and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality) simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.

  6. Undergraduate nursing students' performance in recognising and responding to sudden patient deterioration in high psychological fidelity simulated environments: an Australian multi-centre study.

    Science.gov (United States)

    Bogossian, Fiona; Cooper, Simon; Cant, Robyn; Beauchamp, Alison; Porter, Joanne; Kain, Victoria; Bucknall, Tracey; Phillips, Nicole M

    2014-05-01

    Early recognition and situation awareness of sudden patient deterioration, a timely appropriate clinical response, and teamwork are critical to patient outcomes. High fidelity simulated environments provide the opportunity for undergraduate nursing students to develop and refine recognition and response skills. This paper reports the quantitative findings of the first phase of a larger program of ongoing research: Feedback Incorporating Review and Simulation Techniques to Act on Clinical Trends (FIRST2ACTTM). It specifically aims to identify the characteristics that may predict primary outcome measures of clinical performance, teamwork and situation awareness in the management of deteriorating patients. Mixed-method multi-centre study. High fidelity simulated acute clinical environment in three Australian universities. A convenience sample of 97 final year nursing students enrolled in an undergraduate Bachelor of Nursing or combined Bachelor of Nursing degree were included in the study. In groups of three, participants proceeded through three phases: (i) pre-briefing and completion of a multi-choice question test, (ii) three video-recorded simulated clinical scenarios where actors substituted real patients with deteriorating conditions, and (iii) post-scenario debriefing. Clinical performance, teamwork and situation awareness were evaluated, using a validated standard checklist (OSCE), Team Emergency Assessment Measure (TEAM) score sheet and Situation Awareness Global Assessment Technique (SAGAT). A Modified Angoff technique was used to establish cut points for clinical performance. Student teams engaged in 97 simulation experiences across the three scenarios and achieved a level of clinical performance consistent with the experts' identified pass level point in only 9 (1%) of the simulation experiences. Knowledge was significantly associated with overall teamwork (p=.034), overall situation awareness (p=.05) and clinical performance in two of the three scenarios

  7. Quantum nondemolition measurement saturates fidelity trade-off

    International Nuclear Information System (INIS)

    Mista, L.; Filip, R.

    2005-01-01

    Full text: A general quantum measurement on an unknown quantum state enables us to estimate what the state originally was. Simultaneously, the measurement has a destructive effect on a measured quantum state which is reflected by the decrease of the output fidelity. We show for any d-level system that quantum non-demolition measurement controlled by a suitably prepared ancilla is a measurement in which the decrease of the output fidelity is minimal. The ratio between the estimation fidelity and the output fidelity can be continuously controlled by the preparation of the ancilla. Different measurement strategies on the ancilla to gain maximum estimation fidelity are analyzed. A feasible scheme of such a measurement for atomic and optical 2-level systems based on basic controlled-NOT gate is discussed. (author)

  8. Simulation-Based Medical Education: An Ethical Imperative.

    Science.gov (United States)

    Ziv, Amitai; Wolpe, Paul Root; Small, Stephen D.; Glick, Shimon

    2003-01-01

    Describes simulation-based learning in medical education and presents four these that make a framework for simulations: (1) best standards of care and training; (2) error management and patient safety; (3) patient autonomy; and (4) social justice and resource allocation. (SLD)

  9. Medical imaging informatics simulators: a tutorial.

    Science.gov (United States)

    Huang, H K; Deshpande, Ruchi; Documet, Jorge; Le, Anh H; Lee, Jasper; Ma, Kevin; Liu, Brent J

    2014-05-01

    A medical imaging informatics infrastructure (MIII) platform is an organized method of selecting tools and synthesizing data from HIS/RIS/PACS/ePR systems with the aim of developing an imaging-based diagnosis or treatment system. Evaluation and analysis of these systems can be made more efficient by designing and implementing imaging informatics simulators. This tutorial introduces the MIII platform and provides the definition of treatment/diagnosis systems, while primarily focusing on the development of the related simulators. A medical imaging informatics (MII) simulator in this context is defined as a system integration of many selected imaging and data components from the MIII platform and clinical treatment protocols, which can be used to simulate patient workflow and data flow starting from diagnostic procedures to the completion of treatment. In these processes, DICOM and HL-7 standards, IHE workflow profiles, and Web-based tools are emphasized. From the information collected in the database of a specific simulator, evidence-based medicine can be hypothesized to choose and integrate optimal clinical decision support components. Other relevant, selected clinical resources in addition to data and tools from the HIS/RIS/PACS and ePRs platform may also be tailored to develop the simulator. These resources can include image content indexing, 3D rendering with visualization, data grid and cloud computing, computer-aided diagnosis (CAD) methods, specialized image-assisted surgical, and radiation therapy technologies. Five simulators will be discussed in this tutorial. The PACS-ePR simulator with image distribution is the cradle of the other simulators. It supplies the necessary PACS-based ingredients and data security for the development of four other simulators: the data grid simulator for molecular imaging, CAD-PACS, radiation therapy simulator, and image-assisted surgery simulator. The purpose and benefits of each simulator with respect to its clinical relevance

  10. Fidelity of quantum interferometers

    International Nuclear Information System (INIS)

    Bahder, Thomas B.; Lopata, Paul A.

    2006-01-01

    For a generic interferometer, the conditional probability density distribution p(φ|m), for the phase φ given measurement outcome m will generally have multiple peaks. Therefore, the phase sensitivity of an interferometer cannot be adequately characterized by the standard deviation, such as Δφ∼1/√(N) (the standard limit), or Δφ∼1/N (the Heisenberg limit). We propose an alternative measure of phase sensitivity--the fidelity of an interferometer--defined as the Shannon mutual information between the phase shift φ and the measurement outcomes m. As an example application of interferometer fidelity, we consider a generic optical Mach-Zehnder interferometer, used as a sensor of a classical field. For the case where there exists no a priori information on the phase shift, we find the surprising result that maximally entangled state input leads to a lower fidelity than Fock state input, for the same photon number

  11. Accomplishments and challenges of surgical simulation.

    Science.gov (United States)

    Satava, R M

    2001-03-01

    For nearly a decade, advanced computer technologies have created extraordinary educational tools using three-dimensional (3D) visualization and virtual reality. Pioneering efforts in surgical simulation with these tools have resulted in a first generation of simulators for surgical technical skills. Accomplishments include simulations with 3D models of anatomy for practice of surgical tasks, initial assessment of student performance in technical skills, and awareness by professional societies of potential in surgical education and certification. However, enormous challenges remain, which include improvement of technical fidelity, standardization of accurate metrics for performance evaluation, integration of simulators into a robust educational curriculum, stringent evaluation of simulators for effectiveness and value added to surgical training, determination of simulation application to certification of surgical technical skills, and a business model to implement and disseminate simulation successfully throughout the medical education community. This review looks at the historical progress of surgical simulators, their accomplishments, and the challenges that remain.

  12. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation

    NARCIS (Netherlands)

    Sorensen, J.L.; Ostergaard, D.; Leblanc, V.; Ottesen, B.; Konge, L.; Dieckmann, P.; Vleuten, C. van der

    2017-01-01

    BACKGROUND: Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities

  13. Simulation in Pre-departure Training for Residents Planning Clinical Work in a Low-Income Country

    Directory of Open Access Journals (Sweden)

    Kevin R. Schwartz

    2015-12-01

    Full Text Available Introduction: Increasingly, pediatric and emergency medicine (EM residents are pursuing clinical rotations in low-income countries. Optimal pre-departure preparation for such rotations has not yet been established. High-fidelity simulation represents a potentially effective modality for such preparation. This study was designed to assess whether a pre-departure high-fidelity medical simulation curriculum is effective in helping to prepare residents for clinical rotations in a low-income country. Methods: 43 pediatric and EM residents planning clinical rotations in Liberia, West Africa, participated in a simulation-based curriculum focused on severe pediatric malaria and malnutrition and were then assessed by survey at three time points: pre-simulation, post-simulation, and after returning from work abroad. Results: Prior to simulation, 1/43 (2% participants reported they were comfortable with the diagnosis and management of severe malnutrition; this increased to 30/42 (71% after simulation and 24/31 (77% after working abroad. Prior to simulation, 1/43 (2% of residents reported comfort with the diagnosis and management of severe malaria; this increased to 26/42 (62% after simulation and 28/31 (90% after working abroad; 36/42 (86% of residents agreed that a simulation-based global health curriculum is more useful than a didactic curriculum alone, and 41/42 (98% felt a simulator-based curriculum should be offered to all residents planning a clinical trip to a low-income country. Conclusion: High-fidelity simulation is effective in increasing residents’ self-rated comfort in management of pediatric malaria and malnutrition and a majority of participating residents feel it should be included as a component of pre-departure training for all residents rotating clinically to low-income countries.

  14. The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G., Jr.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  15. IMPROVING MEDICAL EDUCATION: SIMULATING CHANGES IN PATIENT ANATOMY USING DYNAMIC HAPTIC FEEDBACK.

    Science.gov (United States)

    Yovanoff, Mary; Pepley, David; Mirkin, Katelin; Moore, Jason; Han, David; Miller, Scarlett

    2016-09-01

    Virtual simulation is an emerging field in medical education. Research suggests that simulation reduces complication rates and improves learning gains for medical residents. One benefit of simulators is their allowance for more realistic and dynamic patient anatomies. While potentially useful throughout medical education, few studies have explored the impact of dynamic haptic simulators on medical training. In light of this research void, this study was developed to examine how a Dynamic-Haptic Robotic Trainer (DHRT) impacts medical student self-efficacy and skill gains compared to traditional simulators developed to train students in Internal Jugular Central Venous Catheter (IJ CVC) placement. The study was conducted with 18 third year medical students with no prior CVC insertion experience who underwent a pre-test, simulator training (manikin, robotic, or mixed) and post-test. The results revealed the DHRT as a useful method for training CVC skills and supports further research on dynamic haptic trainers in medical education.

  16. IMPROVING MEDICAL EDUCATION: SIMULATING CHANGES IN PATIENT ANATOMY USING DYNAMIC HAPTIC FEEDBACK

    OpenAIRE

    Yovanoff, Mary; Pepley, David; Mirkin, Katelin; Moore, Jason; Han, David; Miller, Scarlett

    2016-01-01

    Virtual simulation is an emerging field in medical education. Research suggests that simulation reduces complication rates and improves learning gains for medical residents. One benefit of simulators is their allowance for more realistic and dynamic patient anatomies. While potentially useful throughout medical education, few studies have explored the impact of dynamic haptic simulators on medical training. In light of this research void, this study was developed to examine how a Dynamic-Hapt...

  17. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    Science.gov (United States)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model

  18. High-fidelity quantum driving

    DEFF Research Database (Denmark)

    Bason, Mark George; Viteau, Matthieu; Malossi, Nicola

    2011-01-01

    Accurately controlling a quantum system is a fundamental requirement in quantum information processing and the coherent manipulation of molecular systems. The ultimate goal in quantum control is to prepare a desired state with the highest fidelity allowed by the available resources...... and the experimental constraints. Here we experimentally implement two optimal high-fidelity control protocols using a two-level quantum system comprising Bose–Einstein condensates in optical lattices. The first is a short-cut protocol that reaches the maximum quantum-transformation speed compatible...

  19. Manned Flight Simulator (MFS)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Simulation Division, home to the Manned Flight Simulator (MFS), provides real-time, high fidelity, hardware-in-the-loop flight simulation capabilities...

  20. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    Science.gov (United States)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2018-03-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  1. The Break-Even Point: When Medical Advances Are Less Important Than Improving the Fidelity With Which They Are Delivered

    OpenAIRE

    Woolf, Steven H.; Johnson, Robert E.

    2005-01-01

    Society invests billions of dollars in the development of new drugs and technologies but comparatively little in the fidelity of health care, that is, improving systems to ensure the delivery of care to all patients in need. Using mathematical arguments and a nomogram, we demonstrate that technological advances must yield dramatic, often unrealistic increases in efficacy to do more good than could be accomplished by improving fidelity. In 2 examples (the development of anti-platelet agents an...

  2. Model-implementation fidelity in cyber physical system design

    CERN Document Server

    Fabre, Christian

    2017-01-01

    This book puts in focus various techniques for checking modeling fidelity of Cyber Physical Systems (CPS), with respect to the physical world they represent. The authors' present modeling and analysis techniques representing different communities, from very different angles, discuss their possible interactions, and discuss the commonalities and differences between their practices. Coverage includes model driven development, resource-driven development, statistical analysis, proofs of simulator implementation, compiler construction, power/temperature modeling of digital devices, high-level performance analysis, and code/device certification. Several industrial contexts are covered, including modeling of computing and communication, proof architectures models and statistical based validation techniques. Addresses CPS design problems such as cross-application interference, parsimonious modeling, and trustful code production Describes solutions, such as simulation for extra-functional properties, extension of cod...

  3. The Evolution of Medical Training Simulation in the U.S. Military.

    Science.gov (United States)

    Linde, Amber S; Kunkler, Kevin

    2016-01-01

    The United States has been at war since 2003. During that time, training using Medical Simulation technology has been developed and integrated into military medical training for combat medics, nurses and surgeons. Efforts stemming from the Joint Programmatic Committee-1 (JPC-1) Medical Simulation and Training Portfolio has allowed for the improvement and advancement in military medical training by focusing on research in simulation training technology in order to achieve this. Based upon lessons learned capability gaps have been identified concerning the necessity to validate and enhance combat medial training simulators. These capability gaps include 1) Open Source/Open Architecture; 2) Modularity and Interoperability; and 3) Material and Virtual Reality (VR) Models. Using the capability gaps, JPC-1 has identified important research endeavors that need to be explored.

  4. Laparoscopic skill improvement after virtual reality simulator training in medical students as assessed by augmented reality simulator.

    Science.gov (United States)

    Nomura, Tsutomu; Mamada, Yasuhiro; Nakamura, Yoshiharu; Matsutani, Takeshi; Hagiwara, Nobutoshi; Fujita, Isturo; Mizuguchi, Yoshiaki; Fujikura, Terumichi; Miyashita, Masao; Uchida, Eiji

    2015-11-01

    Definitive assessment of laparoscopic skill improvement after virtual reality simulator training is best obtained during an actual operation. However, this is impossible in medical students. Therefore, we developed an alternative assessment technique using an augmented reality simulator. Nineteen medical students completed a 6-week training program using a virtual reality simulator (LapSim). The pretest and post-test were performed using an object-positioning module and cholecystectomy on an augmented reality simulator(ProMIS). The mean performance measures between pre- and post-training on the LapSim were compared with a paired t-test. In the object-positioning module, the execution time of the task (P virtual reality simulator improved the operative skills of medical students as objectively evaluated by assessment using an augmented reality simulator instead of an actual operation. We hope that these findings help to establish an effective training program for medical students. © 2015 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  5. Current Status of Simulation-Based Training in Graduate Medical Education.

    Science.gov (United States)

    Willis, Ross E; Van Sickle, Kent R

    2015-08-01

    The use of simulation in Graduate Medical Education has evolved significantly over time, particularly during the past decade. The applications of simulation include introductory and basic technical skills, more advanced technical skills, and nontechnical skills, and simulation is gaining acceptance in high-stakes assessments. Simulation-based training has also brought about paradigm shifts in the medical and surgical education arenas and has borne new and exciting national and local consortia that will ensure that the scope and impact of simulation will continue to broaden. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  7. Creating NDA working standards through high-fidelity spent fuel modeling

    International Nuclear Information System (INIS)

    Skutnik, Steven E.; Gauld, Ian C.; Romano, Catherine E.; Trellue, Holly

    2012-01-01

    The Next Generation Safeguards Initiative (NGSI) is developing advanced non-destructive assay (NDA) techniques for spent nuclear fuel assemblies to advance the state-of-the-art in safeguards measurements. These measurements aim beyond the capabilities of existing methods to include the evaluation of plutonium and fissile material inventory, independent of operator declarations. Testing and evaluation of advanced NDA performance will require reference assemblies with well-characterized compositions to serve as working standards against which the NDA methods can be benchmarked and for uncertainty quantification. To support the development of standards for the NGSI spent fuel NDA project, high-fidelity modeling of irradiated fuel assemblies is being performed to characterize fuel compositions and radiation emission data. The assembly depletion simulations apply detailed operating history information and core simulation data as it is available to perform high fidelity axial and pin-by-pin fuel characterization for more than 1600 nuclides. The resulting pin-by-pin isotopic inventories are used to optimize the NDA measurements and provide information necessary to unfold and interpret the measurement data, e.g., passive gamma emitters, neutron emitters, neutron absorbers, and fissile content. A key requirement of this study is the analysis of uncertainties associated with the calculated compositions and signatures for the standard assemblies; uncertainties introduced by the calculation methods, nuclear data, and operating information. An integral part of this assessment involves the application of experimental data from destructive radiochemical assay to assess the uncertainty and bias in computed inventories, the impact of parameters such as assembly burnup gradients and burnable poisons, and the influence of neighboring assemblies on periphery rods. This paper will present the results of high fidelity assembly depletion modeling and uncertainty analysis from independent

  8. An experimental study on the effects of a simulation game on students' clinical cognitive skills and motivation.

    Science.gov (United States)

    Dankbaar, Mary E W; Alsma, Jelmer; Jansen, Els E H; van Merrienboer, Jeroen J G; van Saase, Jan L C M; Schuit, Stephanie C E

    2016-08-01

    Simulation games are becoming increasingly popular in education, but more insight in their critical design features is needed. This study investigated the effects of fidelity of open patient cases in adjunct to an instructional e-module on students' cognitive skills and motivation. We set up a three-group randomized post-test-only design: a control group working on an e-module; a cases group, combining the e-module with low-fidelity text-based patient cases, and a game group, combining the e-module with a high-fidelity simulation game with the same cases. Participants completed questionnaires on cognitive load and motivation. After a 4-week study period, blinded assessors rated students' cognitive emergency care skills in two mannequin-based scenarios. In total 61 students participated and were assessed; 16 control group students, 20 cases students and 25 game students. Learning time was 2 h longer for the cases and game groups than for the control group. Acquired cognitive skills did not differ between groups. The game group experienced higher intrinsic and germane cognitive load than the cases group (p = 0.03 and 0.01) and felt more engaged (p study longer. The e-module appeared to be very effective, while the high-fidelity game, although engaging, probably distracted students and impeded learning. Medical educators designing motivating and effective skills training for novices should align case complexity and fidelity with students' proficiency level. The relation between case-fidelity, motivation and skills development is an important field for further study.

  9. Performance of technology-driven simulators for medical students--a systematic review.

    Science.gov (United States)

    Michael, Michael; Abboudi, Hamid; Ker, Jean; Shamim Khan, Mohammed; Dasgupta, Prokar; Ahmed, Kamran

    2014-12-01

    Simulation-based education has evolved as a key training tool in high-risk industries such as aviation and the military. In parallel with these industries, the benefits of incorporating specialty-oriented simulation training within medical schools are vast. Adoption of simulators into medical school education programs has shown great promise and has the potential to revolutionize modern undergraduate education. An English literature search was carried out using MEDLINE, EMBASE, and psychINFO databases to identify all randomized controlled studies pertaining to "technology-driven" simulators used in undergraduate medical education. A validity framework incorporating the "framework for technology enhanced learning" report by the Department of Health, United Kingdom, was used to evaluate the capabilities of each technology-driven simulator. Information was collected regarding the simulator type, characteristics, and brand name. Where possible, we extracted information from the studies on the simulators' performance with respect to validity status, reliability, feasibility, education impact, acceptability, and cost effectiveness. We identified 19 studies, analyzing simulators for medical students across a variety of procedure-based specialities including; cardiovascular (n = 2), endoscopy (n = 3), laparoscopic surgery (n = 8), vascular access (n = 2), ophthalmology (n = 1), obstetrics and gynecology (n = 1), anesthesia (n = 1), and pediatrics (n = 1). Incorporation of simulators has so far been on an institutional level; no national or international trends have yet emerged. Simulators are capable of providing a highly educational and realistic experience for the medical students within a variety of speciality-oriented teaching sessions. Further research is needed to establish how best to incorporate simulators into a more primary stage of medical education; preclinical and clinical undergraduate medicine. Copyright © 2014 Elsevier Inc. All rights

  10. Intelligent medical image processing by simulated annealing

    International Nuclear Information System (INIS)

    Ohyama, Nagaaki

    1992-01-01

    Image processing is being widely used in the medical field and already has become very important, especially when used for image reconstruction purposes. In this paper, it is shown that image processing can be classified into 4 categories; passive, active, intelligent and visual image processing. These 4 classes are explained at first through the use of several examples. The results show that the passive image processing does not give better results than the others. Intelligent image processing, then, is addressed, and the simulated annealing method is introduced. Due to the flexibility of the simulated annealing, formulated intelligence is shown to be easily introduced in an image reconstruction problem. As a practical example, 3D blood vessel reconstruction from a small number of projections, which is insufficient for conventional method to give good reconstruction, is proposed, and computer simulation clearly shows the effectiveness of simulated annealing method. Prior to the conclusion, medical file systems such as IS and C (Image Save and Carry) is pointed out to have potential for formulating knowledge, which is indispensable for intelligent image processing. This paper concludes by summarizing the advantages of simulated annealing. (author)

  11. AFFECT: Altered-Fidelity Framework for Enhancing Cognition and Training

    Directory of Open Access Journals (Sweden)

    Ryan Patrick McMahan

    2016-11-01

    Full Text Available In this paper, we present a new framework for analyzing and designing virtual reality (VR techniques. This framework is based on two concepts—system fidelity (i.e., the degree with which real-world experiences are reproduced by a system and memory (i.e., the formation and activation of perceptual, cognitive, and motor networks of neurons. The premise of the framework is to manipulate an aspect of system fidelity in order to assist a stage of memory. We call it the Altered-Fidelity Framework for Enhancing Cognition and Training (AFFECT. AFFECT provides nine categories of approaches to altering system fidelity to positively affect learning or training. These categories are based on the intersections of three aspects of system fidelity (interaction fidelity, scenario fidelity, and display fidelity and three stages of memory (encoding, implicit retrieval, and explicit retrieval. In addition to discussing the details of our new framework, we show how AFFECT can be used as a tool for analyzing and categorizing VR techniques designed to facilitate learning or training. We also demonstrate how AFFECT can be used as a design space for creating new VR techniques intended for educational and training systems.

  12. The Development of the Simulation Thinking Rubric

    Science.gov (United States)

    Doolen, Jessica

    2012-01-01

    High fidelity simulation has become a widespread and costly learning strategy in nursing education because it can fill the gap left by a shortage of clinical sites. In addition, high fidelity simulation is an active learning strategy that is thought to increase higher order thinking such as clinical reasoning and judgment skills in nursing…

  13. The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    Science.gov (United States)

    Keenan, Alexandra; Young, Millennia; Saile, Lynn; Boley, Lynn; Walton, Marlei; Kerstman, Eric; Shah, Ronak; Goodenow, Debra A.; Myers, Jerry G.

    2015-01-01

    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting

  14. Local environment can enhance fidelity of quantum teleportation

    Science.gov (United States)

    BadziaĢ, Piotr; Horodecki, Michał; Horodecki, Paweł; Horodecki, Ryszard

    2000-07-01

    We show how an interaction with the environment can enhance fidelity of quantum teleportation. To this end, we present examples of states which cannot be made useful for teleportation by any local unitary transformations; nevertheless, after being subjected to a dissipative interaction with the local environment, the states allow for teleportation with genuinely quantum fidelity. The surprising fact here is that the necessary interaction does not require any intelligent action from the parties sharing the states. In passing, we produce some general results regarding optimization of teleportation fidelity by local action. We show that bistochastic processes cannot improve fidelity of two-qubit states. We also show that in order to have their fidelity improvable by a local process, the bipartite states must violate the so-called reduction criterion of separability.

  15. Medical teachers' perception towards simulation-based medical education: A multicenter study in Saudi Arabia.

    Science.gov (United States)

    Ahmed, Shabnam; Al-Mously, Najwa; Al-Senani, Fahmi; Zafar, Muhammad; Ahmed, Muhammad

    2016-01-01

    This study aims to evaluate the perception of medical teachers toward the integration of simulation-based medical education (SBME) in undergraduate curriculum and also identify contextual barriers faced by medical teachers. This cross-sectional observational study included medical teachers from three universities. A questionnaire was used to report teachers' perception. SBME was perceived by medical teachers (basic sciences/clinical, respectively) as enjoyable (71.1%/75.4%), effective assessment tool to evaluate students' learning (60%/73.9%) and can improve learning outcome (88.8%/79.7%). Similarly, (91.1%/71%) of teachers think that simulation should be part of the curriculum and not stand alone one time activity. Teachers' training for SBME has created a significant difference in perception (p medical curriculum are major perceived barriers for effective SBME. Results highlight the positive perception and attitude of medical teachers toward the integration of SBME in undergraduate curriculum. Prior formal training of teachers created a different perception. Top perceived barriers for effective SBME include teachers' formal training supported with time and resources and the early integration into the curriculum. These critical challenges need to be addressed by medical schools in order to enhance the integration SBME in undergraduate curricula.

  16. Implementation of full patient simulation training in surgical residency.

    Science.gov (United States)

    Fernandez, Gladys L; Lee, Patrick C; Page, David W; D'Amour, Elizabeth M; Wait, Richard B; Seymour, Neal E

    2010-01-01

    Simulated patient care has gained acceptance as a medical education tool but is underused in surgical training. To improve resident clinical management in critical situations relevant to the surgical patient, high-fidelity full patient simulation training was instituted at Baystate Medical Center in 2005 and developed during successive years. We define surgical patient simulation as clinical management performed in a high fidelity environment using a manikin simulator. This technique is intended to be specifically modeled experiential learning related to the knowledge, skills, and behaviors that are fundamental to patient care. We report 3 academic years' use of a patient simulation curriculum. Learners were PGY 1-3 residents; 26 simulated patient care experiences were developed based on (1) designation as a critical management problem that would otherwise be difficult to practice, (2) ability to represent the specific problem in simulation, (3) relevance to the American Board of Surgery (ABS) certifying examination, and/or (4) relevance to institutional quality or morbidity and mortality reports. Although training started in 2005, data are drawn from the period of systematic and mandatory training spanning from July 2006 to June 2009. Training occurred during 1-hour sessions using a computer-driven manikin simulator (METI, Sarasota, Florida). Educational content was provided either before or during presimulation briefing sessions. Scenario areas included shock states, trauma and critical care case management, preoperative processes, and postoperative conditions and complications. All sessions were followed by facilitated debriefing. Likert scale-based multi-item assessments of core competency in medical knowledge, patient care, diagnosis, management, communication, and professionalism were used to generate a performance score for each resident for each simulation (percentage of best possible score). Performance was compared across PGYs by repeated

  17. Users' Perception of Medical Simulation Training: A Framework for Adopting Simulator Technology

    Science.gov (United States)

    Green, Leili Hayati

    2014-01-01

    Users play a key role in many training strategies, yet some organizations often fail to understand the users' perception after a simulation training implementation, their attitude about acceptance or rejection of and integration of emerging simulation technology in medical training (Gaba, 2007, and Topol, 2012). Several factors are considered to…

  18. Training in trauma management: the role of simulation-based medical education.

    Science.gov (United States)

    Berkenstadt, Haim; Ben-Menachem, Erez; Simon, Daniel; Ziv, Amitai

    2013-03-01

    Simulation-based medical education (SBME) offers a safe and "mistake-forgiving" environment to teach and train medical professionals. The diverse range of medical-simulation modalities enables trainees to acquire and practice an array of tasks and skills. SBME offers the field of trauma training multiple opportunities to enhance the effectiveness of the education provided in this challenging domain. Further research is needed to better learn the role of simulation-based learning in trauma management and education. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Bronchoscopy Simulation Training as a Tool in Medical School Education.

    Science.gov (United States)

    Gopal, Mallika; Skobodzinski, Alexus A; Sterbling, Helene M; Rao, Sowmya R; LaChapelle, Christopher; Suzuki, Kei; Litle, Virginia R

    2018-07-01

    Procedural simulation training is rare at the medical school level and little is known about its usefulness in improving anatomic understanding and procedural confidence in students. Our aim is to assess the impact of bronchoscopy simulation training on bronchial anatomy knowledge and technical skills in medical students. Medical students were recruited by email, consented, and asked to fill out a survey regarding their baseline experience. Two thoracic surgeons measured their knowledge of bronchoscopy on a virtual reality bronchoscopy simulator using the Bronchoscopy Skills and Tasks Assessment Tool (BSTAT), a validated 65-point checklist (46 for anatomy, 19 for simulation). Students performed four self-directed training sessions of 15 minutes per week. A posttraining survey and BSTAT were completed afterward. Differences between pretraining and posttraining scores were analyzed with paired Student's t tests and random intercept linear regression models accounting for baseline BSTAT score, total training time, and training year. The study was completed by 47 medical students with a mean training time of 81.5 ± 26.8 minutes. Mean total BSTAT score increased significantly from 12.3 ± 5.9 to 48.0 ± 12.9 (p training time and frequency of training did not have a significant impact on level of improvement. Self-driven bronchoscopy simulation training in medical students led to improvements in bronchial anatomy knowledge and bronchoscopy skills. Further investigation is under way to determine the impact of bronchoscopy simulation training on future specialty interest and long-term skills retention. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Medical education and human trafficking: using simulation.

    Science.gov (United States)

    Stoklosa, Hanni; Lyman, Michelle; Bohnert, Carrie; Mittel, Olivia

    2017-01-01

    Healthcare providers have the potential to play a crucial role in human trafficking prevention, identification, and intervention. However, trafficked patients are often unidentified due to lack of education and preparation available to healthcare professionals at all levels of training and practice. To increase victim identification in healthcare settings, providers need to be educated about the issue of trafficking and its clinical presentations in an interactive format that maximizes learning and ultimately patient-centered outcomes. In 2014, University of Louisville School of Medicine created a simulation-based medical education (SBME) curriculum to prepare students to recognize victims and intervene on their behalf. The authors share the factors that influenced the session's development and incorporation into an already full third year medical curriculum and outline the development process. The process included a needs assessment for the education intervention, development of objectives and corresponding assessment, implementation of the curriculum, and finally the next steps of the module as it develops further. Additional alternatives are provided for other medical educators seeking to implement similar modules at their home institution. It is our hope that the description of this process will help others to create similar interactive educational programs and ultimately help trafficking survivors receive the care they need. HCP: Healthcare professional; M-SIGHT: Medical student instruction in global human trafficking; SBME: Simulation-based medical education; SP: Standardized patient; TIC: Trauma-informed care.

  1. Simulation of a medical linear accelerator for teaching purposes.

    Science.gov (United States)

    Anderson, Rhys; Lamey, Michael; MacPherson, Miller; Carlone, Marco

    2015-05-08

    Simulation software for medical linear accelerators that can be used in a teaching environment was developed. The components of linear accelerators were modeled to first order accuracy using analytical expressions taken from the literature. The expressions used constants that were empirically set such that realistic response could be expected. These expressions were programmed in a MATLAB environment with a graphical user interface in order to produce an environment similar to that of linear accelerator service mode. The program was evaluated in a systematic fashion, where parameters affecting the clinical properties of medical linear accelerator beams were adjusted independently, and the effects on beam energy and dose rate recorded. These results confirmed that beam tuning adjustments could be simulated in a simple environment. Further, adjustment of service parameters over a large range was possible, and this allows the demonstration of linear accelerator physics in an environment accessible to both medical physicists and linear accelerator service engineers. In conclusion, a software tool, named SIMAC, was developed to improve the teaching of linear accelerator physics in a simulated environment. SIMAC performed in a similar manner to medical linear accelerators. The authors hope that this tool will be valuable as a teaching tool for medical physicists and linear accelerator service engineers.

  2. Fidelity and Game-based Technology in Management Education

    Directory of Open Access Journals (Sweden)

    Edgard B. Cornacchione Jr.

    2012-04-01

    Full Text Available This study explores educational technology and management education by analyzing fidelity in game-basedmanagement education interventions. A sample of 31 MBA students was selected to help answer the researchquestion: To what extent do MBA students tend to recognize specific game-based academic experiences, interms of fidelity, as relevant to their managerial performance? Two distinct game-based interventions (BG1 andBG2 with key differences in fidelity levels were explored: BG1 presented higher physical and functional fidelitylevels and lower psychological fidelity levels. Hypotheses were tested with data from the participants, collectedshortly after their experiences, related to the overall perceived quality of game-based interventions. The findingsreveal a higher overall perception of quality towards BG1: (a better for testing strategies, (b offering betterbusiness and market models, (c based on a pace that better stimulates learning, and (d presenting a fidelity levelthat better supports real world performance. This study fosters the conclusion that MBA students tend torecognize, to a large extent, that specific game-based academic experiences are relevant and meaningful to theirmanagerial development, mostly with heightened fidelity levels of adopted artifacts. Agents must be ready andmotivated to explore the new, to try and err, and to learn collaboratively in order to perform.

  3. Hybrid Simulation in Teaching Clinical Breast Examination to Medical Students.

    Science.gov (United States)

    Nassif, Joseph; Sleiman, Abdul-Karim; Nassar, Anwar H; Naamani, Sima; Sharara-Chami, Rana

    2017-10-10

    Clinical breast examination (CBE) is traditionally taught to third-year medical students using a lecture and a tabletop breast model. The opportunity to clinically practice CBE depends on patient availability and willingness to be examined by students, especially in culturally sensitive environments. We propose the use of a hybrid simulation model consisting of a standardized patient (SP) wearing a silicone breast simulator jacket and hypothesize that this, compared to traditional teaching methods, would result in improved learning. Consenting third-year medical students (N = 82) at a university-affiliated tertiary care center were cluster-randomized into two groups: hybrid simulation (breast jacket + SP) and control (tabletop breast model). Students received the standard lecture by instructors blinded to the randomization, followed by randomization group-based learning and practice sessions. Two weeks later, participants were assessed in an Objective Structured Clinical Examination (OSCE), which included three stations with SPs blinded to the intervention. The SPs graded the students on CBE completeness, and students completed a self-assessment of their performance and confidence during the examination. CBE completeness scores did not differ between the two groups (p = 0.889). Hybrid simulation improved lesion identification grades (p simulation relieved the fear of missing a lesion on CBE (p = 0.043) and increased satisfaction with the teaching method among students (p = 0.002). As a novel educational tool, hybrid simulation improves the sensitivity of CBE performed by medical students without affecting its specificity. Hybrid simulation may play a role in increasing the confidence of medical students during CBE.

  4. Implementation fidelity of a nurse-led falls prevention program in acute hospitals during the 6-PACK trial.

    Science.gov (United States)

    Morello, Renata T; Barker, Anna L; Ayton, Darshini R; Landgren, Fiona; Kamar, Jeannette; Hill, Keith D; Brand, Caroline A; Sherrington, Catherine; Wolfe, Rory; Rifat, Sheral; Stoelwinder, Johannes

    2017-06-02

    When tested in a randomized controlled trial (RCT) of 31,411 patients, the nurse-led 6-PACK falls prevention program did not reduce falls. Poor implementation fidelity (i.e., program not implemented as intended) may explain this result. Despite repeated calls for the examination of implementation fidelity as an essential component of evaluating interventions designed to improve the delivery of care, it has been neglected in prior falls prevention studies. This study examined implementation fidelity of the 6-PACK program during a large multi-site RCT. Based on the 6-PACK implementation framework and intervention description, implementation fidelity was examined by quantifying adherence to program components and organizational support. Adherence indicators were: 1) falls-risk tool completion; and for patients classified as high-risk, provision of 2) a 'Falls alert' sign; and 3) at least one additional 6-PACK intervention. Organizational support indicators were: 1) provision of resources (executive sponsorship, site clinical leaders and equipment); 2) implementation activities (modification of patient care plans; training; implementation tailoring; audits, reminders and feedback; and provision of data); and 3) program acceptability. Data were collected from daily bedside observation, medical records, resource utilization diaries and nurse surveys. All seven intervention components were delivered on the 12 intervention wards. Program adherence data were collected from 103,398 observations and medical record audits. The falls-risk tool was completed each day for 75% of patients. Of the 38% of patients classified as high-risk, 79% had a 'Falls alert' sign and 63% were provided with at least one additional 6-PACK intervention, as recommended. All hospitals provided the recommended resources and undertook the nine outlined program implementation activities. Most of the nurses surveyed considered program components important for falls prevention. While implementation

  5. Using Simulation-Based Medical Education to Meet the Competency Requirements for the Single Accreditation System.

    Science.gov (United States)

    Riley, Bernadette

    2015-08-01

    Simulation-based medical education can provide medical training in a nonjudgmental, patient-safe, and effective environment. Although simulation has been a relatively new addition to medical education, the aeronautical, judicial, and military fields have used simulation training for hundreds of years, with positive outcomes. Simulation-based medical education can be used in a variety of settings, such as hospitals, outpatient clinics, medical schools, and simulation training centers. As the author describes in the present article, residencies currently accredited by the American Osteopathic Association can use a simulation-based medical education curriculum to meet training requirements of the 6 competencies identified by the Accreditation Council for Graduate Medical Education. The author also provides specific guidance on providing training and assessment in the professionalism competency.

  6. Fidelity and game-based technology in management education

    OpenAIRE

    Cornacchione Jr.,Edgard B.

    2012-01-01

    This study explores educational technology and management education by analyzing fidelity in game-based management education interventions. A sample of 31 MBA students was selected to help answer the research question: To what extent do MBA students tend to recognize specific game-based academic experiences, in terms of fidelity, as relevant to their managerial performance? Two distinct game-based interventions (BG1 and BG2) with key differences in fidelity levels were explored: BG1 presented...

  7. Medical education and human trafficking: using simulation

    Science.gov (United States)

    Stoklosa, Hanni; Lyman, Michelle; Bohnert, Carrie; Mittel, Olivia

    2017-01-01

    ABSTRACT Healthcare providers have the potential to play a crucial role in human trafficking prevention, identification, and intervention. However, trafficked patients are often unidentified due to lack of education and preparation available to healthcare professionals at all levels of training and practice. To increase victim identification in healthcare settings, providers need to be educated about the issue of trafficking and its clinical presentations in an interactive format that maximizes learning and ultimately patient-centered outcomes. In 2014, University of Louisville School of Medicine created a simulation-based medical education (SBME) curriculum to prepare students to recognize victims and intervene on their behalf. The authors share the factors that influenced the session’s development and incorporation into an already full third year medical curriculum and outline the development process. The process included a needs assessment for the education intervention, development of objectives and corresponding assessment, implementation of the curriculum, and finally the next steps of the module as it develops further. Additional alternatives are provided for other medical educators seeking to implement similar modules at their home institution. It is our hope that the description of this process will help others to create similar interactive educational programs and ultimately help trafficking survivors receive the care they need. Abbreviations: HCP: Healthcare professional; M-SIGHT: Medical student instruction in global human trafficking; SBME: Simulation-based medical education; SP: Standardized patient; TIC: Trauma-informed care PMID:29228882

  8. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T.; Wulff, Julie S. G.

    2016-01-01

    BACKGROUND: Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based...... the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice....... learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...

  9. Learning in Technology-Enhanced Medical Simulation: Locations and Knowings

    Directory of Open Access Journals (Sweden)

    Song-ee Ahn

    2015-06-01

    Full Text Available This qualitative study focuses on how knowings and learning take place in full-scale simulation training of medical and nursing students, by drawing upon actor-network theory (ANT. ANT situates materiality as a part of the social practices. Knowing and learning, according to ANT, are not simply cognitive or social phenomena, but are seen as emerging as effects of the relation between material assemblages and human actors being performed into being in particular locations. Data consists of observations of simulations performed by ten groups of students. The analysis focuses on the emerging knowings in the socio-material—arrangements of three locations involved in the simulation—the simulation room, the observation room and the reflection room. The findings indicate that medical knowing, affective knowing and communicative knowing are produced in different ways in the different locations and material arrangements of the simulation cycle.Keywords: simulation, locations, knowings, actor-network theory, collaborate learning, multiprofessional learning.

  10. The effect of an olfactory and visual cue on realism and engagement in a health care simulation experience.

    Science.gov (United States)

    Nanji, Karen C; Baca, Kirsten; Raemer, Daniel B

    2013-06-01

    Fidelity has been identified as an important element in a subject's perception of realism and engagement in learning during a simulation experience. The purpose of this study was to determine whether an isolated visual and olfactory sensory change to the simulation environment affects the subjects' perceptions of realism during simulation cases. Using an electrosurgical unit applied to bovine muscle tissue, we created a model to simulate the characteristic operating room smoke and burning odor that occur during many procedures. Anesthesiologist subjects were randomly assigned to an intervention group that participated in a simulation involving the characteristic smoke and odor or a control group whose simulation involved no smoke or odor. Subjects completed a 7-question survey on the fidelity of the simulation, their perception of realism, and their learning engagement. We enrolled 103 subjects over 22 simulation courses in our study (intervention, n = 52; control, n = 51). The subjects' reactions to the physical (P = 0.73), conceptual (P = 0.34), and emotional (P = 0.12) fidelity and their perception of realism (P = 0.71) did not differ between the intervention and control groups. In a high-fidelity simulation environment, a visual and olfactory increment to physical fidelity did not affect subjects' overall ratings of fidelity, perceptions of realism, and engagement in the learning experience.

  11. An empirical study of multidimensional fidelity of COMPASS consultation.

    Science.gov (United States)

    Wong, Venus; Ruble, Lisa A; McGrew, John H; Yu, Yue

    2018-06-01

    Consultation is essential to the daily practice of school psychologists (National Association of School Psychologist, 2010). Successful consultation requires fidelity at both the consultant (implementation) and consultee (intervention) levels. We applied a multidimensional, multilevel conception of fidelity (Dunst, Trivette, & Raab, 2013) to a consultative intervention called the Collaborative Model for Promoting Competence and Success (COMPASS) for students with autism. The study provided 3 main findings. First, multidimensional, multilevel fidelity is a stable construct and increases over time with consultation support. Second, mediation analyses revealed that implementation-level fidelity components had distant, indirect effects on student Individualized Education Program (IEP) outcomes. Third, 3 fidelity components correlated with IEP outcomes: teacher coaching responsiveness at the implementation level, and teacher quality of delivery and student responsiveness at the intervention levels. Implications and future directions are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  12. Improving discharge data fidelity for use in large administrative databases.

    Science.gov (United States)

    Gologorsky, Yakov; Knightly, John J; Lu, Yi; Chi, John H; Groff, Michael W

    2014-06-01

    Large administrative databases have assumed a major role in population-based studies examining health care delivery. Lumbar fusion surgeries specifically have been scrutinized for rising rates coupled with ill-defined indications for fusion such as stenosis and spondylosis. Administrative databases classify cases with the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM). The ICD-9-CM discharge codes are not designated by surgeons, but rather are assigned by trained hospital medical coders. It is unclear how accurately they capture the surgeon's indication for fusion. The authors first sought to compare the ICD-9-CM code(s) assigned by the medical coder according to the surgeon's indication based on a review of the medical chart, and then to elucidate barriers to data fidelity. A retrospective review was undertaken of all lumbar fusions performed in the Department of Neurosurgery at the authors' institution between August 1, 2011, and August 31, 2013. Based on this review, the indication for fusion in each case was categorized as follows: spondylolisthesis, deformity, tumor, infection, nonpathological fracture, pseudarthrosis, adjacent-level degeneration, stenosis, degenerative disc disease, or disc herniation. These surgeon diagnoses were compared with the primary ICD-9-CM codes that were generated by the medical coders and submitted to administrative databases. A follow-up interview with the hospital's coders and coding manager was undertaken to review causes of error and suggestions for future improvement in data fidelity. There were 178 lumbar fusion operations performed in the course of 170 hospital admissions. There were 44 hospitalizations in which fusion was performed for tumor, infection, or nonpathological fracture. Of these, the primary diagnosis matched the surgical indication for fusion in 98% of cases. The remaining 126 hospitalizations were for degenerative diseases, and of these, the primary ICD-9-CM

  13. The Central Simulation Committee (CSC): a model for centralization and standardization of simulation-based medical education in the U.S. Army healthcare system.

    Science.gov (United States)

    Deering, Shad; Sawyer, Taylor; Mikita, Jeffrey; Maurer, Douglas; Roth, Bernard J

    2012-07-01

    In this report, we describe the organizational framework, operations and current status of the Central Simulation Committee (CSC). The CSC was established in 2007 with the goals of standardizing simulation-based training in Army graduate medical education programs, assisting in redeployment training of physicians returning from war, and improving patient safety within the Army Medical Department. Presently, the CSC oversees 10 Simulation Centers, controls over 21,000 sq ft of simulation center space, and provides specialty-specific training in 14 medical specialties. In the past 2 years, CSC Simulation Centers have trained over 50,000 Army medical students, residents, physician assistants, nurses, Soldiers and DoD civilian medical personnel. We hope this report provides simulation educators within the military, and our civilian simulation colleagues, with insight into the workings of our organization and provides an example of centralized support and oversight of simulation-based medical education.

  14. [Innovative education: simulation-based training at the Institute of Health Sciences, Semmelweis University, Hungary].

    Science.gov (United States)

    Csóka, Mária; Deutsch, Tibor

    2011-01-02

    In Hungary, the Institute of Health Sciences at Semmelweis University was the first institution to introduce patient simulation-based practical training of non-physician professionals. Before introducing this novel educational methodology, students could only practice particular examinations and interventions on demonstration tools. Using the simulator they can also follow and analyze the effects of the interventions that have been made. The high fidelity, adult Human Patients Emergency Care Simulator (HPS-ECS, Medical Education Technologies Incorporation, Sarasota, Florida, USA) is particularly suitable for acquiring skills related to the management of various emergency situations. The 180 cm and 34 kg mannequin which can operate in lying and sitting positions has both respiration and circulation which can be examined the same way as in a living person. It is capable to produce several physical and clinical signs such as respiration with chest movement, electric cardiac activity, palpable pulse, and measurable blood pressure. In addition, it can also exhibit blinking, swelling of the tongue and whole-body trembling while intestinal, cardiac and pulmonary sounds can equally be examined. The high fidelity simulator allows various interventions including monitoring, oxygen therapy, bladder catheterization, gastric tube insertion, injection, infusion and transfusion therapy to be practiced as part of complex patient management. Diagnostic instruments such as ECG recorder, sphygmomanometer, pulse-oxymeter can be attached to the simulator which can also respond to different medical interventions such as intubation, defibrillation, pacing, liquid supplementing, and blood transfusion. The mannequin's physiological response can be followed up and monitored over time to assess whether the selected intervention has been proven adequate to achieve the desired outcome. Authors provide a short overview of the possible applications of clinical simulation for education and

  15. Simulation in pediatric anesthesiology.

    Science.gov (United States)

    Fehr, James J; Honkanen, Anita; Murray, David J

    2012-10-01

    Simulation-based training, research and quality initiatives are expanding in pediatric anesthesiology just as in other medical specialties. Various modalities are available, from task trainers to standardized patients, and from computer-based simulations to mannequins. Computer-controlled mannequins can simulate pediatric vital signs with reasonable reliability; however the fidelity of skin temperature and color change, airway reflexes and breath and heart sounds remains rudimentary. Current pediatric mannequins are utilized in simulation centers, throughout hospitals in-situ, at national meetings for continuing medical education and in research into individual and team performance. Ongoing efforts by pediatric anesthesiologists dedicated to using simulation to improve patient care and educational delivery will result in further dissemination of this technology. Health care professionals who provide complex, subspecialty care to children require a curriculum supported by an active learning environment where skills directly relevant to pediatric care can be developed. The approach is not only the most effective method to educate adult learners, but meets calls for education reform and offers the potential to guide efforts toward evaluating competence. Simulation addresses patient safety imperatives by providing a method for trainees to develop skills and experience in various management strategies, without risk to the health and life of a child. A curriculum that provides pediatric anesthesiologists with the range of skills required in clinical practice settings must include a relatively broad range of task-training devises and electromechanical mannequins. Challenges remain in defining the best integration of this modality into training and clinical practice to meet the needs of pediatric patients. © 2012 Blackwell Publishing Ltd.

  16. Entanglement-fidelity relations for inaccurate ancilla-driven quantum computation

    International Nuclear Information System (INIS)

    Morimae, Tomoyuki; Kahn, Jonas

    2010-01-01

    It was shown by T. Morimae [Phys. Rev. A 81, 060307(R) (2010)] that the gate fidelity of an inaccurate one-way quantum computation is upper bounded by a decreasing function of the amount of entanglement in the register. This means that a strong entanglement causes the low gate fidelity in the one-way quantum computation with inaccurate measurements. In this paper, we derive similar entanglement-fidelity relations for the inaccurate ancilla-driven quantum computation. These relations again imply that a strong entanglement in the register causes the low gate fidelity in the ancilla-driven quantum computation if the measurements on the ancilla are inaccurate.

  17. Thrive or overload? The effect of task complexity on novices' simulation-based learning.

    Science.gov (United States)

    Haji, Faizal A; Cheung, Jeffrey J H; Woods, Nicole; Regehr, Glenn; de Ribaupierre, Sandrine; Dubrowski, Adam

    2016-09-01

    Fidelity is widely viewed as an important element of simulation instructional design based on its purported relationship with transfer of learning. However, higher levels of fidelity may increase task complexity to a point at which novices' cognitive resources become overloaded. In this experiment, we investigate the effects of variations in task complexity on novices' cognitive load and learning during simulation-based procedural skills training. Thirty-eight medical students were randomly assigned to simulation training on a simple or complex lumbar puncture (LP) task. Participants completed four practice trials on this task (skill acquisition). After 10 days of rest, all participants completed one additional trial on their assigned task (retention) and one trial on a 'very complex' simulation designed to be similar to the complex task (transfer). We assessed LP performance and cognitive load on each trial using multiple measures. In both groups, LP performance improved significantly during skill acquisition (p ≤ 0.047, f = 0.29-0.96) and was maintained at retention. The simple task group demonstrated superior performance compared with the complex task group throughout these phases (p ≤ 0.002, d = 1.13-2.31). Cognitive load declined significantly in the simple task group (p Education.

  18. Simulator technology as a tool for education in cardiac care.

    Science.gov (United States)

    Hravnak, Marilyn; Beach, Michael; Tuite, Patricia

    2007-01-01

    Assisting nurses in gaining the cognitive and psychomotor skills necessary to safely and effectively care for patients with cardiovascular disease can be challenging for educators. Ideally, nurses would have the opportunity to synthesize and practice these skills in a protected training environment before application in the dynamic clinical setting. Recently, a technology known as high fidelity human simulation was introduced, which permits learners to interact with a simulated patient. The dynamic physiologic parameters and physical assessment capabilities of the simulated patient provide for a realistic learning environment. This article describes the High Fidelity Human Simulation Laboratory at the University of Pittsburgh School of Nursing and presents strategies for using this technology as a tool in teaching complex cardiac nursing care at the basic and advanced practice nursing levels. The advantages and disadvantages of high fidelity human simulation in learning are discussed.

  19. Route Fidelity during Marine Megafauna Migration

    Directory of Open Access Journals (Sweden)

    Travis W. Horton

    2017-12-01

    Full Text Available The conservation and protection of marine megafauna require robust knowledge of where and when animals are located. Yet, our ability to predict animal distributions in space and time remains limited due to difficulties associated with studying elusive animals with large home ranges. The widespread deployment of satellite telemetry technology creates unprecedented opportunities to remotely monitor animal movements and to analyse the spatial and temporal trajectories of these movements from a variety of geophysical perspectives. Reproducible patterns in movement trajectories can help elucidate the potential mechanisms by which marine megafauna navigate across vast expanses of open-ocean. Here, we present an empirical analysis of humpback whale (Megaptera novaeangliae, great white shark (Carcharodon carcharias, and northern elephant seal (Mirounga angustirostris satellite telemetry-derived route fidelity movements in magnetic and gravitational coordinates. Our analyses demonstrate that: (1 humpback whales, great white sharks and northern elephant seals are capable of performing route fidelity movements across millions of square kilometers of open ocean with a spatial accuracy of better than 150 km despite temporal separations as long as 7 years between individual movements; (2 route fidelity movements include significant (p < 0.05 periodicities that are comparable in duration to the lunar cycles and semi-cycles; (3 latitude and bedrock-dependent gravitational cues are stronger predictors of route fidelity movements than spherical magnetic coordinate cues when analyzed with respect to the temporally dependent moon illumination cycle. We further show that both route fidelity and non-route fidelity movement trajectories, for all three species, describe overlapping in-phase or antiphase sinusoids when individual movements are normalized to the gravitational acceleration present at migratory departure sites. Although these empirical results provide an

  20. Assessment of a high-fidelity mobile simulator for intrauterine contraception training in ambulatory reproductive health centres

    Directory of Open Access Journals (Sweden)

    Laura E. Dodge

    2016-02-01

    Full Text Available Objectives. Little is known about the utility of simulation-based training in office gynaecology. The objective of this cross-sectional study was to evaluate the self-reported effectiveness and acceptability of the PelvicSim™ (VirtaMed, a high-fidelity mobile simulator, to train clinicians in intrauterine device (IUD insertion. Methods. Clinicians at ambulatory healthcare centres participated in a PelvicSim IUD training programme and completed a self-administered survey. The survey assessed prior experience with IUD insertion, pre- and post-training competency and comfort and opinions regarding the acceptability of the PelvicSim. Results. The 237 participants were primarily female (97.5% nurse practitioners (71.3%. Most had experience inserting the levonorgestrel LNG20 IUD and the copper T380A device, but only 4.1% had ever inserted the LNG14 IUD. For all three devices, participants felt more competent following training, with the most striking change reported for insertion of the LNG14 IUD. The majority of participants reported increased comfort with uterine sounding (57.7%, IUD insertion on a live patient (69.8%, and minimizing patient pain (72.8% following training. Of the respondents, 89.6% reported the PelvicSim IUD insertion activities as “valuable” or “very valuable.” All participants would recommend the PelvicSim for IUD training, and nearly all (97.2% reported that the PelvicSim was a better method to teach IUD insertion than the simple plastic models supplied by IUD manufacturers. Conclusions. These findings support the use of the PelvicSim for IUD training, though whether it is superior to traditional methods and improves patient outcomes requires evaluation.

  1. Analysis of precipitation teleconnections in CMIP models as a measure of model fidelity in simulating precipitation

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J.; Meyerson, J.

    2011-12-01

    The accurate representation of precipitation is a recurring issue in global climate models, especially in the tropics. Poor skill in modeling the variability and climate teleconnections associated with El Niño/Southern Oscillation (ENSO) also persisted in the latest Climate Model Intercomparison Project (CMIP) campaigns. Observed ENSO precipitation teleconnections provide a standard by which we can judge a given model's ability to reproduce precipitation and dynamic feedback processes originating in the tropical Pacific. Using CMIP3 Atmospheric Model Intercomparison Project (AMIP) runs as a baseline, we compare precipitation teleconnections between models and observations, and we evaluate these results against available CMIP5 historical and AMIP runs. Using AMIP simulations restricts evaluation to the atmospheric response, as sea surface temperatures (SSTs) in AMIP are prescribed by observations. We use a rank correlation between ENSO SST indices and precipitation to define teleconnections, since this method is robust to outliers and appropriate for non-Gaussian data. Spatial correlations of the modeled and observed teleconnections are then evaluated. We look at these correlations in regions of strong precipitation teleconnections, including equatorial S. America, the "horseshoe" region in the western tropical Pacific, and southern N. America. For each region and season, we create a "normalized projection" of a given model's teleconnection pattern onto that of the observations, a metric that assesses the quality of regional pattern simulations while rewarding signals of correct sign over the region. Comparing this to an area-averaged (i.e., more generous) metric suggests models do better when restrictions on exact spatial dependence are loosened and conservation constraints apply. Model fidelity in regional measures remains far from perfect, suggesting intrinsic issues with the models' regional sensitivities in moist processes.

  2. Survey of Australian schools of nursing use of human patient (mannequin) simulation.

    Science.gov (United States)

    McGarry, Denise Elizabeth; Cashin, Andrew; Fowler, Cathrine

    2014-11-01

    Rapid adoption of high-fidelity human patient (mannequin) simulation has occurred in Australian Schools of Nursing in recent years, as it has internationally. This paper reports findings from a 2012 online survey of Australian Schools of Nursing and builds on findings of earlier studies. The survey design allowed direct comparison with a previous study from the USA but limited its scope to the pre-registration (pre-service Bachelor of Nursing) curriculum. It also included extra mental health specific questions. Australian patterns of adoption and application of high-fidelity human patient (mannequin) simulation in the pre-registration nursing curriculum share features with experiences reported in previous US and Australian surveys. A finding of interest in this survey was a small number of Schools of Nursing that reported no current use of high-fidelity human patient (mannequin) simulation and no plans to adopt it, in spite of a governmental capital funding support programme. In-line with prior surveys, mental health applications were meagre. There is an absence of clearly articulated learning theory underpinnings in the use of high-fidelity human patient (mannequin) simulation generally. It appears the first stage of implementation of high-fidelity human patient (mannequin) simulation into the pre-registration nursing curriculum has occurred and the adoption of this pedagogy is entering a new phase.

  3. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    Science.gov (United States)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  4. Design of simulation-based medical education and advantages and disadvantages of in situ simulation versus off-site simulation

    DEFF Research Database (Denmark)

    Sørensen, Jette Led; Østergaard, Doris; LeBlanc, Vicki

    2017-01-01

    that choice of setting for simulations does not seem to influence individual and team learning. Department-based local simulation, such as simulation in-house and especially in situ simulation, leads to gains in organisational learning. The overall objectives of simulation-based education and factors......BACKGROUND: Simulation-based medical education (SBME) has traditionally been conducted as off-site simulation in simulation centres. Some hospital departments also provide off-site simulation using in-house training room(s) set up for simulation away from the clinical setting, and these activities...... simulations. DISCUSSION: Non-randomised studies argue that in situ simulation is more effective for educational purposes than other types of simulation settings. Conversely, the few comparison studies that exist, either randomised or retrospective, show that choice of setting does not seem to influence...

  5. Aprendizaje de la historia clínica con pacientes simulados en el grado de Medicina Learning to take medical histories through patients simulation in undergraduate Medical School students

    Directory of Open Access Journals (Sweden)

    M. Cristina Rodríguez-Díez

    2012-03-01

    methods have been proposed: virtual patients, high fidelity devices and standard patients. We propose the use of 5th-6th year Medical School students acting as patients when teaching history taking to their 1st year colleagues. Subjects and methods. A total of 207 students from 1st year Medical School underwent training in history taking at the Simulation Center, with senior students acting as actors. The quality of the written medical records was evaluated by two medical doctors. The satisfaction of all students involved in the course was evaluated through an anonymous voluntary questionnaire. Results. The average score of the written medical histories was 8.2/10, more than satisfactory for our goals. Students' satisfaction rate was high. Mean score on questions inquiring the usefulness of patient simulation in learning how to perform a clinical history was 9/10 and 9.2/10 for first and fifth-sixth year students respectively. Questions on improvement of communication skills scored 8.6/10 and 8.6/10 respectively. The fruitfulness of training with simulated patients before practicing with real patients was 9.3/10 and 9.3/10 respectively. Finally, the assessment of the whole course with simulated patients was of 9.3/10. Conclusion. Learning history taking in first year Medical School with simulated patients acted by senior students was beneficial and user-friendly for both students and actors. An early contact with the clinical practice through simulated patients could improve performance and safety.

  6. Simulation Technology for Skills Training and Competency Assessment in Medical Education

    Science.gov (United States)

    Obeso, Vivian T.; Issenberg, S. Barry

    2007-01-01

    Medical education during the past decade has witnessed a significant increase in the use of simulation technology for teaching and assessment. Contributing factors include: changes in health care delivery and academic environments that limit patient availability as educational opportunities; worldwide attention focused on the problem of medical errors and the need to improve patient safety; and the paradigm shift to outcomes-based education with its requirements for assessment and demonstration of competence. The use of simulators addresses many of these issues: they can be readily available at any time and can reproduce a wide variety of clinical conditions on demand. In lieu of the customary (and arguably unethical) system, whereby novices carry out the practice required to master various techniques—including invasive procedures—on real patients, simulation-based education allows trainees to hone their skills in a risk-free environment. Evaluators can also use simulators for reliable assessments of competence in multiple domains. For those readers less familiar with medical simulators, this article aims to provide a brief overview of these educational innovations and their uses; for decision makers in medical education, we hope to broaden awareness of the significant potential of these new technologies for improving physician training and assessment, with a resultant positive impact on patient safety and health care outcomes. PMID:18095044

  7. An Advanced Simulation Framework for Parallel Discrete-Event Simulation

    Science.gov (United States)

    Li, P. P.; Tyrrell, R. Yeung D.; Adhami, N.; Li, T.; Henry, H.

    1994-01-01

    Discrete-event simulation (DEVS) users have long been faced with a three-way trade-off of balancing execution time, model fidelity, and number of objects simulated. Because of the limits of computer processing power the analyst is often forced to settle for less than desired performances in one or more of these areas.

  8. Recent advancements in medical simulation: patient-specific virtual reality simulation.

    Science.gov (United States)

    Willaert, Willem I M; Aggarwal, Rajesh; Van Herzeele, Isabelle; Cheshire, Nicholas J; Vermassen, Frank E

    2012-07-01

    Patient-specific virtual reality simulation (PSVR) is a new technological advancement that allows practice of upcoming real operations and complements the established role of VR simulation as a generic training tool. This review describes current developments in PSVR and draws parallels with other high-stake industries, such as aviation, military, and sports. A review of the literature was performed using PubMed and Internet search engines to retrieve data relevant to PSVR in medicine. All reports pertaining to PSVR were included. Reports on simulators that did not incorporate a haptic interface device were excluded from the review. Fifteen reports described 12 simulators that enabled PSVR. Medical procedures in the field of laparoscopy, vascular surgery, orthopedics, neurosurgery, and plastic surgery were included. In all cases, source data was two-dimensional CT or MRI data. Face validity was most commonly reported. Only one (vascular) simulator had undergone face, content, and construct validity. Of the 12 simulators, 1 is commercialized and 11 are prototypes. Five simulators have been used in conjunction with real patient procedures. PSVR is a promising technological advance within medicine. The majority of simulators are still in the prototype phase. As further developments unfold, the validity of PSVR will have to be examined much like generic VR simulation for training purposes. Nonetheless, similar to the aviation, military, and sport industries, operative performance and patient safety may be enhanced by the application of this novel technology.

  9. Fidelity approach in topological superconductors with disorders

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Wen-Chuan; Huang, Guang-Yao; Wang, Zhi, E-mail: physicswangzhi@gmail.com; Yao, Dao-Xin, E-mail: yaodaox@mail.sysu.edu.cn

    2015-03-20

    We apply the fidelity approach to study the topological superconductivity in spin–orbit coupling nanowire system. The wire is modeled as a one layer lattice chain with Zeeman energy and spin–orbit coupling, which is in proximity to a multi-layer superconductor. In particular, we study the effects of disorders and find that the fidelity susceptibility has multiple peaks. It is revealed that one peak indicates the topological quantum phase transition, while other peaks are signaling the pinning of the Majorana bound states by disorders. - Highlights: • We introduce fidelity approach to study the topological superconducting nanowire with disorders. • We study the quantum phase transition in the wire. • We investigate the disorder pinning of the Majorana bound states in the wire.

  10. Fidelity approach in topological superconductors with disorders

    International Nuclear Information System (INIS)

    Tian, Wen-Chuan; Huang, Guang-Yao; Wang, Zhi; Yao, Dao-Xin

    2015-01-01

    We apply the fidelity approach to study the topological superconductivity in spin–orbit coupling nanowire system. The wire is modeled as a one layer lattice chain with Zeeman energy and spin–orbit coupling, which is in proximity to a multi-layer superconductor. In particular, we study the effects of disorders and find that the fidelity susceptibility has multiple peaks. It is revealed that one peak indicates the topological quantum phase transition, while other peaks are signaling the pinning of the Majorana bound states by disorders. - Highlights: • We introduce fidelity approach to study the topological superconducting nanowire with disorders. • We study the quantum phase transition in the wire. • We investigate the disorder pinning of the Majorana bound states in the wire

  11. Unified universal quantum cloning machine and fidelities

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yinan; Shi Handuo; Xiong Zhaoxi; Jing Li; Mu Liangzhu [School of Physics, Peking University, Beijing 100871 (China); Ren Xijun [School of Physics and Electronics, Henan University, Kaifeng 4750011 (China); Fan Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-09-15

    We present a unified universal quantum cloning machine, which combines several different existing universal cloning machines together, including the asymmetric case. In this unified framework, the identical pure states are projected equally into each copy initially constituted by input and one half of the maximally entangled states. We show explicitly that the output states of those universal cloning machines are the same. One importance of this unified cloning machine is that the cloning procession is always the symmetric projection, which reduces dramatically the difficulties for implementation. Also, it is found that this unified cloning machine can be directly modified to the general asymmetric case. Besides the global fidelity and the single-copy fidelity, we also present all possible arbitrary-copy fidelities.

  12. A Structure Fidelity Approach for Big Data Collection in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Mou Wu

    2014-12-01

    Full Text Available One of the most widespread and important applications in wireless sensor networks (WSNs is the continuous data collection, such as monitoring the variety of ambient temperature and humidity. Due to the sensor nodes with a limited energy supply, the reduction of energy consumed in the continuous observation of physical phenomenon plays a significant role in extending the lifetime of WSNs. However, the high redundancy of sensing data leads to great waste of energy as a result of over-deployed sensor nodes. In this paper, we develop a structure fidelity data collection (SFDC framework leveraging the spatial correlations between nodes to reduce the number of the active sensor nodes while maintaining the low structural distortion of the collected data. A structural distortion based on the image quality assessment approach is used to perform the nodes work/sleep scheduling, such that the number of the working nodes is reduced while the remainder of nodes can be put into the low-power sleep mode during the sampling period. The main contribution of SFDC is to provide a unique perspective on how to maintain the data fidelity in term of structural similarity in the continuous sensing applications for WSNs. The simulation results based on synthetic and real world datasets verify the effectiveness of SFDC framework both on energy saving and data fidelity.

  13. Three-dimensional touch interface for medical education.

    Science.gov (United States)

    Panchaphongsaphak, Bundit; Burgkart, Rainer; Riener, Robert

    2007-05-01

    We present the technical principle and evaluation of a multimodal virtual reality (VR) system for medical education, called a touch simulator. This touch simulator comes with an innovative three-dimensional (3-D) touch sensitive input device. The device comprises a six-axis force-torque sensor connected to a tangible object representing the shape of an anatomical structure. Information related to the point of contact is recorded by the sensor, processed, and audiovisually displayed. The touch simulator provides a high level of user-friendliness and fidelity compared to other purely graphically oriented simulation environments. In this paper, the touch simulator has been realized as an interactive neuroanatomical training simulator. The user can visualize and manipulate graphical information of the brain surface or different cross-sectional slices by a finger-touch on a brain-like shaped tangible object. We evaluated the system by theoretical derivations, experiments, and subjective questionnaires. In the theoretical analysis, we could show that the contact point estimation error mainly depends on the accuracy and the noise of the sensor, the amount and direction of the applied force, and the geometry of the tangible object. The theoretical results could be validated by experiments: applying a normal force of 10 N on a 120 mm x 120 mm x 120 mm cube causes a maximum error of 2.5 +/- 0.7 mm. This error becomes smaller when increasing the contact force. Based on the survey results, the touch simulator may be a useful tool for assisting medical schools in the visualization of brain image data and the study of neuroanatomy.

  14. MEDICAL STAFF SCHEDULING USING SIMULATED ANNEALING

    Directory of Open Access Journals (Sweden)

    Ladislav Rosocha

    2015-07-01

    Full Text Available Purpose: The efficiency of medical staff is a fundamental feature of healthcare facilities quality. Therefore the better implementation of their preferences into the scheduling problem might not only rise the work-life balance of doctors and nurses, but also may result into better patient care. This paper focuses on optimization of medical staff preferences considering the scheduling problem.Methodology/Approach: We propose a medical staff scheduling algorithm based on simulated annealing, a well-known method from statistical thermodynamics. We define hard constraints, which are linked to legal and working regulations, and minimize the violations of soft constraints, which are related to the quality of work, psychic, and work-life balance of staff.Findings: On a sample of 60 physicians and nurses from gynecology department we generated monthly schedules and optimized their preferences in terms of soft constraints. Our results indicate that the final value of objective function optimized by proposed algorithm is more than 18-times better in violations of soft constraints than initially generated random schedule that satisfied hard constraints.Research Limitation/implication: Even though the global optimality of final outcome is not guaranteed, desirable solutionwas obtained in reasonable time. Originality/Value of paper: We show that designed algorithm is able to successfully generate schedules regarding hard and soft constraints. Moreover, presented method is significantly faster than standard schedule generation and is able to effectively reschedule due to the local neighborhood search characteristics of simulated annealing.

  15. Adherence to hand hygiene guidelines - significance of measuring fidelity.

    Science.gov (United States)

    Korhonen, Anne; Ojanperä, Helena; Puhto, Teija; Järvinen, Raija; Kejonen, Pirjo; Holopainen, Arja

    2015-11-01

    The aim was to evaluate the usability of fidelity measures in compliance evaluation of hand hygiene. Adherence to hand hygiene guidelines is important in terms of patient safety. Compliance measures seldom describe how exactly the guidelines are followed. A cross-sectional observation study in a university hospital setting was conducted. Direct observation by trained staff was performed using a standardised observation form supplemented by fidelity criteria. A total of 830 occasions were observed in 13 units. Descriptive statistics (frequency, mean, percentages and range) were used as well as compliance rate by using a standard web-based tool. In addition, the binomial standard normal deviate test was conducted for comparing different methods used in evaluation of hand hygiene and in comparison between professional groups. Measuring fidelity to guidelines was revealed to be useful in uncovering gaps in hand hygiene practices. The main gap related to too short duration of hand rubbing. Thus, although compliance with hand hygiene guidelines measured using a standard web-based tool was satisfactory, the degree of how exactly the guidelines were followed seemed to be critical. Combining the measurement of fidelity to guidelines with the compliance rate is beneficial in revealing inconsistency between optimal and actual hand hygiene behaviour. Evaluating fidelity measures is useful in terms of revealing the gaps between optimal and actual performance in hand hygiene. Fidelity measures are suitable in different healthcare contexts and easy to measure according to the relevant indicators of fidelity, such as the length of hand rubbing. Knowing the gap facilitates improvements in clinical practice. © 2015 John Wiley & Sons Ltd.

  16. Ground-state fidelity in the BCS-BEC crossover

    International Nuclear Information System (INIS)

    Khan, Ayan; Pieri, Pierbiagio

    2009-01-01

    The ground-state fidelity has been introduced recently as a tool to investigate quantum phase transitions. Here, we apply this concept in the context of a crossover problem. Specifically, we calculate the fidelity susceptibility for the BCS ground-state wave function, when the intensity of the fermionic attraction is varied from weak to strong in an interacting Fermi system, through the BCS-Bose-Einstein Condensation crossover. Results are presented for contact and finite-range attractive potentials and for both continuum and lattice models. We conclude that the fidelity susceptibility can be useful also in the context of crossover problems.

  17. Design and development of a virtual reality simulator for advanced cardiac life support training.

    Science.gov (United States)

    Vankipuram, Akshay; Khanal, Prabal; Ashby, Aaron; Vankipuram, Mithra; Gupta, Ashish; DrummGurnee, Denise; Josey, Karen; Smith, Marshall

    2014-07-01

    The use of virtual reality (VR) training tools for medical education could lead to improvements in the skills of clinicians while providing economic incentives for healthcare institutions. The use of VR tools can also mitigate some of the drawbacks currently associated with providing medical training in a traditional clinical environment such as scheduling conflicts and the need for specialized equipment (e.g., high-fidelity manikins). This paper presents the details of the framework and the development methodology associated with a VR-based training simulator for advanced cardiac life support, a time critical, team-based medical scenario. In addition, we also report the key findings of a usability study conducted to assess the efficacy of various features of this VR simulator through a postuse questionnaire administered to various care providers. The usability questionnaires were completed by two groups that used two different versions of the VR simulator. One version consisted of the VR trainer with it all its features and a minified version with certain immersive features disabled. We found an increase in usability scores from the minified group to the full VR group.

  18. Simulating neural systems with Xyce.

    Energy Technology Data Exchange (ETDEWEB)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  19. Multi-infill strategy for kriging models used in variable fidelity optimization

    Directory of Open Access Journals (Sweden)

    Chao SONG

    2018-03-01

    Full Text Available In this paper, a computationally efficient optimization method for aerodynamic design has been developed. The low-fidelity model and the multi-infill strategy are utilized in this approach. Low-fidelity data is employed to provide a good global trend for model prediction, and multiple sample points chosen by different infill criteria in each updating cycle are used to enhance the exploitation and exploration ability of the optimization approach. Take the advantages of low-fidelity model and the multi-infill strategy, and no initial sample for the high-fidelity model is needed. This approach is applied to an airfoil design case and a high-dimensional wing design case. It saves a large number of high-fidelity function evaluations for initial model construction. What’s more, faster reduction of an aerodynamic function is achieved, when compared to ordinary kriging using the multi-infill strategy and variable-fidelity model using single infill criterion. The results indicate that the developed approach has a promising application to efficient aerodynamic design when high-fidelity analyses are involved. Keywords: Aerodynamics, Infill criteria, Kriging models, Multi-infill, Optimization

  20. Simulators for nuclear power plants

    International Nuclear Information System (INIS)

    Ancarani, A.; Zanobetti, D.

    1983-01-01

    The different types of simulator for nuclear power plants depend on the kind of programme and the degree of representation to be achieved, which in turn determines the functions to duplicate. Different degrees correspond to different simulators and hence to different choices in the functions. Training of nuclear power plant operators takes advantage of the contribution of simulators of various degrees of complexity and fidelity. Reduced scope simulators are best for understanding basic phenomena; replica simulators are best used for formal qualification and requalification of personnel, while modular mini simulators of single parts of a plant are best for replay and assessment of malfunctions. Another category consists of simulators for the development of assistance during operation, with the inclusion of disturbance and alarm analysis. The only existing standard on simulators is, at present, the one adopted in the United States. This is too stringent and is never complied with by present simulators. A description of possible advantages of a European standard is therefore offered: it rests on methods of measurement of basic simulator characteristics such as fidelity in values and time. (author)

  1. Implementing economic evaluation in simulation-based medical education: challenges and opportunities.

    Science.gov (United States)

    Lin, Yiqun; Cheng, Adam; Hecker, Kent; Grant, Vincent; Currie, Gillian R

    2018-02-01

    Simulation-based medical education (SBME) is now ubiquitous at all levels of medical training. Given the substantial resources needed for SBME, economic evaluation of simulation-based programmes or curricula is required to demonstrate whether improvement in trainee performance (knowledge, skills and attitudes) and health outcomes justifies the cost of investment. Current literature evaluating SBME fails to provide consistent and interpretable information on the relative costs and benefits of alternatives. Economic evaluation is widely applied in health care, but is relatively scarce in medical education. Therefore, in this paper, using a focus on SBME, we define economic evaluation, describe the key components, and discuss the challenges associated with conducting an economic evaluation of medical education interventions. As a way forward to the rigorous and state of the art application of economic evaluation in medical education, we outline the steps to gather the necessary information to conduct an economic evaluation of simulation-based education programmes and curricula, and describe the main approaches to conducting an economic evaluation. A properly conducted economic evaluation can help stakeholders (i.e., programme directors, policy makers and curriculum designers) to determine the optimal use of resources in selecting the modality or method of assessment in simulation. It also helps inform broader decision making about allocation of scarce resources within an educational programme, as well as between education and clinical care. Economic evaluation in medical education research is still in its infancy, and there is significant potential for state-of-the-art application of these methods in this area. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  2. Ophthalmoscopy simulation: advances in training and practice for medical students and young ophthalmologists

    Directory of Open Access Journals (Sweden)

    Ricci LH

    2017-06-01

    Full Text Available Lucas Holderegger Ricci,1 Caroline Amaral Ferraz2 1Department of Ophthalmology, School of Medicine, Laureate International Universities, São Paulo (SP, Brazil; 2Department of Ophthalmology, Federal University of São Paulo (UNIFESP, São Paulo (SP, Brazil Objective: To describe and appraise the latest simulation models for direct and indirect ophthalmoscopy as a learning tool in the medical field. Methods: The present review was conducted using four national and international databases – PubMed, Scielo, Medline and Cochrane. Initial set of articles was screened based on title and abstracts, followed by full text analysis. It comprises of articles that were published in the past fifteen years (2002–2017.Results: Eighty-three articles concerning simulation models for medical education were found in national and international databases, with only a few describing important aspects of ophthalmoscopy training and current application of simulation in medical education. After secondary analysis, 38 articles were included.Conclusion: Different ophthalmoscopy simulation models have been described, but only very few studies appraise the effectiveness of each individual model. Comparison studies are still required to determine best approaches for medical education and skill enhancement through simulation models, applied to both medical students as well as young ophthalmologists in training. Keywords: direct ophthalmoscopy, indirect ophthalmoscopy, skills, simulator, simulation models

  3. Simulation-based trauma education for medical students: A review of literature.

    Science.gov (United States)

    Borggreve, Alicia S; Meijer, Joost M R; Schreuder, Henk W R; Ten Cate, Olle

    2017-06-01

    Medical students often do not feel prepared to manage emergency situations after graduation. They experience a lack of practical skills and show significant deficits in cognitive performance to assess and stabilize trauma patients. Most reports in the literature about simulation-based education pertain to postgraduate training. Simulation-based trauma education (SBTE) in undergraduate medical education could improve confidence and performance of recently graduated doctors in trauma resuscitation. We reviewed the literature in search of SBTE effectiveness for medical students. A PubMed, Embase and CINAHL literature search was performed to identify all studies that reported on the effectiveness of SBTE for medical students, on student perception on SBTE or on the effectiveness of different simulation modalities. Eight studies were included. Three out of four studies reporting on the effectiveness of SBTE demonstrated an increase in performance of students after SBTE. SBTE is generally highly appreciated by medical students. Only one study directly compared two modalities of SBTE and reported favorable results for the mechanical model rather than the standardized live patient model. SBTE appears to be an effective method to prepare medical students for trauma resuscitation. Furthermore, students enjoy SBTE and they perceive SBTE as a very useful learning method.

  4. Simulation training for medical emergencies in the dental setting using an inexpensive software application.

    Science.gov (United States)

    Kishimoto, N; Mukai, N; Honda, Y; Hirata, Y; Tanaka, M; Momota, Y

    2017-11-09

    Every dental provider needs to be educated about medical emergencies to provide safe dental care. Simulation training is available with simulators such as advanced life support manikins and robot patients. However, the purchase and development costs of these simulators are high. We have developed a simulation training course on medical emergencies using an inexpensive software application. The purpose of this study was to evaluate the educational effectiveness of this course. Fifty-one dental providers participated in this study from December 2014 to March 2015. Medical simulation software was used to simulate a patient's vital signs. We evaluated participants' ability to diagnose and treat vasovagal syncope or anaphylaxis with an evaluation sheet and conducted a questionnaire before and after the scenario-based simulation training. The median evaluation sheet score for vasovagal syncope increased significantly from 7/9 before to 9/9 after simulation training. The median score for anaphylaxis also increased significantly from 8/12 to 12/12 (P simulation training. This simulation course improved participants' ability to diagnose and treat medical emergencies and improved their confidence. This course can be offered inexpensively using a software application. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Finding the Needles in the Haystacks: High-Fidelity Models of the Modern and Archean Solar System for Simulating Exoplanet Observations

    Science.gov (United States)

    Roberge, Aki; Rizzo, Maxime J.; Lincowski, Andrew P.; Arney, Giada N.; Stark, Christopher C.; Robinson, Tyler D.; Snyder, Gregory F.; Pueyo, Laurent; Zimmerman, Neil T.; Jansen, Tiffany; hide

    2017-01-01

    We present two state-of-the-art models of the solar system, one corresponding to the present day and one to the Archean Eon 3.5 billion years ago. Each model contains spatial and spectral information for the star, the planets, and the interplanetary dust, extending to 50 au from the Sun and covering the wavelength range 0.3-2.5 micron. In addition, we created a spectral image cube representative of the astronomical backgrounds that will be seen behind deep observations of extrasolar planetary systems, including galaxies and Milky Way stars. These models are intended as inputs to high-fidelity simulations of direct observations of exoplanetary systems using telescopes equipped with high-contrast capability. They will help improve the realism of observation and instrument parameters that are required inputs to statistical observatory yield calculations, as well as guide development of post-processing algorithms for telescopes capable of directly imaging Earth-like planets.

  6. Technology for enhancing chest auscultation in clinical simulation.

    Science.gov (United States)

    Ward, Jeffrey J; Wattier, Bryan A

    2011-06-01

    The ability to use an acoustic stethoscope to detect lung and/or heart sounds, and then to then communicate one's interpretation of those sounds is an essential skill for many medical professionals. Interpretation of lung and heart sounds, in the context of history and other examination findings, often aids the differential diagnosis. Bedside assessment of changing auscultation findings may also guide treatment. Learning lung and heart auscultation skills typically involves listening to pre-recorded normal and adventitious sounds, often followed by laboratory instruction to guide stethoscope placement, and finally correlating the sounds with the associated pathophysiology and pathology. Recently, medical simulation has become an important tool for teaching prior to clinical practice, and for evaluating bedside auscultation skills. When simulating cardiovascular or pulmonary problems, high-quality lung and heart sounds should be able to accurately corroborate other findings such as vital signs, arterial blood gas values, or imaging. Digital audio technology, the Internet, and high-fidelity simulators have increased opportunities for educators and learners. We review the application of these technologies and describe options for reproducing lung and heart sounds, as well as their advantages and potential limitations.

  7. Entanglement fidelity of the standard quantum teleportation channel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gang; Ye, Ming-Yong, E-mail: myye@fjnu.edu.cn; Lin, Xiu-Min

    2013-09-16

    We consider the standard quantum teleportation protocol where a general bipartite state is used as entanglement resource. We use the entanglement fidelity to describe how well the standard quantum teleportation channel transmits quantum entanglement and give a simple expression for the entanglement fidelity when it is averaged on all input states.

  8. Commentary: Learning from Variations in Fidelity of Implementation

    Science.gov (United States)

    Balu, Rekha; Doolittle, Fred

    2016-01-01

    The articles in this special issue discuss efforts to improve academic reading outcomes for students and ways to achieve high implementation fidelity of promising strategies. At times the authors discuss if--and how--strong fidelity is associated with strong outcomes and potentially even impacts (the difference between program and control group…

  9. Fidelity induced distance measures for quantum states

    International Nuclear Information System (INIS)

    Ma Zhihao; Zhang Fulin; Chen Jingling

    2009-01-01

    Fidelity plays an important role in quantum information theory. In this Letter, we introduce new metric of quantum states induced by fidelity, and connect it with the well-known trace metric, Sine metric and Bures metric for the qubit case. The metric character is also presented for the qudit (i.e., d-dimensional system) case. The CPT contractive property and joint convex property of the metric are also studied.

  10. Medical Team Training: Using Simulation as a Teaching Strategy for Group Work

    Science.gov (United States)

    Moyer, Michael R.; Brown, Rhonda Douglas

    2011-01-01

    Described is an innovative approach currently being used to inspire group work, specifically a medical team training model, referred to as The Simulation Model, which includes as its major components: (1) Prior Training in Group Work of Medical Team Members; (2) Simulation in Teams or Groups; (3) Multidisciplinary Teamwork; (4) Team Leader…

  11. CATCC/AATCC Simulator

    Data.gov (United States)

    Federal Laboratory Consortium — The 15G30 CATCC/AATCC simulator provides high fidelity training for Navy Air Traffic Control (ATC) trainees in a realistic shipboard air traffic control environment....

  12. Internet-based system for simulation-based medical planning for cardiovascular disease.

    Science.gov (United States)

    Steele, Brooke N; Draney, Mary T; Ku, Joy P; Taylor, Charles A

    2003-06-01

    Current practice in vascular surgery utilizes only diagnostic and empirical data to plan treatments, which does not enable quantitative a priori prediction of the outcomes of interventions. We have previously described simulation-based medical planning methods to model blood flow in arteries and plan medical treatments based on physiologic models. An important consideration for the design of these patient-specific modeling systems is the accessibility to physicians with modest computational resources. We describe a simulation-based medical planning environment developed for the World Wide Web (WWW) using the Virtual Reality Modeling Language (VRML) and the Java programming language.

  13. Asymmetric strand segregation: epigenetic costs of genetic fidelity?

    Directory of Open Access Journals (Sweden)

    Diane P Genereux

    2009-06-01

    Full Text Available Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric -- but not symmetric -- strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease.

  14. Comparative performance of high-fidelity training models for flexible ureteroscopy: Are all models effective?

    Directory of Open Access Journals (Sweden)

    Shashikant Mishra

    2011-01-01

    Full Text Available Objective: We performed a comparative study of high-fidelity training models for flexible ureteroscopy (URS. Our objective was to determine whether high-fidelity non-virtual reality (VR models are as effective as the VR model in teaching flexible URS skills. Materials and Methods: Twenty-one trained urologists without clinical experience of flexible URS underwent dry lab simulation practice. After a warm-up period of 2 h, tasks were performed on a high-fidelity non-VR (Uro-scopic Trainer TM ; Endo-Urologie-Modell TM and a high-fidelity VR model (URO Mentor TM . The participants were divided equally into three batches with rotation on each of the three stations for 30 min. Performance of the trainees was evaluated by an expert ureteroscopist using pass rating and global rating score (GRS. The participants rated a face validity questionnaire at the end of each session. Results: The GRS improved statistically at evaluation performed after second rotation (P<0.001 for batches 1, 2 and 3. Pass ratings also improved significantly for all training models when the third and first rotations were compared (P<0.05. The batch that was trained on the VR-based model had more improvement on pass ratings on second rotation but could not achieve statistical significance. Most of the realistic domains were higher for a VR model as compared with the non-VR model, except the realism of the flexible endoscope. Conclusions: All the models used for training flexible URS were effective in increasing the GRS and pass ratings irrespective of the VR status.

  15. High-Fidelity Computational Aerodynamics of the Elytron 4S UAV

    Science.gov (United States)

    Ventura Diaz, Patricia; Yoon, Seokkwan; Theodore, Colin R.

    2018-01-01

    High-fidelity Computational Fluid Dynamics (CFD) have been carried out for the Elytron 4S Unmanned Aerial Vehicle (UAV), also known as the converticopter "proto12". It is the scaled wind tunnel model of the Elytron 4S, an Urban Air Mobility (UAM) concept, a tilt-wing, box-wing rotorcraft capable of Vertical Take-Off and Landing (VTOL). The three-dimensional unsteady Navier-Stokes equations are solved on overset grids employing high-order accurate schemes, dual-time stepping, and a hybrid turbulence model using NASA's CFD code OVERFLOW. The Elytron 4S UAV has been simulated in airplane mode and in helicopter mode.

  16. Students' Emotions in Simulation-Based Medical Education

    Science.gov (United States)

    Keskitalo, Tuulikki; Ruokamo, Heli

    2017-01-01

    Medical education is emotionally charged for many reasons, especially the fact that simulation-based learning is designed to generate emotional experiences. However, there are very few studies that concentrate on learning and emotions, despite widespread interest in the topic, especially within healthcare education. The aim of this research is to…

  17. Quantum critical scaling of fidelity in BCS-like model

    International Nuclear Information System (INIS)

    Adamski, Mariusz; Jedrzejewski, Janusz; Krokhmalskii, Taras

    2013-01-01

    We study scaling of the ground-state fidelity in neighborhoods of quantum critical points in a model of interacting spinful fermions—a BCS-like model. Due to the exact diagonalizability of the model, in one and higher dimensions, scaling of the ground-state fidelity can be analyzed numerically with great accuracy, not only for small systems but also for macroscopic ones, together with the crossover region between them. Additionally, in the one-dimensional case we have been able to derive a number of analytical formulas for fidelity and show that they accurately fit our numerical results; these results are reported in the paper. Besides regular critical points and their neighborhoods, where well-known scaling laws are obeyed, there is the multicritical point and critical points in its proximity where anomalous scaling behavior is found. We also consider scaling of fidelity in neighborhoods of critical points where fidelity oscillates strongly as the system size or the chemical potential is varied. Our results for a one-dimensional version of a BCS-like model are compared with those obtained recently by Rams and Damski in similar studies of a quantum spin chain—an anisotropic XY model in a transverse magnetic field. (paper)

  18. Interplanetary Transit Simulations Using the International Space Station

    Science.gov (United States)

    Charles, J. B.; Arya, Maneesh

    2010-01-01

    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  19. Critical thinking skills in nursing students: comparison of simulation-based performance with metrics

    Science.gov (United States)

    Fero, Laura J.; O’Donnell, John M.; Zullo, Thomas G.; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T.; Hoffman, Leslie A.

    2018-01-01

    Aim This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Background Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. Methods In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation- based performance was rated as ‘meeting’ or ‘not meeting’ overall expectations. Test scores were categorized as strong, average, or weak. Results Most (75·0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0·277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0·001) using high-fidelity human simulation. The relationship between video-taped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer’s V = 0·444, P = 0·029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer’s V = 0·413, P = 0·047). Conclusion Students’ performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills

  20. Critical thinking skills in nursing students: comparison of simulation-based performance with metrics.

    Science.gov (United States)

    Fero, Laura J; O'Donnell, John M; Zullo, Thomas G; Dabbs, Annette DeVito; Kitutu, Julius; Samosky, Joseph T; Hoffman, Leslie A

    2010-10-01

    This paper is a report of an examination of the relationship between metrics of critical thinking skills and performance in simulated clinical scenarios. Paper and pencil assessments are commonly used to assess critical thinking but may not reflect simulated performance. In 2007, a convenience sample of 36 nursing students participated in measurement of critical thinking skills and simulation-based performance using videotaped vignettes, high-fidelity human simulation, the California Critical Thinking Disposition Inventory and California Critical Thinking Skills Test. Simulation-based performance was rated as 'meeting' or 'not meeting' overall expectations. Test scores were categorized as strong, average, or weak. Most (75.0%) students did not meet overall performance expectations using videotaped vignettes or high-fidelity human simulation; most difficulty related to problem recognition and reporting findings to the physician. There was no difference between overall performance based on method of assessment (P = 0.277). More students met subcategory expectations for initiating nursing interventions (P ≤ 0.001) using high-fidelity human simulation. The relationship between videotaped vignette performance and critical thinking disposition or skills scores was not statistically significant, except for problem recognition and overall critical thinking skills scores (Cramer's V = 0.444, P = 0.029). There was a statistically significant relationship between overall high-fidelity human simulation performance and overall critical thinking disposition scores (Cramer's V = 0.413, P = 0.047). Students' performance reflected difficulty meeting expectations in simulated clinical scenarios. High-fidelity human simulation performance appeared to approximate scores on metrics of critical thinking best. Further research is needed to determine if simulation-based performance correlates with critical thinking skills in the clinical setting. © 2010 The Authors. Journal of Advanced

  1. Quantum Fidelity and Thermal Phase Transitions in a Two-Dimensional Spin System

    International Nuclear Information System (INIS)

    Wang Bo; Kou Su-Peng; Huang Hai-Lin; Sun Zhao-Yu

    2012-01-01

    We investigate the ability of quantum fidelity in detecting the classical phase transitions (CPTs) in a two-dimensional Heisenberg—Ising mixed spin model, which has a very rich phase diagram and is exactly soluble. For a two-site subsystem of the model, the reduced fidelity (including the operator fidelity and the fidelity susceptibility) at finite temperatures is calculated, and it is found that an extreme value presents at the critical temperature, thus shows a signal for the CPTs. In some parameter region, the signal becomes blurred. We propose to use the 'normalized fidelity susceptibility' to solve this problem

  2. Progress in virtual reality simulators for surgical training and certification.

    Science.gov (United States)

    de Visser, Hans; Watson, Marcus O; Salvado, Olivier; Passenger, Joshua D

    2011-02-21

    There is increasing evidence that educating trainee surgeons by simulation is preferable to traditional operating-room training methods with actual patients. Apart from reducing costs and risks to patients, training by simulation can provide some unique benefits, such as greater control over the training procedure and more easily defined metrics for assessing proficiency. Virtual reality (VR) simulators are now playing an increasing role in surgical training. However, currently available VR simulators lack the fidelity to teach trainees past the novice-to-intermediate skills level. Recent technological developments in other industries using simulation, such as the games and entertainment and aviation industries, suggest that the next generation of VR simulators should be suitable for training, maintenance and certification of advanced surgical skills. To be effective as an advanced surgical training and assessment tool, VR simulation needs to provide adequate and relevant levels of physical realism, case complexity and performance assessment. Proper validation of VR simulators and an increased appreciation of their value by the medical profession are crucial for them to be accepted into surgical training curricula.

  3. Medical image archive node simulation and architecture

    Science.gov (United States)

    Chiang, Ted T.; Tang, Yau-Kuo

    1996-05-01

    It is a well known fact that managed care and new treatment technologies are revolutionizing the health care provider world. Community Health Information Network and Computer-based Patient Record projects are underway throughout the United States. More and more hospitals are installing digital, `filmless' radiology (and other imagery) systems. They generate a staggering amount of information around the clock. For example, a typical 500-bed hospital might accumulate more than 5 terabytes of image data in a period of 30 years for conventional x-ray images and digital images such as Magnetic Resonance Imaging and Computer Tomography images. With several hospitals contributing to the archive, the storage required will be in the hundreds of terabytes. Systems for reliable, secure, and inexpensive storage and retrieval of digital medical information do not exist today. In this paper, we present a Medical Image Archive and Distribution Service (MIADS) concept. MIADS is a system shared by individual and community hospitals, laboratories, and doctors' offices that need to store and retrieve medical images. Due to the large volume and complexity of the data, as well as the diversified user access requirement, implementation of the MIADS will be a complex procedure. One of the key challenges to implementing a MIADS is to select a cost-effective, scalable system architecture to meet the ingest/retrieval performance requirements. We have performed an in-depth system engineering study, and developed a sophisticated simulation model to address this key challenge. This paper describes the overall system architecture based on our system engineering study and simulation results. In particular, we will emphasize system scalability and upgradability issues. Furthermore, we will discuss our simulation results in detail. The simulations study the ingest/retrieval performance requirements based on different system configurations and architectures for variables such as workload, tape

  4. Validation of the Standard Mobility Application Programming Interface Fidelity 1 and 2

    Science.gov (United States)

    2006-07-01

    Cross-Country, Dry) 16000-fl 14000 12000- O- U 00 - ielt 0 0 Fidelity2 %0 10000 8000- 4000-zo-- Over Even Under N Fidelity 1 8151 14224 4553 0...Road, Snow) 90% 70% -j S60% > 50% ~40% E 30% S20% 1 0% - ielt 0% 0 5 10 15 20 STNDMob - NRMM (rriph) Figure 57. M923/M200A1 Fidelity 1 vs. Fidelity 2

  5. Reducing Risks of Arctic Operations with Ice Simulator

    Directory of Open Access Journals (Sweden)

    J. Koponen

    2015-09-01

    Full Text Available During the process of development of the Full Mission Bridge Simulator, I have come in to a conclusion that an important part of a successful learning process is the ability to train with a high fidelity bridge simulator. The Polar areas are harsh environments and to survive there, one must have special training and experience. This surviving means that the polar ecosystem will survive from pollution and the vessels and their crew from the bad judgments or misconduct of vessel operators. The most cost-effective way to improve special skills needed in the Polar waters is to include bridge simulator training to the Deck Officers requirements. In this paper I will introduce a real life situation in which an icebreaker assisting a merchant vessel gets into a “close call” situation and how this was handled. Maritime industry hasn’t studied much about the influence simulator training has to the navigators. Here the maritime industry could learn from aviation and medical industry, since they have done some extensive scientific studies to prove the need for simulators.

  6. Evaluating scintillators used in radiation detectors of medical imaging systems by the effective fidelity index method

    International Nuclear Information System (INIS)

    Kandarakis, I.; Cavouras, D.; Prassopoulos, P.; Kanellopoulos, E.; Nomicos, C.D.; Panayiotakis, G.S.

    1999-01-01

    Objective: The performance of medical X-ray image receptors depends: (1) on the scintillator light emission efficiency; and (2) on the compatibility of the scintillator light spectrum with the spectral sensitivity of the light detector (film, photocathode, or photodiode), employed in conjunction with the scintillator. In this study, a scintillator performance measure, the effective fidelity index (EFI), is defined as function of both the scintillator light emission efficiency and spectral compatibility. Materials and Method: CsI:Na, Gd 2 O 2 S:Tb and La 2 O 2 S:Tb scintillators were employed in the form of phosphor screens prepared in our laboratory with various coating thicknesses. The screens were irradiated with X-rays employing tube voltages ranging between 50-120 kVp. Results: The EFI performance of CsI:Na was found to increase with screen coating thickness and it was best when combined with the orthochromatic film or the ES/20 photocathode. Gd 2 O 2 S:Tb showed peak EFI performance at 70 mg/cm 2 coating thickness and it was well combined with the light detectors considered. Conclusion: In accordance with our results, CsI:Na may be employed in radiography when adequately protected against humidity. Gd 2 O 2 S:Tb suitability for conventional imaging was verified and it was found that it may be useful in all types of digital imaging. La 2 O 2 S:Tb could also be used in digital detectors of imaging applications demanding medium X-ray tube voltages

  7. Specification of Training Simulator Fidelity: A Research Plan

    Science.gov (United States)

    1982-02-01

    Knowlede --Dunnette (1976) has recently reviewed the literature in the areas of human skills, abilities, and knowledges. The establishment of what types... management 6. Other than rational user responses to R&D studies and to training simulators 7. Deficiencies in training simulator design 23...proficient at managing the introduction of training innovations by applying those factors that can be controlled to influence acceptance. (p. 19) The

  8. Sobriety Treatment and Recovery Teams: Implementation Fidelity and Related Outcomes.

    Science.gov (United States)

    Huebner, Ruth A; Posze, Lynn; Willauer, Tina M; Hall, Martin T

    2015-01-01

    Although integrated programs between child welfare and substance abuse treatment are recommended for families with co-occurring child maltreatment and substance use disorders, implementing integrated service delivery strategies with fidelity is a challenging process. This study of the first five years of the Sobriety Treatment and Recovery Team (START) program examines implementation fidelity using a model proposed by Carroll et al. (2007). The study describes the process of strengthening moderators of implementation fidelity, trends in adherence to START service delivery standards, and trends in parent and child outcomes. Qualitative and quantitative measures were used to prospectively study three START sites serving 341 families with 550 parents and 717 children. To achieve implementation fidelity to service delivery standards required a pre-service year and two full years of operation, persistent leadership, and facilitative actions that challenged the existing paradigm. Over four years of service delivery, the time from the child protective services report to completion of five drug treatment sessions was reduced by an average of 75 days. This trend was associated with an increase in parent retention, parental sobriety, and parent retention of child custody. Conclusions/Importance: Understanding the implementation processes necessary to establish complex integrated programs may support realistic allocation of resources. Although implementation fidelity is a moderator of program outcome, complex inter-agency interventions may benefit from innovative measures of fidelity that promote improvement without extensive cost and data collection burden. The implementation framework applied in this study was useful in examining implementation processes, fidelity, and related outcomes.

  9. Incorporating simulation into gynecologic surgical training.

    Science.gov (United States)

    Wohlrab, Kyle; Jelovsek, J Eric; Myers, Deborah

    2017-11-01

    Today's educational environment has made it more difficult to rely on the Halstedian model of "see one, do one, teach one" in gynecologic surgical training. There is decreased surgical volume, but an increased number of surgical modalities. Fortunately, surgical simulation has evolved to fill the educational void. Whether it is through skill generalization or skill transfer, surgical simulation has shifted learning from the operating room back to the classroom. This article explores the principles of surgical education and ways to introduce simulation as an adjunct to residency training. We review high- and low-fidelity surgical simulators, discuss the progression of surgical skills, and provide options for skills competency assessment. Time and money are major hurdles when designing a simulation curriculum, but low-fidelity models, intradepartmental cost sharing, and utilizing local experts for simulation proctoring can aid in developing a simulation program. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Incorporating in situ habitat patchiness in site selection models reveals that site fidelity is not always a consequence of animal choice.

    Science.gov (United States)

    Martinez, Aline S; Queiroz, Eduardo V; Bryson, Mitch; Byrne, Maria; Coleman, Ross A

    2017-07-01

    Understanding site fidelity is important in animal ecology, but evidence is lacking that this behaviour is due to an animal choosing a specific location. To discern site selection behaviour, it is necessary to consider the spatial distribution of habitats that animals can occupy within a landscape. Tracking animals and defining clear habitat boundaries, however, is often difficult. We use in situ habitat distribution data and animal movement simulations to investigate behavioural choice in site fidelity patterns. We resolved the difficulty of gathering data by working with intertidal rock pool systems, which are of manageable size and where boundaries are easy to define. Movements of the intertidal starfish Parvulastra exigua were quantified to test the hypotheses that (1) this species displays fidelity to a particular rock pool and that (2) rock pool fidelity is due to site selection behaviour. Observed patterns of individuals (n = 10 starfish) returning to a previously occupied rock pool (n = 5 pools per location) were tested against an expected null distribution generated through simulations of random movements within their natural patchy environment. Starfish exhibited site selection behaviour at only one location even though site fidelity was high (av. 7·4 starfish out of 10 found in test pools) in two of the three locations. The random chance of a starfish returning to a pool increased 67% for each metre further a rock pool was from the original pool, and 120% for each square metre increase in surface area of an original pool. The decision of returning to an original rock pool was influenced by food availability. When microalgal cover was >60%, there was a c. 50% chance of animals staying faithful to that pool. Our results show the importance to consider spatial distribution of habitats in understanding patterns of animal movement associated with animal choices and site fidelity. Returning to a particular place does not necessarily mean that an animal

  11. Initial Development of a Quadcopter Simulation Environment for Auralization

    Science.gov (United States)

    Christian, Andrew; Lawrence, Joseph

    2016-01-01

    This paper describes a recently created computer simulation of quadcopter flight dynamics for the NASA DELIVER project. The goal of this effort is to produce a simulation that includes a number of physical effects that are not usually found in other dynamics simulations (e.g., those used for flight controller development). These effects will be shown to have a significant impact on the fidelity of auralizations - entirely synthetic time-domain predictions of sound - based on this simulation when compared to a recording. High-fidelity auralizations are an important precursor to human subject tests that seek to understand the impact of vehicle configurations on noise and annoyance.

  12. Gain tuning and fidelity in continuous-variable quantum teleportation

    International Nuclear Information System (INIS)

    Ide, Toshiki; Hofmann, Holger F.; Furusawa, Akira; Kobayashi, Takayoshi

    2002-01-01

    The fidelity of continuous-variable teleportation can be optimized by changing the gain in the modulation of the output field. We discuss the gain dependence of fidelity for coherent, vacuum, and one-photon inputs and propose optimal gain tuning strategies for corresponding input selections

  13. Intervention Fidelity in Special and General Education Research Journals

    Science.gov (United States)

    Swanson, Elizabeth; Wanzek, Jeanne; Haring, Christa; Ciullo, Stephen; McCulley, Lisa

    2013-01-01

    Treatment fidelity reporting practices are described for journals that published general and special education intervention research with high impact factors from 2005 through 2009. The authors reviewed research articles, reported the proportion of intervention studies that described fidelity measurement, detailed the components of fidelity…

  14. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others

    2005-03-15

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well.

  15. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    International Nuclear Information System (INIS)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others

    2005-03-01

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well

  16. High-fidelity polarization storage in a gigahertz bandwidth quantum memory

    International Nuclear Information System (INIS)

    England, D G; Michelberger, P S; Champion, T F M; Reim, K F; Lee, K C; Sprague, M R; Jin, X-M; Langford, N K; Kolthammer, W S; Nunn, J; Walmsley, I A

    2012-01-01

    We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system, we measure up to 97 ± 1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86 ± 4% for 1.5 μs storage time, which is 5000 times the pulse duration. Hence, high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks. (paper)

  17. Learning curves and long-term outcome of simulation-based thoracentesis training for medical students

    Science.gov (United States)

    2011-01-01

    Background Simulation-based medical education has been widely used in medical skills training; however, the effectiveness and long-term outcome of simulation-based training in thoracentesis requires further investigation. The purpose of this study was to assess the learning curve of simulation-based thoracentesis training, study skills retention and transfer of knowledge to a clinical setting following simulation-based education intervention in thoracentesis procedures. Methods Fifty-two medical students were enrolled in this study. Each participant performed five supervised trials on the simulator. Participant's performance was assessed by performance score (PS), procedure time (PT), and participant's confidence (PC). Learning curves for each variable were generated. Long-term outcome of the training was measured by the retesting and clinical performance evaluation 6 months and 1 year, respectively, after initial training on the simulator. Results Significant improvements in PS, PT, and PC were noted among the first 3 to 4 test trials (p 0.05). Clinical competency in thoracentesis was improved in participants who received simulation training relative to that of first year medical residents without such experience (p simulation-based thoracentesis training can significantly improve an individual's performance. The saturation of learning from the simulator can be achieved after four practice sessions. Simulation-based training can assist in long-term retention of skills and can be partially transferred to clinical practice. PMID:21696584

  18. Long-term impact of a preclinical endovascular skills course on medical student career choices.

    Science.gov (United States)

    Lee, Jason T; Son, Ji H; Chandra, Venita; Lilo, Emily; Dalman, Ronald L

    2011-10-01

    Surging interest in the 0 + 5 integrated vascular surgery (VS) residency and successful recruitment of the top students in medical school requires early exposure to the field. We sought to determine the impact of a high-fidelity simulation-based preclinical endovascular skills course on medical student performance and ultimate career specialty choices. Fifty-two preclinical medical students enrolled in an 8-week VS elective course from 2007 to 2009. Students completed a baseline and postcourse survey and performed a renal angioplasty/stent procedure on an endovascular simulator (pretest). A curriculum consisting of didactic teaching covering peripheral vascular disease and weekly mentored simulator sessions concluded with a final graded procedure (posttest). Long-term follow-up surveys 1 to 3 years after course completion were administered to determine ultimate career paths of participants as well as motivating factors for career choice. Objective and subjective performance measured on the simulator and through structured global assessment scales improved in all students from pre- to posttest, particularly with regard to technical skill and overall procedural competency (P choices including surgical subspecialties (64%), radiology (10%), and cardiology (6%). Most respondents indicated major reasons for continued interest in VS were the ability to practice endovascular procedures on the simulator (92%) and mentorship from VS faculty (70%). Basic endovascular skills can be efficiently introduced through a simulation-based curriculum and lead to improved novice performance. Early exposure of preclinical medical students provides an effective teaching and recruitment tool for procedural-based fields, particularly surgical subspecialties. Mentored exposure to endovascular procedures on the simulator positively impacts long-term medical student attitudes toward vascular surgery and ultimate career choices. Copyright © 2011 Society for Vascular Surgery. Published by

  19. Multi-fidelity machine learning models for accurate bandgap predictions of solids

    International Nuclear Information System (INIS)

    Pilania, Ghanshyam; Gubernatis, James E.; Lookman, Turab

    2016-01-01

    Here, we present a multi-fidelity co-kriging statistical learning framework that combines variable-fidelity quantum mechanical calculations of bandgaps to generate a machine-learned model that enables low-cost accurate predictions of the bandgaps at the highest fidelity level. Additionally, the adopted Gaussian process regression formulation allows us to predict the underlying uncertainties as a measure of our confidence in the predictions. In using a set of 600 elpasolite compounds as an example dataset and using semi-local and hybrid exchange correlation functionals within density functional theory as two levels of fidelities, we demonstrate the excellent learning performance of the method against actual high fidelity quantum mechanical calculations of the bandgaps. The presented statistical learning method is not restricted to bandgaps or electronic structure methods and extends the utility of high throughput property predictions in a significant way.

  20. A Mobile Device App to Reduce Time to Drug Delivery and Medication Errors During Simulated Pediatric Cardiopulmonary Resuscitation: A Randomized Controlled Trial.

    Science.gov (United States)

    Siebert, Johan N; Ehrler, Frederic; Combescure, Christophe; Lacroix, Laurence; Haddad, Kevin; Sanchez, Oliver; Gervaix, Alain; Lovis, Christian; Manzano, Sergio

    2017-02-01

    During pediatric cardiopulmonary resuscitation (CPR), vasoactive drug preparation for continuous infusion is both complex and time-consuming, placing children at higher risk than adults for medication errors. Following an evidence-based ergonomic-driven approach, we developed a mobile device app called Pediatric Accurate Medication in Emergency Situations (PedAMINES), intended to guide caregivers step-by-step from preparation to delivery of drugs requiring continuous infusion. The aim of our study was to determine whether the use of PedAMINES reduces drug preparation time (TDP) and time to delivery (TDD; primary outcome), as well as medication errors (secondary outcomes) when compared with conventional preparation methods. The study was a randomized controlled crossover trial with 2 parallel groups comparing PedAMINES with a conventional and internationally used drugs infusion rate table in the preparation of continuous drug infusion. We used a simulation-based pediatric CPR cardiac arrest scenario with a high-fidelity manikin in the shock room of a tertiary care pediatric emergency department. After epinephrine-induced return of spontaneous circulation, pediatric emergency nurses were first asked to prepare a continuous infusion of dopamine, using either PedAMINES (intervention group) or the infusion table (control group), and second, a continuous infusion of norepinephrine by crossing the procedure. The primary outcome was the elapsed time in seconds, in each allocation group, from the oral prescription by the physician to TDD by the nurse. TDD included TDP. The secondary outcome was the medication dosage error rate during the sequence from drug preparation to drug injection. A total of 20 nurses were randomized into 2 groups. During the first study period, mean TDP while using PedAMINES and conventional preparation methods was 128.1 s (95% CI 102-154) and 308.1 s (95% CI 216-400), respectively (180 s reduction, P=.002). Mean TDD was 214 s (95% CI 171-256) and

  1. High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles

    Science.gov (United States)

    Ventura Diaz, Patricia; Yoon, Seokkwan

    2018-01-01

    High-fidelity Computational Fluid Dynamics (CFD) simulations have been carried out for several multi-rotor Unmanned Aerial Vehicles (UAVs). Three vehicles have been studied: the classic quadcopter DJI Phantom 3, an unconventional quadcopter specialized for forward flight, the SUI Endurance, and an innovative concept for Urban Air Mobility (UAM), the Elytron 4S UAV. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, and a hybrid turbulence model. The DJI Phantom 3 is simulated with different rotors and with both a simplified airframe and the real airframe including landing gear and a camera. The effects of weather are studied for the DJI Phantom 3 quadcopter in hover. The SUI En- durance original design is compared in forward flight to a new configuration conceived by the authors, the hybrid configuration, which gives a large improvement in forward thrust. The Elytron 4S UAV is simulated in helicopter mode and in airplane mode. Understanding the complex flows in multi-rotor vehicles will help design quieter, safer, and more efficient future drones and UAM vehicles.

  2. Investigating variations in implementation fidelity of an organizational-level occupational health intervention.

    Science.gov (United States)

    Augustsson, Hanna; von Thiele Schwarz, Ulrica; Stenfors-Hayes, Terese; Hasson, Henna

    2015-06-01

    The workplace has been suggested as an important arena for health promotion, but little is known about how the organizational setting influences the implementation of interventions. The aims of this study are to evaluate implementation fidelity in an organizational-level occupational health intervention and to investigate possible explanations for variations in fidelity between intervention units. The intervention consisted of an integration of health promotion, occupational health and safety, and a system for continuous improvements (Kaizen) and was conducted in a quasi-experimental design at a Swedish hospital. Implementation fidelity was evaluated with the Conceptual Framework for Implementation Fidelity and implementation factors used to investigate variations in fidelity with the Framework for Evaluating Organizational-level Interventions. A multi-method approach including interviews, Kaizen notes, and questionnaires was applied. Implementation fidelity differed between units even though the intervention was introduced and supported in the same way. Important differences in all elements proposed in the model for evaluating organizational-level interventions, i.e., context, intervention, and mental models, were found to explain the differences in fidelity. Implementation strategies may need to be adapted depending on the local context. Implementation fidelity, as well as pre-intervention implementation elements, is likely to affect the implementation success and needs to be assessed in intervention research. The high variation in fidelity across the units indicates the need for adjustments to the type of designs used to assess the effects of interventions. Thus, rather than using designs that aim to control variation, it may be necessary to use those that aim at exploring and explaining variation, such as adapted study designs.

  3. Fidelity susceptibility as holographic PV-criticality

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood, E-mail: davoodmomeni78@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Faizal, Mir, E-mail: mirfaizalmir@googlemail.com [Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, 3333 University Way, Kelowna, British Columbia V1V 1V7 (Canada); Myrzakulov, Kairat, E-mail: kairatmyrzakul@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Myrzakulov, Ratbay, E-mail: rmyrzakulov@gmail.com [Eurasian International Center for Theoretical Physics and Department of General & Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan)

    2017-02-10

    It is well known that entropy can be used to holographically establish a connection among geometry, thermodynamics and information theory. In this paper, we will use complexity to holographically establish a connection among geometry, thermodynamics and information theory. Thus, we will analyze the relation among holographic complexity, fidelity susceptibility, and thermodynamics in extended phase space. We will demonstrate that fidelity susceptibility (which is the informational complexity dual to a maximum volume in AdS) can be related to the thermodynamical volume (which is conjugate to the cosmological constant in the extended thermodynamic phase space). Thus, this letter establishes a relation among geometry, thermodynamics, and information theory, using complexity.

  4. Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling

    DEFF Research Database (Denmark)

    Zimmermann, Ralf; Bertram, Anna

    2018-01-01

    Cokriging is a variable-fidelity surrogate modeling technique which emulates a target process based on the spatial correlation of sampled data of different levels of fidelity. In this work, we address two theoretical questions associated with the so-called new Cokriging method for variable fidelity...

  5. Assessing fidelity of delivery of smoking cessation behavioural support in practice.

    Science.gov (United States)

    Lorencatto, Fabiana; West, Robert; Christopherson, Charlotte; Michie, Susan

    2013-04-04

    Effectiveness of evidence-based behaviour change interventions is likely to be undermined by failure to deliver interventions as planned. Behavioural support for smoking cessation can be a highly cost-effective, life-saving intervention. However, in practice, outcomes are highly variable. Part of this may be due to variability in fidelity of intervention implementation. To date, there have been no published studies on this. The present study aimed to: evaluate a method for assessing fidelity of behavioural support; assess fidelity of delivery in two English Stop-Smoking Services; and compare the extent of fidelity according to session types, duration, individual practitioners, and component behaviour change techniques (BCTs). Treatment manuals and transcripts of 34 audio-recorded behavioural support sessions were obtained from two Stop-Smoking Services and coded into component BCTs using a taxonomy of 43 BCTs. Inter-rater reliability was assessed using percentage agreement. Fidelity was assessed by examining the proportion of BCTs specified in the manuals that were delivered in individual sessions. This was assessed by session type (i.e., pre-quit, quit, post-quit), duration, individual practitioner, and BCT. Inter-coder reliability was high (87.1%). On average, 66% of manual-specified BCTs were delivered per session (SD 15.3, range: 35% to 90%). In Service 1, average fidelity was highest for post-quit sessions (69%) and lowest for pre-quit (58%). In Service 2, fidelity was highest for quit-day (81%) and lowest for post-quit sessions (56%). Session duration was not significantly correlated with fidelity. Individual practitioner fidelity ranged from 55% to 78%. Individual manual-specified BCTs were delivered on average 63% of the time (SD 28.5, range: 0 to 100%). The extent to which smoking cessation behavioural support is delivered as specified in treatment manuals can be reliably assessed using transcripts of audiotaped sessions. This allows the investigation of

  6. Utilization of the Nursing Process to Foster Clinical Reasoning During a Simulation Experience

    Directory of Open Access Journals (Sweden)

    Amanda Lambie

    2015-11-01

    Full Text Available Nursing practice includes complex reasoning and multifaceted decision making with minimal standardized guidance in how to evaluate this phenomenon among nursing students. Learning outcomes related to the clinical reasoning process among novice baccalaureate nursing students during a simulation experience were evaluated. Nursing process records were utilized to evaluate and foster the development of clinical reasoning in a high-fidelity medical-surgical simulation experience. Students were unable to describe and process pertinent patient information appropriately prior to the simulation experience. Students’ ability to identify pertinent patient cues and plan appropriate patient care improved following the simulation. The learning activity afforded a structured opportunity to identify cues, prioritize the proper course of nursing interventions, and engage in collaboration among peers. The simulation experience provides faculty insight into the students’ clinical reasoning processes, while providing students with a clear framework for successfully accomplishing learning outcomes.

  7. Eight critical factors in creating and implementing a successful simulation program.

    Science.gov (United States)

    Lazzara, Elizabeth H; Benishek, Lauren E; Dietz, Aaron S; Salas, Eduardo; Adriansen, David J

    2014-01-01

    Recognizing the need to minimize human error and adverse events, clinicians, researchers, administrators, and educators have strived to enhance clinicians' knowledge, skills, and attitudes through training. Given the risks inherent in learning new skills or advancing underdeveloped skills on actual patients, simulation-based training (SBT) has become an invaluable tool across the medical education spectrum. The large simulation, training, and learning literature was used to provide a synthesized yet innovative and "memorable" heuristic of the important facets of simulation program creation and implementation, as represented by eight critical "S" factors-science, staff, supplies, space, support, systems, success, and sustainability. These critical factors advance earlier work that primarily focused on the science of SBT success, to also include more practical, perhaps even seemingly obvious but significantly challenging components of SBT, such as resources, space, and supplies. SYSTEMS: One of the eight critical factors-systems-refers to the need to match fidelity requirements to training needs and ensure that technological infrastructure is in place. The type of learning objectives that the training is intended to address should determine these requirements. For example, some simulators emphasize physical fidelity to enable clinicians to practice technical and nontechnical skills in a safe environment that mirrors real-world conditions. Such simulators are most appropriate when trainees are learning how to use specific equipment or conduct specific procedures. The eight factors-science, staff, supplies, space, support, systems, success, and sustainability-represent a synthesis of the most critical elements necessary for successful simulation programs. The order of the factors does not represent a deliberate prioritization or sequence, and the factors' relative importance may change as the program evolves.

  8. Cadaver-based training is superior to simulation training for cricothyrotomy and tube thoracostomy.

    Science.gov (United States)

    Takayesu, James Kimo; Peak, David; Stearns, Dana

    2017-02-01

    Emergency medicine (EM) training mandates that residents be able to competently perform low-frequency critical procedures upon graduation. Simulation is the main method of training in addition to clinical patient care. Access to cadaver-based training is limited due to cost and availability. The relative fidelity and perceived value of cadaver-based simulation training is unknown. This pilot study sought to describe the relative value of cadaver training compared to simulation for cricothyrotomy and tube thoracostomy. To perform a pilot study to assess whether there is a significant difference in fidelity and educational experience of cadaver-based training compared to simulation training. To understand how important this difference is in training residents in low-frequency procedures. Twenty-two senior EM residents (PGY3 and 4) who had completed standard simulation training on cricothyrotomy and tube thoracostomy participated in a formalin-fixed cadaver training program. Participants were surveyed on the relative fidelity of the training using a 100 point visual analogue scale (VAS) with 100 defined as equal to performing the procedure on a real patient. Respondents were also asked to estimate how much the cadaveric training improved the comfort level with performing the procedures on a scale between 0 and 100 %. Open-response feedback was also collected. The response rate was 100 % (22/22). The average fidelity of the cadaver versus simulation training was 79.9 ± 7.0 vs. 34.7 ± 13.4 for cricothyrotomy (p Cadaver-based training provides superior landmark and tissue fidelity compared to simulation training and may be a valuable addition to EM residency training for certain low-frequency procedures.

  9. Trained student pharmacists’ telephonic collection of patient medication information: Evaluation of a structured interview tool

    Science.gov (United States)

    Margolis, Amanda R.; Martin, Beth A.; Mott, David A.

    2016-01-01

    Objective To determine the feasibility and fidelity of student pharmacists collecting patient medication list information using a structured interview tool and the accuracy of documenting the information. The medication lists were used by a community pharmacist to provide a targeted medication therapy management (MTM) intervention. Design Descriptive analysis of patient medication lists collected via telephone interviews. Participants 10 trained student pharmacists collected the medication lists. Intervention Trained student pharmacists conducted audio-recorded telephone interviews with 80 English-speaking community dwelling older adults using a structured interview tool to collect and document medication lists. Main outcome measures Feasibility was measured using the number of completed interviews, the time student pharmacists took to collect the information, and pharmacist feedback. Fidelity to the interview tool was measured by assessing student pharmacists’ adherence to asking all scripted questions and probes. Accuracy was measured by comparing the audio recorded interviews to the medication list information documented in an electronic medical record. Results On average it took student pharmacists 26.7 minutes to collect the medication lists. The community pharmacist said the medication lists were complete and that having the medication lists saved time and allowed him to focus on assessment, recommendations, and education during the targeted MTM session. Fidelity was high with an overall proportion of asked scripted probes of 83.75% (95%CI: 80.62–86.88%). Accuracy was also high for both prescription (95.1%, 95%CI: 94.3–95.8%) and non-prescription (90.5%, 95%CI: 89.4–91.4%) medications. Conclusion Trained student pharmacists were able to use an interview tool to collect and document medication lists with a high degree of fidelity and accuracy. This study suggests that student pharmacists or trained technicians may be able to collect patient medication

  10. Trained student pharmacists' telephonic collection of patient medication information: Evaluation of a structured interview tool.

    Science.gov (United States)

    Margolis, Amanda R; Martin, Beth A; Mott, David A

    2016-01-01

    To determine the feasibility and fidelity of student pharmacists collecting patient medication list information using a structured interview tool and the accuracy of documenting the information. The medication lists were used by a community pharmacist to provide a targeted medication therapy management (MTM) intervention. Descriptive analysis of patient medication lists collected with telephone interviews. Ten trained student pharmacists collected the medication lists. Trained student pharmacists conducted audio-recorded telephone interviews with 80 English-speaking, community-dwelling older adults using a structured interview tool to collect and document medication lists. Feasibility was measured using the number of completed interviews, the time student pharmacists took to collect the information, and pharmacist feedback. Fidelity to the interview tool was measured by assessing student pharmacists' adherence to asking all scripted questions and probes. Accuracy was measured by comparing the audio-recorded interviews to the medication list information documented in an electronic medical record. On average, it took student pharmacists 26.7 minutes to collect the medication lists. The community pharmacist said the medication lists were complete and that having the medication lists saved time and allowed him to focus on assessment, recommendations, and education during the targeted MTM session. Fidelity was high, with an overall proportion of asked scripted probes of 83.75% (95% confidence interval [CI], 80.62-86.88%). Accuracy was also high for both prescription (95.1%; 95% CI, 94.3-95.8%) and nonprescription (90.5%; 95% CI, 89.4-91.4%) medications. Trained student pharmacists were able to use an interview tool to collect and document medication lists with a high degree of fidelity and accuracy. This study suggests that student pharmacists or trained technicians may be able to collect patient medication lists to facilitate MTM sessions in the community pharmacy

  11. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    International Nuclear Information System (INIS)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R

    2011-01-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88 Sr + ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  12. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    Energy Technology Data Exchange (ETDEWEB)

    Keselman, A; Glickman, Y; Akerman, N; Kotler, S; Ozeri, R, E-mail: ozeri@weizmann.ac.il [Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100 (Israel)

    2011-07-15

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped {sup 88}Sr{sup +} ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  13. Creating virtual humans for simulation-based training and planning

    Energy Technology Data Exchange (ETDEWEB)

    Stansfield, S.; Sobel, A.

    1998-05-12

    Sandia National Laboratories has developed a distributed, high fidelity simulation system for training and planning small team Operations. The system provides an immersive environment populated by virtual objects and humans capable of displaying complex behaviors. The work has focused on developing the behaviors required to carry out complex tasks and decision making under stress. Central to this work are techniques for creating behaviors for virtual humans and for dynamically assigning behaviors to CGF to allow scenarios without fixed outcomes. Two prototype systems have been developed that illustrate these capabilities: MediSim, a trainer for battlefield medics and VRaptor, a system for planning, rehearsing and training assault operations.

  14. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment

    Science.gov (United States)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a

  15. Nuclear power plant simulation facility evaluation methodology

    International Nuclear Information System (INIS)

    Haas, P.M.; Carter, R.J.; Laughery, K.R. Jr.

    1985-01-01

    A methodology for evaluation of nuclear power plant simulation facilities with regard to their acceptability for use in the US Nuclear Regulatory Commission (NRC) operator licensing exam is described. The evaluation is based primarily on simulator fidelity, but incorporates some aspects of direct operator/trainee performance measurement. The panel presentation and paper discuss data requirements, data collection, data analysis and criteria for conclusions regarding the fidelity evaluation, and summarize the proposed use of direct performance measurment. While field testing and refinement of the methodology are recommended, this initial effort provides a firm basis for NRC to fully develop the necessary methodology

  16. Medical Robotic and Telesurgical Simulation and Education Research

    Science.gov (United States)

    2016-09-01

    they cannot correct or control the 109 variation caused by human input. 110 Medical simulation often looks to the military as a front runner in...more resilient to mistakes made during the learning process. These tools not only allow hands-on practice in a safe environment, but also provide

  17. A medical platform for simulation of surgical procedures.

    Science.gov (United States)

    Thurfjell, L; Lundin, A; McLaughlin, J

    2001-01-01

    Surgery simulation is a promising technique for training of surgical procedures. The overall goal for any surgical simulator is to allow for efficient training of the skills required and to improve learning by giving the user proper feedback. This goal is easier achieved if the training is performed in a realistic environment. Therefore functionality such as soft tissue deformation, tearing and cutting, penetration of soft tissue etc. is necessary. Furthermore, a realistic simulator must provide haptic feedback so that all senses match, that is, there should be a correspondence between what you see and what you feel with your hands. In this paper we describe a medical platform that provides all this functionality. It is based on the Reachln Magma API, which has been extended for surgery simulation. We describe the development of the platform and illustrate the use of it for the development of two different types of surgical simulators, both of which represents work in progress.

  18. Enhancing nurse and physician collaboration in clinical decision making through high-fidelity interdisciplinary simulation training.

    Science.gov (United States)

    Maxson, Pamela M; Dozois, Eric J; Holubar, Stefan D; Wrobleski, Diane M; Dube, Joyce A Overman; Klipfel, Janee M; Arnold, Jacqueline J

    2011-01-01

    To determine whether interdisciplinary simulation team training can positively affect registered nurse and/or physician perceptions of collaboration in clinical decision making. Between March 1 and April 21, 2009, a convenience sample of volunteer nurses and physicians was recruited to undergo simulation training consisting of a team response to 3 clinical scenarios. Participants completed the Collaboration and Satisfaction About Care Decisions (CSACD) survey before training and at 2 weeks and 2 months after training. Differences in CSACD summary scores between the time points were assessed with paired t tests. Twenty-eight health care professionals (19 nurses, 9 physicians) underwent simulation training. Nurses were of similar age to physicians (27.3 vs 34.5 years; p = .82), were more likely to be women (95.0% vs 12.5%; p nurses and physicians (p = .04) and that both medical and nursing concerns influence the decision-making process (p = .02). Pretest CSACD analysis revealed that most participants were dissatisfied with the decision-making process. The CSACD summary score showed significant improvement from baseline to 2 weeks (4.2 to 5.1; p nurses and physicians and enhanced the patient care decision-making process.

  19. Biochemical characterization of enzyme fidelity of influenza A virus RNA polymerase complex.

    Directory of Open Access Journals (Sweden)

    Shilpa Aggarwal

    2010-04-01

    Full Text Available It is widely accepted that the highly error prone replication process of influenza A virus (IAV, together with viral genome assortment, facilitates the efficient evolutionary capacity of IAV. Therefore, it has been logically assumed that the enzyme responsible for viral RNA replication process, influenza virus type A RNA polymerase (IAV Pol, is a highly error-prone polymerase which provides the genomic mutations necessary for viral evolution and host adaptation. Importantly, however, the actual enzyme fidelity of IAV RNA polymerase has never been characterized.Here we established new biochemical assay conditions that enabled us to assess both polymerase activity with physiological NTP pools and enzyme fidelity of IAV Pol. We report that IAV Pol displays highly active RNA-dependent RNA polymerase activity at unbiased physiological NTP substrate concentrations. With this robust enzyme activity, for the first time, we were able to compare the enzyme fidelity of IAV Pol complex with that of bacterial phage T7 RNA polymerase and the reverse transcriptases (RT of human immunodeficiency virus (HIV-1 and murine leukemia virus (MuLV, which are known to be low and high fidelity enzymes, respectively. We observed that IAV Pol displayed significantly higher fidelity than HIV-1 RT and T7 RNA polymerase and equivalent or higher fidelity than MuLV RT. In addition, the IAV Pol complex showed increased fidelity at lower temperatures. Moreover, upon replacement of Mg(++ with Mn(++, IAV Pol displayed increased polymerase activity, but with significantly reduced processivity, and misincorporation was slightly elevated in the presence of Mn(++. Finally, when the IAV nucleoprotein (NP was included in the reactions, the IAV Pol complex exhibited enhanced polymerase activity with increased fidelity.Our study indicates that IAV Pol is a high fidelity enzyme. We envision that the high fidelity nature of IAV Pol may be important to counter-balance the multiple rounds of

  20. The efficiency and fidelity of the in-core nuclear fuel management code FORMOSA-P

    International Nuclear Information System (INIS)

    Kropaczek, D.J.; Turinsky, P.J.

    1994-01-01

    The second-order generalized perturbation theory (GPT), nodal neutronic model utilized within the nuclear fuel management optimization code FORMOSA-P is presented within the context of prediction fidelity and computational efficiency versus forward solution. Key features of thr GPT neutronics model as implemented within the Simulated Annealing optimization adaptive control algorithm are discussed. Supporting results are then presented demonstrating the superior consistency of adaptive control for both global and local optimization searches. (authors). 15 refs., 1 fig., 4 tabs

  1. Effect of decoherence on fidelity in teleportation using entangled coherent states

    International Nuclear Information System (INIS)

    Prakash, H; Chandra, N; Prakash, R; Shivani

    2007-01-01

    A scheme of teleporting a superposition of coherent states (α) and ( - α) using a beam splitter and two phase shifters was proposed by van Enk and Hirota (2001 Phys. Rev. A 64 022313). The authors concluded that the probability for successful teleportation is 1/2. In this paper, it is shown that the authors' scheme can be altered slightly so as to obtain an almost perfect teleportation for an appreciable value of (α) 2 . For (α) 2 = 5, the minimum of average fidelity, which is the minimum of the sum of the product of probability of occurrence of any case, and the corresponding fidelity is less than 1 by a quantity ∼10 -4 . We also discuss the effect of decoherence on teleportation fidelity. We find that if no photons are counted in both final outputs, the minimum assured fidelity is still non-zero except when there is no decoherence and the information is an even coherent state. For non-zero photon counts, minimum assured fidelity decreases with an increase in (α) 2 for low noise. For high noise, however, it increases, attains a maximum value and then decreases with (α) 2 . The average fidelity depends appreciably on the information for low values of (α) 2 only

  2. A New Coupled CFD/Neutron Kinetics System for High Fidelity Simulations of LWR Core Phenomena: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Jorge Pérez Mañes

    2014-01-01

    Full Text Available The Institute for Neutron Physics and Reactor Technology (INR at the Karlsruhe Institute of Technology (KIT is investigating the application of the meso- and microscale analysis for the prediction of local safety parameters for light water reactors (LWR. By applying codes like CFD (computational fluid dynamics and SP3 (simplified transport reactor dynamics it is possible to describe the underlying phenomena in a more accurate manner than by the nodal/coarse 1D thermal hydraulic coupled codes. By coupling the transport (SP3 based neutron kinetics (NK code DYN3D with NEPTUNE-CFD, within a parallel MPI-environment, the NHESDYN platform is created. The newly developed system will allow high fidelity simulations of LWR fuel assemblies and cores. In NHESDYN, a heat conduction solver, SYRTHES, is coupled to NEPTUNE-CFD. The driver module of NHESDYN controls the sequence of execution of the solvers as well as the communication between the solvers based on MPI. In this paper, the main features of NHESDYN are discussed and the proof of the concept is done by solving a single pin problem. The prediction capability of NHESDYN is demonstrated by a code-to-code comparison with the DYNSUB code. Finally, the future developments and validation efforts are highlighted.

  3. Nursing Simulation: A Review of the Past 40 Years

    Science.gov (United States)

    Nehring, Wendy M.; Lashley, Felissa R.

    2009-01-01

    Simulation, in its many forms, has been a part of nursing education and practice for many years. The use of games, computer-assisted instruction, standardized patients, virtual reality, and low-fidelity to high-fidelity mannequins have appeared in the past 40 years, whereas anatomical models, partial task trainers, and role playing were used…

  4. Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System

    International Nuclear Information System (INIS)

    Wang Ju-Xia; Zhang Xiao-Juan; Zhang Xiu-Xing

    2015-01-01

    The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. (paper)

  5. High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner

    Science.gov (United States)

    Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey

    2005-01-01

    High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.

  6. Student peer teaching in paediatric simulation training is a feasible low-cost alternative for education.

    Science.gov (United States)

    Wagner, Michael; Mileder, Lukas P; Goeral, Katharina; Klebermass-Schrehof, Katrin; Cardona, Francesco S; Berger, Angelika; Schmölzer, Georg M; Olischar, Monika

    2017-06-01

    The World Health Organization recommends regular simulation training to prevent adverse healthcare events. We used specially trained medical students to provide paediatric simulation training to their peers and assessed feasibility, cost and confidence of students who attended the courses. Students at the Medical University of Vienna, Austria were eligible to participate. Students attended two high-fidelity simulation training sessions, delivered by peers, which were videorecorded for evaluation. The attendees then completed questionnaires before and after the training. Associated costs and potential benefits were analysed. From May 2013 to June 2015, 152 students attended the sessions and 57 (37.5%) completed both questionnaires. Satisfaction was high, with 95% stating their peer tutor was competent and 90% saying that peer tutors were well prepared. The attendees' confidence in treating critically ill children significantly improved after training (p peer tutor were six Euros per working hour, compared to 35 Euros for a physician. Using peer tutors for paediatric simulation training was a feasible and low-cost option that increased the number of medical students who could be trained and increased the self-confidence of the attendees. Satisfaction with the peer tutors was high. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  7. Enabling parallel simulation of large-scale HPC network systems

    International Nuclear Information System (INIS)

    Mubarak, Misbah; Carothers, Christopher D.; Ross, Robert B.; Carns, Philip

    2016-01-01

    Here, with the increasing complexity of today’s high-performance computing (HPC) architectures, simulation has become an indispensable tool for exploring the design space of HPC systems—in particular, networks. In order to make effective design decisions, simulations of these systems must possess the following properties: (1) have high accuracy and fidelity, (2) produce results in a timely manner, and (3) be able to analyze a broad range of network workloads. Most state-of-the-art HPC network simulation frameworks, however, are constrained in one or more of these areas. In this work, we present a simulation framework for modeling two important classes of networks used in today’s IBM and Cray supercomputers: torus and dragonfly networks. We use the Co-Design of Multi-layer Exascale Storage Architecture (CODES) simulation framework to simulate these network topologies at a flit-level detail using the Rensselaer Optimistic Simulation System (ROSS) for parallel discrete-event simulation. Our simulation framework meets all the requirements of a practical network simulation and can assist network designers in design space exploration. First, it uses validated and detailed flit-level network models to provide an accurate and high-fidelity network simulation. Second, instead of relying on serial time-stepped or traditional conservative discrete-event simulations that limit simulation scalability and efficiency, we use the optimistic event-scheduling capability of ROSS to achieve efficient and scalable HPC network simulations on today’s high-performance cluster systems. Third, our models give network designers a choice in simulating a broad range of network workloads, including HPC application workloads using detailed network traces, an ability that is rarely offered in parallel with high-fidelity network simulations

  8. Laguna Verde simulator: A new TRAC-RT based application

    International Nuclear Information System (INIS)

    Munoz Cases, J.J.; Tanarro Onrubia, A.

    2006-01-01

    In a partnership with GSE Systems, TECNATOM is developing a full scope training simulator for Laguna Verde Unit 2 (LV2). The simulator design is based upon the current 'state-of-the art technology' regarding the simulation platform, instructor station, visualization tools, advanced thermalhydraulics and neutronics models, I/O systems and automated model building technology. When completed, LV2 simulator will achieve a remarkable level of modeling fidelity by using TECNATOM's TRAC-RT advanced thermalhydraulic code for the reactor coolant and main steam systems, and NEMO neutronic model for the reactor core calculations. These models have been utilized up to date for the development or upgrading of nine NPP simulators in Spain and abroad, with more than 8000 hours of training sessions, and have developed an excellent reputation for its robustness and high fidelity. (author)

  9. The role of simulation in teaching pediatric resuscitation: current perspectives

    Directory of Open Access Journals (Sweden)

    Lin Y

    2015-03-01

    Full Text Available Yiqun Lin,1 Adam Cheng2 1KidSIM-ASPIRE Simulation Research Program, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada; 2KidSIM-ASPIRE Research Program, Department of Pediatrics, Division of Emergency Medicine, University of Calgary, Alberta Children's Hospital, Calgary, AB, Canada Abstract: The use of simulation for teaching the knowledge, skills, and behaviors necessary for effective pediatric resuscitation has seen widespread growth and adoption across pediatric institutions. In this paper, we describe the application of simulation in pediatric resuscitation training and review the evidence for the use of simulation in neonatal resuscitation, pediatric advanced life support, procedural skills training, and crisis resource management training. We also highlight studies supporting several key instructional design elements that enhance learning, including the use of high-fidelity simulation, distributed practice, deliberate practice, feedback, and debriefing. Simulation-based training is an effective modality for teaching pediatric resuscitation concepts. Current literature has revealed some research gaps in simulation-based education, which could indicate the direction for the future of pediatric resuscitation research. Keywords: simulation, pediatric resuscitation, medical education, instructional design, crisis resource management, health care

  10. Early bedside care during preclinical medical education: can technology-enhanced patient simulation advance the Flexnerian ideal?

    Science.gov (United States)

    Gordon, James A; Hayden, Emily M; Ahmed, Rami A; Pawlowski, John B; Khoury, Kimberly N; Oriol, Nancy E

    2010-02-01

    Flexner wanted medical students to study at the patient bedside-a remarkable innovation in his time-so that they could apply science to clinical care under the watchful eye of senior physicians. Ever since his report, medical schools have reserved the latter years of their curricula for such an "advanced" apprenticeship, providing clinical clerkship experiences only after an initial period of instruction in basic medical sciences. Although Flexner codified the segregation of preclinical and clinical instruction, he was committed to ensuring that both domains were integrated into a modern medical education. The aspiration to fully integrate preclinical and clinical instruction continues to drive medical education reform even to this day. In this article, the authors revisit the original justification for sequential preclinical-clinical instruction and argue that modern, technology-enhanced patient simulation platforms are uniquely powerful for fostering simultaneous integration of preclinical-clinical content in a way that Flexner would have applauded. To date, medical educators tend to focus on using technology-enhanced medical simulation in clinical and postgraduate medical education; few have devoted significant attention to using immersive clinical simulation among preclinical students. The authors present an argument for the use of dynamic robot-mannequins in teaching basic medical science, and describe their experience with simulator-based preclinical instruction at Harvard Medical School. They discuss common misconceptions and barriers to the approach, describe their curricular responses to the technique, and articulate a unifying theory of cognitive and emotional learning that broadens the view of what is possible, feasible, and desirable with simulator-based medical education.

  11. Bounding quantum gate error rate based on reported average fidelity

    International Nuclear Information System (INIS)

    Sanders, Yuval R; Wallman, Joel J; Sanders, Barry C

    2016-01-01

    Remarkable experimental advances in quantum computing are exemplified by recent announcements of impressive average gate fidelities exceeding 99.9% for single-qubit gates and 99% for two-qubit gates. Although these high numbers engender optimism that fault-tolerant quantum computing is within reach, the connection of average gate fidelity with fault-tolerance requirements is not direct. Here we use reported average gate fidelity to determine an upper bound on the quantum-gate error rate, which is the appropriate metric for assessing progress towards fault-tolerant quantum computation, and we demonstrate that this bound is asymptotically tight for general noise. Although this bound is unlikely to be saturated by experimental noise, we demonstrate using explicit examples that the bound indicates a realistic deviation between the true error rate and the reported average fidelity. We introduce the Pauli distance as a measure of this deviation, and we show that knowledge of the Pauli distance enables tighter estimates of the error rate of quantum gates. (fast track communication)

  12. Fidelity of Quantum Teleportation for Single-Mode Squeezed State Light

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Xiang; XIE Chang-De; PENG Kun-Chi

    2005-01-01

    @@ The fidelity of quantum teleportation of a single-mode squeezed state of light is calculated based on the general theory of quantum-mechanical measurement in the Schrodinger picture. It is shown that the criterion for the nonclassical state teleportation is different from that for coherent state. F = 1/2 is no longer the rigorous boundary between classical and quantum teleportation for a squeezed state of light. When the quantum entanglement of an Einstein-Podolsky-Rosen (EPR) beam used for teleportation and the parameters of the system are given,the fidelity depends on the squeezing of the input squeezed state. The higher the squeezing is, the smaller the fidelity is, and the lower the classical limitation of fidelity is. The dependence of the optimum gain for teleporting a squeezed vacuum state upon the EPR entanglement is also calculated. The results obtained provide important references for designing experimental systems of teleporting a non-classical state and judging the quality of the teleported quantum state.

  13. The effects of teacher fidelity of implementation of pathways to health on student outcomes.

    Science.gov (United States)

    Little, Melissa A; Riggs, Nathaniel R; Shin, Hee-Sung; Tate, Eleanor B; Pentz, Mary Ann

    2015-03-01

    Previous research has demonstrated the importance of ensuring that programs are implemented as intended by program developers in order to achieve desired program effects. The current study examined implementation fidelity of Pathways to Health (Pathways), a newly developed obesity prevention program for fourth- through sixth-grade children. We explored the associations between self-reported and observed implementation fidelity scores and whether implementation fidelity differed across the first 2 years of program implementation. Additionally, we examined whether implementation fidelity affected program outcomes and whether teacher beliefs were associated with implementation fidelity. The program was better received, and implementation fidelity had more effects on program outcomes in fifth grade than in fourth grade. Findings suggest that implementation in school-based obesity programs may affect junk food intake and intentions to eat healthfully and exercise. School support was associated with implementation fidelity, suggesting that prevention programs may benefit from including a component that boosts school-wide support. © The Author(s) 2013.

  14. Impact of peer pressure on accuracy of reporting vital signs: An interprofessional comparison between nursing and medical students.

    Science.gov (United States)

    Kaba, Alyshah; Beran, Tanya N

    2016-01-01

    The hierarchical relationship between nursing and medicine has long been known, yet its direct influence on procedural tasks has yet to be considered. Drawing on the theory of conformity from social psychology, we suggest that nursing students are likely to report incorrect information in response to subtle social pressures imposed by medical students. Second-year medical and third-year nursing students took vital signs readings from a patient simulator. In a simulation exercise, three actors, posing as medical students, and one nursing student participant all took a total of three rounds of vital signs on a high-fidelity patient simulator. In the first two rounds the three actors individually stated the same correct vital signs values, and on the third round the three actors individually stated the same incorrect vital sign values. This same procedure was repeated with actors posing as nursing students, and one medical student. A two-way analysis of variance (ANOVA) revealed that nursing student participants (M = 2.84; SD = 1.24) reported a higher number of incorrect vital signs than did medical student participants (M = 2.13; SD = 1.07), F (1,100) = 5.51, p = 0.021 (Cohen's d = 0.61). The study indicated that social pressure may prevent nursing students from questioning incorrect information within interprofessional environments, potentially affecting quality of care.

  15. Designing and using computer simulations in medical education and training: an introduction.

    Science.gov (United States)

    Friedl, Karl E; O'Neil, Harold F

    2013-10-01

    Computer-based technologies informed by the science of learning are becoming increasingly prevalent in education and training. For the Department of Defense (DoD), this presents a great potential advantage to the effective preparation of a new generation of technologically enabled service members. Military medicine has broad education and training challenges ranging from first aid and personal protective skills for every service member to specialized combat medic training; many of these challenges can be met with gaming and simulation technologies that this new generation has embraced. However, comprehensive use of medical games and simulation to augment expert mentorship is still limited to elite medical provider training programs, but can be expected to become broadly used in the training of first responders and allied health care providers. The purpose of this supplement is to review the use of computer games and simulation to teach and assess medical knowledge and skills. This review and other DoD research policy sources will form the basis for development of a research and development road map and guidelines for use of this technology in military medicine. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  16. Team Regulation in a Simulated Medical Emergency: An In-Depth Analysis of Cognitive, Metacognitive, and Affective Processes

    Science.gov (United States)

    Duffy, Melissa C.; Azevedo, Roger; Sun, Ning-Zi; Griscom, Sophia E.; Stead, Victoria; Crelinsten, Linda; Wiseman, Jeffrey; Maniatis, Thomas; Lachapelle, Kevin

    2015-01-01

    This study examined the nature of cognitive, metacognitive, and affective processes among a medical team experiencing difficulty managing a challenging simulated medical emergency case by conducting in-depth analysis of process data. Medical residents participated in a simulation exercise designed to help trainees to develop medical expertise,…

  17. Enhanced fidelity of an educational intervention on skin self-examination through surveillance and standardization.

    Science.gov (United States)

    Gaber, Rikki; Mallett, Kimberly A; Hultgren, Brittney; Turrisi, Rob; Gilbertsen, Margaret L; Martini, Mary C; Robinson, June K

    2014-01-01

    Melanoma can metastasize but is often successfully treated when discovered in an early stage. Melanoma patients and their skin check partners can learn skin self-examination (SSE) skills and these skills can be improved by practice. The purpose of this study is to determine the degree of fidelity with which educational in-person SSE intervention can be delivered by trained research coordinators to patients at risk of developing another melanoma and their skin check partners. The in-person intervention was performed in two iterations. In phase 1 (2006-2008), the research coordinators were trained to perform the intervention using a written script. In phase 2 (2011-2013), the research coordinators were trained to perform the intervention with a PowerPoint aid. Each research coordinator was individually counseled by one of the authors (KM) to insure standardization and enhance fidelity of intervention delivery. Phase 1 and Phase 2 were compared on 16 fidelity components. Further, Phase 2 fidelity was assessed by comparing mean scores of fidelity across the five research coordinators who delivered the intervention. Phase 2, which utilized a PowerPoint aid, was delivered with a higher degree of fidelity compared to phase 1with four fidelity components with significantly higher fidelity than Phase 1: 1) Explained details of melanoma, χ 2 (1, n = 199)= 96.31, p 14) and there were no mean differences in fidelity across research coordinators, indicating consistency in fidelity. This can be attributed to the standardization and cueing that the PowerPoint program offered. Supervision was also a key component in establishing and maintaining fidelity of the patient educational process. This method of intervention delivery enables trained healthcare professionals to deliver an educational intervention in an effective, consistent manner.

  18. PSYCHE: An Object-Oriented Approach to Simulating Medical Education

    Science.gov (United States)

    Mullen, Jamie A.

    1990-01-01

    Traditional approaches to computer-assisted instruction (CAI) do not provide realistic simulations of medical education, in part because they do not utilize heterogeneous knowledge bases for their source of domain knowledge. PSYCHE, a CAI program designed to teach hypothetico-deductive psychiatric decision-making to medical students, uses an object-oriented implementation of an intelligent tutoring system (ITS) to model the student, domain expert, and tutor. It models the transactions between the participants in complex transaction chains, and uses heterogeneous knowledge bases to represent both domain and procedural knowledge in clinical medicine. This object-oriented approach is a flexible and dynamic approach to modeling, and represents a potentially valuable tool for the investigation of medical education and decision-making.

  19. Evaluation of cognitive load and emotional states during multidisciplinary critical care simulation sessions.

    Science.gov (United States)

    Pawar, Swapnil; Jacques, Theresa; Deshpande, Kush; Pusapati, Raju; Meguerdichian, Michael J

    2018-04-01

    The simulation in critical care setting involves a heterogeneous group of participants with varied background and experience. Measuring the impacts of simulation on emotional state and cognitive load in this setting is not often performed. The feasibility of such measurement in the critical care setting needs further exploration. Medical and nursing staff with varying levels of experience from a tertiary intensive care unit participated in a standardised clinical simulation scenario. The emotional state of each participant was assessed before and after completion of the scenario using a validated eight-item scale containing bipolar oppositional descriptors of emotion. The cognitive load of each participant was assessed after the completion of the scenario using a validated subjective rating tool. A total of 103 medical and nursing staff participated in the study. The participants felt more relaxed (-0.28±1.15 vs 0.14±1, Pcognitive load for all participants was 6.67±1.41. There was no significant difference in the cognitive loads among medical staff versus nursing staff (6.61±2.3 vs 6.62±1.7; P>0.05). A well-designed complex high fidelity critical care simulation scenario can be evaluated to identify the relative cognitive load of the participants' experience and their emotional state. The movement of learners emotionally from a more negative state to a positive state suggests that simulation can be an effective tool for improved knowledge transfer and offers more opportunity for dynamic thinking.

  20. High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoyi, E-mail: lixy2@utrc.utc.com; Soteriou, Marios C. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-08-15

    Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quo by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream

  1. Effect of obstetric team training on team performance and medical technical skills: a randomised controlled trial.

    Science.gov (United States)

    Fransen, A F; van de Ven, J; Merién, A E R; de Wit-Zuurendonk, L D; Houterman, S; Mol, B W; Oei, S G

    2012-10-01

    To determine whether obstetric team training in a medical simulation centre improves the team performance and utilisation of appropriate medical technical skills of healthcare professionals. Cluster randomised controlled trial. The Netherlands. The obstetric departments of 24 Dutch hospitals. The obstetric departments were randomly assigned to a 1-day session of multiprofessional team training in a medical simulation centre or to no such training. Team training was given with high-fidelity mannequins by an obstetrician and a communication expert. More than 6 months following training, two unannounced simulated scenarios were carried out in the delivery rooms of all 24 obstetric departments. The scenarios, comprising a case of shoulder dystocia and a case of amniotic fluid embolism, were videotaped. The team performance and utilisation of appropriate medical skills were evaluated by two independent experts. Team performance evaluated with the validated Clinical Teamwork Scale (CTS) and the employment of two specific obstetric procedures for the two clinical scenarios in the simulation (delivery of the baby with shoulder dystocia in the maternal all-fours position and conducting a perimortem caesarean section within 5 minutes for the scenario of amniotic fluid embolism). Seventy-four obstetric teams from 12 hospitals in the intervention group underwent teamwork training between November 2009 and July 2010. The teamwork performance in the training group was significantly better in comparison to the nontraining group (median CTS score: 7.5 versus 6.0, respectively; P = 0.014). The use of the predefined obstetric procedures for the two clinical scenarios was also significantly more frequent in the training group compared with the nontraining group (83 versus 46%, respectively; P = 0.009). Team performance and medical technical skills may be significantly improved after multiprofessional obstetric team training in a medical simulation centre. © 2012 The Authors BJOG An

  2. Investigating a self-scoring interview simulation for learning and assessment in the medical consultation

    Directory of Open Access Journals (Sweden)

    Bruen C

    2017-05-01

    Full Text Available Catherine Bruen,1 Clarence Kreiter,2 Vincent Wade,3 Teresa Pawlikowska1 1Health Professions Education Centre, Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; 2Department of Family Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; 3School of Computer Science and Statistics, Faculty of Engineering, Mathematics and Science, Trinity College Dublin, Dublin, Ireland Abstract: Experience with simulated patients supports undergraduate learning of medical consultation skills. Adaptive simulations are being introduced into this environment. The authors investigate whether it can underpin valid and reliable assessment by conducting a generalizability analysis using IT data analytics from the interaction of medical students (in psychiatry with adaptive simulations to explore the feasibility of adaptive simulations for supporting automated learning and assessment. The generalizability (G study was focused on two clinically relevant variables: clinical decision points and communication skills. While the G study on the communication skills score yielded low levels of true score variance, the results produced by the decision points, indicating clinical decision-making and confirming user knowledge of the process of the Calgary–Cambridge model of consultation, produced reliability levels similar to what might be expected with rater-based scoring. The findings indicate that adaptive simulations have potential as a teaching and assessment tool for medical consultations. Keywords: medical education, simulation technology, competency assessment, generalizability theory

  3. A modified theoretical framework to assess implementation fidelity of adaptive public health interventions.

    Science.gov (United States)

    Pérez, Dennis; Van der Stuyft, Patrick; Zabala, Maríadel Carmen; Castro, Marta; Lefèvre, Pierre

    2016-07-08

    One of the major debates in implementation research turns around fidelity and adaptation. Fidelity is the degree to which an intervention is implemented as intended by its developers. It is meant to ensure that the intervention maintains its intended effects. Adaptation is the process of implementers or users bringing changes to the original design of an intervention. Depending on the nature of the modifications brought, adaptation could either be potentially positive or could carry the risk of threatening the theoretical basis of the intervention, resulting in a negative effect on expected outcomes. Adaptive interventions are those for which adaptation is allowed or even encouraged. Classical fidelity dimensions and conceptual frameworks do not address the issue of how to adapt an intervention while still maintaining its effectiveness. We support the idea that fidelity and adaptation co-exist and that adaptations can impact either positively or negatively on the intervention's effectiveness. For adaptive interventions, research should answer the question how an adequate fidelity-adaptation balance can be reached. One way to address this issue is by looking systematically at the aspects of an intervention that are being adapted. We conducted fidelity research on the implementation of an empowerment strategy for dengue prevention in Cuba. In view of the adaptive nature of the strategy, we anticipated that the classical fidelity dimensions would be of limited use for assessing adaptations. The typology we used in the assessment-implemented, not-implemented, modified, or added components of the strategy-also had limitations. It did not allow us to answer the question which of the modifications introduced in the strategy contributed to or distracted from outcomes. We confronted our empirical research with existing literature on fidelity, and as a result, considered that the framework for implementation fidelity proposed by Carroll et al. in 2007 could potentially meet

  4. Developing, implementing and evaluating a simulation learning ...

    African Journals Online (AJOL)

    Hafaza Bibi Amod

    Research significance: To develop a simulation learning package that uses high fidelity simulation to ... common cause of maternal mortality in South Africa and ... Framework cited by Jeffries (2007). ... nario development toolkits and various best practice guide- ..... analysis in nursing research: Concepts, procedures, and.

  5. Does teaching non-technical skills to medical students improve those skills and simulated patient outcome?

    Science.gov (United States)

    Hagemann, Vera; Herbstreit, Frank; Kehren, Clemens; Chittamadathil, Jilson; Wolfertz, Sandra; Dirkmann, Daniel; Kluge, Annette; Peters, Jürgen

    2017-03-29

    The purpose of this study is to evaluate the effects of a tailor-made, non-technical skills seminar on medical student's behaviour, attitudes, and performance during simulated patient treatment. Seventy-seven students were randomized to either a non-technical skills seminar (NTS group, n=43) or a medical seminar (control group, n=34). The human patient simulation was used as an evaluation tool. Before the seminars, all students performed the same simulated emergency scenario to provide baseline measurements. After the seminars, all students were exposed to a second scenario, and behavioural markers for evaluating their non-technical skills were rated. Furthermore, teamwork-relevant attitudes were measured before and after the scenarios, and perceived stress was measured following each simulation. All simulations were also evaluated for various medical endpoints. Non-technical skills concerning situation awareness (ptechnical skills to improve student's non-technical skills. In a next step, to improve student's handling of emergencies and patient outcomes, non-technical skills seminars should be accompanied by exercises and more broadly embedded in the medical school curriculum.

  6. Real-time GPS Signal Simulator

    Data.gov (United States)

    National Aeronautics and Space Administration — With a minimal FTE investment and no additional procurement funds, the development of a low fidelity orbital GPS Signal simulator would is possible.  This IRAD...

  7. A method for assessing fidelity of delivery of telephone behavioral support for smoking cessation.

    Science.gov (United States)

    Lorencatto, Fabiana; West, Robert; Bruguera, Carla; Michie, Susan

    2014-06-01

    Behavioral support for smoking cessation is delivered through different modalities, often guided by treatment manuals. Recently developed methods for assessing fidelity of delivery have shown that face-to-face behavioral support is often not delivered as specified in the service treatment manual. This study aimed to extend this method to evaluate fidelity of telephone-delivered behavioral support. A treatment manual and transcripts of 75 audio-recorded behavioral support sessions were obtained from the United Kingdom's national Quitline service and coded into component behavior change techniques (BCTs) using a taxonomy of 45 smoking cessation BCTs. Interrater reliability was assessed using percentage agreement. Fidelity was assessed by comparing the number of BCTs identified in the manual with those delivered in telephone sessions by 4 counselors. Fidelity was assessed according to session type, duration, counselor, and BCT. Differences between self-reported and actual BCT use were examined. Average coding reliability was high (81%). On average, 41.8% of manual-specified BCTs were delivered per session (SD = 16.2), with fidelity varying by counselor from 32% to 49%. Fidelity was highest in pre-quit sessions (46%) and for BCT "give options for additional support" (95%). Fidelity was lowest for quit-day sessions (35%) and BCT "set graded tasks" (0%). Session duration was positively correlated with fidelity (r = .585; p reliably coded in terms of BCTs. This can be used to assess fidelity to treatment manuals and to in turn identify training needs. The observed low fidelity underlines the need to establish routine procedures for monitoring delivery of behavioral support. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  8. Implementation Fidelity of a Voluntary Sector-Led Diabetes Education Programme

    Science.gov (United States)

    Kok, Michele S. Y.; Jones, Mat; Solomon-Moore, Emma; Smith, Jane R.

    2018-01-01

    Purpose: The quality of voluntary sector-led community health programmes is an important concern for service users, providers and commissioners. Research on the fidelity of programme implementation offers a basis for assessing and further enhancing practice. The purpose of this paper is to report on the fidelity assessment of Living Well Taking…

  9. A study of moult-site fidelity in Egyptian geese, Alopochen ...

    African Journals Online (AJOL)

    Little is known about moult and moult-site fidelity of African waterfowl. Satellite telemetry and uniquely engraved colour-rings were used to study moult-site fidelity of Egyptian geese marked at two sites in South Africa – Barberspan in the summer-rainfall region and Strandfontein in the winter-rainfall region. Twelve Egyptian ...

  10. Development of a fidelity scale for Danish specialized early interventions service

    DEFF Research Database (Denmark)

    Melau, Marianne; Albert, Nikolai; Nordentoft, Merete

    2017-01-01

    positive effects along with creating new teams and preserving critical components is to ensure fidelity to the model. Currently there is no Danish fidelity scale for SEI services. AIM: To establish a fidelity scale for SEI teams, in a brief and easily manageable form, for the use of evaluating......BACKGROUND: The efficacy of the Specialized Early Intervention (SEI) treatment in Denmark, the OPUS treatment, has in a randomized clinical trial proved to be very effective compared to treatment as usual, and the dissemination of SEI services is increasing in Denmark. A prerequisite for upholding...... and assessing the critical components in Danish SEI services. METHOD: We identified essential evidence-based components of SEI services internationally and interviewed experts from five Danish SEI teams, using an adapted version of the Delphi Consensus method. RESULTS: An 18-point fidelity scale was constructed...

  11. Comparing the Costs and Acceptability of Three Fidelity Assessment Methods for Assertive Community Treatment.

    Science.gov (United States)

    Rollins, Angela L; Kukla, Marina; Salyers, Michelle P; McGrew, John H; Flanagan, Mindy E; Leslie, Doug L; Hunt, Marcia G; McGuire, Alan B

    2017-09-01

    Successful implementation of evidence-based practices requires valid, yet practical fidelity monitoring. This study compared the costs and acceptability of three fidelity assessment methods: on-site, phone, and expert-scored self-report. Thirty-two randomly selected VA mental health intensive case management teams completed all fidelity assessments using a standardized scale and provided feedback on each. Personnel and travel costs across the three methods were compared for statistical differences. Both phone and expert-scored self-report methods demonstrated significantly lower costs than on-site assessments, even when excluding travel costs. However, participants preferred on-site assessments. Remote fidelity assessments hold promise in monitoring large scale program fidelity with limited resources.

  12. Toward the Effective and Efficient Measurement of Implementation Fidelity

    OpenAIRE

    Schoenwald, Sonja K.; Garland, Ann F.; Chapman, Jason E.; Frazier, Stacy L.; Sheidow, Ashli J.; Southam-Gerow, Michael A.

    2011-01-01

    Implementation science in mental health is informed by other academic disciplines and industries. Conceptual and methodological territory charted in psychotherapy research is pertinent to two elements of the conceptual model of implementation posited by Aarons and colleagues (2010)—implementation fidelity and innovation feedback systems. Key characteristics of scientifically validated fidelity instruments, and of the feasibility of their use in routine care, are presented. The challenges of e...

  13. Unbiased multi-fidelity estimate of failure probability of a free plane jet

    Science.gov (United States)

    Marques, Alexandre; Kramer, Boris; Willcox, Karen; Peherstorfer, Benjamin

    2017-11-01

    Estimating failure probability related to fluid flows is a challenge because it requires a large number of evaluations of expensive models. We address this challenge by leveraging multiple low fidelity models of the flow dynamics to create an optimal unbiased estimator. In particular, we investigate the effects of uncertain inlet conditions in the width of a free plane jet. We classify a condition as failure when the corresponding jet width is below a small threshold, such that failure is a rare event (failure probability is smaller than 0.001). We estimate failure probability by combining the frameworks of multi-fidelity importance sampling and optimal fusion of estimators. Multi-fidelity importance sampling uses a low fidelity model to explore the parameter space and create a biasing distribution. An unbiased estimate is then computed with a relatively small number of evaluations of the high fidelity model. In the presence of multiple low fidelity models, this framework offers multiple competing estimators. Optimal fusion combines all competing estimators into a single estimator with minimal variance. We show that this combined framework can significantly reduce the cost of estimating failure probabilities, and thus can have a large impact in fluid flow applications. This work was funded by DARPA.

  14. The effect of an interprofessional clinical simulation on medical ...

    African Journals Online (AJOL)

    Five themes emerged from the reflections: (i) difficulties with implementing knowledge and skills; (ii) importance of teamwork; (iii) skills necessary for teamwork; (iv) effect of being observed by peers; and (v) IPE in the curriculum. Conclusions. Medical students gained clinical knowledge during the simulation and became ...

  15. Quantum-critical scaling of fidelity in 2D pairing models

    Energy Technology Data Exchange (ETDEWEB)

    Adamski, Mariusz, E-mail: mariusz.adamski@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Jȩdrzejewski, Janusz [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Krokhmalskii, Taras [Institute for Condensed Matter Physics, 1 Svientsitski Street, 79011, Lviv (Ukraine)

    2017-01-15

    The laws of quantum-critical scaling theory of quantum fidelity, dependent on the underlying system dimensionality D, have so far been verified in exactly solvable 1D models, belonging to or equivalent to interacting, quadratic (quasifree), spinless or spinfull, lattice-fermion models. The obtained results are so appealing that in quest for correlation lengths and associated universal critical indices ν, which characterize the divergence of correlation lengths on approaching critical points, one might be inclined to substitute the hard task of determining an asymptotic behavior at large distances of a two-point correlation function by an easier one, of determining the quantum-critical scaling of the quantum fidelity. However, the role of system's dimensionality has been left as an open problem. Our aim in this paper is to fill up this gap, at least partially, by verifying the laws of quantum-critical scaling theory of quantum fidelity in a 2D case. To this end, we study correlation functions and quantum fidelity of 2D exactly solvable models, which are interacting, quasifree, spinfull, lattice-fermion models. The considered 2D models exhibit new, as compared with 1D ones, features: at a given quantum-critical point there exists a multitude of correlation lengths and multiple universal critical indices ν, since these quantities depend on spatial directions, moreover, the indices ν may assume larger values. These facts follow from the obtained by us analytical asymptotic formulae for two-point correlation functions. In such new circumstances we discuss the behavior of quantum fidelity from the perspective of quantum-critical scaling theory. In particular, we are interested in finding out to what extent the quantum fidelity approach may be an alternative to the correlation-function approach in studies of quantum-critical points beyond 1D.

  16. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source

    International Nuclear Information System (INIS)

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E. II; Rochau, Gary Eugene

    2010-01-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  17. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    Energy Technology Data Exchange (ETDEWEB)

    Tsvetkov, Pavel Valeryevich (Texas A& M University, College Station, TX); Rodriguez, Salvador B.; Ames, David E., II (Texas A& M University, College Station, TX); Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  18. Testing cooperative systems with the MARS simulator

    NARCIS (Netherlands)

    Netten, B.D.; Wedemeijer, H.

    2010-01-01

    The complexity of cooperative systems makes the use of high fidelity simulation essential in the development and testing of cooperative applications and their interactions with other cooperative systems. In SAFESPOT a simulator test bench is setup to test the safety margin applications running on

  19. A reduced fidelity model for the rotary chemical looping combustion reactor

    International Nuclear Information System (INIS)

    Iloeje, Chukwunwike O.; Zhao, Zhenlong; Ghoniem, Ahmed F.

    2017-01-01

    Highlights: • Methodology for developing a reduced fidelity rotary CLC reactor model is presented. • The reduced model determines optimal reactor configuration that meets design and operating requirements. • A 4-order of magnitude reduction in computational cost is achieved with good prediction accuracy. • Sensitivity studies demonstrate importance of accurate kinetic parameters for reactor optimization. - Abstract: The rotary chemical looping combustion reactor has great potential for efficient integration with CO_2 capture-enabled energy conversion systems. In earlier studies, we described a one-dimensional rotary reactor model, and used it to demonstrate the feasibility of continuous reactor operation. Though this detailed model provides a high resolution representation of the rotary reactor performance, it is too computationally expensive for studies that require multiple model evaluations. Specifically, it is not ideal for system-level studies where the reactor is a single component in an energy conversion system. In this study, we present a reduced fidelity model (RFM) of the rotary reactor that reduces computational cost and determines an optimal combination of variables that satisfy reactor design requirements. Simulation results for copper, nickel and iron-based oxygen carriers show a four-order of magnitude reduction in simulation time, and reasonable prediction accuracy. Deviations from the detailed reference model predictions range from 3% to 20%, depending on oxygen carrier type and operating conditions. This study also demonstrates how the reduced model can be modified to deal with both optimization and design oriented problems. A parametric study using the reduced model is then applied to analyze the sensitivity of the optimal reactor design to changes in selected operating and kinetic parameters. These studies show that temperature and activation energy have a greater impact on optimal geometry than parameters like pressure or feed fuel

  20. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    Energy Technology Data Exchange (ETDEWEB)

    Yoginath, Srikanth B [ORNL; Perumalla, Kalyan S [ORNL

    2014-01-01

    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  1. International Meeting on Medical Simulation (6th), "The World of Simulation" Held in San Diego, California on January 14-17, 2006

    National Research Council Canada - National Science Library

    Sinz, Elizabeth H

    2006-01-01

    Partial contents: Medical Education, Nursing and Allied Health Education, Simulation in Military and Hazardous Environments, Serious Games/3-Dimensional Interactive Environments, Virtual patients, Simulation Center Readiness...

  2. Human-simulation-based learning to prevent medication error: A systematic review.

    Science.gov (United States)

    Sarfati, Laura; Ranchon, Florence; Vantard, Nicolas; Schwiertz, Vérane; Larbre, Virginie; Parat, Stéphanie; Faudel, Amélie; Rioufol, Catherine

    2018-01-31

    In the past 2 decades, there has been an increasing interest in simulation-based learning programs to prevent medication error (ME). To improve knowledge, skills, and attitudes in prescribers, nurses, and pharmaceutical staff, these methods enable training without directly involving patients. However, best practices for simulation for healthcare providers are as yet undefined. By analysing the current state of experience in the field, the present review aims to assess whether human simulation in healthcare helps to reduce ME. A systematic review was conducted on Medline from 2000 to June 2015, associating the terms "Patient Simulation," "Medication Errors," and "Simulation Healthcare." Reports of technology-based simulation were excluded, to focus exclusively on human simulation in nontechnical skills learning. Twenty-one studies assessing simulation-based learning programs were selected, focusing on pharmacy, medicine or nursing students, or concerning programs aimed at reducing administration or preparation errors, managing crises, or learning communication skills for healthcare professionals. The studies varied in design, methodology, and assessment criteria. Few demonstrated that simulation was more effective than didactic learning in reducing ME. This review highlights a lack of long-term assessment and real-life extrapolation, with limited scenarios and participant samples. These various experiences, however, help in identifying the key elements required for an effective human simulation-based learning program for ME prevention: ie, scenario design, debriefing, and perception assessment. The performance of these programs depends on their ability to reflect reality and on professional guidance. Properly regulated simulation is a good way to train staff in events that happen only exceptionally, as well as in standard daily activities. By integrating human factors, simulation seems to be effective in preventing iatrogenic risk related to ME, if the program is

  3. Construction requirements for full-term newborn simulation manikin

    NARCIS (Netherlands)

    Thielen, M.W.H.; Bovendeerd, P.H.M.; Neto Fonseca, L.T.; van der Hout-van der Jagt, M.B.

    2015-01-01

    Introduction In the Netherlands, approximately 4500 newborns are admitted each year in the Neonatal Intensive Care Unit (NICU). In order to determine and practice optimal treatment for these fragile patients, clinicians increasingly use educative simulation. However, a high-fidelity simulation of

  4. Airway management in a bronchoscopic simulator based setting

    DEFF Research Database (Denmark)

    Graeser, Karin; Konge, Lars; Kristensen, Michael S

    2014-01-01

    BACKGROUND: Several simulation-based possibilities for training flexible optical intubation have been developed, ranging from non-anatomical phantoms to high-fidelity virtual reality simulators. These teaching devices might also be used to assess the competence of trainees before allowing them...

  5. Modification of Obstetric Emergency Simulation Scenarios for Realism in a Home-Birth Setting.

    Science.gov (United States)

    Komorowski, Janelle; Andrighetti, Tia; Benton, Melissa

    2017-01-01

    Clinical competency and clear communication are essential for intrapartum care providers who encounter high-stakes, low-frequency emergencies. The challenge for these providers is to maintain infrequently used skills. The challenge is even more significant for midwives who manage births at home and who, due to low practice volume and low-risk clientele, may rarely encounter an emergency. In addition, access to team simulation may be limited for home-birth midwives. This project modified existing validated obstetric simulation scenarios for a home-birth setting. Twelve certified professional midwives (CPMs) in active home-birth practice participated in shoulder dystocia and postpartum hemorrhage simulations. The simulations were staged to resemble home-birth settings, supplies, and personnel. Fidelity (realism) of the simulations was assessed with the Simulation Design Scale, and satisfaction and self-confidence were assessed with the Student Satisfaction and Self-Confidence in Learning Scale. Both utilized a 5-point Likert scale, with higher scores suggesting greater levels of fidelity, participant satisfaction, and self-confidence. Simulation Design Scale scores indicated participants agreed fidelity was achieved for the home-birth setting, while scores on the Student Satisfaction and Self-Confidence in Learning indicated high levels of participant satisfaction and self-confidence. If offered without modification, simulation scenarios designed for use in hospitals may lose fidelity for home-birth midwives, particularly in the environmental and psychological components. Simulation is standard of care in most settings, an excellent vehicle for maintaining skills, and some evidence suggests it results in improved perinatal outcomes. Additional study is needed in this area to support home-birth providers in maintaining skills. This pilot study suggests that simulation scenarios intended for hospital use can be successfully adapted to the home-birth setting. © 2016 by

  6. Simulation Modeling of a Check-in and Medication Reconciliation Ambulatory Clinic Kiosk

    Directory of Open Access Journals (Sweden)

    Blake Lesselroth

    2011-01-01

    Full Text Available Gaps in information about patient medication adherence may contribute to preventable adverse drug events and patient harm. Hence, health-quality advocacy groups, including the Joint Commission, have called for the implementation of standardized processes to collect and compare patient medication lists. This manuscript describes the implementation of a self-service patient kiosk intended to check in patients for a clinic appointment and collect a medication adherence history, which is then available through the electronic health record. We used business process engineering and simulation modeling to analyze existing workflow, evaluate technology impact on clinic throughput, and predict future infrastructure needs. Our empiric data indicated that a multi-function healthcare kiosk offers a feasible platform to collect medical history data. Furthermore, our simulation model showed a non-linear association between patient arrival rate, kiosk number, and estimated patient wait times. This study provides important data to help administrators and healthcare executives predict infrastructure needs when considering the use of self-service kiosks.

  7. Fidelity of implementation: development and testing of a measure

    Directory of Open Access Journals (Sweden)

    Wiitala Wyndy

    2010-12-01

    Full Text Available Abstract Background Along with the increasing prevalence of chronic illness has been an increase in interventions, such as nurse case management programs, to improve outcomes for patients with chronic illness. Evidence supports the effectiveness of such interventions in reducing patient morbidity, mortality, and resource utilization, but other studies have produced equivocal results. Often, little is known about how implementation of an intervention actually occurs in clinical practice. While studies often assume that interventions are used in clinical practice exactly as originally designed, this may not be the case. Thus, fidelity of an intervention's implementation reflects how an intervention is, or is not, used in clinical practice and is an important factor in understanding intervention effectiveness and in replicating the intervention in dissemination efforts. The purpose of this paper is to contribute to the understanding of implementation science by (a proposing a methodology for measuring fidelity of implementation (FOI and (b testing the measure by examining the association between FOI and intervention effectiveness. Methods We define and measure FOI based on organizational members' level of commitment to using the distinct components that make up an intervention as they were designed. Semistructured interviews were conducted among 18 organizational members in four medical centers, and the interviews were analyzed qualitatively to assess three dimensions of commitment to use--satisfaction, consistency, and quality--and to develop an overall rating of FOI. Mixed methods were used to explore the association between FOI and intervention effectiveness (inpatient resource utilization and mortality. Results Predictive validity of the FOI measure was supported based on the statistical significance of FOI as a predictor of intervention effectiveness. The strongest relationship between FOI and intervention effectiveness was found when an

  8. Fidelity of implementation: development and testing of a measure.

    Science.gov (United States)

    Keith, Rosalind E; Hopp, Faith P; Subramanian, Usha; Wiitala, Wyndy; Lowery, Julie C

    2010-12-30

    Along with the increasing prevalence of chronic illness has been an increase in interventions, such as nurse case management programs, to improve outcomes for patients with chronic illness. Evidence supports the effectiveness of such interventions in reducing patient morbidity, mortality, and resource utilization, but other studies have produced equivocal results. Often, little is known about how implementation of an intervention actually occurs in clinical practice. While studies often assume that interventions are used in clinical practice exactly as originally designed, this may not be the case. Thus, fidelity of an intervention's implementation reflects how an intervention is, or is not, used in clinical practice and is an important factor in understanding intervention effectiveness and in replicating the intervention in dissemination efforts. The purpose of this paper is to contribute to the understanding of implementation science by (a) proposing a methodology for measuring fidelity of implementation (FOI) and (b) testing the measure by examining the association between FOI and intervention effectiveness. We define and measure FOI based on organizational members' level of commitment to using the distinct components that make up an intervention as they were designed. Semistructured interviews were conducted among 18 organizational members in four medical centers, and the interviews were analyzed qualitatively to assess three dimensions of commitment to use--satisfaction, consistency, and quality--and to develop an overall rating of FOI. Mixed methods were used to explore the association between FOI and intervention effectiveness (inpatient resource utilization and mortality). Predictive validity of the FOI measure was supported based on the statistical significance of FOI as a predictor of intervention effectiveness. The strongest relationship between FOI and intervention effectiveness was found when an alternative measure of FOI was utilized based on

  9. High Fidelity Simulation of Transcritical Liquid Jet in Crossflow

    Science.gov (United States)

    Li, Xiaoyi; Soteriou, Marios

    2017-11-01

    Transcritical injection of liquid fuel occurs in many practical applications such as diesel, rocket and gas turbine engines. In these applications, the liquid fuel, with a supercritical pressure and a subcritical temperature, is introduced into an environment where both the pressure and temperature exceeds the critical point of the fuel. The convoluted physics of the transition from subcritical to supercritical conditions poses great challenges for both experimental and numerical investigations. In this work, numerical simulation of a binary system of a subcritical liquid injecting into a supercritical gaseous crossflow is performed. The spatially varying fluid thermodynamic and transport properties are evaluated using established cubic equation of state and extended corresponding state principles with established mixing rules. To efficiently account for the large spatial gradients in property variations, an adaptive mesh refinement technique is employed. The transcritical simulation results are compared with the predictions from the traditional subcritical jet atomization simulations.

  10. Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization

    Science.gov (United States)

    Takemiya, Tetsushi

    In modern aerospace engineering, the physics-based computational design method is becoming more important, as it is more efficient than experiments and because it is more suitable in designing new types of aircraft (e.g., unmanned aerial vehicles or supersonic business jets) than the conventional design method, which heavily relies on historical data. To enhance the reliability of the physics-based computational design method, researchers have made tremendous efforts to improve the fidelity of models. However, high-fidelity models require longer computational time, so the advantage of efficiency is partially lost. This problem has been overcome with the development of variable fidelity optimization (VFO). In VFO, different fidelity models are simultaneously employed in order to improve the speed and the accuracy of convergence in an optimization process. Among the various types of VFO methods, one of the most promising methods is the approximation management framework (AMF). In the AMF, objective and constraint functions of a low-fidelity model are scaled at a design point so that the scaled functions, which are referred to as "surrogate functions," match those of a high-fidelity model. Since scaling functions and the low-fidelity model constitutes surrogate functions, evaluating the surrogate functions is faster than evaluating the high-fidelity model. Therefore, in the optimization process, in which gradient-based optimization is implemented and thus many function calls are required, the surrogate functions are used instead of the high-fidelity model to obtain a new design point. The best feature of the AMF is that it may converge to a local optimum of the high-fidelity model in much less computational time than the high-fidelity model. However, through literature surveys and implementations of the AMF, the author xx found that (1) the AMF is very vulnerable when the computational analysis models have numerical noise, which is very common in high-fidelity models

  11. Equivalence between entanglement and the optimal fidelity of continuous variable teleportation.

    Science.gov (United States)

    Adesso, Gerardo; Illuminati, Fabrizio

    2005-10-07

    We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.

  12. Generation of high-fidelity controlled-NOT logic gates by coupled superconducting qubits

    International Nuclear Information System (INIS)

    Galiautdinov, Andrei

    2007-01-01

    Building on the previous results of the Weyl chamber steering method, we demonstrate how to generate high-fidelity controlled-NOT (CNOT) gates by direct application of certain physically relevant Hamiltonians with fixed coupling constants containing Rabi terms. Such Hamiltonians are often used to describe two superconducting qubits driven by local rf pulses. It is found that in order to achieve 100% fidelity in a system with capacitive coupling of strength g, one Rabi term suffices. We give the exact values of the physical parameters needed to implement such CNOT gates. The gate time and all possible Rabi frequencies are found to be t=π/(2g) and Ω 1 /g=√(64n 2 -1),n=1,2,3,.... Generation of a perfect CNOT gate in a system with inductive coupling, characterized by additional constant k, requires the presence of both Rabi terms. The gate time is again t=π/(2g), but now there is an infinite number of solutions, each of which is valid in a certain range of k and is characterized by a pair of integers (n,m), (Ω 1,2 /g)=√(16n 2 -((k-1/2)) 2 )±√(16m 2 -((k+1/2)) 2 ). We distinguish two cases, depending on the sign of the coupling constant: (i) the antiferromagnetic case (k≥0) with n≥m=0,1,2,... and (ii) the ferromagnetic case (k≤0) with n>m=0,1,2,.... We conclude with consideration of fidelity degradation by switching to resonance. Simulation of time evolution based on the fourth-order Magnus expansion reveals characteristics of the gate similar to those found in the exact case, with slightly shorter gate time and shifted values of the Rabi frequencies

  13. Application of Computer Simulation Modeling to Medication Administration Process Redesign

    OpenAIRE

    Huynh, Nathan; Snyder, Rita; Vidal, Jose M.; Tavakoli, Abbas S.; Cai, Bo

    2012-01-01

    The medication administration process (MAP) is one of the most high-risk processes in health care. MAP workflow redesign can precipitate both unanticipated and unintended consequences that can lead to new medication safety risks and workflow inefficiencies. Thus, it is necessary to have a tool to evaluate the impact of redesign approaches in advance of their clinical implementation. This paper discusses the development of an agent-based MAP computer simulation model that can be used to assess...

  14. Development of a measure of model fidelity for mental health Crisis Resolution Teams.

    Science.gov (United States)

    Lloyd-Evans, Brynmor; Bond, Gary R; Ruud, Torleif; Ivanecka, Ada; Gray, Richard; Osborn, David; Nolan, Fiona; Henderson, Claire; Mason, Oliver; Goater, Nicky; Kelly, Kathleen; Ambler, Gareth; Morant, Nicola; Onyett, Steve; Lamb, Danielle; Fahmy, Sarah; Brown, Ellie; Paterson, Beth; Sweeney, Angela; Hindle, David; Fullarton, Kate; Frerichs, Johanna; Johnson, Sonia

    2016-12-01

    Crisis Resolution Teams (CRTs) provide short-term intensive home treatment to people experiencing mental health crisis. Trial evidence suggests CRTs can be effective at reducing hospital admissions and increasing satisfaction with acute care. When scaled up to national level however, CRT implementation and outcomes have been variable. We aimed to develop and test a fidelity scale to assess adherence to a model of best practice for CRTs, based on best available evidence. A concept mapping process was used to develop a CRT fidelity scale. Participants (n = 68) from a range of stakeholder groups prioritised and grouped statements (n = 72) about important components of the CRT model, generated from a literature review, national survey and qualitative interviews. These data were analysed using Ariadne software and the resultant cluster solution informed item selection for a CRT fidelity scale. Operational criteria and scoring anchor points were developed for each item. The CORE CRT fidelity scale was then piloted in 75 CRTs in the UK to assess the range of scores achieved and feasibility for use in a 1-day fidelity review process. Trained reviewers (n = 16) rated CRT service fidelity in a vignette exercise to test the scale's inter-rater reliability. There were high levels of agreement within and between stakeholder groups regarding the most important components of the CRT model. A 39-item measure of CRT model fidelity was developed. Piloting indicated that the scale was feasible for use to assess CRT model fidelity and had good face validity. The wide range of item scores and total scores across CRT services in the pilot demonstrate the measure can distinguish lower and higher fidelity services. Moderately good inter-rater reliability was found, with an estimated correlation between individual ratings of 0.65 (95% CI: 0.54 to 0.76). The CORE CRT Fidelity Scale has been developed through a rigorous and systematic process. Promising initial testing indicates

  15. Simulation Learning PC Screen-Based vs. High Fidelity

    Science.gov (United States)

    2011-08-01

    agency or compliance inspection by the HHS or Food and Drug Administration (FDA) or other outside governmental agency concerning clinical investigation...patient wearing BDUs, four different cervical collars (long, regular, short, no neck), litter, dog tags 1 Attachment G. C-Spine Pilot algorithm Personnel...PMH: healthy male, history of fracture right humerus playing rugby in high-school. No known allergies . Last medical clinic VS: 120/78, HR

  16. Comparison of High-Fidelity Simulation Versus Didactic Instruction as a Reinforcement Intervention in a Comprehensive Curriculum for Radiology Trainees in Learning Contrast Reaction Management: Does It Matter How We Refresh?

    Science.gov (United States)

    Picard, Melissa; Curry, Nancy; Collins, Heather; Soma, LaShonda; Hill, Jeanne

    2015-10-01

    Simulation-based training has been shown to be a useful adjunct to standard didactic lecture in teaching residents appropriate management of adverse contrast reactions. In addition, it has been suggested that a biannual refresher is needed; however, the type of refresher education has not been assessed. This was a prospective study involving 31 radiology residents across all years in a university program. All residents underwent standard didactic lecture followed by high-fidelity simulation-based training. At approximately 6 months, residents were randomized into a didactic versus simulation group for a refresher. At approximately 9 months, all residents returned to the simulation center for performance testing. Knowledge and confidence assessments were obtained from all participants before and after each phase. Performance testing was obtained at each simulation session and scored based on predefined critical actions. There was significant improvement in knowledge (P didactic and simulation-based training. There was no statistical difference between the simulation and didactic groups in knowledge or confidence at any phase of the study. There was no significant difference in tested performance between the groups in either performance testing session. This study suggests that a curriculum consisting of an annual didactic lecture combined with simulation-based training followed by a didactic refresher at 6 months is an effective and efficient (both cost-effective and time-effective) method of educating radiology residents in the management of adverse contrast reactions. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  17. Multi-fidelity and multi-disciplinary design optimization of supersonic business jets

    Science.gov (United States)

    Choi, Seongim

    Supersonic jets have been drawing great attention after the end of service for the Concorde was announced on April of 2003. It is believed, however, that civilian supersonic aircraft may make a viable return in the business jet market. This thesis focuses on the design optimization of feasible supersonic business jet configurations. Preliminary design techniques for mitigation of ground sonic boom are investigated while ensuring that all relevant disciplinary constraints are satisfied (including aerodynamic performance, propulsion, stability & control and structures.) In order to achieve reasonable confidence in the resulting designs, high-fidelity simulations are required, making the entire design process both expensive and complex. In order to minimize the computational cost, surrogate/approximate models are constructed using a hierarchy of different fidelity analysis tools including PASS, A502/Panair and Euler/NS codes. Direct search methods such as Genetic Algorithms (GAs) and a nonlinear SIMPLEX are employed to designs in searches of large and noisy design spaces. A local gradient-based search method can be combined with these global search methods for small modifications of candidate optimum designs. The Mesh Adaptive Direct Search (MADS) method can also be used to explore the design space using a solution-adaptive grid refinement approach. These hybrid approaches, both in search methodology and surrogate model construction, are shown to result in designs with reductions in sonic boom and improved aerodynamic performance.

  18. Implementation fidelity trajectories of a health promotion program in multidisciplinary settings: managing tensions in rehabilitation care.

    Science.gov (United States)

    Hoekstra, Femke; van Offenbeek, Marjolein A G; Dekker, Rienk; Hettinga, Florentina J; Hoekstra, Trynke; van der Woude, Lucas H V; van der Schans, Cees P

    2017-12-01

    Although the importance of evaluating implementation fidelity is acknowledged, little is known about heterogeneity in fidelity over time. This study aims to generate insight into the heterogeneity in implementation fidelity trajectories of a health promotion program in multidisciplinary settings and the relationship with changes in patients' health behavior. This study used longitudinal data from the nationwide implementation of an evidence-informed physical activity promotion program in Dutch rehabilitation care. Fidelity scores were calculated based on annual surveys filled in by involved professionals (n = ± 70). Higher fidelity scores indicate a more complete implementation of the program's core components. A hierarchical cluster analysis was conducted on the implementation fidelity scores of 17 organizations at three different time points. Quantitative and qualitative data were used to explore organizational and professional differences between identified trajectories. Regression analyses were conducted to determine differences in patient outcomes. Three trajectories were identified as the following: 'stable high fidelity' (n = 9), 'moderate and improving fidelity' (n = 6), and 'unstable fidelity' (n = 2). The stable high fidelity organizations were generally smaller, started earlier, and implemented the program in a more structured way compared to moderate and improving fidelity organizations. At the implementation period's start and end, support from physicians and physiotherapists, professionals' appreciation, and program compatibility were rated more positively by professionals working in stable high fidelity organizations as compared to the moderate and improving fidelity organizations (p organizations had often an explicit vision and strategy about the implementation of the program. Intriguingly, the trajectories were not associated with patients' self-reported physical activity outcomes (adjusted model β = - 651.6, t(613)

  19. MEchatronic REspiratory System SImulator for Neonatal Applications (MERESSINA) project: a novel bioengineering goal

    Science.gov (United States)

    Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Baldoli, Ilaria; Bellanti, Lisa; Gentile, Marzia; Cecchi, Francesca; Sigali, Emilio; Tognarelli, Selene; Ghirri, Paolo; Mazzoleni, Stefano; Menciassi, Arianna; Cuttano, Armando; Boldrini, Antonio; Laschi, Cecilia; Dario, Paolo

    2013-01-01

    Respiratory function is mandatory for extrauterine life, but is sometimes impaired in newborns due to prematurity, congenital malformations, or acquired pathologies. Mechanical ventilation is standard care, but long-term complications, such as bronchopulmonary dysplasia, are still largely reported. Therefore, continuous medical education is mandatory to correctly manage devices for assistance. Commercially available breathing function simulators are rarely suitable for the anatomical and physiological realities. The aim of this study is to develop a high-fidelity mechatronic simulator of neonatal airways and lungs for staff training and mechanical ventilator testing. The project is divided into three different phases: (1) a review study on respiratory physiology and pathophysiology and on already available single and multi-compartment models; (2) the prototyping phase; and (3) the on-field system validation. PMID:23966804

  20. Attenuation of Foot-and-Mouth Disease Virus by Engineered Viral Polymerase Fidelity.

    Science.gov (United States)

    Rai, Devendra K; Diaz-San Segundo, Fayna; Campagnola, Grace; Keith, Anna; Schafer, Elizabeth A; Kloc, Anna; de Los Santos, Teresa; Peersen, Olve; Rieder, Elizabeth

    2017-08-01

    Foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase (RdRp) (3D pol ) catalyzes viral RNA synthesis. Its characteristic low fidelity and absence of proofreading activity allow FMDV to rapidly mutate and adapt to dynamic environments. In this study, we used the structure of FMDV 3D pol in combination with previously reported results from similar picornaviral polymerases to design point mutations that would alter replication fidelity. In particular, we targeted Trp237 within conserved polymerase motif A because of the low reversion potential inherent in the single UGG codon. Using biochemical and genetic tools, we show that the replacement of tryptophan 237 with phenylalanine imparts higher fidelity, but replacements with isoleucine and leucine resulted in lower-fidelity phenotypes. Viruses containing these W237 substitutions show in vitro growth kinetics and plaque morphologies similar to those of the wild-type (WT) A 24 Cruzeiro strain in BHK cells, and both high- and low-fidelity variants retained fitness during coinfection with the wild-type virus. The higher-fidelity W237F (W237F HF ) mutant virus was more resistant to the mutagenic nucleoside analogs ribavirin and 5-fluorouracil than the WT virus, whereas the lower-fidelity W237I (W237I LF ) and W237L LF mutant viruses exhibited lower ribavirin resistance. Interestingly, the variant viruses showed heterogeneous and slightly delayed growth kinetics in primary porcine kidney cells, and they were significantly attenuated in mouse infection experiments. These data demonstrate, for a single virus, that either increased or decreased RdRp fidelity attenuates virus growth in animals, which is a desirable feature for the development of safer and genetically more stable vaccine candidates. IMPORTANCE Foot-and-mouth disease (FMD) is the most devastating disease affecting livestock worldwide. Here, using structural and biochemical analyses, we have identified FMDV 3D pol mutations that affect polymerase

  1. Hybrid High-Fidelity Auscultation Scope, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Johnson Space Center's need for a space auscultation capability, Physical Optics Corporation proposes to develop a Hybrid High-Fidelity...

  2. Numerical simulation of hemorrhage in human injury

    Science.gov (United States)

    Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff

    2015-11-01

    Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.

  3. High-fidelity teleportation of continuous-variable quantum States using delocalized single photons

    DEFF Research Database (Denmark)

    Andersen, Ulrik L; Ralph, Timothy C

    2013-01-01

    Traditional continuous-variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous-variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed...... states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can...

  4. Fidel Castro: the word that unites

    Directory of Open Access Journals (Sweden)

    Grisel Veloz-Fernández

    2016-09-01

    Full Text Available The present work carries out a boarding of Fidel Castro's political speech, leaving of an understanding of its renovating character inside the most complex historical segment in the revolutionary process that is the period 1959 - 1961. It is during the same one that in Cuba a consent arms to the socialism. That achievement relapses fundamentally in Fidel's leadership and its capacity to negotiate the nucleus of ideas and values of that process through the political speech. Analyzed around 72 documents a characterization of that speech it has been achieved in benefit of their current utility. Presently work takes as starting point the conditions that existed in our country to the revolutionary victory that were the material base of an authentic revolution of the political speech in Cuba and the world like interaction form and transmission of political ideas as regards talkative resources.

  5. Modeling and numerical techniques for high-speed digital simulation of nuclear power plants

    International Nuclear Information System (INIS)

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1987-01-01

    Conventional computing methods are contrasted with newly developed high-speed and low-cost computing techniques for simulating normal and accidental transients in nuclear power plants. Six principles are formulated for cost-effective high-fidelity simulation with emphasis on modeling of transient two-phase flow coolant dynamics in nuclear reactors. Available computing architectures are characterized. It is shown that the combination of the newly developed modeling and computing principles with the use of existing special-purpose peripheral processors is capable of achieving low-cost and high-speed simulation with high-fidelity and outstanding user convenience, suitable for detailed reactor plant response analyses

  6. Alternative fidelity measure between two states of an N-state quantum system

    International Nuclear Information System (INIS)

    Chen Jingling; Fu Libin; Zhao Xiangeng; Ungar, Abraham A.

    2002-01-01

    An alternative fidelity measure between two states of a qunit, an N-state quantum system, is proposed. It has a hyperbolic geometric interpretation, and it reduces to the Bures fidelity in the special case when N=2

  7. Successes and Challenges of Interprofessional Physiologic Birth and Obstetric Emergency Simulations in a Nurse-Midwifery Education Program.

    Science.gov (United States)

    Shaw-Battista, Jenna; Belew, Cynthia; Anderson, Deborah; van Schaik, Sandrijn

    2015-01-01

    This article describes childbirth simulation design and implementation within the nurse-midwifery education program at the University of California, San Francisco. Nurse-midwife and obstetrician faculty coordinators were supported by faculty from multiple professions and specialties in curriculum review and simulation development and implementation. The primary goal of the resulting technology-enhanced simulations of normal physiologic birth and obstetric emergencies was to assist learners' development of interprofessional competencies related to communication, teamwork, and patient-centered care. Trainees included nurse-midwifery students; residents in obstetrics, pediatrics, and family medicine; medical students; and advanced practice nursing students in pediatrics. The diversity of participant types and learning levels provided benefits and presented challenges to effective scenario-based simulation design among numerous other theoretical and logistical considerations. This project revealed practical solutions informed by emerging health sciences and education research literature, faculty experience, and formal course evaluations by learners. Best practices in simulation development and implementation were incorporated, including curriculum revision grounded in needs assessment, case- and event-based clinical scenarios, optimization of fidelity, and ample time for participant debriefing. Adequate preparation and attention to detail increased the immersive experience and benefits of simulation. Suggestions for fidelity enhancement are provided with examples of simulation scenarios, a timeline for preparations, and discussion topics to facilitate meaningful learning by maternity and newborn care providers and trainees in clinical and academic settings. Pre- and postsimulation measurements of knowledge, skills, and attitudes are ongoing and not reported. This article is part of a special series of articles that address midwifery innovations in clinical practice

  8. Cellular Scanning Strategy for Selective Laser Melting: Capturing Thermal Trends with a Low-Fidelity, Pseudo-Analytical Model

    Directory of Open Access Journals (Sweden)

    Sankhya Mohanty

    2014-01-01

    Full Text Available Simulations of additive manufacturing processes are known to be computationally expensive. The resulting large runtimes prohibit their application in secondary analysis requiring several complete simulations such as optimization studies, and sensitivity analysis. In this paper, a low-fidelity pseudo-analytical model has been introduced to enable such secondary analysis. The model has been able to mimic a finite element model and was able to capture the thermal trends associated with the process. The model has been validated and subsequently applied in a small optimization case study. The pseudo-analytical modelling technique is established as a fast tool for primary modelling investigations.

  9. Towards socio-material approaches in simulation-based education: lessons from complexity theory.

    Science.gov (United States)

    Fenwick, Tara; Dahlgren, Madeleine Abrandt

    2015-04-01

    Review studies of simulation-based education (SBE) consistently point out that theory-driven research is lacking. The literature to date is dominated by discourses of fidelity and authenticity - creating the 'real' - with a strong focus on the developing of clinical procedural skills. Little of this writing incorporates the theory and research proliferating in professional studies more broadly, which show how professional learning is embodied, relational and situated in social - material relations. A key concern for medical educators concerns how to better prepare students for the unpredictable and dynamic ambiguity of professional practice; this has stimulated the movement towards socio-material theories in education that address precisely this question. Among the various socio-material theories that are informing new developments in professional education, complexity theory has been of particular importance for medical educators interested in updating current practices. This paper outlines key elements of complexity theory, illustrated with examples from empirical study, to argue its particular relevance for improving SBE. Complexity theory can make visible important material dynamics, and their problematic consequences, that are not often noticed in simulated experiences in medical training. It also offers conceptual tools that can be put to practical use. This paper focuses on concepts of emergence, attunement, disturbance and experimentation. These suggest useful new approaches for designing simulated settings and scenarios, and for effective pedagogies before, during and following simulation sessions. Socio-material approaches such as complexity theory are spreading through research and practice in many aspects of professional education across disciplines. Here, we argue for the transformative potential of complexity theory in medical education using simulation as our focus. Complexity tools open questions about the socio-material contradictions inherent in

  10. DEVELOPMENT OF CLINICAL SCENARIO’S INFORMATION MODEL IN THE MEDICAL SIMULATION CENTER

    Directory of Open Access Journals (Sweden)

    I. V. Tolmachyov

    2014-01-01

    Full Text Available There is the big issue in medical education which is students don’t have enough skills. Often even with theoretical knowledge graduate medical students need to improve their skills by working with patients. Obviously it can be a risk for patients and takes quite long time. This situation could be changed with applying simulation technologies in medical education. Medical education with virtual simulators allows reducing the time of skills development and improving the quality of training. The aims of this work are developing informational model and creating clinical scenarios of emergency states in the Medical Simulation Center.Objectives:– to analyze the process of scenario conducting;– to create clinical scenarios of emergency states (anaphylactic shock, hypovolemic shock, obstructive shock with specialist’s help.The scenarios consist of sections such as main aim, skills, required mannequins, preparation of the mannequins, preparation of medical equipment and instruments for the scenario, preparation of special materials, scenario description, guide for operator, information for trainees.By analyzing the process of scenario conducting the key participants were defined who are operator, assistant, trainer, trainees. Also the main scenario stages were defined. Based on the stages diagram of variants of scenario conducting was designed.As an example there are fragments of scenario “Obstructive shock – a pulmonary embolism” in this article. Learn skills are cognitive, technical, social ones.Results. This paper presents an analysis of the clinical scenario conducting. Information model was developed which based on object-oriented decomposition. The model is the diagram of variants of scenario conducting. Scenario’s structure for emergency states was formulated. The scenarios are anaphylactic shock, hypovolemic shock, obstructive shock (pulmonary embolism, tension pneumothorax, pulmonary edema, hypertensive crisis, respiratory

  11. The Effect of Learning Styles, Critical Thinking Disposition, and Critical Thinking on Clinical Judgment in Senior Baccalaureate Nursing Students during Human Patient Simulation

    Science.gov (United States)

    McCormick, Kiyan

    2014-01-01

    Simulated learning experiences using high-fidelity human patient simulators (HPS) are increasingly being integrated into baccalaureate nursing programs. Thus, the purpose of this study was to examine relationships among learning style, critical thinking disposition, critical thinking, and clinical judgment during high-fidelity human patient…

  12. Development of a full scope reactor engineering simulator

    International Nuclear Information System (INIS)

    Venhuizen, J.R.; Laats, E.T.

    1988-01-01

    An engineering laboratory is pursuing the development of an engineering simulator for use by several agencies of the U.S. Government. According to the authors, this simulator will provide the highest fidelity simulation with initial objectives for studying augmented nuclear reactor operator training, and later for advanced concepts testing as applicable to control room accident diagnosis and management

  13. Translating medical documents improves students' communication skills in simulated physician-patient encounters.

    Science.gov (United States)

    Bittner, Anja; Bittner, Johannes; Jonietz, Ansgar; Dybowski, Christoph; Harendza, Sigrid

    2016-02-27

    Patient-physician communication should be based on plain and simple language. Despite communication skill trainings in undergraduate medical curricula medical students and physicians are often still not aware of using medical jargon when communicating with patients. The aim of this study was to compare linguistic communication skills of undergraduate medical students who voluntarily translate medical documents into plain language with students who do not participate in this voluntary task. Fifty-nine undergraduate medical students participated in this study. Twenty-nine participants were actively involved in voluntarily translating medical documents for real patients into plain language on the online-platform https://washabich.de (WHI group) and 30 participants were not (non-WHI group). The assessment resembled a virtual consultation hour, where participants were connected via skype to six simulated patients (SPs). The SPs assessed participants' communication skills. All conversations were transcribed and assessed for communication skills and medical correctness by a blinded expert. All participants completed a self-assessment questionnaire on their communication skills. Across all raters, the WHI group was assessed significantly (p = .007) better than the non-WHI group regarding the use of plain language. The blinded expert assessed the WHI group significantly (p = .018) better regarding the use of stylistic devices of communication. The SPs would choose participants from the WHI group significantly (p = .041) more frequently as their personal physician. No significant differences between the two groups were observed with respect to the medical correctness of the consultations. Written translation of medical documents is associated with significantly more frequent use of plain language in simulated physician-patient encounters. Similar extracurricular exercises might be a useful tool for medical students to enhance their communication skills with

  14. Virtual reality simulation training in a high-fidelity procedure suite

    DEFF Research Database (Denmark)

    Lönn, Lars; Edmond, John J; Marco, Jean

    2012-01-01

    To assess the face and content validity of a novel, full physics, full procedural, virtual reality simulation housed in a hybrid procedure suite.......To assess the face and content validity of a novel, full physics, full procedural, virtual reality simulation housed in a hybrid procedure suite....

  15. Types, Purposes And Simulation Of Contributions In Vocational Training In Health: Narrative Review

    Directory of Open Access Journals (Sweden)

    Fillipi André dos Santos Silva

    2017-01-01

    Full Text Available Objective: To identify the types, purposes and the contributions of simulation in training in health. Method: This is a narrative review of the literature in its construction were used studies surveyed in databases Latin American and Caribbean Health Sciences (LILACS and Scopus, and other data sources. Results: The types of simulations and simulators are characterized by the degree of organization of landscape and simulator technology: low, medium and high fidelity. These degrees of fidelity enable the development of skills and abilities in students in the context of health education.  Conclusion: Considering the scope and possibilities of its use, the simulation can be a positive tool in health education process.  Descriptors: Education. Simulation. Health. Education. Formative feedback.

  16. Methods for streamlining intervention fidelity checklists: an example from the chronic disease self-management program.

    Science.gov (United States)

    Ahn, SangNam; Smith, Matthew Lee; Altpeter, Mary; Belza, Basia; Post, Lindsey; Ory, Marcia G

    2014-01-01

    Maintaining intervention fidelity should be part of any programmatic quality assurance (QA) plan and is often a licensure requirement. However, fidelity checklists designed by original program developers are often lengthy, which makes compliance difficult once programs become widely disseminated in the field. As a case example, we used Stanford's original Chronic Disease Self-Management Program (CDSMP) fidelity checklist of 157 items to demonstrate heuristic procedures for generating shorter fidelity checklists. Using an expert consensus approach, we sought feedback from active master trainers registered with the Stanford University Patient Education Research Center about which items were most essential to, and also feasible for, assessing fidelity. We conducted three sequential surveys and one expert group-teleconference call. Three versions of the fidelity checklist were created using different statistical and methodological criteria. In a final group-teleconference call with seven national experts, there was unanimous agreement that all three final versions (e.g., a 34-item version, a 20-item version, and a 12-item version) should be made available because the purpose and resources for administering a checklist might vary from one setting to another. This study highlights the methodology used to generate shorter versions of a fidelity checklist, which has potential to inform future QA efforts for this and other evidence-based programs (EBP) for older adults delivered in community settings. With CDSMP and other EBP, it is important to differentiate between program fidelity as mandated by program developers for licensure, and intervention fidelity tools for providing an "at-a-glance" snapshot of the level of compliance to selected program indicators.

  17. SIMulation of Medication Error induced by Clinical Trial drug labeling: the SIMME-CT study.

    Science.gov (United States)

    Dollinger, Cecile; Schwiertz, Vérane; Sarfati, Laura; Gourc-Berthod, Chloé; Guédat, Marie-Gabrielle; Alloux, Céline; Vantard, Nicolas; Gauthier, Noémie; He, Sophie; Kiouris, Elena; Caffin, Anne-Gaelle; Bernard, Delphine; Ranchon, Florence; Rioufol, Catherine

    2016-06-01

    To assess the impact of investigational drug labels on the risk of medication error in drug dispensing. A simulation-based learning program focusing on investigational drug dispensing was conducted. The study was undertaken in an Investigational Drugs Dispensing Unit of a University Hospital of Lyon, France. Sixty-three pharmacy workers (pharmacists, residents, technicians or students) were enrolled. Ten risk factors were selected concerning label information or the risk of confusion with another clinical trial. Each risk factor was scored independently out of 5: the higher the score, the greater the risk of error. From 400 labels analyzed, two groups were selected for the dispensing simulation: 27 labels with high risk (score ≥3) and 27 with low risk (score ≤2). Each question in the learning program was displayed as a simulated clinical trial prescription. Medication error was defined as at least one erroneous answer (i.e. error in drug dispensing). For each question, response times were collected. High-risk investigational drug labels correlated with medication error and slower response time. Error rates were significantly 5.5-fold higher for high-risk series. Error frequency was not significantly affected by occupational category or experience in clinical trials. SIMME-CT is the first simulation-based learning tool to focus on investigational drug labels as a risk factor for medication error. SIMME-CT was also used as a training tool for staff involved in clinical research, to develop medication error risk awareness and to validate competence in continuing medical education. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.

  18. Integrated Medical Model (IMM) Optimization Version 4.0 Functional Improvements

    Science.gov (United States)

    Arellano, John; Young, M.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Goodenow, D. A.; Myers, J. G.

    2016-01-01

    The IMMs ability to assess mission outcome risk levels relative to available resources provides a unique capability to provide guidance on optimal operational medical kit and vehicle resources. Post-processing optimization allows IMM to optimize essential resources to improve a specific model outcome such as maximization of the Crew Health Index (CHI), or minimization of the probability of evacuation (EVAC) or the loss of crew life (LOCL). Mass and or volume constrain the optimized resource set. The IMMs probabilistic simulation uses input data on one hundred medical conditions to simulate medical events that may occur in spaceflight, the resources required to treat those events, and the resulting impact to the mission based on specific crew and mission characteristics. Because IMM version 4.0 provides for partial treatment for medical events, IMM Optimization 4.0 scores resources at the individual resource unit increment level as opposed to the full condition-specific treatment set level, as done in version 3.0. This allows the inclusion of as many resources as possible in the event that an entire set of resources called out for treatment cannot satisfy the constraints. IMM Optimization version 4.0 adds capabilities that increase efficiency by creating multiple resource sets based on differing constraints and priorities, CHI, EVAC, or LOCL. It also provides sets of resources that improve mission-related IMM v4.0 outputs with improved performance compared to the prior optimization. The new optimization represents much improved fidelity that will improve the utility of the IMM 4.0 for decision support.

  19. Low fidelity of CORDEX and their driving experiments indicates future climatic uncertainty over Himalayan watersheds of Indus basin

    Science.gov (United States)

    Hasson, Shabeh ul; Böhner, Jürgen; Chishtie, Farrukh

    2018-03-01

    Assessment of future water availability from the Himalayan watersheds of Indus Basin (Jhelum, Kabul and upper Indus basin—UIB) is a growing concern for safeguarding the sustainable socioeconomic wellbeing downstream. This requires, before all, robust climate change information from the present-day state-of-the-art climate models. However, the robustness of climate change projections highly depends upon the fidelity of climate modeling experiments. Hence, this study assesses the fidelity of seven dynamically refined (0.44° ) experiments, performed under the framework of the coordinated regional climate downscaling experiment for South Asia (CX-SA), and additionally, their six coarse-resolution driving datasets participating in the coupled model intercomparison project phase 5 (CMIP5). We assess fidelity in terms of reproducibility of the observed climatology of temperature and precipitation, and the seasonality of the latter for the historical period (1971-2005). Based on the model fidelity results, we further assess the robustness or uncertainty of the far future climate (2061-2095), as projected under the extreme-end warming scenario of the representative concentration pathway (RCP) 8.5. Our results show that the CX-SA and their driving CMIP5 experiments consistently feature low fidelity in terms of the chosen skill metrics, suggesting substantial cold (6-10 ° C) and wet (up to 80%) biases and underestimation of observed precipitation seasonality. Surprisingly, the CX-SA are unable to outperform their driving datasets. Further, the biases of CX-SA and of their driving CMIP5 datasets are higher in magnitude than their projected changes under RCP8.5—and hence under less extreme RCPs—by the end of 21st century, indicating uncertain future climates for the Indus Basin watersheds. Higher inter-dataset disagreements of both CMIP5 and CX-SA for their simulated historical precipitation and for its projected changes reinforce uncertain future wet/dry conditions

  20. Simulated consultations: a sociolinguistic perspective.

    Science.gov (United States)

    Atkins, Sarah; Roberts, Celia; Hawthorne, Kamila; Greenhalgh, Trisha

    2016-01-15

    Assessment of consulting skills using simulated patients is widespread in medical education. Most research into such assessment is sited in a statistical paradigm that focuses on psychometric properties or replicability of such tests. Equally important, but less researched, is the question of how far consultations with simulated patients reflect real clinical encounters--for which sociolinguistics, defined as the study of language in its socio-cultural context, provides a helpful analytic lens. In this debate article, we draw on a detailed empirical study of assessed role-plays, involving sociolinguistic analysis of talk in OSCE interactions. We consider critically the evidence for the simulated consultation (a) as a proxy for the real; (b) as performance; (c) as a context for assessing talk; and (d) as potentially disadvantaging candidates trained overseas. Talk is always a performance in context, especially in professional situations (such as the consultation) and institutional ones (the assessment of professional skills and competence). Candidates who can handle the social and linguistic complexities of the artificial context of assessed role-plays score highly--yet what is being assessed is not real professional communication, but the ability to voice a credible appearance of such communication. Fidelity may not be the primary objective of simulation for medical training, where it enables the practising of skills. However the linguistic problems and differences that arise from interacting in artificial settings are of considerable importance in assessment, where we must be sure that the exam construct adequately embodies the skills expected for real-life practice. The reproducibility of assessed simulations should not be confused with their validity. Sociolinguistic analysis of simulations in various professional contexts has identified evidence for the gap between real interactions and assessed role-plays. The contextual conditions of the simulated

  1. High Versus Low Theoretical Fidelity Pedometer Intervention Using Social-Cognitive Theory on Steps and Self-Efficacy.

    Science.gov (United States)

    Raedeke, Thomas D; Dlugonski, Deirdre

    2017-12-01

    This study was designed to compare a low versus high theoretical fidelity pedometer intervention applying social-cognitive theory on step counts and self-efficacy. Fifty-six public university employees participated in a 10-week randomized controlled trial with 2 conditions that varied in theoretical fidelity. Participants in the high theoretical fidelity condition wore a pedometer and participated in a weekly group walk followed by a meeting to discuss cognitive-behavioral strategies targeting self-efficacy. Participants in the low theoretical fidelity condition met for a group walk and also used a pedometer as a motivational tool and to monitor steps. Step counts were assessed throughout the 10-week intervention and after a no-treatment follow-up (20 weeks and 30 weeks). Self-efficacy was measured preintervention and postintervention. Participants in the high theoretical fidelity condition increased daily steps by 2,283 from preintervention to postintervention, whereas participants in the low fidelity condition demonstrated minimal change during the same time period (p = .002). Individuals attending at least 80% of the sessions in the high theoretical fidelity condition showed an increase of 3,217 daily steps (d = 1.03), whereas low attenders increased by 925 (d = 0.40). Attendance had minimal impact in the low theoretical fidelity condition. Follow-up data revealed that step counts were at least somewhat maintained. For self-efficacy, participants in the high, compared with those in the low, theoretical fidelity condition showed greater improvements. Findings highlight the importance of basing activity promotion efforts on theory. The high theoretical fidelity intervention that included cognitive-behavioral strategies targeting self-efficacy was more effective than the low theoretical fidelity intervention, especially for those with high attendance.

  2. Fidelity of bats to forest sites revealed from mist-netting recaptures

    Science.gov (United States)

    Roger W. Perry

    2011-01-01

    Although site fidelity to permanent roost structures by bats is generally known, long-term fidelity to areas such as foraging or drinking sites is unknown. Furthermore, mist-net recaptures of bats over multiple years are rarely reported. Extensive mist-net surveys were conducted over the course of 8 y in the Ouachita National Forest of central Arkansas, United States...

  3. Using 3D Printing (Additive Manufacturing) to Produce Low-Cost Simulation Models for Medical Training.

    Science.gov (United States)

    Lichtenberger, John P; Tatum, Peter S; Gada, Satyen; Wyn, Mark; Ho, Vincent B; Liacouras, Peter

    2018-03-01

    This work describes customized, task-specific simulation models derived from 3D printing in clinical settings and medical professional training programs. Simulation models/task trainers have an array of purposes and desired achievements for the trainee, defining that these are the first step in the production process. After this purpose is defined, computer-aided design and 3D printing (additive manufacturing) are used to create a customized anatomical model. Simulation models then undergo initial in-house testing by medical specialists followed by a larger scale beta testing. Feedback is acquired, via surveys, to validate effectiveness and to guide or determine if any future modifications and/or improvements are necessary. Numerous custom simulation models have been successfully completed with resulting task trainers designed for procedures, including removal of ocular foreign bodies, ultrasound-guided joint injections, nerve block injections, and various suturing and reconstruction procedures. These task trainers have been frequently utilized in the delivery of simulation-based training with increasing demand. 3D printing has been integral to the production of limited-quantity, low-cost simulation models across a variety of medical specialties. In general, production cost is a small fraction of a commercial, generic simulation model, if available. These simulation and training models are customized to the educational need and serve an integral role in the education of our military health professionals.

  4. Current Issues in the Use of Virtual Simulations for Dismounted Soldier Training

    National Research Council Canada - National Science Library

    Knerr, Bruce W

    2006-01-01

    Research on the use of virtual simulation to train Soldiers and leaders in small dismounted units has largely focused on the use of specially developed, relatively high-fidelity PC-based simulators...

  5. High-Fidelity Space-Time Adaptive Multiphysics Simulations in Nuclear Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Solin, Pavel [Univ. of Reno, NV (United States); Ragusa, Jean [Texas A & M Univ., College Station, TX (United States)

    2014-03-09

    We delivered a series of fundamentally new computational technologies that have the potential to significantly advance the state-of-the-art of computer simulations of transient multiphysics nuclear reactor processes. These methods were implemented in the form of a C++ library, and applied to a number of multiphysics coupled problems relevant to nuclear reactor simulations.

  6. High-Fidelity Space-Time Adaptive Multiphysics Simulations in Nuclear Engineering

    International Nuclear Information System (INIS)

    Solin, Pavel; Ragusa, Jean

    2014-01-01

    We delivered a series of fundamentally new computational technologies that have the potential to significantly advance the state-of-the-art of computer simulations of transient multiphysics nuclear reactor processes. These methods were implemented in the form of a C++ library, and applied to a number of multiphysics coupled problems relevant to nuclear reactor simulations.

  7. Development of NSSS Simulation Engine for SMART Simulator Using the Best Estimate Code, MARS3.1

    International Nuclear Information System (INIS)

    Kim, K. D.; Lee, S. W.; Lee, Sung Chul; Suh, Yong Suk; Suh, Jae Seung

    2011-01-01

    Limited computational capability and crude thermalhydraulic modeling in early 1980s forced the use of overly simplified physical models and assumptions for a real-time calculation at the cost of fidelity. Rapid advances in computer technology make it possible to improve the fidelity of the simulator models. These efforts have been made based on RELAP5 in the US, and CATHARE2 in France. The NSSS thermalhydraulic engines adopted in the most domestic fullscope power plant simulators have been replaced with RELAP5 based engines which were provided by US vendors. Since the technology dependency of the NSSS T/H engine by foreign vendors, it may cause difficulties in maintenance and model improvement. KAERI has started to develop a realistic NSSS calculation engine based on the best-estimate code MARS 3.1 for the SMART full-scope simulator. Even though we are developing the NSSS calculation engine for SMART simulator, it can be easily extended to light water reactors and GEN-IV reactors, etc. The verification of the NSSS calculation engine for SMART simulator has been conducted by an integrated test in the simulator environment, Jade 4.0, developed by GSE of Windows 2003. This paper briefly presents our efforts for the NSSS calculation engine for SMART simulator and verification test results of SAT (Site Acceptance Test)

  8. How to Measure Motivational Interviewing Fidelity in Randomized Controlled Trials: Practical Recommendations.

    Science.gov (United States)

    Jelsma, Judith G M; Mertens, Vera-Christina; Forsberg, Lisa; Forsberg, Lars

    2015-07-01

    Many randomized controlled trials in which motivational interviewing (MI) is a key intervention make no provision for the assessment of treatment fidelity. This methodological shortcoming makes it impossible to distinguish between high- and low-quality MI interventions, and, consequently, to know whether MI provision has contributed to any intervention effects. This article makes some practical recommendations for the collection, selection, coding and reporting of MI fidelity data, as measured using the Motivational Interviewing Treatment Integrity Code. We hope that researchers will consider these recommendations and include MI fidelity measures in future studies. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    Science.gov (United States)

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. High-fidelity large eddy simulation for supersonic jet noise prediction

    Science.gov (United States)

    Aikens, Kurt M.

    The problem of intense sound radiation from supersonic jets is a concern for both civil and military applications. As a result, many experimental and computational efforts are focused at evaluating possible noise suppression techniques. Large-eddy simulation (LES) is utilized in many computational studies to simulate the turbulent jet flowfield. Integral methods such as the Ffowcs Williams-Hawkings (FWH) method are then used for propagation of the sound waves to the farfield. Improving the accuracy of this two-step methodology and evaluating beveled converging-diverging nozzles for noise suppression are the main tasks of this work. First, a series of numerical experiments are undertaken to ensure adequate numerical accuracy of the FWH methodology. This includes an analysis of different treatments for the downstream integration surface: with or without including an end-cap, averaging over multiple end-caps, and including an approximate surface integral correction term. Secondly, shock-capturing methods based on characteristic filtering and adaptive spatial filtering are used to extend a highly-parallelizable multiblock subsonic LES code to enable simulations of supersonic jets. The code is based on high-order numerical methods for accurate prediction of the acoustic sources and propagation of the sound waves. Furthermore, this new code is more efficient than the legacy version, allows cylindrical multiblock topologies, and is capable of simulating nozzles with resolved turbulent boundary layers when coupled with an approximate turbulent inflow boundary condition. Even though such wall-resolved simulations are more physically accurate, their expense is often prohibitive. To make simulations more economical, a wall model is developed and implemented. The wall modeling methodology is validated for turbulent quasi-incompressible and compressible zero pressure gradient flat plate boundary layers, and for subsonic and supersonic jets. The supersonic code additions and the

  11. Interprofessional teamwork among students in simulated codes: a quasi-experimental study.

    Science.gov (United States)

    Garbee, Deborah D; Paige, John; Barrier, Kendra; Kozmenko, Valeriy; Kozmenko, Lyubov; Zamjahn, John; Bonanno, Laura; Cefalu, Jean

    2013-01-01

    The purpose of this study was to evaluate the efficacy of using crisis resource management (CRM) principles and high-fidelity human patient simulation (HFHPS) for interprofessional (IP) team training of students from undergraduate nursing, nurse anesthesia, medical, and respiratory therapy. IP education using simulation-based training has the potential to transform education by improving teamwork and communication and breaking down silos in education. This one-year study used a quasi-experimental design to evaluate students' acquisition and retention of teamwork and communication skills. A convenience sample consisted of 52 students in the fall semester, with 40 students returning in the spring. Mean scores increased after training, and skills were retained fairly well. Any loss was regained with repeat training in the spring. The results suggest that using CRM and HFHPS is an effective pedagogy for teaching communication and teamwork skills to IP student teams.

  12. Helicopter training simulators: Key market factors

    Science.gov (United States)

    Mcintosh, John

    1992-01-01

    Simulators will gain an increasingly important role in training helicopter pilots only if the simulators are of sufficient fidelity to provide positive transfer of skills to the aircraft. This must be done within an economic model of return on investment. Although rotor pilot demand is still only a small percentage of overall pilot requirements, it will grow in significance. This presentation described the salient factors influencing the use of helicopter training simulators.

  13. Simulation-based ureteroscopy training: a systematic review.

    Science.gov (United States)

    Brunckhorst, Oliver; Aydin, Abdullatif; Abboudi, Hamid; Sahai, Arun; Khan, Muhammad Shamim; Dasgupta, Prokar; Ahmed, Kamran

    2015-01-01

    Simulation is a common adjunct to operative training and various modalities exist for ureteroscopy. This systematic review aims the following: (1) to identify available ureteroscopy simulators, (2) to explore evidence for their effectiveness using characteristic criterion, and (3) to provide recommendations for simulation-based ureteroscopy training. The preferred reporting items for systematic reviews and meta-analysis statement guidelines were used. A literature search was performed using the PubMed, EMBASE, and Cochrane Library databases. In total, 20 articles concerning ureteroscopy simulators were included. Overall, 3 high-fidelity bench models are available. The Uro-Scopic Trainer has demonstrated face, construct, and concurrent validity, whereas the Scope Trainer has undergone content, construct, and predictive validation. The adult ureteroscopy trainer has demonstrated face, content, and construct validity. The URO Mentor is the only available ureteroscopy virtual-reality system; 10 studies were identified demonstrating its face, content, construct, concurrent, and predictive validity. The Uro-Scopic Trainer, the Scope Trainer, and the URO Mentor have demonstrated high educational impact. A noncommercially available, low-fidelity model has demonstrated effectiveness comparable to its high-fidelity counterpart at 185 times lesser than the price of the Uro-Scopic Trainer. The use of porcine models has also been described in 3 studies but require further study. Valid models are available for simulation-based ureteroscopy training. However, there is a lack of many high-level studies conducted, and further investigation is required in this area. Furthermore, current research focuses on the technical skills acquisition with little research conducted on nontechnical skills acquisition within ureteroscopy. The next step for ureteroscopy training is a formalized and validated curriculum, incorporating simulation, training models, development of nontechnical skills

  14. Physiological and psychological effects of delivering medical news using a simulated physician-patient scenario.

    Science.gov (United States)

    Cohen, Lorenzo; Baile, Walter F; Henninger, Evelyn; Agarwal, Sandeep K; Kudelka, Andrzej P; Lenzi, Renato; Sterner, Janet; Marshall, Gailen D

    2003-10-01

    We examined the acute stress response associated with having to deliver either bad or good medical news using a simulated physician-patient scenario. Twenty-five healthy medical students were randomly assigned to a bad medical news (BN), a good medical news (GN), or a control group that read magazines during the session. Self-report measures were obtained before and after the task. Blood pressure and heart rate were measured throughout the task period. Four blood samples were obtained across the task period. The BN and GN tasks produced significant increases in self-reported distress and cardiovascular responses compared with the control group. There was also a significant increase in natural killer cell function 10 min into the task in the BN group compared with the control group. The BN task was also somewhat more stressful than the GN task, as shown by the self-report and cardiovascular data. These findings suggest that a simulated physician-patient scenario produces an acute stress response in the "physician," with the delivery of bad medical news more stressful than the delivery of good medical news.

  15. Research opportunities in simulation-based medical education using deliberate practice.

    Science.gov (United States)

    McGaghie, William C

    2008-11-01

    There are many opportunities for the academic emergency medicine (EM) community to engage in simulation-based educational research using deliberate practice (DP). This article begins by defining and giving examples of two key concepts: deliberate practice and mastery learning. The article proceeds to report six lessons learned from a research legacy in simulation-based medical education (SBME). It concludes by listing and amplifying 10 DP research opportunities in academic EM. A coda states that the research agenda is rich and ambitious and should focus on the goal of educating superb, expert clinicians.

  16. Experiences with a simulated learning environment - the SimuScape©: Virtual environments in medical education

    Directory of Open Access Journals (Sweden)

    Anna-Lena Thies

    2014-03-01

    Full Text Available INTRODUCTION: Simulation as a tool for medical education has gained considerable importance in the past years. Various studies have shown that the mastering of basic skills happens best if taught in a realistic and workplace-based context. It is necessary that simulation itself takes place in the realistic background of a genuine clinical or in an accordingly simulated learning environment. METHODS: A panoramic projection system that allows the simulation of different scenarios has been created at the medical school of the Westphalian Wilhelms-University  Muenster/Germany. The SimuScape© is a circular training room of six meters in diameter and has the capacity to generate pictures or moving images as well as the corresponding background noises for medical students, who are then able to interact with simulated patients inside a realistic environment. RESULTS: About 1,000 students have been instructed using the SimuScape© in the courses of emergency medicine, family medicine and anesthesia. The SimuScape©, with its 270°-panoramic projection, gives the students the impression “of being right in the center of action”.  It is a flexible learning environment that can be easily integrated into curricular teaching and which is in full operation for 10 days per semester. CONCLUSION: The SimuScape© allows the establishment of new medical areas outside the hospital and surgery for simulation and it is an extremely adaptable and cost-effective utilization of a lecture room. In this simulated environment it is possible to teach objectives like self-protection and patient care during disturbing environmental influences in practice.

  17. Implementation fidelity trajectories of a health promotion program in multidisciplinary settings : Managing tensions in rehabilitation care

    NARCIS (Netherlands)

    Hoekstra, Femke; van Offenbeek, Marjolein A. G.; Dekker, Rienk; Hettinga, Florentina J.; Hoekstra, Trynke; van der Woude, Lucas H. V.; van der Schans, Cees P.

    2017-01-01

    Background: Although the importance of evaluating implementation fidelity is acknowledged, little is known about heterogeneity in fidelity over time. This study aims to generate insight into the heterogeneity in implementation fidelity trajectories of a health promotion program in multidisciplinary

  18. Positive Affect Is Associated With Reduced Fixation in a Realistic Medical Simulation.

    Science.gov (United States)

    Crane, Monique F; Brouwers, Sue; Forrest, Kirsty; Tan, Suyin; Loveday, Thomas; Wiggins, Mark W; Munday, Chris; David, Leila

    2017-08-01

    This study extends previous research by exploring the association between mood states (i.e., positive and negative affect) and fixation in practicing anesthetists using a realistic medical simulation. The impact of practitioner emotional states on fixation is a neglected area of research. Emerging evidence is demonstrating the role of positive affect in facilitating problem solving and innovation, with demonstrated implications for practitioner fixation. Twelve practicing anesthetists (4 females; M age = 39 years; SD = 6.71) were involved in a medical simulation. Prior to the simulation, practitioners rated the frequency they had experienced various positive and negative emotions in the previous three days. During the simulation, the patient deteriorated rapidly, and anesthetists were observed for their degree of fixation. After the simulation, practitioners indicated the frequency of these same emotions during the simulation. Nonparametric correlations were used to explore the independent relationships between positive and negative affect and the behavioral measures. Only positive affect impacted the likelihood of fixation. Anesthetists who reported more frequent recent positive affect in the three days prior to the simulation and during the simulation tended to be less fixated as judged by independent raters, identified a decline in patient oxygen saturation more quickly, and more rapidly implemented the necessary intervention (surgical cricothyroidotomy). These findings have some real-world implications for positive affect in patient safety. This research has broad implications for professions where fixation may impair practice. This research suggests that professional training should teach practitioners to identify their emotions and understand the role of these emotions in fixation.

  19. Measurement fidelity in the presence of coherent dynamics or dissipation

    Science.gov (United States)

    You, Jian-Qiang; Ashhab, S.; Nori, Franco

    2011-03-01

    We analyze the problem of a charge qubit probed by a quantum point contact when the measurement is concurrent with Hamiltonian-induced coherent dynamics or dissipation. This additional dynamics changes the state of the qubit before the measurement is completed. As a result, the measurement fidelity is reduced. We calculate the reduction in measurement fidelity in these cases. References: S. Ashhab, J. Q. You, and F. Nori, New J. Phys. 11, 083017 (2009); Phys. Scr. T137, 014005 (2009).

  20. Variable Fidelity Aeroelastic Toolkit - Structural Model, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...

  1. High-Fidelity Multidisciplinary Design Optimization of Aircraft Configurations

    Science.gov (United States)

    Martins, Joaquim R. R. A.; Kenway, Gaetan K. W.; Burdette, David; Jonsson, Eirikur; Kennedy, Graeme J.

    2017-01-01

    To evaluate new airframe technologies we need design tools based on high-fidelity models that consider multidisciplinary interactions early in the design process. The overarching goal of this NRA is to develop tools that enable high-fidelity multidisciplinary design optimization of aircraft configurations, and to apply these tools to the design of high aspect ratio flexible wings. We develop a geometry engine that is capable of quickly generating conventional and unconventional aircraft configurations including the internal structure. This geometry engine features adjoint derivative computation for efficient gradient-based optimization. We also added overset capability to a computational fluid dynamics solver, complete with an adjoint implementation and semiautomatic mesh generation. We also developed an approach to constraining buffet and started the development of an approach for constraining utter. On the applications side, we developed a new common high-fidelity model for aeroelastic studies of high aspect ratio wings. We performed optimal design trade-o s between fuel burn and aircraft weight for metal, conventional composite, and carbon nanotube composite wings. We also assessed a continuous morphing trailing edge technology applied to high aspect ratio wings. This research resulted in the publication of 26 manuscripts so far, and the developed methodologies were used in two other NRAs. 1

  2. High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets

    Science.gov (United States)

    Gaillard, Benoit; Owkes, Mark; van Poppel, Bret

    2015-11-01

    Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.

  3. Adaptive multi-rate interface: development and experimental verification for real-time hybrid simulation

    DEFF Research Database (Denmark)

    Maghareh, Amin; Waldbjørn, Jacob Paamand; Dyke, Shirley J.

    2016-01-01

    Real-time hybrid simulation (RTHS) is a powerful cyber-physical technique that is a relatively cost-effective method to perform global/local system evaluation of structural systems. A major factor that determines the ability of an RTHS to represent true system-level behavior is the fidelity...... of the numerical substructure. While the use of higher-order models increases fidelity of the simulation, it also increases the demand for computational resources. Because RTHS is executed at real-time, in a conventional RTHS configuration, this increase in computational resources may limit the achievable sampling...

  4. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  5. Assessment of Fidelity in Interventions to Improve Hand Hygiene of Healthcare Workers: A Systematic Review

    Science.gov (United States)

    Musuuza, Jackson S.; Barker, Anna; Ngam, Caitlyn; Vellardita, Lia; Safdar, Nasia

    2016-01-01

    OBJECTIVE Compliance with hand hygiene in healthcare workers is fundamental to infection prevention yet remains a challenge to sustain. We examined fidelity reporting in interventions to improve hand hygiene compliance, and we assessed 5 measures of intervention fidelity: (1) adherence, (2) exposure or dose, (3) quality of intervention delivery, (4) participant responsiveness, and (5) program differentiation. DESIGN Systematic review METHODS A librarian performed searches of the literature in PubMed, Cumulative Index to Nursing and Allied Health (CINAHL), Cochrane Library, and Web of Science of material published prior to June 19, 2015. The review protocol was registered in PROSPERO International Prospective Register of Systematic Reviews, and assessment of study quality was conducted for each study reviewed. RESULTS A total of 100 studies met the inclusion criteria. Only 8 of these 100 studies reported all 5 measures of intervention fidelity. In addition, 39 of 100 (39%) failed to include at least 3 fidelity measures; 20 of 100 (20%) failed to include 4 measures; 17 of 100 (17%) failed to include 2 measures, while 16 of 100 (16%) of the studies failed to include at least 1 measure of fidelity. Participant responsiveness and adherence to the intervention were the most frequently unreported fidelity measures, while quality of the delivery was the most frequently reported measure. CONCLUSIONS Almost all hand hygiene intervention studies failed to report at least 1 fidelity measurement. To facilitate replication and effective implementation, reporting fidelity should be standard practice when describing results of complex behavioral interventions such as hand hygiene. PMID:26861117

  6. Speed-accuracy trade-offs in computing spatial impulse responses for simulating medical ultrasound imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2001-01-01

    sampling frequency is unnecessary in the final signals, since the transducers used in medical ultrasound are band limited. Approaches to reduce the sampling frequency are, thus, needed to make efficient simulation programs. Field II uses time integration of the spatial impulse responses using a continuous......Medical ultrasound imaging can be simulated realistically using linear acoustics. One of the most powerful approaches is to employ spatial impulse responses. Hereby both emitted fields and pulse-echo responses from point scatterers can be determined. Also any kind of dynamic focusing...

  7. Simulation Learning: PC-Screen Based (PCSB) versus High Fidelity Simulation (HFS)

    Science.gov (United States)

    2013-08-01

    1.00 (0.00) Score Change (mean change and sd) Assemble Equipment (Yes/No) 1. Water soluble lubricant 2. Suction equipment 3. Selecting correct...0.92 (0.25) 0.64 (0.31) 0.86 (0.22) 0.98 (0.07) Mean score change and sd Procedural Steps (Yes/No) 1. Lubricate tube with water -soluble...w., Johnson, C., Hsu, E. and  Wasser , T. (2006). Using innovative  simulation modalities for civilian based, chemical, biological, radiological

  8. SIDH: A Game-Based Architecture for a Training Simulator

    Directory of Open Access Journals (Sweden)

    P. Backlund

    2009-01-01

    Full Text Available Game-based simulators, sometimes referred to as “lightweight” simulators, have benefits such as flexible technology and economic feasibility. In this article, we extend the notion of a game-based simulator by introducing multiple screen view and physical interaction. These features are expected to enhance immersion and fidelity. By utilizing these concepts we have constructed a training simulator for breathing apparatus entry. Game hardware and software have been used to produce the application. More important, the application itself is deliberately designed to be a game. Indeed, one important design goal is to create an entertaining and motivating experience combined with learning goals in order to create a serious game. The system has been evaluated in cooperation with the Swedish Rescue Services Agency to see which architectural features contribute to perceived fidelity. The modes of visualization and interaction as well as level design contribute to the usefulness of the system.

  9. Simulation of lean premixed turbulent combustion

    International Nuclear Information System (INIS)

    Bell, J; Day, M; Almgren, A; Lijewski, M; Rendleman, C; Cheng, R; Shepherd, I

    2006-01-01

    There is considerable technological interest in developing new fuel-flexible combustion systems that can burn fuels such as hydrogen or syngas. Lean premixed systems have the potential to burn these types of fuels with high efficiency and low NOx emissions due to reduced burnt gas temperatures. Although traditional Scientific approaches based on theory and laboratory experiment have played essential roles in developing our current understanding of premixed combustion, they are unable to meet the challenges of designing fuel-flexible lean premixed combustion devices. Computation, with its ability to deal with complexity and its unlimited access to data, has the potential for addressing these challenges. Realizing this potential requires the ability to perform high fidelity simulations of turbulent lean premixed flames under realistic conditions. In this paper, we examine the specialized mathematical structure of these combustion problems and discuss simulation approaches that exploit this structure. Using these ideas we can dramatically reduce computational cost, making it possible to perform high-fidelity simulations of realistic flames. We illustrate this methodology by considering ultra-lean hydrogen flames and discuss how this type of simulation is changing the way researchers study combustion

  10. High-fidelity state transfer over an unmodulated linear XY spin chain

    International Nuclear Information System (INIS)

    Bishop, C. Allen; Ou Yongcheng; Byrd, Mark S.; Wang Zhaoming

    2010-01-01

    We provide a class of initial encodings that can be sent with a high fidelity over an unmodulated, linear, XY spin chain. As an example, an average fidelity of 96% can be obtained using an 11-spin encoding to transmit a state over a chain containing 10 000 spins. An analysis of the magnetic-field dependence is given, and conditions for field optimization are provided.

  11. Simulation in computer forensics teaching: the student experience

    OpenAIRE

    Crellin, Jonathan; Adda, Mo; Duke-Williams, Emma; Chandler, Jane

    2011-01-01

    The use of simulation in teaching computing is well established, with digital forensic investigation being a subject area where the range of simulation required is both wide and varied demanding a corresponding breadth of fidelity. Each type of simulation can be complex and expensive to set up resulting in students having only limited opportunities to participate and learn from the simulation. For example students' participation in mock trials in the University mock courtroom or in simulation...

  12. Blending Qualitative and Computational Linguistics Methods for Fidelity Assessment: Experience with the Familias Unidas Preventive Intervention.

    Science.gov (United States)

    Gallo, Carlos; Pantin, Hilda; Villamar, Juan; Prado, Guillermo; Tapia, Maria; Ogihara, Mitsunori; Cruden, Gracelyn; Brown, C Hendricks

    2015-09-01

    Careful fidelity monitoring and feedback are critical to implementing effective interventions. A wide range of procedures exist to assess fidelity; most are derived from observational assessments (Schoenwald and Garland, Psycholog Assess 25:146-156, 2013). However, these fidelity measures are resource intensive for research teams in efficacy/effectiveness trials, and are often unattainable or unmanageable for the host organization to rate when the program is implemented on a large scale. We present a first step towards automated processing of linguistic patterns in fidelity monitoring of a behavioral intervention using an innovative mixed methods approach to fidelity assessment that uses rule-based, computational linguistics to overcome major resource burdens. Data come from an effectiveness trial of the Familias Unidas intervention, an evidence-based, family-centered preventive intervention found to be efficacious in reducing conduct problems, substance use and HIV sexual risk behaviors among Hispanic youth. This computational approach focuses on "joining," which measures the quality of the working alliance of the facilitator with the family. Quantitative assessments of reliability are provided. Kappa scores between a human rater and a machine rater for the new method for measuring joining reached 0.83. Early findings suggest that this approach can reduce the high cost of fidelity measurement and the time delay between fidelity assessment and feedback to facilitators; it also has the potential for improving the quality of intervention fidelity ratings.

  13. Efficient and Effective Use of Peer Teaching for Medical Student Simulation.

    Science.gov (United States)

    House, Joseph B; Choe, Carol H; Wourman, Heather L; Berg, Kristin M; Fischer, Jonathan P; Santen, Sally A

    2017-01-01

    Simulation is increasingly used in medical education, promoting active learning and retention; however, increasing use also requires considerable instructor resources. Simulation may provide a safe environment for students to teach each other, which many will need to do when they enter residency. Along with reinforcing learning and increasing retention, peer teaching could decrease instructor demands. Our objective was to determine the effectiveness of peer-taught simulation compared to physician-led simulation. We hypothesized that peer-taught simulation would lead to equivalent knowledge acquisition when compared to physician-taught sessions and would be viewed positively by participants. This was a quasi-experimental study in an emergency medicine clerkship. The control group was faculty taught. In the peer-taught intervention group, students were assigned to teach one of the three simulation-based medical emergency cases. Each student was instructed to master their topic and teach it to their peers using the provided objectives and resource materials. The students were assigned to groups of three, with all three cases represented; students took turns leading their case. Three groups ran simultaneously. During the intervention sessions, one physician was present to monitor the accuracy of learning and to answer questions, while three physicians were required for the control groups. Outcomes compared pre-test and post-test knowledge and student reaction between control and intervention groups. Both methods led to equally improved knowledge; mean score for the post-test was 75% for both groups (p=0.6) and were viewed positively. Students in the intervention group agreed that peer-directed learning was an effective way to learn. However, students in the control group scored their simulation experience more favorably. In general, students' response to peer teaching was positive, students learned equally well, and found peer-taught sessions to be interactive and

  14. Fidelity Failures in Brief Strategic Family Therapy for Adolescent Drug Abuse: A Clinical Analysis.

    Science.gov (United States)

    Lebensohn-Chialvo, Florencia; Rohrbaugh, Michael J; Hasler, Brant P

    2018-04-30

    As evidence-based family treatments for adolescent substance use and conduct problems gain traction, cutting edge research moves beyond randomized efficacy trials to address questions such as how these treatments work and how best to disseminate them to community settings. A key factor in effective dissemination is treatment fidelity, which refers to implementing an intervention in a manner consistent with an established manual. While most fidelity research is quantitative, this study offers a qualitative clinical analysis of fidelity failures in a large, multisite effectiveness trial of Brief Strategic Family Therapy (BSFT) for adolescent drug abuse, where BSFT developers trained community therapists to administer this intervention in their own agencies. Using case notes and video recordings of therapy sessions, an independent expert panel first rated 103 cases on quantitative fidelity scales grounded in the BSFT manual and the broader structural-strategic framework that informs BSFT intervention. Because fidelity was generally low, the panel reviewed all cases qualitatively to identify emergent types or categories of fidelity failure. Ten categories of failures emerged, characterized by therapist omissions (e.g., failure to engage key family members, failure to think in threes) and commissions (e.g., off-model, nonsystemic formulations/interventions). Of these, "failure to think in threes" appeared basic and particularly problematic, reflecting the central place of this idea in structural theory and therapy. Although subject to possible bias, our observations highlight likely stumbling blocks in exporting a complex family treatment like BSFT to community settings. These findings also underscore the importance of treatment fidelity in family therapy research. © 2018 Family Process Institute.

  15. Enhancing experience prototyping by the help of mixed-fidelity prototypes

    OpenAIRE

    Yasar, Ansar-Ul-Haque

    2007-01-01

    In this research review I undertook the problem related to the usage of a new concept known as the Mixed- Fidelity Prototype which is a mixture of its predecessors Low- and High- Fidelity Prototypes in Experience Prototyping. Experience Prototyping is a good way to explore, communicate and interact with the designs we develop like experiencing cycling on the ice, although the mood, snow conditions, bicycle type and many other factors really matter and tend to change with time. Experience Prot...

  16. Humanism of Marti and Fidel in the formation of values

    Directory of Open Access Journals (Sweden)

    José Luis Darias Concepción

    2003-12-01

    Full Text Available Humanism as an integrative concept of human values has always been present in thinking and revolutionary work of our main precursors. Two strong exponents in the formation of patriotic and human values in our country has been without doubt the work of Martí and Fidel, whose thoughts and actions correspond fully with the humanistic philosophical doctrine. In this paper we reflect on the presence of humanism as a philosophical current in the thinking of Marti and Fidel.

  17. Mock ECHO: A Simulation-Based Medical Education Method.

    Science.gov (United States)

    Fowler, Rebecca C; Katzman, Joanna G; Comerci, George D; Shelley, Brian M; Duhigg, Daniel; Olivas, Cynthia; Arnold, Thomas; Kalishman, Summers; Monnette, Rebecca; Arora, Sanjeev

    2018-04-16

    This study was designed to develop a deeper understanding of the learning and social processes that take place during the simulation-based medical education for practicing providers as part of the Project ECHO® model, known as Mock ECHO training. The ECHO model is utilized to expand access to care of common and complex diseases by supporting the education of primary care providers with an interprofessional team of specialists via videoconferencing networks. Mock ECHO trainings are conducted through a train the trainer model targeted at leaders replicating the ECHO model at their organizations. Trainers conduct simulated teleECHO clinics while participants gain skills to improve communication and self-efficacy. Three focus groups, conducted between May 2015 and January 2016 with a total of 26 participants, were deductively analyzed to identify common themes related to simulation-based medical education and interdisciplinary education. Principal themes generated from the analysis included (a) the role of empathy in community development, (b) the value of training tools as guides for learning, (c) Mock ECHO design components to optimize learning, (d) the role of interdisciplinary education to build community and improve care delivery, (e) improving care integration through collaboration, and (f) development of soft skills to facilitate learning. Mock ECHO trainings offer clinicians the freedom to learn in a noncritical environment while emphasizing real-time multidirectional feedback and encouraging knowledge and skill transfer. The success of the ECHO model depends on training interprofessional healthcare providers in behaviors needed to lead a teleECHO clinic and to collaborate in the educational process. While building a community of practice, Mock ECHO provides a safe opportunity for a diverse group of clinician experts to practice learned skills and receive feedback from coparticipants and facilitators.

  18. Optimal estimate of a pure qubit state from Uhlmann-Josza fidelity

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Manuel Avila, E-mail: manvlk@yahoo.com [Centro Universitario UAEM Valle de Chalco, UAEMex, Edo. de Mexico (Mexico)

    2012-04-15

    In the framework of collective measurements, efforts have been made to reconstruct one-qubit states. Such schemes find an obstacle in the no-cloning theorem, which prevents full reconstruction of a quantum state. Quantum Mechanics thus restricts to obtain estimates of the reconstruction of a pure qubit. We discuss the optimal estimate on the basis of the Uhlmann-Josza fidelity, respecting the limitations imposed by the no-cloning theorem. We derive a realistic optimal expression for the average fidelity. Our formalism also introduces an optimization parameter L. Values close to zero imply full reconstruction of the qubit (i. e., the classical limit), while larger L's represent good quantum optimization of the qubit estimate. The parameter L is interpreted as the degree of quantumness of the average fidelity associated with the reconstruction. (author)

  19. Using simulation pedagogy to enhance teamwork and communication in the care of older adults: the ELDER project.

    Science.gov (United States)

    Mager, Diana R; Lange, Jean W; Greiner, Philip A; Saracino, Katherine H

    2012-08-01

    The Expanded Learning and Dedication to Elders in the Region (ELDER) project addressed the needs of under-served older adults by educating health care providers in home health and long-term care facilities. Four agencies in a health professional shortage/medically underserved area participated. Focus groups were held to determine agency-specific educational needs. Curricula from the John A. Hartford Foundation were adapted to design unique curricula for each agency and level of personnel during the first 2 years. The focus of this report is the case-based simulation learning approach used in year 3 to validate application of knowledge and facilitate teamwork and interprofessional communication. Three simulation sessions on varying topics were conducted at each site. Postsimulation surveys and qualitative interviews with hired evaluators showed that participants found simulations helpful to their practice. Tailored on-site education incorporating mid-fidelity simulation was an effective model for translating gerontological knowledge into practice and encouraging communication and teamwork in these settings. Copyright 2012, SLACK Incorporated.

  20. Simulation of medical irradiation and X-ray detector signals

    Energy Technology Data Exchange (ETDEWEB)

    Kreisler, Bjoern

    2010-02-08

    This thesis aims for an improved understanding of medical irradiation. Two major parts are investigated: the beam shaping components of a medical linear accelerator, i.e. the source of the radiation, and the signal generation inside semiconductor sensors, i.e. the detection of the radiation. The direct measurement of the spatial and spectral particle distribution in the irradiation beam is not possible with state of the art detectors due to the high particle flux. The development of new advanced detectors is the goal of the first part of this thesis. The focus is set on the signal generation inside the sensor volume of a semiconductor detector. Incoming particles interact with the sensor material and generate clouds of electron hole pairs. These pairs get separated by an applied bias voltage. The motion of the charge clouds is simulated with a finite element programme taking into account the drift and diffusion. Mirror charges are induced on the electrodes which move due to the motion of the charge cloud. The motion of the induced mirror charges leads to the signal that is detected. The transient calculation of the signals is based on Ramo's theorem. The efficient adjoint formulation of the induction solution is adjusted to doped materials, as for example the electric bias field and hence the motion of the charge cloud is changing with the doping level. The effect of the doping of the material on the signal shape is shown together with influences of different voltages and pixel geometries. Smaller pixels and higher bias voltages can lead to shorter signals which is preferable for high flux measurements. Possible count rate improvements are limited by electric break through, high dark current across the sensor layer and charge sharing. Another option to shorten the signals is the use of steering grid electrodes which modify the electric and the weighting field. This results in shorter signals and thus in a higher possible rate. The detailed Monte

  1. Simulation of medical irradiation and X-ray detector signals

    International Nuclear Information System (INIS)

    Kreisler, Bjoern

    2010-01-01

    This thesis aims for an improved understanding of medical irradiation. Two major parts are investigated: the beam shaping components of a medical linear accelerator, i.e. the source of the radiation, and the signal generation inside semiconductor sensors, i.e. the detection of the radiation. The direct measurement of the spatial and spectral particle distribution in the irradiation beam is not possible with state of the art detectors due to the high particle flux. The development of new advanced detectors is the goal of the first part of this thesis. The focus is set on the signal generation inside the sensor volume of a semiconductor detector. Incoming particles interact with the sensor material and generate clouds of electron hole pairs. These pairs get separated by an applied bias voltage. The motion of the charge clouds is simulated with a finite element programme taking into account the drift and diffusion. Mirror charges are induced on the electrodes which move due to the motion of the charge cloud. The motion of the induced mirror charges leads to the signal that is detected. The transient calculation of the signals is based on Ramo's theorem. The efficient adjoint formulation of the induction solution is adjusted to doped materials, as for example the electric bias field and hence the motion of the charge cloud is changing with the doping level. The effect of the doping of the material on the signal shape is shown together with influences of different voltages and pixel geometries. Smaller pixels and higher bias voltages can lead to shorter signals which is preferable for high flux measurements. Possible count rate improvements are limited by electric break through, high dark current across the sensor layer and charge sharing. Another option to shorten the signals is the use of steering grid electrodes which modify the electric and the weighting field. This results in shorter signals and thus in a higher possible rate. The detailed Monte-Carlo simulation of

  2. Evaluation of student nurses' perception of preparedness for oral medication administration in clinical practice: a collaborative study.

    Science.gov (United States)

    Aggar, Christina; Dawson, Sonja

    2014-06-01

    Attainment of oral medication administration skills and competency for student nurses is challenging and medication errors are common. The ability of nurses to master a clinical skill is dependent upon educational instruction and practice. The aim of this study was to evaluate nursing students' perception of preparedness for oral medication administration in two practice environments and determine possible relationship between student demographics and their perceived preparedness for oral medication administration. This was a cross sectional, exploratory study. Eighty-eight second year students from a baccalaureate nursing course from two metropolitan Australian tertiary institutions participated. Student nurses' perception of preparedness for oral medication administration was measured via a self-administered, adapted, and validated questionnaire. The overall mean Total Preparedness Score was 86.2 (range 71-102). There was no significant difference for perceived total preparedness to administer oral medications between the two facilities. Whilst there was no significant relationship established between student demographics and their perceived preparedness to administer oral medications, four single questions related to clinical practice were shown to be significant. Low fidelity simulated teaching environments that incorporate time management and post medication situations, may improve student nurses' perceived preparedness for oral medication administration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Improving advanced cardiovascular life support skills in medical students: simulation-based education approach

    Directory of Open Access Journals (Sweden)

    Hamidreza Reihani

    2015-01-01

    Full Text Available Objective: In this trial, we intend to assess the effect of simulation-based education approach on advanced cardiovascular life support skills among medical students. Methods: Through convenient sampling method, 40 interns of Mashhad University of Medical Sciences in their emergency medicine rotation (from September to December 2012 participated in this study. Advanced Cardiovascular Life Support (ACLS workshops with pretest and post-test exams were performed. Workshops and checklists for pretest and post-test exams were designed according to the latest American Heart Association (AHA guidelines. Results: The total score of the students increased significantly after workshops (24.6 out of 100 to 78.6 out of 100. This demonstrates 53.9% improvement in the skills after the simulation-based education (P< 0.001. Also the mean score of each station had a significant improvement (P< 0.001. Conclusion: Pretests showed that interns had poor performance in practical clinical matters while their scientific knowledge, such as ECG interpretation was acceptable. The overall results of the study highlights that Simulation based-education approach is highly effective in Improving ACLS skills among medical students.

  4. Engagement in Training as a Mechanism to Understanding Fidelity of Implementation of the Responsive Classroom Approach.

    Science.gov (United States)

    Wanless, Shannon B; Rimm-Kaufman, Sara E; Abry, Tashia; Larsen, Ross A; Patton, Christine L

    2015-11-01

    Fidelity of implementation of classroom interventions varies greatly, a reality that is concerning because higher fidelity of implementation relates to greater effectiveness of the intervention. We analyzed 126 fourth and fifth grade teachers from the treatment group of a randomized controlled trial of the Responsive Classroom® (RC) approach. Prior to training in the intervention, we assessed factors that had the potential to represent a teacher's readiness to implement with fidelity. These included teachers' observed emotional support, teacher-rated use of intervention practices, teacher-rated self-efficacy, teacher-rated collective responsibility, education level, and years of experience, and they were not directly related to observed fidelity of implementation 2 years later. Further analyses indicated, however, that RC trainers' ratings of teachers' engagement in the initial weeklong RC training mediated the relation between initial observed emotional support and later observed fidelity of implementation. We discuss these findings as a way to advance understanding of teachers' readiness to implement new interventions with fidelity.

  5. A new universal colour image fidelity metric

    NARCIS (Netherlands)

    Toet, A.; Lucassen, M.P.

    2003-01-01

    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated colour space. The resulting colour image fidelity metric quantifies the distortion of a processed colour image relative to its original version. We evaluated the new colour image

  6. VASA: Interactive Computational Steering of Large Asynchronous Simulation Pipelines for Societal Infrastructure.

    Science.gov (United States)

    Ko, Sungahn; Zhao, Jieqiong; Xia, Jing; Afzal, Shehzad; Wang, Xiaoyu; Abram, Greg; Elmqvist, Niklas; Kne, Len; Van Riper, David; Gaither, Kelly; Kennedy, Shaun; Tolone, William; Ribarsky, William; Ebert, David S

    2014-12-01

    We present VASA, a visual analytics platform consisting of a desktop application, a component model, and a suite of distributed simulation components for modeling the impact of societal threats such as weather, food contamination, and traffic on critical infrastructure such as supply chains, road networks, and power grids. Each component encapsulates a high-fidelity simulation model that together form an asynchronous simulation pipeline: a system of systems of individual simulations with a common data and parameter exchange format. At the heart of VASA is the Workbench, a visual analytics application providing three distinct features: (1) low-fidelity approximations of the distributed simulation components using local simulation proxies to enable analysts to interactively configure a simulation run; (2) computational steering mechanisms to manage the execution of individual simulation components; and (3) spatiotemporal and interactive methods to explore the combined results of a simulation run. We showcase the utility of the platform using examples involving supply chains during a hurricane as well as food contamination in a fast food restaurant chain.

  7. Simulation-based trauma education for medical students : A review of literature

    NARCIS (Netherlands)

    Borggreve, Alicia S.; Meijer, Joost M.R.; Schreuder, Henk W.R.; ten Cate, Olle

    2017-01-01

    Background: Medical students often do not feel prepared to manage emergency situations after graduation. They experience a lack of practical skills and show significant deficits in cognitive performance to assess and stabilize trauma patients. Most reports in the literature about simulation-based

  8. Virtual suturing simulation based on commodity physics engine for medical learning.

    Science.gov (United States)

    Choi, Kup-Sze; Chan, Sze-Ho; Pang, Wai-Man

    2012-06-01

    Development of virtual-reality medical applications is usually a complicated and labour intensive task. This paper explores the feasibility of using commodity physics engine to develop a suturing simulator prototype for manual skills training in the fields of nursing and medicine, so as to enjoy the benefits of rapid development and hardware-accelerated computation. In the prototype, spring-connected boxes of finite dimension are used to simulate soft tissues, whereas needle and thread are modelled with chained segments. Spherical joints are used to simulate suture's flexibility and to facilitate thread cutting. An algorithm is developed to simulate needle insertion and thread advancement through the tissue. Two-handed manipulations and force feedback are enabled with two haptic devices. Experiments on the closure of a wound show that the prototype is able to simulate suturing procedures at interactive rates. The simulator is also used to study a curvature-adaptive suture modelling technique. Issues and limitations of the proposed approach and future development are discussed.

  9. The dependence of fidelity on the squeezing parameter in teleportation of the squeezed coherent states

    Institute of Scientific and Technical Information of China (English)

    Zhang Jing-Tao; He Guang-Qiang; Ren Li-Jie; Zeng Gui-Hua

    2011-01-01

    This paper investigates an analytical expression of teleportation fidelity in the teleportation scheme of a single mode of electromagnetic field. The fidelity between the original squeezed coherent state and the teleported one is expressed in terms of the squeezing parameter r and the quantum channel parameter (two-mode squeezed state) p. The results of analysis show that the fidelity increases with the increase of the quantum channel parameter p, while the fidelity decreases with the increase of the squeezing parameter r of the squeezed state. Thus the coherent state (r = 0)is the best quantum signal for continuous variable quantum teleportation once the quantum channel is built.

  10. Virtual reality aided visualization of fluid flow simulations with application in medical education and diagnostics.

    Science.gov (United States)

    Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad

    2013-12-01

    Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.

  11. Development of a high-fidelity numerical model for hazard prediction in the urban environment

    International Nuclear Information System (INIS)

    Lien, F.S.; Yee, E.; Ji, H.; Keats, A.; Hsieh, K.J.

    2005-01-01

    The release of chemical, biological, radiological, or nuclear (CBRN) agents by terrorists or rogue states in a North American city (densely populated urban centre) and the subsequent exposure, deposition, and contamination are emerging threats in an uncertain world. The transport, dispersion, deposition, and fate of a CBRN agent released in an urban environment is an extremely complex problem that encompasses potentially multiple space and time scales. The availability of high-fidelity, time-dependent models for the prediction of a CBRN agent's movement and fate in a complex urban environment can provide the strongest technical and scientific foundation for support of Canada's more broadly based effort at advancing counter-terrorism planning and operational capabilities. The objective of this paper is to report the progress of developing and validating an integrated, state-of-the-art, high-fidelity multi-scale, multi-physics modeling system for the accurate and efficient prediction of urban flow and dispersion of CBRN materials. Development of this proposed multi-scale modeling system will provide the real-time modeling and simulation tool required to predict injuries, casualties, and contamination and to make relevant decisions (based on the strongest technical and scientific foundations) in order to minimize the consequences of a CBRN incident based on a pre-determined decision making framework. (author)

  12. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    Energy Technology Data Exchange (ETDEWEB)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C. [Air Force Research Laboratory, Computational Sciences Branch, Air Vehicles Directorate, Wright-Patterson AFB, OH (United States)

    2009-05-15

    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re{sub c} = 10 {sup 4}), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re{sub c}=10 {sup 4

  13. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  14. Improvement of the NSSS T/H Module for Enhancing the Simulation Fidelity of KNPEC-2 Simulator

    International Nuclear Information System (INIS)

    Kim, Kyung Doo; Lee, Seung Wook; Jeong, Jae Jun; Lee, Myung Soo

    2005-01-01

    KEPRI(Korea Electric Power Research Institute) and KAERI (Korea Atomic Energy Research Institute) jointly developed and supplied a realistic NSSS (Nuclear Steam Supply System) T/H (Thermal-Hydraulic) module (named ARTS) based on the best-estimate code RETRAN-3D for the improvement of the KNPEC-2 full-scope simulator in 2001. Although ARTS can simulate the most transients in real-time, and its robustness is ensured, real-time calculation and robustness can fail for largebreak (LB) loss-of-coolant accident (LOCA) and longterm, two-phase transients. In order to improve its robustness, ARTS equipped with the backup calculation module to be used whenever a regular ARTS module fails to calculate. When the symptom for the failure of T/H module is detected, the main ARTS module is replaced with the backup module for the calculation of primary and secondary reactor system although most failures of ARTS occur in the calculation of the primary system especially for LB LOCA simulation. The sudden transition from the main ARTS module to the backup module can exhibit the discontinuity of simulation of secondary system on rare occasions. To mitigate the simulation discontinuity, we have improved the backup module of ARTS. The performance of a new approach has been illustrated by the non-integrated standalone test. The improved ARTS module will be incorporated into KNPEC-2 simulator and evaluated its performance in the real simulator environment. This paper presents the brief description of a new backup calculation strategy and the simulation results of LOCA to evaluate the performance of a new backup strategy in standalone test environment

  15. Effect of laser pulse shaping parameters on the fidelity of quantum logic gates.

    Science.gov (United States)

    Zaari, Ryan R; Brown, Alex

    2012-09-14

    The effect of varying parameters specific to laser pulse shaping instruments on resulting fidelities for the ACNOT(1), NOT(2), and Hadamard(2) quantum logic gates are studied for the diatomic molecule (12)C(16)O. These parameters include varying the frequency resolution, adjusting the number of frequency components and also varying the amplitude and phase at each frequency component. A time domain analytic form of the original discretized frequency domain laser pulse function is derived, providing a useful means to infer the resulting pulse shape through variations to the aforementioned parameters. We show that amplitude variation at each frequency component is a crucial requirement for optimal laser pulse shaping, whereas phase variation provides minimal contribution. We also show that high fidelity laser pulses are dependent upon the frequency resolution and increasing the number of frequency components provides only a small incremental improvement to quantum gate fidelity. Analysis through use of the pulse area theorem confirms the resulting population dynamics for one or two frequency high fidelity laser pulses and implies similar dynamics for more complex laser pulse shapes. The ability to produce high fidelity laser pulses that provide both population control and global phase alignment is attributed greatly to the natural evolution phase alignment of the qubits involved within the quantum logic gate operation.

  16. Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications

    Science.gov (United States)

    Kenjereš, Saša

    2014-08-01

    We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called "bad" cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is obtained

  17. Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications

    International Nuclear Information System (INIS)

    Kenjereš, Saša

    2014-01-01

    We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called 'bad' cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is

  18. Analyzing Interaction Patterns to Verify a Simulation/Game Model

    Science.gov (United States)

    Myers, Rodney Dean

    2012-01-01

    In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…

  19. Multi-fidelity Gaussian process regression for computer experiments

    International Nuclear Information System (INIS)

    Le-Gratiet, Loic

    2013-01-01

    This work is on Gaussian-process based approximation of a code which can be run at different levels of accuracy. The goal is to improve the predictions of a surrogate model of a complex computer code using fast approximations of it. A new formulation of a co-kriging based method has been proposed. In particular this formulation allows for fast implementation and for closed-form expressions for the predictive mean and variance for universal co-kriging in the multi-fidelity framework, which is a breakthrough as it really allows for the practical application of such a method in real cases. Furthermore, fast cross validation, sequential experimental design and sensitivity analysis methods have been extended to the multi-fidelity co-kriging framework. This thesis also deals with a conjecture about the dependence of the learning curve (i.e. the decay rate of the mean square error) with respect to the smoothness of the underlying function. A proof in a fairly general situation (which includes the classical models of Gaussian-process based meta-models with stationary covariance functions) has been obtained while the previous proofs hold only for degenerate kernels (i.e. when the process is in fact finite- dimensional). This result allows for addressing rigorously practical questions such as the optimal allocation of the budget between different levels of codes in the multi-fidelity framework. (author) [fr

  20. Task-Specific Asteroid Simulants for Ground Testing, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The project will produce at least four asteroid simulants at high fidelity for mineral content and particle size, created through standardized inputs and documented...