WorldWideScience

Sample records for fibrosis airway surface

  1. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.

    Science.gov (United States)

    Haq, Iram J; Gray, Michael A; Garnett, James P; Ward, Christopher; Brodlie, Malcolm

    2016-03-01

    Cystic fibrosis (CF) is a life-limiting disease characterised by recurrent respiratory infections, inflammation and lung damage. The volume and composition of the airway surface liquid (ASL) are important in maintaining ciliary function, mucociliary clearance and antimicrobial properties of the airway. In CF, these homeostatic mechanisms are impaired, leading to a dehydrated and acidic ASL. ASL volume depletion in CF is secondary to defective anion transport by the abnormal cystic fibrosis transmembrane conductance regulator protein (CFTR). Abnormal CFTR mediated bicarbonate transport creates an unfavourable, acidic environment, which impairs antimicrobial function and alters mucus properties and clearance. These disease mechanisms create a disordered airway milieu, consisting of thick mucopurulent secretions and chronic bacterial infection. In addition to CFTR, there are additional ion channels and transporters in the apical airway epithelium that play a role in maintaining ASL homeostasis. These include the epithelial sodium channel (ENaC), the solute carrier 26A (SLC26A) family of anion exchangers, and calcium-activated chloride channels. In this review we discuss how the ASL is abnormal in CF and how targeting these alternative channels and transporters could provide an attractive therapeutic strategy to correct the underlying ASL abnormalities evident in CF.

  2. Resveratrol enhances airway surface liquid depth in sinonasal epithelium by increasing cystic fibrosis transmembrane conductance regulator open probability.

    Directory of Open Access Journals (Sweden)

    Shaoyan Zhang

    Full Text Available BACKGROUND: Chronic rhinosinusitis engenders enormous morbidity in the general population, and is often refractory to medical intervention. Compounds that augment mucociliary clearance in airway epithelia represent a novel treatment strategy for diseases of mucus stasis. A dominant fluid and electrolyte secretory pathway in the nasal airways is governed by the cystic fibrosis transmembrane conductance regulator (CFTR. The objectives of the present study were to test resveratrol, a strong potentiator of CFTR channel open probability, in preparation for a clinical trial of mucociliary activators in human sinus disease. METHODS: Primary sinonasal epithelial cells, immortalized bronchoepithelial cells (wild type and F508del CFTR, and HEK293 cells expressing exogenous human CFTR were investigated by Ussing chamber as well as patch clamp technique under non-phosphorylating conditions. Effects on airway surface liquid depth were measured using confocal laser scanning microscopy. Impact on CFTR gene expression was measured by quantitative reverse transcriptase polymerase chain reaction. RESULTS: Resveratrol is a robust CFTR channel potentiator in numerous mammalian species. The compound also activated temperature corrected F508del CFTR and enhanced CFTR-dependent chloride secretion in human sinus epithelium ex vivo to an extent comparable to the recently approved CFTR potentiator, ivacaftor. Using inside out patches from apical membranes of murine cells, resveratrol stimulated an ~8 picosiemens chloride channel consistent with CFTR. This observation was confirmed in HEK293 cells expressing exogenous CFTR. Treatment of sinonasal epithelium resulted in a significant increase in airway surface liquid depth (in µm: 8.08+/-1.68 vs. 6.11+/-0.47,control,p<0.05. There was no increase CFTR mRNA. CONCLUSION: Resveratrol is a potent chloride secretagogue from the mucosal surface of sinonasal epithelium, and hydrates airway surface liquid by increasing CFTR

  3. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

    Directory of Open Access Journals (Sweden)

    Valia Verrière

    Full Text Available Cystic Fibrosis (CF is a genetic disease characterised by a deficit in epithelial Cl(- secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL height. The endogenous lipoxin LXA(4 is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4 are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4 produced a rapid and transient increase in intracellular Ca(2+. We have investigated, the effect of LXA(4 on Cl(- secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4 stimulated a rapid intracellular Ca(2+ increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4 stimulated whole-cell Cl(- currents which were inhibited by NPPB (calcium-activated Cl(- channel inhibitor, BAPTA-AM (chelator of intracellular Ca(2+ but not by CFTRinh-172 (CFTR inhibitor. We found, using confocal imaging, that LXA(4 increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4 effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(- secretion. The LXA(4 stimulation of intracellular Ca(2+, whole-cell Cl(- currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4 in the stimulation of intracellular Ca(2+ signalling leading to Ca(2+-activated Cl(- secretion and enhanced ASL height in non-CF and CF bronchial epithelia.

  4. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

    LENUS (Irish Health Repository)

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX\\/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.

  5. Airway acidification initiates host defense abnormalities in cystic fibrosis mice

    Science.gov (United States)

    Shah, Viral S.; Meyerholz, David K.; Tang, Xiao Xiao; Reznikov, Leah; Alaiwa, Mahmoud Abou; Ernst, Sarah E.; Karp, Philip H.; Wohlford-Lenane, Christine L.; Heilmann, Kristopher P.; Leidinger, Mariah R.; Allen, Patrick D.; Zabner, Joseph; McCray, Paul B.; Ostedgaard, Lynda S.; Stoltz, David A.; Randak, Christoph O.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H+ secretion by the nongastric H+/K+ adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H+; consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF. PMID:26823428

  6. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H+ secretion

    Science.gov (United States)

    Garnett, James Peter; Kalsi, Kameljit K.; Sobotta, Mirko; Bearham, Jade; Carr, Georgina; Powell, Jason; Brodlie, Malcolm; Ward, Christopher; Tarran, Robert; Baines, Deborah L.

    2016-01-01

    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3− transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3− removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H+ co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H+ secretion by secreting HCO3−, a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD. PMID:27897253

  7. Hyperglycaemia and Pseudomonas aeruginosa acidify cystic fibrosis airway surface liquid by elevating epithelial monocarboxylate transporter 2 dependent lactate-H(+) secretion.

    Science.gov (United States)

    Garnett, James Peter; Kalsi, Kameljit K; Sobotta, Mirko; Bearham, Jade; Carr, Georgina; Powell, Jason; Brodlie, Malcolm; Ward, Christopher; Tarran, Robert; Baines, Deborah L

    2016-11-29

    The cystic fibrosis (CF) airway surface liquid (ASL) provides a nutrient rich environment for bacterial growth including elevated glucose, which together with defective bacterial killing due to aberrant HCO3(-) transport and acidic ASL, make the CF airways susceptible to colonisation by respiratory pathogens such as Pseudomonas aeruginosa. Approximately half of adults with CF have CF related diabetes (CFRD) and this is associated with increased respiratory decline. CF ASL contains elevated lactate concentrations and hyperglycaemia can also increase ASL lactate. We show that primary human bronchial epithelial (HBE) cells secrete lactate into ASL, which is elevated in hyperglycaemia. This leads to ASL acidification in CFHBE, which could only be mimicked in non-CF HBE following HCO3(-) removal. Hyperglycaemia-induced changes in ASL lactate and pH were exacerbated by the presence of P. aeruginosa and were attenuated by inhibition of monocarboxylate lactate-H(+) co-transporters (MCTs) with AR-C155858. We conclude that hyperglycaemia and P. aeruginosa induce a metabolic shift which increases lactate generation and efflux into ASL via epithelial MCT2 transporters. Normal airways compensate for MCT-driven H(+) secretion by secreting HCO3(-), a process which is dysfunctional in CF airway epithelium leading to ASL acidification and that these processes may contribute to worsening respiratory disease in CFRD.

  8. The genus Prevotella in cystic fibrosis airways.

    Science.gov (United States)

    Field, Tyler R; Sibley, Christopher D; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2010-08-01

    Airway disease resulting from chronic bacterial colonization and consequential inflammation is the leading cause of morbidity and mortality in patients with Cystic Fibrosis (CF). Although traditionally considered to be due to only a few pathogens, recent re-examination of CF airway microbiology has revealed that polymicrobial communities that include many obligate anaerobes colonize lower airways. The purpose of this study was to examine Prevotella species in CF airways by quantitative culture and phenotypic characterization. Expectorated sputum was transferred to an anaerobic environment immediately following collection and examined by quantitative microbiology using a variety of culture media. Isolates were identified as facultative or obligate anaerobes and the later group was identified by 16S rRNA sequencing. Prevotella spp. represented the majority of isolates. Twelve different species of Prevotella were recovered from 16 patients with three species representing 65% of isolates. Multiple Prevotella species were often isolated from the same sputum sample. These isolates were biochemically characterized using Rapid ID 32A kits (BioMérieux), and for their ability to produce autoinducer-2 and beta-lactamases. Considerable phenotypic variability between isolates of the same species was observed. The quantity and composition of Prevotella species within a patients' airway microbiome varied over time. Our results suggest that the diversity and dynamics of Prevotella in CF airways may contribute to airway disease.

  9. Airway clearance therapy in cystic fibrosis patients.

    Science.gov (United States)

    Pisi, Giovanna; Chetta, Alfredo

    2009-08-01

    Cystic fibrosis (CF) is the most common life-shortening inherited disease affecting Caucasian people. In CF, the major feature of lung disease is the retention of mucus due to impaired clearance of abnormally viscous airway secretions. Airway clearance techniques (ACTs) may significantly improve mucociliary clearance and gas exchange, thereby being of clinical benefit in reducing pulmonary complications in CF patients. ACTs include conventional chest physiotherapy, active cycle of breathing techniques, autogenic drainage, positive expiratory pressure and high-frequency chest compression. In order to suit the needs of patients, families and care-givers, ACTs need to be individually and continuously adapted.

  10. Beyond TGFβ : Novel ways to target airway and parenchymal fibrosis

    NARCIS (Netherlands)

    Boorsma, C. E.; Dekkers, B. G. J.; van Dijk, E. M.; Kumawat, K.; Richardson, J.; Burgess, J.K.; John, A. E.

    2014-01-01

    Within the lungs, fibrosis can affect both the parenchyma and the airways. Fibrosis is a hallmark pathological change in the parenchyma in patients with idiopathic pulmonary fibrosis (IPF), whilst in asthma or chronic obstructive pulmonary disease (COPD) fibrosis is a component of the remodelling of

  11. Viruses in cystic fibrosis patients' airways.

    Science.gov (United States)

    Billard, Lisa; Le Berre, Rozenn; Pilorgé, Léa; Payan, Christopher; Héry-Arnaud, Geneviève; Vallet, Sophie

    2017-11-01

    Although bacteria have historically been considered to play a major role in cystic fibrosis (CF) airway damage, a strong impact of respiratory viral infections (RVI) is also now recognized. Emerging evidence confirms that respiratory viruses are associated with deterioration of pulmonary function and exacerbation and facilitation of bacterial colonization in CF patients. The aim of this review is to provide an overview of the current knowledge on respiratory viruses in CF airways, to discuss the resulting inflammation and RVI response, to determine how to detect the viruses, and to assess their clinical consequences, prevalence, and interactions with bacteria. The most predominant are Rhinoviruses (RVs), significantly associated with CF exacerbation. Molecular techniques, and especially multiplex PCR, help to diagnose viral infections, and the coming rise of metagenomics will extend knowledge of viral populations in the complex ecosystem of CF airways. Prophylaxis and vaccination are currently available only for Respiratory syncytial and Influenza virus (IV), but antiviral molecules are being tested to improve CF patients' care. All the points raised in this review highlight the importance of taking account of RVIs and their potential impact on the CF airway ecosystem.

  12. 气道表面液转运与囊性纤维化肺病的病因研究%Airway surface liquid transport and pathogenesis research of cystic fibrosis lung disease

    Institute of Scientific and Technical Information of China (English)

    臧传宝; 卢丽丽; 王晓飞

    2009-01-01

    It has been considered that dysfunction of ions and liquid transport in airway epithelia is a main pathogenic factor of genetic cystic fibrosis lung disease. However, the problem about how airway surface liquid transport makes cystic fibrosis lung inflamed and impaired, has been argued in researches. Starting with explaining the cellular mechanisms of airway surface liquid transport, this article reviews the pathologic and genetic characteristics of cystic fibrosis lung disease and the research progress of late years in cystic fibrosis pathogenesis.%呼吸道上皮的离子和液体的转运功能失调,一直被认为是遗传性疾病囊性纤维化肺病的主要致病因素,但学术界对气道表面液转运缺陷如何引致囊性纤维化肺的感染和受损存在不同的观点.本文从解释气道表面液转运的细胞机制入手,综述了囊性纤维化肺病的病理和遗传特征和近年国际上对囊性纤维化肺病病因的研究进展.

  13. The cystic fibrosis lower airways microbial metagenome

    Science.gov (United States)

    Moran Losada, Patricia; Chouvarine, Philippe; Dorda, Marie; Hedtfeld, Silke; Mielke, Samira; Schulz, Angela; Wiehlmann, Lutz

    2016-01-01

    Chronic airway infections determine most morbidity in people with cystic fibrosis (CF). Herein, we present unbiased quantitative data about the frequency and abundance of DNA viruses, archaea, bacteria, moulds and fungi in CF lower airways. Induced sputa were collected on several occasions from children, adolescents and adults with CF. Deep sputum metagenome sequencing identified, on average, approximately 10 DNA viruses or fungi and several hundred bacterial taxa. The metagenome of a CF patient was typically found to be made up of an individual signature of multiple, lowly abundant species superimposed by few disease-associated pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, as major components. The host-associated signatures ranged from inconspicuous polymicrobial communities in healthy subjects to low-complexity microbiomes dominated by the typical CF pathogens in patients with advanced lung disease. The DNA virus community in CF lungs mainly consisted of phages and occasionally of human pathogens, such as adeno- and herpesviruses. The S. aureus and P. aeruginosa populations were composed of one major and numerous minor clone types. The rare clones constitute a low copy genetic resource that could rapidly expand as a response to habitat alterations, such as antimicrobial chemotherapy or invasion of novel microbes. PMID:27730195

  14. Cartilaginous airway wall dimensions and airway resistance in cystic fibrosis lungs

    NARCIS (Netherlands)

    Tiddens, HAWM; Koopman, LP; Lambert, RK; Elliott, WM; Hop, WCJ; van der Mark, TW; de Jongste, JC

    It is not clear how airway pathology relates to the severity of airflow obstruction and increased bronchial responsiveness in cystic fibrosis (CF) patients. The aim of this study was to measure the airway dimensions of CF patients and to estimate the importance of these dimensions to airway

  15. Changes in Cystic Fibrosis Airway Microbiota at Pulmonary Exacerbation

    OpenAIRE

    Carmody, Lisa A.; Zhao, Jiangchao; Patrick D. Schloss; Petrosino, Joseph F.; Murray, Susan; Young, Vincent B.; Jun Z Li; LiPuma, John J.

    2013-01-01

    Rationale: In persons with cystic fibrosis (CF), repeated exacerbations of pulmonary symptoms are associated with a progressive decline in lung function. Changes in the airway microbiota around the time of exacerbations are not well understood.

  16. Astragalin inhibits autophagy-associated airway epithelial fibrosis

    OpenAIRE

    Cho, In-Hee; Choi, Yean-Jung; Gong, Ju-Hyun; Shin, Daekeun; Kang, Min-Kyung; Kang, Young-Hee

    2015-01-01

    Background Fibrotic remodeling of airway and lung parenchymal compartments is attributed to pulmonary dysfunction with an involvement of reactive oxygen species (ROS) in chronic lung diseases such as idiopathic pulmonary fibrosis and asthma. Methods The in vitro study elucidated inhibitory effects of astragalin, kaempferol-3-O-glucoside from leaves of persimmon and green tea seeds, on oxidative stress-induced airway fibrosis. The in vivo study explored the demoting effects of astragalin on ep...

  17. Airway Clearance Devices for Cystic Fibrosis

    Science.gov (United States)

    2009-01-01

    Executive Summary Objective The purpose of this evidence-based analysis is to examine the safety and efficacy of airway clearance devices (ACDs) for cystic fibrosis and attempt to differentiate between devices, where possible, on grounds of clinical efficacy, quality of life, safety and/or patient preference. Background Cystic fibrosis (CF) is a common, inherited, life-limiting disease that affects multiple systems of the human body. Respiratory dysfunction is the primary complication and leading cause of death due to CF. CF causes abnormal mucus secretion in the airways, leading to airway obstruction and mucus plugging, which in turn can lead to bacterial infection and further mucous production. Over time, this almost cyclical process contributes to severe airway damage and loss of respiratory function. Removal of airway secretions, termed airway clearance, is thus an integral component of the management of CF. A variety of methods are available for airway clearance, some requiring mechanical devices, others physical manipulation of the body (e.g. physiotherapy). Conventional chest physiotherapy (CCPT), through the assistance of a caregiver, is the current standard of care for achieving airway clearance, particularly in young patients up to the ages of six or seven. CF patients are, however, living much longer now than in decades past. The median age of survival in Canada has risen to 37.0 years for the period of 1998-2002 (5-year window), up from 22.8 years for the 5-year window ending in 1977. The prevalence has also risen accordingly, last recorded as 3,453 in Canada in 2002, up from 1,630 in 1977. With individuals living longer, there is a greater need for independent methods of airway clearance. Airway Clearance Devices There are at least three classes of airway clearance devices: positive expiratory pressure devices (PEP), airway oscillating devices (AOD; either handheld or stationary) and high frequency chest compression (HFCC)/mechanical percussion (MP

  18. Microbial ecology and adaptation in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Yang, Lei; Jelsbak, Lars; Molin, Søren

    2011-01-01

    Chronic infections in the respiratory tracts of cystic fibrosis (CF) patients are important to investigate, both from medical and from fundamental ecological points of view. Cystic fibrosis respiratory tracts can be described as natural environments harbouring persisting microbial communities...... constitute the selective forces that drive the evolution of the microbes after they migrate from the outer environment to human airways. Pseudomonas aeruginosa adapts to the new environment through genetic changes and exhibits a special lifestyle in chronic CF airways. Understanding the persistent...... colonization of microbial pathogens in CF patients in the context of ecology and evolution will expand our knowledge of the pathogenesis of chronic infections and improve therapeutic strategies....

  19. Evolution and adaptation of Pseudomonas aeruginosa in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Madsen Sommer, Lea Mette

    of natural environments, the primary obstacle is re-sampling of the samepopulation over time, especially if the population is small.Nevertheless, it has been accomplished: Chronic airway infections of cystic fibrosis (CF) patients have offered a unique view into the adaptationand evolution of Pseudomonas...

  20. Idiopathic airway-centered interstitial fibrosis: report of two cases

    Institute of Scientific and Technical Information of China (English)

    YI Xiang-hua; CHU Hai-qing; CHENG Xiao-ming; LUO Ben-fang; LI Hui-ping

    2007-01-01

    @@ Airway-centered interstitial fibrosis (ACIF), a novel form of diffuse interstitial lung disease (ILD) of unknown cause, was recently presented.1 There is no final conclusion on its property and denomination, and it might be a new type of idiopathic interstitial pneumonia (ⅡP).

  1. Physiological Impact of Abnormal Lipoxin A4 Production on Cystic Fibrosis Airway Epithelium and Therapeutic Potential

    Science.gov (United States)

    Higgins, Gerard; McNally, Paul; Urbach, Valérie

    2015-01-01

    Lipoxin A4 has been described as a major signal for the resolution of inflammation and is abnormally produced in the lungs of patients with cystic fibrosis (CF). In CF, the loss of chloride transport caused by the mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel gene results in dehydration, mucus plugging, and reduction of the airway surface liquid layer (ASL) height which favour chronic lung infection and neutrophil based inflammation leading to progressive lung destruction and early death of people with CF. This review highlights the unique ability of LXA4 to restore airway surface hydration, to stimulate airway epithelial repair, and to antagonise the proinflammatory program of the CF airway, circumventing some of the most difficult aspects of CF pathophysiology. The report points out novel aspects of the cellular mechanism involved in the physiological response to LXA4, including release of ATP from airway epithelial cell via pannexin channel and subsequent activation of and P2Y11 purinoreceptor. Therefore, inadequate endogenous LXA4 biosynthesis reported in CF exacerbates the ion transport abnormality and defective mucociliary clearance, in addition to impairing the resolution of inflammation, thus amplifying the vicious circle of airway dehydration, chronic infection, and inflammation. PMID:25866809

  2. Physiological impact of abnormal lipoxin A₄ production on cystic fibrosis airway epithelium and therapeutic potential.

    Science.gov (United States)

    Higgins, Gerard; Ringholz, Fiona; Buchanan, Paul; McNally, Paul; Urbach, Valérie

    2015-01-01

    Lipoxin A4 has been described as a major signal for the resolution of inflammation and is abnormally produced in the lungs of patients with cystic fibrosis (CF). In CF, the loss of chloride transport caused by the mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel gene results in dehydration, mucus plugging, and reduction of the airway surface liquid layer (ASL) height which favour chronic lung infection and neutrophil based inflammation leading to progressive lung destruction and early death of people with CF. This review highlights the unique ability of LXA4 to restore airway surface hydration, to stimulate airway epithelial repair, and to antagonise the proinflammatory program of the CF airway, circumventing some of the most difficult aspects of CF pathophysiology. The report points out novel aspects of the cellular mechanism involved in the physiological response to LXA4, including release of ATP from airway epithelial cell via pannexin channel and subsequent activation of and P2Y11 purinoreceptor. Therefore, inadequate endogenous LXA4 biosynthesis reported in CF exacerbates the ion transport abnormality and defective mucociliary clearance, in addition to impairing the resolution of inflammation, thus amplifying the vicious circle of airway dehydration, chronic infection, and inflammation.

  3. L-ornithine derived polyamines in cystic fibrosis airways.

    Directory of Open Access Journals (Sweden)

    Hartmut Grasemann

    Full Text Available Increased arginase activity contributes to airway nitric oxide (NO deficiency in cystic fibrosis (CF. Whether down-stream products of arginase activity contribute to CF lung disease is currently unknown. The objective of this study was to test whether L-ornithine derived polyamines are present in CF airways and contribute to airway pathophysiology. Polyamine concentrations were measured in sputum of patients with CF and in healthy controls, using liquid chromatography-tandem mass spectrometry. The effect of spermine on airway smooth muscle mechanical properties was assessed in bronchial segments of murine airways, using a wire myograph. Sputum polyamine concentrations in stable CF patients were similar to healthy controls for putrescine and spermidine but significantly higher for spermine. Pulmonary exacerbations were associated with an increase in sputum and spermine levels. Treatment for pulmonary exacerbations resulted in decreases in arginase activity, L-ornithine and spermine concentrations in sputum. The changes in sputum spermine with treatment correlated significantly with changes in L-ornithine but not with sputum inflammatory markers. Incubation of mouse bronchi with spermine resulted in an increase in acetylcholine-induced force and significantly reduced nitric oxide-induced bronchial relaxation. The polyamine spermine is increased in CF airways. Spermine contributes to airways obstruction by reducing the NO-mediated smooth muscle relaxation.

  4. Conventional chest physiotherapy compared to other airway clearance techniques for cystic fibrosis

    NARCIS (Netherlands)

    Main, Eleanor; Prasad, Ammani; van der Schans, Cees P

    2005-01-01

    Background Cystic fibrosis is an inherited life-limiting disorder, characterised by pulmonary infections and thick airway secretions. Chest physiotherapy has been integral to clinical management in facilitating removal of airway secretions. Conventional chest physiotherapy techniques (CCPT) have

  5. MicroRNA Expression in Cystic Fibrosis Airway Epithelium

    Directory of Open Access Journals (Sweden)

    Catherine M. Greene

    2013-02-01

    Full Text Available MicroRNAs (miRs have emerged as major regulators of the protein content of a cell. In the most part, miRs negatively regulate target mRNA expression, with sets of miRs predicted to regulate certain signaling pathways. The miR expression profile of endobronchial brushings is altered in people with cystic fibrosis (CF compared to those without CF. How this impacts on CF has important implications for our growing understanding of the pathophysiology of CF lung disease and the development of new therapeutics to treat its pulmonary manifestations. Herein we discuss the potential consequences of altered miR expression in CF airway epithelium particularly with respect to cystic fibrosis transmembrane conductance regulator (CFTR expression, innate immunity and toll-like receptor signalling and explore how best to exploit these changes for therapeutic benefit.

  6. Assessment of Airway Microbiota and Inflammation in Cystic Fibrosis Using Multiple Sampling Methods

    OpenAIRE

    Edith T Zemanick; Brandie D Wagner; Robertson, Charles E.; Stevens, Mark J.; Szefler, Stanley J; Accurso, Frank J.; Sagel, Scott D; Harris, J. Kirk

    2015-01-01

    Rationale: Oropharyngeal (OP) swabs and induced sputum (IS) are used for airway bacteria surveillance in nonexpectorating children with cystic fibrosis (CF). Molecular analyses of these airway samples detect complex microbial communities. However, the optimal noninvasive sampling approach for microbiota analyses and the clinical relevance of microbiota, particularly its relationship to airway inflammation, is not well characterized.

  7. The airway microbiota in early cystic fibrosis lung disease.

    Science.gov (United States)

    Frayman, Katherine B; Armstrong, David S; Grimwood, Keith; Ranganathan, Sarath C

    2017-08-16

    Infection plays a critical role in the pathogenesis of cystic fibrosis (CF) lung disease. Over the past two decades, the application of molecular and extended culture-based techniques to microbial analysis has changed our understanding of the lungs in both health and disease. CF lung disease is a polymicrobial disorder, with obligate and facultative anaerobes recovered alongside traditional pathogens in varying proportions, with some differences observed to correlate with disease stage. While healthy lungs are not sterile, differences between the lower airway microbiota of individuals with CF and disease-controls are already apparent in childhood. Understanding the evolution of the CF airway microbiota, and its relationship with clinical treatments and outcome at each disease stage, will improve our understanding of the pathogenesis of CF lung disease and potentially inform clinical management. This review summarizes current knowledge of the early development of the respiratory microbiota in healthy children and then discusses what is known about the airway microbiota in individuals with CF, including how it evolves over time and where future research priorities lie. © 2017 Wiley Periodicals, Inc.

  8. Culture enriched molecular profiling of the cystic fibrosis airway microbiome.

    Science.gov (United States)

    Sibley, Christopher D; Grinwis, Margot E; Field, Tyler R; Eshaghurshan, Christina S; Faria, Monica M; Dowd, Scot E; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2011-01-01

    The microbiome of the respiratory tract, including the nasopharyngeal and oropharyngeal microbiota, is a dynamic community of microorganisms that is highly diverse. The cystic fibrosis (CF) airway microbiome refers to the polymicrobial communities present in the lower airways of CF patients. It is comprised of chronic opportunistic pathogens (such as Pseudomonas aeruginosa) and a variety of organisms derived mostly from the normal microbiota of the upper respiratory tract. The complexity of these communities has been inferred primarily from culture independent molecular profiling. As with most microbial communities it is generally assumed that most of the organisms present are not readily cultured. Our culture collection generated using more extensive cultivation approaches, reveals a more complex microbial community than that obtained by conventional CF culture methods. To directly evaluate the cultivability of the airway microbiome, we examined six samples in depth using culture-enriched molecular profiling which combines culture-based methods with the molecular profiling methods of terminal restriction fragment length polymorphisms and 16S rRNA gene sequencing. We demonstrate that combining culture-dependent and culture-independent approaches enhances the sensitivity of either approach alone. Our techniques were able to cultivate 43 of the 48 families detected by deep sequencing; the five families recovered solely by culture-independent approaches were all present at very low abundance (<0.002% total reads). 46% of the molecular signatures detected by culture from the six patients were only identified in an anaerobic environment, suggesting that a large proportion of the cultured airway community is composed of obligate anaerobes. Most significantly, using 20 growth conditions per specimen, half of which included anaerobic cultivation and extended incubation times we demonstrate that the majority of bacteria present can be cultured.

  9. Inflammation and airway microbiota during cystic fibrosis pulmonary exacerbations.

    Directory of Open Access Journals (Sweden)

    Edith T Zemanick

    Full Text Available BACKGROUND: Pulmonary exacerbations (PEx, frequently associated with airway infection and inflammation, are the leading cause of morbidity in cystic fibrosis (CF. Molecular microbiologic approaches detect complex microbiota from CF airway samples taken during PEx. The relationship between airway microbiota, inflammation, and lung function during CF PEx is not well understood. OBJECTIVE: To determine the relationships between airway microbiota, inflammation, and lung function in CF subjects treated for PEx. METHODS: Expectorated sputum and blood were collected and lung function testing performed in CF subjects during early (0-3d. and late treatment (>7d. for PEx. Sputum was analyzed by culture, pyrosequencing of 16S rRNA amplicons, and quantitative PCR for total and specific bacteria. Sputum IL-8 and neutrophil elastase (NE; and circulating C-reactive protein (CRP were measured. RESULTS: Thirty-seven sputum samples were collected from 21 CF subjects. At early treatment, lower diversity was associated with high relative abundance (RA of Pseudomonas (r = -0.67, p<0.001, decreased FEV(1% predicted (r = 0.49, p = 0.03 and increased CRP (r = -0.58, p = 0.01. In contrast to Pseudomonas, obligate and facultative anaerobic genera were associated with less inflammation and higher FEV₁. With treatment, Pseudomonas RA and P. aeruginosa by qPCR decreased while anaerobic genera showed marked variability in response. Change in RA of Prevotella was associated with more variability in FEV₁ response to treatment than Pseudomonas or Staphylococcus. CONCLUSIONS: Anaerobes identified from sputum by sequencing are associated with less inflammation and higher lung function compared to Pseudomonas at early exacerbation. CF PEx treatment results in variable changes of anaerobic genera suggesting the need for larger studies particularly of patients without traditional CF pathogens.

  10. Culture enriched molecular profiling of the cystic fibrosis airway microbiome.

    Directory of Open Access Journals (Sweden)

    Christopher D Sibley

    Full Text Available The microbiome of the respiratory tract, including the nasopharyngeal and oropharyngeal microbiota, is a dynamic community of microorganisms that is highly diverse. The cystic fibrosis (CF airway microbiome refers to the polymicrobial communities present in the lower airways of CF patients. It is comprised of chronic opportunistic pathogens (such as Pseudomonas aeruginosa and a variety of organisms derived mostly from the normal microbiota of the upper respiratory tract. The complexity of these communities has been inferred primarily from culture independent molecular profiling. As with most microbial communities it is generally assumed that most of the organisms present are not readily cultured. Our culture collection generated using more extensive cultivation approaches, reveals a more complex microbial community than that obtained by conventional CF culture methods. To directly evaluate the cultivability of the airway microbiome, we examined six samples in depth using culture-enriched molecular profiling which combines culture-based methods with the molecular profiling methods of terminal restriction fragment length polymorphisms and 16S rRNA gene sequencing. We demonstrate that combining culture-dependent and culture-independent approaches enhances the sensitivity of either approach alone. Our techniques were able to cultivate 43 of the 48 families detected by deep sequencing; the five families recovered solely by culture-independent approaches were all present at very low abundance (<0.002% total reads. 46% of the molecular signatures detected by culture from the six patients were only identified in an anaerobic environment, suggesting that a large proportion of the cultured airway community is composed of obligate anaerobes. Most significantly, using 20 growth conditions per specimen, half of which included anaerobic cultivation and extended incubation times we demonstrate that the majority of bacteria present can be cultured.

  11. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Carla M. P. Ribeiro

    2017-01-01

    Full Text Available Cystic fibrosis (CF pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR. This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease.

  12. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production.

    Science.gov (United States)

    Oglesby, Irene K; Vencken, Sebastian F; Agrawal, Raman; Gaughan, Kevin; Molloy, Kevin; Higgins, Gerard; McNally, Paul; McElvaney, Noel G; Mall, Marcus A; Greene, Catherine M

    2015-11-01

    Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases.

  13. The lower airway microbiota in early cystic fibrosis lung disease: a longitudinal analysis.

    Science.gov (United States)

    Frayman, Katherine B; Armstrong, David S; Carzino, Rosemary; Ferkol, Thomas W; Grimwood, Keith; Storch, Gregory A; Teo, Shu Mei; Wylie, Kristine M; Ranganathan, Sarath C

    2017-03-09

    In infants and young children with cystic fibrosis, lower airway infection and inflammation are associated with adverse respiratory outcomes. However, the role of lower airway microbiota in the pathogenesis of early cystic fibrosis lung disease remains uncertain. To assess the development of the lower airway microbiota over time in infants and young children with cystic fibrosis, and to explore its association with airway inflammation and pulmonary function at age 6 years. Serial, semi-annual bronchoscopies and bronchoalveolar lavage (BAL) procedures were performed in infants newly diagnosed with cystic fibrosis following newborn screening. Quantitative microbiological cultures and inflammatory marker (interleukin 8 and neutrophil elastase) measurements were undertaken contemporaneously. 16S ribosomal RNA gene sequencing was conducted on stored BAL samples. Spirometry results recorded at 6 years of age were extracted from medical records. Ninety-five BAL samples provided 16S ribosomal RNA gene data. These were collected from 48 subjects aged 1.2-78.3 months, including longitudinal samples from 27 subjects and 13 before age 6 months. The lower airway microbiota varied, but diversity decreased with advancing age. Detection of recognised cystic fibrosis bacterial pathogens was associated with reduced microbial diversity and greater lower airway inflammation. There was no association between the lower airway microbiota and pulmonary function at age 6 years. In infants with cystic fibrosis, the lower airway microbiota is dynamic. Dominance of the microbiota by recognised cystic fibrosis bacterial pathogens is associated with increased lower airway inflammation, however early microbial diversity is not associated with pulmonary function at 6 years of age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. In Situ Measurement of Airway Surface Liquid [K+] Using a Ratioable K+-sensitive Fluorescent Dye*

    OpenAIRE

    Namkung, Wan; Song, Yuanlin; Mills, Aaron D.; Padmawar, Prashant; Finkbeiner, Walter E.; Verkman, A. S.

    2009-01-01

    The airway surface liquid (ASL) is the thin fluid layer lining airway surface epithelial cells, whose volume and composition are tightly regulated and may be abnormal in cystic fibrosis (CF). We synthesized a two-color fluorescent dextran to measure ASL [K+], TAC-Lime-dextran-TMR, consisting of a green-fluorescing triazacryptand K+ ionophore-Bodipy conjugate, coupled to dextran, together with a red fluorescing tetramethylrhodamine reference chromophore. TAC-Lime-dextran-TMR fluorescence was K...

  15. Phase contrast X-ray imaging for the non-invasive detection of airway surfaces and lumen characteristics in mouse models of airway disease

    Energy Technology Data Exchange (ETDEWEB)

    Siu, K.K.W. [School of Physics, Monash University, Victoria 3800 (Australia); Monash Centre for Synchrotron Science, Monash University, Victoria 3800 (Australia)], E-mail: Karen.Siu@sync.monash.edu.au; Morgan, K.S.; Paganin, D.M. [School of Physics, Monash University, Victoria 3800 (Australia); Boucher, R. [CF Research and Treatment Center, University of North Carolina at Chapel Hill (United States); Uesugi, K.; Yagi, N. [SPring-8/JASRI, Hyogo 679-5198 (Japan); Parsons, D.W. [Department of Pulmonary Medicine, Women' s and Children' s Hospital, South Australia 5006 (Australia); Department of Paediatrics, University of Adelaide, South Australia, 5006 (Australia); Women' s and Children' s Health Research Institute, South Australia, 5006 (Australia)

    2008-12-15

    We seek to establish non-invasive imaging able to detect and measure aspects of the biology and physiology of surface fluids present on airways, in order to develop novel outcome measures able to validate the success of proposed genetic or pharmaceutical therapies for cystic fibrosis (CF) airway disease. Reduction of the thin airway surface liquid (ASL) is thought to be a central pathophysiological process in CF, causing reduced mucociliary clearance that supports ongoing infection and destruction of lung and airways. Current outcome measures in animal models, or humans, are insensitive to the small changes in ASL depth that ought to accompany successful airway therapies. Using phase contrast X-ray imaging (PCXI), we have directly examined the airway surfaces in the nasal airways and tracheas of anaesthetised mice, currently to a resolution of {approx}2 {mu}m. We have also achieved high resolution three-dimensional (3D) imaging of the small airways in mice using phase-contrast enhanced computed tomography (PC-CT) to elucidate the structure-function relationships produced by airway disease. As the resolution of these techniques improves they may permit non-invasive monitoring of changes in ASL depth with therapeutic intervention, and the use of 3D airway and imaging in monitoring of lung health and disease. Phase contrast imaging of airway surfaces has promise for diagnostic and monitoring options in animal models of CF, and the potential for future human airway imaging methodologies is also apparent.

  16. Adherence to airway clearance therapies by adult cystic fibrosis patients.

    Science.gov (United States)

    Flores, Josani Silva; Teixeira, Fernanda Ângela; Rovedder, Paula Maria Eidt; Ziegler, Bruna; Dalcin, Paulo de Tarso Roth

    2013-02-01

    Airway clearance therapy (ACT) is critical in cystic fibrosis (CF). To determine rates of self-reported adherence to ACT by patients treated in an adult CF program, to identify patient characteristics associated with poor adherence, to typify adherence according to ACT technique, and to indicate reasons for poor adherence. Our cross-sectional study included CF subjects age 16 years and older. Enrollees were evaluated via general structured questionnaire, adherence questionnaire, clinical assessment, spirometry, and S(pO(2)) values. Each was stratified by self-reporting protocol as high, moderate, or poor adherence to ACT. Concordance between physiotherapist recommended ACT technique and self-reported subject adherence was subjected to agreement analysis. Of the 63 subjects studied, 38 (60%) qualified as high adherence, 12 (19%) as moderate adherence, and 13 (21%) as poor adherence. Logistic regression identified education level (less than high school) as an independent factor associated with poor adherence (odds ratio 10.2, 95% CI 1.23-84.7, P = .03). Positive expiratory pressure (κ = 0.87) and flutter device (κ = 0.63) usage both corresponded with a high level of agreement, while active cycle of breathing technique (κ = 0.40) and autogenic drainage (κ = 0.39) each showed moderate agreement. Agreement was low for percussion and postural drainage (κ = 0.23). Reasons given most frequently for poor adherence to ACT were "not enough time to do ACT" (28%), "cannot be bothered" (16%), and "do not enjoy ACT technique" (8%). Many (32%) provided no reason. Study outcomes showed a high rate of ACT adherence in adult CF subjects. Lower level of education was the most important factor in poor adherence to ACT. Self-reported adherence and treatment recommendations were in best agreement with positive expiratory pressure and flutter device techniques. © 2013 Daedalus Enterprises.

  17. Cystic fibrosis gene modifier SLC26A9 modulates airway response to CFTR-directed therapeutics.

    Science.gov (United States)

    Strug, Lisa J; Gonska, Tanja; He, Gengming; Keenan, Katherine; Ip, Wan; Boëlle, Pierre-Yves; Lin, Fan; Panjwani, Naim; Gong, Jiafen; Li, Weili; Soave, David; Xiao, Bowei; Tullis, Elizabeth; Rabin, Harvey; Parkins, Michael D; Price, April; Zuberbuhler, Peter C; Corvol, Harriet; Ratjen, Felix; Sun, Lei; Bear, Christine E; Rommens, Johanna M

    2016-08-29

    Cystic fibrosis is realizing the promise of personalized medicine. Recent advances in drug development that target the causal CFTR directly result in lung function improvement, but variability in response is demanding better prediction of outcomes to improve management decisions. The genetic modifier SLC26A9 contributes to disease severity in the CF pancreas and intestine at birth and here we assess its relationship with disease severity and therapeutic response in the airways. SLC26A9 association with lung disease was assessed in individuals from the Canadian and French CF Gene Modifier consortia with CFTR-gating mutations and in those homozygous for the common Phe508del mutation. Variability in response to a CFTR-directed therapy attributed to SLC26A9 genotype was assessed in Canadian patients with gating mutations. A primary airway model system determined if SLC26A9 shows modification of Phe508del CFTR function upon treatment with a CFTR corrector.In those with gating mutations that retain cell surface-localized CFTR we show that SLC26A9 modifies lung function while this is not the case in individuals homozygous for Phe508del where cell surface expression is lacking. Treatment response to ivacaftor, which aims to improve CFTR-channel opening probability in patients with gating mutations, shows substantial variability in response, 28% of which can be explained by rs7512462 in SLC26A9 (P = 0.0006). When homozygous Phe508del primary bronchial cells are treated to restore surface CFTR, SLC26A9 likewise modifies treatment response (P = 0.02). Our findings indicate that SLC26A9 airway modification requires CFTR at the cell surface, and that a common variant in SLC26A9 may predict response to CFTR-directed therapeutics.

  18. AMPK agonists ameliorate sodium and fluid transport and inflammation in cystic fibrosis airway epithelial cells.

    Science.gov (United States)

    Myerburg, Michael M; King, J Darwin; Oyster, Nicholas M; Fitch, Adam C; Magill, Amy; Baty, Catherine J; Watkins, Simon C; Kolls, Jay K; Pilewski, Joseph M; Hallows, Kenneth R

    2010-06-01

    The metabolic sensor AMP-activated kinase (AMPK) inhibits both the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl(-) channel and epithelial Na(+) channel (ENaC), and may inhibit secretion of proinflammatory cytokines in epithelia. Here we have tested in primary polarized CF and non-CF human bronchial epithelial (HBE) cells the effects of AMPK activators, metformin and 5-aminoimidazole-4-carboxamide-1-beta-D-riboside (AICAR), on various parameters that contribute to CF lung disease: ENaC-dependent short-circuit currents (I(sc)), airway surface liquid (ASL) height, and proinflammatory cytokine secretion. AMPK activation after overnight treatment with either metformin (2-5 mM) or AICAR (1 mM) substantially inhibited ENaC-dependent I(sc) in both CF and non-CF airway cultures. Live-cell confocal images acquired 60 minutes after apical addition of Texas Red-dextran-containing fluid revealed significantly greater ASL heights after AICAR and metformin treatment relative to controls, suggesting that AMPK-dependent ENaC inhibition slows apical fluid reabsorption. Both metformin and AICAR decreased secretion of various proinflammatory cytokines, both with and without prior LPS stimulation. Finally, prolonged exposure to more physiologically relevant concentrations of metformin (0.03-1 mM) inhibited ENaC currents and decreased proinflammatory cytokine levels in CF HBE cells in a dose-dependent manner. These findings suggest that novel therapies to activate AMPK in the CF airway may be beneficial by blunting excessive sodium and ASL absorption and by reducing excessive airway inflammation, which are major contributors to CF lung disease.

  19. Altered Sputum Microstructure as a Marker of Airway Obstruction in Cystic Fibrosis Patients

    Science.gov (United States)

    Duncan, Gregg; Jung, James; West, Natalie; Boyle, Michael; Suk, Jung Soo; Hanes, Justin

    In the lungs of cystic fibrosis (CF) patients, highly viscoelastic mucus remains stagnant in the lung leading to obstructed airways prone to recurrent infections. Bulk-fluid rheological measurement is primarily used to assess the pathological features of mucus. However, this approach is limited in detecting microscopic properties on the length scale of pathogens and immune cells. We have shown in prior work based on the transport of muco-inert nanoparticles (MIP) in CF sputum that patients can carry significantly different microstructural properties. In this study, we aimed to determine the factors leading to variations between patients in sputum microstructure and their clinical implications. The microrheological properties of CF sputum were measured using multi-particle tracking experiments of MIP. MIP were made by grafting polyethylene glycol onto the surface of polystyrene nanoparticles which prior work has shown prevents adhesion to CF sputum. Biochemical analyses show that sputum microstructure was significantly altered by elevated mucin and DNA content. Reduction in sputum pore size is characteristic of patients with obstructed airways as indicated by measured pulmonary function tests. Our microstructural read-out may serve as a novel biomarker for CF.

  20. Molecular epidemiology of chronic Pseudomonas aeruginosa airway infections in cystic fibrosis

    DEFF Research Database (Denmark)

    Cramer, Nina; Wiehlmann, Lutz; Ciofu, Oana

    2012-01-01

    The molecular epidemiology of the chronic airway infections with Pseudomonas aeruginosa in individuals with cystic fibrosis (CF) was investigated by cross-sectional analysis of bacterial isolates from 51 CF centers and by longitudinal analysis of serial isolates which had been collected at the CF...

  1. "Bronchial Artery Delivery of Viral Vectors for Gene delivery in Cystic Fibrosis; Superior to Airway Delivery?"

    Directory of Open Access Journals (Sweden)

    Coutelle Charles C

    2002-04-01

    Full Text Available Abstract Background Attempts at gene therapy for the pulmonary manifestations of Cystic Fibrosis have relied mainly on airway delivery. However the efficiency of gene transfer and expression in the airway epithelia has not reached therapeutic levels. Access to epithelial cells is not homogenous for a number of reasons and the submucosal glands cannot be reached via the airways. Presentation We propose to inject gene delivery vectors directly into bronchial arteries combined with pre-delivery of vascular endothelial growth factor to increase vascular endothelial permeability and post-delivery flow reduction by balloon occlusion. Thus it may be possible to reach mucous secreting cells of the bronchial luminal epithelium and the submucosal glands in an increased and homogenous fashion. Testing This combination of techniques to the best of our knowledge has not previously been investigated, and may enable us to overcome some of the current limitations to gene therapy for Cystic Fibrosis.

  2. Acquisition and adaptation of the airway microbiota in the early life of cystic fibrosis patients.

    Science.gov (United States)

    Boutin, Sébastien; Dalpke, Alexander H

    2017-12-01

    Cystic fibrosis (CF) is a genetic disease in which bacterial infections of the airways play a major role in the long-term clinical outcome. In recent years, a number of next-generation sequencing (NGS)-based studies aimed at deciphering the structure and composition of the airways' microbiota. It was shown that the nasal cavity of CF patients displays dysbiosis early in life indicating a failure in the first establishment of a healthy microbiota. In contrast, within the conducting and lower airways, the establishment occurs normally first, but is sensitive to future dysbiosis including chronic infections with classical pathogens in later life. The objective of this mini-review is to give an update on the current knowledge about the development of the microbiota in the early life of CF patients. Microbial acquisition in the human airways can be described by the island model: Microbes found in the lower airways of CF patients represent "islands" that are at first populated from the upper airways reflecting the "mainland." Colonization can be modeled following the neutral theory in which the most abundant bacteria in the mainland are also frequently found in the lower airways initially. At later times, however, the colonization process of the lower airways segregates by active selection of specific microbes. Future research should focus on those processes of microbial and host interactions to understand how microbial communities are shaped on short- and long-term scales. We point out what therapeutic consequences arise from the microbiome data obtained within ecological framework models.

  3. The microbial community of the cystic fibrosis airway is disrupted in early life.

    Directory of Open Access Journals (Sweden)

    Julie Renwick

    Full Text Available Molecular techniques have uncovered vast numbers of organisms in the cystic fibrosis (CF airways, the clinical significance of which is yet to be determined. The aim of this study was to describe and compare the microbial communities of the lower airway of clinically stable children with CF and children without CF.Bronchoalveolar lavage (BAL fluid and paired oropharyngeal swabs from clinically stable children with CF (n = 13 and BAL from children without CF (n = 9 were collected. DNA was isolated, the 16S rRNA regions amplified, fragmented, biotinylated and hybridised to a 16S rRNA microarray. Patient medical and demographic information was recorded and standard microbiological culture was performed.A diverse bacterial community was detected in the lower airways of children with CF and children without CF. The airway microbiome of clinically stable children with CF and children without CF were significantly different as measured by Shannon's Diversity Indices (p = 0.001; t test and Principle coordinate analysis (p = 0.01; Adonis test. Overall the CF airway microbial community was more variable and had a less even distribution than the microbial community in the airways of children without CF. We highlighted several bacteria of interest, particularly Prevotella veroralis, CW040 and a Corynebacterium, which were of significantly differential abundance between the CF and non-CF lower airways. Both Pseudomonas aeruginosa and Streptococcus pneumoniae culture abundance were found to be associated with CF airway microbial community structure. The CF upper and lower airways were found to have a broadly similar microbial milieu.The microbial communities in the lower airways of stable children with CF and children without CF show significant differences in overall diversity. These discrepancies indicate a disruption of the airway microflora occurring early in life in children with CF.

  4. Next generation in vitro systems for biofilm studies - a cystic fibrosis patient airway perspective

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin

    . Several in vivo and in vitro model systems are available to study CF associated bacterial infections. In vivo systems like the widely used mouse model primarily lack essential CF related traits as the development of the significant spontaneous lung disease. In vitro systems like the flow cell system has...... proven essential aspects on biofilm formations, however generates highly artificial biofilms that lack several CF airway scenarios. The driving force and the heart of this project has its origin in the study of the role played by P. aeruginosa in the CF airways. One of the aims of this thesis...... was to develop an accurate tool for growing biofilms that can mimic the cystic fibrosis airways, emulating one of the most important characteristics of the human airways, the oxygen environments. Microfluidic approaches that allow biofilm formation under controllable oxygen concentrations, and furthermore enable...

  5. Eltgol acutelly improves airway clearance and reduces static pulmonary volumes in adult cystic fibrosis patients.

    Science.gov (United States)

    Guimarães, Fernando Silva; Lopes, Agnaldo José; Moço, Vanessa Joaquim Ribeiro; Cavalcanti de Souza, Felipe; Silveira de Menezes, Sara Lúcia

    2014-06-01

    Chest physical therapy techniques are essential in order to reduce the frequency of recurrent pulmonary infections that progressively affect lung function in cystic fibrosis patients. Recently, ELTGOL (L'Expiration Lente Totale Glotte Ouverte en décubitus Latéral) emerged as an inexpensive and easy to perform therapeutic option. The aim of this study was to compare the acute effects of ELTGOL and the Flutter valve in stable adult patients with cystic fibrosis. [Subjects and Methods] This was a randomized, crossover study with a sample of cystic fibrosis outpatients. The subjects underwent two protocols (Flutter Valve and ELTGOL interventions, referred to as ELTGOL and FLUTTER) in a randomized order with a one-week washout interval between them. The main outcomes were pulmonary function variables and expectorated sputum dry weight. [Results] ELTGOL cleared 0.34 g more of secretions than FLUTTER (95% CI 0.11 to 0.57). When comparing the physiological effects of ELTGOL and FLUTTER, the first was superior in improving airway resistance (-0.51 cmH2O/L/s; 95% CI -0.88 to -0.14) and airway conductance (0.016 L/s/cmH2O; 95% CI 0.008 to 0.023). [Conclusion] ELTGOL promoted higher secretion removal and improvement in airway resistance and conductance than the Flutter valve. These techniques were equivalent in reducing the pulmonary hyperinflation and air trapping in cystic fibrosis patients.

  6. The effect of sesamin on airway fibrosis in vitro and in vivo.

    Science.gov (United States)

    Lin, Ching-Huei; Shen, Mei-Lin; Kao, Shung-Te; Wu, Dong Chuan

    2014-09-01

    Airway fibrosis, which is a crucial pathological condition occurring in various types of pulmonary disorders, is characterized by accumulation and activation of fibroblast cells, deposition of extracellular matrix (ECM) proteins, and increase of airway basement membrane. Transforming growth factor beta 1 (TGF-β1) is the principal profibrogenic cytokine that is responsible for fibrotic responses. In the present study, we aimed to investigate the antifibrotic effects of the natural polyphenolic compound, sesamin, on TGF-β1-induced fibroblast proliferation and activation, epithelial-mesenchymal transition (EMT), and ovalbumin (OVA)-induced airway fibrosis in vivo. We found that sesamin attenuated TGF-β1-induced proliferation of cultured lung fibroblasts. Sesamin inhibited TGF-β1-stimulated expression of alpha smooth muscle actin (α-SMA), suggesting that sesamin plays an inhibitory role in fibroblast activation. Sesamin blocked upregulation of the mesenchymal markers (fibronectin and vimentin) and downregulation of the epithelial marker (E-cadherin), indicating an inhibitory effect on TGF-β1-induced EMT in A549 cells. TGF-β1-induced Smad3 phosphorylation was also significantly reduced by sesamin in both cultured fibroblast and A549 cells. In the airway fibrosis induced by OVA in mice, sesamin inhibited the accumulation of α-SMA-positive cells and expression of collagen I in the airway. Histological studies revealed that sesamin protected against subepithelial fibrosis by reducing myofibroblast activation and collagen accumulation in the ECM. OVA-induced thickening of basement membrane was significantly alleviated in animals receiving sesamin treatments. These results suggest a therapeutic potential of sesamin as an antifibrotic agent.

  7. Toward surface quantification of liver fibrosis progression

    Science.gov (United States)

    He, Yuting; Kang, Chiang Huen; Xu, Shuoyu; Tuo, Xiaoye; Trasti, Scott; Tai, Dean C. S.; Raja, Anju Mythreyi; Peng, Qiwen; So, Peter T. C.; Rajapakse, Jagath C.; Welsch, Roy; Yu, Hanry

    2010-09-01

    Monitoring liver fibrosis progression by liver biopsy is important for certain treatment decisions, but repeated biopsy is invasive. We envision redefinition or elimination of liver biopsy with surface scanning of the liver with minimally invasive optical methods. This would be possible only if the information contained on or near liver surfaces accurately reflects the liver fibrosis progression in the liver interior. In our study, we acquired the second-harmonic generation and two-photon excitation fluorescence microscopy images of liver tissues from bile duct-ligated rat model of liver fibrosis. We extracted morphology-based features, such as total collagen, collagen in bile duct areas, bile duct proliferation, and areas occupied by remnant hepatocytes, and defined the capsule and subcapsular regions on the liver surface based on image analysis of features. We discovered a strong correlation between the liver fibrosis progression on the anterior surface and interior in both liver lobes, where biopsy is typically obtained. The posterior surface exhibits less correlation with the rest of the liver. Therefore, scanning the anterior liver surface would obtain similar information to that obtained from biopsy for monitoring liver fibrosis progression.

  8. Regulation and Functional Significance of Airway Surface Liquid pH

    Directory of Open Access Journals (Sweden)

    Coakley RD

    2001-07-01

    Full Text Available In gastrointestinal tissues, cumulative evidence from both in vivo and in vitro studies suggests a role for the cystic fibrosis transmembrane conductance regulator (CFTR in apical epithelial bicarbonate conductance. Abnormal lumenal acidification is thus hypothesized to play a role in the genesis of cystic fibrosis (CF pancreatic disease. However, consensus regarding CFTR's participation in pH regulation of airway surface liquid (ASL and thus the contribution of ASL pH to the etiology of CF lung disease, is lacking. The absence of data reflects difficulties in both sampling ASL in vivo and modeling ASL biology in vitro. Here we evaluate the evidence in support of a lumenal acidification hypothesis in the CF lung, summarize current knowledge of pH regulation in the normal airway and illustrate how hyper-acidified airway secretions could contribute to the pathogenesis of CF lung disease.

  9. Airway clearance techniques used by people with cystic fibrosis in the UK.

    Science.gov (United States)

    Hoo, Z H; Daniels, T; Wildman, M J; Teare, M D; Bradley, J M

    2015-12-01

    To describe the current use of airway clearance techniques among people with cystic fibrosis (CF) in the UK, and the baseline characteristics for users of different airway clearance techniques. Analysis of the UK CF Registry 2011 data. All people with CF in the UK aged ≥11 years (n=6372). Of the 6372 people on the UK CF registry in 2011, 89% used airway clearance techniques. The most commonly used primary techniques were forced expiratory techniques (28%) and oscillating positive expiratory pressure (PEP) (23%). Postural drainage and high-frequency chest wall oscillation were used by 4% and 1% of people with CF, respectively. The male:female ratio of individuals who used exercise as their primary airway clearance technique was 2:1, compared with 1:1 for other techniques. Individuals with more severe lung disease tended to use devices such as non-invasive ventilation or high-frequency chest wall oscillation. Forced expiratory techniques and oscillating PEP are the most common airway clearance techniques used by people with CF in the UK, and postural drainage and high-frequency chest wall oscillation are the least common techniques. This is significant in terms of planning airway clearance technique trials, where postural drainage has been used traditionally as the comparator. The use of airway clearance techniques varies between countries, but the reasons for these differences are unknown. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. Small Airways Disease in Cystic Fibrosis: Improving efficacy of treatment

    NARCIS (Netherlands)

    A.C. Bos (Aukje)

    2016-01-01

    markdownabstractCystic fibrosis (CF) is a severe hereditary and life-threatening disease in the Caucasian population, affecting 70,000 patients worldwide. In the 1950s, a child with CF would rarely live long enough to attend elementary school. Luckily, life expectancy has dramatically improved

  11. Modular microfluidic system as a model of cystic fibrosis airways

    DEFF Research Database (Denmark)

    Skolimowski, Maciej; Weiss Nielsen, Martin; Abeille, Fabien

    2012-01-01

    pumps, bubble traps, gas exchange chip, and cell culture chambers. We have successfully applied this system for studying the antibiotic therapy of Pseudomonas aeruginosa, the bacteria mainly responsible for morbidity and mortality in cystic fibrosis, in different oxygen environments. Furthermore, we...

  12. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients.

    Science.gov (United States)

    Cox, Michael J; Allgaier, Martin; Taylor, Byron; Baek, Marshall S; Huang, Yvonne J; Daly, Rebecca A; Karaoz, Ulas; Andersen, Gary L; Brown, Ronald; Fujimura, Kei E; Wu, Brian; Tran, Diem; Koff, Jonathan; Kleinhenz, Mary Ellen; Nielson, Dennis; Brodie, Eoin L; Lynch, Susan V

    2010-06-23

    Bacterial communities in the airways of cystic fibrosis (CF) patients are, as in other ecological niches, influenced by autogenic and allogenic factors. However, our understanding of microbial colonization in younger versus older CF airways and the association with pulmonary function is rudimentary at best. Using a phylogenetic microarray, we examine the airway microbiota in age stratified CF patients ranging from neonates (9 months) to adults (72 years). From a cohort of clinically stable patients, we demonstrate that older CF patients who exhibit poorer pulmonary function possess more uneven, phylogenetically-clustered airway communities, compared to younger patients. Using longitudinal samples collected form a subset of these patients a pattern of initial bacterial community diversification was observed in younger patients compared with a progressive loss of diversity over time in older patients. We describe in detail the distinct bacterial community profiles associated with young and old CF patients with a particular focus on the differences between respective "early" and "late" colonizing organisms. Finally we assess the influence of Cystic Fibrosis Transmembrane Regulator (CFTR) mutation on bacterial abundance and identify genotype-specific communities involving members of the Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and Enterobacteriaceae amongst others. Data presented here provides insights into the CF airway microbiota, including initial diversification events in younger patients and establishment of specialized communities of pathogens associated with poor pulmonary function in older patient populations.

  13. Airway microbiota and pathogen abundance in age-stratified cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Michael J Cox

    Full Text Available Bacterial communities in the airways of cystic fibrosis (CF patients are, as in other ecological niches, influenced by autogenic and allogenic factors. However, our understanding of microbial colonization in younger versus older CF airways and the association with pulmonary function is rudimentary at best. Using a phylogenetic microarray, we examine the airway microbiota in age stratified CF patients ranging from neonates (9 months to adults (72 years. From a cohort of clinically stable patients, we demonstrate that older CF patients who exhibit poorer pulmonary function possess more uneven, phylogenetically-clustered airway communities, compared to younger patients. Using longitudinal samples collected form a subset of these patients a pattern of initial bacterial community diversification was observed in younger patients compared with a progressive loss of diversity over time in older patients. We describe in detail the distinct bacterial community profiles associated with young and old CF patients with a particular focus on the differences between respective "early" and "late" colonizing organisms. Finally we assess the influence of Cystic Fibrosis Transmembrane Regulator (CFTR mutation on bacterial abundance and identify genotype-specific communities involving members of the Pseudomonadaceae, Xanthomonadaceae, Moraxellaceae and Enterobacteriaceae amongst others. Data presented here provides insights into the CF airway microbiota, including initial diversification events in younger patients and establishment of specialized communities of pathogens associated with poor pulmonary function in older patient populations.

  14. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective

    DEFF Research Database (Denmark)

    Folkesson, Anders; Jelsbak, Lars; Yang, Lei;

    2012-01-01

    The airways of patients with cystic fibrosis (CF) are nearly always infected with many different microorganisms. This environment offers warm, humid and nutrient-rich conditions, but is also stressful owing to frequent antibiotic therapy and the host immune response. Pseudomonas aeruginosa...... evolves from a state of early, recurrent intermittent colonization of the airways of patients with CF to a chronic infection state, and how this process offers opportunities to study bacterial evolution in natural environments. We believe that such studies are valuable not only for our understanding...... of bacterial evolution but also for the future development of new therapeutic strategies to treat severe chronic infections....

  15. Modifications of Pseudomonas aeruginosa cell envelope in the cystic fibrosis airway alters interactions with immune cells.

    Science.gov (United States)

    Hill, Preston J; Scordo, Julia M; Arcos, Jesús; Kirkby, Stephen E; Wewers, Mark D; Wozniak, Daniel J; Torrelles, Jordi B

    2017-07-06

    Pseudomonas aeruginosa is a ubiquitous environmental organism and an opportunistic pathogen that causes chronic lung infections in the airways of cystic fibrosis (CF) patients as well as other immune-compromised individuals. During infection, P. aeruginosa enters the terminal bronchioles and alveoli and comes into contact with alveolar lining fluid (ALF), which contains homeostatic and antimicrobial hydrolytic activities, termed hydrolases. These hydrolases comprise an array of lipases, glycosidases, and proteases and thus, they have the potential to modify lipids, carbohydrates and proteins on the surface of invading microbes. Here we show that hydrolase levels between human ALF from healthy and CF patients differ. CF-ALF influences the P. aeruginosa cell wall by reducing the content of one of its major polysaccharides, Psl. This CF-ALF induced Psl reduction does not alter initial bacterial attachment to surfaces but reduces biofilm formation. Importantly, exposure of P. aeruginosa to CF-ALF drives the activation of neutrophils and triggers their oxidative response; thus, defining human CF-ALF as a new innate defense mechanism to control P. aeruginosa infection, but at the same time potentially adding to the chronic inflammatory state of the lung in CF patients.

  16. The involvement of glycosaminoglycans in airway disease associated with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-02-01

    Individuals with cystic fibrosis (CF) present with severe airway destruction and extensive bronchiectasis. It has been assumed that these structural airway changes have occurred secondary to infection and inflammation, but recent studies suggest that glycosaminoglycan (GAG) remodelling may be an important independent parallel process. Evidence is accumulating that not only the concentration, but also sulphation of GAGs is markedly increased in CF bronchial cells and tissues. Increased expression of GAGs and, in particular, heparan sulphate, has been linked to a sustained inflammatory response and neutrophil recruitment to the CF airways. This present review discusses the biological role of GAGs in the lung, as well as their involvement in CF respiratory disease, and their potential as therapeutic targets.

  17. Cyanide levels found in infected cystic fibrosis sputum inhibit airway ciliary function.

    Science.gov (United States)

    Nair, Chandrika; Shoemark, Amelia; Chan, Mario; Ollosson, Sarah; Dixon, Mellissa; Hogg, Claire; Alton, Eric W F W; Davies, Jane C; Williams, Huw D

    2014-11-01

    We have previously reported cyanide at concentrations of up to 150 μM in the sputum of cystic fibrosis patients infected with Pseudomonas aeruginosa and a negative correlation with lung function. Our aim was to investigate possible mechanisms for this association, focusing on the effect of pathophysiologically relevant cyanide levels on human respiratory cell function. Ciliary beat frequency measurements were performed on nasal brushings and nasal air-liquid interface (ALI) cultures obtained from healthy volunteers and cystic fibrosis patients. Potassium cyanide decreased ciliary beat frequency in healthy nasal brushings (n = 6) after 60 min (150 μM: 47% fall, pcyanide as a key component inhibiting the ciliary beat frequency. If cyanide production similarly impairs mucocilliary clearance in vivo, it could explain the link with increased disease severity observed in cystic fibrosis patients with detectable cyanide in their airway. ©ERS 2014.

  18. Reliability of quantitative real-time PCR for bacterial detection in cystic fibrosis airway specimens.

    Directory of Open Access Journals (Sweden)

    Edith T Zemanick

    Full Text Available The cystic fibrosis (CF airway microbiome is complex; polymicrobial infections are common, and the presence of fastidious bacteria including anaerobes make culture-based diagnosis challenging. Quantitative real-time PCR (qPCR offers a culture-independent method for bacterial quantification that may improve diagnosis of CF airway infections; however, the reliability of qPCR applied to CF airway specimens is unknown. We sought to determine the reliability of nine specific bacterial qPCR assays (total bacteria, three typical CF pathogens, and five anaerobes applied to CF airway specimens. Airway and salivary specimens from clinically stable pediatric CF subjects were collected. Quantitative PCR assay repeatability was determined using triplicate reactions. Split-sample measurements were performed to measure variability introduced by DNA extraction. Results from qPCR were compared to standard microbial culture for Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, common pathogens in CF. We obtained 84 sputa, 47 oropharyngeal and 27 salivary specimens from 16 pediatric subjects with CF. Quantitative PCR detected bacterial DNA in over 97% of specimens. All qPCR assays were highly reproducible at quantities≥10(2 rRNA gene copies/reaction with coefficient of variation less than 20% for over 99% of samples. There was also excellent agreement between samples processed in duplicate. Anaerobic bacteria were highly prevalent and were detected in mean quantities similar to that of typical CF pathogens. Compared to a composite gold standard, qPCR and culture had variable sensitivities for detection of P. aeruginosa, S. aureus and H. influenzae from CF airway samples. By reliably quantifying fastidious airway bacteria, qPCR may improve our understanding of polymicrobial CF lung infections, progression of lung disease and ultimately improve antimicrobial treatments.

  19. Assessing Airway Microbiota in Cystic Fibrosis: What More Should Be Done?

    Science.gov (United States)

    LiPuma, John J

    2015-07-01

    The use of culture-independent methods has deepened our appreciation of the complexity of the bacterial communities that typically reside in the airways of persons with cystic fibrosis (CF). New insights into how changes in the structure of these communities relate to lung disease progression will likely raise expectations for more in-depth microbiologic analysis of CF respiratory specimens. An article in this issue of the Journal of Clinical Microbiology (W. G. Flight, A. Smith, C. Paisey, J. R. Marchesi, M. J. Bull, P. J. Norville, K. J. Mutton, A. K. Webb, R. J. Bright-Thomas, A. M. Jones, and E. Mahenthiralingam, J Clin Microbiol 53:2022-2029, 2015, http://dx.doi.org/10.1128/JCM.00432-15) describes the application of a culture-independent approach to the assessment of CF airway microbiota.

  20. Emerging relationship between CFTR, actin and tight junction organization in cystic fibrosis airway epithelium.

    Science.gov (United States)

    Castellani, Stefano; Favia, Maria; Guerra, Lorenzo; Carbone, Annalucia; Abbattiscianni, Anna Claudia; Di Gioia, Sante; Casavola, Valeria; Conese, Massimo

    2017-05-01

    Cystic fibrosis (CF), one of the most common genetic disorders affecting primarily Caucasians, is due to mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, encoding for a chloride channel also acting as regulator of other transmembrane proteins. In healthy subjects, CFTR is maintained in its correct apical plasma membrane location via the formation of a multiprotein complex in which scaffold proteins (such as NHERF1) and signaling molecules (such as cAMP and protein kinases) guarantee its correct functioning. In CF, a disorganized and dysfunctional airway epithelium brings an altered flux of ions and water into the lumen of bronchioles, consequent bacterial infections and an enormous influx of inflammatory cells (mainly polymorphonuclear neutrophils) into the airway lumen. Recent evidence in healthy airway cells supports the notion that CFTR protein/function is strictly correlated with the actin cytoskeleton and tight junctions status. In CF cells, the most frequent CFTR gene mutation, F508del, has been shown to be associated with a disorganized actin cytoskeleton and altered tight junction permeability. Thus, the correct localization of CFTR on the apical plasma membrane domain through the formation of the scaffolding and signaling complex is likely fundamental to determine a physiological airway epithelium. The correction of CFTR mutations by either gene or drug therapies, as well as by stem cell-based interventions, can determine the resumption of a physiological organization of actin stress fibers and TJ structure and barrier function, further indicating the close interrelationship among these processes.

  1. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  2. Trimethylangelicin promotes the functional rescue of mutant F508del CFTR protein in cystic fibrosis airway cells.

    Science.gov (United States)

    Favia, Maria; Mancini, Maria T; Bezzerri, Valentino; Guerra, Lorenzo; Laselva, Onofrio; Abbattiscianni, Anna C; Debellis, Lucantonio; Reshkin, Stephan J; Gambari, Roberto; Cabrini, Giulio; Casavola, Valeria

    2014-07-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) carrying the F508del mutation is retained in endoplasmic reticulum and fails to traffic to the cell surface where it functions as a protein kinase A (PKA)-activated chloride channel. Pharmacological correctors that rescue the trafficking of F508del CFTR may overcome this defect; however, the rescued F508del CFTR still displays reduced chloride permeability. Therefore, a combined administration of correctors and potentiators of the gating defect is ideal. We recently found that 4,6,4'-trimethylangelicin (TMA), besides inhibiting the expression of the IL-8 gene in airway cells in which the inflammatory response was challenged with Pseudomonas aeruginosa, also potentiates the cAMP/PKA-dependent activation of wild-type CFTR or F508del CFTR that has been restored to the plasma membrane. Here, we demonstrate that long preincubation with nanomolar concentrations of TMA is able to effectively rescue both F508del CFTR-dependent chloride secretion and F508del CFTR cell surface expression in both primary or secondary airway cell monolayers homozygous for F508del mutation. The correction effect of TMA seems to be selective for CFTR and persisted for 24 h after washout. Altogether, the results suggest that TMA, besides its anti-inflammatory and potentiator activities, also displays corrector properties.

  3. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells.

    Science.gov (United States)

    Varelogianni, Georgia; Hussain, Rashida; Strid, Hilja; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2013-11-01

    Ambroxol, a mucokinetic anti-inflammatory drug, has been used for treatment of cystic fibrosis (CF). The respiratory epithelium is covered by the airway surface liquid (ASL), the thickness and composition of which is determined by Cl(-) efflux via the cystic fibrosis transmembrane conductance regulator (CFTR) and Na(+) influx via the epithelial Na(+) channel (ENaC). In cells expressing wt-CFTR, ambroxol increased the Cl(-) conductance, but not the bicarbonate conductance of the CFTR channels. We investigated whether treatment with ambroxol enhances chloride transport and/or CFTR and ENaC expression in CF airway epithelial cells (CFBE) cells. CFBE cells were treated with 100 µM ambroxol for 2, 4 or 8 h. mRNA expression for CFTR and ENaC subunits was analysed by real-time polymerase chain reaction (RT-PCR); protein expression was measured by Western blot. The effect of ambroxol on Cl(-) transport was measured by Cl(-) efflux measurements with a fluorescent chloride probe. Ambroxol significantly stimulated Cl(-) efflux from CFBE cells (a sixfold increase after 8 h treatment), and enhanced the expression of the mRNA of CFTR and α-ENaC, and of the CFTR protein. No significant difference was observed in β-ENaC after exposure to ambroxol, whereas mRNA expression of γ-ENaC was reduced. No significant effects of ambroxol on the ENaC subunits were observed by Western blot. Ambroxol did not significantly affect the intracellular Ca(2+) concentration. Upregulation of CFTR and enhanced Cl(-) efflux after ambroxol treatment should promote transepithelial ion and water transport, which may improve hydration of the mucus, and therefore be beneficial to CF-patients.

  4. Arsenic promotes ubiquitinylation and lysosomal degradation of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels in human airway epithelial cells.

    Science.gov (United States)

    Bomberger, Jennifer M; Coutermarsh, Bonita A; Barnaby, Roxanna L; Stanton, Bruce A

    2012-05-18

    Arsenic exposure significantly increases respiratory bacterial infections and reduces the ability of the innate immune system to eliminate bacterial infections. Recently, we observed in the gill of killifish, an environmental model organism, that arsenic exposure induced the ubiquitinylation and degradation of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride channel that is essential for the mucociliary clearance of respiratory pathogens in humans. Accordingly, in this study, we tested the hypothesis that low dose arsenic exposure reduces the abundance and function of CFTR in human airway epithelial cells. Arsenic induced a time- and dose-dependent increase in multiubiquitinylated CFTR, which led to its lysosomal degradation, and a decrease in CFTR-mediated chloride secretion. Although arsenic had no effect on the abundance or activity of USP10, a deubiquitinylating enzyme, siRNA-mediated knockdown of c-Cbl, an E3 ubiquitin ligase, abolished the arsenic-stimulated degradation of CFTR. Arsenic enhanced the degradation of CFTR by increasing phosphorylated c-Cbl, which increased its interaction with CFTR, and subsequent ubiquitinylation of CFTR. Because epidemiological studies have shown that arsenic increases the incidence of respiratory infections, this study suggests that one potential mechanism of this effect involves arsenic-induced ubiquitinylation and degradation of CFTR, which decreases chloride secretion and airway surface liquid volume, effects that would be proposed to reduce mucociliary clearance of respiratory pathogens.

  5. Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function.

    Science.gov (United States)

    Paganin, Patrizia; Fiscarelli, Ersilia Vita; Tuccio, Vanessa; Chiancianesi, Manuela; Bacci, Giovanni; Morelli, Patrizia; Dolce, Daniela; Dalmastri, Claudia; De Alessandri, Alessandra; Lucidi, Vincenzina; Taccetti, Giovanni; Mengoni, Alessio; Bevivino, Annamaria

    2015-01-01

    Cystic fibrosis (CF) is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S) versus those with a substantial decline in lung function (SD). Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1). Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis revealed a higher bacterial diversity than that detected by culture-based methods. Molecular signatures with a statistically significant odds ratio for SD status were detected, and classified as Pseudomonas, Burkholderia and Shewanella, while for other Terminal Restriction Fragments (T-RFs) no species assignation was achieved. The analysis of T-RFLP data using ecological biodiversity indices showed reduced Evenness in SD patients compared to S ones, suggesting an impaired ecology of the bacterial community in SD patients. Statistically significant differences of the ecological biodiversity indices among the three sub-groups of FEV1 (normal/mild vs moderate vs severe) were also found, suggesting that the patients with moderate lung disease experienced changes in the airway assembly of taxa. Overall, changes in CF airway microbial community associated with a severe lung function decline were detected, allowing us to define some discriminatory species as well as some discriminatory T-RFs that represent good candidates for the

  6. Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function.

    Directory of Open Access Journals (Sweden)

    Patrizia Paganin

    Full Text Available Cystic fibrosis (CF is a genetic disease resulting in chronic polymicrobial infections of the airways and progressive decline in lung function. To gain insight into the underlying causes of severe lung diseases, we aimed at comparing the airway microbiota detected in sputum of CF patients with stable lung function (S versus those with a substantial decline in lung function (SD. Microbiota composition was investigated by using culture-based and culture-independent methods, and by performing multivariate and statistical analyses. Culture-based methods identified some microbial species associated with a worse lung function, i.e. Pseudomonas aeruginosa, Rothia mucilaginosa, Streptococcus pneumoniae and Candida albicans, but only the presence of S. pneumoniae and R. mucilaginosa was found to be associated with increased severe decline in forced expiratory volume in 1 second (FEV1. Terminal-Restriction Fragment Length Polymorphism (T-RFLP analysis revealed a higher bacterial diversity than that detected by culture-based methods. Molecular signatures with a statistically significant odds ratio for SD status were detected, and classified as Pseudomonas, Burkholderia and Shewanella, while for other Terminal Restriction Fragments (T-RFs no species assignation was achieved. The analysis of T-RFLP data using ecological biodiversity indices showed reduced Evenness in SD patients compared to S ones, suggesting an impaired ecology of the bacterial community in SD patients. Statistically significant differences of the ecological biodiversity indices among the three sub-groups of FEV1 (normal/mild vs moderate vs severe were also found, suggesting that the patients with moderate lung disease experienced changes in the airway assembly of taxa. Overall, changes in CF airway microbial community associated with a severe lung function decline were detected, allowing us to define some discriminatory species as well as some discriminatory T-RFs that represent good

  7. Surface Airways Observations (SAO) Hourly Data 1928-1948 (CDMP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of hourly U.S. surface airways observations (SAO). These observations extend as far back as 1928, from the time when commercial aviation began...

  8. Dysregulation of TIM-3-galectin-9 pathway in the cystic fibrosis airways.

    LENUS (Irish Health Repository)

    Vega-Carrascal, Isabel

    2012-02-01

    The T-cell Ig and mucin domain-containing molecules (TIMs) have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. It has been reported that proinflammatory cytokine dysregulation and neutrophil-dominated inflammation are the main causes of morbidity in cystic fibrosis (CF). However, the role of TIM receptors in CF has not been investigated. In this study, we demonstrated that TIM-3 is constitutively overexpressed in the human CF airway, suggesting a link between CF transmembrane conductance regulator (CFTR) function and TIM-3 expression. Blockade of CFTR function with the CFTR inhibitor-172 induced an upregulation of TIM-3 and its ligand galectin-9 in normal bronchial epithelial cells. We also established that TIM-3 serves as a functional receptor in bronchial epithelial cells, and physiologically relevant concentrations of galectin-9 induced TIM-3 phosphorylation, resulting in increased IL-8 production. In addition, we have demonstrated that both TIM-3 and galectin-9 undergo rapid proteolytic degradation in the CF lung, primarily because of neutrophil elastase and proteinase-3 activity. Our results suggest a novel intrinsic defect that may contribute to the neutrophil-dominated immune response in the CF airways.

  9. Beyond postural drainage and percussion: Airway clearance in people with cystic fibrosis.

    Science.gov (United States)

    Pryor, J A; Tannenbaum, E; Scott, S F; Burgess, J; Cramer, D; Gyi, K; Hodson, M E

    2010-05-01

    Evidence indicates that there are no statistically significant differences in effectiveness among the airway clearance techniques (ACTs) of active cycle of breathing, autogenic drainage, positive expiratory pressure (PEP) or oscillating PEP in the short-term, but are there differences in the long-term (one year)? The objective of the study was to demonstrate non-inferiority in the long-term. Seventy-five people with cystic fibrosis entered the prospective, randomised controlled trial of these five different ACTs. The primary outcome measure was forced expiratory volume in one second (FEV(1)). Secondary outcome measures included exercise capacity and health related quality of life. Using intention to treat, data were available on 65 subjects at the end of the study period. There were no statistically significant differences among the regimens in the primary outcome measurement of FEV(1) (p=0.35). In different countries either one or several airway clearance regimens are used. This study provides evidence in support of current practices.

  10. Dysregulation of TIM-3-galectin-9 pathway in the cystic fibrosis airways.

    LENUS (Irish Health Repository)

    Vega-Carrascal, Isabel

    2011-03-01

    The T-cell Ig and mucin domain-containing molecules (TIMs) have emerged as promising therapeutic targets to correct abnormal immune function in several autoimmune and chronic inflammatory conditions. It has been reported that proinflammatory cytokine dysregulation and neutrophil-dominated inflammation are the main causes of morbidity in cystic fibrosis (CF). However, the role of TIM receptors in CF has not been investigated. In this study, we demonstrated that TIM-3 is constitutively overexpressed in the human CF airway, suggesting a link between CF transmembrane conductance regulator (CFTR) function and TIM-3 expression. Blockade of CFTR function with the CFTR inhibitor-172 induced an upregulation of TIM-3 and its ligand galectin-9 in normal bronchial epithelial cells. We also established that TIM-3 serves as a functional receptor in bronchial epithelial cells, and physiologically relevant concentrations of galectin-9 induced TIM-3 phosphorylation, resulting in increased IL-8 production. In addition, we have demonstrated that both TIM-3 and galectin-9 undergo rapid proteolytic degradation in the CF lung, primarily because of neutrophil elastase and proteinase-3 activity. Our results suggest a novel intrinsic defect that may contribute to the neutrophil-dominated immune response in the CF airways.

  11. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Poghosyan, Anna, E-mail: pannagos@yahoo.com; Patel, Jamie K.; Clifford, Rachel L.; Knox, Alan J., E-mail: alan.knox@nottingham.ac.uk

    2016-08-05

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.

  12. Macrolide and clindamycin resistance in Streptococcus milleri group isolates from the airways of cystic fibrosis patients.

    Science.gov (United States)

    Grinwis, Margot E; Sibley, Christopher D; Parkins, Michael D; Eshaghurshan, Christina S; Rabin, Harvey R; Surette, Michael G

    2010-07-01

    Organisms belonging to the Streptococcus milleri group (SMG) are known for their role in pyogenic infections but have recently been implicated as etiological agents of pulmonary exacerbation in adult patients with cystic fibrosis (CF). The prolonged exposure of CF patients to antibiotics prompted us to investigate the susceptibility profiles of 118 SMG isolates from the airways of CF patients to 12 antibiotics compared to 43 SMG isolates from patients with invasive infections. We found that approximately 60% of all isolates failed to grow using the standard medium for disc diffusion, Mueller-Hinton blood agar (MHBA), so we explored the usefulness of brain heart infusion (BHI) agar for susceptibility testing. Zone-of-inhibition comparisons between BHI and MHBA showed strong correlations for six antibiotics, and interpretations were similar for both medium types. For ceftriaxone and cefepime, both groups of isolates were highly susceptible. Tetracycline resistance levels were comparable between the two groups (22% in CF isolates and 17.4% in invasive isolates). However, more than half of the CF isolates were not susceptible to azithromycin, erythromycin, and clindamycin, compared to 11%, 13%, and 6.5% of invasive isolates, respectively. There were 5-fold and 8-fold increased risks of azithromycin and clindamycin resistance, respectively, for the isolates from the airways of CF patients relative to the invasive isolates. Macrolide resistance was strongly linked to chronic azithromycin therapy in CF patients. This study shows that BHI agar is a suitable alternative for antimicrobial susceptibility testing for the SMG and that SMG isolates from the airways of CF patients are more resistant to macrolides and clindamycin than strains isolated from patients with invasive infections.

  13. Airway surface liquid contains endogenous DNase activity which can be activated by exogenous magnesium

    Directory of Open Access Journals (Sweden)

    Rosenecker J

    2009-07-01

    Full Text Available Abstract Introduction The removal of highly viscous mucus from the airways is an important task in the treatment of chronic lung disease like in cystic fibrosis. The inhalation of recombinant human DNase-I (rhDNase-I is used to facilitate the removal of tenacious airway secretions in different lung diseases and especially in CF. Little is known about endogenous DNase activity in the airway surface liquid. Therefore, we analysed bronchoalveolar lavage fluid (BAL and exhaled breath condensate (EBC for the presence of endogenous DNase activity. Methods The degradation of plasmid DNA by BAL from patients who had diagnostic bronchoscopy and bronchoalveolar lavage was analyzed. In a group of CF patients and healthy control volunteers the exhaled breath condensate was obtained and also analyzed for the ability to degrade plasmid DNA. In addition, the ability of magnesium to activate endogenous DNase activity in BAL and exhaled breath condensate was investigated. Results The analyzed BAL samples degraded plasmid DNA only after preincubation with magnesium. When analyzing the exhaled breath condensate the samples obtained from the healthy volunteers showed no DNase activity even after preincubation with magnesium, whereas in one of the two samples obtained from CF patients we found a DNase activity after preincubation with magnesium. Conclusion Increasing the magnesium concentration in the airway surface liquid by aerosolisation of magnesium solutions or oral magnesium supplements could improve the removal of highly viscous mucus in chronic lung disease by activating endogenous DNase activity.

  14. Positive expiratory pressure physiotherapy for airway clearance in people with cystic fibrosis.

    Science.gov (United States)

    McIlwaine, Maggie; Button, Brenda; Dwan, Kerry

    2015-06-17

    Chest physiotherapy is widely prescribed to assist the clearance of airway secretions in people with cystic fibrosis. Positive expiratory pressure (PEP) devices provide back pressure to the airways during expiration. This may improve clearance by building up gas behind mucus via collateral ventilation and by temporarily increasing functional residual capacity. Given the widespread use of PEP devices, there is a need to determine the evidence for their effect. This is an update of a previously published review. To determine the effectiveness and acceptability of PEP devices compared to other forms of physiotherapy as a means of improving mucus clearance and other outcomes in people with cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising of references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings. The electronic database CINAHL was also searched from 1982 to 2013.Most recent search of the Group's Cystic Fibrosis Trial Register: 02 December 2014. Randomised controlled studies in which PEP was compared with any other form of physiotherapy in people with cystic fibrosis. This included, postural drainage and percussion, active cycle of breathing techniques, oscillating PEP devices, thoracic oscillating devices, bilevel positive airway pressure (BiPaP) and exercise. Studies also had to include one or more of the following outcomes: change in forced expiratory volume in one second; number of respiratory exacerbations; a direct measure of mucus clearance; weight of expectorated secretions; other pulmonary function parameters; a measure of exercise tolerance; ventilation scans; cost of intervention; and adherence to treatment. Three authors independently applied the inclusion and exclusion criteria to publications and assessed the risk of bias of the included studies. A total of 26 studies (involving 733 participants

  15. Airway subepithelial fibrosis in a murine model of atopic asthma: suppression by dexamethasone or anti-interleukin-5 antibody.

    Science.gov (United States)

    Blyth, D I; Wharton, T F; Pedrick, M S; Savage, T J; Sanjar, S

    2000-08-01

    Fibrosis in the reticular layer beneath the epithelial basement membrane is a feature of airway remodeling in human asthma. We previously reported the presence of subepithelial fibrosis (SEF) in a disease model of atopic asthma in which mice were sensitized and intratracheally challenged with ovalbumin (OVA) (Blyth and colleagues, Am. J. Respir. Cell Mol. Biol. 1996;14:425-438). Here, we describe further studies to quantify the degree of SEF after its induction by repeated exposure of the airways to allergen. The amount of subepithelial reticulin in the airways of animals challenged three times with 80 microg OVA was typically increased 1. 4-fold. The increased amount of reticulin showed no reduction after a 50-d period after the third allergen challenge. A reduction in SEF was achieved by daily treatment with dexamethasone (DEX) for 8 d during the allergen challenge period, or by treatment with anti-interleukin-5 antibody (TRFK5) at the time of allergen challenge. Postchallenge treatment with DEX for 15 d resulted in significant resolution of previously established SEF. Severe nonallergic inflammation during repeated exposure of airways to lipopolysaccharide did not induce SEF. The results indicate that development of SEF is associated with eosinophil infiltration into airways, and may occur only when the inflammatory stimulus is allergic in nature.

  16. Sialic acid-to-urea ratio as a measure of airway surface hydration.

    Science.gov (United States)

    Esther, Charles R; Hill, David B; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A; Doerschuk, Claire M; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M; Boucher, Richard C

    2017-03-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r(2) = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized.

  17. Effect of Low-Dose, Long-Term Roxithromycin on Airway Inflammation and Remodeling of Stable Noncystic Fibrosis Bronchiectasis

    Directory of Open Access Journals (Sweden)

    Jifeng Liu

    2014-01-01

    Full Text Available Background. Noncystic fibrosis bronchiectasis (NCFB is characterized by airway expansion and recurrent acute exacerbations. Macrolide has been shown to exhibit anti-inflammatory effects in some chronic airway diseases. Objective. To assess the efficacy of roxithromycin on airway inflammation and remodeling in patients with NCFB under steady state. Methods. The study involved an open-label design in 52 eligible Chinese patients with NCFB, who were assigned to control (receiving no treatment and roxithromycin (receiving 150 mg/day for 6 months groups. At baseline and 6 months, the inflammatory markers such as interleukin- (IL-8, neutrophil elastase (NE, matrix metalloproteinase- (MMP9, hyaluronidase (HA, and type IV collagen in sputum were measured, along with the detection of dilated bronchus by throat computed tomography scan, and assessed the exacerbation. Results. Forty-three patients completed the study. The neutrophil in the sputum was decreased in roxithromycin group compared with control (P<0.05. IL-8, NE, MMP-9, HA, and type IV collagen in sputum were also decreased in roxithromycin group compared with the control group (all P<0.01. Airway thickness of dilated bronchus and exacerbation were reduced in roxithromycin group compared with the control (all P<0.05. Conclusions. Roxithromycin can reduce airway inflammation and airway thickness of dilated bronchus in patients with NCFB.

  18. Molecular Identification of Staphylococcus aureus in Airway Samples from Children with Cystic Fibrosis.

    Directory of Open Access Journals (Sweden)

    Emily J Johnson

    Full Text Available Staphylococcus aureus is a common and significant pathogen in cystic fibrosis. We sought to determine if quantitative PCR (qPCR and 16S rRNA gene sequencing could provide a rapid, culture-independent approach to the identification of S. aureus airway infections.We examined the sensitivity and specificity of two qPCR assays, targeting the femA and 16S rRNA gene, using culture as the gold standard. In addition, 16S rRNA gene sequencing to identify S. aureus directly from airway samples was evaluated. DNA extraction was performed with and without prior enzymatic digestion.87 samples [42 oropharyngeal (OP and 45 expectorated sputum (ES] were analyzed. 59 samples (68% cultured positive for S. aureus. Using standard extraction techniques, sequencing had the highest sensitivity for S. aureus detection (85%, followed by FemA qPCR (52% and 16SrRNA qPCR (34%. For all assays, sensitivity was higher from ES samples compared to OP swabs. Specificity of the qPCR assays was 100%, but 21.4% for sequencing due to detection of S. aureus in low relative abundance from culture negative samples. Enzymatic digestion increased the sensitivity of qPCR assays, particularly for OP swabs.Sequencing had a high sensitivity for S. aureus, but low specificity. While femA qPCR had higher sensitivity than 16S qPCR for detection of S. aureus, neither assay was as sensitive as sequencing. The significance of S. aureus detection with low relative abundance by sequencing in culture-negative specimens is not clear.

  19. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients

    DEFF Research Database (Denmark)

    D'Argenio, D.A.; Wu, M.H.; Hoffman, L.R.

    2007-01-01

    The opportunistic pathogen Pseudomonas aeruginosa undergoes genetic change during chronic airway infection of cystic fibrosis (CF) patients. One common change is a mutation inactivating lasR, which encodes a transcriptional regulator that responds to a homoserine lactone signal to activate expres......-lactam antibiotic. Loss of LasR function may represent a marker of an early stage in chronic infection of the CF airway with clinical implications for antibiotic resistance and disease progression....... contribute to selection of lasR mutants both on rich medium and within the CF airway, supporting a key role for bacterial metabolic adaptation during chronic infection. Inactivation of lasR also resulted in increased beta-lactamase activity that increased tolerance to ceftazidime, a widely used beta...

  20. Adult non-cystic fibrosis bronchiectasis is characterised by airway luminal Th17 pathway activation.

    Directory of Open Access Journals (Sweden)

    Alice C-H Chen

    Full Text Available Non-cystic fibrosis (CF bronchiectasis is characterised by chronic airway infection and neutrophilic inflammation, which we hypothesised would be associated with Th17 pathway activation.Th17 pathway cytokines were quantified in bronchoalveolar lavage fluid (BALF, and gene expression of IL-17A, IL-1β, IL-8 and IL-23 determined from endobronchial biopsies (EBx in 41 stable bronchiectasis subjects and 20 healthy controls. Relationships between IL-17A levels and infection status, important clinical measures and subsequent Pseudomonas aeruginosa infection were determined.BALF levels of all Th17 cytokines (median (IQR pg/mL were significantly higher in bronchiectasis than control subjects, including IL-17A (1.73 (1.19, 3.23 vs. 0.27 (0.24, 0.35, 95% CI 1.05 to 2.21, p<0.0001 and IL-23 (9.48 (4.79, 15.75 vs. 0.70 (0.43, 1.79, 95% CI 4.68 to 11.21, p<0.0001. However, BALF IL-17A levels were not associated with clinical measures or airway microbiology, nor predictive of subsequent P. aeruginosa infection. Furthermore, gene expression of IL-17A in bronchiectasis EBx did not differ from control. In contrast, gene expression (relative to medians of controls in bronchiectasis EBx was significantly higher than control for IL1β (4.12 (1.24, 8.05 vs 1 (0.13, 2.95, 95% CI 0.05 to 4.07, p = 0.04 and IL-8 (3.75 (1.64, 11.27 vs 1 (0.54, 3.89, 95% CI 0.32 to 4.87, p = 0.02 and BALF IL-8 and IL-1α levels showed significant relationships with clinical measures and airway microbiology. P. aeruginosa infection was associated with increased levels of IL-8 while Haemophilus influenzae was associated with increased IL-1α.Established adult non-CF bronchiectasis is characterised by luminal Th17 pathway activation, however this pathway may be relatively less important than activation of non-antigen-specific innate neutrophilic immunity.

  1. Model of mucociliary clearance in cystic fibrosis lungs

    NARCIS (Netherlands)

    P. Kurbatova (Polina); N. Bessonov; V. Volpert; H.A.W.M. Tiddens (Harm); C. Cornu (Catherine); P. Nony; D. Caudri (Daan)

    2015-01-01

    textabstractMucus clearance is a primary innate defense mechanism in the human airways. Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CF is characterized by dehydration of airway surface

  2. In situ measurement of airway surface liquid [K+] using a ratioable K+-sensitive fluorescent dye.

    Science.gov (United States)

    Namkung, Wan; Song, Yuanlin; Mills, Aaron D; Padmawar, Prashant; Finkbeiner, Walter E; Verkman, A S

    2009-06-05

    The airway surface liquid (ASL) is the thin fluid layer lining airway surface epithelial cells, whose volume and composition are tightly regulated and may be abnormal in cystic fibrosis (CF). We synthesized a two-color fluorescent dextran to measure ASL [K(+)], TAC-Lime-dextran-TMR, consisting of a green-fluorescing triazacryptand K(+) ionophore-Bodipy conjugate, coupled to dextran, together with a red fluorescing tetramethylrhodamine reference chromophore. TAC-Lime-dextran-TMR fluorescence was K(+)-selective, increasing >4-fold with increasing [K(+)] from 0 to 40 mm. In well differentiated human airway epithelial cells, ASL [K(+)] was 20.8 +/- 0.3 mm and decreased by inhibition of the Na(+)/K(+) pump (ouabain), ENaC (amiloride), CF transmembrane conductance regulator (CFTR(inh)-172), or K(+) channels (TEA or XE991). ASL [K(+)] was increased by forskolin but not affected by Na(+)/K(+)/2Cl(-) cotransporter inhibition (bumetanide). Functional and expression studies indicated the involvement of [K(+)] channels KCNQ1, KCNQ3, and KCNQ5 as determinants of ASL [K(+)]. [K(+)] in CF cultures was similar to that in non-CF cultures, suggesting that abnormal ASL [K(+)] is not a factor in CF lung disease. In intact airways, ASL [K(+)] was also well above extracellular [K(+)]: 22 +/- 1 mm in pig trachea ex vivo and 16 +/- 1 mm in mouse trachea in vivo. Our results provide the first noninvasive measurements of [K(+)] in the ASL and indicate the involvement of apical and basolateral membrane ion transporters in maintaining a high ASL [K(+)].

  3. Short-term comparative study of high frequency chest wall oscillation and European airway clearance techniques in patients with cystic fibrosis

    OpenAIRE

    Osman, Leyla P; Roughton, Michael; Hodson, Margaret E; Pryor, Jennifer A

    2009-01-01

    Background High frequency chest wall oscillation (HFCWO) is standard treatment for airway clearance in the USA and has recently been introduced in the UK and Europe. There is little published research comparing HFCWO with airway clearance techniques (ACTs) frequently used in the UK and Europe. The aim of this study was to compare the short-term effects of HFCWO with usual ACTs in patients with cystic fibrosis hospitalised with an infective pulmonary exacerbation. Methods A 4-day randomised cr...

  4. Eltgol Acutelly Improves Airway Clearance and Reduces Static Pulmonary Volumes in Adult Cystic Fibrosis Patients

    National Research Council Canada - National Science Library

    Guimarães, Fernando Silva; Lopes, Agnaldo José; Moço, Vanessa Joaquim Ribeiro; Cavalcanti de Souza, Felipe; Silveira de Menezes, Sara Lúcia

    2014-01-01

    [Purpose] Chest physical therapy techniques are essential in order to reduce the frequency of recurrent pulmonary infections that progressively affect lung function in cystic fibrosis patients. Recently, ELTGOL...

  5. Simulation of the Cystic Fibrosis patient airway habitats using microfluidic devices

    DEFF Research Database (Denmark)

    Skolimowski, Maciej

    2013-01-01

    , and their growth is then monitored using confocal microscopy. However, this is not either a suitable CF model as the human airways are subdivided into aerobic and anaerobic compartments. To investigate the different compartments of the human airways system it is crucial importance to construct a microfluidic model...

  6. Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model.

    Science.gov (United States)

    Bazett, Mark; Bergeron, Marie-Eve; Haston, Christina K

    2016-01-12

    Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftr(tm1UNC) mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftr(tm1UNC) mice and altered the intestinal microbiome similarly in Cftr(tm1UNC) and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftr(tm1UNC) mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftr(tm1UNC) and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8 + IL-17+ and CD8 + IFNγ+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing γδ T cells was decreased in streptomycin treated Cftr(tm1UNC) mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftr(tm1UNC) mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftr(tm1UNC) mice.

  7. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  8. Defective activation of c-Src in cystic fibrosis airway epithelial cells results in loss of tumor necrosis factor-alpha-induced gap junction regulation

    NARCIS (Netherlands)

    Huang, Song; Dudez, Tecla; Scerri, Isabelle; Thomas, Marc A; Giepmans, Ben N G; Suter, Susanne; Chanson, Marc

    2003-01-01

    Tumor necrosis factor-alpha (TNF-alpha) signaling is central to the transmission of the innate immune response and subsequent activation of the adaptive immune system. The functioning of both systems is required for optimal clearance of pathogens from the airways. In cystic fibrosis (CF),

  9. Defective activation of c-Src in cystic fibrosis airway epithelial cells results in loss of tumor necrosis factor-alpha-induced gap junction regulation

    NARCIS (Netherlands)

    Huang, Song; Dudez, Tecla; Scerri, Isabelle; Thomas, Marc A; Giepmans, Ben N G; Suter, Susanne; Chanson, Marc

    2003-01-01

    Tumor necrosis factor-alpha (TNF-alpha) signaling is central to the transmission of the innate immune response and subsequent activation of the adaptive immune system. The functioning of both systems is required for optimal clearance of pathogens from the airways. In cystic fibrosis (CF), dysfunctio

  10. Dynamic in vivo mutations within the ica operon during persistence of Staphylococcus aureus in the airways of cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Bianca Schwartbeck

    2016-11-01

    Full Text Available Cystic fibrosis (CF is associated with chronic bacterial airway infections leading to lung insufficiency and decreased life expectancy. Staphylococcus aureus is one of the most prevalent pathogens isolated from the airways of CF patients. Mucoid colony morphology has been described for Pseudomonas aeruginosa, the most common pathogen in CF, but not for S. aureus. From the airways of 8 of 313 CF patients (2.5% mucoid S. aureus isolates (n = 115 were cultured with a mean persistence of 29 months (range 1 month, 126 months. In contrast to non-mucoid S. aureus, mucoid isolates were strong biofilm formers. The upstream region of the ica operon, which encodes the proteins responsible for the synthesis of the polysaccharide intercellular adhesin (PIA, of mucoid isolates was sequenced. Spa-types of mucoid and non-mucoid strains were identical, but differed between patients. Mucoid isolates carried a 5 bp deletion in the intergenic region between icaR and icaA. During long-term persistence, from two patients subsequent non-mucoid isolates (n = 12 with 5 bp deletions were cultured, which did not produce biofilm. Sequencing of the entire ica operon identified compensatory mutations in various ica-genes including icaA (n = 7, icaD (n = 3 and icaC (n = 2. Six sequential isolates of each of these two patients with non-mucoid and mucoid phenotypes were subjected to whole genome sequencing revealing a very close relationship of the individual patient's isolates. Transformation of strains with vectors expressing the respective wild-type genes restored mucoidy. In contrast to the non-mucoid phenotype, mucoid strains were protected against neutrophilic killing and survived better under starvation conditions. In conclusion, the special conditions present in CF airways seem to facilitate ongoing mutations in the ica operon during S. aureus persistence.

  11. The potential of phage therapy in cystic fibrosis: Essential human-bacterial-phage interactions and delivery considerations for use in Pseudomonas aeruginosa-infected airways.

    Science.gov (United States)

    Trend, Stephanie; Fonceca, Angela M; Ditcham, William G; Kicic, Anthony; Cf, Arest

    2017-07-15

    As antimicrobial-resistant microbes become increasingly common and a significant global issue, novel approaches to treating these infections particularly in those at high risk are required. This is evident in people with cystic fibrosis (CF), who suffer from chronic airway infection caused by antibiotic resistant bacteria, typically Pseudomonas aeruginosa. One option is bacteriophage (phage) therapy, which utilises the natural predation of phage viruses upon their host bacteria. This review summarises the essential and unique aspects of the phage-microbe-human lung interactions in CF that must be addressed to successfully develop and deliver phage to CF airways. The current evidence regarding phage biology, phage-bacterial interactions, potential airway immune responses to phages, previous use of phages in humans and method of phage delivery to the lung are also summarised. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  12. Rnaseq As A Method To Study Microbial Interactions Arising In The Cystic Fibrosis Airways

    DEFF Research Database (Denmark)

    Amador Hierro, Cristina Isabel; Jelsbak, Lars

    2015-01-01

    Introduction: In previous studies from our laboratory, a Pseudomonas aeruginosa lineage, named DK2, has been identified and characterized as highly successful, transmissible and persistent over four decades in cystic fibrosis (CF) patients. This lineage underwent substantial phenotypic and genetic...

  13. The impact of MRSA infection in the airways of children with cystic fibrosis; a case-control study.

    LENUS (Irish Health Repository)

    Cox, D W

    2010-02-01

    The prevalence of Methicillin Resistant Staphylococcus Aureus (MRSA) in patients with Cystic Fibrosis (CF) has risen dramatically over the past 10 years. The clinical significance of MRSA in CF patients remains undetermined. We conducted a review of patients with CF infected with MRSA over a 10 year period at Our Lady\\'s Children\\'s Hospital, Crumlin between 1999 and 2009. We collected data from 24 patients infected with MRSA and 24 control patients without MRSA There was a significant difference between the two groups in the rate of decline in percentage FEV1 two years after MRSA infection (Difference: -17.4, 95% CI: -30.48, -4.31, p = 0.01). A similar trend was seen for FVC% and FEF25-75% predicted. This study suggests that persistent MRSA infection in the airways of children with CF is associated with diminished lung function two years post acquisition, when compared to a matched control cohort without MRSA.

  14. Quantitative analysis of regional airways obstruction using dynamic hyperpolarized 3He MRI-preliminary results in children with cystic fibrosis.

    Science.gov (United States)

    Koumellis, Panos; van Beek, Edwin J R; Woodhouse, Neil; Fichele, Stan; Swift, Andrew J; Paley, Martyn N J; Hill, Catherine; Taylor, Chris J; Wild, Jim M

    2005-09-01

    To investigate regional airways obstruction in patients with cystic fibrosis (CF) with quantitative analysis of dynamic hyperpolarized (HP) (3)He MRI. Dynamic radial projection MRI of HP (3)He gas was used to study respiratory dynamics in a group of eight children with CF. Signal kinetics in a total of seven regions of interest (ROIs; three in each lung, and one in the trachea) were compared with the results of spirometric pulmonary function tests (PFTs). The tracheal signal intensity was used as a form of "input function" to normalize for input flow effects. A pattern of low flow rate in the upper lobes was observed. When the flow measurements from the peripheral ROIs were averaged to obtain an index of flow in the peripheral lung, a good correlation was found (P = 3.74 x 10(-5)) with the forced expired volume in one second (FEV1). These results suggest that a quantitative measurement of localized airways obstruction in the early stages of CF may be obtained from dynamic (3)He MRI by using the slope of the signal rise as a measure of air flow into the peripheral lung. This study also demonstrates that children can cooperate well with the (3)He MRI technique. (c) 2005 Wiley-Liss, Inc.

  15. N-acetylcysteine Enhances Cystic Fibrosis Sputum Penetration and Airway Gene Transfer by Highly Compacted DNA Nanoparticles.

    Science.gov (United States)

    Suk, Jung Soo; Boylan, Nicholas J; Trehan, Kanika; Tang, Benjamin C; Schneider, Craig S; Lin, Jung-Ming G; Boyle, Michael P; Zeitlin, Pamela L; Lai, Samuel K; Cooper, Mark J; Hanes, Justin

    2011-11-01

    For effective airway gene therapy of cystic fibrosis (CF), inhaled gene carriers must first penetrate the hyperviscoelastic sputum covering the epithelium. Whether clinically studied gene carriers can penetrate CF sputum remains unknown. Here, we measured the diffusion of a clinically tested nonviral gene carrier, composed of poly-l-lysine conjugated with a 10 kDa polyethylene glycol segment (CK30PEG10k). We found that CK30PEG10k/DNA nanoparticles were trapped in CF sputum. To improve gene carrier diffusion across sputum, we tested adjuvant regimens consisting of N-acetylcysteine (NAC), recombinant human DNase (rhDNase) or NAC together with rhDNase. While rhDNase alone did not enhance gene carrier diffusion, NAC and NAC + rhDNase increased average effective diffusivities by 6-fold and 13-fold, respectively, leading to markedly greater fractions of gene carriers that may penetrate sputum layers. We further tested the adjuvant effects of NAC in the airways of mice with Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced mucus hypersecretion. Intranasal dosing of NAC prior to CK30PEG10k/DNA nanoparticles enhanced gene expression by up to ~12-fold compared to saline control, reaching levels observed in the lungs of mice without LPS challenge. Our findings suggest that a promising synthetic nanoparticle gene carrier may transfer genes substantially more effectively to lungs of CF patients if administered following adjuvant mucolytic therapy with NAC or NAC + rhDNase.

  16. N-acetylcysteine enhances cystic fibrosis sputum penetration and airway gene transfer by highly compacted DNA nanoparticles.

    Science.gov (United States)

    Suk, Jung Soo; Boylan, Nicholas J; Trehan, Kanika; Tang, Benjamin C; Schneider, Craig S; Lin, Jung-Ming G; Boyle, Michael P; Zeitlin, Pamela L; Lai, Samuel K; Cooper, Mark J; Hanes, Justin

    2011-11-01

    For effective airway gene therapy of cystic fibrosis (CF), inhaled gene carriers must first penetrate the hyperviscoelastic sputum covering the epithelium. Whether clinically studied gene carriers can penetrate CF sputum remains unknown. Here, we measured the diffusion of a clinically tested nonviral gene carrier, composed of poly-l-lysine conjugated with a 10 kDa polyethylene glycol segment (CK(30)PEG(10k)). We found that CK(30)PEG(10k)/DNA nanoparticles were trapped in CF sputum. To improve gene carrier diffusion across sputum, we tested adjuvant regimens consisting of N-acetylcysteine (NAC), recombinant human DNase (rhDNase) or NAC together with rhDNase. While rhDNase alone did not enhance gene carrier diffusion, NAC and NAC + rhDNase increased average effective diffusivities by 6-fold and 13-fold, respectively, leading to markedly greater fractions of gene carriers that may penetrate sputum layers. We further tested the adjuvant effects of NAC in the airways of mice with Pseudomonas aeruginosa lipopolysaccharide (LPS)-induced mucus hypersecretion. Intranasal dosing of NAC prior to CK(30)PEG(10k)/DNA nanoparticles enhanced gene expression by up to ~12-fold compared to saline control, reaching levels observed in the lungs of mice without LPS challenge. Our findings suggest that a promising synthetic nanoparticle gene carrier may transfer genes substantially more effectively to lungs of CF patients if administered following adjuvant mucolytic therapy with NAC or NAC + rhDNase.

  17. High rate of Exophiala dermatitidis recovery in the airways of patients with cystic fibrosis is associated with pancreatic insufficiency.

    Science.gov (United States)

    Kondori, Nahid; Gilljam, Marita; Lindblad, Anders; Jönsson, Bodil; Moore, Edward R B; Wennerås, Christine

    2011-03-01

    The black-pigmented fungus Exophiala dermatitidis is considered to be a harmless colonizer of the airways of cystic fibrosis (CF) patients. The aim of this study was to establish the recovery rate of E. dermatitidis in respiratory specimens from CF patients, transplant recipients, and subjects with other respiratory disorders in Sweden. Second, we wished to determine if particular clinical traits were associated with E. dermatitidis colonization of the airways and the antifungal susceptibility profiles of Exophiala strains. Sputum and bronchoalveolar lavage samples (n = 492) derived from 275 patients were investigated. E. dermatitidis was isolated in respiratory specimens from 19% (18/97) of the CF patients but in none of the other patient categories. All isolates were recovered after 6 to 25 days of incubation on erythritol-chloramphenicol agar (ECA) medium. Morphological and genetic analyses confirmed species identity. Pancreatic insufficiency was positively associated with the presence of E. dermatitidis in sputum samples (P = 0.0198). Antifungal susceptibility tests demonstrated that voriconazole and posaconazole had the lowest MICs against E. dermatitidis. In conclusion, E. dermatitidis is a frequent colonizer of the respiratory tract in CF patients in Sweden and appears to be associated with more advanced disease. Whether E. dermatitidis is pathogenic remains to be elucidated.

  18. Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation.

    Science.gov (United States)

    Twomey, Kate B; Alston, Mark; An, Shi-Qi; O'Connell, Oisin J; McCarthy, Yvonne; Swarbreck, David; Febrer, Melanie; Dow, J Maxwell; Plant, Barry J; Ryan, Robert P

    2013-01-01

    Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF) patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by DNA- and RNA- based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has revealed potential metabolic biomarkers for exacerbation.

  19. Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation.

    Directory of Open Access Journals (Sweden)

    Kate B Twomey

    Full Text Available Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by DNA- and RNA- based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has revealed potential metabolic biomarkers for exacerbation.

  20. Effects of Propidium Monoazide (PMA) Treatment on Mycobiome and Bacteriome Analysis of Cystic Fibrosis Airways during Exacerbation

    Science.gov (United States)

    Nguyen, Linh Do Ngoc; Deschaght, Pieter; Merlin, Sophie; Loywick, Alexandre; Audebert, Christophe; Van Daele, Sabine; Viscogliosi, Eric; Vaneechoutte, Mario; Delhaes, Laurence

    2016-01-01

    Introduction and Purpose Propidium monoazide (PMA)-pretreatment has increasingly been applied to remove the bias from dead or damaged cell artefacts, which could impact the microbiota analysis by high-throughput sequencing. Our study aimed to determine whether a PMA-pretreatment coupled with high-throughput sequencing analysis provides a different picture of the airway mycobiome and bacteriome. Results and Discussion We compared deep-sequencing data of mycobiota and microbiota of 15 sputum samples from 5 cystic fibrosis (CF) patients with and without prior PMA-treatment of the DNA-extracts. PMA-pretreatment had no significant effect on the entire and abundant bacterial community (genera expressed as operational taxonomic units (OTUs) with a relative abundance greater than or equal to 1%), but caused a significant difference in the intermediate community (less than 1%) when analyzing the alpha biodiversity Simpson index (p = 0.03). Regarding PMA impact on the airway mycobiota evaluated for the first time here; no significant differences in alpha diversity indexes between PMA-treated and untreated samples were observed. Regarding beta diversity analysis, the intermediate communities also differed more dramatically than the total and abundant ones when studying both mycobiome and bacteriome. Our results showed that only the intermediate (or low abundance) population diversity is impacted by PMA-treatment, and therefore that abundant taxa are mostly viable during acute exacerbation in CF. Given such a cumbersome protocol (PMA-pretreatment coupled with high-throughput sequencing), we discuss its potential interest within the follow-up of CF patients. Further studies using PMA-pretreatment are warranted to improve our “omic” knowledge of the CF airways. PMID:28030619

  1. Impact of the CFTR-potentiator ivacaftor on airway microbiota in cystic fibrosis patients carrying a G551D mutation.

    Directory of Open Access Journals (Sweden)

    Cédric Bernarde

    Full Text Available Airway microbiota composition has been clearly correlated with many pulmonary diseases, and notably with cystic fibrosis (CF, an autosomal genetic disorder caused by mutation in the CF transmembrane conductance regulator (CFTR. Recently, a new molecule, ivacaftor, has been shown to re-establish the functionality of the G551D-mutated CFTR, allowing significant improvement in lung function.The purpose of this study was to follow the evolution of the airway microbiota in CF patients treated with ivacaftor, using quantitative PCR and pyrosequencing of 16S rRNA amplicons, in order to identify quantitative and qualitative changes in bacterial communities. Three G551D children were followed up longitudinally over a mean period of more than one year covering several months before and after initiation of ivacaftor treatment.129 operational taxonomy units (OTUs, representing 64 genera, were identified. There was no significant difference in total bacterial load before and after treatment. Comparison of global community composition found no significant changes in microbiota. Two OTUs, however, showed contrasting dynamics: after initiation of ivacaftor, the relative abundance of the anaerobe Porphyromonas 1 increased (p<0.01 and that of Streptococcus 1 (S. mitis group decreased (p<0.05, possibly in relation to the anti-Gram-positive properties of ivacaftor. The anaerobe Prevotella 2 correlated positively with the pulmonary function test FEV-1 (r=0.73, p<0.05. The study confirmed the presumed positive role of anaerobes in lung function.Several airway microbiota components, notably anaerobes (obligate or facultative anaerobes, could be valuable biomarkers of lung function improvement under ivacaftor, and could shed light on the pathophysiology of lung disease in CF patients.

  2. Complete Genome Sequence of Achromobacter xylosoxidans MN001, a Cystic Fibrosis Airway Isolate.

    Science.gov (United States)

    Badalamenti, Jonathan P; Hunter, Ryan C

    2015-08-20

    The genome of Achromobacter xylosoxidans MN001, a strain isolated from sputum derived from an adult cystic fibrosis patient, was sequenced using combined single-molecule real-time and Illumina sequencing. Assembly of the complete genome resulted in a 5,876,039-bp chromosome, representing the smallest A. xylosoxidans genome sequenced to date.

  3. Complete Genome Sequence of Achromobacter xylosoxidans MN001, a Cystic Fibrosis Airway Isolate

    OpenAIRE

    2015-01-01

    The genome of Achromobacter xylosoxidans MN001, a strain isolated from sputum derived from an adult cystic fibrosis patient, was sequenced using combined single-molecule real-time and Illumina sequencing. Assembly of the complete genome resulted in a 5,876,039-bp chromosome, representing the smallest A. xylosoxidans genome sequenced to date.

  4. Optimisation and assessment of airway clearance in children with cystic fibrosis

    NARCIS (Netherlands)

    L.J. van der Giessen (Lianne)

    2009-01-01

    markdownabstract__Abstract__ Cystic Fibrosis (CF) is the most common life-shortening genetic disorder in the white population.1 It affects approximately 1300 individuals in the Netherlands2 and 60.000 individuals worldwide. CF is caused by mutations in the cystic fi brosis

  5. Optimisation and assessment of airway clearance in children with cystic fibrosis

    NARCIS (Netherlands)

    L.J. van der Giessen (Lianne)

    2009-01-01

    markdownabstract__Abstract__ Cystic Fibrosis (CF) is the most common life-shortening genetic disorder in the white population.1 It affects approximately 1300 individuals in the Netherlands2 and 60.000 individuals worldwide. CF is caused by mutations in the cystic fi brosis transmembrane conductance

  6. Absorptive clearance of DTPA as an aerosol-based biomarker in the cystic fibrosis airway

    Science.gov (United States)

    Corcoran, Timothy E; Thomas, Kristina M.; Myerburg, Michael M.; Muthukrishnan, Ashok; Weber, Lawrence; Frizzell, Raymond; Pilewski, Joseph M

    2010-01-01

    Biomarkers providing in vivo quantification of the basic elements of CF lung disease are needed. We questioned whether the absorption of a small, radiolabeled, hydrophilic molecule (Indium 111 DTPA) would be increased in CF airways. DTPA clearance has been used previously to assess epithelial permeability and may also be useful for quantifying liquid absorption. The absorptive clearance rate of DTPA was quantified in 10 CF and 11 control subjects using a novel aerosol technique. Subjects inhaled an aerosol containing non-absorbable Technetium-99m sulfur colloid (Tc-SC) particles and Indium-111 DTPA (In-DTPA). Tc-SC clearance from the lung is exclusively mucociliary while In-DTPA is cleared by both absorption and mucociliary clearance. The difference between the In-DTPA and Tc-SC clearance rates estimates In-DTPA absorption. Tc-SC (mucociliary) clearance was similar in central and peripheral zones in CF and non-CF. Total In-DTPA clearance was increased in both zones in CF. The absorptive component of In-DTPA clearance was increased in the airway-dominated central lung zones in CF (42 vs. 32 %/hr, p=0.03). The absorption of In-DTPA is increased in the CF airway. Further study is needed to understand the relative roles of fluid absorption, inflammation, and other mechanisms potentially affecting epithelial permeability and DTPA absorption. PMID:19717485

  7. Microbiology of airway disease in a cohort of patients with Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Carnovale Vincenzo

    2006-01-01

    Full Text Available Abstract Background Recent reports document an increasing incidence of new Gram-negative pathogens such as Stenotrophomonas maltophilia and Alcaligenes xylosoxidans isolated from patients with Cystic Fibrosis, along with an increase in common Gram-negative pathogens such as Pseudomonas aeruginosa and Burkholderia cepacia complex. Furthermore, the increase in multidrug-resistance of such organisms makes the therapeutic management of these patients more problematic. Therefore, careful isolation and identification, and accurate studies of susceptibility to antibiotics are critical for predicting the spread of strains, improving therapeutic measures and facilitating our understanding of the epidemiology of emerging pathogens. The first aim of this study was to determine the incidence and the prevalence of colonization by Gram-negative organisms isolated from respiratory samples of Cystic Fibrosis patients in the Regional Referral Cystic Fibrosis Centre of Naples; the second was to evaluate the spectrum of multidrug-resistance of these organisms. Methods Patients (n = 300 attending the Regional Cystic Fibrosis Unit were enrolled in this study over 3 years. Sputum was processed for microscopic tests and culture. An automated system, Phoenix (Becton Dickinson, Sparks, Maryland, USA, was used for phenotypic identification of all strains; the API 20 NE identification system (bioMérieux, Marcy l'Etoile, France was used when the identification with the Phoenix system was inaccurate. A PCR-RFLP method was used to characterize the organisms in the Burkholderia cepacia complex. A chemosusceptibility test on microbroth dilutions (Phoenix was used. Primary outcomes such as FEV1 were correlate with different pathogens. Results During the period of study, 40% of patients was infected by Pseudomonas aeruginosa, 7% by Burkholderia cepacia complex, 11% by Stenotrophomonas maltophilia and 7% by Alcaligenes xylosoxidans. Of the strains isolated, 460 were multidrug

  8. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression.

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-02-15

    Cystic fibrosis (CF) is one of the most common lethal genetic diseases in which the role of microRNAs has yet to be explored. Predicted to be regulated by miR-126, TOM1 (target of Myb1) has been shown to interact with Toll-interacting protein, forming a complex to regulate endosomal trafficking of ubiquitinated proteins. TOM1 has also been proposed as a negative regulator of IL-1beta and TNF-alpha-induced signaling pathways. MiR-126 is highly expressed in the lung, and we now show for the first time differential expression of miR-126 in CF versus non-CF airway epithelial cells both in vitro and in vivo. MiR-126 downregulation in CF bronchial epithelial cells correlated with a significant upregulation of TOM1 mRNA, both in vitro and in vivo when compared with their non-CF counterparts. Introduction of synthetic pre-miR-126 inhibited luciferase activity in a reporter system containing the full length 3\\'-untranslated region of TOM1 and resulted in decreased TOM1 protein production in CF bronchial epithelial cells. Following stimulation with LPS or IL-1beta, overexpression of TOM1 was found to downregulate NF-kappaB luciferase activity. Conversely, TOM1 knockdown resulted in a significant increase in NF-kappaB regulated IL-8 secretion. These data show that miR-126 is differentially regulated in CF versus non-CF airway epithelial cells and that TOM1 is a miR-126 target that may have an important role in regulating innate immune responses in the CF lung. To our knowledge, this study is the first to report of a role for TOM1 in the TLR2\\/4 signaling pathways and the first to describe microRNA involvement in CF.

  9. Changes of Proteases, Antiproteases, and Pathogens in Cystic Fibrosis Patients’ Upper and Lower Airways after IV-Antibiotic Therapy

    Directory of Open Access Journals (Sweden)

    Ulrike Müller

    2015-01-01

    Full Text Available Background. In cystic fibrosis (CF the upper (UAW and lower airways (LAW are reservoirs for pathogens like Pseudomonas aeruginosa. The consecutive hosts’ release of proteolytic enzymes contributes to inflammation and progressive pulmonary destruction. Objectives were to assess dynamics of protease : antiprotease ratios and pathogens in CF-UAW and LAW sampled by nasal lavage (NL and sputum before and after intravenous- (IV- antibiotic therapy. Methods. From 19 IV-antibiotic courses of 17 CF patients NL (10 mL/nostril and sputum were collected before and after treatment. Microbiological colonization and concentrations of NE/SLPI/CTSS (ELISA and MMP-9/TIMP-1 (multiplex bead array were determined. Additionally, changes of sinonasal symptoms were assessed (SNOT-20. Results. IV-antibiotic treatment had more pronounced effects on inflammatory markers in LAW, whereas trends to decrease were also found in UAW. Ratios of MMP-9/TIMP-1 were higher in sputum, and ratios of NE/SLPI were higher in NL. Remarkably, NE/SLPI ratio was 10-fold higher in NL compared to healthy controls. SNOT-20 scores decreased significantly during therapy (P=0.001. Conclusion. For the first time, changes in microbiological patterns in UAW and LAW after IV-antibiotic treatments were assessed, together with changes of protease/antiprotease imbalances. Delayed responses of proteases and antiproteases to IV-antibiotic therapy were found in UAW compared to LAW.

  10. Archetypal analysis of diverse Pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways

    DEFF Research Database (Denmark)

    Thøgersen, Juliane Charlotte; Mørup, Morten; Pedersen, Søren Damkiær;

    2013-01-01

    BACKGROUND: Analysis of global gene expression by DNA microarrays is widely used in experimental molecular biology. However, the complexity of such high-dimensional data sets makes it difficult to fully understand the underlying biological features present in the data.The aim of this study...... is to introduce a method for DNA microarray analysis that provides an intuitive interpretation of data through dimension reduction and pattern recognition. We present the first “Archetypal Analysis” of global gene expression. The analysis is based on microarray data from five integrated studies of Pseudomonas...... expression between different groups identified adaptive changes of the bacteria residing in the cystic fibrosis lung. The analysis suggests a similar gene expression pattern between isolates with a high mutation rate (hypermutators) despite accumulation of different mutations for these isolates...

  11. Chemokine-like factor 1, a novel cytokine, contributes to airway damage, remodeling and pulmonary fibrosis

    Institute of Scientific and Technical Information of China (English)

    谭亚夏; 韩文玲; 陈英玉; 欧阳能太; 唐岩; 李枫; 丁培国; 任筱兰; 曾广翘; 丁静; 朱彤; 马大龙; 钟南山

    2004-01-01

    Background Chemokine-like factor 1 (CKLF1) was recently identified as a novel cytokine. The full-length CKLF1 cDNA contains 530 bp encoding 99 amino acid residues with a CC motif similar to that of other CC family chemokines. Recombinant CKLF1 exhibits chemotactic activity on leucocytes and stimulates proliferation of murine skeletal muscle cells. We questioned whether CKLF1 could be involved in the pathogenesis of inflammation and proliferation in the lung. Therefore we used efficient in vivo gene delivery method to investigate the biological effect of CKLF1 in the murine lung.Methods CKLF1-expressing plasmid, pCDI-CKLF1, was constructed and injected into the skeletal muscles followed by electroporation. Lung tissues were obtained at the end of week 1,2,3 and 4 respectively after injection. The pathological changes in the lungs were observed by light microscope.Results A single intramuscular injection of CKLF1 plasmid DNA into BALB/c mice caused dramatic pathological changes in the lungs of treated mice. These changes included peribronchial leukocyte infiltration, epithelial shedding, collagen deposition, proliferation of bronchial smooth muscle cells and fibrosis of the lung. Conclusions The sustained morphological abnormalities of the bronchial and bronchiolar wall, the acute pneumonitis and interstitial pulmonary fibrosis induced by CKLF1 were similar to phenomena observed in chronic persistent asthma, acute respiratory distress syndrome and severe acute respiratory syndrome. These data suggest that CKLF1 may play an important role in the pathogenesis of these important diseases and the study also implies that gene electro-transfer in vivo could serve as a valuable approach for evaluating the function of a novel gene in animals.

  12. S-adenosylmethionine reduces airway inflammation and fibrosis in a murine model of chronic severe asthma via suppression of oxidative stress.

    Science.gov (United States)

    Yoon, Sun-Young; Hong, Gyong Hwa; Kwon, Hyouk-Soo; Park, Sunjoo; Park, So Young; Shin, Bomi; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-06-03

    Increased oxidative stress has an important role in asthmatic airway inflammation and remodeling. A potent methyl donor, S-adenosylmethionine (SAMe), is known to protect against tissue injury and fibrosis through modulation of oxidative stress. The aim of this study was to evaluate the effect of SAMe on airway inflammation and remodeling in a murine model of chronic asthma. A mouse model was generated by repeated intranasal challenge with ovalbumin and Aspergillus fungal protease twice a week for 8 weeks. SAMe was orally administered every 24 h for 8 weeks. We performed bronchoalveolar lavage (BAL) fluid analysis and histopathological examination. The levels of various cytokines and 4-hydroxy-2-nonenal (HNE) were measured in the lung tissue. Cultured macrophages and fibroblasts were employed to evaluate the underlying anti-inflammatory and antifibrotic mechanisms of SAMe. The magnitude of airway inflammation and fibrosis, as well as the total BAL cell counts, were significantly suppressed in the SAMe-treated groups. A reduction in T helper type 2 pro-inflammatory cytokines and HNE levels was observed in mouse lung tissue after SAMe administration. Macrophages cultured with SAMe also showed reduced cellular oxidative stress and pro-inflammatory cytokine production. Moreover, SAMe treatment attenuated transforming growth factor-β (TGF-β)-induced fibronectin expression in cultured fibroblasts. SAMe had a suppressive effect on airway inflammation and fibrosis in a mouse model of chronic asthma, at least partially through the attenuation of oxidative stress and TGF-β-induced fibronectin expression. The results of this study suggest a potential role for SAMe as a novel therapeutic agent in chronic asthma.

  13. Chemotaxis and Binding of Pseudomonas aeruginosa to Scratch-Wounded Human Cystic Fibrosis Airway Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Christian Schwarzer

    Full Text Available Confocal imaging was used to characterize interactions of Pseudomonas aeruginosa (PA, expressing GFP or labeled with Syto 11 with CF airway epithelial cells (CFBE41o-, grown as confluent monolayers with unknown polarity on coverglasses in control conditions and following scratch wounding. Epithelia and PAO1-GFP or PAK-GFP (2 MOI were incubated with Ringer containing typical extracellular salts, pH and glucose and propidium iodide (PI, to identify dead cells. PAO1 and PAK swam randomly over and did not bind to nonwounded CFBE41o- cells. PA migrated rapidly (began within 20 sec, maximum by 5 mins and massively (10-80 fold increase, termed "swarming", but transiently (random swimming after 15 mins, to wounds, particularly near cells that took up PI. Some PA remained immobilized on cells near the wound. PA swam randomly over intact CFBE41o- monolayers and wounded monolayers that had been incubated with medium for 1 hr. Expression of CFTR and altered pH of the media did not affect PA interactions with CFBE41o- wounds. In contrast, PAO1 swarming and immobilization along wounds was abolished in PAO1 (PAO1ΔcheYZABW, no expression of chemotaxis regulatory components cheY, cheZ, cheA, cheB and cheW and greatly reduced in PAO1 that did not express amino acid receptors pctA, B and C (PAO1ΔpctABC and in PAO1 incubated in Ringer containing a high concentration of mixed amino acids. Non-piliated PAKΔpilA swarmed normally towards wounded areas but bound infrequently to CFBE41o- cells. In contrast, both swarming and binding of PA to CFBE41o- cells near wounds were prevented in non-flagellated PAKΔfliC. Data are consistent with the idea that (i PA use amino acid sensor-driven chemotaxis and flagella-driven swimming to swarm to CF airway epithelial cells near wounds and (ii PA use pili to bind to epithelial cells near wounds.

  14. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Javed [Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., T6G 2G8 (Canada); Roa, Wilson [Department of Oncology, University of Alberta, Edmonton, Alta., T6G 1Z2 (Canada); Amirfazli, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., T6G 2G8 (Canada)], E-mail: a.amirfazli@ualberta.ca

    2008-06-15

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  15. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    Science.gov (United States)

    Ally, Javed; Roa, Wilson; Amirfazli, A.

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  16. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure

    Science.gov (United States)

    Henderson, Ashley G.; Ehre, Camille; Button, Brian; Abdullah, Lubna H.; Cai, Li-Heng; Leigh, Margaret W.; DeMaria, Genevieve C.; Matsui, Hiro; Donaldson, Scott H.; Davis, C. William; Sheehan, John K.; Boucher, Richard C.; Kesimer, Mehmet

    2014-01-01

    The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer–dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease. PMID:24892808

  17. Concordance between upper and lower airway microbiota in infants with cystic fibrosis.

    Science.gov (United States)

    Prevaes, Sabine M P J; de Steenhuijsen Piters, Wouter A A; de Winter-de Groot, Karin M; Janssens, Hettie M; Tramper-Stranders, Gerdien A; Chu, Mei Ling J N; Tiddens, Harm A; van Westreenen, Mireille; van der Ent, Cornelis K; Sanders, Elisabeth A M; Bogaert, Debby

    2017-03-01

    Nasopharyngeal and oropharyngeal samples are commonly used to direct therapy for lower respiratory tract infections in non-expectorating infants with cystic fibrosis (CF).We aimed to investigate the concordance between the bacterial community compositions of 25 sets of nasopharyngeal, oropharyngeal and bronchoalveolar lavage (BAL) samples from 17 infants with CF aged ∼5 months (n=13) and ∼12 months (n=12) using conventional culturing and 16S-rRNA sequencing.Clustering analyses demonstrated that BAL microbiota profiles were in general characterised by a mixture of oral and nasopharyngeal bacteria, including commensals like Streptococcus, Neisseria, Veillonella and Rothia spp. and potential pathogens like Staphylococcus aureus, Haemophilus influenzae and Moraxella spp. Within each individual, however, the degree of concordance differed between microbiota of both upper respiratory tract niches and the corresponding BAL.The inconsistent intra-individual concordance between microbiota of the upper and lower respiratory niches suggests that the lungs of infants with CF may have their own microbiome that seems seeded by, but is not identical to, the upper respiratory tract microbiome.

  18. Hypertonic saline in treatment of pulmonary disease in cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-01-01

    The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  19. Hypertonic Saline in Treatment of Pulmonary Disease in Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Emer P. Reeves

    2012-01-01

    Full Text Available The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  20. Quantitative computed tomography analysis of the airways in patients with cystic fibrosis using automated software: correlation with spirometry in the evaluation of severity*

    Science.gov (United States)

    Santos, Marcel Koenigkam; Cruvinel, Danilo Lemos; de Menezes, Marcelo Bezerra; Teixeira, Sara Reis; Vianna, Elcio de Oliveira; Elias Júnior, Jorge; Martinez, José Antonio Baddini

    2016-01-01

    Objective To perform a quantitative analysis of the airways using automated software, in computed tomography images of patients with cystic fibrosis, correlating the results with spirometric findings. Materials and Methods Thirty-four patients with cystic fibrosis were studied-20 males and 14 females; mean age 18 ± 9 years-divided into two groups according to the spirometry findings: group I (n = 21), without severe airflow obstruction (forced expiratory volume in first second [FEV1] > 50% predicted), and group II (n = 13), with severe obstruction (FEV1 ≤ 50% predicted). The following tracheobronchial tree parameters were obtained automatically: bronchial diameter, area, thickness, and wall attenuation. Results On average, 52 bronchi per patient were studied. The number of bronchi analyzed was higher in group II. The correlation with spirometry findings, especially between the relative wall thickness of third to eighth bronchial generation and predicted FEV1, was better in group I. Conclusion Quantitative analysis of the airways by computed tomography can be useful for assessing disease severity in cystic fibrosis patients. In patients with severe airflow obstruction, the number of bronchi studied by the method is higher, indicating more bronchiectasis. In patients without severe obstruction, the relative bronchial wall thickness showed a good correlation with the predicted FEV1. PMID:28100929

  1. Quantitative computed tomography analysis of the airways in patients with cystic fibrosis using automated software: correlation with spirometry in the evaluation of severity

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcel Koenigkam; Cruvinel, Danilo Lemos; Menezes, Marcelo Bezerra de; Teixeira, Sara Reis; Vianna, Elcio de Oliveira; Elias Junior, Jorge; Martinez, Jose Antonio Baddini, E-mail: marcelk46@yahoo.com.br [Universidade de Sao Paulo (HC/FMRP/USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina

    2016-11-15

    Objective: To perform a quantitative analysis of the airways using automated software, in computed tomography images of patients with cystic fibrosis, correlating the results with spirometric findings. Materials and methods: Thirty-four patients with cystic fibrosis were studied-20 males and 14 females; mean age 18 ± 9 years - divided into two groups according to the spirometry findings: group I (n = 21), without severe airflow obstruction (forced expiratory volume in first second [FEV1] > 50% predicted), and group II (n = 13), with severe obstruction (FEV1 ≤ 50% predicted). The following tracheobronchial tree parameters were obtained automatically: bronchial diameter, area, thickness, and wall attenuation. Results: On average, 52 bronchi per patient were studied. The number of bronchi analyzed was higher in group II. The correlation with spirometry findings, especially between the relative wall thickness of third to eighth bronchial generation and predicted FEV1, was better in group I. Conclusion: Quantitative analysis of the airways by computed tomography can be useful for assessing disease severity in cystic fibrosis patients. In patients with severe airflow obstruction, the number of bronchi studied by the method is higher, indicating more bronchiectasis. In patients without severe obstruction, the relative bronchial wall thickness showed a good correlation with the predicted FEV1. (author)

  2. Ferrous Iron Is a Significant Component of Bioavailable Iron in Cystic Fibrosis Airways

    Science.gov (United States)

    Hunter, Ryan C.; Asfour, Fadi; Dingemans, Jozef; Osuna, Brenda L.; Samad, Tahoura; Malfroot, Anne; Cornelis, Pierre; Newman, Dianne K.

    2013-01-01

    ABSTRACT Chronic, biofilm-like infections by the opportunistic pathogen Pseudomonas aeruginosa are a major cause of mortality in cystic fibrosis (CF) patients. While much is known about P. aeruginosa from laboratory studies, far less is understood about what it experiences in vivo. Iron is an important environmental parameter thought to play a central role in the development and maintenance of P. aeruginosa infections, for both anabolic and signaling purposes. Previous studies have focused on ferric iron [Fe(III)] as a target for antimicrobial therapies; however, here we show that ferrous iron [Fe(II)] is abundant in the CF lung (~39 µM on average for severely sick patients) and significantly correlates with disease severity (ρ = −0.56, P = 0.004), whereas ferric iron does not (ρ = −0.28, P = 0.179). Expression of the P. aeruginosa genes bqsRS, whose transcription is upregulated in response to Fe(II), was high in the majority of patients tested, suggesting that increased Fe(II) is bioavailable to the infectious bacterial population. Because limiting Fe(III) acquisition inhibits biofilm formation by P. aeruginosa in various oxic in vitro systems, we also tested whether interfering with Fe(II) acquisition would improve biofilm control under anoxic conditions; concurrent sequestration of both iron oxidation states resulted in a 58% reduction in biofilm accumulation and 28% increase in biofilm dissolution, a significant improvement over Fe(III) chelation treatment alone. This study demonstrates that the chemistry of infected host environments coevolves with the microbial community as infections progress, which should be considered in the design of effective treatment strategies at different stages of disease. PMID:23963183

  3. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community--implications for therapeutic management.

    Directory of Open Access Journals (Sweden)

    Laurence Delhaes

    Full Text Available BACKGROUND: Given the polymicrobial nature of pulmonary infections in patients with cystic fibrosis (CF, it is essential to enhance our knowledge on the composition of the microbial community to improve patient management. In this study, we developed a pyrosequencing approach to extensively explore the diversity and dynamics of fungal and prokaryotic populations in CF lower airways. METHODOLOGY AND PRINCIPAL FINDINGS: Fungi and bacteria diversity in eight sputum samples collected from four adult CF patients was investigated using conventional microbiological culturing and high-throughput pyrosequencing approach targeting the ITS2 locus and the 16S rDNA gene. The unveiled microbial community structure was compared to the clinical profile of the CF patients. Pyrosequencing confirmed recently reported bacterial diversity and observed complex fungal communities, in which more than 60% of the species or genera were not detected by cultures. Strikingly, the diversity and species richness of fungal and bacterial communities was significantly lower in patients with decreased lung function and poor clinical status. Values of Chao1 richness estimator were statistically correlated with values of the Shwachman-Kulczycki score, body mass index, forced vital capacity, and forced expiratory volume in 1 s (p = 0.046, 0.047, 0.004, and 0.001, respectively for fungal Chao1 indices, and p = 0.010, 0.047, 0.002, and 0.0003, respectively for bacterial Chao1 values. Phylogenetic analysis showed high molecular diversities at the sub-species level for the main fungal and bacterial taxa identified in the present study. Anaerobes were isolated with Pseudomonas aeruginosa, which was more likely to be observed in association with Candida albicans than with Aspergillus fumigatus. CONCLUSIONS: In light of the recent concept of CF lung microbiota, we viewed the microbial community as a unique pathogenic entity. We thus interpreted our results to highlight the potential

  4. Nanostructured Surfaces for Drug Delivery and Anti-Fibrosis

    Science.gov (United States)

    Kam, Kimberly Renee

    Effective and cost-efficient healthcare is at the forefront of public discussion; on both personal and policy levels, technologies that improve therapeutic efficacy without the use of painful hypodermic needle injections or the use of harsh chemicals would prove beneficial to patients. Nanostructured surfaces as structure-mediated permeability enhancers introduce a potentially revolutionary approach to the field of drug delivery. Parental administration routes have been the mainstay technologies for delivering biologics because these therapeutics are too large to permeate epithelial barriers. However, there is a significant patient dislike for hypodermic needles resulting in reduced patient compliance and poor therapeutic results. We present an alternative strategy to harness the body's naturally occurring biological processes and transport mechanisms to enhance the drug transport of biologics across the epithelium. Our strategy offers a paradigm shift from traditional biochemical drug delivery vehicles by using nanotopography to loosen the epithelial barrier. Herein, we demonstrate that nanotopographical cues can be used to enable biologics > 66 kDa to be transported across epithelial monolayers by increasing paracellular transport. When placed in contact with epithelial cells, nanostructured films significantly increase the transport of albumin, IgG, and a model therapeutic, etanercept. Our work highlights the potential to use drug delivery systems which incorporate nanotopographical cues to increase the transport of biologics across epithelial tissue. Furthermore, we describe current advancements in nano- and microfabrication for applications in anti-fibrosis and wound healing. Influencing cellular responses to biomaterials is crucial in the field of tissue engineering and regenerative medicine. Since cells are surrounded by extracellular matrix features that are on the nanoscale, identifying nanostructures for imparting desirable cellular function could greatly

  5. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  6. Non-invasive ventilation used as an adjunct to airway clearance treatments improves lung function during an acute exacerbation of cystic fibrosis: a randomised trial

    Directory of Open Access Journals (Sweden)

    Tiffany J Dwyer

    2015-07-01

    Full Text Available Question: During an acute exacerbation of cystic fibrosis, is non-invasive ventilation beneficial as an adjunct to the airway clearance regimen? Design: Randomised controlled trial with concealed allocation and intention-to-treat analysis. Participants: Forty adults with moderate to severe cystic fibrosis lung disease and who were admitted to hospital for an acute exacerbation. Intervention: Comprehensive inpatient care (control group compared to the same care with the addition of non-invasive ventilation during airway clearance treatments from Day 2 of admission until discharge (experimental group. Outcome measures: Lung function and subjective symptom severity were measured daily. Fatigue was measured at admission and discharge on the Schwartz Fatigue Scale from 7 (no fatigue to 63 (worst fatigue points. Quality of life and exercise capacity were also measured at admission and discharge. Length of admission and time to next hospital admission were recorded. Results: Analysed as the primary outcome, the experimental group had a greater rate of improvement in forced expiratory volume in 1 second (FEV1 than the control group, but this was not statistically significant (MD 0.13% predicted per day, 95% CI –0.03 to 0.28. However, the experimental group had a significantly higher FEV1 at discharge than the control group (MD 4.2% predicted, 95% CI 0.1 to 8.3. The experimental group reported significantly lower levels of fatigue on the Schwartz fatigue scale at discharge than the control group (MD 6 points, 95% CI 1 to 11. There was no significant difference between the experimental and control groups in subjective symptom severity, quality of life, exercise capacity, length of hospital admission or time to next hospital admission. Conclusion: Among people hospitalised for an acute exacerbation of cystic fibrosis, the use of non-invasive ventilation as an adjunct to the airway clearance regimen significantly improves FEV1 and fatigue. Trial

  7. Genetic Deletion and Pharmacological Inhibition of PI3Kγ Reduces Neutrophilic Airway Inflammation and Lung Damage in Mice with Cystic Fibrosis-Like Lung Disease

    Directory of Open Access Journals (Sweden)

    Maria Galluzzo

    2015-01-01

    Full Text Available Purpose. Neutrophil-dominated airway inflammation is a key feature of progressive lung damage in cystic fibrosis (CF. Thus, reducing airway inflammation is a major goal to prevent lung damage in CF. However, current anti-inflammatory drugs have shown several limits. PI3Kγ plays a pivotal role in leukocyte recruitment and activation; in the present study we determined the effects of genetic deletion and pharmacologic inhibition of PI3Kγ on airway inflammation and structural lung damage in a mouse model of CF lung disease. Methods. βENaC overexpressing mice (βENaC-Tg were backcrossed with PI3Kγ-deficient (PI3KγKO mice. Tissue damage was assessed by histology and morphometry and inflammatory cell number was evaluated in bronchoalveolar lavage fluid (BALF. Furthermore, we assessed the effect of a specific PI3Kγ inhibitor (AS-605240 on inflammatory cell number in BALF. Results. Genetic deletion of PI3Kγ decreased neutrophil numbers in BALF of PI3KγKO/βENaC-Tg mice, and this was associated with reduced emphysematous changes. Treatment with the PI3Kγ inhibitor AS-605240 decreased the number of neutrophils in BALF of βENaC-Tg mice, reproducing the effect observed with genetic deletion of the enzyme. Conclusions. These results demonstrate the biological efficacy of both genetic deletion and pharmacological inhibition of PI3Kγ in reducing chronic neutrophilic inflammation in CF-like lung disease in vivo.

  8. Role of Mechanical Stress in Regulating Airway Surface Hydration and Mucus Clearance Rates

    Science.gov (United States)

    Button, Brian; Boucher, Richard C.

    2008-01-01

    Effective clearance of mucus is a critical innate airway defense mechanism, and under appropriate conditions, can be stimulated to enhance clearance of inhaled pathogens. It has become increasingly clear that extracellular nucleotides (ATP and UTP) and nucleosides (adenosine) are important regulators of mucus clearance in the airways as a result of their ability to stimulate fluid secretion, mucus hydration, and cilia beat frequency (CBF). One ubiquitous mechanism to stimulate ATP release is through external mechanical stress. This article addresses the role of physiologically-relevant mechanical forces in the lung and their effects on regulating mucociliary clearance (MCC). The effects of mechanical forces on the stimulating ATP release, fluid secretion, CBF, and MCC are discussed. Also discussed is evidence suggesting that airway hydration and stimulation of MCC by stress-mediated ATP release may play a role in several therapeutic strategies directed at improving mucus clearance in patients with obstructive lung diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). PMID:18585484

  9. Reduced expression of Tis7/IFRD1 protein in murine and human cystic fibrosis airway epithelial cell models homozygous for the F508del-CFTR mutation.

    Science.gov (United States)

    Blanchard, Elise; Marie, Solenne; Riffault, Laure; Bonora, Monique; Tabary, Olivier; Clement, Annick; Jacquot, Jacky

    2011-08-01

    12-O-tetradecanoyl phorbol-13-acetate-induced sequence 7/interferon related development regulator 1 (Tis7/IFRD1) has been recently identified as a modifier gene in lung inflammatory disease severity in patients with cystic fibrosis (CF), based upon its capacity to regulate inflammatory activities in neutrophils. In CF patients, the F508del mutation in the Cftr gene encoding a chloride channel, the CF transmembrane conductance regulator (CFTR) in airway epithelial cells results in an exaggerated inflammatory response of these cells. At present, it is unknown whether the Tis7/IFRD1 gene product is expressed in airway epithelial cells. We therefore investigated the possibility there is an intrinsic alteration in Tis7/IFRD1 protein level in cells lacking CFTR function in tracheal homogenates of F508del-CFTR mice and in a F508del-CFTR human bronchial epithelial cell line (CFBE41o(-) cells). When Tis7/IFRD1 protein was detectable, trachea from F508del-CFTR mice showed a reduction in the level of Tis7/IFRD1 protein compared to wild-type control littermates. A significant reduction of IFRD1 protein level was found in CFBE41o(-) cells compared to normal bronchial epithelial cells 16HBE14o(-). Surprisingly, messenger RNA level of IFRD1 in CFBE41o(-) cells was found elevated. Treating CFBE41o(-) cells with the antioxidant glutathione rescued the IFRD1 protein level closer to control level and also reduced the pro-inflammatory cytokine IL-8 release. This work provides evidence for the first time of reduced level of IFRD1 protein in murine and human F508del-CFTR airway epithelial cell models, possibly mediated in response to oxidative stress which might contribute to the exaggerated inflammatory airway response observed in CF patients homozygous for the F508del mutation.

  10. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations.

    Directory of Open Access Journals (Sweden)

    Anthony A Fodor

    Full Text Available Cystic fibrosis (CF is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function

  11. The adult cystic fibrosis airway microbiota is stable over time and infection type, and highly resilient to antibiotic treatment of exacerbations.

    Science.gov (United States)

    Fodor, Anthony A; Klem, Erich R; Gilpin, Deirdre F; Elborn, J Stuart; Boucher, Richard C; Tunney, Michael M; Wolfgang, Matthew C

    2012-01-01

    Cystic fibrosis (CF) is characterized by defective mucociliary clearance and chronic airway infection by a complex microbiota. Infection, persistent inflammation and periodic episodes of acute pulmonary exacerbation contribute to an irreversible decline in CF lung function. While the factors leading to acute exacerbations are poorly understood, antibiotic treatment can temporarily resolve pulmonary symptoms and partially restore lung function. Previous studies indicated that exacerbations may be associated with changes in microbial densities and the acquisition of new microbial species. Given the complexity of the CF microbiota, we applied massively parallel pyrosequencing to identify changes in airway microbial community structure in 23 adult CF patients during acute pulmonary exacerbation, after antibiotic treatment and during periods of stable disease. Over 350,000 sequences were generated, representing nearly 170 distinct microbial taxa. Approximately 60% of sequences obtained were from the recognized CF pathogens Pseudomonas and Burkholderia, which were detected in largely non-overlapping patient subsets. In contrast, other taxa including Prevotella, Streptococcus, Rothia and Veillonella were abundant in nearly all patient samples. Although antibiotic treatment was associated with a small decrease in species richness, there was minimal change in overall microbial community structure. Furthermore, microbial community composition was highly similar in patients during an exacerbation and when clinically stable, suggesting that exacerbations may represent intrapulmonary spread of infection rather than a change in microbial community composition. Mouthwash samples, obtained from a subset of patients, showed a nearly identical distribution of taxa as expectorated sputum, indicating that aspiration may contribute to colonization of the lower airways. Finally, we observed a strong correlation between low species richness and poor lung function. Taken together, these

  12. Structure and function of airway surface layer of the human lungs & mobility of probe particles in complex fluids

    Science.gov (United States)

    Cai, Liheng

    Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the

  13. Relative contribution of Prevotella intermedia and Pseudomonas aeruginosa to lung pathology in airways of patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Beer, Isabelle; Braitmaier, Peter

    2010-01-01

    Patients with cystic fibrosis (CF) with Pseudomonas aeruginosa lung infections produce endobronchial mucus plugs allowing growth of obligate anaerobes including Prevotella spp. Whether obligate anaerobes contribute to the pathophysiology of CF lung disease is unknown....

  14. Serum- and glucocorticoid-induced protein kinase 1 (SGK1) increases the cystic fibrosis transmembrane conductance regulator (CFTR) in airway epithelial cells by phosphorylating Shank2E protein.

    Science.gov (United States)

    Koeppen, Katja; Coutermarsh, Bonita A; Madden, Dean R; Stanton, Bruce A

    2014-06-13

    The glucocorticoid dexamethasone increases cystic fibrosis transmembrane conductance regulator (CFTR) abundance in human airway epithelial cells by a mechanism that requires serum- and glucocorticoid-induced protein kinase 1 (SGK1) activity. The goal of this study was to determine whether SGK1 increases CFTR abundance by phosphorylating Shank2E, a PDZ domain protein that contains two SGK1 phosphorylation consensus sites. We found that SGK1 phosphorylates Shank2E as well as a peptide containing the first SGK1 consensus motif of Shank2E. The dexamethasone-induced increase in CFTR abundance was diminished by overexpression of a dominant-negative Shank2E in which the SGK1 phosphorylation sites had been mutated. siRNA-mediated reduction of Shank2E also reduced the dexamethasone-induced increase in CFTR abundance. Taken together, these data demonstrate that the glucocorticoid-induced increase in CFTR abundance requires phosphorylation of Shank2E at an SGK1 consensus site.

  15. Airway surface liquid volume expansion induces rapid changes in amiloride-sensitive Na+ transport across upper airway epithelium-Implications concerning the resolution of pulmonary edema

    Science.gov (United States)

    Azizi, Fouad; Arredouani, Abdelilah; Mohammad, Ramzi M

    2015-01-01

    During airway inflammation, airway surface liquid volume (ASLV) expansion may result from the movement of plasma proteins and excess liquid into the airway lumen due to extravasation and elevation of subepithelial hydrostatic pressure. We previously demonstrated that elevation of submucosal hydrostatic pressure increases airway epithelium permeability resulting in ASLV expansion by 500 μL cm−2 h−1. Liquid reabsorption by healthy airway epithelium is regulated by active Na+ transport at a rate of 5 μL cm−2 h−1. Thus, during inflammation the airway epithelium may be submerged by a large volume of luminal liquid. Here, we have investigated the mechanism by which ASLV expansion alters active epithelial Na+ transport, and we have characterized the time course of the change. We used primary cultures of tracheal airway epithelium maintained under air interface (basal ASLV, depth is 7 ± 0.5 μm). To mimic airway flooding, ASLV was expanded to a depth of 5 mm. On switching from basal to expanded ASLV conditions, short-circuit current (Isc, a measure of total transepithelial active ion transport) declined by 90% with a half-time (t1/2) of 1 h. 24 h after the switch, there was no significant change in ATP concentration nor in the number of functional sodium pumps as revealed by [3H]-ouabain binding. However, amiloride-sensitive uptake of 22Na+ was reduced by 70% upon ASLV expansion. This process is reversible since after returning cells back to air interface, Isc recovered with a t1/2 of 5–10 h. These results may have important clinical implications concerning the development of Na+ channels activators and resolution of pulmonary edema. PMID:26333829

  16. Amniotic Mesenchymal Stem Cells: A New Source for Hepatocyte-Like Cells and Induction of CFTR Expression by Coculture with Cystic Fibrosis Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Valentina Paracchini

    2012-01-01

    Full Text Available Cystic fibrosis (CF is a monogenic disease caused by mutations in the CF transmembrane conductance regulator (CFTR gene, with lung and liver manifestations. Because of pitfalls of gene therapy, novel approaches for reconstitution of the airway epithelium and CFTR expression should be explored. In the present study, human amniotic mesenchymal stem cells (hAMSCs were isolated from term placentas and characterized for expression of phenotypic and pluripotency markers, and for differentiation potential towards mesoderm (osteogenic and adipogenic lineages. Moreover, hAMSCs were induced to differentiate into hepatocyte-like cells, as demonstrated by mixed function oxidase activity and expression of albumin, alpha1-antitrypsin, and CK19. We also investigated the CFTR expression in hAMSCs upon isolation and in coculture with CF airway epithelial cells. Freshly isolated hAMSCs displayed low levels of CFTR mRNA, which even decreased with culture passages. Following staining with the vital dye CM-DiI, hAMSCs were mixed with CFBE41o- respiratory epithelial cells and seeded onto permeable filters. Flow cytometry demonstrated that 33–50% of hAMSCs acquired a detectable CFTR expression on the apical membrane, a result confirmed by confocal microscopy. Our data show that amniotic MSCs have the potential to differentiate into epithelial cells of organs relevant in CF pathogenesis and may contribute to partial correction of the CF phenotype.

  17. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota.

    Science.gov (United States)

    Goddard, Amanda F; Staudinger, Benjamin J; Dowd, Scot E; Joshi-Datar, Amruta; Wolcott, Randall D; Aitken, Moira L; Fligner, Corinne L; Singh, Pradeep K

    2012-08-21

    Recent work using culture-independent methods suggests that the lungs of cystic fibrosis (CF) patients harbor a vast array of bacteria not conventionally implicated in CF lung disease. However, sampling lung secretions in living subjects requires that expectorated specimens or collection devices pass through the oropharynx. Thus, contamination could confound results. Here, we compared culture-independent analyses of throat and sputum specimens to samples directly obtained from the lungs at the time of transplantation. We found that CF lungs with advanced disease contained relatively homogenous populations of typical CF pathogens. In contrast, upper-airway specimens from the same subjects contained higher levels of microbial diversity and organisms not typically considered CF pathogens. Furthermore, sputum exhibited day-to-day variation in the abundance of nontypical organisms, even in the absence of clinical changes. These findings suggest that oropharyngeal contamination could limit the accuracy of DNA-based measurements on upper-airway specimens. This work highlights the importance of sampling procedures for microbiome studies and suggests that methods that account for contamination are needed when DNA-based methods are used on clinical specimens.

  18. Sinonasal inhalation of tobramycin vibrating aerosol in cystic fibrosis patients with upper airway Pseudomonas aeruginosa colonization: results of a randomized, double-blind, placebo-controlled pilot study

    Directory of Open Access Journals (Sweden)

    Mainz JG

    2014-02-01

    Full Text Available Jochen G Mainz,1 Katja Schädlich,1 Claudia Schien,1 Ruth Michl,1 Petra Schelhorn-Neise,2 Assen Koitschev,3 Christiane Koitschev,4 Peter M Keller,5 Joachim Riethmüller,6 Baerbel Wiedemann,7 James F Beck1 1Cystic Fibrosis Centre, Department of Pediatrics, Jena University Hospital, Jena, Germany; 2Otorhinolaryngology Department, Jena University Hospital, Jena, Germany; 3Otorhinolaryngology Department, Klinikum Stuttgart, Germany; 4Otorhinolaryngology Department, University Hospital, Tübingen, Germany; 5Microbiology, Jena University Hospital, Jena, Germany; 6University Hospital, Pediatric CF-Centre, Tübingen, Germany; 7Technical University, Biometrics, Dresden, Germany Rationale: In cystic fibrosis (CF, the paranasal sinuses are sites of first and persistent colonization by pathogens such as Pseudomonas aeruginosa. Pathogens subsequently descend to the lower airways, with P. aeruginosa remaining the primary cause of premature death in patients with the inherited disease. Unlike conventional aerosols, vibrating aerosols applied with the PARI Sinus™ nebulizer deposit drugs into the paranasal sinuses. This trial assessed the effects of vibrating sinonasal inhalation of the antibiotic tobramycin in CF patients positive for P. aeruginosa in nasal lavage. Objectives: To evaluate the effects of sinonasal inhalation of tobramycin on P. aeruginosa quantification in nasal lavage; and on patient quality of life, measured with the Sino-Nasal Outcome Test (SNOT-20, and otologic and renal safety and tolerability. Methods: Patients were randomized to inhalation of tobramycin (80 mg/2 mL or placebo (2 mL isotonic saline once daily (4 minutes/nostril with the PARI Sinus™ nebulizer over 28 days, with all patients eligible for a subsequent course of open-label inhalation of tobramycin for 28 days. Nasal lavage was obtained before starting and 2 days after the end of each treatment period by rinsing each nostril with 10 mL of isotonic saline. Results: Nine

  19. Gel-on-Brush Model of Airway Surface of the Lung: its Predictive Role in Chronic Pulmonary Disease

    Science.gov (United States)

    Cai, Liheng; Button, Brian; Ehre, Camille; Boucher, Richard; Rubinstein, Michael

    2012-02-01

    Clearance of mucus is the primary defense mechanism that protects airways from inhaled infectious and toxic agents. The current two-layer Gel-on-Liquid model in which a gel-like mucus is propelled on top of a ``watery'' periciliary layer (PCL) surrounding the cilia does not adequately describe efficient mucociliary clearance in health nor properly predict failure of mucus clearance in disease. We propose and provide evidence for a qualitatively different Gel-on-Brush model with a gel-like mucus layer in contact with a ``brush-like'' periciliary layer, composed of macromolecules tethered to the airway surface. The relative osmotic moduli of the mucus layer to the ``brush-like'' PCL layer explain both the stability of mucus clearance in health and its failure in airway disease. Our Gel-on-Brush model of airway surface layer opens important new directions for treatments of airway disease.

  20. Quantification of liver fibrosis via second harmonic imaging of the Glisson's capsule from liver surface.

    Science.gov (United States)

    Xu, Shuoyu; Kang, Chiang Huen; Gou, Xiaoli; Peng, Qiwen; Yan, Jie; Zhuo, Shuangmu; Cheng, Chee Leong; He, Yuting; Kang, Yuzhan; Xia, Wuzheng; So, Peter T C; Welsch, Roy; Rajapakse, Jagath C; Yu, Hanry

    2016-04-01

    Liver surface is covered by a collagenous layer called the Glisson's capsule. The structure of the Glisson's capsule is barely seen in the biopsy samples for histology assessment, thus the changes of the collagen network from the Glisson's capsule during the liver disease progression are not well studied. In this report, we investigated whether non-linear optical imaging of the Glisson's capsule at liver surface would yield sufficient information to allow quantitative staging of liver fibrosis. In contrast to conventional tissue sections whereby tissues are cut perpendicular to the liver surface and interior information from the liver biopsy samples were used, we have established a capsule index based on significant parameters extracted from the second harmonic generation (SHG) microscopy images of capsule collagen from anterior surface of rat livers. Thioacetamide (TAA) induced liver fibrosis animal models was used in this study. The capsule index is capable of differentiating different fibrosis stages, with area under receiver operating characteristics curve (AUC) up to 0.91, making it possible to quantitatively stage liver fibrosis via liver surface imaging potentially with endomicroscopy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Short-term comparative study of high frequency chest wall oscillation and European airway clearance techniques in patients with cystic fibrosis

    Science.gov (United States)

    Roughton, Michael; Hodson, Margaret E; Pryor, Jennifer A

    2009-01-01

    Background High frequency chest wall oscillation (HFCWO) is standard treatment for airway clearance in the USA and has recently been introduced in the UK and Europe. There is little published research comparing HFCWO with airway clearance techniques (ACTs) frequently used in the UK and Europe. The aim of this study was to compare the short-term effects of HFCWO with usual ACTs in patients with cystic fibrosis hospitalised with an infective pulmonary exacerbation. Methods A 4-day randomised crossover design was used. Patients received either HFCWO on days 1 and 3 and usual ACTs on days 2 and 4 or vice versa. Wet weight of sputum, spirometry and oxygen saturation were measured. Perceived efficacy, comfort, incidence of urinary leakage and preference were assessed. Data were analysed by mixed model analysis. Results 29 patients (72% male) of mean (SD) age 29.4 (8.4) years and mean (SD) forced expiratory volume in 1 s (FEV1) percentage predicted (FEV1%) 38 (16.7) completed the study. Significantly more sputum was expectorated during a single treatment session and over a 24 h period (mean difference 4.4 g and 6.9 g, respectively) with usual ACTs than with HFCWO (p<0.001). No statistically significant change in FEV1% or oxygen saturation was observed after either HFCWO or usual ACTs compared with baseline. 17 patients (55%) expressed a preference for their usual ACT. Conclusions During both a finite treatment period and over 24 h, less sputum was cleared using HFCWO than usual ACT. HFCWO does not appear to cause any adverse physiological effects and may influence adherence. PMID:19703826

  2. Assessment of the Microbial Constituents of the Home Environment of Individuals with Cystic Fibrosis (CF and Their Association with Lower Airways Infections.

    Directory of Open Access Journals (Sweden)

    Alya Heirali

    Full Text Available Cystic fibrosis (CF airways are colonized by a polymicrobial community of organisms, termed the CF microbiota. We sought to define the microbial constituents of the home environment of individuals with CF and determine if it may serve as a latent reservoir for infection.Six patients with newly identified CF pathogens were included. An investigator collected repeat sputum and multiple environmental samples from their homes. Bacteria were cultured under both aerobic and anaerobic conditions. Morphologically distinct colonies were selected, purified and identified to the genus and species level through 16S rRNA gene sequencing. When concordant organisms were identified in sputum and environment, pulsed-field gel electrophoresis (PFGE was performed to determine relatedness. Culture-independent bacterial profiling of each sample was carried out by Illumina sequencing of the V3 region of the 16s RNA gene.New respiratory pathogens prompting investigation included: Mycobacterium abscessus(2, Stenotrophomonas maltophilia(3, Pseudomonas aeruginosa(3, Pseudomonas fluorescens(1, Nocardia spp.(1, and Achromobacter xylosoxidans(1. A median 25 organisms/patient were cultured from sputum. A median 125 organisms/home were cultured from environmental sites. Several organisms commonly found in the CF lung microbiome were identified within the home environments of these patients. Concordant species included members of the following genera: Brevibacterium(1, Microbacterium(1, Staphylococcus(3, Stenotrophomonas(2, Streptococcus(2, Sphingomonas(1, and Pseudomonas(4. PFGE confirmed related strains (one episode each of Sphinogomonas and P. aeruginosa from the environment and airways were identified in two patients. Culture-independent assessment confirmed that many organisms were not identified using culture-dependent techniques.Members of the CF microbiota can be found as constituents of the home environment in individuals with CF. While the majority of isolates from

  3. Use of denaturing high-performance liquid chromatography (DHPLC) to characterize the bacterial and fungal airway microbiota of cystic fibrosis patients.

    Science.gov (United States)

    Mounier, Jérôme; Gouëllo, Audrey; Keravec, Marlène; Le Gal, Solène; Pacini, Grégory; Debaets, Stella; Nevez, Gilles; Rault, Gilles; Barbier, Georges; Héry-Arnaud, Geneviève

    2014-04-01

    The aim of this study was to evaluate the use of denaturing high-performance liquid chromatography (DHPLC) to characterize cystic fibrosis (CF) airway microbiota including both bacteria and fungi. DHPLC conditions were first optimized using a mixture of V6, V7 and V8 region 16S rRNA gene PCR amplicons from 18 bacterial species commonly found in CF patients. Then, the microbial diversity of 4 sputum samples from 4 CF patients was analyzed using cultural methods, cloning/sequencing (for bacteria only) and DHPLC peak fraction collection/sequencing. DHPLC analysis allowed identifying more bacterial and fungal species than the classical culture methods, including well-recognized pathogens such as Pseudomonas aeruginosa. Even if a lower number of bacterial Operational Taxonomic Units (OTUs) was identified by DHPLC, it allowed to find OTUs unidentified by cloning/sequencing. The combination of both techniques permitted to correlate the majority of DHPLC peaks to defined OTUs. Finally, although Aspergillus fumigatus detection using DHPLC can still be improved, this technique clearly allowed to identify a higher number of fungal species versus classical culture-based methods. To conclude, DHPLC provided meaningful additional data concerning pathogenic bacteria and fungi as well as fastidious microorganisms present within the CF respiratory tract. DHPLC can be considered as a complementary technique to culture-dependent analyses in routine microbiological laboratories.

  4. Is genotyping of single isolates sufficient for population structure analysis of Pseudomonas aeruginosa in cystic fibrosis airways?

    DEFF Research Database (Denmark)

    Madsen Sommer, Lea Mette; Marvig, Rasmus L.; Luján, Adela;

    2016-01-01

    collected single isolates, and only few have included cross-sectional analyses of entire P. aeruginosa populations in sputum samples. To date only few studies have used the approach of metagenomic analysis for the purpose of investigating P. aeruginosa populations in CF airways. We analysed five metagenomes...... together with longitudinally collected single isolates from four recently chronically infected CF patients. With this approach we were able to link the clone type and the majority of SNP profiles of the single isolates to that of the metagenome(s) for each individual patient. Based on our analysis we find...... that when having access to comprehensive collections of longitudinal single isolates it is possible to rediscover the genotypes of the single isolates in the metagenomic samples. This suggests that information gained from genome sequencing of comprehensive collections of single isolates is satisfactory...

  5. Optical coherence tomography identifies lower labial salivary gland surface density in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jan K Nowak

    Full Text Available The labial minor salivary glands (LSGs are easily accessible mucus-secreting structures of the alimentary tract that may provide new information on the basis of gastrointestinal complications of cystic fibrosis (CF. It was shown that they are destructed in the course of cystic fibrosis. We employed wide-field, micrometer resolution in vivo optical coherence tomography to assess the surface density of LSGs in 18 patients with CF and 18 healthy subjects. The median LSGs' surface densities in CF patients, and in the control group were 4.32 glands/cm2 and 6.58 glands/cm2, respectively (p = 0.006; Mann-Whitney U test. A lower LSG surface density is a previously unrecognized CF-related pathology of the alimentary tract.

  6. [Regeneration of airway epithelium].

    Science.gov (United States)

    Adam, D; Perotin, J-M; Lebargy, F; Birembaut, P; Deslée, G; Coraux, C

    2014-04-01

    Epithelial regeneration is a complex process. It can lead to the remodeling of the airway epithelium as in asthma, COPD or cystic fibrosis. The development of in vivo and in vitro models has allowed the analysis of remodeling mechanisms and showed the role of components of extracellular matrix, proteases, cytokines and growth factors. Airway epithelial progenitors and stems cells have been studied in these models. However, their identification remains difficult. Identification and characterization of airway epithelial progenitor/stem-cells, and a better knowledge of the regeneration process may allow the development of new therapeutic strategies for airway epithelial reconstitution. Copyright © 2013 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  7. The improving of ventilometric indices using Airway Clearance Techniques Asociated with Inhalation Therapy applied to adolescents with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Bogdan Almăjan-Guţă

    2010-12-01

    Full Text Available Introduction: this study gave particular attention to respiratory damage, lung disease being the main target for developingtherapies in MV. The purpose of this study was to demonstrate the efficiency of Classical Respiratory clearance techniquescombined with Inhalation Therapy and to compare the results of using acetylcysteine with those of using Pulmozyme Therapy.Aerosol (inhalation therapy is, along with exercise and respiratory clearance techniques, the third component in thephysiotherapy of patients with CF. Material and method: the study was developed during a period of six months, in TheNational Center of Cystic Fibrosis, Clinic II of Pediatrics in the Emergency County Hospital, Timisoara. The study group consistedof 12 children with MV . This group was divided into two groups of 6 patients (group 1 and group 2. Group 1 followedinhalation treatment with acetylcysteine, and group 2 with Pulmozyme. Results: The evaluation of the results was done after 2months and 6 months since the study started, by measuring the FEV, and FVC. For the first group, that used acetylcysteine inthe inhalation therapy, we observed, after 6 months, an increase of FEV with an average of 2.08% and of FVC with 2.13%.Thegrowth of ventilometric indices were relatively accelerated in the first two months and later there was a slower growth,achieving final value. For the second group, that used Pulmozyme, the growth of ventilometric indices was significantly higher.Discussion: considering the two relatively homogeneous groups, in what concerns the values of ventilometric indices andsuperimposed infection, we believe that inhaled Pulmozyme therapy proved to be superior to acetylcysteine. Conclusions:inhalation therapy is an important part of physiotherapy for patients with cystic fibrosis. A consistent physiotherapy is probablythe most important element in preventing chronic pulmonary infection and, along with antibiotherapy, improves significantlythe prognosis and helps

  8. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Petersen, Jens; Nielsen, Mads; Lo, Pechin Chien Pau;

    2014-01-01

    This paper introduces a graph construction method for multi-dimensional and multi-surface segmentation problems. Such problems can be solved by searching for the optimal separating surfaces given the space of graph columns defined by an initial coarse surface. Conventional straight graph columns...... are not well suited for surfaces with high curvature, we therefore propose to derive columns from properly generated, non-intersecting flow lines. This guarantees solutions that do not self-intersect. The method is applied to segment human airway walls in computed tomography images in three-dimensions. Phantom...... measurements show that the inner and outer radii are estimated with sub-voxel accuracy. Two-dimensional manually annotated cross-sectional images were used to compare the results with those of another recently published graph based method. The proposed approach had an average overlap of 89...

  9. In vivo models of human airway epithelium repair and regeneration

    Directory of Open Access Journals (Sweden)

    C. Coraux

    2005-12-01

    Full Text Available Despite an efficient defence system, the airway surface epithelium, in permanent contact with the external milieu, is frequently injured by inhaled pollutants, microorganisms and viruses. The response of the airway surface epithelium to an acute injury includes a succession of cellular events varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even to complete denudation of the basement membrane. The epithelium has then to repair and regenerate to restore its functions. The in vivo study of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to reconstitute a functional respiratory epithelium after several weeks. Humanised tracheal xenograft models have been developed in immunodeficient nude and severe combined immunodeficient (SCID mice in order to mimic the natural regeneration process of the human airway epithelium and to analyse the cellular and molecular events involved during the different steps of airway epithelial reconstitution. These models represent very powerful tools for analysing the modulation of the biological functions of the epithelium during its regeneration. They are also very useful for identifying stem/progenitor cells of the human airway epithelium. A better knowledge of the mechanisms involved in airway epithelium regeneration, as well as the characterisation of the epithelial stem and progenitor cells, may pave the way to regenerative therapeutics, allowing the reconstitution of a functional airway epithelium in numerous respiratory diseases, such as asthma, chronic obstructive pulmonary diseases, cystic fibrosis and bronchiolitis.

  10. The TAK1→IKKβ→TPL2→MKK1/MKK2 signaling cascade regulates IL-33 expression in Cystic Fibrosis airway epithelial cells following infection by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Raquel eFarias

    2016-01-01

    Full Text Available In cystic fibrosis (CF, chronic respiratory infections result in an exaggerated and uncontrolled inflammatory response that ultimately lead to a decrease in pulmonary function. We have previously described the presence of the alarmin IL-33 in lung explants from CF patients. The signals regulating IL-33 expression in the airway epithelium following a gram-negative bacterial infection are currently unknown. Our objective was to characterize the pathways in CF airway epithelial cells (AECs leading to an increase in IL-33 expression. We found that, in CF AECs expressing a deletion of a phenylalanine at position 508 of the gene coding for Cystic Fibrosis Transmembrane Conductance Regulator (CFTRdelF508, exposure to live Pseudomonas aeruginosa upregulates IL-33 via the TLR2 and TLR5 signalling pathways. This up-regulation can be partially or fully reverted by pre-incubating CFTRdelF508 AECs with a CFTR corrector (VX-809 and/or a CFTR potentiator (VX-770. Similarly, incubation with the CFTR corrector and/or the CFTR potentiator also decreased IL-8 expression in response to infection. Moreover, using different protein kinase inhibitors that target elements downstream of TLR signalling, we show that the TAK1→IKKβ→TPL2→MKK1/MKK2 pathway regulates IL-33 expression following an infection with P. aeruginosa. Our findings represent the first characterization of the signals regulating IL-33 expression in CF airway epithelial cells in response to a bacterial infection.

  11. Role of Chitinase 3-Like-1 in Interleukin-18-Induced Pulmonary Type 1, Type 2, and Type 17 Inflammation; Alveolar Destruction; and Airway Fibrosis in the Murine Lung.

    Science.gov (United States)

    Kang, Min-Jong; Yoon, Chang Min; Nam, Milang; Kim, Do-Hyun; Choi, Je-Min; Lee, Chun Geun; Elias, Jack A

    2015-12-01

    Chitinase 3-like 1 (Chi3l1), which is also called YKL-40 in humans and BRP-39 in mice, is the prototypic chitinase-like protein. Recent studies have highlighted its impressive ability to regulate the nature of tissue inflammation and the magnitude of tissue injury and fibroproliferative repair. This can be appreciated in studies that highlight its induction after cigarette smoke exposure, during which it inhibits alveolar destruction and the genesis of pulmonary emphysema. IL-18 is also known to be induced and activated by cigarette smoke, and, in murine models, the IL-18 pathway has been shown to be necessary and sufficient to generate chronic obstructive pulmonary disease-like inflammation, fibrosis, and tissue destruction. However, the relationship between Chi3l1 and IL-18 has not been defined. To address this issue we characterized the expression of Chi3l1/BRP-39 in control and lung-targeted IL-18 transgenic mice. We also characterized the effects of transgenic IL-18 in mice with wild-type and null Chi3l1 loci. The former studies demonstrated that IL-18 is a potent stimulator of Chi3l1/BRP-39 and that this stimulation is mediated via IFN-γ-, IL-13-, and IL-17A-dependent mechanisms. The latter studies demonstrated that, in the absence of Chi3l1/BRP-39, IL-18 induced type 2 and type 17 inflammation and fibrotic airway remodeling were significantly ameliorated, whereas type 1 inflammation, emphysematous alveolar destruction, and the expression of cytotoxic T lymphocyte perforin, granzyme, and retinoic acid early transcript 1 expression were enhanced. These studies demonstrate that IL-18 is a potent stimulator of Chi3l1 and that Chi3l1 is an important mediator of IL-18-induced inflammatory, fibrotic, alveolar remodeling, and cytotoxic responses.

  12. Cohort Study of Airway Mycobiome in Adult Cystic Fibrosis Patients: Differences in Community Structure between Fungi and Bacteria Reveal Predominance of Transient Fungal Elements

    Science.gov (United States)

    Sauer-Heilborn, Annette; Welte, Tobias; Guzman, Carlos A.; Abraham, Wolf-Rainer; Höfle, Manfred G.

    2015-01-01

    The respiratory mycobiome is an important but understudied component of the human microbiota. Like bacteria, fungi can cause severe lung diseases, but their infection rates are much lower. This study compared the bacterial and fungal communities of sputum samples from a large cohort of 56 adult patients with cystic fibrosis (CF) during nonexacerbation periods and under continuous antibiotic treatment. Molecular fingerprinting based on single-strand conformation polymorphism (SSCP) analysis revealed fundamental differences between bacterial and fungal communities. Both groups of microorganisms were taxonomically classified by identification of gene sequences (16S rRNA and internal transcript spacer), and prevalences of single taxa were determined for the entire cohort. Major bacterial pathogens were frequently observed, whereas fungi of known pathogenicity in CF were detected only in low numbers. Fungal species richness increased without reaching a constant level (saturation), whereas bacterial richness showed saturation after 50 patients were analyzed. In contrast to bacteria, a large number of fungal species were observed together with high fluctuations over time and among patients. These findings demonstrated that the mycobiome was dominated by transient species, which strongly suggested that the main driving force was their presence in inhaled air rather than colonization. Considering the high exposure of human airways to fungal spores, we concluded that fungi have low colonization abilities in CF, and colonization by pathogenic fungal species may be considered a rare event. A comprehensive understanding of the conditions promoting fungal colonization may offer the opportunity to prevent colonization and substantially reduce or even eliminate fungus-related disease progression in CF. PMID:26135861

  13. Parallel activities and interactions between antimicrobial peptides and complement in host defense at the airway epithelial surface.

    Science.gov (United States)

    Hiemstra, Pieter S

    2015-11-01

    Antimicrobial peptides and complement components contribute to host defense as well as inflammation and tissue injury in the respiratory tract. The airway epithelial surface is the main site of action of these immune effectors, and airway epithelial cells contribute markedly to their local production. Whereas both antimicrobial peptides and complement display overlapping functions, it is increasingly clear that both effector mechanisms also interact. Furthermore, excessive or uncontrolled release of antimicrobial peptides as well as complement activation may contribute to inflammatory lung diseases. Therefore, further knowledge of interactions between these systems may provide more insight into the pathogenesis of a range of lung diseases. In this review, recent findings on the functions, collaborations and other interactions between antimicrobial peptides and complement are discussed with a specific focus on the airway epithelium.

  14. Evaluation of a novel technique in airway clearance therapy – Specific Cough Technique (SCT) in cystic fibrosis: A pilot study of a series of N-of-1 randomised controlled trials

    Science.gov (United States)

    Gursli, Sandra; Sandvik, Leiv; Bakkeheim, Egil; Skrede, Bjørn; Stuge, Britt

    2017-01-01

    Objectives: The aim of this pilot study was to evaluate the efficacy, safety and participants’ perception of a novel technique in airway clearance therapy – specific cough technique in cystic fibrosis. Methods: We conducted randomised controlled individual trials (N-of-1 randomised controlled trials) in six adults. Each trial included 8 weeks of treatment with two interventions each week, one with specific cough technique and one with forced expiration technique. The efficacy was investigated by a blinded assessor measuring wet weight of sputum (g) after each session. Perceived usefulness and preference was self-reported at the end of study. Additional measurements included oxygen saturation and heart rate before and after each session and lung function (week 2). Results: Three of six participants produced significantly higher mean sputum weight when using specific cough technique, differences being 21%, 38% and 23%, respectively. In three of the six participants, mean sputum weight was lower after forced expiration technique than after specific cough technique in each of the eight treatment pairs. Participant-reported outcomes were completed in all participants. Specific cough technique was reported to be easier to use in daily treatments and more normalising in everyday life. Conclusion: Specific cough technique was well tolerated and accepted by the participants with cystic fibrosis. Specific cough technique was non-inferior to forced expiration technique in terms of sputum production, thus specific cough technique appears to represent a promising alternative for clearing sputum in airway clearance therapy. PMID:28540046

  15. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Petersen, Jens; Nielsen, Mads; Lo, Pechin Chien Pau

    2014-01-01

    .5%, the alternative approach in 11.2%, and in 20.3% no method was favoured. Airway abnormality measurements obtained with the method on 490 scan pairs from a lung cancer screening trial correlate significantly with lung function and are reproducible; repeat scan R(2) of measures of the airway lumen diameter and wall...

  16. A model for the volume regulatory mechanism of the Airway Surface Layer

    Science.gov (United States)

    Lang, Michael; Rubinstein, Michael; Davis, C. William; Tarran, Robert; Boucher, Richard

    2006-03-01

    The airway surface layer (ASL) of a lung consists of two parts: a mucus layer with thickness of about 30 μm in contact with air and a periciliary layer (PCL) of about 7 μm below. Mucus collects dust and bacteria and is swept to throat by beating cilia, while riding on top of PCL. It is important that the thickness of PCL is matched with the length of cilia in order to optimize clearance of mucus. Decrease of PCL thickness would finally lead to an occlusion of the respiratory system. Experiments show that the height of PCL stays constant after removing mucus. When modifying height or composition of this open PCL by removing fluid or adding isotonic solution leads to the same final height of PCL. Thus, there must be a regulatory mechanism, that controls height, i.e. ASL volume. Additional experiments show that mechanical stimulus of the cells like shear leads to an increase of ASL volume, thus, the cell is able to actively adjust this volume. Based on these observations a class of models is introduced that describes the experiments and a specific minimum model for the given problem is proposed.

  17. Bacteria of the genus Dyella can chronically colonise the airways of patients with cystic fibrosis and elicit a pronounced antibody response

    DEFF Research Database (Denmark)

    Duus, Liv M; Høiby, Niels; Wang, Mikala;

    2013-01-01

    A patient with cystic fibrosis became chronically colonised with an unusual non-fermenting Gram-negative rod that could be cultured on Burkholderia cepacia selective agar. Phenotypic characterisation by VITEK-2 suggested identification as Elizabethkingia meningoseptica, however 16S rRNA gene sequ...

  18. Fabry disease, respiratory symptoms, and airway limitation

    DEFF Research Database (Denmark)

    Svensson, Camilla Kara; Feldt-Rasmussen, Ulla; Backer, Vibeke

    2015-01-01

    abnormalities in patients with Fabry disease. Electron microscopy of lung biopsy and induced sputum show lamellar inclusion bodies (Zebra bodies) in the cytoplasm of cells in the airway wall. X-ray and CT scan have shown patchy ground-glass pulmonary infiltrations, fibrosis, and air trapping. Fibrosis diagnosed...

  19. Bacteria of the genus Dyella can chronically colonise the airways of patients with cystic fibrosis and elicit a pronounced antibody response.

    Science.gov (United States)

    Duus, Liv M; Høiby, Niels; Wang, Mikala; Schiøtz, Oluf; Nørskov-Lauritsen, Niels

    2013-07-01

    A patient with cystic fibrosis became chronically colonised with an unusual non-fermenting Gram-negative rod that could be cultured on Burkholderia cepacia selective agar. Phenotypic characterisation by VITEK-2 suggested identification as Elizabethkingia meningoseptica, however 16S rRNA gene sequencing revealed it belonged to a putative novel species of genus Dyella. Thirty months after the initial detection, the patient produced a high level of precipitating antibodies against the bacterium.

  20. Glandular Proteome Identifies Antiprotease Cystatin C as a Critical Modulator of Airway Hydration and Clearance

    Science.gov (United States)

    Evans, T. Idil Apak; Joo, Nam Soo; Keiser, Nicholas W.; Yan, Ziying; Tyler, Scott R.; Xie, Weiliang; Zhang, Yulong; Hsiao, Jordy J.; Cho, Hyung-Ju; Wright, Michael E.; Wine, Jeffrey J.

    2016-01-01

    Defects in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel lead to viscous secretions from submucosal glands that cannot be properly hydrated and cleared by beating cilia in cystic fibrosis (CF) airways. The mechanisms by which CFTR, and the predominant epithelial sodium channel (ENaC), control the hydration and clearance of glandular secretions remain unclear. We used a proteomics approach to characterize the proteins contained in CF and non-CF submucosal gland fluid droplets and found that differentially regulated proteases (cathepsin S and H) and their antiprotease (cystatin C) influenced the equilibration of fluid on the airway surface and tracheal mucociliary clearance (MCC). Contrary to prevailing models of airway hydration and clearance, cystatin C, or raising the airway surface liquid (ASL) pH, inhibited cathepsin-dependent ENaC-mediated fluid absorption and raised the height of ASL, and yet decreased MCC velocity. Importantly, coupling of both CFTR and ENaC activities were required for effective MCC and for effective ASL height equilibration after volume challenge. Cystatin C–inhibitable cathepsins controlled initial phases of ENaC-mediated fluid absorption, whereas CFTR activity was required to prevent ASL dehydration. Interestingly, CF airway epithelia absorbed fluid more slowly owing to reduced cysteine protease activity in the ASL but became abnormally dehydrated with time. Our findings demonstrate that, after volume challenge, pH-dependent protease-mediated coupling of CFTR and ENaC activities are required for rapid fluid equilibration at the airway surface and for effective MCC. These findings provide new insights into how glandular fluid secretions may be equilibrated at the airway surface and how this process may be impaired in CF. PMID:26334941

  1. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia.

    Science.gov (United States)

    Dong, Qian; Ernst, Sarah E; Ostedgaard, Lynda S; Shah, Viral S; Ver Heul, Amanda R; Welsh, Michael J; Randak, Christoph O

    2015-05-29

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P(1),P(5)-di(adenosine-5') pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5'-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5'-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl(-) channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia.

  2. Mucus hypersecretion in the airway

    Institute of Scientific and Technical Information of China (English)

    WANG Ke; WEN Fu-qiang; XU Dan

    2008-01-01

    @@ Mucus hypersecretion is a distinguishing feature of Chronic intlammation diseases,such as asthma,1chronic bronchitis.2 bronchiectasis3 and cystic fibrosis.4Mucus hypersecretion leads to impairment of mucociliary clearance,abnormal bacterial plantation,mucus plug in the airway,and dysfunction of gas exchange.5

  3. Alveolar inflammation in cystic fibrosis

    DEFF Research Database (Denmark)

    Ulrich, Martina; Worlitzsch, Dieter; Viglio, Simona

    2010-01-01

    BACKGROUND: In infected lungs of the cystic fibrosis (CF) patients, opportunistic pathogens and mutated cystic fibrosis transmembrane conductance regulator protein (CFTR) contribute to chronic airway inflammation that is characterized by neutrophil/macrophage infiltration, cytokine release...... accumulated in type II alveolar epithelial cells, lacking CFTR. P. aeruginosa organisms were rarely present in inflamed alveoli. CONCLUSIONS: Chronic inflammation and remodeling is present in alveolar tissues of the CF lung and needs to be addressed by anti-inflammatory therapies....

  4. Sarcoidosis of the upper and lower airways.

    Science.gov (United States)

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed.

  5. Pseudomonas infection and mucociliary and absorptive clearance in the cystic fibrosis lung.

    Science.gov (United States)

    Locke, Landon W; Myerburg, Michael M; Weiner, Daniel J; Markovetz, Matthew R; Parker, Robert S; Muthukrishnan, Ashok; Weber, Lawrence; Czachowski, Michael R; Lacy, Ryan T; Pilewski, Joseph M; Corcoran, Timothy E

    2016-05-01

    Airway surface liquid hyperabsorption and mucus accumulation are key elements of cystic fibrosis lung disease that can be assessed in vivo using functional imaging methods. In this study we evaluated experimental factors affecting measurements of mucociliary clearance (MCC) and small-molecule absorption (ABS) and patient factors associated with abnormal absorption and mucus clearance.Our imaging technique utilises two radiopharmaceutical probes delivered by inhalation. Measurement repeatability was assessed in 10 adult cystic fibrosis subjects. Experimental factors were assessed in 29 adult and paediatric cystic fibrosis subjects (51 scans). Patient factors were assessed in a subgroup with optimal aerosol deposition (37 scans; 24 subjects). Paediatric subjects (n=9) underwent initial and 2-year follow-up scans. Control subjects from a previously reported study are included for comparison.High rates of central aerosol deposition influenced measurements of ABS and, to a lesser extent, MCC. Depressed MCC in cystic fibrosis was only detectable in subjects with previous Pseudomonas aeruginosa infection. Cystic fibrosis subjects without P. aeruginosa had similar MCC to control subjects. Cystic fibrosis subjects had consistently higher ABS rates.We conclude that the primary experimental factor affecting MCC/ABS measurements is central deposition percentage. Depressed MCC in cystic fibrosis is associated with P. aeruginosa infection. ABS is consistently increased in cystic fibrosis.

  6. Airway mucus, inflammation and remodeling: emerging links in the pathogenesis of chronic lung diseases.

    Science.gov (United States)

    Zhou-Suckow, Zhe; Duerr, Julia; Hagner, Matthias; Agrawal, Raman; Mall, Marcus A

    2017-03-01

    Airway mucus obstruction is a hallmark of many chronic lung diseases including rare genetic disorders such as cystic fibrosis (CF) and primary ciliary dyskinesia, as well as common lung diseases such as asthma and chronic obstructive pulmonary disease (COPD), which have emerged as a leading cause of morbidity and mortality worldwide. However, the role of excess airway mucus in the in vivo pathogenesis of these diseases remains poorly understood. The generation of mice with airway-specific overexpression of epithelial Na(+) channels (ENaC), exhibiting airway surface dehydration (mucus hyperconcentration), impaired mucociliary clearance (MCC) and mucus plugging, led to a model of muco-obstructive lung disease that shares key features of CF and COPD. In this review, we summarize recent progress in the understanding of causes of impaired MCC and in vivo consequences of airway mucus obstruction that can be inferred from studies in βENaC-overexpressing mice. These studies confirm that mucus hyperconcentration on airway surfaces plays a critical role in the pathophysiology of impaired MCC, mucus adhesion and airway plugging that cause airflow obstruction and provide a nidus for bacterial infection. In addition, these studies support the emerging concept that excess airway mucus per se, probably via several mechanisms including hypoxic epithelial necrosis, retention of inhaled irritants or allergens, and potential immunomodulatory effects, is a potent trigger of chronic airway inflammation and associated lung damage, even in the absence of bacterial infection. Finally, these studies suggest that improvement of mucus clearance may be a promising therapeutic strategy for a spectrum of muco-obstructive lung diseases.

  7. Secretory IgA response against Pseudomonas aeruginosa in the upper airways and the link with chronic lung infection in cystic fibrosis

    DEFF Research Database (Denmark)

    Mauch, Renan M.; Rossi, Claudio L.; Aiello, Talita B.

    2017-01-01

    We assessed the diagnostic ability of an enzyme-linked immunosorbent assay test for measurement of specific secretory IgA (sIgA) in saliva to identify cystic fibrosis (CF) patients with Pseudomonas aeruginosa chronic lung infection and intermittent lung colonization. A total of 102 Brazilian CF...... patients and 53 healthy controls were included. Specific serum IgG response was used as a surrogate to distinguish CF patients according to their P. aeruginosa colonization/infection status. The rate of sIgA positivity was 87.1% in CF chronically infected patients (median value = 181.5 U/mL), 48.......7% in intermittently colonized patients (median value = 45.8 U/mL) and 21.8% in free of infection patients (median value = 22.1 U/mL). sIgA levels in saliva were significantly associated with serum P. aeruginosa IgG and microbiological culture results. The sensitivity, specificity, PPV and NPV for differentiation...

  8. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  9. Pulmonary Fibrosis

    Science.gov (United States)

    Pulmonary fibrosis is a condition in which the tissue deep in your lungs becomes scarred over time. This ... blood may not get enough oxygen. Causes of pulmonary fibrosis include environmental pollutants, some medicines, some connective tissue ...

  10. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.

    Science.gov (United States)

    Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-05-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

  11. Dysfunctional lung anatomy and small airways degeneration in COPD

    Directory of Open Access Journals (Sweden)

    Burgel PR

    2013-01-01

    Full Text Available Clémence Martin, Justine Frija, Pierre-Régis BurgelDepartment of Respiratory Medicine, Cochin Hospital, AP-HP and Université Paris Descartes, Sorbonne Paris Cité, Paris, FranceAbstract: Chronic obstructive pulmonary disease (COPD is characterized by incompletely reversible airflow obstruction. Direct measurement of airways resistance using invasive techniques has revealed that the site of obstruction is located in the small conducting airways, ie, bronchioles with a diameter < 2 mm. Anatomical changes in these airways include structural abnormalities of the conducting airways (eg, peribronchiolar fibrosis, mucus plugging and loss of alveolar attachments due to emphysema, which result in destabilization of these airways related to reduced elastic recoil. The relative contribution of structural abnormalities in small conducting airways and emphysema has been a matter of much debate. The present article reviews anatomical changes and inflammatory mechanisms in small conducting airways and in the adjacent lung parenchyma, with a special focus on recent anatomical and imaging data suggesting that the initial event takes place in the small conducting airways and results in a dramatic reduction in the number of airways, together with a reduction in the cross-sectional area of remaining airways. Implications of these findings for the development of novel therapies are briefly discussed.Keywords: emphysema, small airways disease, airway mucus, innate immunity, adaptive immunity

  12. Chronic respiratory aeroallergen exposure in mice induces epithelial-mesenchymal transition in the large airways.

    Directory of Open Access Journals (Sweden)

    Jill R Johnson

    Full Text Available Chronic allergic asthma is characterized by Th2-polarized inflammation and leads to airway remodeling and fibrosis but the mechanisms involved are not clear. To determine whether epithelial-mesenchymal transition contributes to airway remodeling in asthma, we induced allergic airway inflammation in mice by intranasal administration of house dust mite (HDM extract for up to 15 consecutive weeks. We report that respiratory exposure to HDM led to significant airway inflammation and thickening of the smooth muscle layer in the wall of the large airways. Transforming growth factor beta-1 (TGF-β1 levels increased in mouse airways while epithelial cells lost expression of E-cadherin and occludin and gained expression of the mesenchymal proteins vimentin, alpha-smooth muscle actin (α-SMA and pro-collagen I. We also observed increased expression and nuclear translocation of Snail1, a transcriptional repressor of E-cadherin and a potent inducer of EMT, in the airway epithelial cells of HDM-exposed mice. Furthermore, fate-mapping studies revealed migration of airway epithelial cells into the sub-epithelial regions of the airway wall. These results show the contribution of EMT to airway remodeling in chronic asthma-like inflammation and suggest that Th2-polarized airway inflammation can trigger invasion of epithelial cells into the subepithelial regions of the airway wall where they contribute to fibrosis, demonstrating a previously unknown plasticity of the airway epithelium in allergic airway disease.

  13. Divergent Inhibitor Susceptibility among Airway Lumen-Accessible Tryptic Proteases.

    Directory of Open Access Journals (Sweden)

    Shilpa Nimishakavi

    Full Text Available Tryptic serine proteases of bronchial epithelium regulate ion flux, barrier integrity, and allergic inflammation. Inhibition of some of these proteases is a strategy to improve mucociliary function in cystic fibrosis and asthmatic inflammation. Several inhibitors have been tested in pre-clinical animal models and humans. We hypothesized that these inhibitors inactivate a variety of airway protease targets, potentially with bystander effects. To establish relative potencies and modes of action, we compared inactivation of human prostasin, matriptase, airway trypsin-like protease (HAT, and β-tryptase by nafamostat, camostat, bis(5-amidino-2-benzimidazolylmethane (BABIM, aprotinin, and benzamidine. Nafamostat achieved complete, nearly stoichiometric and very slowly reversible inhibition of matriptase and tryptase, but inhibited prostasin less potently and was weakest versus HAT. The IC50 of nafamostat's leaving group, 6-amidino-2-naphthol, was >104-fold higher than that of nafamostat itself, consistent with suicide rather than product inhibition as mechanisms of prolonged inactivation. Stoichiometric release of 6-amidino-2-naphthol allowed highly sensitive fluorometric estimation of active-site concentration in preparations of matriptase and tryptase. Camostat inactivated all enzymes but was less potent overall and weakest towards matriptase, which, however was strongly inhibited by BABIM. Aprotinin exhibited nearly stoichiometric inhibition of prostasin and matriptase, but was much weaker towards HAT and was completely ineffective versus tryptase. Benzamidine was universally weak. Thus, each inhibitor profile was distinct. Nafamostat, camostat and aprotinin markedly reduced tryptic activity on the apical surface of cystic fibrosis airway epithelial monolayers, suggesting prostasin as the major source of such activity and supporting strategies targeting prostasin for inactivation.

  14. Blunted perception of neural respiratory drive and breathlessness in patients with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Charles C. Reilly

    2016-03-01

    Full Text Available The electromyogram recorded from the diaphragm (EMGdi and parasternal intercostal muscle using surface electrodes (sEMGpara provides a measure of neural respiratory drive (NRD, the magnitude of which reflects lung disease severity in stable cystic fibrosis. The aim of this study was to explore perception of NRD and breathlessness in both healthy individuals and patients with cystic fibrosis. Given chronic respiratory loading and increased NRD in cystic fibrosis, often in the absence of breathlessness at rest, we hypothesised that patients with cystic fibrosis would be able to tolerate higher levels of NRD for a given level of breathlessness compared to healthy individuals during exercise. 15 cystic fibrosis patients (mean forced expiratory volume in 1 s (FEV1 53.5% predicted and 15 age-matched, healthy controls were studied. Spirometry was measured in all subjects and lung volumes measured in the cystic fibrosis patients. EMGdi and sEMGpara were recorded at rest and during incremental cycle exercise to exhaustion and expressed as a percentage of maximum (% max obtained from maximum respiratory manoeuvres. Borg breathlessness scores were recorded at rest and during each minute of exercise. EMGdi % max and sEMGpara % max and associated Borg breathlessness scores differed significantly between healthy subjects and cystic fibrosis patients at rest and during exercise. The relationship between EMGdi % max and sEMGpara % max and Borg score was shifted to the right in the cystic fibrosis patients, such that at comparable levels of EMGdi % max and sEMGpara % max the cystic fibrosis patients reported significantly lower Borg breathlessness scores compared to the healthy individuals. At Borg score 1 (clinically significant increase in breathlessness from baseline corresponding levels of EMGdi % max (20.2±12% versus 32.15±15%, p=0.02 and sEMGpara % max (18.9±8% versus 29.2±15%, p=0.04 were lower in the healthy individuals compared to the cystic

  15. Inflammation and its genesis in cystic fibrosis.

    Science.gov (United States)

    Nichols, David P; Chmiel, James F

    2015-10-01

    The host inflammatory response in cystic fibrosis (CF) lung disease has long been recognized as a central pathological feature and an important therapeutic target. Indeed, many believe that bronchiectasis results largely from the oxidative and proteolytic damage comprised within an exuberant airway inflammatory response that is dominated by neutrophils. In this review, we address the longstanding argument of whether or not the inflammatory response is directly attributable to impairment of the cystic fibrosis transmembrane conductance regulator or only secondary to airway obstruction and chronic bacterial infection and challenge the importance of this distinction in the context of therapy. We also review the centrality of neutrophils in CF lung pathophysiology and highlight more recent data that suggest the importance of other cell types and signaling beyond NF-κB activation. We discuss how protease and redox imbalance are critical factors in CF airway inflammation and end by reviewing some of the more promising therapeutic approaches now under development.

  16. LMTK2-mediated phosphorylation regulates CFTR endocytosis in human airway epithelial cells.

    Science.gov (United States)

    Luz, Simão; Cihil, Kristine M; Brautigan, David L; Amaral, Margarida D; Farinha, Carlos M; Swiatecka-Urban, Agnieszka

    2014-05-23

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a Cl(-)-selective ion channel expressed in fluid-transporting epithelia. Lemur tyrosine kinase 2 (LMTK2) is a transmembrane protein with serine and threonine but not tyrosine kinase activity. Previous work identified CFTR as an in vitro substrate of LMTK2, suggesting a functional link. Here we demonstrate that LMTK2 co-immunoprecipitates with CFTR and phosphorylates CFTR-Ser(737) in human airway epithelial cells. LMTK2 knockdown or expression of inactive LMTK2 kinase domain increases cell surface density of CFTR by attenuating its endocytosis in human airway epithelial cells. Moreover, LMTK2 knockdown increases Cl(-) secretion mediated by the wild-type and rescued ΔF508-CFTR. Compared with the wild-type CFTR, the phosphorylation-deficient mutant CFTR-S737A shows increased cell surface density and decreased endocytosis. These results demonstrate a novel mechanism of the phospho-dependent inhibitory effect of CFTR-Ser(737) mediated by LMTK2 via endocytosis and inhibition of the cell surface density of CFTR Cl(-) channels. These data indicate that targeting LMTK2 may increase the cell surface density of CFTR Cl(-) channels and improve stability of pharmacologically rescued ΔF508-CFTR in patients with cystic fibrosis.

  17. Severe Achromobacter xylosoxidans infection and loss of sputum bacterial diversity in an adult patient with cystic fibrosis.

    Science.gov (United States)

    Talbot, Nick P; Flight, William G

    2016-08-01

    Achromobacter spp. are emerging pathogens in the lungs of patients with cystic fibrosis. We report the case of an adult patient with cystic fibrosis and chronic A. xylosoxidans infection who experienced rapid, progressive clinical deterioration. Metagenomic analysis of the sputum revealed that the airway microbiota was almost entirely dominated by A. xylosoxidans. We review the impact of this organism on lung function and the airway microbiome in cystic fibrosis, and discuss the potential for cross-infection between patients.

  18. Relationships among CFTR expression, HCO3- secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies.

    Science.gov (United States)

    Shah, Viral S; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H; Parker, Connor P; Ostedgaard, Lynda S; Welsh, Michael J

    2016-05-10

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10-50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl(-) secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3 (-) secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3 (-) at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR(+/-) or CFTR(+/∆F508)) expressed CFTR and secreted HCO3 (-) at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3 (-) secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl(-) secretion, the amount of CFTR is rate-limiting for HCO3 (-) secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers.

  19. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  20. The lactoperoxidase system links anion transport to host defense in cystic fibrosis.

    Science.gov (United States)

    Conner, Gregory E; Wijkstrom-Frei, Corinne; Randell, Scott H; Fernandez, Vania E; Salathe, Matthias

    2007-01-23

    Chronic respiratory infections in cystic fibrosis result from CFTR channel mutations but how these impair antibacterial defense is less clear. Airway host defense depends on lactoperoxidase (LPO) that requires thiocyanate (SCN-) to function and epithelia use CFTR to concentrate SCN- at the apical surface. To test whether CFTR mutations result in impaired LPO-mediated host defense, CF epithelial SCN- transport was measured. CF epithelia had significantly lower transport rates and did not accumulate SCN- in the apical compartment. The lower CF [SCN-] did not support LPO antibacterial activity. Modeling of airway LPO activity suggested that reduced transport impairs LPO-mediated defense and cannot be compensated by LPO or H2O2 upregulation.

  1. "End-stage" pulmonary fibrosis in sarcoidosis.

    Science.gov (United States)

    Teirstein, Alvin T; Morgenthau, Adam S

    2009-02-01

    Pulmonary fibrosis is an unusual "end stage" in patients with sarcoidosis. Fibrosis occurs in a minority of patients, and presents with a unique physiologic combination of airways dysfunction (obstruction) superimposed on the more common restrictive dysfunction. Imagin techniques are essential to the diagnosis, assessment and treatment of pulmonary fibrosis. Standard chest radiographs and CT scans may reveal streaks, bullae, cephalad retraction of the hilar areas, deviation of the trachea and tented diaphragm. Positive gallium and PET scans indicate residual reversible granulomatous disease and are important guides to therapy decisions. Treatment, usually with corticosteroids, is effective in those patients with positive scans, but fibrosis does not improve with any treatment. With severe functional impariment and patient disability, pulmonary hypertension and right heart failure may supervene for which the patient will require treatment. Oxygen, careful diuresis, sildenafil and bosentan may be salutary. These patients are candidates for lung transplantation.

  2. Link between vitamin D and airway remodeling

    Directory of Open Access Journals (Sweden)

    Berraies A

    2014-04-01

    Full Text Available Anissa Berraies, Kamel Hamzaoui, Agnes HamzaouiPediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, TunisiaAbstract: In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma.Keywords: vitamin D, asthma, airway remodeling, airway smooth muscle, supplementation

  3. Tgf-beta downregulation of distinct chloride channels in cystic fibrosis-affected epithelia.

    Directory of Open Access Journals (Sweden)

    Hongtao Sun

    Full Text Available The cystic fibrosis transmembrane conductance regulator (CFTR and Calcium-activated Chloride Conductance (CaCC each play critical roles in maintaining normal hydration of epithelial surfaces including the airways and colon. TGF-beta is a genetic modifier of cystic fibrosis (CF, but how it influences the CF phenotype is not understood.We tested the hypothesis that TGF-beta potently downregulates chloride-channel function and expression in two CF-affected epithelia (T84 colonocytes and primary human airway epithelia compared with proteins known to be regulated by TGF-beta.TGF-beta reduced CaCC and CFTR-dependent chloride currents in both epithelia accompanied by reduced levels of TMEM16A and CFTR protein and transcripts. TGF-beta treatment disrupted normal regulation of airway-surface liquid volume in polarized primary human airway epithelia, and reversed F508del CFTR correction produced by VX-809. TGF-beta effects on the expression and activity of TMEM16A, wtCFTR and corrected F508del CFTR were seen at 10-fold lower concentrations relative to TGF-beta effects on e-cadherin (epithelial marker and vimentin (mesenchymal marker expression. TGF-beta downregulation of TMEM16A and CFTR expression were partially reversed by Smad3 and p38 MAPK inhibition, respectively.TGF-beta is sufficient to downregulate two critical chloride transporters in two CF-affected tissues that precedes expression changes of two distinct TGF-beta regulated proteins. Our results provide a plausible mechanism for CF-disease modification by TGF-beta through effects on CaCC.

  4. Diversity of metabolic profiles of cystic fibrosis Pseudomonas aeruginosa during the early stages of lung infection

    DEFF Research Database (Denmark)

    Jørgensen, Karin Meinike; Wassermann, Tina; Johansen, Helle Krogh;

    2015-01-01

    Pseudomonas aeruginosa is the dominant pathogen infecting the airways of cystic fibrosis (CF) patients. During the intermittent colonization phase, P. aeruginosa resembles environmental strains but later evolves to the chronic adapted phenotype characterized by resistance to antibiotics...

  5. A physiologically-motivated compartment-based model of the effect of inhaled hypertonic saline on mucociliary clearance and liquid transport in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Matthew R Markovetz

    Full Text Available BACKGROUND: Cystic Fibrosis (CF lung disease is characterized by liquid hyperabsorption, airway surface dehydration, and impaired mucociliary clearance (MCC. Herein, we present a compartment-based mathematical model of the airway that extends the resolution of functional imaging data. METHODS: Using functional imaging data to inform our model, we developed a system of mechanism-motivated ordinary differential equations to describe the mucociliary clearance and absorption of aerosolized radiolabeled particle and small molecules probes from human subjects with and without CF. We also utilized a novel imaging metric in vitro to gauge the fraction of airway epithelial cells that have functional ciliary activity. RESULTS: This model, and its incorporated kinetic rate parameters, captures the MCC and liquid dynamics of the hyperabsorptive state in CF airways and the mitigation of that state by hypertonic saline treatment. CONCLUSIONS: We postulate, based on the model structure and its ability to capture clinical patient data, that patients with CF have regions of airway with diminished MCC function that can be recruited with hypertonic saline treatment. In so doing, this model structure not only makes a case for durable osmotic agents used in lung-region specific treatments, but also may provide a possible clinical endpoint, the fraction of functional ciliated airway.

  6. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    Science.gov (United States)

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways.

  7. Host–microbe interactions in distal airways: relevance to chronic airway diseases

    Directory of Open Access Journals (Sweden)

    Clémence Martin

    2015-03-01

    Full Text Available This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans. These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host–microbe (mostly bacteria and viruses interactions in healthy and diseased airways, with a special focus on distal airways.

  8. Fibrosis retroperitoneal

    Directory of Open Access Journals (Sweden)

    Claudio Orlich-Castelán

    2005-07-01

    Full Text Available Se reporta el caso de una mujer de 61 años de edad, con antecedente de tuberculosis pélvica en la adolescencia, que se presentó con insuficiencia renal aguda y dolor lumbar y a quien se le diagnosticó fibrosis retroperitoneal. Se revisa la bibliografía reciente y los principales aspectos de esta enfermedadRetroperitoneal fibrosis. is an uncommon disease complicated by ureteral entrapment causing hydronephrosis and obstructive renal failure. We herein report a case recently diagnosed at our institution and review the literature on this topic

  9. Elective use of the Ventrain for upper airway obstruction during high-frequency jet ventilation.

    Science.gov (United States)

    Fearnley, Robert A; Badiger, Sheela; Oakley, Richard J; Ahmad, Imran

    2016-09-01

    The safety of high pressure source ventilation (jet ventilation) is dependent upon upper airway patency to facilitate adequate passive expiration and prevent increasing intrathoracic pressure and its associated deleterious sequelae. Distortions in airway anatomy may make passive expiration inadequate or impossible in some patients. We report the elective use of the Ventrain device to provide ventilation in a clinical setting of upper airway obstruction in a patient with post radiation fibrosis that had previously prevented passive expiration during attempted high pressure source ventilation.

  10. Cystic fibrosis lung disease: genetic influences, microbial interactions, and radiological assessment

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, Samuel M.; Gibson, Ronald L. [University of Washington, Department of Pediatrics, Seattle, WA (United States); Effmann, Eric L. [University of Washington School of Medicine, Children' s Hospital and Regional Medical Center, Department of Radiology, Seattle, WA (United States)

    2005-08-01

    Cystic fibrosis (CF) is a multiorgan disease caused by mutation of the CF transmembrane conductance regulator (CFTR) gene. Obstructive lung disease is the predominant cause of morbidity and mortality; thus, most efforts to improve outcomes are directed toward slowing or halting lung-disease progression. Current therapies, such as mucolytics, airway clearance techniques, bronchodilators, and antibiotics, aim to suppress airway inflammation and the processes that stimulate it, namely, retention and infection of mucus plaques at the airway surface. New approaches to therapy that aim to ameliorate specific CFTR mutations or mutational classes by restoring normal expression or function are being investigated. Because of its sensitivity in detecting changes associated with early airway obstruction and regional lung disease, high-resolution CT (HRCT) complements pulmonary function testing in defining disease natural history and measuring response to both conventional and experimental therapies. In this review, perspectives on the genetics and microbiology of CF provide a context for understanding the increasing importance of HRCT and other imaging techniques in assessing CF therapies. (orig.)

  11. Airway management in trauma

    Directory of Open Access Journals (Sweden)

    Rashid M Khan

    2011-01-01

    Full Text Available Trauma has assumed epidemic proportion. 10% of global road accident deaths occur in India. Hypoxia and airway mismanagement are known to contribute up to 34% of pre-hospital deaths in these patients. A high degree of suspicion for actual or impending airway obstruction should be assumed in all trauma patients. Objective signs of airway compromise include agitation, obtundation, cyanosis, abnormal breath sound and deviated trachea. If time permits, one should carry out a brief airway assessment prior to undertaking definitive airway management in these patients. Simple techniques for establishing and maintaining airway patency include jaw thrust maneuver and/or use of oro- and nas-opharyngeal airways. All attempts must be made to perform definitive airway management whenever airway is compromised that is not amenable to simple strategies. The selection of airway device and route- oral or -nasal, for tracheal intubation should be based on nature of patient injury, experience and skill level.

  12. Laryngeal Radiation Fibrosis: A Case of Failed Awake Flexible Fibreoptic Intubation

    Directory of Open Access Journals (Sweden)

    Johannes M. Huitink

    2011-01-01

    Full Text Available Awake fibreoptic intubation is accepted as the gold standard for intubation of patients with an anticipated difficult airway. Radiation fibrosis may cause difficulties during the intubation procedure. We present an unusual severe case of radiation induced changes to the larynx, with limited clinical symptoms, that caused failure of the fibreoptic intubation technique. A review of the known literature on radiation fibrosis and airway management is presented.

  13. Airway Hydration and COPD

    Science.gov (United States)

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  14. Airway management before chemoradiation for advanced head and neck cancer.

    Science.gov (United States)

    Langerman, Alexander; Patel, Riddhi M; Cohen, Ezra E W; Blair, Elizabeth A; Stenson, Kerstin M

    2012-02-01

    Patients with upper aerodigestive tract tumors can have development of airway compromise both before and during chemoradiotherapy (CRT). Tracheotomy is the classic method for securing a safe airway, but tumor debulking may also be used. This was a retrospective review of locoregionally advanced tumors of the base of tongue, larynx, or hypopharynx undergoing CRT between 1995 and 2007. Forty-two of the 109 patients presented with signs or symptoms of airway obstruction. Of these, 28 underwent tracheotomy before CRT, and 11 had tumor debulking. Two of the 11 patients who underwent debulking required tracheotomy within 1 year after CRT for persistent edema and fibrosis. Larynx tumors were more likely to require tracheotomy or debulking than other tumors (p = .01). Debulking is a safe and effective alternative to tracheotomy in select patients with tumor-related airway obstruction before CRT. Patients who undergo debulking should be monitored closely for recurrence of airway compromise during and after CRT. Copyright © 2011 Wiley Periodicals, Inc.

  15. Diagnosis of Adult Patients with Cystic Fibrosis.

    Science.gov (United States)

    Nick, Jerry A; Nichols, David P

    2016-03-01

    The diagnosis of cystic fibrosis (CF) is being made with increasing frequency in adults. Patients with CF diagnosed in adulthood typically present with respiratory complaints, and often have recurrent or chronic airway infection. At the time of initial presentation individuals may appear to have clinical manifestation limited to a single organ, but with subclinical involvement of the respiratory tract. Adult-diagnosed patients have a good response to CF center care, and newly available cystic fibrosis transmembrane receptor-modulating therapies are promising for the treatment of residual function mutation, thus increasing the importance of the diagnosis in adults with unexplained bronchiectasis.

  16. KyoT2 downregulates airway remodeling in asthma.

    Science.gov (United States)

    Hu, Mei; Ou-Yang, Hai-Feng; Han, Xing-Peng; Ti, Xin-Yu; Wu, Chang-Gui

    2015-01-01

    The typical pathological features of asthma are airway remodeling and airway hyperresponsiveness (AHR). KyoT2, a negative modulator of Notch signaling, has been linked to asthma in several previous studies. However, whether KyoT2 is involved in the regulation of airway remodeling or the modulation of airway resistance in asthma is unclear. In this study, we aimed to evaluate the therapeutic potential of KyoT2 in preventing asthma-associated airway remodeling and AHR. BALB/c mice were used to generate a mouse model of asthma. Additionally, the expression of Hes1 and Notch1 in airway was analyzed using Immunofluorescence examination. The asthmatic mice were intranasally administered adenovirus expressing KyoT2 and were compared to control groups. Furthermore, subepithelial fibrosis and other airway remodeling features were analyzed using hematoxylin and eosin staining, Van Gieson's staining and Masson's trichrome staining. AHR was also evaluated. This study revealed that KyoT2 downregulated the expression of Hes1, repressed airway remodeling, and alleviated AHR in asthmatic mice. It is reasonable to assume that KyoT2 downregulates airway remodeling and resistance in asthmatic mice through a Hes1-dependent mechanism. Therefore, KyoT2 is a potential clinical treatment strategy for asthma.

  17. Ion transport in epithelial spheroids derived from human airway cells

    DEFF Research Database (Denmark)

    Pedersen, P S; Frederiksen, O; Holstein-Rathlou, N H

    1999-01-01

    In the present study, we describe a novel three-dimensional airway epithelial explant preparation and demonstrate its use for ion transport studies by electrophysiological technique. Suspension cultures of sheets of epithelial cells released by protease treatment from cystic fibrosis (CF) and non...

  18. Nebulized hypertonic saline decreases IL-8 in sputum of patients with cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2011-06-01

    Inflammation within the cystic fibrosis (CF) lung is mediated by inflammatory chemokines, such as IL-8. IL-8 is protected from proteolytic degradation in the airways by binding to glycosaminoglycans, while remaining active. Evidence that increased hypertonicity of airway secretions induced by hypertonic saline treatment alters levels of IL-8 is lacking.

  19. Polymorphisms Associated with Expression of BPIFA1/BPIFB1 and Lung Disease Severity in Cystic Fibrosis

    NARCIS (Netherlands)

    Saferali, Aabida; Obeidat, Ma'en; Berube, Jean-Christophe; Lamontagne, Maxime; Bosse, Yohan; Laviolette, Michel; Hao, Ke; Nickle, David C.; Timens, Wim; Sin, Don D.; Postma, Dirkje S.; Strug, Lisa J.; Gallins, Paul J.; Pare, Peter D.; Bingle, Colin D.; Sandford, Andrew J.

    2015-01-01

    BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are putative innate immune molecules expressed in the upper airways. Because of their hypothesized roles in airway defense, these molecules may contribute to lung disease severity in cystic fibrosis (CF). We interrogated BPIFA1/BPIFB1 single

  20. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition.

    Science.gov (United States)

    Luciani, Alessandro; Villella, Valeria Rachela; Esposito, Speranza; Brunetti-Pierri, Nicola; Medina, Diego; Settembre, Carmine; Gavina, Manuela; Pulze, Laura; Giardino, Ida; Pettoello-Mantovani, Massimo; D'Apolito, Maria; Guido, Stefano; Masliah, Eliezer; Spencer, Brian; Quaratino, Sonia; Raia, Valeria; Ballabio, Andrea; Maiuri, Luigi

    2010-09-01

    Accumulation of unwanted/misfolded proteins in aggregates has been observed in airways of patients with cystic fibrosis (CF), a life-threatening genetic disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). Here we show how the defective CFTR results in defective autophagy and decreases the clearance of aggresomes. Defective CFTR-induced upregulation of reactive oxygen species (ROS) and tissue transglutaminase (TG2) drive the crosslinking of beclin 1, leading to sequestration of phosphatidylinositol-3-kinase (PI(3)K) complex III and accumulation of p62, which regulates aggresome formation. Both CFTR knockdown and the overexpression of green fluorescent protein (GFP)-tagged-CFTR(F508del) induce beclin 1 downregulation and defective autophagy in non-CF airway epithelia through the ROS-TG2 pathway. Restoration of beclin 1 and autophagy by either beclin 1 overexpression, cystamine or antioxidants rescues the localization of the beclin 1 interactome to the endoplasmic reticulum and reverts the CF airway phenotype in vitro, in vivo in Scnn1b-transgenic and Cftr(F508del) homozygous mice, and in human CF nasal biopsies. Restoring beclin 1 or knocking down p62 rescued the trafficking of CFTR(F508del) to the cell surface. These data link the CFTR defect to autophagy deficiency, leading to the accumulation of protein aggregates and to lung inflammation.

  1. Relationships among CFTR expression, HCO3− secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies

    Science.gov (United States)

    Shah, Viral S.; Ernst, Sarah; Tang, Xiao Xiao; Karp, Philip H.; Parker, Connor P.; Ostedgaard, Lynda S.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. Airway disease is the major source of morbidity and mortality. Successful implementation of gene- and cell-based therapies for CF airway disease requires knowledge of relationships among percentages of targeted cells, levels of CFTR expression, correction of electrolyte transport, and rescue of host defense defects. Previous studies suggested that, when ∼10–50% of airway epithelial cells expressed CFTR, they generated nearly wild-type levels of Cl− secretion; overexpressing CFTR offered no advantage compared with endogenous expression levels. However, recent discoveries focused attention on CFTR-mediated HCO3− secretion and airway surface liquid (ASL) pH as critical for host defense and CF pathogenesis. Therefore, we generated porcine airway epithelia with varying ratios of CF and wild-type cells. Epithelia with a 50:50 mix secreted HCO3− at half the rate of wild-type epithelia. Likewise, heterozygous epithelia (CFTR+/− or CFTR+/∆F508) expressed CFTR and secreted HCO3− at ∼50% of wild-type values. ASL pH, antimicrobial activity, and viscosity showed similar relationships to the amount of CFTR. Overexpressing CFTR increased HCO3− secretion to rates greater than wild type, but ASL pH did not exceed wild-type values. Thus, in contrast to Cl− secretion, the amount of CFTR is rate-limiting for HCO3− secretion and for correcting host defense abnormalities. In addition, overexpressing CFTR might produce a greater benefit than expressing CFTR at wild-type levels when targeting small fractions of cells. These findings may also explain the risk of airway disease in CF carriers. PMID:27114540

  2. Macrophage adaptation in airway inflammatory resolution

    Directory of Open Access Journals (Sweden)

    Manminder Kaur

    2015-09-01

    Full Text Available Bacterial and viral infections (exacerbations are particularly problematic in those with underlying respiratory disease, including post-viral infection, asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. Patients experiencing exacerbations tend to be at the more severe end of the disease spectrum and are often difficult to treat. Most of the unmet medical need remains in this patient group. Airway macrophages are one of the first cell populations to encounter airborne pathogens and, in health, exist in a state of reduced responsiveness due to interactions with the respiratory epithelium and specific factors found in the airway lumen. Granulocyte–macrophage colony-stimulating factor, interleukin-10, transforming growth factor-β, surfactant proteins and signalling via the CD200 receptor, for example, all raise the threshold above which airway macrophages can be activated. We highlight that following severe respiratory inflammation, the airspace microenvironment does not automatically re-set to baseline and may leave airway macrophages more restrained than they were at the outset. This excessive restraint is mediated in part by the clearance of apoptotic cells and components of extracellular matrix. This implies that one strategy to combat respiratory exacerbations would be to retune airway macrophage responsiveness to allow earlier bacterial recognition.

  3. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    Rationale – Chronic Obstructive Pulmonary Disease (COPD) is a combination of chronic bronchitis and emphysema, which both may lead to airway obstruction. Under normal circumstances, airway dimensions vary as a function of inspiration level. We aim to study the influence of COPD and emphysema...... and emphysema, respectively. Conclusions – Airway distensibility decreases significantly with increasing severity of both GOLD status and emphysema, indicating that in COPD the dynamic change in airway calibre during respiration is compromised. Chronic bronchitis and emphysema appear to be interacting...

  4. Respiratory viral infections and interaction with bacteria in children with cystic fibrosis

    NARCIS (Netherlands)

    van Ewijk, E.

    2008-01-01

    Cystic fibrosis (CF) is one of the most common lethal autosomal recessive disorders in the Caucasian population. Mutations of the cystic fibrosis transregulator membrane gene cause the body to produce thick, sticky mucus. In the lungs this results in obstruction of the airways associated with chroni

  5. Fibrosis retroperitoneal

    Directory of Open Access Journals (Sweden)

    Claudio Orlich-Castelán

    2005-07-01

    Full Text Available Se reporta el caso de una mujer de 61 años de edad, con antecedente de tuberculosis pélvica en la adolescencia, que se presentó con insuficiencia renal aguda y dolor lumbar y a quien se le diagnosticó fibrosis retroperitoneal. Se revisa la bibliografía reciente y los principales aspectos de esta enfermedad

  6. [Retroperitoneal fibrosis].

    Science.gov (United States)

    Babski, Paweł; Wojtuń, Stanisław; Gil, Jerzy

    2007-05-01

    Retroperitoneal fibrosis is a rare clinical entity characterised by the presence of patologic collagen tissue in a retroperitoneal space. The fibrous mass covers abdominal organs causing their disfunctions. RPF was described at the begining of XX century but its etiology is not clear yet. Usually it causes an ureter obstuction and hydronephrosis, that is why most commonly is diagnosed by urologists and nephrologists. However, retroperitoneal fibrosis can be multifacial disease. In some patients localisation of fibrosis is atypical and manifestationns can be varied. Gastrological symptoms like jaundice, bowel obstuction, ascites can occure. Besides, some early signs of RPF are nonspecific and can imitate alarming symptoms of neoplasma, e.g.: weight loss, anemia, malaise, anorexia, fever. This force us to initiate gastrological investigation. The awareness of this disease is important. The early diagnosis and treatment improves prognosis and alows to avoid heavy complications. In typical cases radiology is often enough for diagnosis. However, histological examination is needed in many cases, especialy when patological mass is located atypical. A treatment is made up of farmacology and surgery. The first one is based on steroids, immunossuppressant and tamoxifen. Surgery is needed to eliminate organs obstruction.

  7. Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium

    OpenAIRE

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J.; Samulski, R. Jude

    2009-01-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an...

  8. Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways.

    Science.gov (United States)

    Euba, Begoña; Moleres, Javier; Viadas, Cristina; Ruiz de los Mozos, Igor; Valle, Jaione; Bengoechea, José Antonio; Garmendia, Junkal

    2015-01-01

    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.

  9. Cystic Fibrosis Research

    Science.gov (United States)

    ... please turn Javascript on. Feature: Steady Advances Against Cystic Fibrosis Cystic Fibrosis Research Past Issues / Fall 2012 Table of Contents "Remarkable strides in cystic fibrosis research over the past two decades have culminated ...

  10. Molecular and functional assessment of multicellular cancer spheroids produced in double emulsions enabled by efficient airway resistance based selective surface treatment

    Science.gov (United States)

    Ma, Xiao; Leth Jepsen, Morten; Ivarsen, Anne Kathrine R.; Knudsen, Birgitta R.; Ho, Yi-Ping

    2017-09-01

    Multicellular spheroids have garnered significant attention as an in vitro three-dimensional cancer model which can mimick the in vivo microenvironmental features. While microfluidics generated double emulsions have become a potential method to generate spheroids, challenges remain on the tedious procedures. Enabled by a novel ‘airway resistance’ based selective surface treatment, this study presents an easy and facile generation of double emulsions for the initiation and cultivation of multicellular spheroids in a scaffold-free format. Combining with our previously developed DNA nanosensors, intestinal spheroids produced in the double emulsions have shown an elevated activities of an essential DNA modifying enzyme, the topoisomerase I. The observed molecular and functional characteristics of spheroids produced in double emulsions are similar to the counterparts produced by the commercially available ultra-low attachment plates. However, the double emulsions excel for their improved uniformity, and the consistency of the results obtained by subsequent analysis of the spheroids. The presented technique is expected to ease the burden of producing spheroids and to promote the spheroids model for cancer or stem cell study.

  11. Magnetofection Enhances Lentiviral-Mediated Transduction of Airway Epithelial Cells through Extracellular and Cellular Barriers.

    Science.gov (United States)

    Castellani, Stefano; Orlando, Clara; Carbone, Annalucia; Di Gioia, Sante; Conese, Massimo

    2016-11-23

    Gene transfer to airway epithelial cells is hampered by extracellular (mainly mucus) and cellular (tight junctions) barriers. Magnetofection has been used to increase retention time of lentiviral vectors (LV) on the cellular surface. In this study, magnetofection was investigated in airway epithelial cell models mimicking extracellular and cellular barriers. Bronchiolar epithelial cells (H441 line) were evaluated for LV-mediated transduction after polarization onto filters and dexamethasone (dex) treatment, which induced hemicyst formation, with or without magnetofection. Sputum from cystic fibrosis (CF) patients was overlaid onto cells, and LV-mediated transduction was evaluated in the absence or presence of magnetofection. Magnetofection of unpolarized H441 cells increased the transduction with 50 MOI (multiplicity of infection, i.e., transducing units/cell) up to the transduction obtained with 500 MOI in the absence of magnetofection. Magnetofection well-enhanced LV-mediated transduction in mucus-layered cells by 20.3-fold. LV-mediated transduction efficiency decreased in dex-induced hemicysts in a time-dependent fashion. In dome-forming cells, zonula occludens-1 (ZO-1) localization at the cell borders was increased by dex treatment. Under these experimental conditions, magnetofection significantly increased LV transduction by 5.3-fold. In conclusion, these results show that magnetofection can enhance LV-mediated gene transfer into airway epithelial cells in the presence of extracellular (sputum) and cellular (tight junctions) barriers, representing CF-like conditions.

  12. THE BUFFER CAPACITY OF AIRWAY EPITHELIAL SECRETIONS

    Directory of Open Access Journals (Sweden)

    Dusik eKim

    2014-06-01

    Full Text Available The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF. The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 µl volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO3- is the major buffer. Peak buffer capacity (β increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO3- secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO3- secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

  13. Potential of Helper-Dependent Adenoviral Vectors in Modulating Airway Innate Immunity

    Institute of Scientific and Technical Information of China (English)

    Rahul Kushwah; Huibi Cao; Jim Hu

    2007-01-01

    Innate immune responses form the first line of defense against foreign insults and recently significant advances have been made in our understanding of the initiation of innate immune response along with its ability to modulate inflammation. In airway diseases such as asthma, COPD and cystic fibrosis, over reacting of the airway innate immune responses leads to cytokine imbalance and airway remodeling or damage. Helper-dependent adenoviral vectors have the potential to deliver genes to modulate airway innate immune responses and have many advantages over its predecessors. However, there still are a few limitations that need to be addressed prior to their use in clinical applications.

  14. The effect of NO-donors on chloride efflux, intracellular Ca(2+) concentration and mRNA expression of CFTR and ENaC in cystic fibrosis airway epithelial cells.

    Science.gov (United States)

    Oliynyk, Igor; Hussain, Rashida; Amin, Ahmad; Johannesson, Marie; Roomans, Godfried M

    2013-06-01

    Since previous studies showed that the endogenous bronchodilator, S-nitrosglutathione (GSNO), caused a marked increase in CFTR-mediated chloride (Cl(-)) efflux and improved the trafficking of CFTR to the plasma membrane, and that also the nitric oxide (NO)-donor GEA3162 had a similar, but smaller, effect on Cl(-) efflux, it was investigated whether the NO-donor properties of GSNO were relevant for its effect on Cl(-) efflux from airway epithelial cells. Hence, the effect of a number of other NO-donors, sodium nitroprusside (SNP), S-nitroso-N-acetyl-DL-penicillamine (SNAP), diethylenetriamine/nitric oxide adduct (DETA-NO), and diethylenetriamine/nitric oxide adduct (DEA-NONOate) on Cl(-) efflux from CFBE (∆F508/∆F508-CFTR) airway epithelial cells was tested. Cl(-) efflux was determined using the fluorescent N-(ethoxycarbonylmethyl)-6-methoxyquinoliniu bromide (MQAE)-technique. Possible changes in the intracellular Ca(2+) concentration were tested by the fluorescent fluo-4 method in a confocal microscope system. Like previously with GSNO, after 4 h incubation with the NO-donor, an increased Cl(-) efflux was found (in the order SNAP>DETA-NO>SNP). The effect of DEA-NONOate on Cl(-) efflux was not significant, and the compound may have (unspecific) deleterious effects on the cells. Again, as with GSNO, after a short (5 min) incubation, SNP had no significant effect on Cl(-) efflux. None of the NO-donors that had a significant effect on Cl(-) efflux caused significant changes in the intracellular Ca(2+) concentration. After 4 h preincubation, SNP caused a significant increase in the mRNA expression of CFTR. SNAP and DEA-NONOate decreased the mRNA expression of all ENaC subunits significantly. DETA-NO caused a significant decrease only in α-ENaC expression. After a short preincubation, none of the NO-donors had a significant effect, neither on the expression of CFTR, nor on that of the ENaC subunits in the presence and absence of L-cysteine. It can be concluded that

  15. Transcellular sodium transport in cultured cystic fibrosis human nasal epithelium

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Boucher, Richard C.

    1991-01-01

    Cystic fibrosis (CF) airway epithelia exhibit raised transepithelial Na+ transport rates, as determined by open-circuit isotope fluxes and estimates of the amiloride-sensitive equivalent short-circuit current (Ieq). To study the contribution of apical and basolateral membrane paths to raised Na+ ...

  16. Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis.

    NARCIS (Netherlands)

    A. Gates; L. Warnock; Dr. C.P. van der Schans

    2013-01-01

    BACKGROUND: Chest physiotherapy is widely used in people with cystic fibrosis in order to clear mucus from the airways. OBJECTIVES: To determine the effectiveness and acceptability of chest physiotherapy compared to no treatment or spontaneous cough alone to improve mucus clearance in cystic

  17. Transcellular sodium transport in cultured cystic fibrosis human nasal epithelium

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Boucher, Richard C.

    1991-01-01

    Cystic fibrosis (CF) airway epithelia exhibit raised transepithelial Na+ transport rates, as determined by open-circuit isotope fluxes and estimates of the amiloride-sensitive equivalent short-circuit current (Ieq). To study the contribution of apical and basolateral membrane paths to raised Na...

  18. Ataluren and similar compounds (specific therapies for premature termination codon class I mutations) for cystic fibrosis.

    Science.gov (United States)

    Aslam, Aisha A; Higgins, Colin; Sinha, Ian P; Southern, Kevin W

    2017-01-19

    Cystic fibrosis is a common life-shortening genetic disorder in the Caucasian population (less common in other ethnic groups) caused by the mutation of a single gene that codes for the production of the cystic fibrosis transmembrane conductance regulator protein. This protein coordinates the transport of salt (and bicarbonate) across cell surfaces and the mutation most notably affects the airways. In the lungs of people with cystic fibrosis, defective protein results in a dehydrated surface liquid and compromised mucociliary clearance. The resulting thick mucus makes the airway prone to chronic infection and inflammation, which consequently damages the structure of the airways, eventually leading to respiratory failure. Additionally, abnormalities in the cystic fibrosis transmembrane conductance regulator protein lead to other systemic complications including malnutrition, diabetes and subfertility.Five classes of mutation have been described, depending on the impact of the mutation on the processing of the cystic fibrosis transmembrane conductance regulator protein in the cell. In class I mutations, the presence of premature termination codons prevents the production of any functional protein resulting in a severe cystic fibrosis phenotype. Advances in the understanding of the molecular genetics of cystic fibrosis has led to the development of novel mutation-specific therapies. Therapies targeting class I mutations (premature termination codons) aim to mask the abnormal gene sequence and enable the normal cellular mechanism to read through the mutation, potentially restoring the production of the cystic fibrosis transmembrane conductance regulator protein. This could in turn make salt transport in the cells function more normally and may decrease the chronic infection and inflammation that characterises lung disease in people with cystic fibrosis. To evaluate the benefits and harms of ataluren and similar compounds on clinically important outcomes in people with

  19. Human airway xenograft models of epithelial cell regeneration

    Directory of Open Access Journals (Sweden)

    Puchelle Edith

    2000-10-01

    Full Text Available Abstract Regeneration and restoration of the airway epithelium after mechanical, viral or bacterial injury have a determinant role in the evolution of numerous respiratory diseases such as chronic bronchitis, asthma and cystic fibrosis. The study in vivo of epithelial regeneration in animal models has shown that airway epithelial cells are able to dedifferentiate, spread, migrate over the denuded basement membrane and progressively redifferentiate to restore a functional respiratory epithelium after several weeks. Recently, human tracheal xenografts have been developed in immunodeficient severe combined immunodeficiency (SCID and nude mice. In this review we recall that human airway cells implanted in such conditioned host grafts can regenerate a well-differentiated and functional human epithelium; we stress the interest in these humanized mice in assaying candidate progenitor and stem cells of the human airway mucosa.

  20. Biomarkers for liver fibrosis

    Science.gov (United States)

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2015-09-15

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  1. Biomarkers for liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Jon M.; Burnum-Johnson, Kristin E.; Baker, Erin M.; Smith, Richard D.; Gritsenko, Marina A.; Orton, Daniel

    2017-05-16

    Methods and systems for diagnosing or prognosing liver fibrosis in a subject are provided. In some examples, such methods and systems can include detecting liver fibrosis-related molecules in a sample obtained from the subject, comparing expression of the molecules in the sample to controls representing expression values expected in a subject who does not have liver fibrosis or who has non-progressing fibrosis, and diagnosing or prognosing liver fibrosis in the subject when differential expression of the molecules between the sample and the controls is detected. Kits for the diagnosis or prognosis of liver fibrosis in a subject are also provided which include reagents for detecting liver fibrosis related molecules.

  2. Cuffed oropharyngeal airway for difficult airway management.

    Science.gov (United States)

    Takaishi, Kazumi; Kawahito, Shinji; Tomioka, Shigemasa; Eguchi, Satoru; Kitahata, Hiroshi

    2014-01-01

    Difficulties with airway management are often caused by anatomic abnormalities due to previous oral surgery. We performed general anesthesia for a patient who had undergone several operations such as hemisection of the mandible and reconstructive surgery with a deltopectoralis flap, resulting in severe maxillofacial deformation. This made it impossible to ventilate with a face mask and to intubate in the normal way. An attempt at oral awake intubation using fiberoptic bronchoscopy was unsuccessful because of severe anatomical abnormality of the neck. We therefore decided to perform retrograde intubation and selected the cuffed oropharyngeal airway (COPA) for airway management. We inserted the COPA, not through the patient's mouth but through the abnormal oropharyngeal space. Retrograde nasal intubation was accomplished with controlled ventilation through the COPA, which proved to be very useful for this difficult airway management during tracheal intubation even though the method was unusual.

  3. PPAR-γ inhibits IL-13-induced collagen production in mouse airway fibroblasts.

    Science.gov (United States)

    Lu, Jiamei; Liu, Lu; Zhu, Yanting; Zhang, Yonghong; Wu, Yuanyuan; Wang, Guizuo; Zhang, Dexin; Xu, Jing; Xie, Xinming; Ke, Rui; Han, Dong; Li, Shaojun; Feng, Wei; Xie, Mei; Liu, Yun; Fang, Ping; Shi, Hongyang; He, Ping; Liu, Yuan; Sun, Xiuzhen; Li, Manxiang

    2014-08-15

    Interleukin-13 (IL-13) plays an important role in extracellular matrix production of airway remodeling in asthma. Activation of PPAR-γ has been shown to inhibit the occurrence of airway fibrosis in asthma, yet it remains unknown whether the effect of PPAR-γ on suppression of airway fibrosis is associated with the inhibition of IL-13 signaling. In the present study, primary cultured airway fibroblasts were stimulated with IL-13, and JAK inhibitor, PDGF receptor blocker and MEK inhibitor were applied to investigate the involvement of these pathways in IL-13-induced collagen production. Our results demonstrate that IL-13 dose- and time-dependently induced collagen production in primary cultured mouse airway fibroblasts; this effect was blocked by inhibition of JAK/STAT6 signal pathway. IL-13 also stimulated JAK/STAT6-dependent PDGF production, elevation of PDGF in turn activated ERK1/2 MAPK and caused collagen production. Activation of PPAR-γ by rosiglitazone reduced IL-13-induced collagen expression by suppression of STAT6-driven PDGF production. Our results indicate that activation of JAK/STAT6 signal and subsequent PDGF generation and ERK1/2 MAPK activation mediate IL-13-induced collagen production in airway fibroblasts. This study suggests that activation of PPAR-γ might be a novel strategy for the treatment of asthma partially by inhibition of airway fibrosis.

  4. Coupled cellular therapy and magnetic targeting for airway regeneration.

    Science.gov (United States)

    Ordidge, Katherine L; Gregori, Maria; Kalber, Tammy L; Lythgoe, Mark F; Janes, Sam M; Giangreco, Adam

    2014-06-01

    Airway diseases including COPD (chronic obstructive pulmonary disease), cystic fibrosis and lung cancer are leading causes of worldwide morbidity and mortality, with annual healthcare costs of billions of pounds. True regeneration of damaged airways offers the possibility of restoring lung function and protecting against airway transformation. Recently, advances in tissue engineering have allowed the development of cadaveric and biosynthetic airway grafts. Although these have produced encouraging results, the ability to achieve long-term functional airway regeneration remains a major challenge. To promote regeneration, exogenously delivered stem and progenitor cells are being trialled as cellular therapies. Unfortunately, current evidence suggests that only small numbers of exogenously delivered stem cells engraft within lungs, thereby limiting their utility for airway repair. In other organ systems, magnetic targeting has shown promise for improving long-term robust cell engraftment. This technique involves in vitro cell expansion, magnetic actuation and magnetically guided cell engraftment to sites of tissue damage. In the present paper, we discuss the utility of coupling stem cell-mediated cellular therapy with magnetic targeting for improving airway regeneration.

  5. "Cystic fibrotics could survive cholera, choleraics could survive cystic fibrosis"; hypothesis that explores new horizons in treatment of cystic fibrosis.

    Science.gov (United States)

    Azimi, Arsalan

    2015-12-01

    Cystic fibrosis, the most common inherited disease of white population, is a disease of CFTR channels, in which mucosal function of many organs especially respiratory tract is impaired. Decreased mucociliary clearance and accumulation of mucus in airways facilitates colonization of infectious microorganisms, followed by infection. Following chronic infection, persistent inflammation ensues, which results in airway remodeling and deterioration of mucociliary clearance and result in a vicious cycle. Here, it is hypothesized that cholera toxin (CT) could ameliorate symptoms of cystic fibrosis as CT could dilute the thickened mucus, improve mucociliary clearance and alleviate airway obstruction. CT strengthens immunity of airway mucosa and it could attenuates bacterial growth and reduce persistency of infection. CT also modulates cellular immune response and it could decrease airway inflammation, hinder airway remodeling and prevent respiratory deterioration. Thereby it is hypothesized that CT could target and ameliorate many of pathophysiologic steps of the disease and it explores new horizons in treatment of CF. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Engineering Airway Epithelium

    Directory of Open Access Journals (Sweden)

    John P. Soleas

    2012-01-01

    Full Text Available Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990. In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium.

  7. SLOWLY ADAPTING SENSORY UNITS HAVE MORE RECEPTORS IN LARGE AIRWAYS THAN IN SMALL AIRWAYS IN RABBITS

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2016-12-01

    Full Text Available Sensory units of pulmonary slowly adapting receptors (SARs are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na+/K+-ATPase antibodies and the myelin sheath with myelin basic protein (MBP antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi vs small (bronchioles 0.05. However, the sensory structure contains more SARs in large airways than in small airways (9.6±0.6 vs 3.6±0.3; P<0.0001. Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities.

  8. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease.

    Science.gov (United States)

    Britto, Clemente J; Cohn, Lauren

    2015-05-01

    Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.

  9. Airway management in trauma

    Directory of Open Access Journals (Sweden)

    Rao B

    2004-01-01

    Full Text Available Airway Management for the victims of major trauma is the first priority in the care of the trauma victim and is a core skill in emergency medicine and critical care. Endotracheal intubation remains the gold standard for trauma airway management. Airway management in trauma patients is not just the capability to insert an oral/nasal airway or endotracheal tube beyond the vocal cords. The five components integral to modern, sophisticated airway management in trauma patients include equipment, pharmacologic adjuncts, manual techniques, physical circumstances, and patient profile. A trauma patient may require airway management in a variety of physical circumstances. Whereas, the commonly used airway management algorithms may not suffice in all these situations, the construction of a truly complete decision tree is also virtually impossible. There is consensus that it is not the intervention per se but rather the conditions, skills, and performance that might be the possible variables that affect outcome. Paramedics have only limited experience and on-the-job skills for invasive airway management. Difficult airway management is best left for the experienced physicians to handle.

  10. IgA and IgG antibodies against surface antigens of Pseudomonas aeruginosa in sputum and serum from patients with cystic fibrosis.

    Science.gov (United States)

    Schiøtz, P O; Høiby, N; Permin, H; Wiik, A

    1979-06-01

    Eleven cystic fibrosis (CF) patients chronically infected in the lungs with mucoid Pseudomonas aeruginosa and presenting multiple precipitins in serum against this bacterium (CF + P) and 10 CF patients without P. aeruginosa infection (CF-P) had their serum and sputum sol phase specimens examined for antibodies of the IgA and IgG classes against surface antigens of P. aeruginosa by means of an indirect immunofluorescence technique. Both the IgA and IgG antibody titres demonstrated in serum and sputum of the CF + P patients were significantly higher than in those of the CF-P patients (p less than 0.01). The titre of IgA antibodies in the sputum was higher than in serum in 3 cases indicating local pulmonary production of specific IgA antibodies. The role of the demonstrated antibodies in the local pulmonary immune defense mechanisms and the possible patogenesis of the pulmonary tissue damage in CF patients is discussed.

  11. Cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Radlović Nedeljko

    2012-01-01

    Full Text Available Cystic fibrosis (CF is a multisystemic autosomal recessive disease caused by a defect in the expression of CFTR protein, i.e. chloride channel present in the apical membrane of respiratory, digestive, reproductive and sweat glands epithelium. It primarily occurs in the Caucasians, while being considerably or exceptionally rare in persons of other races. Absence, deficit or structural and functional abnormalities of CFTR protein lead to mucosal hyperconcentration in the respiratory, digestive and reproductive systems and malabsorption of chloride and sodium in the sweat glands. Thus, the clinical features of patients’ with CF are predominated by respiratory, digestive and reproductive disorders, as well as the tendency to dehydration in the condition of increased sweating. Beside genotype variations, the degree of disease manifestation is also essentially influenced by various exogenous factors, such as the frequency and severity of respiratory infections, the level of aero-pollution, quality of immunoprophylaxis, patients’ nutritional condition and other. Chloride concentration of over 60 mmol/L in sweat, a high level of immunoreactive chymotrypsinogen in blood and the verification of homozygous mutation of CFTR gene are the basic methods in the diagnostics of the disease. CF belongs to the group of severe and complex chronic diseases, and therefore requires multidisciplinary therapeutic approach. Owing to the improvement of healthcare provision, most patients with CF now survive into adulthood. In addition, their quality of life is also considerably improved.

  12. Essentials of airway management, oxygenation, and ventilation: part 2: advanced airway devices: supraglottic airways

    National Research Council Canada - National Science Library

    Rosenberg, M B; Phero, J C; Becker, D E

    2014-01-01

    .... This article will review the evolution and use of advanced airway devices, specifically supraglottic airways, with the emphasis on the laryngeal mask airway, as the next intervention in difficult...

  13. Classification of pulmonary airway disease based on mucosal color analysis

    Science.gov (United States)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  14. Indirect airway challenges

    NARCIS (Netherlands)

    Joos, GF; O'Connor, B; Anderson, SD; Chung, F; Cockcroft, DW; Dahlen, B; DiMaria, G; Foresi, A; Hargreave, FE; Holgate, ST; Inman, M; Lotvall, J; Magnussen, H; Polosa, R; Postma, DS; Riedler, J

    2003-01-01

    Indirect challenges act by causing the release of endogenous mediators that cause the airway smooth muscle to contract. This is in contrast to the direct challenges where agonists such as methacholine or histamine cause airflow limitation predominantly via a direct effect on airway smooth muscle. Di

  15. Postoperative upper airway problems

    African Journals Online (AJOL)

    QuickSilver

    2003-06-09

    Jun 9, 2003 ... REVIEW ARTICLE. Southern African Journal of Anaesthesia & Analgesia - May 2003. 12. Postoperative upper airway problems way. A number of factors, some avoidable, influence the incidence ... debilitating pain, inability to swallow and temporary voice changes, and are a ..... decrease airway resistance.

  16. Pediatric airway nightmares.

    Science.gov (United States)

    D'Agostino, James

    2010-02-01

    Pediatric disorders that involve actual or potential airway compromise are among the most challenging cases that emergency department providers face. This article discusses the diagnosis and management of common and uncommon conditions in infants and children who may present with airway obstruction.

  17. Adeno-associated virus for cystic fibrosis gene therapy

    Directory of Open Access Journals (Sweden)

    S.V. Martini

    2011-11-01

    Full Text Available Gene therapy is an alternative treatment for genetic lung disease, especially monogenic disorders such as cystic fibrosis. Cystic fibrosis is a severe autosomal recessive disease affecting one in 2500 live births in the white population, caused by mutation of the cystic fibrosis transmembrane conductance regulator (CFTR. The disease is classically characterized by pancreatic enzyme insufficiency, an increased concentration of chloride in sweat, and varying severity of chronic obstructive lung disease. Currently, the greatest challenge for gene therapy is finding an ideal vector to deliver the transgene (CFTR to the affected organ (lung. Adeno-associated virus is the most promising viral vector system for the treatment of respiratory disease because it has natural tropism for airway epithelial cells and does not cause any human disease. This review focuses on the basic properties of adeno-associated virus and its use as a vector for cystic fibrosis gene therapy.

  18. Cystic Fibrosis: Brazilian ENT Experience

    Directory of Open Access Journals (Sweden)

    Tania Sih

    2012-01-01

    Full Text Available Most published studies about Cystic Fibrosis (CF are European or North American. There are still few publications about the characteristics of fibrocystic populations in developing countries. The incidence of cystic fibrosis (CF in Brazil varies among different regions (1 : 10,000 in Minas Gerais, 1 : 9,500 in Paraná, 1 : 8,700 in Santa Catarina, and 1 : 1600 in Rio Grande do Sul. The prevalence of the DF508 mutation also varies according to population: 33% in Sao Paulo, 49% in Rio Grande do Sul, 27% in Santa Catarina, and 52% in Minas Gerais. Cough and nasal obstruction are the most common symptoms. The variation in nasal polyposis prevalence may be explained by population genotypic characteristics in a country that spans a continent. Findings on nasal endoscopy and computed tomography (CT have better correlation than do this information compared with surgical and clinical history. Microbiologic studies suggest a high level of early contamination of the airways. Sensorineural hearing loss (SNHL occurs in these patients as a result of ototoxic antibiotics. The data compiled in this paper is useful, but also lead to the general agreement that more research would be welcome due to the unique characteristics of this country.

  19. [Cystic fibrosis and other channelopathies].

    Science.gov (United States)

    Edelman, A; Saussereau, E

    2012-05-01

    Mutations in cystic fibrosis transmembrane conductance regulator gene, CFTR, are responsible for cystic fibrosis, CF, a channelopathie. CFTR protein is a multifunctional protein with a main function of Cl(-) channel. CFTR is expressed in epithelia (upper airways, intestine, pancreas etc.). In the first part of this revue, we describe the main properties of CFTR underlying that it is not only a Cl(-) channel protein but also a multifunctional protein. We present a hypothesis which postulates that CFTR is a hub protein interacting with more than 140 proteins, and through these interactions regulates a number of functions which are abnormal in CF (ion transport, inflammation etc.). In the second part of the revue we briefly present a selection of other epithelial channelopathies due to mutations in genes of other Cl(-) or cation channels. Of note, these channels either interacts with CFTR or are considered as alternative channels in CF, and, as such, are targets for pharmacotherapies. We want to leave the reader with a message that to investigate channalopathies, to dissect the molecular mechanisms underlying channels'activity, allow not only to better understand basic mechanisms of channel regulation but in fine, to propose new targets for pharmacotherapies. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Differential effects of allergen challenge on large and small airway reactivity in mice.

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    Full Text Available The relative contributions of large and small airways to hyperresponsiveness in asthma have yet to be fully assessed. This study used a mouse model of chronic allergic airways disease to induce inflammation and remodelling and determine whether in vivo hyperresponsiveness to methacholine is consistent with in vitro reactivity of trachea and small airways. Balb/C mice were sensitised (days 0, 14 and challenged (3 times/week, 6 weeks with ovalbumin. Airway reactivity was compared with saline-challenged controls in vivo assessing whole lung resistance, and in vitro measuring the force of tracheal contraction and the magnitude/rate of small airway narrowing within lung slices. Increased airway inflammation, epithelial remodelling and fibrosis were evident following allergen challenge. In vivo hyperresponsiveness to methacholine was maintained in isolated trachea. In contrast, methacholine induced slower narrowing, with reduced potency in small airways compared to controls. In vitro incubation with IL-1/TNFα did not alter reactivity. The hyporesponsiveness to methacholine in small airways within lung slices following chronic ovalbumin challenge was unexpected, given hyperresponsiveness to the same agonist both in vivo and in vitro in tracheal preparations. This finding may reflect the altered interactions of small airways with surrounding parenchymal tissue after allergen challenge to oppose airway narrowing and closure.

  1. Adsorption of lipoproteins onto mineral dust surfaces: a possible factor in the pathogenesis of particle-induced pulmonary fibrosis?

    Science.gov (United States)

    Bogatu, Bettina; Contag, Bodo

    2005-01-01

    We compare the adsorption behavior of high density lipoproteins (HDL) and low density lipoproteins (LDL) on "fibrogenic" and "nonfibrogenic" mineral dusts. The adsorption tests with bovine lipoprotein concentrate and human serum produced the following results: 1) All seven examined fibrogenic dusts (SiO2 DQ12, SiO2 F600, silica, graphite, TiC, kaolin, talc) adsorbed significantly more high density lipoproteins (HDL), than the five examined nonfibrogenic (inert) dusts (TiO2, SnO2, Al2O3, Fe2O3, Fe3O4). This different behavior was particularly conspicuous in the presence of competing adsorbates (serum proteins). 2) In contrast, the adsorption of LDL did not correlate with the fibrogenicity of the mineral dusts. 3) The known silicosis-protective substance polyvinylpyridine-N-oxide inhibits the HDL adsorption of alpha-quartz. These results indicate that the adsorption of HDL could have a causal relationship with the triggering of a fibrotic reaction. The adsorption on the surface of fibrogenic dust particles provides an exceptional opportunity for the intake of HDL by macrophages. During the phagocytosis of the inhaled dust particles, the HDL adsorbed on the surface of the particles could be taken up by macrophages regardless of the receptor. There the HDL particles and/or compounds associated with them, such as lecithin-cholesterol-acyltransferase, could stimulate the macrophages to release fibrogenic mediators by some yet unknown mechanism.

  2. Controversies in Pediatric Perioperative Airways

    Directory of Open Access Journals (Sweden)

    Jozef Klučka

    2015-01-01

    Full Text Available Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP, and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI, laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient.

  3. What Causes Cystic Fibrosis?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. What Causes Cystic Fibrosis? A defect in the CFTR gene causes cystic ... in the severity of the disease. How Is Cystic Fibrosis Inherited? Every person inherits two CFTR genes—one ...

  4. Learning about Cystic Fibrosis

    Science.gov (United States)

    ... Testing for Cystic Fibrosis Consensus Development Conference Statement Learning About Cystic Fibrosis What do we know about ... and treatment information. Hosted by the Dolan DNA Learning Center at Cold Spring Harbor Laboratory. What is ...

  5. Early experiences with crowdsourcing airway annotations in chest CT

    DEFF Research Database (Denmark)

    Cheplygina, Veronika; Perez-Rovira, Adria; Kuo, Wieying

    2016-01-01

    Measuring airways in chest computed tomography (CT) images is important for characterizing diseases such as cystic fibrosis, yet very time-consuming to perform manually. Machine learning algorithms offer an alternative, but need large sets of annotated data to perform well. We investigate whether...... a number of further research directions and provide insight into the challenges of crowdsourcing in medical images from the perspective of first-time users....

  6. Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Löfdahl Claes-Göran

    2011-10-01

    Full Text Available Abstract Background Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF and idiopathic pulmonary fibrosis (IPF has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls. Methods Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients, IPF (21 regions; 7 patients and controls (16 regions; 8 subjects. In each compartment the densities and distribution of MCT and MCTC mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-β. Results In the alveolar parenchyma in lungs from patients with CF, MCTC numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MCTC and MCT cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MCTC density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-β. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MCTC correlated positively with the degree of fibrosis. The increased density of MCTC, as well as MCTC expression of TGF-β, correlated negatively with patient lung function. Conclusions The present study reveals that altered mast cell populations, with increased numbers of MCTC in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further

  7. Autogenic Drainage in Children With Cystic Fibrosis.

    Science.gov (United States)

    Corten, Lieselotte; Morrow, Brenda M

    2017-04-01

    Airway clearance is an essential part of the management of cystic fibrosis (CF) as it facilitates clearance of viscous pulmonary secretions. This review aimed to determine the effect of autogenic drainage (AD) and assisted autogenic drainage (AAD) compared with no, sham, or other types of airway clearance in children with CF. Two pediatric randomized cross-over trials were identified on the use of AD in children with CF; no studies were available on the use of AAD. In one study AD had a positive influence on the Huang score, and is preferred over postural drainage in this population. We could not determine the efficacy of AD and AAD in children with CF. We recommend the implementation of pediatric-specific randomized controlled trials with adequate sample sizes, appropriate clinical outcome measures, and analysis of adverse effects.

  8. Cystic fibrosis: case report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Si Hyun; Lee, Hyun Ju; Kim, Ji Hye; Park, Chol Heui [Gachon Medical School, Inchon (Korea, Republic of)

    2002-12-01

    Cystic fibrosis is an autosomal recessive genetic disease. Among Caucasians, it is the most common cause of pulmonary insufficiency during the first three decades of life. The prevalence of cystic fibrosis varies according to ethnic origin: it is common among Caucasians but rare among Asians. We report a case in which cystic fibrosis with bronchiectasis and hyperaeration was revealed by high-resolution CT, and mutation of the cystic fibrosis conductance transmembrane regulator gene (CFTR) by DNA analysis.

  9. Overexpression of mclca3 in airway epithelium of asthmatic murine models with airway inflammation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui-lan; HE Li

    2010-01-01

    Asthma is a worldwide prevalent disease that is a considerable health burden in many countries.1 In recent years, the airway epithelium is increasingly recognized as a central contributor to the pathogenesis of asthma.2 One of the most highly induced genes in epithelial cells in experimental allergic airway disease is the third murine calcium-activated chloride channel homologue (mclca3, alias gob-5). Its human homology protein is hCLCA1,3,4 which has been identified as clinically relevant molecules in diseases with secretory dysfunctions including asthma and cystic fibrosis. In initial studies, mclca3 was thought to be a member of calcium-activated chloride channel (CaCCs) family,whereas some new interesting reports suggest that the two mclca3 cleavage products cannot form an anion channel on their own but may instead act as extracellular signaling molecules with as yet unknown functions and interacting partners.5

  10. Baicalein reduces airway injury in allergen and IL-13 induced airway inflammation.

    Directory of Open Access Journals (Sweden)

    Ulaganathan Mabalirajan

    Full Text Available BACKGROUND: Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. METHODOLOGY/PRINCIPAL FINDINGS: In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA, treated with baicalein (10 mg/kg, ip or a vehicle control, either during (preventive use or after OVA challenge (therapeutic use. In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR, histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β₁, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. CONCLUSION/SIGNIFICANCE: Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function.

  11. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  12. CYSTIC FIBROSIS: MICROBIOLOGY AND HOST RESPONSE

    Science.gov (United States)

    Zemanick, Edith T.

    2016-01-01

    THE EARLIEST DESCRIPTIONS OF LUNG DISEASE IN PEOPLE WITH CYSTIC FIBROSIS (CF) DEMONSTRATED THE INVOLVEMENT OF THREE INTERACTING PATHOPHYSIOLOGICAL ELEMENTS IN CF AIRWAYS: MUCUS OBSTRUCTION, INFLAMMATION, AND INFECTION. OVER THE PAST 7 DECADES, OUR UNDERSTANDING OF CF RESPIRATORY MICROBIOLOGY AND INFLAMMATION HAS EVOLVED WITH THE INTRODUCTION OF NEW TREATMENTS, WITH INCREASED LONGEVITY, AND WITH INCREASINGLY SOPHISTICATED LABORATORY TECHNIQUES. IN THIS CHAPTER, WE WILL REVIEW THE CURRENT STATE OF UNDERSTANDING OF THE ROLES OF INFECTION AND INFLAMMATION AND THEIR ROLES IN DRIVING LUNG DISEASE. WE WILL ALSO DISCUSS HOW THIS CONSTANTLY EVOLVING INFORMATION IS USED TO INFORM CURRENT THERAPEUTIC STRATEGIES, MEASURES AND PREDICTORS OF DISEASE SEVERITY, AND RESEARCH PRIORITIES. PMID:27469179

  13. Ca(2+)-activated K(+) channel-3.1 blocker TRAM-34 attenuates airway remodeling and eosinophilia in a murine asthma model

    NARCIS (Netherlands)

    Girodet, P.O.; Ozier, A.; Carvalho, G.; Ilina, O.; Ousova, O.; Gadeau, A.P.; Begueret, H.; Wulff, H.; Marthan, R.; Bradding, P.; Berger, P.

    2013-01-01

    Key features of asthma include bronchial hyperresponsiveness (BHR), eosinophilic airway inflammation, and bronchial remodeling, characterized by subepithelial collagen deposition, airway fibrosis, and increased bronchial smooth muscle (BSM) mass. The calcium-activated K(+) channel K(Ca)3.1 is expres

  14. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    on the airway distensibility, defined as the ratio of relative change in lumen diameter to the relative change in total lung volume (TLV) divided by predicted total lung capacity (pTLC) . Methods – We included 1900 participants from the Danish Lung Cancer Screening Trial (DLCST); all randomized to annual low...

  15. Airway remodelling in the transplanted lung.

    Science.gov (United States)

    Kuehnel, Mark; Maegel, Lavinia; Vogel-Claussen, Jens; Robertus, Jan Lukas; Jonigk, Danny

    2017-03-01

    Following lung transplantation, fibrotic remodelling of the small airways has been recognized for almost 5 decades as the main correlate of chronic graft failure and a major obstacle to long-term survival. Mainly due to airway fibrosis, pulmonary allografts currently show the highest attrition rate of all solid organ transplants, with a 5-year survival rate of 58 % on a worldwide scale. The observation that these morphological changes are not just the hallmark of chronic rejection but rather represent a manifestation of a multitude of alloimmune-dependent and -independent injuries was made more recently, as was the discovery that chronic lung allograft dysfunction manifests in different clinical phenotypes of respiratory impairment and corresponding morphological subentities. Although recent years have seen considerable advances in identifying and categorizing these subgroups on the basis of clinical, functional and histomorphological changes, as well as susceptibility to medicinal treatment, this process is far from over. Since the actual pathophysiological mechanisms governing airway remodelling are still only poorly understood, diagnosis and therapy of chronic lung allograft dysfunction presents a major challenge to clinicians, radiologists and pathologists alike. Here, we review and discuss the current state of the literature on chronic lung allograft dysfunction and shed light on classification systems, corresponding clinical and morphological changes, key cellular players and underlying molecular pathways, as well as on emerging diagnostic and therapeutic approaches.

  16. Craniofacial morphology in children with cystic fibrosis.

    Science.gov (United States)

    Hellsing, E; Brattström, V; Strandvik, B

    1992-04-01

    Cystic fibrosis (CF) is a hereditary metabolic disorder with clinical symptoms of abnormal mucus production. This blocks the airways, gives pancreatic insufficiency, and increases sweat electrolytes. The progressive respiratory disease often leads to respiratory insufficiency and cor pulmonale. The aim of the present investigation was to examine the facial morphology in children with cystic fibrosis. The sample comprised 11 children with cystic fibrosis, who were divided in two groups, one with gastrointestinal disorders and the other with predominantly respiratory insufficiency. Eleven healthy children with normal occlusions were selected as controls. Lateral skull radiographs obtained in natural head posture were digitized, and linear and angular variables for the different groups calculated and compared statistically. The cystic fibrosis group showed open bite, decreased posterior facial height, increased mandibular and craniocervical inclination. Additionally, within the CF-group, the children with respiratory insufficiency differed more from the controls than the children with gastrointestinal disorders. Despite the small number of subjects, the facial morphology of the CF children showed a similar pattern to that of children with nasal respiratory obstruction due to enlarged adenoids or tonsils.

  17. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    DEFF Research Database (Denmark)

    Lauridsen, Rikke Kragh; Madsen Sommer, Lea Mette; Johansen, Helle Krogh

    2017-01-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage....... The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm-1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After...... long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children...

  18. Common gene therapy viral vectors do not efficiently penetrate sputum from cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Kaoru Hida

    Full Text Available Norwalk virus and human papilloma virus, two viruses that infect humans at mucosal surfaces, have been found capable of rapidly penetrating human mucus secretions. Viral vectors for gene therapy of Cystic Fibrosis (CF must similarly penetrate purulent lung airway mucus (sputum to deliver DNA to airway epithelial cells. However, surprisingly little is known about the rates at which gene delivery vehicles penetrate sputum, including viral vectors used in clinical trials for CF gene therapy. We find that sputum spontaneously expectorated by CF patients efficiently traps two viral vectors commonly used in CF gene therapy trials, adenovirus (d∼80 nm and adeno-associated virus (AAV serotype 5; d∼20 nm, leading to average effective diffusivities that are ∼3,000-fold and 12,000-fold slower than their theoretical speeds in water, respectively. Both viral vectors are slowed by adhesion, as engineered muco-inert nanoparticles with diameters as large as 200 nm penetrate the same sputum samples at rates only ∼40-fold reduced compared to in pure water. A limited fraction of AAV exhibit sufficiently fast mobility to penetrate physiologically thick sputum layers, likely because of the lower viscous drag and smaller surface area for adhesion to sputum constituents. Nevertheless, poor penetration of CF sputum is likely a major contributor to the ineffectiveness of viral vector based gene therapy in the lungs of CF patients observed to date.

  19. The emerging relationship between the airway microbiota and chronic respiratory disease: clinical implications.

    Science.gov (United States)

    Huang, Yvonne J; Lynch, Susan V

    2011-12-01

    Until recently, relationships between evidence of colonization or infection by specific microbial species and the development, persistence or exacerbation of pulmonary disease have informed our opinions of airway microbiology. However, recent applications of culture-independent tools for microbiome profiling have revealed a more diverse microbiota than previously recognized in the airways of patients with chronic pulmonary disease. New evidence indicates that the composition of airway microbiota differs in states of health and disease and with severity of symptoms and that the microbiota, as a collective entity, may contribute to pathophysiologic processes associated with chronic airway disease. Here, we review the evolution of airway microbiology studies of chronic pulmonary disease, focusing on asthma, chronic obstructive pulmonary disease and cystic fibrosis. Building on evidence derived from traditional microbiological approaches and more recent culture-independent microbiome studies, we discuss the implications of recent findings on potential microbial determinants of respiratory health or disease.

  20. Non-invasive ventilation for cystic fibrosis.

    Science.gov (United States)

    Moran, Fidelma; Bradley, Judy M; Piper, Amanda J

    2017-02-20

    Non-invasive ventilation may be a means to temporarily reverse or slow the progression of respiratory failure in cystic fibrosis by providing ventilatory support and avoiding tracheal intubation. Using non-invasive ventilation, in the appropriate situation or individuals, can improve lung mechanics through increasing airflow and gas exchange and decreasing the work of breathing. Non-invasive ventilation thus acts as an external respiratory muscle. This is an update of a previously published review. To compare the effect of non-invasive ventilation versus no non-invasive ventilation in people with cystic fibrosis for airway clearance, during sleep and during exercise. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches, handsearching relevant journals and abstract books of conference proceedings. We searched the reference lists of each trial for additional publications possibly containing other trials.Most recent search: 08 August 2016. Randomised controlled trials comparing a form of pressure preset or volume preset non-invasive ventilation to no non-invasive ventilation used for airway clearance or during sleep or exercise in people with acute or chronic respiratory failure in cystic fibrosis. Three reviewers independently assessed trials for inclusion criteria and methodological quality, and extracted data. Ten trials met the inclusion criteria with a total of 191 participants. Seven trials evaluated single treatment sessions, one evaluated a two-week intervention, one evaluated a six-week intervention and one a three-month intervention. It is only possible to blind trials of airway clearance and overnight ventilatory support to the outcome assessors. In most of the trials we judged there was an unclear risk of bias with regards to blinding due to inadequate descriptions. The six-week trial was the only one judged to have a low risk of bias for all

  1. Emergency airway puncture - slideshow

    Science.gov (United States)

    ... presentations/100113.htm Emergency airway puncture - series—Normal anatomy To ... larynx is a tubular structure in the neck, through which air passes to the lungs. The thryoid and cricoid cartilage form the narrowest ...

  2. Emergency airway puncture

    Science.gov (United States)

    ... inserted into the throat, just below the Adam's apple (cricoid cartilage), into the airway. In a hospital, ... Choking Browse the Encyclopedia A.D.A.M., Inc. is accredited by URAC, also known as the ...

  3. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim; Jensen, Peter Østrup

    2015-01-01

    Lung infection is the main cause of morbidity and mortality in patients with cystic fibrosis and is mainly dominated by Pseudomonas aeruginosa. The biofilm mode of growth makes eradication of the infection impossible, and it causes a chronic inflammation in the airways. The general mechanisms of ...... of adaptive evolution of the persisting bacteria imposes important therapeutic challenges and requires development of new drug delivery systems able to reach the different niches occupied by the bacteria in the lung of cystic fibrosis patients....

  4. Airway management in trauma.

    Science.gov (United States)

    Langeron, O; Birenbaum, A; Amour, J

    2009-05-01

    Maintenance of a patent and prevention of aspiration are essential for the management of the trauma patient, that requires experienced physicians in airway control techniques. Difficulties of the airway control in the trauma setting are increased by the vital failures, the risk of aspiration, the potential cervical spine injury, the combative patient, and the obvious risk of difficult tracheal intubation related to specific injury related to the trauma. Endotracheal intubation remains the gold standard in trauma patient airway management and should be performed via the oral route with a rapid sequence induction and a manual in-line stabilization maneuver, to decrease the risks previously mentioned. Different techniques to control the airway in trauma patients are presented: improvement of the laryngoscopic vision, lighted stylet tracheal intubation, retrograde technique for orotracheal intubation, the laryngeal mask and the intubating laryngeal mask airways, the combitube and cricothyroidotomy. Management of the airway in trauma patients requires regular training in these techniques and the knowledge of complementary techniques allowing tracheal intubation or oxygenation to overcome difficult intubation and to prevent major complications as hypoxemia and aspiration.

  5. Quantitative analysis of airway abnormalities in CT

    DEFF Research Database (Denmark)

    Petersen, Jens; Lo, Pechin Chien Pau; Nielsen, Mads

    2010-01-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 ...

  6. Active cycle of breathing technique for cystic fibrosis.

    Science.gov (United States)

    Mckoy, Naomi A; Wilson, Lisa M; Saldanha, Ian J; Odelola, Olaide A; Robinson, Karen A

    2016-07-05

    People with cystic fibrosis experience chronic airway infections as a result of mucus build up within the lungs. Repeated infections often cause lung damage and disease. Airway clearance therapies aim to improve mucus clearance, increase sputum production, and improve airway function. The active cycle of breathing technique (also known as ACBT) is an airway clearance method that uses a cycle of techniques to loosen airway secretions including breathing control, thoracic expansion exercises, and the forced expiration technique. This is an update of a previously published review. To compare the clinical effectiveness of the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of last search: 25 April 2016. Randomised or quasi-randomised controlled clinical studies, including cross-over studies, comparing the active cycle of breathing technique with other airway clearance therapies in cystic fibrosis. Two review authors independently screened each article, abstracted data and assessed the risk of bias of each study. Our search identified 62 studies, of which 19 (440 participants) met the inclusion criteria. Five randomised controlled studies (192 participants) were included in the meta-analysis; three were of cross-over design. The 14 remaining studies were cross-over studies with inadequate reports for complete assessment. The study size ranged from seven to 65 participants. The age of the participants ranged from six to 63 years (mean age 22.33 years). In 13 studies, follow up lasted a single day. However, there were two long-term randomised controlled studies with follow up of one to three years. Most of the studies did not report on key quality items, and therefore, have an unclear risk of

  7. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia.

    Science.gov (United States)

    Schwarzer, Christian; Fu, Zhu; Patanwala, Maria; Hum, Lauren; Lopez-Guzman, Mirielle; Illek, Beate; Kong, Weidong; Lynch, Susan V; Machen, Terry E

    2012-05-01

    Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis (CF) patients, a process regulated by quorum-sensing molecules including N-(3-oxododecanoyl)-l-homoserine lactone (C12). C12 (10-100 µM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CF ΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψ(mito)) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca(2+) and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 min and were complete in 1-2 h. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψ(mito) and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψ(mito) and increases in Ca(cyto) like 10-50 µM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed. © 2012 Blackwell Publishing Ltd.

  8. [Therapeutic update in cystic fibrosis].

    Science.gov (United States)

    Durupt, S; Nove Josserand, R; Durieu, I

    2014-06-01

    We present the recent therapeutic advances in the cystic fibrosis care. It concerns improvements in symptomatic treatment with the development of dry powder inhaled antibiotics that improved quality of life, and innovative treatments namely the modulators of the cystic fibrosis transmembrane protein conductance regulator (CFTR), molecules which act specifically at the level of the defective mechanisms implied in the disease. The life expectancy of cystic fibrosis patients born after 2000, is estimated now to be about 50 years. This improvement of survival was obtained with the organization of the care within the specialized centers for cystic fibrosis (Centre de ressource et de compétences de la mucoviscidose) and remains still based on heavy symptomatic treatments. Dry powder inhaled antibiotics constitute a significant time saving for patients to whom all the care can achieve two hours daily. Since 2012, the modulators of CFTR, molecules allowing a pharmacological approach targeted according to the type of the mutations, allows a more specific approach of the disease. Ivacaftor (Kalydeco(®)) which potentialises the function of the CFTR protein expressed on the cellular surface is now available for patients with the G551D mutation. Lumacaftor is going to be tested in association with ivacaftor in patients with the F508del mutation, that is present in at least 75% of the patients. The ataluren which allows the production of a functional protein CFTR in patients with a no sense mutation is the third representing of this new therapeutic class. We presently have numerous symptomatic treatments for the cystic fibrosis care. The development of CFTR modulators, today available to a restricted number of patients treated with ivacaftor represents a very promising therapeutic avenue. It will represent probably the first step to a personalized treatment according to CFTR genotype. Copyright © 2013 Société nationale française de médecine interne (SNFMI). Published by

  9. Autophagy in Hepatic Fibrosis

    Directory of Open Access Journals (Sweden)

    Yang Song

    2014-01-01

    Full Text Available Hepatic fibrosis is a leading cause of morbidity and mortality worldwide. Hepatic fibrosis is usually associated with chronic liver diseases caused by infection, drugs, metabolic disorders, or autoimmune imbalances. Effective clinical therapies are still lacking. Autophagy is a cellular process that degrades damaged organelles or protein aggregation, which participates in many pathological processes including liver diseases. Autophagy participates in hepatic fibrosis by activating hepatic stellate cells and may participate as well through influencing other fibrogenic cells. Besides that, autophagy can induce some liver diseases to develop while it may play a protective role in hepatocellular abnormal aggregates related liver diseases and reduces fibrosis. With a better understanding of the potential effects of autophagy on hepatic fibrosis, targeting autophagy might be a novel therapeutic strategy for hepatic fibrosis in the near future.

  10. Essentials of airway management, oxygenation, and ventilation: part 2: advanced airway devices: supraglottic airways.

    Science.gov (United States)

    Rosenberg, M B; Phero, J C; Becker, D E

    2014-01-01

    Offices and outpatient dental facilities must be properly equipped with devices for airway management, oxygenation, and ventilation. Part 1 in this series on emergency airway management focused on basic and fundamental considerations for supplying supplemental oxygen to the spontaneously breathing patient and utilizing a bag-valve-mask system including nasopharyngeal and oropharyngeal airways to deliver oxygen under positive pressure to the apneic patient. This article will review the evolution and use of advanced airway devices, specifically supraglottic airways, with the emphasis on the laryngeal mask airway, as the next intervention in difficult airway and ventilation management. The final part of the series (part 3) will address airway evaluation, equipment and devices for tracheal intubation, and invasive airway procedures.

  11. Hypoxia Potentiates Allergen Induction of HIF-1α, Chemokines, Airway Inflammation, TGF-β1, and Airway Remodeling in a mouse model

    Science.gov (United States)

    Baek, Kwang Je; Cho, Jae Youn; Rosenthal, Peter; Alexander, Laura E. Crotty; Nizet, Victor; Broide, David H.

    2013-01-01

    Whether hypoxia contributes to airway inflammation and remodeling in asthma is unknown. In this study we used mice exposed to a hypoxic environment during allergen challenge (simulating hypoxia during an asthma exacerbation) to investigate the contribution of hypoxia to airway inflammation and remodeling. Although neither hypoxia alone, nor OVA allergen alone, induced significant neutrophil influx into the lung, the combination of OVA and hypoxia induced a synergistic 27 fold increase in peribronchial neutrophils, enhanced expression of HIF-1α and one of its target genes, the CXC-family neutrophil chemokine KC. The combination of hypoxia and OVA allergen increased eotaxin-1, peribronchial eosinophils, lung TGB-β1 expression, and indices of airway remodeling (fibrosis and smooth muscle) compared to either stimulus alone. As hypoxia is present in >90% of severe asthma exacerbations, these findings underscore the potential of hypoxia to potentiate the airway inflammatory response, remodeling, and accelerate the decline of lung function in asthma exacerbations. PMID:23499929

  12. Mucus Distribution Model in a Lung with Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Sara Zarei

    2012-01-01

    Full Text Available Cystic fibrosis (CF is the most common autosomal recessive disease in Caucasians with a reported incidence of 1 in every 3200 live births. Most strikingly, CF is associated with early mortality. Host in flammatory responses result in airway mucus plugging, airway wall edema, and eventual destruction of airway wall support structure. Despite aggressive treatment, the median age of survival is approximately 38 years. This work is the first attempt to parameterize the distributions of mucus in a CF lung as a function of time. By default, the model makes arbitrary choices at each stage of the construction process, whereby the simplest choice is made. The model is sophisticated enough to fit the average CF patients' spirometric data over time and to identify several interesting parameters: probability of colonization, mucus volume growth rate, and scarring rate. Extensions of the model appropriate for describing the dynamics of single patient MRI data are also discussed.

  13. New insights into the pathogenesis of cystic fibrosis sinusitis

    Science.gov (United States)

    Chang, Eugene H.

    2013-01-01

    People with cystic fibrosis (CF) sinus disease have developmental sinus abnormalities with airway bacterial infection, inflammation, impaired mucociliary clearance and thick obstructive mucus. The pathophysiology of airway disease in CF is not completely understood, and current treatments in CF sinus disease ameliorate symptoms but do not provide a cure. This manuscript reviews the history of CF, its manifestations in sinus disease, and the potential impact and relationship of CF on the upper and lower airway. We discuss recent discoveries in the pathophysiology of CF using the CF porcine animal model and exciting treatments that address the primary gene defect that may translate into improved outcomes in CF and non-CF sinusitis in humans. PMID:24282147

  14. How Is Cystic Fibrosis Treated?

    Science.gov (United States)

    ... page from the NHLBI on Twitter. How Is Cystic Fibrosis Treated? Cystic fibrosis (CF) has no cure. However, ... help oral pancreatic enzymes work better. Treatments for Cystic Fibrosis Complications A common complication of CF is diabetes . ...

  15. Genetics Home Reference: cystic fibrosis

    Science.gov (United States)

    ... Me Understand Genetics Home Health Conditions cystic fibrosis cystic fibrosis Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Cystic fibrosis is an inherited disease characterized by the buildup ...

  16. UP-TO-DATE MANAGEMENT OF LUNG DISEASE IN CHILDREN AND ADOLESCENTS WITH CYSTIC FIBROSIS

    Directory of Open Access Journals (Sweden)

    Marina Praprotnik

    2015-04-01

    Full Text Available Cystic fibrosis (CF is a multi-organ disease,  affecting mostly lungs and gastrointestinal tract. Data from patient registries show that the survival of patients with CF has progressively improved over the past several decades, as a result of advances in antibiotic treatment, supplementation of pancreatic enzymes, better nutrition and a holistic approach to treatment in CF centres.The purpose of this review is to survey recent developments in the treatment of lung disease  in children and adolescents with CF.We describe newborn screening for CF.When chronic respiratory insufficiency occurs, lung transplantation becomes a very important issue.Lung disease is the most common cause of morbidity and mortality in CF patients. Emerging new therapies are targeted at all points in the pathogenesis of lung disease, from drugs that treat infection and inflammation in the airways to gene transfer studies  and to drugs that augment airway surface liquid height. A number of antibacterial agents formulated for inhalation are at various stages of study and there are several anti-inflammatory candidate drugs in  clinical trials.  The most important development  in the recent years is  modulation of the abnormal protein that causes CF, the cystic fibrosis transmembrane regulator (CFTR, where drugs are targeted at specific defects in the transcription, processing or functioning.When chronic respiratory insufficiency occurs, lung transplantation becomes a very important issue. The role of the CF nurse, who has responsibilities in educating and teaching clinical skills to patients and families, is described.

  17. Airway exploration in children

    Directory of Open Access Journals (Sweden)

    Fernando GÓMEZ-SÁEZ

    2016-11-01

    Full Text Available Introduction and objective: The management of the airways represents a constant challenge in pediatric practice. In the last years, bronchoscopy has become an essential technique in the diagnosis and treatment of various abnormalities of the child's respiratory system. The special characteristics of the pediatric airway and the differentiated pathology it presents give pediatric bronchoscopy its own entity. Pediatric bronchoscopy is a safe technique with many applications, both diagnostic and therapeutic. The use of both types of bronchoscopes (flexible and rigid allows to take advantage of each one of them. Flexible bronchoscopy in pediatrics is a relatively simple and low-risk procedure that provides anatomical and dynamic information on the airways, as well as cytological and microbiological studies. The simplicity and low risk of this technique, in addition to not requiring general anesthesia, allows it to be performed even at the head of the patient, which has led to an increasingly extensive field of indications. The purpose of this article is to provide a review on the timeliness of the pediatric bronchoscopy procedure, especially about its indications. Method: Narrative review. Conclusion: The endoscopic examination of the airway is a cost-effective technique in pediatrics, with little complications and can offer very valuable diagnostic information, as well as perform certain therapeutic procedures. It is recommended that all professionals involved in the management of patients with airway pathology should know their indications, contraindications, complications, as well as their therapeutic applications.

  18. Lentiviral Vectors and Cystic Fibrosis Gene Therapy

    Science.gov (United States)

    Castellani, Stefano; Conese, Massimo

    2010-01-01

    Cystic fibrosis (CF) is a chronic autosomic recessive syndrome, caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene, a chloride channel expressed on the apical side of the airway epithelial cells. The lack of CFTR activity brings a dysregulated exchange of ions and water through the airway epithelium, one of the main aspects of CF lung disease pathophysiology. Lentiviral (LV) vectors, of the Retroviridae family, show interesting properties for CF gene therapy, since they integrate into the host genome and allow long-lasting gene expression. Proof-of-principle that LV vectors can transduce the airway epithelium and correct the basic electrophysiological defect in CF mice has been given. Initial data also demonstrate that LV vectors can be repeatedly administered to the lung and do not give rise to a gross inflammatory process, although they can elicit a T cell-mediated response to the transgene. Future studies will clarify the efficacy and safety profile of LV vectors in new complex animal models with CF, such as ferrets and pigs. PMID:21994643

  19. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will ad

  20. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will

  1. Assessing idiopathic pulmonary fibrosis (IPF) with bronchoscopic OCT (Conference Presentation)

    Science.gov (United States)

    Hariri, Lida P.; Adams, David C.; Colby, Thomas V.; Tager, Andrew M.; Suter, Melissa J.

    2016-03-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal form of fibrotic lung disease, with a 3 year survival rate of 50%. Diagnostic certainty of IPF is essential to determine the most effective therapy for patients, but often requires surgery to resect lung tissue and look for microscopic honeycombing not seen on chest computed tomography (CT). Unfortunately, surgical lung resection has high risks of associated morbidity and mortality in this patient population. We aim to determine whether bronchoscopic optical coherence tomography (OCT) can serve as a novel, low-risk paradigm for in vivo IPF diagnosis without surgery or tissue removal. OCT provides rapid 3D visualization of large tissue volumes with microscopic resolutions well beyond the capabilities of CT. We have designed bronchoscopic OCT catheters to effectively and safely access the peripheral lung, and conducted in vivo peripheral lung imaging in patients, including those with pulmonary fibrosis. We utilized these OCT catheters to perform bronchoscopic imaging in lung tissue from patients with pulmonary fibrosis to determine if bronchoscopic OCT could successfully visualize features of IPF through the peripheral airways. OCT was able to visualize characteristic features of IPF through the airway, including microscopic honeycombing (fibrosis, and spatial disease heterogeneity. These findings support the potential of bronchoscopic OCT as a minimally-invasive method for in vivo IPF diagnosis. However, future clinical studies are needed to validate these findings.

  2. Airway reconstruction in children

    Directory of Open Access Journals (Sweden)

    Rao Sanjay

    2009-01-01

    Full Text Available Aim/Background : Airway anomalies are infrequent but potentially life threatening in children. A program to care for these difficult children was set up at our institution, and this paper summarizes our experience. Methods: A total of 34 children were enrolled in the program over a period of three years. These children were evaluated as per the standard protocols. Treatment was individualized. Results: Of these 34 children, 28 had their airways restored and are doing well. Four children continue to remain on tracheostomy and two will require long term tracheostomy. There were two deaths. All children are under surveillance as there is a risk of recurrence. Conclusions: Airway anomalies are complex problems with significant morbidity and mortality. Current therapeutic modalities allow for good results. Most children were successfully decannulated and did well.

  3. Neonatal cystic fibrosis screening test

    Science.gov (United States)

    Cystic fibrosis screening - neonatal; Immunoreactive trypsinogen; IRT test; CF - screening ... Cystic fibrosis is a disease passed down through families. CF causes thick, sticky mucus to build up in ...

  4. Paediatric airway management: basic aspects

    DEFF Research Database (Denmark)

    Holm-Knudsen, R J; Rasmussen, L S

    2009-01-01

    . Airway obstruction can be avoided by paying close attention to the positioning of the head of the child and by keeping the mouth of the child open during mask ventilation. The use of oral and nasopharyngeal airways, laryngeal mask airways, and cuffed endotracheal tubes is discussed with special reference...... to the circumstances in infants. A slightly different technique during laryngoscopy is suggested. The treatment of airway oedema and laryngospasm is described....

  5. Lung clearance index in the assessment of airways disease.

    Science.gov (United States)

    Horsley, Alex

    2009-06-01

    In the last few years there has been a growing interest in lung clearance index (LCI), a measure of lung physiology derived from multiple breath washout tests. This resurgence of interest was initially driven by the recognition that such assessments were capable of detecting early airways disease in children, and are more sensitive and easier to perform in this population than conventional lung function tests [Aurora P, Kozlowska W, Stocks J. Gas mixing efficiency from birth to adulthood measured by multiple-breath washout. Respir Physiol Neurobiol, 2005;148(1-2):125-39]. With an appreciation of the importance of earlier identification of airways dysfunction, and prevention of irreversible structural airway changes, methods of following airways disease in these "silent years" are especially important. LCI has now been reported in studies involving all age groups, from infants to adults [Lum S, Gustafsson P, Ljungberg H, Hulskamp G, Bush A, Carr SB, et al. Early detection of cystic fibrosis lung disease: multiple-breath washout versus raised volume tests. Thorax, 2007;62(4):341-7; Horsley AR, Gustafsson PM, Macleod K, Saunders CJ, Greening AP, Porteous D, et al. Lung clearance index is a sensitive, repeatable and practical measure of airways disease in adults with cystic fibrosis. Thorax, 2008;63:135-40], and has a narrow range of normal over this wide age range, making it especially suitable for long-term follow-up studies. In cystic fibrosis (CF) particularly, there is a pressing need for sensitive and repeatable clinical endpoints for therapeutic interventions [Rosenfeld M. An overview of endpoints for cystic fibrosis clinical trials: one size does not fit all. Proc Am Thorac Soc, 2007;4(4):299-301], and LCI has been proposed as an outcome measure in future CF gene therapy studies [Davies JC, Cunningham S, Alton EW, Innes JA. Lung clearance index in CF: a sensitive marker of lung disease severity. Thorax, 2008;63(2):96-7]. This review will consider how LCI is

  6. Fibrosis and Cancer

    DEFF Research Database (Denmark)

    Cox, Thomas R.; Erler, Janine T.

    2016-01-01

    The relation between fibrosis and cancer has long been debated, specifically whether desmoplasia precedes, accompanies, or succeeds tumourigenesis, progression, and metastasis. Recent reports have published opposing data, adding to the perplexity. However, what is emerging is that it is likely...... the specific properties of the extracellular matrix (ECM) that determine the paradoxical nature of cancer-associated fibrosis....

  7. Fibrosis and Cardiac Arrhythmias

    NARCIS (Netherlands)

    de Jong, Sanne; van Veen, Toon A. B.; van Rijen, Harold V. M.; de Bakker, Jacques M. T.

    2011-01-01

    In this review article about fibrosis and arrhythmias, we show that the amount of collagen, a normal element of the heart muscle, increases with age and in heart disease. The relation between fibrosis and electrophysiological parameters such as conduction, fractionation of electrograms, abnormal imp

  8. [Airway clearance techniques in chronic obstructive pulmonary syndrome : 2011 update].

    Science.gov (United States)

    Opdekamp, C

    2011-09-01

    For many years the airway clearance techniques used in chest physical therapy were assimilated with the singular technique of postural drainage, percussions and vibrations. However the side effects and counter indications and the lack of scientific proof regarding this technique have forced reflection and development of other techniques more comfortable and without deleterious effects. If all these techniques show a high efficiency in terms of improved mucociliary clearance, the literature is unanimous on how little effect these techniques have in the short and the long-term with regards to lung function and arterial blood gases. In view of the scientific literature, it is clear that the airway clearance techniques don't have the same recognition concerning their efficiency in all obstructive pulmonary diseases. As the cornerstone in the management of cystic fibrosis, the efficiency of the bronchial hygiene techniques are in general poorly documented in the management of the non-cystic fibrosis bronchiectasis, bronchitis or emphysema. The use of the chest physical therapy seems more to do with the interpretation of the imagery and symptomatology. The airway clearance techniques should be individualised according to symptoms, the amount of expectorated mucus and the objectives signs of secretions retention or subjective signs of difficulty expectorating secretions with progression of the disease.

  9. Epidemiology of nontuberculous mycobacteria among patients with cystic fibrosis in Scandinavia

    DEFF Research Database (Denmark)

    Qvist, Tavs; Gilljam, Marita; Jönsson, Bodil;

    2015-01-01

    BACKGROUND: Nontuberculous mycobacteria (NTM) are an emerging threat to cystic fibrosis (CF) patients but their epidemiology is not well described. METHODS: In this retrospective observational study we identified all Scandinavian CF patients with a positive NTM culture from airway secretions from...

  10. The Streptococcus milleri population of a cystic fibrosis clinic reveals patient specificity and intraspecies diversity.

    Science.gov (United States)

    Sibley, Christopher D; Sibley, Kristen A; Leong, Tara A; Grinwis, Margot E; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2010-07-01

    The genetic relatedness of Streptococcus milleri group isolates from the airways of cystic fibrosis patients was determined by using pulsed-field gel electrophoresis. This study reveals no evidence for patient-to-patient transmission in our patient population; however, within individual patients, complex inter- and intraspecies diversity and dynamics can be observed.

  11. Decreased mucosal oxygen tension in the maxillary sinuses in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Aanæs, Kasper; Rickelt, Lars Fledelius; Johansen, Helle Krogh;

    2011-01-01

    Pseudomonas aeruginosa in the sinuses plays a role in the lungs in cystic fibrosis (CF) patients, but little is known about the sinus environment where the bacteria adapt. Anoxic areas are found in the lower respiratory airways but it is unknown if the same conditions exist in the sinuses....

  12. The evolution and adaptation of clinical Pseudomonas aeruginosa isolates from early cystic fibrosis infections

    DEFF Research Database (Denmark)

    Lindegaard, Mikkel

    Pseudomonas aeruginosa is a major cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa infects the CF airways and establishes chronic infections that can last for a lifetime during which P.aeruginosa evolves in order to adapt to the environment.In this PhD thesis, we...

  13. In Vitro Activities against Cystic Fibrosis Pathogens of Synthetic Host Defence Propeptides Processed by Neutrophil Elastase.

    LENUS (Irish Health Repository)

    Desgranges, Stephane

    2011-02-22

    The antimicrobial and haemolytic activities of a host defence peptide can be controlled by modification as a propeptide of reduced net charge which can be processed by neutrophil elastase, a serine protease involved in chronic airway inflammation and infections associated with cystic fibrosis.

  14. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children.

    NARCIS (Netherlands)

    Robroeks, C.M.; Rosias, P.P.; Vliet, D van; Jobsis, Q.; Yntema, J.L.; Brackel, H.J.; Damoiseaux, J.G.; Hartog, GM den; Wodzig, W.K.; Dompeling, E.

    2008-01-01

    Chronic airway inflammation is present in cystic fibrosis (CF). Non-invasive inflammometry may be useful in disease management. The aim of the present cross-sectional study was to investigate: (i) the ability of fractional exhaled nitric oxide and inflammatory markers (IM) [exhaled breath condensate

  15. Distinct PKA and Epac compartmentalization in airway function and plasticity

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Racke, Kurt; Schmidt, Martina

    2013-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and (myo)fibro

  16. Cystic fibrosis: a clinical view.

    Science.gov (United States)

    Castellani, Carlo; Assael, Baroukh M

    2017-01-01

    Cystic fibrosis (CF), a monogenic disease caused by mutations in the CFTR gene on chromosome 7, is complex and greatly variable in clinical expression. Airways, pancreas, male genital system, intestine, liver, bone, and kidney are involved. The lack of CFTR or its impaired function causes fat malabsorption and chronic pulmonary infections leading to bronchiectasis and progressive lung damage. Previously considered lethal in infancy and childhood, CF has now attained median survivals of 50 years of age, mainly thanks to the early diagnosis through neonatal screening, recognition of mild forms, and an aggressive therapeutic attitude. Classical treatment includes pancreatic enzyme replacement, respiratory physiotherapy, mucolitics, and aggressive antibiotic therapy. A significant proportion of patients with severe symptoms still requires lung or, less frequently, liver transplantation. The great number of mutations and their diverse effects on the CFTR protein account only partially for CF clinical variability, and modifier genes have a role in modulating the clinical expression of the disease. Despite the increasing understanding of CFTR functioning, several aspects of CF need still to be clarified, e.g., the worse outcome in females, the risk of malignancies, the pathophysiology, and best treatment of comorbidities, such as CF-related diabetes or CF-related bone disorder. Research is focusing on new drugs restoring CFTR function, some already available and with good clinical impact, others showing promising preliminary results that need to be confirmed in phase III clinical trials.

  17. Airway clearance strategies for the pediatric patient.

    Science.gov (United States)

    Davidson, Kathryn L

    2002-07-01

    Clinicians who care for cystic fibrosis (CF) patients have many techniques to choose from to facilitate mucus clearance. Little has been published about when to introduce the various techniques and in what order to teach them. Debates have occurred over these issues in the CF community, and there is now consensus on some topics. It is very important to teach adherence to therapy at an early age. Adherence to an airway clearing regimen assists in maintaining good pulmonary function in CF patients. Knowing when and how to introduce airway clearance techniques beyond chest physiotherapy (CPT) is clinically relevant and useful. A 5-position modified CPT routine can be used with infants and children, and it takes less time and may improve adherence. Infants and toddlers can be taught breathing games that eventually lead them to perform diaphragmatic breathing and huffing. Once they have mastered diaphragmatic breathing and huffing, children can be taught the active cycle of breathing technique. Modified CPT can be phased out at that point. Positive expiratory pressure therapy can usually be introduced around 6-7 years of age. High-frequency chest wall oscillation, oscillating positive expiratory pressure, and autogenic drainage all follow. CF patients should be given every opportunity to learn and master various techniques to promote mucus clearance.

  18. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  19. Pharyngeal airway volume and shape from cone-beam computed tomography: Relationship to facial morphology

    Science.gov (United States)

    Grauer, Dan; Cevidanes, Lucia S. H.; Styner, Martin A.; Ackerman, James L.; Proffit, William R.

    2010-01-01

    Introduction The aim of this study was to assess the differences in airway shape and volume among subjects with various facial patterns. Methods Cone-beam computed tomography records of 62 nongrowing patients were used to evaluate the pharyngeal airway volume (superior and inferior compartments) and shape. This was done by using 3-dimensional virtual surface models to calculate airway volumes instead of estimates based on linear measurements. Subgroups of the sample were determined by anteroposterior jaw relationships and vertical proportions. Results There was a statistically significant relationship between the volume of the inferior component of the airway and the anteroposterior jaw relationship (P = 0.02), and between airway volume and both size of the face and sex (P = 0.02, P = 0.01). No differences in airway volumes related to vertical facial proportions were found. Skeletal Class II patients often had forward inclination of the airway (P <0.001), whereas skeletal Class III patients had a more vertically oriented airway (P = 0.002). Conclusions Airway volume and shape vary among patients with different anteroposterior jaw relationships; airway shape but not volume differs with various vertical jaw relationships. The methods developed in this study make it possible to determine the relationship of 3-dimensional pharyngeal airway surface models to facial morphology, while controlling for variability in facial size. PMID:19962603

  20. The development of bronchiectasis on chest computed tomography in children with cystic fibrosis

    DEFF Research Database (Denmark)

    Tepper, Leonie A.; Caudri, Daan; Rovira, Adria Perez

    2016-01-01

    OBJECTIVE: Bronchiectasis is an important component of cystic fibrosis (CF) lung disease but little is known about its development. We aimed to study the development of bronchiectasis and identify determinants for rapid progression of bronchiectasis on chest CT. METHODS: Forty-three patients...... plugging, airway wall thickening, atelectasis/consolidation or normal airways were present in the ROIs. RESULTS: We identified 362 ROIs on the most recent CT. In 187 (51.7 %) ROIs bronchiectasis was present on all preceding CTs, while 175 ROIs showed development of bronchiectasis. In 139/175 (79...... to the slow progressors (p = 0.05). CONCLUSION: Most bronchiectatic airways developed within 2 years without visible pre-stages, underlining the treacherous nature of CF lung disease. Mucus plugging was the most frequent pre-stage. KEY POINTS: • Development of bronchiectasis in cystic fibrosis lung disease...

  1. Advances in prehospital airway management.

    Science.gov (United States)

    Jacobs, Pe; Grabinsky, A

    2014-01-01

    Prehospital airway management is a key component of emergency responders and remains an important task of Emergency Medical Service (EMS) systems worldwide. The most advanced airway management techniques involving placement of oropharyngeal airways such as the Laryngeal Mask Airway or endotracheal tube. Endotracheal tube placement success is a common measure of out-of-hospital airway management quality. Regional variation in regard to training, education, and procedural exposure may be the major contributor to the findings in success and patient outcome. In studies demonstrating poor outcomes related to prehospital-attempted endotracheal intubation (ETI), both training and skill level of the provider are usually often low. Research supports a relationship between the number of intubation experiences and ETI success. National standards for certification of emergency medicine provider are in general too low to guarantee good success rate in emergency airway management by paramedics and physicians. Some paramedic training programs require more intense airway training above the national standard and some EMS systems in Europe staff their system with anesthesia providers instead. ETI remains the cornerstone of definitive prehospital airway management, However, ETI is not without risk and outcomes data remains controversial. Many systems may benefit from more input and guidance by the anesthesia department, which have higher volumes of airway management procedures and extensive training and experience not just with training of airway management but also with different airway management techniques and adjuncts.

  2. Extraglottic airway devices: technology update

    Directory of Open Access Journals (Sweden)

    Sharma B

    2017-08-01

    Full Text Available Bimla Sharma, Chand Sahai, Jayashree Sood Department of Anaesthesiology, Pain and Perioperative Medicine, Sir Ganga Ram Hospital, New Delhi, India Abstract: Extraglottic airway devices (EADs have revolutionized the field of airway management. The invention of the laryngeal mask airway was a game changer, and since then, there have been several innovations to improve the EADs in design, functionality, safety and construction material. These have ranged from changes in the shape of the mask, number of cuffs and material used, like rubber, polyvinylchloride and latex. Phthalates, which were added to the construction material in order to increase device flexibility, were later omitted when this chemical was found to have serious adverse reproductive outcomes. The various designs brought out by numerous companies manufacturing EADs resulted in the addition of several devices to the airway market. These airway devices were put to use, many of them with inadequate or no evidence base regarding their efficacy and safety. To reduce the possibility of compromising the safety of the patient, the Difficult Airway Society (DAS formed the Airway Device Evaluation Project Team (ADEPT to strengthen the evidence base for airway equipment and vet the new extraglottic devices. A preuse careful analysis of the design and structure may help in better understanding of the functionality of a particular device. In the meantime, the search for the ideal EAD continues. Keywords: extraglottic airway devices, laryngeal mask airway, other extraglottic airway devices, safety, technology update

  3. Airway Microbiota and the Implications of Dysbiosis in Asthma.

    Science.gov (United States)

    Durack, Juliana; Boushey, Homer A; Lynch, Susan V

    2016-07-01

    The mucosal surfaces of the human body are typically colonized by polymicrobial communities seeded in infancy and are continuously shaped by environmental exposures. These communities interact with the mucosal immune system to maintain homeostasis in health, but perturbations in their composition and function are associated with lower airway diseases, including asthma, a developmental and heterogeneous chronic disease with various degrees and types of airway inflammation. This review will summarize recent studies examining airway microbiota dysbioses associated with asthma and their relationship with the pathophysiology of this disease.

  4. Supraglottic airway devices in children

    Directory of Open Access Journals (Sweden)

    S Ramesh

    2011-01-01

    Full Text Available Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET, which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA, the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children.

  5. IL-13–induced airway mucus production is attenuated by MAPK13 inhibition

    Science.gov (United States)

    Alevy, Yael G.; Patel, Anand C.; Romero, Arthur G.; Patel, Dhara A.; Tucker, Jennifer; Roswit, William T.; Miller, Chantel A.; Heier, Richard F.; Byers, Derek E.; Brett, Tom J.; Holtzman, Michael J.

    2012-01-01

    Increased mucus production is a common cause of morbidity and mortality in inflammatory airway diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis. However, the precise molecular mechanisms for pathogenic mucus production are largely undetermined. Accordingly, there are no specific and effective anti-mucus therapeutics. Here, we define a signaling pathway from chloride channel calcium-activated 1 (CLCA1) to MAPK13 that is responsible for IL-13–driven mucus production in human airway epithelial cells. The same pathway was also highly activated in the lungs of humans with excess mucus production due to COPD. We further validated the pathway by using structure-based drug design to develop a series of novel MAPK13 inhibitors with nanomolar potency that effectively reduced mucus production in human airway epithelial cells. These results uncover and validate a new pathway for regulating mucus production as well as a corresponding therapeutic approach to mucus overproduction in inflammatory airway diseases. PMID:23187130

  6. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways.

    Science.gov (United States)

    DiFranco, Kristina M; Mulligan, Jennifer K; Sumal, Aman S; Diamond, Gill

    2017-01-24

    Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which often leads to protein misfolding and no CFTR surface localization. This then leads to chronic airway infections, inflammation, and tissue damage. Although vitamin D has been explored as a therapy to treat CF due to its antimicrobial-inducing and anti-inflammatory properties, the effect of 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3) on CFTR directly has not been studied. We treated cultured healthy and diseased bronchial epithelial cells (BEC) with 10nM 1α,25(OH)2D3 for 6 and 24h and found that 1α,25(OH)2D3 increases both mRNA and protein CFTR levels using RT-qPCR, flow cytometry and fluorescence immunohistochemistry. Treatment of CF cells with 10nM 1α,25(OH)2D3 led to an increase in both total and surface CFTR expression, suggesting 1α,25(OH)2D3 could be used to increase properly localized CFTR in airway cells. To determine if BEC could convert the more clinically relevant cholecalciferol to 25OHD3, cultured non-CF and CF BECs were treated with a range of cholecalciferol concentrations, and 25OHD3 levels were quantified by ELISA. We found that 25OHD3 levels increased in a concentration-dependent manner. Treatment of BEC with 10μM cholecalciferol led to increases in both CYP24A1 and CFTR mRNA levels, even when added to the apical surface of cells grown in an air-liquid interface, suggesting that topical administration of vitamin D could be used therapeutically. To demonstrate this in vivo, we intranasally delivered 1μM 1α,25(OH)2D3 into mice. After 6h, we observed induction of both Cyp24A1 and CFTR expression in the tracheas of treated mice. The major findings of this study are that vitamin D can be converted to the active form when topically administered to the airway, and this could be used to increase CFTR levels in patients with CF. This could potentially be useful as an adjunctive therapy, together with

  7. Child With Cystic Fibrosis And Pyopneumothorax For Emergency Thoracotomy For Decortication

    Directory of Open Access Journals (Sweden)

    Rakesh Garg

    2008-01-01

    Full Text Available We describe a child of cystic fibrosis for emergency thoracotomy. A 7 year female diagnosed as cystic fibrosis, pyopneumothorax with pneumonia was posted for emergency left thoracotomy. On examination, child had decreased air entry on left side of chest and bilateral crepts. Anaesthesia was induced with fentanyl, propofol, vecuronium and sevoflurane in oxygen/air. Airway was secured with tracheal tube. Central venous line and caudal epidural catheter was placed. There were multiple episodes of desaturation and airway pressures were high. Child was shifted to ICU with tube in situ and put on ventilator and gradually weaned. Epidural infusion was initiated. Child had an uneventful recovery. Patient with cystic fibrosis for emergency thoracotomy requires proper choice of anaesthetic techniques along with perioperative pain relief.

  8. Smad Molecules Expression Pattern in Human Bronchial Airway Induced by Sulfur Mustard

    Directory of Open Access Journals (Sweden)

    Maryam Adelipour

    2011-09-01

    Full Text Available Airway remodelling is characterized by the thickening and reorganization of the airways seen in mustard  lung patients. Mustard lung is the  general description  for  the  chronic obstructive  pulmonary  disease induced  by  sulfur  mustard(SM. Pulmonary  disease was diagnosed as the most important  disorder in individuals that had been exposed to sulfur mustard. Sulfur mustard is a chemical warfare agent developed during Wars. Iraqi forces frequently used it against Iranian during Iran –Iraq in the 1980–1988. Peribronchial fibrosis result  from  airway remodeling  that  include  excess  of  collagen of  extracellular matrix deposition  in  the  airway wall. Some of  Smads families in  association with TGF-β  are involved in airway remodeling due to lung fibrosis. In the present study we compared the mRNA expression of Smad2, Smad3, and Smad4 and Smad7 genes in airway wall biopsies of chemical-injured patients with non-injured patients as control.We used airway wall biopsies of ten unexposed patients and fifteen SM-induced patients. Smads expression was evaluated by RT-PCR followed by bands densitometry.Expression levels of Smad3 and Smad4 in SM exposed patients were upregulated but Smad2 and Smad7 was not significantly altered.Our results revealed that Smad3, and 4 may be involved in airway remodeling process in SM induced  patients  by  activation of  TGF-β.  Smad pathway is  the  most  represented signaling mechanism for  airway remodeling and  peribronchial fibrosis. The  complex of Smads in the nucleus affects a series of genes that results in peribronchial fibrosis in SM- induced patients.

  9. The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Uses its C-Terminus to Regulate the A2B Adenosine Receptor.

    Science.gov (United States)

    Watson, Michael J; Lee, Shernita L; Marklew, Abigail J; Gilmore, Rodney C; Gentzsch, Martina; Sassano, Maria F; Gray, Michael A; Tarran, Robert

    2016-06-09

    CFTR is an apical membrane anion channel that regulates fluid homeostasis in many organs including the airways, colon, pancreas and sweat glands. In cystic fibrosis, CFTR dysfunction causes significant morbidity/mortality. Whilst CFTR's function as an ion channel has been well described, its ability to regulate other proteins is less understood. We have previously shown that plasma membrane CFTR increases the surface density of the adenosine 2B receptor (A2BR), but not of the β2 adrenergic receptor (β2AR), leading to an enhanced, adenosine-induced cAMP response in the presence of CFTR. In this study, we have found that the C-terminal PDZ-domain of both A2BR and CFTR were crucial for this interaction, and that replacing the C-terminus of A2BR with that of β2AR removed this CFTR-dependency. This observation extended to intact epithelia and disruption of the actin cytoskeleton prevented A2BR-induced but not β2AR-induced airway surface liquid (ASL) secretion. We also found that CFTR expression altered the organization of the actin cytoskeleton and PDZ-binding proteins in both HEK293T cells and in well-differentiated human bronchial epithelia. Furthermore, removal of CFTR's PDZ binding motif (ΔTRL) prevented actin rearrangement, suggesting that CFTR insertion in the plasma membrane results in local reorganization of actin, PDZ binding proteins and certain GPCRs.

  10. Airway epithelial cell responses to ozone injury

    Energy Technology Data Exchange (ETDEWEB)

    Leikauf, G.D.; Simpson, L.G.; Zhao, Qiyu [Univ. of Cincinnati Medical Center, OH (United States)] [and others

    1995-03-01

    The airway epithelial cell is an important target in ozone injury. Once activated, the airway epithelium responds in three phases. The initial, or immediate phase, involves activation of constitutive cells, often through direct covalent interactions including the formation of secondary ozonolysis products-hydroxyhydroperoxides, aldehydes, and hydrogen peroxide. Recently, we found hydroxyhydroperoxides to be potent agonists; of bioactive eicosanoid formation by human airway epithelial cells in culture. Other probable immediate events include activation and inactivation of enzymes present on the epithelial surface (e.g., neutral endopeptidase). During the next 2 to 24 hr, or early phase, epithelial cells respond by synthesis and release of chemotactic factors, including chemokines-macrophage inflammatory protein-2, RANTES, and interleukin-8. Infiltrating leukocytes during this period also release elastase, an important agonist of epithelial cell mucus secretion and additional chemokine formation. The third (late) phase of ozone injury is characterized by eosinophil or monocyte infiltration. Cytokine expression leads to alteration of structural protein synthesis, with increases in fibronectin evident by in situ hybridization. Synthesis of epithelial antiproteases, e.g., secretary leukocyte protease inhibitor, may also increase locally 24 to 48 hr after elastase concentrations become excessive. Thus, the epithelium is not merely a passive barrier to ozone injury but has a dynamic role in directing the migration, activating, and then counteracting inflammatory cells. Through these complex interactions, epithelial cells can be viewed as the initiators (alpha) and the receptors (omega) of ozone-induced airway disease. 51 refs., 2 figs., 3 tabs.

  11. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J;

    2013-01-01

    BACKGROUND AND OBJECTIVE: Asthma-related morbidity is greater in older compared with younger asthmatics. Airway closure is also greater in older asthmatics, an observation that may be explained by differences in airway inflammation. We hypothesized that in older adult patients with asthma......: Mean patient age was 67 years (confidence interval: 63-71) with a mean FEV1 of 78 % predicted (confidence interval: 70-85%). AHR correlated with sputum eosinophils (r = 0.68, P = 0.005) and eNO (r = 0.71, P ... or eNO. CONCLUSIONS: In older patients with asthma, airway inflammatory cells are linked to abnormal airway physiology. Eosinophilic airway inflammation is associated with AHR while neutrophilic inflammation may be an important determinant of airflow limitation at rest and airway closure during...

  12. Upper airway imaging and its role in preoperative airway evaluation

    Directory of Open Access Journals (Sweden)

    Jagadish G Sutagatti

    2016-01-01

    Full Text Available Ultrasonography (USG is well-known as a fast, safe, and noninvasive technique. Its application for imaging of the airway is now gaining momentum. The upper airway has a complex anatomy, and its assessment forms a vital part of every preanesthetic evaluation. Ultrasound (US imaging can help in upper airway assessment in the preoperative period. There are various approaches to upper airway USG. The technique has its own advantages, disadvantages, and limitations. This simple yet challenging imaging technique is all set to become an important part of routine preoperative airway evaluation. This article reviews the various approaches to upper airway US imaging, interpretation of the images, limitations, and disadvantages of the technique and its varied clinical applications in the preoperative period. The scientific material presented here was hand searched from textbooks and journals, electronically from PubMed, and Google scholar using text words.

  13. Learn About Pulmonary Fibrosis

    Science.gov (United States)

    ... Fibrosis Month - Hope of a Better Future Blog: Yoga, Tai Chi and Your Lungs: The Benefits of ... number of items"); $("#local_list_xml").quickPagination(); }, error: function() { console.log("An error occurred while processing XML ...

  14. Unrecognized failed airway management using a supraglottic airway device.

    Science.gov (United States)

    Vithalani, Veer D; Vlk, Sabrina; Davis, Steven Q; Richmond, Neal J

    2017-10-01

    911 Emergency Medical Services (EMS) systems utilize supraglottic devices for either primary advanced airway management, or for airway rescue following failed attempts at direct laryngoscopy endotracheal intubation. There is, however, limited data on objective confirmation of supraglottic airway placement in the prehospital environment. Furthermore, the ability of EMS field providers to recognize a misplaced airway is unknown. Retrospective review of patients who underwent airway management using the King LTS-D supraglottic airway in a large urban EMS system, between 3/1/15-9/30/2015. Subjective success was defined as documentation of successful airway placement by the EMS provider. Objective success was confirmed by review of waveform capnography, with the presence of a 4-phase waveform greater than 5mmHg. Sensitivity and specificity of the field provider's assessment of success were then calculated. A total of 344 supraglottic airway attempts were reviewed. No patients met obvious death criteria. 269 attempts (85.1%) met criteria for both subjective and objective success. 19 attempts (5.6%) were recognized failures by the EMS provider. 47 (13.8%) airways were misplaced but unrecognized by the EMS provider. 4 attempts (1.2%) were correctly placed but misidentified as failures, leading to the unnecessary removal and replacement of the airway. Sensitivity of the provider's assessment was 98.5%; specificity was 28.7%. The use of supraglottic airway devices results in unrecognized failed placement. Appropriate utilization and review of waveform capnography may remedy a potential blind-spot in patient safety, and systemic monitoring/feedback processes may therefore be used to prevent unrecognized misplaced airways. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    DEFF Research Database (Denmark)

    Bousquet, J; Addis, A; Adcock, I

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy....... AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers)....

  16. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  17. Airway Management of Patients Undergoing Oral Cancer Surgery: A Retrospective Analysis of 156 Patients.

    Science.gov (United States)

    Nikhar, Sapna Annaji; Sharma, Ashima; Ramdaspally, Mahesh; Gopinath, Ramachandran

    2017-04-01

    Oral cancer patients have a potentially difficult airway, but if managed properly during the perioperative period, morbidity and mortality can be reduced or avoided. The medical records of 156 patients who were operated for oral cancers were reviewed for airway management during the perioperative period. The surgical procedures ranged from excisions, wide local excisions with split skin graftings, hemiglossectomies and radical neck nodes dissections to pectoralis major myocutaneous or free fibular flaps. Intubation was assessed as difficult in 14.7% of patients because of tumour- or radiation fibrosis-related trismus, restricted neck mobility and prior similar surgeries. Twenty patients had undergone surgery for oral cancer previously and were scheduled for flap reconstruction. Nasotracheal intubation was a preferred route, and 62.8% of patients could be intubated nasotracheally after neuromuscular blockade. Tracheostomy (elective or existing) was utilised for airway control in 19.2% cases. Patients who had undergone prior radiotherapy were more likely to be tracheostomised. McCoy laryngoscopes (13.4%), gum elastic bougies (23.6%), Airtraq devices (0.006%) and fibreoptic bronchoscopes (FOBs) (0.03%) were the additional airway techniques employed. In total, 64 patients (50.7%) could be extubated immediately after surgery. Proper preoperative evaluation and planning help manage difficult airways effectively with minimal need of advanced airway gadgets. Gum elastic bougies and Magill forceps are very useful in airway management and decrease the need of elective tracheostomy in oral cancer patients.

  18. Angiogenesis and liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Gülsüm ?zlem Elpek

    2015-01-01

    Recent data indicate that hepatic angiogenesis,regardless of the etiology, takes place in chronic liverdiseases (CLDs) that are characterized by inflammationand progressive fibrosis. Because antiangiogenictherapy has been found to be efficient inthe prevention of fibrosis in experimental models ofCLDs, it is suggested that blocking angiogenesis couldbe a promising therapeutic option in patients withadvanced fibrosis. Consequently, efforts are beingdirected to revealing the mechanisms involved inangiogenesis during the progression of liver fibrosis.Literature evidences indicate that hepatic angiogenesisand fibrosis are closely related in both clinical andexperimental conditions. Hypoxia is a major inducer ofangiogenesis together with inflammation and hepaticstellate cells. These profibrogenic cells stand at theintersection between inflammation, angiogenesis andfibrosis and play also a pivotal role in angiogenesis.This review mainly focuses to give a clear view on therelevant features that communicate angiogenesis withprogression of fibrosis in CLDs towards the-end point ofcirrhosis that may be translated into future therapies.The pathogenesis of hepatic angiogenesis associatedwith portal hypertension, viral hepatitis, non-alcoholicfatty liver disease and alcoholic liver disease are alsodiscussed to emphasize the various mechanisms involvedin angiogenesis during liver fibrogenesis.

  19. Ultrasound of the airway

    Directory of Open Access Journals (Sweden)

    Pankaj Kundra

    2011-01-01

    Full Text Available Currently, the role of ultrasound (US in anaesthesia-related airway assessment and procedural interventions is encouraging, though it is still ill defined. US can visualise anatomical structures in the supraglottic, glottic and subglottic regions. The floor of the mouth can be visualised by both transcutaneous view of the neck and also by transoral or sublinguial views. However, imaging the epiglottis can be challenging as it is suspended in air. US may detect signs suggestive of difficult intubation, but the data are limited. Other possible applications in airway management include confirmation of correct endotracheal tube placement, prediction of post-extubation stridor, evaluation of soft tissue masses in the neck prior to intubation, assessment of subglottic diameter for determination of paediatric endotracheal tube size and percutaneous dilatational tracheostomy. With development of better probes, high-resolution imaging, real-time picture and clinical experience, US has become the potential first-line noninvasive airway assessment tool in anaesthesia and intensive care practice.

  20. Mucoactive agents for airway mucus hypersecretory diseases.

    Science.gov (United States)

    Rogers, Duncan F

    2007-09-01

    Airway mucus hypersecretion is a feature of a number of severe respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). However, each disease has a different airway inflammatory response, with consequent, and presumably linked, mucus hypersecretory phenotype. Thus, it is possible that optimal treatment of the mucus hypersecretory element of each disease should be disease-specific. Nevertheless, mucoactive drugs are a longstanding and popular therapeutic option, and numerous compounds (eg, N-acetylcysteine, erdosteine, and ambroxol) are available for clinical use worldwide. However, rational recommendation of these drugs in guidelines for management of asthma, COPD, or CF has been hampered by lack of information from well-designed clinical trials. In addition, the mechanism of action of most of these drugs is unknown. Consequently, although it is possible to categorize them according to putative mechanisms of action, as expectorants (aid and/or induce cough), mucolytics (thin mucus), mucokinetics (facilitate cough transportability), and mucoregulators (suppress mechanisms underlying chronic mucus hypersecretion, such as glucocorticosteroids), it is likely that any beneficial effects are due to activities other than, or in addition to, effects on mucus. It is also noteworthy that the mucus factors that favor mucociliary transport (eg, thin mucus gel layer, "ideal" sol depth, and elasticity greater than viscosity) are opposite to those that favor cough effectiveness (thick mucus layer, excessive sol height, and viscosity greater than elasticity), which indicates that different mucoactive drugs would be required for treatment of mucus obstruction in proximal versus distal airways, or in patients with an impaired cough reflex. With the exception of mucoregulatory agents, whose primary action is unlikely to be directed against mucus, well-designed clinical trials are required to unequivocally determine the

  1. Cellular and Molecular Biology of Airway Mucins

    Science.gov (United States)

    Lillehoj, Erik P.; Kato, Kosuke; Lu, Wenju; Kim, Kwang C.

    2017-01-01

    Airway mucus constitutes a thin layer of airway surface liquid with component macromolecules that covers the luminal surface of the respiratory tract. The major function of mucus is to protect the lungs through mucociliary clearance of inhaled foreign particles and noxious chemicals. Mucus is comprised of water, ions, mucin glycoproteins, and a variety of other macromolecules, some of which possess anti-microbial, anti-protease, and anti-oxidant activities. Mucins comprise the major protein component of mucus and exist as secreted and cell-associated glycoproteins. Secreted, gel-forming mucins are mainly responsible for the viscoelastic property of mucus, which is crucial for effective mucociliary clearance. Cell-associated mucins shield the epithelial surface from pathogens through their extracellular domains and regulate intracellular signaling through their cytoplasmic regions. However, neither the exact structures of mucin glycoproteins, nor the manner through which their expression is regulated, are completely understood. This chapter reviews what is currently known about the cellular and molecular properties of airway mucins. PMID:23445810

  2. Personalized medicine for cystic fibrosis: establishing human model systems.

    Science.gov (United States)

    Mou, Hongmei; Brazauskas, Karissa; Rajagopal, Jayaraj

    2015-10-01

    With over 1,500 identifiable mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that result in distinct functional and phenotypical abnormalities, it is virtually impossible to perform randomized clinical trials to identify the best therapeutics for all patients. Therefore, a personalized medicine approach is essential. The only way to realistically accomplish this is through the development of improved in vitro human model systems. The lack of a readily available and infinite supply of human CFTR-expressing airway epithelial cells is a key bottleneck. We propose that a concerted two-pronged approach is necessary for patient-specific cystic fibrosis research to continue to prosper and realize its potential: (1) more effective culture and differentiation conditions for growing primary human airway and nasal epithelial cells and (2) the development of collective protocols for efficiently differentiating disease- and patient-specific induced pluripotent stem cells (iPSC) into pure populations of adult epithelial cells. Ultimately, we need a personalized human model system for cystic fibrosis with the capacity for uncomplicated bankability, widespread availability, and universal applicability for patient-specific disease modeling, novel pharmacotherapy investigation and screening, and readily executable genetic modification. © 2015 Wiley Periodicals, Inc.

  3. Anticholinergic treatment in airways diseases.

    LENUS (Irish Health Repository)

    Flynn, Robert A

    2009-10-01

    The prevalence of chronic airways diseases such as chronic obstructive pulmonary disease and asthma is increasing. They lead to symptoms such as a cough and shortness of breath, partially through bronchoconstriction. Inhaled anticholinergics are one of a number of treatments designed to treat bronchoconstriction in airways disease. Both short-acting and long-acting agents are now available and this review highlights their efficacy and adverse event profile in chronic airways diseases.

  4. Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone

    OpenAIRE

    Gallos, George; Townsend, Elizabeth; Yim, Peter; Virag, Laszlo; Zhang, Yi; Xu, Dingbang; Bacchetta, Matthew; Emala, Charles W.

    2012-01-01

    Chronic obstructive pulmonary disease and asthma are characterized by hyperreactive airway responses that predispose patients to episodes of acute airway constriction. Recent studies suggest a complex paradigm of GABAergic signaling in airways that involves GABA-mediated relaxation of airway smooth muscle. However, the cellular source of airway GABA and mechanisms regulating its release remain unknown. We questioned whether epithelium is a major source of GABA in the airway and whether the ab...

  5. Impaired Mucus Detachment Disrupts Mucociliary Transport in a Piglet Model of Cystic Fibrosis

    Science.gov (United States)

    Hoegger, Mark J.; Fischer, Anthony J.; McMenimen, James D.; Ostedgaard, Lynda S.; Tucker, Alex J.; Awadalla, Maged A.; Moninger, Thomas O.; Michalski, Andrew S.; Hoffman, Eric A.; Zabner, Joseph; Stoltz, David A.; Welsh, Michael J.

    2015-01-01

    Lung disease in people with cystic fibrosis (CF) is initiated by defective host defense that predisposes airways to bacterial infection. People with advanced CF exhibit deficits in mucociliary transport (MCT), a process that traps and propels bacteria out of lungs, but whether this occurs first or is secondary to airway remodeling has been unclear. To assess MCT, we tracked movement of radiodense microdisks in airways of newborn CF piglets. Cholinergic stimulation, which elicits mucus secretion, caused microdisks to become stuck. Impaired MCT was not due to periciliary liquid depletion; rather, CF submucosal glands secreted mucus strands that remained tethered to gland ducts and hindered MCT. Inhibiting anion secretion in non-CF airways replicated CF abnormalities. These findings identify impaired MCT as a primary defect, link CFTR loss in submucosal glands to failure of mucus detachment from glands, and suggest that submucosal glands and tethered mucus may be targets for early CF treatment. PMID:25124441

  6. Airway Management of Respiratory Failure.

    Science.gov (United States)

    Overbeck, Michael C

    2016-02-01

    Patients in respiratory distress often require airway management, including endotracheal intubation. It takes a methodical approach to transition from an unstable patient in distress with an unsecured airway, to a stable, sedated patient with a definitive airway. Through a deliberate course of advanced preparation, the emergency physician can tailor the approach to the individual clinical situation and optimize the chance of first-pass success. Sedation of the intubated patient confers physiologic benefits and should be included in the plan for airway control. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Pharmacology of airway smooth muscle proliferation

    NARCIS (Netherlands)

    Gosens, Reinoud; Roscioni, Sara S.; Dekkers, Bart G. J.; Pera, Tonio; Schmidt, Martina; Schaafsma, Dedmer; Zaagsma, Johan; Meurs, Herman

    2008-01-01

    Airway smooth muscle thickening is a pathological feature that contributes significantly to airflow limitation and airway hyperresponsiveness in asthma. Ongoing research efforts aimed at identifying the mechanisms responsible for the increased airway smooth muscle mass have indicated that hyperplasi

  8. Cholinergic regulation of airway inflammation and remodelling

    NARCIS (Netherlands)

    Kolahian, Saeed; Gosens, Reinoud

    2012-01-01

    Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway disease

  9. Effects of 4% Icodextrin on Experimental Spinal Epidural Fibrosis.

    Science.gov (United States)

    Karanci, Turker; Kelten, Bilal; Karaoglan, Alper; Cinar, Nilgun; Midi, Ahmet; Antar, Veysel; Akdemir, Hidayet; Kara, Zeynep

    2017-01-01

    The aim of this experimental study was to investigate whether spinal epidural 4% glucose polymer solution is effective in the prevention of postoperative fibrosis. Twenty eight adult Wistar albino rats were randomly divided into two equal groups, including treatment and control. Both groups underwent L1 vertebral total laminectomy to expose the dura. Topical treatment group received 4% icodextrin. Four weeks later, epidural fibrosis was examined in both groups histologically, biochemically and macroscopically. Topical use of 4% icodextrin prevented significantly epidural fibrosis following the laminectomy operation. Topical 4% icodextrin application inhibits postoperative epidural fibrosis with various mechanisms and prevents adhesions by playing barrier role between tissue surfaces through flotation. Our study is first to present evidence of experimental epidural fibrosis prevention with 4% icodextrin.

  10. [Airway management in obstetrics].

    Science.gov (United States)

    Boutonnet, M; Faitot, V; Keïta, H

    2011-09-01

    Reviewing problems related to the airway management in obstetrics, taking into account the recent evolutions of the anaesthetic practices in obstetrics. A review of the literature in English and French was performed in the Pumed database in April 2010. The first research used the following MeshTerms: "Anesthesia, Obstetrical" [Mesh] AND "Intubation, Intratracheal" [Mesh]. Complementary research used alone or in combination the following keywords: difficult tracheal intubation; failed tracheal intubation; airway; prediction of difficult tracheal intubation; maternal mortality; maternal morbidity; liability; aspiration pneumonia and obstetrical anesthesia. All the publications were retained excluding the correspondence. Data analysis for the airway management in obstetrics, the prediction of difficult intubation, the prevention of pulmonary inhalation of gastric fluid, but also on maternal morbi-mortality in link with general anesthesia in obstetrics. Airway management in obstetrics remains a true challenge for various reasons. The physiological and anatomical modifications related to pregnancy are responsible for a faster hypoxemia, a reduction of the diameter of the pharyngolaryngal tract, as well as an increase of the risk of inhalation of gastric contents after 16 weeks of amenorrhea. The emergency or extreme emergency context and the presence of diseases like obesity or preeclampsia raise the risks of difficulties with airway management. The logical evolution of the practices, with the considerable rise of the regional anesthesia/analgesia limits the training and the maintenance of competences for intratracheal intubation in obstetrics. The training per simulation appears particularly interesting on the subject and this approach needs to be developed. The literature indicates that the incidence of difficult intubation is of one per 30. The impossible intubation is one per 280 in obstetrics, eight times greater than in the general population. No criterion of

  11. Pseudomonas aeruginosa airway infection recruits and modulates neutrophilic myeloid-derived suppressor cells

    Directory of Open Access Journals (Sweden)

    Hasan Halit Öz

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that causes infections mainly in patients with cystic fibrosis (CF lung disease. Despite innate and adaptive immune responses upon infection, P. aeruginosa is capable of efficiently escaping host defenses, but the underlying immune mechanisms remain poorly understood. Myeloid-derived suppressor cells (MDSCs are innate immune cells that are functionally characterized by their potential to suppress T- and natural killer (NK-cell responses. Here we demonstrate, using an airway in vivo infection model, that P. aeruginosa recruits and activates neutrophilic MDSCs, which functionally suppress T-cell responses. We further show that the CF gene defect (cystic fibrosis transmembrane conductance regulator, CFTR modulates the functionality, but not the recruitment or generation of neutrophilic MDSCs. Collectively, we define a mechanism by which P. aeruginosa airway infection undermines host immunity by modulating neutrophilic MDSCs in vivo.

  12. Gene therapy for the treatment of cystic fibrosis.

    Science.gov (United States)

    Burney, Tabinda J; Davies, Jane C

    2012-01-01

    Gene therapy is being developed as a novel treatment for cystic fibrosis (CF), a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR) DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion) outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford) is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational research in CF gene therapy.

  13. Toll-like receptors as therapeutic targets in cystic fibrosis.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2008-12-01

    Background: Toll-like receptors (TLRs) are pattern recognition receptors that act as a first-line of defence in the innate immune response by recognising and responding to conserved molecular patterns in microbial factors and endogenous danger signals. Cystic fibrosis (CF)-affected airways represent a milieu potentially rich in TLR agonists and the chronic inflammatory phenotype evident in CF airway epithelial cells is probably due in large part to activation of TLRs. Objective\\/methods: To examine the prospects of developing novel therapies for CF by targeting TLRs. We outline the expression and function of TLRs and explore the therapeutic potential of naturally-occurring and synthetic TLR inhibitors for CF. Results\\/conclusion: Modulation of TLRs has therapeutic potential for the inflammatory lung manifestations of CF.

  14. Endomyocardial fibrosis in infancy

    Directory of Open Access Journals (Sweden)

    Jatene Marcelo Biscegli

    2003-01-01

    Full Text Available The patient was a 4-month-old infant, who underwent persistent ductus arteriosus interruption with titanium clips at the age of 13 days and, since the age of 2 months, had crises of hypoxia and hypertonicity. After clinical investigation, the presence of pulmonary hypertension was confirmed and left ventricular inflow tract obstruction was suspected. The patient underwent surgical treatment at the age of 4 months, during which right and left ventricular endocardial fibrosis was identified. The fibrosis was resected, but the infant had an unfavorable clinical evolution with significant diastolic restriction and died on the sixth postoperative day. Anatomicopathological and surgical findings suggested endomyocardial fibrosis, although that pathology is very rare at the patient's age.

  15. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine.

    Science.gov (United States)

    Sherwood, Cara L; Boitano, Scott

    2016-05-17

    that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.

  16. Physiotherapy and cystic fibrosis: what is the evidence base?

    Science.gov (United States)

    McIlwaine, Maggie Patricia; Lee Son, Nicole Marie; Richmond, Melissa Lynn

    2014-11-01

    To provide a comprehensive overview and evidence to support the role of physiotherapy in the management of individuals with cystic fibrosis (CF) including airway clearance, exercise, and musculoskeletal concerns which can affect activities of daily living and respiratory health. Several long-term studies have looked at the efficacy of airway clearance techniques, including active cycle of breathing techniques, autogenic drainage, high frequency chest wall oscillation, postural drainage, positive expiratory pressure (PEP), and oscillating PEP. Each of these studies reported some efficacy of airway clearance in maintaining health with no one technique being superior to another. However, one study suggested that high frequency chest wall oscillation was not as effective as PEP in maintaining health in CF patients. Individual preference needs to be considered when selecting a technique. Recent studies have found exercise to increase mucociliary clearance peripherally. Musculoskeletal issues, including posture, bone density, urinary incontinence, and pain should be assessed and managed in individuals to improve the mechanics of breathing and overall well-being. The role of physiotherapy in CF is complex and includes airway clearance, exercise, and management of the long-term sequelae of musculoskeletal issues. More rigorous physiotherapy studies are required to assist with evidence based practice.

  17. Electrical circuit models of the human respiratory system reflect small airway impairment measured by impulse oscillation (IOS).

    Science.gov (United States)

    Goldman, Michael D; Nazeran, Homer; Ramos, Carlos; Toon, Emily; Oates, Katrina; Bilton, Diana; Meraz, Erika; Hafezi, Nazila; Diong, Bill

    2010-01-01

    The use of the forced oscillatory input impedance parameter, frequency-dependence of Resistance (fdR), to assess small airway impairment (SAI) has not been widely accepted due to concern about the effects of "upper airway shunt" on oscillometric resistance and low frequency reactance. On the other hand, recent medical studies suggest that low frequency reactance is a very sensitive index of treatment intervention directed at small airways. The present study was undertaken to analyze and compare Impulse Oscillometry (IOS) resistance and reactance data with model-derived indices of small airway function from two models of the respiratory impedance, one with, and the other without an element for upper airway shunt capacitance. Fifty six patients with stable chronic obstructive lung disease of varying severity due to Cystic Fibrosis (CF) and 21 patients with asthma were evaluated by IOS testing. IOS data were input into the augmented RIC (aRIC) model with an upper airway shunt capacitance, and the extended RIC (eRIC) model, without a shunt capacitance element. Model-derived indices were compared between the two models for CF patients separately from asthma patients. We conclude that IOS indices of SAI are modeled equally well with or without upper airway shunt capacitance, and do not seem to be dependent on upper airway shunt capacitance.

  18. Evidence for the efficacy of aztreonam for inhalation solution in the management of Pseudomonas aeruginosa in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Hansen, Christine; Skov, Marianne

    2015-01-01

    Chronic airway infection in cystic fibrosis (CF) is a main cause of the increased morbidity and mortality found with this disease. The most common cause of Gram-negative infection is Pseudomonas aeruginosa. The introduction of inhaled antibiotics has changed the lives of affected patients...

  19. Nebulized hypertonic saline via positive expiratory pressure versus via jet nebulizer in patients with severe cystic fibrosis.

    LENUS (Irish Health Repository)

    O'Connell, Oisin J

    2011-06-01

    Nebulized hypertonic saline is a highly effective therapy for patients with cystic fibrosis (CF), yet 10% of patients are intolerant of hypertonic saline administered via jet nebulizer. Positive expiratory pressure (PEP) nebulizers splint open the airways and offers a more controlled rate of nebulization.

  20. Effects of sildenafil on pulmonary hypertension and exercise tolerance in severe cystic fibrosis-related lung disease.

    Science.gov (United States)

    Montgomery, Gregory S; Sagel, Scott D; Taylor, Amy L; Abman, Steven H

    2006-04-01

    Cystic fibrosis (CF) patients with advanced lung disease are at risk for developing pulmonary vascular disease and pulmonary hypertension, characterized by progressive exercise intolerance beyond the exercise-limiting effects of airways disease in CF. We report on a patient with severe CF lung disease who experienced clinically significant improvements in exercise tolerance and pulmonary hypertension without changing lung function during sildenafil therapy.

  1. Intracellular pH and its relationship to regulation of ion transport in normal and cystic fibrosis human nasal epithelia

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Boucher, R.C.

    1992-01-01

    1. Intracellular pH (pHi) of cultured human airway epithelial cells from normal and cystic fibrosis (CF) subjects were measured with double-barrelled pH-sensitive liquid exchanger microelectrodes. The cells, which were grown to confluence on a permeable collagen matrix support, were mounted...

  2. Pergolide-induced pleuropulmonary fibrosis

    NARCIS (Netherlands)

    Bleumink, G S; van der Molen-Eijgenraam, M; Strijbos, J H; Sanwikarja, S; van Puijenbroek, E P; Stricker, B H Ch

    2002-01-01

    Pleuropulmonary fibrosis is a rare, but well-recognized adverse effect of ergot alkaloids. We report on four patients who developed pleural and/or pulmonary fibrosis during treatment with pergolide and give characteristics of 87 cases with one or more symptoms of serosal fibrosis. Retroperitoneal an

  3. Antioxidant supplementation for lung disease in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Lykkesfeldt, Jens

    2014-01-01

    BACKGROUND: Airway infection leads to progressive damage of the lungs in cystic fibrosis and oxidative stress has been implicated in the etiology. Supplementation of antioxidant micronutrients (vitamin E, vitamin C, ß-carotene and selenium) or glutathione may therefore potentially help maintain...... an oxidant-antioxidant balance. Current literature suggests a relationship between oxidative status and lung function. OBJECTIVES: To synthesize existing knowledge of the effect of antioxidants such as vitamin C, vitamin E, ß-carotene, selenium and glutathione in cystic fibrosis lung disease. SEARCH METHODS...... COLLECTION AND ANALYSIS: Two authors independently selected studies, extracted data and assessed the risk of bias in the included studies. We contacted trial investigators to obtain missing information. Primary outcomes are lung function and quality of life; secondary outcomes are oxidative stress...

  4. Susceptibility of Candida albicans from Cystic Fibrosis Patients.

    Science.gov (United States)

    Sabino, Raquel; Carolino, Elisabete; Moss, Richard B; Banaei, Niaz; Verissimo, Cristina; Stevens, David A

    2017-04-18

    Candida albicans is a common microbe, colonizer and potential pathogen found in respiratory cultures of cystic fibrosis (CF) patients. Because of possible development of resistance in patient isolates resulting from residence in the abnormal milieu of CF patient airways, or from exposure to antifungals, and considering the possibility of patient-to-patient spread of microbes and reports of elevated resistance to other fungal pathogens, it was important to assay the susceptibility of isolates of Candida and compare that profile to isolates from the community. In our center, and unlike another fungal pathogen, no increase in resistance of Candida isolates of the CF cohort was found.

  5. Imaging from cystic fibrosis; Bildgebung bei zystischer Fibrose

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, H. [Frankfurt Univ. (Germany). Funktionsbereich Paediatrische Radiologie; Posselt, H.G. [Frankfurt Univ. (Germany). Zentrum fuer Paediatrische Gastroenterologie und Mukoviszidose

    2008-06-15

    Cystic fibrosis (CF) is the most frequent metabolic disorder with autosomal recessive inheritance in the Caucasian population. The gene defect is located on the long arm of chromosome 7. In Germany today, the actual median survival is 37 years. The genetic defect caused by chloride anion disturbances affects multiple body systems but the morbidity and mortality is due to lung disease. The secretion of highly viscous mucus promotes viral and bacterial pulmonary infections leading to airway obstruction and consecutive destruction of the lung parenchyma. This article will review and discuss both the clinical aspects of the disease and the diagnostic methods, referring in particular to new imaging strategies. (orig.)

  6. Airway management during cardiopulmonary resuscitation.

    Science.gov (United States)

    Bernhard, Michael; Benger, Jonathan R

    2015-06-01

    This article evaluates the latest scientific evidence regarding airway management during in-hospital and out-of-hospital cardiopulmonary resuscitation (CPR). In the in-hospital setting, observational research suggested that the quality of CPR using 'no flow ratio' as a surrogate marker was improved when advanced airway techniques were used. A registry study demonstrated that an initial failed intubation attempt was associated with an average delay of 3 min in time to return of spontaneous circulation. A prospective observational study showed that the Glide Scope videolaryngoscope was associated with a first-pass success rate of 93%, with no differences between less and more experienced physicians. In the out-of-hospital setting, a registry study suggested that intubation leads to a better outcome compared with supraglottic airway devices. However, no advanced airway devices showed a better outcome than basic airway techniques. An observational study reported that the i-gel supraglottic airway device offers a first-pass insertion success rate of 90%, and was easier to establish than the Portex Soft Seal laryngeal mask airway. Other out-of-hospital observational studies showed that the laryngeal tube offers a lower first-pass insertion success rate than expected, and complications of this device may influence later definitive airway management and the outcome as a whole. Recent studies of airway management during CPR rely mostly on registry and observational designs. Prospective randomized trials are needed to determine the optimal approach to airway management during cardiac arrest, but have not yet been completed.

  7. Rapid adaptation drives invasion of airway donor microbiota by Pseudomonas after lung transplantation

    OpenAIRE

    M. Beaume; Köhler, T; Greub, G; Manuel, O; J-D. Aubert; Baerlocher, L.; Farinelli, L.; Buckling, A.; van Delden, C.

    2017-01-01

    In cystic fibrosis (CF) patients, chronic airway infection by Pseudomonas leads to progressive lung destruction ultimately requiring lung transplantation (LT). Following LT, CF-adapted Pseudomonas strains, potentially originating from the sinuses, may seed the allograft leading to infections and reduced allograft survival. We investigated whether CF-adapted Pseudomonas populations invade the donor microbiota and adapt to the non-CF allograft. We collected sequential Pseudomonas isolates and a...

  8. Green Tea Epigallo-Catechin-Galleate Ameliorates the Development of Obliterative Airway Disease

    OpenAIRE

    Liang, Olin D.; Kleibrink, Bjoern E.; Schuette-Nuetgen, Katharina; Khatwa, Umakanth U.; Mfarrej, Bechara; Subramaniam, Meera

    2011-01-01

    Lung transplantation has the worst outcome compared to all solid organ transplants due to chronic rejection known as obliterative bronchiolitis (OB). Pathogenesis of OB is a complex interplay of alloimmune-dependent and -independent factors, which leads to the development of inflammation, fibrosis, and airway obliteration that have been resistant to therapy. The alloimmune-independent inflammatory pathway has been the recent focus in the pathogenesis of rejection, suggesting that targeting th...

  9. Predominant constitutive CFTR conductance in small airways

    Directory of Open Access Journals (Sweden)

    Lytle Christian

    2005-01-01

    Full Text Available Abstract Background The pathological hallmarks of chronic obstructive pulmonary disease (COPD are inflammation of the small airways (bronchiolitis and destruction of lung parenchyma (emphysema. These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. Methods We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. Results In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25, but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25 were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM+IBMX (100 μM, ATP (100 μM, or adenosine (100 μM, but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM, GlyH-101* (5–50 μM, and CFTRInh-172* (5 μM. RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. Conclusion These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.

  10. IL-18 induces airway hyperresponsiveness and pulmonary inflammation via CD4+ T cell and IL-13.

    Directory of Open Access Journals (Sweden)

    Masanori Sawada

    Full Text Available IL-18 plays a key role in the pathogenesis of pulmonary inflammatory diseases including pulmonary infection, pulmonary fibrosis, lung injury and chronic obstructive pulmonary disease (COPD. However, it is unknown whether IL-18 plays any role in the pathogenesis of asthma. We hypothesized that overexpression of mature IL-18 protein in the lungs may exacerbate disease activities of asthma. We established lung-specific IL-18 transgenic mice on a Balb/c genetic background. Female mice sensitized- and challenged- with antigen (ovalbumin were used as a mouse asthma model. Pulmonary inflammation and emphysema were not observed in the lungs of naïve transgenic mice. However, airway hyperresponsiveness and airway inflammatory cells accompanied with CD4(+ T cells, CD8(+ T cells, eosinophils, neutrophils, and macrophages were significantly increased in ovalbumin-sensitized and challenged transgenic mice, as compared to wild type Balb/c mice. We also demonstrate that IL-18 induces IFN-γ, IL-13, and eotaxin in the lungs of ovalbumin-sensitized and challenged transgenic mice along with an increase in IL-13 producing CD4(+ T cells. Treatment with anti-CD4 monoclonal antibody or deletion of the IL-13 gene improves ovalbumin-induced airway hyperresponsiveness and reduces airway inflammatory cells in transgenic mice. Overexpressing the IL-18 protein in the lungs induces type 1 and type 2 cytokines and airway inflammation, and results in increasing airway hyperresponsiveness via CD4(+ T cells and IL-13 in asthma.

  11. AARC Clinical Practice Guideline: Effectiveness of Pharmacologic Airway Clearance Therapies in Hospitalized Patients.

    Science.gov (United States)

    Strickland, Shawna L; Rubin, Bruce K; Haas, Carl F; Volsko, Teresa A; Drescher, Gail S; O'Malley, Catherine A

    2015-07-01

    Aerosolized medications are used as airway clearance therapy to treat a variety of airway diseases. These guidelines were developed from a systematic review with the purpose of determining whether the use of these medications to promote airway clearance improves oxygenation and respiratory mechanics, reduces ventilator time and ICU stay, and/or resolves atelectasis/consolidation compared with usual care. Recombinant human dornase alfa should not be used in hospitalized adult and pediatric patients without cystic fibrosis. The routine use of bronchodilators to aid in secretion clearance is not recommended. The routine use of aerosolized N-acetylcysteine to improve airway clearance is not recommended. Aerosolized agents to change mucus biophysical properties or promote airway clearance are not recommended for adult or pediatric patients with neuromuscular disease, respiratory muscle weakness, or impaired cough. Mucolytics are not recommended to treat atelectasis in postoperative adult or pediatric patients, and the routine administration of bronchodilators to postoperative patients is not recommended. There is no high-level evidence related to the use of bronchodilators, mucolytics, mucokinetics, and novel therapy to promote airway clearance in these populations.

  12. Cedecea davisae’s Role in a Polymicrobial Lung Infection in a Cystic Fibrosis Patient

    Directory of Open Access Journals (Sweden)

    Thayer G. Ismaael

    2012-01-01

    Full Text Available Chronic airway colonization and infection are the hallmark of cystic fibrosis (CF. Staphylococcus aureus, Pseudomonas aeruginosa, and Burkholderia cepacia are well-documented bacterial culprits in this chronic suppurative airway disease. Advanced molecular diagnostics have uncovered a possible role of a larger group of microorganisms in CF. Cedecea is a member of the family Enterobacteriaceae and is an emerging pathogen. We present a case of a polymicrobial healthcare-associated pneumonia in a CF patient caused by Cedecea davisae, among other bacteria.

  13. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase.

    Science.gov (United States)

    Park, Chan Sun; Bang, Bo-Ram; Kwon, Hyouk-Soo; Moon, Keun-Ai; Kim, Tae-Bum; Lee, Ki-Young; Moon, Hee-Bom; Cho, You Sook

    2012-12-15

    Recent reports have suggested that metformin has anti-inflammatory and anti-tissue remodeling properties. We investigated the potential effect of metformin on airway inflammation and remodeling in asthma. The effect of metformin treatment on airway inflammation and pivotal characteristics of airway remodeling were examined in a murine model of chronic asthma generated by repetitive challenges with ovalbumin and fungal-associated allergenic protease. To investigate the underlying mechanism of metformin, oxidative stress levels and AMP-activated protein kinase (AMPK) activation were assessed. To further elucidate the role of AMPK, we examined the effect of 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside (AICAR) as a specific activator of AMPK and employed AMPKα1-deficient mice as an asthma model. The role of metformin and AMPK in tissue fibrosis was evaluated using a bleomycin-induced acute lung injury model and in vitro experiments with cultured fibroblasts. Metformin suppressed eosinophilic inflammation and significantly reduced peribronchial fibrosis, smooth muscle layer thickness, and mucin secretion. Enhanced AMPK activation and decreased oxidative stress in lungs was found in metformin-treated asthmatic mice. Similar results were observed in the AICAR-treated group. In addition, the enhanced airway inflammation and fibrosis in heterozygous AMPKα1-deficient mice were induced by both allergen and bleomycin challenges. Fibronectin and collagen expression was diminished by metformin through AMPKα1 activation in cultured fibroblasts. Therefore metformin reduced both airway inflammation and remodeling at least partially through the induction of AMPK activation and decreased oxidative stress. These data provide insight into the beneficial role of metformin as a novel therapeutic drug for chronic asthma.

  14. Cystic fibrosis gene mutations: evaluation and assessment of disease severity

    Directory of Open Access Journals (Sweden)

    Vallières E

    2014-10-01

    Full Text Available Emilie Vallières, Joseph Stuart ElbornCystic Fibrosis and Airways Microbiology Research Group, Queens University Belfast, Belfast, UKAbstract: The cystic fibrosis transmembrane regulator (CFTR gene encodes an ion channel transporter, the CFTR protein. Since its identification in 1989, more than 1,900 sequence variants have been reported, resulting in a wide spectrum of clinical phenotypes. Cystic fibrosis (CF is associated with many CFTR mutants and there is a continuum of disease severity observed. Recent advances in fundamental research have increased our understanding of the consequent molecular defect arising from CF mutations. This knowledge has resulted in the development of CF-specific therapies, targeting either the genetic or the molecular defect. CF care, previously focused on symptom control, is therefore moving toward a "stratified" or "precision" therapeutic approach. This review outlines normal CFTR physiology, the proposed pathologic mechanism underlying CF associated-lung injury, classification of CF mutations, and the CF-specific therapies recently approved or in clinical trials.Keywords: cystic fibrosis, gene mutations, disease severity, evaluation, assessment

  15. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma

    Science.gov (United States)

    Singhania, Akul; Rupani, Hitasha; Jayasekera, Nivenka; Lumb, Simon; Hales, Paul; Gozzard, Neil; Davies, Donna E.

    2017-01-01

    Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study. Differences between central and peripheral airways were evaluated using transcriptomic analysis (Affymetrix HG U133 plus 2.0 GeneChips) of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23). Results were validated in an independent cohort (N = 10) by real-time quantitative PCR. The IL-13 disease signature that is associated with an asthmatic phenotype was upregulated in severe asthmatics compared to healthy controls but was predominantly evident within the peripheral airways, as were genes related to mast cell presence. The gene expression response associated with glucocorticosteroid therapy (i.e. FKBP5) was also upregulated in severe asthmatics compared to healthy controls but, in contrast, was more pronounced in central airways. Moreover, an altered epithelial repair response (e.g. FGFBP1) was evident across both airway sites reflecting a significant aspect of disease in severe asthma unadressed by current therapies. A transcriptomic approach to understand epithelial activation in severe asthma has thus highlighted the need for better-targeted therapy to the peripheral airways in severe asthma, where the IL-13 disease signature persists despite treatment with currently available therapy. PMID:28045928

  16. Human amnion epithelial cells induced to express functional cystic fibrosis transmembrane conductance regulator.

    Directory of Open Access Journals (Sweden)

    Sean V Murphy

    Full Text Available Cystic fibrosis, an autosomal recessive disorder caused by a mutation in a gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR, remains a leading cause of childhood respiratory morbidity and mortality. The respiratory consequences of cystic fibrosis include the generation of thick, tenacious mucus that impairs lung clearance, predisposing the individual to repeated and persistent infections, progressive lung damage and shortened lifespan. Currently there is no cure for cystic fibrosis. With this in mind, we investigated the ability of human amnion epithelial cells (hAECs to express functional CFTR. We found that hAECs formed 3-dimensional structures and expressed the CFTR gene and protein after culture in Small Airway Growth Medium (SAGM. We also observed a polarized CFTR distribution on the membrane of hAECs cultured in SAGM, similar to that observed in polarized airway cells in vivo. Further, hAECs induced to express CFTR possessed functional iodide/chloride (I(-/Cl(- ion channels that were inhibited by the CFTR-inhibitor CFTR-172, indicating the presence of functional CFTR ion channels. These data suggest that hAECs may be a promising source for the development of a cellular therapy for cystic fibrosis.

  17. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis.

    Science.gov (United States)

    Sherrard, Laura J; Tunney, Michael M; Elborn, J Stuart

    2014-08-23

    Cystic fibrosis is characterised by chronic polymicrobial infection and inflammation in the airways of patients. Antibiotic treatment regimens, targeting recognised pathogens, have substantially contributed to increased life expectancy of patients with this disease. Although the emergence of antimicrobial resistance and selection of highly antibiotic-resistant bacterial strains is of major concern, the clinical relevance in cystic fibrosis is yet to be defined. Resistance has been identified in recognised cystic fibrosis pathogens and in other bacteria (eg, Prevotella and Streptococcus spp) detected in the airway microbiota, but their role in the pathophysiology of infection and inflammation in chronic lung disease is unclear. Increased antibiotic resistance in cystic fibrosis might be attributed to a range of complex factors including horizontal gene transfer, hypoxia, and biofilm formation. Strategies to manage antimicrobial resistance consist of new antibiotics or localised delivery of antimicrobial agents, iron sequestration, inhibition of quorum-sensing, and resistome analysis. Determination of the contributions of every bacterial species to lung health or disease in cystic fibrosis might also have an important role in the management of antibiotic resistance.

  18. A hybrid method for airway segmentation and automated measurement of bronchial wall thickness on CT.

    Science.gov (United States)

    Xu, Ziyue; Bagci, Ulas; Foster, Brent; Mansoor, Awais; Udupa, Jayaram K; Mollura, Daniel J

    2015-08-01

    Inflammatory and infectious lung diseases commonly involve bronchial airway structures and morphology, and these abnormalities are often analyzed non-invasively through high resolution computed tomography (CT) scans. Assessing airway wall surfaces and the lumen are of great importance for diagnosing pulmonary diseases. However, obtaining high accuracy from a complete 3-D airway tree structure can be quite challenging. The airway tree structure has spiculated shapes with multiple branches and bifurcation points as opposed to solid single organ or tumor segmentation tasks in other applications, hence, it is complex for manual segmentation as compared with other tasks. For computerized methods, a fundamental challenge in airway tree segmentation is the highly variable intensity levels in the lumen area, which often causes a segmentation method to leak into adjacent lung parenchyma through blurred airway walls or soft boundaries. Moreover, outer wall definition can be difficult due to similar intensities of the airway walls and nearby structures such as vessels. In this paper, we propose a computational framework to accurately quantify airways through (i) a novel hybrid approach for precise segmentation of the lumen, and (ii) two novel methods (a spatially constrained Markov random walk method (pseudo 3-D) and a relative fuzzy connectedness method (3-D)) to estimate the airway wall thickness. We evaluate the performance of our proposed methods in comparison with mostly used algorithms using human chest CT images. Our results demonstrate that, on publicly available data sets and using standard evaluation criteria, the proposed airway segmentation method is accurate and efficient as compared with the state-of-the-art methods, and the airway wall estimation algorithms identified the inner and outer airway surfaces more accurately than the most widely applied methods, namely full width at half maximum and phase congruency.

  19. B cell activating factor is central to bleomycin- and IL-17-mediated experimental pulmonary fibrosis.

    Science.gov (United States)

    François, Antoine; Gombault, Aurélie; Villeret, Bérengère; Alsaleh, Ghada; Fanny, Manoussa; Gasse, Paméla; Adam, Sylvain Marchand; Crestani, Bruno; Sibilia, Jean; Schneider, Pascal; Bahram, Seiamak; Quesniaux, Valérie; Ryffel, Bernhard; Wachsmann, Dominique; Gottenberg, Jacques-Eric; Couillin, Isabelle

    2015-01-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive devastating, yet untreatable fibrotic disease of unknown origin. We investigated the contribution of the B-cell activating factor (BAFF), a TNF family member recently implicated in the regulation of pathogenic IL-17-producing cells in autoimmune diseases. The contribution of BAFF was assessed in a murine model of lung fibrosis induced by airway administered bleomycin. We show that murine BAFF levels were strongly increased in the bronchoalveolar space and lungs after bleomycin exposure. We identified Gr1(+) neutrophils as an important source of BAFF upon BLM-induced lung inflammation and fibrosis. Genetic ablation of BAFF or BAFF neutralization by a soluble receptor significantly attenuated pulmonary fibrosis and IL-1β levels. We further demonstrate that bleomycin-induced BAFF expression and lung fibrosis were IL-1β and IL-17A dependent. BAFF was required for rIL-17A-induced lung fibrosis and augmented IL-17A production by CD3(+) T cells from murine fibrotic lungs ex vivo. Finally we report elevated levels of BAFF in bronchoalveolar lavages from IPF patients. Our data therefore support a role for BAFF in the establishment of pulmonary fibrosis and a crosstalk between IL-1β, BAFF and IL-17A.

  20. Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections

    Science.gov (United States)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.; Olsen, John C.; Johnson, Larry G.; Yankaskas, James R.; Goldberg, Joanna B.

    1996-01-01

    Cystic fibrosis (CF) patients are hypersusceptible to chronic Pseudomonas aeruginosa lung infections. Cultured human airway epithelial cells expressing the ΔF508 allele of the cystic fibrosis transmembrane conductance regulator (CFTR) were defective in uptake of P. aeruginosa compared with cells expressing the wild-type allele. Pseudomonas aeruginosa lipopolysaccharide (LPS)-core oligosaccharide was identified as the bacterial ligand for epithelial cell ingestion; exogenous oligosaccharide inhibited bacterial ingestion in a neonatal mouse model, resulting in increased amounts of bacteria in the lungs. CFTR may contribute to a host-defense mechanism that is important for clearance of P. aeruginosa from the respiratory tract.

  1. Understanding Nephrogenic Systemic Fibrosis

    Directory of Open Access Journals (Sweden)

    Tushar Chopra

    2012-01-01

    Full Text Available Nephrogenic systemic fibrosis (NSF is a rare and a debilitating disease noted uncommonly in patients with impaired renal function when exposed to low-stability gadolinium-based contrast agents (Gd-CAs. According to experimental studies, cytokines released by the stimulation of effector cells such as skin macrophages and peripheral blood monocytes activate circulating fibroblasts which play a major role in the development of NSF lesions. The presence of permissive factors, presumably, provides an environment conducive to facilitate the process of fibrosis. Multiple treatment modalities have been tried with variable success rates. More research is necessary to elucidate the underlying pathophysiological mechanisms which could potentially target the initial steps of fibrosis in these patients. This paper attempts to collate the inferences from the in vivo and in vitro experiments to the clinical observations to understand the pathogenesis of NSF. Schematic representations of receptor-mediated molecular pathways of activation of macrophages and fibroblasts by gadolinium and the final pathway to fibrosis are incorporated in the discussion.

  2. Nephrogenic systemic fibrosis

    DEFF Research Database (Denmark)

    Khurram, Misbah; Skov, Lone; Rossen, Kristian

    2007-01-01

    Nephrogenic systemic fibrosis (NSF) is a fibrotic disease seen in renal failure patients that may lead to severe physical disability. It has been demonstrated in recent studies that NSF can be caused by some gadolinium-containing MRI contrast agents. In this report we present one of a total of 26...

  3. Nephrogenic systemic fibrosis

    DEFF Research Database (Denmark)

    Marckmann, Peter; Skov, Lone; Rossen, Kristian

    2006-01-01

    Nephrogenic systemic fibrosis is a new, rare disease of unknown cause that affects patients with renal failure. Single cases led to the suspicion of a causative role of gadodiamide that is used for magnetic resonance imaging. This study therefore reviewed all of the authors' confirmed cases of ne...

  4. The surface charge of liposomal adjuvants is decisive for their interactions with the Calu-3 and A549 airway epithelial cell culture models

    DEFF Research Database (Denmark)

    Ingvarsson, Pall Thor; Rasmussen, Ida Svahn; Viaene, Michelle

    2014-01-01

    distearoylphosphatidylcholine (DSPC). The liposomes were tested with the model protein antigen ovalbumin for the mucosal deposition, the effect on cellular viability and the epithelial integrity by using the two cell lines A549 and Calu-3, representing cells from the alveolar and the bronchiolar epithelium, respectively....... The Calu-3 cells were cultured under different conditions, resulting in epithelia with a low and a high mucus secretion, respectively. A significantly larger amount of lipid and ovalbumin was deposited in the epithelial cell layer and in the mucus after incubation with the cationic liposomes, as compared...... to incubation with the neutral liposomes, which suggests that the cationic charge is important for the delivery. The integrity and the viability of the cells without a surface-lining mucus layer were decreased upon incubation with the cationic formulations, whereas the mucus appeared to retain the integrity...

  5. Microbiota abnormalities in inflammatory airway diseases - Potential for therapy.

    Science.gov (United States)

    Gollwitzer, Eva S; Marsland, Benjamin J

    2014-01-01

    Increasingly the development of novel therapeutic strategies is taking into consideration the contribution of the intestinal microbiota to health and disease. Dysbiosis of the microbial communities colonizing the human intestinal tract has been described for a variety of chronic diseases, such as inflammatory bowel disease, obesity and asthma. In particular, reduction of several so-called probiotic species including Lactobacilli and Bifidobacteria that are generally considered to be beneficial, as well as an outgrowth of potentially pathogenic bacteria is often reported. Thus a tempting therapeutic approach is to shape the constituents of the microbiota in an attempt to restore the microbial balance towards the growth of 'health-promoting' bacterial species. A twist to this scenario is the recent discovery that the respiratory tract also harbors a microbiota under steady-state conditions. Investigators have shown that the microbial composition of the airway flora is different between healthy lungs and those with chronic lung diseases, such as asthma, chronic obstructive pulmonary disease as well as cystic fibrosis. This is an emerging field, and thus far there is very limited data showing a direct contribution of the airway microbiota to the onset and progression of disease. However, should future studies provide such evidence, the airway microbiota might soon join the intestinal microbiota as a target for therapeutic intervention. In this review, we highlight the major advances that have been made describing the microbiota in chronic lung disease and discuss current and future approaches concerning manipulation of the microbiota for the treatment and prevention of disease.

  6. cAMP Stimulation of HCO3- Secretion Across Airway Epithelia

    Directory of Open Access Journals (Sweden)

    Welsh MJ

    2001-07-01

    Full Text Available To test for the presence of HCO(3(- transport across airway epithelia, we measured short-circuit current in primary cultures of canine and human airway epithelia bathed in a Cl(--free, HCO(3(-/CO(2-buffered solution. cAMP agonists stimulated a secretory current that was likely carried by HCO(3(- because it was absent in HCO(3(--free solutions. In addition, the cAMP-stimulated current was inhibited by the carbonic anhydrase inhibitor, acetazolamide, and by the apical addition of a blocker of cystic fibrosis transmembrane conductance regulator (CFTR, diphenylamine-2-carboxylate. The current was dependent on Na(+ because it was inhibited by removing Na(+ from the submucosal solution and by inhibition of the Na(+-K(+-ATPase with ouabain. The cAMP-stimulated current was absent in cystic fibrosis (CF airway epithelia. These data suggest that cAMP agonists can stimulate HCO(3(- secretion across airway epithelia and that CFTR may provide a conductive pathway for HCO(3(- movement across the apical membrane.

  7. Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    Lo, P.; Sporring, J.; Ashraf, H.;

    2010-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. We propose a voxel classification approach for the appearance model, which uses a classifier that is trained...... to differentiate between airway and non-airway voxels. This is in contrast to previous works that use either intensity alone or hand crafted models of airway appearance. We show that the appearance model can be trained with a set of easily acquired, incomplete, airway tree segmentations. A vessel orientation...

  8. Airway complications after lung transplantation.

    Science.gov (United States)

    Machuzak, Michael; Santacruz, Jose F; Gildea, Thomas; Murthy, Sudish C

    2015-01-01

    Airway complications after lung transplantation present a formidable challenge to the lung transplant team, ranging from mere unusual images to fatal events. The exact incidence of complications is wide-ranging depending on the type of event, and there is still evolution of a universal characterization of the airway findings. Management is also wide-ranging. Simple observation or simple balloon bronchoplasty is sufficient in many cases, but vigilance following more severe necrosis is required for late development of both anastomotic and nonanastomotic airway strictures. Furthermore, the impact of coexisting infection, rejection, and medical disease associated with high-level immunosuppression further complicates care.

  9. Airway vascular reactivity and vascularisation in human chronic airway disease

    NARCIS (Netherlands)

    Bailey, Simon R; Boustany, Sarah; Burgess, Janette K; Hirst, Stuart J; Sharma, Hari S; Simcock, David E; Suravaram, Padmini R; Weckmann, Markus

    2009-01-01

    Altered bronchial vascular reactivity and remodelling including angiogenesis are documented features of asthma and other chronic inflammatory airway diseases. Expansion of the bronchial vasculature under these conditions involves both functional (vasodilation, hyperperfusion, increased microvascular

  10. Effects of Positive End-Expiratory Pressure on Oscillated Volume during High-Frequency Chest Compression in Children with Cystic Fibrosis

    OpenAIRE

    Dosman, Cara F; Peter C Zuberbuhler; Tabk, Joan I; Jones, Richard L

    2003-01-01

    OBJECTIVE: To investigate the effects of positive end-expiratory pressure (PEEP) on end-expiratory lung volume (EELV) and mean oscillated volume (Vosc) during high frequency chest compression (HFCC).DESIGN: A clinic-based prospective intervention study.SETTING: Pulmonary function laboratory, University of Alberta, Edmonton, Alberta.POPULATION: Nine children with cystic fibrosis with little or no obstructive airway disease who were selected from the outpatient Cystic Fibrosis and Pediatric Pul...

  11. Airway Epithelium Stimulates Smooth Muscle Proliferation

    OpenAIRE

    Malavia, Nikita K.; Raub, Christopher B.; Mahon, Sari B.; Brenner, Matthew; Reynold A Panettieri; George, Steven C.

    2009-01-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air–liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (...

  12. Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease.

    Science.gov (United States)

    Puchelle, Edith; Zahm, Jean-Marie; Tournier, Jean-Marie; Coraux, Christelle

    2006-11-01

    In chronic obstructive pulmonary disease (COPD), exacerbations are generally associated with several causes, including pollutants, viruses, bacteria that are responsible for an excess of inflammatory mediators, and proinflammatory cytokines released by activated epithelial and inflammatory cells. The normal response of the airway surface epithelium to injury includes a succession of cellular events, varying from the loss of the surface epithelium integrity to partial shedding of the epithelium or even complete denudation of the basement membrane. The epithelium then has to repair and regenerate to restore its functions, through several mechanisms, including basal cell spreading and migration, followed by proliferation and differentiation of epithelial cells. In COPD, the remodeling of the airway epithelium, such as squamous metaplasia and mucous hyperplasia that occur during injury, may considerably disturb the innate immune functions of the airway epithelium. In vitro and in vivo models of airway epithelial wound repair and regeneration allow the study of the spatiotemporal modulation of cellular and molecular interaction factors-namely, the proinflammatory cytokines, the matrix metalloproteinases and their inhibitors, and the intercellular adhesion molecules. These factors may be markedly altered during exacerbation periods of COPD and their dysregulation may induce remodeling of the airway mucosa and a leakiness of the airway surface epithelium. More knowledge of the mechanisms involved in airway epithelium regeneration may pave the way to cytoprotective and regenerative therapeutics, allowing the reconstitution of a functional, well-differentiated airway epithelium in COPD.

  13. Review of recombinant human deoxyribonuclease (rhDNase in the management of patients with cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Tacjana Pressler

    2008-09-01

    Full Text Available Tacjana PresslerCF Centre, Dept. of Pediatrics, Rigshospitalet, University of Copenhagen DenmarkAbstract: The most important problem in cystic fibrosis (CF lung disease is chronic airway inflammation and infection, which starts early in life. To prevent severe lung damage, it is important to mobilize as much sputum as possible from the lung on a daily basis. RhDNase is an enzyme that breaks down DNA strands in airway secretions, hydrolyzes the DNA present in sputum/mucus of CF patients, reducing viscosity in the lungs and promoting secretion clearance. Several well performed trials have proven its efficacy in young CF patients with mild disease as well as in older patients with more advanced lung disease. Daily inhalation of this agent slows down lung function decline and decreases the frequency of respiratory exacerbations. The drug is well tolerated by most patients independent of the severity of lung disease.Keywords: cystic fibrosis, lung disease, recombinant human deoxyribonuclease

  14. Airway management and morbid obesity

    DEFF Research Database (Denmark)

    Kristensen, Michael S

    2010-01-01

    Morbidly obese patients present with excess fatty tissue externally on the breast, neck, thoracic wall and abdomen and internally in the mouth, pharynx and abdomen. This excess tissue tends to make access (intubation, tracheostomy) to and patency (during sedation or mask ventilation) of the upper...... in morbidly obese patients and should be followed by actions to counteract atelectasis formation. The decision as to weather to use a rapid sequence induction, an awake intubation or a standard induction with hypnotics should depend on the thorough airway examination and comorbidity and should not be based...... solely on whether morbid obesity is present or not. It is important to ensure sufficient depth of anaesthesia before initiating manipulation of the airway because inadequate anaesthesia depth predisposes to aspiration if airway management becomes difficult. The intubating laryngeal mask airway is more...

  15. The Airway Microbiome at Birth

    National Research Council Canada - National Science Library

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    .... We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease...

  16. Airway management and morbid obesity

    DEFF Research Database (Denmark)

    Kristensen, Michael S

    2010-01-01

    Morbidly obese patients present with excess fatty tissue externally on the breast, neck, thoracic wall and abdomen and internally in the mouth, pharynx and abdomen. This excess tissue tends to make access (intubation, tracheostomy) to and patency (during sedation or mask ventilation) of the upper...... in morbidly obese patients and should be followed by actions to counteract atelectasis formation. The decision as to weather to use a rapid sequence induction, an awake intubation or a standard induction with hypnotics should depend on the thorough airway examination and comorbidity and should not be based...... solely on whether morbid obesity is present or not. It is important to ensure sufficient depth of anaesthesia before initiating manipulation of the airway because inadequate anaesthesia depth predisposes to aspiration if airway management becomes difficult. The intubating laryngeal mask airway is more...

  17. Cystic fibrosis transmembrane conductance regulator modulators in cystic fibrosis: current perspectives

    Directory of Open Access Journals (Sweden)

    Schmidt BZ

    2016-09-01

    Full Text Available Béla Z Schmidt,1 Jérémy B Haaf,2 Teresinha Leal,2 Sabrina Noel,2 1Stem Cell Biology and Embryology, Department of Development and Regeneration, Katholieke Universiteit Leuven, Leuven, 2Louvain Center for Toxicology and Applied Pharmacology, Université Catholique de Louvain, Brussels, Belgium Abstract: Mutations of the CFTR gene cause cystic fibrosis (CF, the most common recessive monogenic disease worldwide. These mutations alter the synthesis, processing, function, or half-life of CFTR, the main chloride channel expressed in the apical membrane of epithelial cells in the airway, intestine, pancreas, and reproductive tract. Lung disease is the most critical manifestation of CF. It is characterized by airway obstruction, infection, and inflammation that lead to fatal tissue destruction. In spite of great advances in early and multidisciplinary medical care, and in our understanding of the pathophysiology, CF is still considerably reducing the life expectancy of patients. This review highlights the current development in pharmacological modulators of CFTR, which aim at rescuing the expression and/or function of mutated CFTR. While only Kalydeco® and Orkambi® are currently available to patients, many other families of CFTR modulators are undergoing preclinical and clinical investigations. Drug repositioning and personalized medicine are particularly detailed in this review as they represent the most promising strategies for restoring CFTR function in CF. Keywords: high-throughput screening, drug repositioning, personalized medicine, precision medicine, potentiators, correctors

  18. Quantitative analysis of airway abnormalities in CT

    DEFF Research Database (Denmark)

    Petersen, Jens; Lo, P.; Nielsen, Mads;

    2010-01-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173...... Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore...

  19. Cystic Fibrosis Transmembrane Conductance Regulator and H+ Permeability in Regulation of Golgi pH

    Directory of Open Access Journals (Sweden)

    Machen TE

    2001-07-01

    Full Text Available This paper reviews experiments from this lab that have tested the hypothesis that pH of the Golgi (pH(G of cystic fibrosis (CF airway epithelial cells is alkaline compared to normal, that this altered pH affects sialyltransferase and other Golgi enzymes controlling biochemical composition of the plasma membrane and that altered surface biochemistry increases bacterial binding. We generated a plasmid encoding a modified green fluorescence protein-sialyltransferase (GFP-ST chimera protein that was pH-sensitive and localized to the Golgi when transfected into HeLa cells and also CF and normal or cystic fibrosis transmembrane conductance regulator- (CFTR-corrected airway epithelial cells. Digital imaging microscopy of these Golgi-localized probes showed that there was no correlation between pH(G (6.4-7.0 and the presence of CFTR, whether cells were in HCO(3(-/CO(2-containing or in HCO(3(-/CO(2-free solutions. Activation of CFTR by raising cell [cAMP] had no effect on pH(G. Thus, CFTR seemed not to be involved in controlling pH(G. Experiments on HeLa cells using an avidin-sialyltransferase chimera in combination with a pH-sensitive fluorescent biotin indicated that even in cells that do not express CFTR, Cl(- and K(+ conductances of the Golgi and other organelle membranes were large and that pH(G was controlled solely by the H(+ v-ATPase countered by a H(+ leak. A mathematical model was applied to these and other published data to calculate passive H(+ permeability (P(H+ of the Golgi, endoplasmic reticulum, trans-Golgi network, recycling endosomes and secrety granules from a variety of cells. An organelle's acidity was inversely correlated to its calculated P(H+. We conclude that the CFTR plays a minor role in organelle pH regulation because other (Cl(- and K(+ channels are present in sufficient numbers to shunt voltages generated during H(+ pumping. Acidity of the Golgi (and perhaps other organelles appears to be determined by the activity of H

  20. Sputum Candida albicans presages FEV₁ decline and hospital-treated exacerbations in cystic fibrosis.

    LENUS (Irish Health Repository)

    Chotirmall, Sanjay H

    2010-11-01

    The role of Candida albicans in the cystic fibrosis (CF) airway is underexplored. Considered a colonizer, few question its pathogenic potential despite high isolation frequencies from sputum culture. We evaluated the frequency and identified the strongest predictors of C albicans colonization in CF. Independent associations of colonization with clinical outcomes were determined, and the longitudinal effects of C albicans acquisition on BMI and FEV₁ were evaluated.

  1. A new removable airway stent

    Directory of Open Access Journals (Sweden)

    Tore Amundsen

    2016-09-01

    Full Text Available Background: Malignant airway obstruction is a feared complication and will most probably occur more frequently in the future because of increasing cancer incidence and increased life expectancy in cancer patients. Minimal invasive treatment using airway stents represents a meaningful and life-saving palliation. We present a new removable airway stent for improved individualised treatment. Methods: To our knowledge, the new airway stent is the world's first knitted and uncovered self-expanding metal stent, which can unravel and be completely removed. In an in vivo model using two anaesthetised and spontaneously breathing pigs, we deployed and subsequently removed the stents by unravelling the device. The procedures were executed by flexible bronchoscopy in an acute and a chronic setting – a ‘proof-of-principle’ study. Results: The new stent was easily and accurately deployed in the central airways, and it remained fixed in its original position. It was easy to unravel and completely remove from the airways without clinically significant complications. During the presence of the stent in the chronic study, granulation tissue was induced. This tissue disappeared spontaneously with the removal. Conclusions: The new removable stent functioned according to its purpose and unravelled easily, and it was completely removed without significant technical or medical complications. Induced granulation tissue disappeared spontaneously. Further studies on animals and humans are needed to define its optimal indications and future use.

  2. Adipose tissue fibrosis

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The increasing prevalence of obesity causes a majorinterest in white adipose tissue biology. Adipose tissuecells are surrounded by extracellular matrix proteinswhose composition and remodeling is of crucial importancefor cell function. The expansion of adipose tissue inobesity is linked to an inappropriate supply with oxygenand hypoxia development. Subsequent activation ofhypoxia inducible factor 1 (HIF-1) inhibits preadipocytedifferentiation and initiates adipose tissue fibrosis. Therebyadipose tissue growth is limited and excess triglyceridesare stored in ectopic tissues. Stressed adipocytes andhypoxia contribute to immune cell immigration andactivation which further aggravates adipose tissuefibrosis. There is substantial evidence that adipose tissuefibrosis is linked to metabolic dysfunction,both in rodentmodels and in the clinical setting. Peroxisome proliferatoractivated receptor gamma agonists and adiponectin bothreduce adipose tissue fibrosis, inflammation and insulinresistance. Current knowledge suggests that antifibroticdrugs, increasing adipose tissue oxygen supply or HIF-1antagonists will improve adipose tissue function andthereby ameliorate metabolic diseases.

  3. Gadolinium-Induced Fibrosis.

    Science.gov (United States)

    Todd, Derrick J; Kay, Jonathan

    2016-01-01

    Gadolinium-based contrast agents (GBCAs), once believed to be safe for patients with renal disease, have been strongly associated with nephrogenic systemic fibrosis (NSF), a severe systemic fibrosing disorder that predominantly afflicts individuals with advanced renal dysfunction. We provide a historical perspective on the appearance and disappearance of NSF, including its initial recognition as a discrete clinical entity, its association with GBCA exposure, and the data supporting a causative relationship between GBCA exposure and NSF. On the basis of this body of evidence, we propose that the name gadolinium-induced fibrosis (GIF) more accurately reflects the totality of knowledge regarding this disease. Use of high-risk GBCAs, such as formulated gadodiamide, should be avoided in patients with renal disease. Restriction of GBCA use in this population has almost completely eradicated new cases of this debilitating condition. Emerging antifibrotic therapies may be useful for patients who suffer from GIF.

  4. Cystic fibrosis. Diagnosis.

    Directory of Open Access Journals (Sweden)

    Luis Ortigosa

    2009-11-01

    Full Text Available Cystic fibrosis (CF is one of the most frequent inherited mortal diseases in Caucasian population. Dysfunction in exocrine glands is described in CF patients, with severe pancreatic insufficiency and chronic lung disease. CF is inherited as an autosomal recessive disorder. More than 1000 disease-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR gene have been described. DF508 mutation is the most common mutation in the CF gen. Diagnosis in CF is based on clinical and laboratory tests findings. Meconial ileus, CF in other relatives, chronic lung disease, congenital absence of the vas deferens with azoospermia are among other clinical findings, main criteria in CF patients. Two positive results in sweat chloride test , or demonstration in nasal epithelial ionic transport alteration (nasal potential difference and identification of two CF mutations in the patient are laboratory findings in CF.

  5. A comparison of bronchial drainage treatments in cystic fibrosis.

    Science.gov (United States)

    Kluft, J; Beker, L; Castagnino, M; Gaiser, J; Chaney, H; Fink, R J

    1996-10-01

    We compared standard chest physical therapy and postural drainage (CPT/PD) with a new airway clearance therapy called high-frequency chest wall oscillation (HFCWO) in a group of stable cystic fibrosis (CF) patients. In this crossover trial, 29 CF patients (15 males, 14 females), aged 7-47 years that met the inclusion criteria were randomly assigned to alternate CPT/PD and HFCWO, on a daily basis, over a 4 day period. Each patient received 2 days of each form of therapy; treatment frequency and the length of treatment were the same for both techniques. Expectorated secretions were collected during each 30 minute therapy session and for 15 minutes following treatment. The wet and dry weights of collected secretions were determined gravimetrically, and the therapy methods were compared. Significantly more sputum was expectorated during HFCWO than during CPT/PD as determined by both the wet (P HFCWO is at least as effective as manual CPT/PD in clearing secretions from the airways in patients with cystic fibrosis.

  6. Fungi in the cystic fibrosis lung: bystanders or pathogens?

    Science.gov (United States)

    Chotirmall, Sanjay H; McElvaney, Noel G

    2014-07-01

    Improvement to the life expectancy of people with cystic fibrosis (PWCF) brings about novel challenges including the need for evaluation of the role of fungi in the cystic fibrosis (CF) lung. To determine if such organisms represent bystanders or pathogens affecting clinical outcomes we review the existing knowledge from a clinical, biochemical, inflammatory and immunological perspective. The prevalence and importance of fungi in the CF airway has likely been underestimated with the most frequently isolated filamentous fungi being Aspergillus fumigatus and Scedosporium apiospermum and the major yeast Candida albicans. Developing non-culture based microbiological methods for fungal detection has improved both our classification and understanding of their clinical consequences including localized, allergic and systemic infections. Cross-kingdom interaction between bacteria and fungi are discussed as is the role of biofilms further affecting clinical outcome. A combination of host and pathogen-derived factors determines if a particular fungus represents a commensal, colonizer or pathogen in the setting of CF. The underlying immune state, disease severity and treatment burden represent key host variables whilst fungal type, form, chronicity and virulence including the ability to evade immune recognition determines the pathogenic potential of a specific fungus at a particular point in time. Further research in this emerging field is warranted to fully elucidate the spectrum of disease conferred by the presence of fungi in the CF airway and the indications for therapeutic interventions. Copyright © 2014. Published by Elsevier Ltd.

  7. [News in cystic fibrosis].

    Science.gov (United States)

    Delaisi, B

    2013-08-01

    The improvement over the last two decades in the treatment of cystic fibrosis led to an increase in life expectancy approaching 40 years at birth. Logically, the population of adult patients has been increasing and is currently 50% of patients followed in France. These therapeutic advances have justified the establishment in 2003 of a generalized neonatal screening for cystic fibrosis. The latest data of this screening show an incidence of CF of 1/5359 live births, far below the incidence of 1/2500 which was widely accepted twenty years ago. The performance of this screening is currently based on the dosage of trypsin immuno reactive, followed in case of exceeding the threshold of a search of the 30 most common mutations, can detect around 96% of 150 to 200 CF cases every year. Therefore, the possibility of a false negative of the screening cannot be excluded and evocative symptoms of cystic fibrosis, even for children born after 2003, will lead to prescribe a sweat test. While treatments available so far goal consequences of cystic fibrosis, a new therapeutic class to correct the functional defect of the mutated protein, called CFTR modulators, is emerging. Ivacaftor, leader of this new class, belonging to the category of "CFTR potentiator" got its access on the market in September 2012 for patients carrying the G551D mutation. New other molecules, named "CFTR correctors" which can have synergistic effect with ivacaftor and concern patients carrying the most common mutation--DF 508--are under development. Copyright © 2013. Published by Elsevier Masson SAS.

  8. Viral vectors for cystic fibrosis gene therapy: What does the future hold?

    Directory of Open Access Journals (Sweden)

    Uta Griesenbach

    2010-12-01

    Full Text Available Uta Griesenbach1, Makoto Inoue2, Mamoru Hasegawa2, Eric WFW Alton11Department of Gene Therapy, Imperial College London, UK; The UK Cystic Fibrosis Gene Therapy Consortium; 2DNAVEC Corporation, Tsukuba, JapanAbstract: Gene transfer to the airway epithelium has been more difficult than originally anticipated, largely because of significant extra- and intracellular barriers in the lung. In general, viral vectors are more adapted to overcoming these barriers than nonviral gene transfer agents and are, therefore, more efficient in transferring genes into recipient cells. Viral vectors derived from adenovirus, adeno-associated virus, and Sendai virus, which all have a natural tropism for the airway epithelium, have been evaluated for cystic fibrosis (CF gene therapy. Although these vectors transduce airway epithelial cells efficiently, gene expression is transient and repeated administration is inefficient. They are, therefore, unlikely to be suitable for CF gene therapy. More recently, lentiviruses (LV have been assessed for lung gene transfer. In contrast to retroviruses, they transduce nondividing cells and randomly integrate into the genome. However, LVs do not have a natural tropism for the lung, and a significant amount of effort has been put into pseudotyping these vectors with proteins suitable for airway gene transfer. Several studies have shown that LV-mediated transduction leads to persistent gene expression (for the lifetime of the animal in the airways and, importantly, repeated administration is feasible. Thus, appropriately pseudotyped LV vectors are promising candidates for CF gene therapy. Here, we will review preclinical and clinical research related to viral CF gene therapy.Keywords: cystic fibrosis, gene therapy, adenovirus, AAV, lentivirus, Sendai virus

  9. Metagenomic analysis of respiratory tract DNA viral communities in cystic fibrosis and non-cystic fibrosis individuals.

    Directory of Open Access Journals (Sweden)

    Dana Willner

    Full Text Available The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5'-triphosphate,3'-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota.

  10. Serelaxin improves the therapeutic efficacy of RXFP1-expressing human amnion epithelial cells in experimental allergic airway disease.

    Science.gov (United States)

    Royce, Simon G; Tominaga, Anna M; Shen, Matthew; Patel, Krupesh P; Huuskes, Brooke M; Lim, Rebecca; Ricardo, Sharon D; Samuel, Chrishan S

    2016-12-01

    Current asthma therapies primarily target airway inflammation (AI) and suppress episodes of airway hyperresponsiveness (AHR) but fail to treat airway remodelling (AWR), which can develop independently of AI and contribute to irreversible airway obstruction. The present study compared the anti-remodelling and therapeutic efficacy of human bone marrow-derived mesenchymal stem cells (MSCs) to that of human amnion epithelial stem cells (AECs) in the setting of chronic allergic airways disease (AAD), in the absence or presence of an anti-fibrotic (serelaxin; RLX). Female Balb/c mice subjected to the 9-week model of ovalbumin (OVA)-induced chronic AAD, were either vehicle-treated (OVA alone) or treated with MSCs or AECs alone [intranasally (i.n.)-administered with 1×10(6) cells once weekly], RLX alone (i.n.-administered with 0.8 mg/ml daily) or a combination of MSCs or AECs and RLX from weeks 9-11 (n=6/group). Measures of AI, AWR and AHR were then assessed. OVA alone exacerbated AI, epithelial damage/thickness, sub-epithelial extracellular matrix (ECM) and total collagen deposition, markers of collagen turnover and AHR compared with that in saline-treated counterparts (all P<0.01 compared with saline-treated controls). RLX or AECs (but not MSCs) alone normalized epithelial thickness and partially diminished the OVA-induced fibrosis and AHR by ∼40-50% (all P<0.05 compared with OVA alone). Furthermore, the combination treatments normalized epithelial thickness, measures of fibrosis and AHR to that in normal mice, and significantly decreased AI. Although AECs alone demonstrated greater protection against the AAD-induced AI, AWR and AHR, compared with that of MSCs alone, combining RLX with MSCs or AECs reversed airway fibrosis and AHR to an even greater extent. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. Generation of novel AAV variants by directed evolution for improved CFTR delivery to human ciliated airway epithelium.

    Science.gov (United States)

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-12-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease.

  12. Generation of Novel AAV Variants by Directed Evolution for Improved CFTR Delivery to Human Ciliated Airway Epithelium

    Science.gov (United States)

    Li, Wuping; Zhang, Liqun; Johnson, Jarrod S; Zhijian, Wu; Grieger, Joshua C; Ping-Jie, Xiao; Drouin, Lauren M; Agbandje-McKenna, Mavis; Pickles, Raymond J; Samulski, R Jude

    2009-01-01

    Recombinant adeno-associated virus (AAV) vectors expressing the cystic fibrosis transmembrane conductance regulator (CFTR) gene have been used to deliver CFTR to the airway epithelium of cystic fibrosis (CF) patients. However, no significant CFTR function has been demonstrated likely due to low transduction efficiencies of the AAV vectors. To improve AAV transduction efficiency for human airway epithelium (HAE), we generated a chimeric AAV library and performed directed evolution of AAV on an in vitro model of human ciliated airway epithelium. Two independent and novel AAV variants were identified that contained capsid components from AAV-1, AAV-6, and/or AAV-9. The transduction efficiencies of the two novel AAV variants for human ciliated airway epithelium were three times higher than that for AAV-6. The novel variants were then used to deliver CFTR to ciliated airway epithelium from CF patients. Here we show that our novel AAV variants, but not the parental, AAV provide sufficient CFTR delivery to correct the chloride ion transport defect to ~25% levels measured in non-CF cells. These results suggest that directed evolution of AAV on relevant in vitro models will enable further improvements in CFTR gene transfer efficiency and the development of an efficacious and safe gene transfer vector for CF lung disease. PMID:19603002

  13. Impaired Lymphocyte Profile in Schistosomiasis Patients with Periportal Fibrosis

    Directory of Open Access Journals (Sweden)

    Luciana Santos Cardoso

    2013-01-01

    Full Text Available The Th2 immune response in chronic schistosomiasis is associated with the development of periportal fibrosis. However, little is known about the phenotype and activation status of T cells in the process. Objective. To evaluate the profile of T cells in schistosomiasis patients with periportal fibrosis. Methods. It was a cross-sectional study, conducted in the village of Agua Preta, Bahia, Brazil, which included 37 subjects with periportal fibrosis determined by ultrasound. Peripheral blood mononuclear cells were obtained by the Ficcol-hypaque gradient and the frequency of T cells expressing the surface markers CD28, CD69, CD25, and CTLA-4 was determined by flow cytometry. Results. The frequency of CD4+CD28+ T lymphocytes was higher in individuals with moderate to severe fibrosis compared to patients with incipient fibrosis. We did not observe any significant difference in the frequency of CD4+ T cells expressing CD69 among groups of individuals. There was also no significant difference in the frequency of CD8+ T cells expressing CD28 or CD69 among the studied groups. Individuals with moderate to severe fibrosis presented a lower frequency of CD8+ T cells, CD4+CD25high T cells, and CD4+CTLA-4+ T cells when compared to patients without fibrosis or incipient fibrosis. The frequency of CD4+CD25low cells did not differ between groups. Conclusion. The high frequency of activated T cells coinciding with a low frequency of putative Treg cells may account for the development of periportal fibrosis in human schistosomiasis.

  14. Analysis of airways in computed tomography

    DEFF Research Database (Denmark)

    Petersen, Jens

    Chronic Obstructive Pulmonary Disease (COPD) is major cause of death and disability world-wide. It affects lung function through destruction of lung tissue known as emphysema and inflammation of airways, leading to thickened airway walls and narrowed airway lumen. Computed Tomography (CT) imaging...... have become the standard with which to assess emphysema extent but airway abnormalities have so far been more challenging to quantify. Automated methods for analysis are indispensable as the visible airway tree in a CT scan can include several hundreds of individual branches. However, automation...... of scan on airway dimensions in subjects with and without COPD. The results show measured airway dimensions to be affected by differences in the level of inspiration and this dependency is again influenced by COPD. Inspiration level should therefore be accounted for when measuring airways, and airway...

  15. Vessel-guided airway tree segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2010-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. We propose a voxel classification approach for the appearance model, which uses a classifier that is trained...... to differentiate between airway and non-airway voxels. This is in contrast to previous works that use either intensity alone or hand crafted models of airway appearance. We show that the appearance model can be trained with a set of easily acquired, incomplete, airway tree segmentations. A vessel orientation...... similarity measure is introduced, which indicates how similar the orientation of an airway candidate is to the orientation of the neighboring vessel. We use this vessel orientation similarity measure to overcome regions in the airway tree that have a low response from the appearance model. The proposed...

  16. Magnetomotive optical coherence elastography for relating lung structure and function in cystic fibrosis

    Science.gov (United States)

    Chhetri, Raghav K.; Carpenter, Jerome; Superfine, Richard; Randell, Scott H.; Oldenburg, Amy L.

    2010-02-01

    Cystic fibrosis (CF) is a genetic defect in the cystic fibrosis transmembrane conductance regulator protein and is the most common life-limiting genetic condition affecting the Caucasian population. It is an autosomal recessive, monogenic inherited disorder characterized by failure of airway host defense against bacterial infection, which results in bronchiectasis, the breakdown of airway wall extracellular matrix (ECM). In this study, we show that the in vitro models consisting of human tracheo-bronchial-epithelial (hBE) cells grown on porous supports with embedded magnetic nanoparticles (MNPs) at an air-liquid interface are suitable for long term, non-invasive assessment of ECM remodeling using magnetomotive optical coherence elastography (MMOCE). The morphology of ex vivo CF and normal lung tissues using OCT and correlative study with histology is also examined. We also demonstrate a quantitative measure of normal and CF airway elasticity using MMOCE. The improved understanding of pathologic changes in CF lung structure and function and the novel method of longitudinal in vitro ECM assessment demonstrated in this study may lead to new in vivo imaging and elastography methods to monitor disease progression and treatment in cystic fibrosis.

  17. Colonization of CF patients' upper airways with S. aureus contributes more decisively to upper airway inflammation than P. aeruginosa.

    Science.gov (United States)

    Janhsen, Wibke Katharina; Arnold, Christin; Hentschel, Julia; Lehmann, Thomas; Pfister, Wolfgang; Baier, Michael; Böer, Klas; Hünniger, Kerstin; Kurzai, Oliver; Hipler, Uta-Christina; Mainz, Jochen Georg

    2016-10-01

    In cystic fibrosis (CF) patients' airways, inflammatory processes decisively contribute to remodeling and pulmonary destruction. The aims of this study were to compare upper airway (UAW) inflammation in the context of Staphylococcus aureus and Pseudomonas aeruginosa colonization in a longitudinal setting, and to examine further factors influencing UAW inflammation. Therefore, we analyzed soluble inflammatory mediators in noninvasively obtained nasal lavage (NL) of CF patients together with microbiology, medication, and relevant clinical parameters. NL, applying 10 mL of isotonic saline per nostril, was serially performed in 74 CF patients (326 samples). Concentrations of the inflammatory mediators' interleukin (IL)-1β, IL-6, IL-8, matrix metalloproteinase (MMP)-9, and its anti-protease TIMP-1 were quantified by bead-based multiplexed assay, neutrophil elastase (NE) via ELISA. Culture-based microbiology of the upper and lower airways (LAW), as well as serological and clinical findings, were compiled. Our results indicate that UAW colonization with S. aureus significantly impacts the concentration of all measured inflammatory mediators in NL fluid except TIMP-1, whereas these effects were not significant for P. aeruginosa. Patients with S. aureus colonization of both the UAW and LAW showed significantly increased concentrations of IL-1β, IL-6, IL-8, MMP-9, and slightly elevated concentrations of NE in NL fluid compared to non-colonized patients. This work elaborates a survey on S. aureus' virulence factors that may contribute to this underestimated pathology. Serial assessment of epithelial lining fluid by NL reveals that colonization of the UAW with S. aureus contributes more to CF airway inflammatory processes than hitherto expected.

  18. Gene therapy for the treatment of cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Burney TJ

    2012-05-01

    Full Text Available Tabinda J Burney1,2, Jane C Davies1,2,31Department of Gene therapy, Imperial College London, 2UK CF Gene Therapy Consortium London, 3Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UKAbstract: Gene therapy is being developed as a novel treatment for cystic fibrosis (CF, a condition that has hitherto been widely-researched yet for which no treatment exists that halts the progression of lung disease. Gene therapy involves the transfer of correct copies of cystic fibrosis transmembrane conductance regulator (CFTR DNA to the epithelial cells in the airways. The cloning of the CFTR gene in 1989 led to proof-of-principle studies of CFTR gene transfer in vitro and in animal models. The earliest clinical trials in CF patients were conducted in 1993 and used viral and non-viral gene transfer agents in both the nasal and bronchial airway epithelium. To date, studies have focused largely on molecular or bioelectric (chloride secretion outcome measures, many demonstrating evidence of CFTR expression, but few have attempted to achieve clinical efficacy. As CF is a lifelong disease, turnover of the airway epithelium necessitates repeat administration. To date, this has been difficult to achieve with viral gene transfer agents due to host recognition leading to loss of expression. The UK Cystic Fibrosis Gene Therapy Consortium (Imperial College London, University of Edinburgh and University of Oxford is currently working on a large and ambitious program to establish the clinical benefits of CF gene therapy. Wave 1, which has reached the clinic, uses a non-viral vector. A single-dose safety trial is nearing completion and a multi-dose clinical trial is shortly due to start; this will be powered for clinically-relevant changes. Wave 2, more futuristically, will look at the potential of lentiviruses, which have long-lasting expression. This review will summarize the current status of translational

  19. Upper airway resistance syndrome.

    Science.gov (United States)

    Montserrat, J M; Badia, J R

    1999-03-01

    This article reviews the clinical picture, diagnosis and management of the upper airway resistance syndrome (UARS). Presently, there is not enough data on key points like the frequency of UARS and the morbidity associated with this condition. Furthermore, the existence of LIARS as an independent sleep disorder and its relation with snoring and obstructive events is in debate. The diagnosis of UARS is still a controversial issue. The technical limitations of the classic approach to monitor airflow with thermistors and inductance plethysmography, as well as the lack of a precise definition of hypopnea, may have led to a misinterpretation of UARS as an independent diagnosis from the sleep apnea/hypopnea syndrome. The diagnosis of this syndrome can be missed using a conventional polysomnographic setting unless appropriate techniques are applied. The use of an esophageal balloon to monitor inspiratory effort is currently the gold standard. However, other sensitive methods such as the use of a pneumotachograph and, more recently, nasal cannula/pressure transducer systems or on-line monitoring of respiratory impedance with the forced oscillation technique may provide other interesting possibilities. Recognition and characterization of this subgroup of patients within sleep breathing disorders is important because they are symptomatic and may benefit from treatment. Management options to treat UARS comprise all those currently available for sleep apnea/hypopnea syndrome (SAHS). However, the subset of patients classically identified as LIARS that exhibit skeletal craneo-facial abnormalities might possibly obtain further benefit from maxillofacial surgery.

  20. Molecular Diagnosis of Cystic Fibrosis.

    Science.gov (United States)

    Deignan, Joshua L; Grody, Wayne W

    2016-01-01

    This unit describes a recommended approach to identifying causal genetic variants in an individual suspected of having cystic fibrosis. An introduction to the genetics and clinical presentation of cystic fibrosis is initially presented, followed by a description of the two main strategies used in the molecular diagnosis of cystic fibrosis: (1) an initial targeted variant panel used to detect only the most common cystic fibrosis-causing variants in the CFTR gene, and (2) sequencing of the entire coding region of the CFTR gene to detect additional rare causal CFTR variants. Finally, the unit concludes with a discussion regarding the analytic and clinical validity of these approaches.

  1. Sinus bacteriology in patients with cystic fibrosis or primary ciliary dyskinesia

    DEFF Research Database (Denmark)

    Møller, Maria E.; Alanin, Mikkel C.; Grønhøj, Christian

    2017-01-01

    Background: A correlation exists between the microbial flora of the upper and lower airways in patients with cystic fibrosis (CF) or with primary ciliary dyskinesia (PCD). The sinuses can function as a bacterial reservoir where gram-negative bacteria adapt to the airways and repeatedly are aspira......Background: A correlation exists between the microbial flora of the upper and lower airways in patients with cystic fibrosis (CF) or with primary ciliary dyskinesia (PCD). The sinuses can function as a bacterial reservoir where gram-negative bacteria adapt to the airways and repeatedly...... flora in the sinuses and nasal cavities of patients with CF or PCD.  Methods: A number of medical literature data bases were systematically searched between January 1960 and July 2016. We applied the following inclusion criteria: a minimum of one case of PCD (or Kartagener syndrome) or CF......, and microbiology analyses from the nose or paranasal sinuses.  Results: We included 46 studies (1823 patients) from 16 countries. Staphylococcus aureus was found in 30% of the noses and sinuses of patients with CF. Other common bacteria found included Pseudomonas aeruginosa, coagulase negative staphylococci...

  2. Bronchoscopic management of malignant airway obstruction.

    Science.gov (United States)

    Mitchell, Patrick D; Kennedy, Marcus P

    2014-05-01

    Approximately one-third of patients with lung cancer will develop airway obstruction and many cancers lead to airway obstruction through meta stases. The treatment of malignant airway obstruction is often a multimodality approach and is usually performed for palliation of symptoms in advanced lung cancer. Removal of airway obstruction is associated with improvement in symptoms, quality of life, and lung function. Patient selection should exclude patients with short life expectancy, limited symptoms, and an inability to visualize beyond the obstruction. This review outlines both the immediate and delayed bronchoscopic effect options for the removal of airway obstruction and preservation of airway patency with endobronchial stenting.

  3. SERS detection of the biomarker hydrogen cyanide from Pseudomonas aeruginosa cultures isolated from cystic fibrosis patients

    Science.gov (United States)

    Lauridsen, Rikke Kragh; Sommer, Lea M.; Johansen, Helle Krogh; Rindzevicius, Tomas; Molin, Søren; Jelsbak, Lars; Engelsen, Søren Balling; Boisen, Anja

    2017-03-01

    Pseudomonas aeruginosa is the primary cause of chronic airway infections in cystic fibrosis (CF) patients. Persistent infections are seen from the first P. aeruginosa culture in about 75% of young CF patients, and it is important to discover new ways to detect P. aeruginosa at an earlier stage. The P. aeruginosa biomarker hydrogen cyanide (HCN) contains a triple bond, which is utilized in this study because of the resulting characteristic C≡N peak at 2135 cm-1 in a Raman spectrum. The Raman signal was enhanced by surface-enhanced Raman spectroscopy (SERS) on a Au-coated SERS substrate. After long-term infection, a mutation in the patho-adaptive lasR gene can alter the expression of HCN, which is why it is sometimes not possible to detect HCN in the breath of chronically infected patients. Four P. aeruginosa reference strains and 12 clinical P. aeruginosa strains isolated from CF children were evaluated, and HCN was clearly detected from overnight cultures of all wild type-like isolates and half of the later isolates from the same patients. The clinical impact could be that P. aeruginosa infections could be detected at an earlier stage, because daily breath sampling with an immediate output could be possible with a point-of-care SERS device.

  4. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures

    Science.gov (United States)

    Cholon, Deborah M.; O'Neal, Wanda K.; Randell, Scott H.; Riordan, John R.

    2010-01-01

    CFTR is a highly regulated apical chloride channel of epithelial cells that is mutated in cystic fibrosis (CF). In this study, we characterized the apical stability and intracellular trafficking of wild-type and mutant CFTR in its native environment, i.e., highly differentiated primary human airway epithelial (HAE) cultures. We labeled the apical pool of CFTR and subsequently visualized the protein in intracellular compartments. CFTR moved from the apical surface to endosomes and then efficiently recycled back to the surface. CFTR endocytosis occurred more slowly in polarized than in nonpolarized HAE cells or in a polarized epithelial cell line. The most common mutation in CF, ΔF508 CFTR, was rescued from endoplasmic reticulum retention by low-temperature incubation but transited from the apical membrane to endocytic compartments more rapidly and recycled less efficiently than wild-type CFTR. Incubation with small-molecule correctors resulted in ΔF508 CFTR at the apical membrane but did not restore apical stability. To stabilize the mutant protein at the apical membrane, we found that the dynamin inhibitor Dynasore and the cholesterol-extracting agent cyclodextrin dramatically reduced internalization of ΔF508, whereas the proteasomal inhibitor MG-132 completely blocked endocytosis of ΔF508. On examination of intrinsic properties of CFTR that may affect its apical stability, we found that N-linked oligosaccharides were not necessary for transport to the apical membrane but were required for efficient apical recycling and, therefore, influenced the turnover of surface CFTR. Thus apical stability of CFTR in its native environment is affected by properties of the protein and modulation of endocytic trafficking. PMID:20008117

  5. Detonation Nanodiamond Toxicity in Human Airway Epithelial Cells Is Modulated by Air Oxidation

    Science.gov (United States)

    Detonational nanodiamonds (DND), a nanomaterial with an increasing range of industrial and biomedical applications, have previously been shown to induce a pro-inflammatory response in cultured human airway epithelial cells (HAEC). We now show that surface modifications induced by...

  6. Epithelial cell-extracellular matrix interactions and stem cells in airway epithelial regeneration.

    Science.gov (United States)

    Coraux, Christelle; Roux, Jacqueline; Jolly, Thomas; Birembaut, Philippe

    2008-08-15

    In healthy subjects, the respiratory epithelium forms a continuous lining to the airways and to the environment, and plays a unique role as a barrier against external deleterious agents to protect the airways from the insults. In respiratory diseases such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), chronic bronchitis, or asthma, the airway epithelium is frequently remodeled and injured, leading to the impairment of its defense functions. The rapid restoration of the epithelial barrier is crucial for these patients. The complete regeneration of the airway epithelium is a complex phenomenon, including not only the epithelial wound repair but also the epithelial differentiation to reconstitute a fully well differentiated and functional epithelium. The regeneration implies two partners: the epithelial stem/progenitor cells and factors able to regulate this process. Among these factors, epithelial cells-extracellular matrix (ECM) interactions play a crucial role. The secretion of a provisional ECM, the cell-ECM relationships through epithelial receptors, and the remodeling of the ECM by proteases (mainly matrix metalloproteinases) contribute not only to airway epithelial repair by modulating epithelial cell migration and proliferation, but also to the differentiation of repairing cells leading to the complete restoration of the wounded epithelium. A better characterization of resident stem cells and of effectors of the regeneration process is an essential prerequisite to propose new regenerative therapeutics to patients suffering from infectious/inflammatory respiratory diseases.

  7. Toll-Like Receptor 4 Engagement Mediates Prolyl Endopeptidase Release from Airway Epithelia via Exosomes.

    Science.gov (United States)

    Szul, Tomasz; Bratcher, Preston E; Fraser, Kyle B; Kong, Michele; Tirouvanziam, Rabindra; Ingersoll, Sarah; Sztul, Elizabeth; Rangarajan, Sunil; Blalock, J Edwin; Xu, Xin; Gaggar, Amit

    2016-03-01

    Proteases are important regulators of pulmonary remodeling and airway inflammation. Recently, we have characterized the enzyme prolyl endopeptidase (PE), a serine peptidase, as a critical protease in the generation of the neutrophil chemoattractant tripeptide Pro-Gly-Pro (PGP) from collagen. However, PE has been characterized as a cytosolic enzyme, and the mechanism mediating PE release extracellularly remains unknown. We examined the role of exosomes derived from airway epithelia as a mechanism for PE release and the potential extracellular signals that regulate the release of these exosomes. We demonstrate a specific regulatory pathway of exosome release from airway epithelia and identify PE as novel exosome cargo. LPS stimulation of airway epithelial cells induces release of PE-containing exosomes, which is significantly attenuated by small interfering RNA depletion of Toll-like receptor 4 (TLR4). These differences were recapitulated upon intratracheal LPS administration in mice competent versus deficient for TLR4 signaling. Finally, sputum samples from subjects with cystic fibrosis colonized with Pseudomonas aeruginosa demonstrate elevated exosome content and increased PE levels. This TLR4-based mechanism highlights the first report of nonstochastic release of exosomes in the lung and couples TLR4 activation with matrikine generation. The increased quantity of these proteolytic exosomes in the airways of subjects with chronic lung disease highlights a new mechanism of injury and inflammation in the pathogenesis of pulmonary disorders.

  8. The in vivo fibrotic role of FIZZ1 in pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Tianju Liu

    Full Text Available FIZZ (found in inflammatory zone 1, a member of a cysteine-rich secreted protein family, is highly induced in lung allergic inflammation and bleomycin induced lung fibrosis, and primarily expressed by airway and type II alveolar epithelial cells. This novel mediator is known to stimulate α-smooth muscle actin and collagen expression in lung fibroblasts. The objective of this study was to investigate the in vivo effects of FIZZ1 on the development of lung fibrosis by evaluating bleomycin-induced pulmonary fibrosis in FIZZ1 deficient mice. FIZZ1 knockout mice exhibited no detectable abnormality. When these mice were treated with bleomycin they exhibited significantly impaired pulmonary fibrosis relative to wild type mice, along with impaired proinflammatory cytokine/chemokine expression. Deficient lung fibroblast activation was also noted in the FIZZ1 knockout mice. Moreover, recruitment of bone marrow-derived cells to injured lung was deficient in FIZZ1 knockout mice. Interestingly in vitro FIZZ1 was shown to have chemoattractant activity for bone marrow cells, including bone marrow-derived dendritic cells. Finally, overexpression of FIZZ1 exacerbated fibrosis. These findings suggested that FIZZ1 exhibited profibrogenic properties essential for bleomycin induced pulmonary fibrosis, as reflected by its ability to induce myofibroblast differentiation and recruit bone marrow-derived cells.

  9. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  10. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Claude Jourdan Le Saux

    Full Text Available The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L, a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  11. [Treatment of Cystic Fibrosis with CFTR Modulators].

    Science.gov (United States)

    Tümmler, B

    2016-05-01

    Personalized medicine promises that medical decisions, practices and products are tailored to the individual patient. Cystic fibrosis, an inherited disorder of chloride and bicarbonate transport in exocrine glands, is the first successful example of customized drug development for mutation-specific therapy. There are two classes of CFTR modulators: potentiators that increase the activity of CFTR at the cell surface, and correctors that either promote the read-through of nonsense mutations or facilitate the translation, folding, maturation and trafficking of mutant CFTR to the cell surface. The potentiator ivacaftor and the corrector lumacaftor are approved in Germany for the treatment of people with cystic fibrosis who carry a gating mutation such as p.Gly551Asp or who are homozygous for the most common mutation p.Phe508del, respectively. This report provides an overview of the basic defect in cystic fibrosis, the population genetics of CFTR mutations in Germany and the bioassays to assess CFTR function in humans together with the major achievements of preclinical research and clinical trials to bring CFTR modulators to the clinic. Some practical information on the use of ivacaftor and lumacaftor in daily practice and an update on pitfalls, challenges and novel strategies of bench-to-bedside development of CFTR modulators are also provided.

  12. Cleavage of CXCR1 on neutrophils disables bacterial killing in cystic fibrosis lung disease.

    Science.gov (United States)

    Hartl, Dominik; Latzin, Philipp; Hordijk, Peter; Marcos, Veronica; Rudolph, Carsten; Woischnik, Markus; Krauss-Etschmann, Susanne; Koller, Barbara; Reinhardt, Dietrich; Roscher, Adelbert A; Roos, Dirk; Griese, Matthias

    2007-12-01

    Interleukin-8 (IL-8) activates neutrophils via the chemokine receptors CXCR1 and CXCR2. However, the airways of individuals with cystic fibrosis are frequently colonized by bacterial pathogens, despite the presence of large numbers of neutrophils and IL-8. Here we show that IL-8 promotes bacterial killing by neutrophils through CXCR1 but not CXCR2. Unopposed proteolytic activity in the airways of individuals with cystic fibrosis cleaved CXCR1 on neutrophils and disabled their bacterial-killing capacity. These effects were protease concentration-dependent and also occurred to a lesser extent in individuals with chronic obstructive pulmonary disease. Receptor cleavage induced the release of glycosylated CXCR1 fragments that were capable of stimulating IL-8 production in bronchial epithelial cells via Toll-like receptor 2. In vivo inhibition of proteases by inhalation of alpha1-antitrypsin restored CXCR1 expression and improved bacterial killing in individuals with cystic fibrosis. The cleavage of CXCR1, the functional consequences of its cleavage, and the identification of soluble CXCR1 fragments that behave as bioactive components represent a new pathophysiologic mechanism in cystic fibrosis and other chronic lung diseases.

  13. Chronic infection of cystic fibrosis patient airways by a single clone of Burkholderia cepacia: replacement of non-mucoid to mucoid morphotype Infecção pulmonar crônica por um único clone de Burkholderia cepacia: substituição do morfotipo não mucóide por mucóide

    Directory of Open Access Journals (Sweden)

    Ana Paula D'Alincourt Carvalho

    2003-11-01

    Full Text Available Mucoid Burkholderia cepacia morphotype emerged within a nine year follow-up of a cystic fibrosis patient. Clinical data suggested a linkage between the mucoid phenotype isolation and the deterioration of the patient's condition. Despite of the phenotypic variation, molecular typing showed that the patient was chronically infected with B. cepacia complex isolates belonging to a same genetic clone.O presente trabalho descreve a emergência de cepas mucoides do complexo B. cepacia em um paciente com Fibrose Cística dentro de um acompanhamento bacteriológico prospectivo de nove anos. Os dados clínicos sugerem a associação entre o isolamento do morfotipo mucoide e a deterioração clínica do paciente. Apesar da variação fenotípica, os testes moleculares mostraram que o paciente manteve-se cronicamente infectado por cepas de mesma origem clonal.

  14. CFTR and Ca2+ signaling in cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Fabrice eAntigny

    2011-10-01

    Full Text Available Among the diverse physiological functions exerted by calcium signaling in living cells, its role in the regulation of protein biogenesis and trafficking remains incompletely understood. In cystic fibrosis (CF disease the most common CFTR (Cystic Fibrosis Transmembrane conductance Regulator mutation, F508del-CFTR generates a misprocessed protein that is abnormally retained in the endoplasmic reticulum (ER compartment, rapidly degraded by the ubiquitine/proteasome pathway and hence absent at the plasma membrane of CF epithelial cells. Recent studies have demonstrated that intracellular calcium signals consequent to activation of apical G protein-coupled receptors (GPCRs by different agonists are increased in CF airway epithelia. Moreover, the regulation of various intracellular calcium storage compartments, such as ER is also abnormal in CF cells. Although the molecular mechanism to explain this increase remains puzzling in epithelial cells, the F508del-CFTR mutation is proposed to be the origin of abnormal Ca2+ influx linking the calcium signaling to CFTR pathobiology. This article reviews the relationships between CFTR and calcium signaling in the context of the genetic disease cystic fibrosis.

  15. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Owen, Megan

    Purpose: Assessing airway dimensions and attenuation from CT images is useful in the study of diseases affecting the airways such as Chronic Obstructive Pulmonary Disease (COPD). Measurements can be compared between patients and over time if specific airway segments can be identified. However......, manually finding these segments and performing such measurements is very time consuming. The purpose of the developed and validated system is to enable such measurements using automatic segmentations of the airway interior and exterior wall surfaces in three dimensions, anatomical branch labeling of all...... is used to match specific airway segments in multiple images of the same subject. The anatomical names of all segmental branches are assigned based on distances to a training set of expert labeled trees. Distances are measured in a geometric tree-space, incorporating both topology and centerline shape...

  16. [Cystic fibrosis in 2008].

    Science.gov (United States)

    Durieu, I; Josserand, R Nove

    2008-11-01

    To describe the epidemiological, physiopathological, clinical and therapeutic knowledge concerning cystic fibrosis (CF). Important modifications in the health organization of the care concerning this orphan disease have been implemented in France. The life expectancy has dramatically increased, as well as the knowledge concerning the pathological structure and function of the CFTR gene and protein. This will lead to the development of emerging drug treatments for this lethal disease. The life expectancy is predicted to exceed 40 years for children born in the 2000s. As a result, there has been a tremendous growth of the adult population that reached 40% of the overall approximately 5000 patients included in the CF French registry (Observatoire National de la Mucoviscidose). Lung disease remains the primary cause of morbidity and mortality. The characteristic phenotypic presentation associates bronchial and rhinosinusal symptoms, pancreatic insufficiency and liver disease. Bronchial damage leads to progressive chronic respiratory insufficiency. Diabetes mellitus and osteoporosis frequently appears in adulthood. Neonatal screening has been implemented in France since 2002. It will prevent delayed diagnosis and its deleterious consequences. Some atypical cases of CF presenting only with one or two organ system involvement can be diagnosed in adulthood. Isolated chronic rhinosinusitis, bronchiectasis, congenital bilateral absence of vas deferens, recurrent pancreatitis, allergic bronchopulmonary aspergillosis, and some case of cholangitis may so revealed late form of cystic fibrosis. The health care is organized in cystic fibrosis centres. Despite gene discovery, treatment still remains symptomatic, based on intensive pulmonary and nutritional treatments. Challenges for new treatments are to correct the basic defect, either by gene therapy or by pharmacological modulation of the abnormal physiological processes.

  17. Nephrogenic systemic fibrosis

    DEFF Research Database (Denmark)

    Marckmann, Peter

    2008-01-01

    that gadolinium-containing contrast agents used for magnetic resonance imaging have an essential causative role in most, if not all, cases of nephrogenic systemic fibrosis. One particular agent, gadodiamide, caused the majority of cases, but gadopentetate dimeglumine has also been implicated in several cases....... Increasingly poor renal function, aberrations in calcium-phosphate metabolism and erythropoietin treatment seem to increase the risk of the disease and its severity. Up to 25-30% of patients with renal failure exposed to gadolinium-based contrast agents may develop nephrogenic systemic disease. The figure...

  18. Cystic fibrosis and sleep.

    Science.gov (United States)

    Katz, Eliot S

    2014-09-01

    Sleep disturbances are frequently observed in cystic fibrosis (CF). The resultant sleep fragmentation, short sleep duration, and gas-exchange abnormalities are postulated to contribute to the neurocognitive, cardiovascular, and metabolic abnormalities associated with CF. There are no outcomes data to establish the optimal procedure for screening and treating CF patients for sleep-related respiratory abnormalities. Therapy with supplemental oxygen and bilevel ventilation are widely considered to be effective in the short term, but there are few evidence-based data to support long-term improvements in morbidity and mortality. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. [Nephrogenic systemic fibrosis].

    Science.gov (United States)

    Cavallini, L; Abaterusso, C; Bedogna, V; Pertica, N; Loschiavo, C; Lupo, A

    2008-01-01

    Nephrogenic systemic fibrosis (NSF) is a new, rare, and severe disease occurring in patients with renal failure who have been exposed to gadolinium. The pathogenesis of NSF is not completely known. In fact, the first warning about a significant relationship between NSF and gadolinium (a contrast medium used in magnetic resonance imaging) was only issued in 2006. No cases of NSF have been reported in Italy to date. A nationwide investigation should therefore be carried out to assess the real prevalence of NSF within the Italian uremic population. Furthermore, we need guidelines to reduce the risk of NSF in renal patients undergoing MRI with contrast medium.

  20. Treating asthma means treating airway smooth muscle cells

    NARCIS (Netherlands)

    Zuyderduyn, S; Sukkar, M B; Fust, A; Dhaliwal, S; Burgess, J K

    2008-01-01

    Asthma is characterised by airway hyperresponsiveness, airway inflammation and airway remodelling. Airway smooth muscle cells are known to be the main effector cells of airway narrowing. In the present paper, studies will be discussed that have led to a novel view of the role of airway smooth muscle

  1. Sarcoidosis with Major Airway, Vascular and Nerve Compromise

    Directory of Open Access Journals (Sweden)

    Hiroshi Sekiguchi

    2013-01-01

    Full Text Available The present report describes a 60-year-old Caucasian woman who presented with progressive dyspnea, cough and wheeze. A computed tomography scan of the chest showed innumerable bilateral inflammatory pulmonary nodules with bronchovascular distribution and a mediastinal and hilar infiltrative process with calcified lymphadenopathy leading to narrowing of lobar bronchi and pulmonary arteries. An echocardiogram revealed pulmonary hypertension. Bronchoscopy showed left vocal cord paralysis and significant narrowing of the bilateral bronchi with mucosal thickening and multiple nodules. Transbronchial biopsy was compatible with sarcoidosis. Despite balloon angioplasty of the left lower lobe and pulmonary artery, and medical therapy with oral corticosteroids, her symptoms did not significantly improve. To the authors’ knowledge, the present report describes the first case of pulmonary sarcoidosis resulting in major airway, vascular and nerve compromise due to compressive lymphadenopathy and suspected concurrent granulomatous infiltration. Its presentation mimicked idiopathic mediastinal fibrosis.

  2. Investigation Of Contingent Mutations In The Rets-gacas Regulatory System In Clinical Pseudomonas Aeruginosa Isolates From Cystic Fibrosis Patients

    DEFF Research Database (Denmark)

    Lindegaard, Mikkel; Marvig, Rasmus; Molin, Søren;

    2015-01-01

    Introduction: Pseudomonas aeruginosa is a major pathogen infecting the airways of cystic fibrosis (CF) patients. From a collection of 474 full-genome sequenced P. aeruginosa isolates from 34 young CF patients, we have discovered parallel evolution in the RetS-GacAS regulatory system2, a key facto...

  3. Multiscale Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; de Bruijne, Marleen

    2009-01-01

    that is trained to differentiate between airway and non-airway voxels. Vessel and airway orientation information are used in the form of a vessel orientation similarity measure, which indicates how similar the orientation of the an airway candidate is to the orientation of the neighboring vessel. The method...... is evaluated within EXACT’09 on a diverse set of CT scans. Results show a favorable combination of a relatively large portion of the tree detected correctly with very few false positives....

  4. Serum markers of liver fibrosis

    DEFF Research Database (Denmark)

    Veidal, Sanne Skovgård; Bay-Jensen, Anne-Christine; Tougas, Gervais

    2010-01-01

    BACKGROUND: Fibrosis is a central histological feature of chronic liver diseases and is characterized by the accumulation and reorganization of the extracellular matrix. The gold standard for assessment of fibrosis is histological evaluation of a percutaneous liver biopsy. Albeit a considerable......-epitopes, may be targeted for novel biochemical marker development in fibrosis. We used the recently proposed BIPED system (Burden of disease, Investigative, Prognostic, Efficacy and Diagnostic) to characterise present serological markers. METHODS: Pubmed was search for keywords; Liver fibrosis, neo......, a systematic use of the neo-epitope approach, i.e. the quantification of peptide epitopes generated from enzymatic cleavage of proteins during extracellular remodeling, may prove productive in the quest to find new markers of liver fibrosis....

  5. Management strategies for liver fibrosis.

    Science.gov (United States)

    Altamirano-Barrera, Alejandra; Barranco-Fragoso, Beatriz; Méndez-Sánchez, Nahum

    2017-01-01

    Liver fibrosis resulting from chronic liver injury are major causes of morbidity and mortality worldwide. Among causes of hepatic fibrosis, viral infection is most common (hepatitis B and C). In addition, obesity rates worldwide have accelerated the risk of liver injury due to nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Also liver fibrosis is associated with the consumption of alcohol, or autoimmune hepatitis and chronic cholangiophaties. The response of hepatocytes to inflammation plays a decisive role in the physiopathology of hepatic fibrosis, which involves the recruitment of both pro- and anti-inflammatory cells such as monocytes and macrophages. As well as the production of other cytokines and chemokines, which increase the stimulus of hepatic stellate cells by activating proinflammatory cells. The aim of this review is to identify the therapeutic options available for the treatment of the liver fibrosis, enabling the prevention of progression when is detected in time.

  6. Effect of neutrophil elastase and its inhibitor EPI-hNE4 on transepithelial sodium transport across normal and cystic fibrosis human nasal epithelial cells

    Directory of Open Access Journals (Sweden)

    Clerici Christine

    2010-10-01

    Full Text Available Abstract Background Hyperactivity of the epithelial sodium (Na+ channel (ENaC and increased Na+ absorption by airway epithelial cells leading to airway surface liquid dehydration and impaired mucociliary clearance are thought to play an important role in the pathogenesis of cystic fibrosis (CF pulmonary disease. In airway epithelial cells, ENaC is constitutively activated by endogenous trypsin-like serine proteases such as Channel-Activating Proteases (CAPs. It was recently reported that ENaC activity could also be stimulated by apical treatment with human neutrophil elastase (hNE in a human airway epithelial cell line, suggesting that hNE inhibition could represent a novel therapeutic approach for CF lung disease. However, whether hNE can also activate Na+ reabsorption in primary human nasal epithelial cells (HNEC from control or CF patients is currently unknown. Methods We evaluated by short-circuit current (Isc measurements the effects of hNE and EPI-hNE4, a specific hNE inhibitor, on ENaC activity in primary cultures of HNEC obtained from control (9 and CF (4 patients. Results Neither hNE nor EPI-hNE4 treatments did modify Isc in control and CF HNEC. Incubation with aprotinin, a Kunitz-type serine protease inhibitor that blocks the activity of endogenous CAPs, decreased Isc by 27.6% and 54% in control and CF HNEC, respectively. In control and CF HNEC pretreated with aprotinin, hNE did significantly stimulate Isc, an effect which was blocked by EPI-hNE4. Conclusions These results indicate that hNE does activate ENaC and transepithelial Na+ transport in both normal and CF HNEC, on condition that the activity of endogenous CAPs is first inhibited. The potent inhibitory effect of EPI-hNE4 on hNE-mediated ENaC activation observed in our experiments highlights that the use of EPI-hNE4 could be of interest to reduce ENaC hyperactivity in CF airways.

  7. Fully automated lobe-based airway taper index calculation in a low dose MDCT CF study over 4 time-points

    Science.gov (United States)

    Weinheimer, Oliver; Wielpütz, Mark O.; Konietzke, Philip; Heussel, Claus P.; Kauczor, Hans-Ulrich; Brochhausen, Christoph; Hollemann, David; Savage, Dasha; Galbán, Craig J.; Robinson, Terry E.

    2017-02-01

    Cystic Fibrosis (CF) results in severe bronchiectasis in nearly all cases. Bronchiectasis is a disease where parts of the airways are permanently dilated. The development and the progression of bronchiectasis is not evenly distributed over the entire lungs - rather, individual functional units are affected differently. We developed a fully automated method for the precise calculation of lobe-based airway taper indices. To calculate taper indices, some preparatory algorithms are needed. The airway tree is segmented, skeletonized and transformed to a rooted acyclic graph. This graph is used to label the airways. Then a modified version of the previously validated integral based method (IBM) for airway geometry determination is utilized. The rooted graph, the airway lumen and wall information are then used to calculate the airway taper indices. Using a computer-generated phantom simulating 10 cross sections of airways we present results showing a high accuracy of the modified IBM. The new taper index calculation method was applied to 144 volumetric inspiratory low-dose MDCT scans. The scans were acquired from 36 children with mild CF at 4 time-points (baseline, 3 month, 1 year, 2 years). We found a moderate correlation with the visual lobar Brody bronchiectasis scores by three raters (r2 = 0.36, p < .0001). The taper index has the potential to be a precise imaging biomarker but further improvements are needed. In combination with other imaging biomarkers, taper index calculation can be an important tool for monitoring the progression and the individual treatment of patients with bronchiectasis.

  8. Pharmacogenetics, pharmacogenomics and airway disease

    Directory of Open Access Journals (Sweden)

    Hall Ian P

    2001-11-01

    Full Text Available Abstract The availability of a draft sequence for the human genome will revolutionise research into airway disease. This review deals with two of the most important areas impinging on the treatment of patients: pharmacogenetics and pharmacogenomics. Considerable inter-individual variation exists at the DNA level in targets for medication, and variability in response to treatment may, in part, be determined by this genetic variation. Increased knowledge about the human genome might also permit the identification of novel therapeutic targets by expression profiling at the RNA (genomics or protein (proteomics level. This review describes recent advances in pharmacogenetics and pharmacogenomics with regard to airway disease.

  9. Idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Xaubet, Antoni; Ancochea, Julio; Molina-Molina, María

    2017-02-23

    Idiopathic pulmonary fibrosis is a fibrosing interstitial pneumonia associated with the radiological and/or histological pattern of usual interstitial pneumonia. Its aetiology is unknown, but probably comprises the action of endogenous and exogenous micro-environmental factors in subjects with genetic predisposition. Its diagnosis is based on the presence of characteristic findings of high-resolution computed tomography scans and pulmonary biopsies in absence of interstitial lung diseases of other aetiologies. Its clinical evolution is variable, although the mean survival rate is 2-5 years as of its clinical presentation. Patients with idiopathic pulmonary fibrosis may present complications and comorbidities which modify the disease's clinical course and prognosis. In the mild-moderate disease, the treatment consists of the administration of anti-fibrotic drugs. In severe disease, the best therapeutic option is pulmonary transplantation. In this paper we review the diagnostic and therapeutic aspects of the disease. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  10. Asthma and cystic fibrosis: A tangled web.

    LENUS (Irish Health Repository)

    Kent, Brian D

    2014-03-01

    Successfully diagnosing concomitant asthma in people with cystic fibrosis (CF) is a challenging proposition, and the utility of conventional diagnostic criteria of asthma in CF populations remains uncertain. Nonetheless, the accurate identification of individuals with CF and asthma allows appropriate tailoring of therapy, and should reduce the unnecessary use of asthma medication in broader CF cohorts. In this review, we discuss the diagnostic challenge posed by asthma in CF, both in terms of clinical evaluation, and of interpretation of pulmonary function testing and non-invasive markers of airway inflammation. We also examine how the role of cross-sectional thoracic imaging in CF and asthma can assist in the diagnosis of asthma in these patients. Finally, we critically appraise the evidence base behind the use of asthma medications in CF populations, with a particular focus on the use of inhaled corticosteroids and bronchodilators. As shall be discussed, the gaps in the current literature make further high-quality research in this field imperative. Pediatr Pulmonol. 2014; 49:205-213. © 2014 Wiley Periodicals, Inc.

  11. Functional phenotype of airway myocytes from asthmatic airways

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Ojo, Oluwaseun O.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha

    2013-01-01

    In asthma, the airway smooth muscle (ASM) cell plays a central role in disease pathogenesis through cellular changes which may impact on its microenvironment and alter ASM response and function. The answer to the long debated question of what makes a 'healthy' ASM cell become 'asthmatic' still remai

  12. Functional phenotype of airway myocytes from asthmatic airways

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Ojo, Oluwaseun O.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha

    2013-01-01

    In asthma, the airway smooth muscle (ASM) cell plays a central role in disease pathogenesis through cellular changes which may impact on its microenvironment and alter ASM response and function. The answer to the long debated question of what makes a 'healthy' ASM cell become 'asthmatic' still remai

  13. Noise analysis and single-channel observations of 4 pS chloride channels in human airway epithelia.

    OpenAIRE

    Duszyk, M; French, A S; Man, S F

    1992-01-01

    Apical membranes of human airway epithelial cells have significant chloride permeability, which is reduced in cystic fibrosis (CF), causing abnormal electrochemistry and impaired mucociliary clearance. At least four types of chloride channels have been identified in these cells, but their relative roles in total permeability and CF are unclear. Noise analysis was used to measure the conductance of chloride channels in human nasal epithelial cells. The data indicate that channels with a mean c...

  14. High-dose ibuprofen therapy associated with esophageal ulceration after pneumonectomy in a patient with cystic fibrosis: a case report

    Directory of Open Access Journals (Sweden)

    Anbar Ran D

    2004-09-01

    Full Text Available Abstract Background Lung disease in patients with cystic fibrosis is thought to develop as a result of airway inflammation, infection, and obstruction. Pulmonary therapies for cystic fibrosis that reduce airway inflammation include corticosteroids, rhDNase, antibiotics, and high-dose ibuprofen. Despite evidence that high-dose ibuprofen slows the progression of lung disease in patients with cystic fibrosis, many clinicians have chosen not to use this therapy because of concerns regarding potential side effects, especially gastrointestinal bleeding. However, studies have shown a low incidence of gastrointestinal ulceration and bleeding in patients with cystic fibrosis who have been treated with high-dose ibuprofen. Case presentation The described case illustrates a life-threatening upper gastrointestinal bleed that may have resulted from high-dose ibuprofen therapy in a patient with CF who had undergone a pneumonectomy. Mediastinal shift post-pneumonectomy distorted the patient's esophageal anatomy and may have caused decreased esophageal motility, which led to prolonged contact of the ibuprofen with the esophagus. The concentrated effect of the ibuprofen, as well as its systemic effects, probably contributed to the occurrence of the bleed in this patient. Conclusions This report demonstrates that gastrointestinal tract anatomical abnormalities or dysmotility may be contraindications for therapy with high-dose ibuprofen in patients with cystic fibrosis.

  15. Chest physiotherapy compared to no chest physiotherapy for cystic fibrosis.

    Science.gov (United States)

    Warnock, Louise; Gates, Alison

    2015-12-21

    Chest physiotherapy is widely used in people with cystic fibrosis in order to clear mucus from the airways. This is an updated version of previously published reviews. To determine the effectiveness and acceptability of chest physiotherapy compared to no treatment or spontaneous cough alone to improve mucus clearance in cystic fibrosis. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register which comprises references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Date of the most recent search of the Group's Cystic Fibrosis Trials Register: 02 June 2015. Randomised or quasi-randomised clinical studies in which a form of chest physiotherapy (airway clearance technique) were taken for consideration in people with cystic fibrosis compared with either no physiotherapy treatment or spontaneous cough alone. Both authors independently assessed study eligibility, extracted data and assessed the risk of bias in the included studies. There was heterogeneity in the published outcomes, with variable reporting which meant pooling of the data for meta-analysis was not possible. The searches identified 157 studies, of which eight cross-over studies (data from 96 participants) met the inclusion criteria. There were differences between studies in the way that interventions were delivered, with several of the intervention groups combining more than one treatment modality. One included study looked at autogenic drainage, six considered conventional chest physiotherapy, three considered oscillating positive expiratory pressure, seven considered positive expiratory pressure and one considered high pressure positive expiratory pressure. Of the eight studies, six were single-treatment studies and in two, the treatment intervention was performed over two consecutive days (once daily in one, twice daily in the other). This enormous heterogeneity in the treatment

  16. Prolonged ozone exposure in an allergic airway disease model: Adaptation of airway responsiveness and airway remodeling

    Directory of Open Access Journals (Sweden)

    Park Chang-Soo

    2006-02-01

    Full Text Available Abstract Background Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR. Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease. Methods We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy. Results The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks. Conclusion These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.

  17. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    Full Text Available BACKGROUND: The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population. METHODOLOGY/PRINCIPAL FINDINGS: Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels. CONCLUSION/SIGNIFICANCE: The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of

  18. Distribution of airway narrowing responses across generations and at branching points, assessed in vitro by anatomical optical coherence tomography

    Directory of Open Access Journals (Sweden)

    Eastwood Peter R

    2010-01-01

    Full Text Available Abstract Background Previous histological and imaging studies have shown the presence of variability in the degree of bronchoconstriction of airways sampled at different locations in the lung (i.e., heterogeneity. Heterogeneity can occur at different airway generations and at branching points in the bronchial tree. Whilst heterogeneity has been detected by previous experimental approaches, its spatial relationship either within or between airways is unknown. Methods In this study, distribution of airway narrowing responses across a portion of the porcine bronchial tree was determined in vitro. The portion comprised contiguous airways spanning bronchial generations (#3-11, including the associated side branches. We used a recent optical imaging technique, anatomical optical coherence tomography, to image the bronchial tree in three dimensions. Bronchoconstriction was produced by carbachol administered to either the adventitial or luminal surface of the airway. Luminal cross sectional area was measured before and at different time points after constriction to carbachol and airway narrowing calculated from the percent decrease in luminal cross sectional area. Results When administered to the adventitial surface, the degree of airway narrowing was progressively increased from proximal to distal generations (r = 0.80 to 0.98, P Conclusions Our findings demonstrate that the bronchial tree expresses intrinsic serial heterogeneity, such that narrowing increases from proximal to distal airways, a relationship that is influenced by the route of drug administration but not by structural variations accompanying branching sites.

  19. Incidence of unanticipated difficult airway using an objective airway score versus a standard clinical airway assessment

    DEFF Research Database (Denmark)

    Nørskov, Anders Kehlet; Rosenstock, Charlotte Valentin; Wetterslev, Jørn

    2013-01-01

    the examination and registration of predictors for difficult mask ventilation with a non-specified clinical airway assessment on prediction of difficult mask ventilation.Method/Design: We cluster-randomized 28 Danish departments of anaesthesia to airway assessment either by the SARI or by usual non...... reduction equalling a number needed to treat of 180. Sample size estimation is adjusted for the study design and based on standards for randomization on cluster-level. With an average cluster size of 2,500 patients, 70,000 patients will be enrolled over a 1-year trial period. The database is programmed so...

  20. Disordered microbial communities in asthmatic airways.

    Directory of Open Access Journals (Sweden)

    Markus Hilty

    Full Text Available BACKGROUND: A rich microbial environment in infancy protects against asthma [1], [2] and infections precipitate asthma exacerbations [3]. We compared the airway microbiota at three levels in adult patients with asthma, the related condition of COPD, and controls. We also studied bronchial lavage from asthmatic children and controls. PRINCIPAL FINDINGS: We identified 5,054 16S rRNA bacterial sequences from 43 subjects, detecting >70% of species present. The bronchial tree was not sterile, and contained a mean of 2,000 bacterial genomes per cm(2 surface sampled. Pathogenic Proteobacteria, particularly Haemophilus spp., were much more frequent in bronchi of adult asthmatics or patients with COPD than controls. We found similar highly significant increases in Proteobacteria in asthmatic children. Conversely, Bacteroidetes, particularly Prevotella spp., were more frequent in controls than adult or child asthmatics or COPD patients. SIGNIFICANCE: The results show the bronchial tree to contain a characteristic microbiota, and suggest that this microbiota is disturbed in asthmatic airways.

  1. Role of vitamin A in liver fibrosis

    NARCIS (Netherlands)

    Knook, D.L.; Bosma, A.; Seifert, W.F.

    1995-01-01

    The relationship between vitamin A and liver fibrosis was studied with a CCl4-induced fibrosis model in rats. Depending on the time of administration, vitamin A can potentiate or reduce fibrosis: when present during CCl4-treatment parenchymal cell damage and fibrosis were enhanced, whereas vitamin A

  2. Airway nerves: in vitro electrophysiology.

    Science.gov (United States)

    Fox, Alyson

    2002-06-01

    Recording the activity of single airway sensory fibres or neuronal cell bodies in vitro has allowed detailed characterisation of fibre types and membrane properties. Fibre types can be identified by their conduction velocities and further studied by the application of drugs to their receptive field. C-fibres are sensitive to mechanical stimuli and a range of irritant chemicals (bradykinin, capsaicin, low pH, platelet-activating factor), whereas Adelta-fibres are relatively insensitive to chemical stimuli and appear to correlate to the rapidly adapting receptors identified in airways in vivo. Their site of origin also differs: upper airway C-fibres arise predominantly from the jugular ganglion and Adelta-fibres from the jugular and nodose ganglia. Intracellular recording from cell bodies in the ganglia has revealed a calcium-dependent potassium current common to many putative C-fibre cell bodies. This slow after hyperpolarisation current may be inhibited by stimuli that excite and sensitise C-fibres - this could be an important mechanism underlying the sensitisation of C-fibres in airway irritability.

  3. Nasal continuous positive airway pressure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Lamwers, Stephanie; Tepel, Martin

    2012-01-01

    Obstructive sleep apnoea (OSA) is linked to increased cardiovascular risk. This risk can be reduced by nasal continuous positive airway pressure (nCPAP) treatment. As OSA is associated with an increase of several vasoconstrictive factors, we investigated whether nCPAP influences the digital volume...

  4. Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    Lo, P.; Sporring, J.; Ashraf, H.;

    2010-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. We propose a voxel classification approach for the appearance model, which uses a classifier that is trained...... method is evaluated on 250 low dose computed tomography images from a lung cancer screening trial. Our experiments showed that applying the region growing algorithm on the airway appearance model produces more complete airway segmentations, leading to on average 20% longer trees, and 50% less leakage...

  5. Jaw thrust can deteriorate upper airway patency.

    Science.gov (United States)

    von Ungern-Sternberg, B S; Erb, T O; Frei, F J

    2005-04-01

    Upper airway obstruction is a frequent problem in spontaneously breathing children undergoing anesthesia or sedation procedures. Failure to maintain a patent airway can rapidly result in severe hypoxemia, bradycardia, or asystole, as the oxygen demand of children is high and oxygen reserve is low. We present two children with cervical masses in whom upper airway obstruction exaggerated while the jaw thrust maneuver was applied during induction of anesthesia. This deterioration in airway patency was probably caused by medial displacement of the lateral tumorous tissues which narrowed the pharyngeal airway.

  6. Inflammatory bowel disease and airway diseases

    Science.gov (United States)

    Vutcovici, Maria; Brassard, Paul; Bitton, Alain

    2016-01-01

    Airway diseases are the most commonly described lung manifestations of inflammatory bowel disease (IBD). However, the similarities in disease pathogenesis and the sharing of important environmental risk factors and genetic susceptibility suggest that there is a complex interplay between IBD and airway diseases. Recent evidence of IBD occurrence among patients with airway diseases and the higher than estimated prevalence of subclinical airway injuries among IBD patients support the hypothesis of a two-way association. Future research efforts should be directed toward further exploration of this association, as airway diseases are highly prevalent conditions with a substantial public health impact. PMID:27678355

  7. The Lung Microbiome and Airway Disease.

    Science.gov (United States)

    Lynch, Susan V

    2016-12-01

    A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.

  8. Airway management in anaplastic thyroid carcinoma.

    Science.gov (United States)

    Shaha, Ashok R

    2008-07-01

    In patients who present with advanced anaplastic thyroid cancer, airway management is difficult because of bilateral vocal cord paralysis or tracheal invasion by the tumor. Airway management can be extremely complex in these patients. This is the author's 25 year experience with 30 patients who presented with anaplastic thyroid cancer and acute airway problems. The patients' airway issues developed soon after presentation or a few months after treatment. Ten patients presented with initial symptoms of acute airway distress. All of these patients were treated with tracheostomy or cricothyrotomy. The 10 patients who presented with initial symptoms of acute airway distress died within 4 months. Eight of the remaining 20 patients developed bilateral vocal cord paralysis. Airway management for these patients depended on the extent of distant disease and the family's understanding of the advanced nature of the disease and the palliative efforts. The remaining patients had a palliative and supportive approach. Airway management was the most critical issue in patients who presented with anaplastic thyroid cancer and initial airway distress. Cricothyrotomy was helpful in avoiding acute airway catastrophe. It is important to distinguish between poorly differentiated and anaplastic thyroid cancer and lymphoma for appropriate airway management.

  9. Nutritional Issues in Cystic Fibrosis.

    Science.gov (United States)

    Solomon, Missale; Bozic, Molly; Mascarenhas, Maria R

    2016-03-01

    The importance of maintaining adequate nutrition in patients with cystic fibrosis has been well known for the past 3 decades. Achieving normal growth and maintaining optimal nutrition is associated with improved lung function. Comprehensive and consistent nutritional assessments at regular intervals can identify those at risk of nutritional failure and uncover micronutrient deficiencies contributing to malnutrition. Management of malnutrition in cystic fibrosis should follow a stepwise approach to determine the causes and comorbidities and to develop a nutritional plan. Nutritional management is crucial at every stage in a person's life with cystic fibrosis and remains a cornerstone of management.

  10. Epigenetic regulation in cardiac fibrosis

    Institute of Scientific and Technical Information of China (English)

    Li-Ming; Yu; Yong; Xu

    2015-01-01

    Cardiac fibrosis represents an adoptive response in the heart exposed to various stress cues. While resolution of the fibrogenic response heralds normalization of heart function, persistent fibrogenesis is usually associated with progressive loss of heart function and eventually heart failure. Cardiac fibrosis is regulated by a myriad of factors that converge on the transcription of genes encoding extracellular matrix proteins, a process the epigenetic machinery plays a pivotal role. In this minireview, we summarize recent advances regarding the epigenetic regulation of cardiac fibrosis focusing on the role of histone and DNA modifications and non-coding RNAs.

  11. Nephrogenic systemic fibrosis.

    LENUS (Irish Health Repository)

    Kennedy, C

    2010-11-05

    Nephroaenic systemic fibrosis (NSF) is a potentiallv fatal dermatiological condition found exclusively in patients with advanced renal I failure. There is minimal literature regarding the epidemiology and outcomes of patients with NSF in Ireland. A retrospective chart review was performed for all patients with NSF in Ireland. Ireland\\'s experience with the disease was examined in light of international reports. There have been three cases of NSF in Ireland; an area which serves 1915 dialysis patients--giving a point prevalence among Irish end-stage kidney disease patients of 0.002. There was a large variation in disease severity between the three patients. All three patients had significant exposure to gadolinium chelate. Caution with gadolinium administration must be exercised in patients with advanced renal failure.

  12. A pathogenic role for the integrin CD103 in experimental allergic airways disease.

    Science.gov (United States)

    Fear, Vanessa S; Lai, Siew Ping; Zosky, Graeme R; Perks, Kara L; Gorman, Shelley; Blank, Fabian; von Garnier, Christophe; Stumbles, Philip A; Strickland, Deborah H

    2016-11-01

    The integrin CD103 is the αE chain of integrin αEβ7 that is important in the maintenance of intraepithelial lymphocytes and recruitment of T cells and dendritic cells (DC) to mucosal surfaces. The role of CD103 in intestinal immune homeostasis has been well described, however, its role in allergic airway inflammation is less well understood. In this study, we used an ovalbumin (OVA)-induced, CD103-knockout (KO) BALB/c mouse model of experimental allergic airways disease (EAAD) to investigate the role of CD103 in disease expression, CD4(+) T-cell activation and DC activation and function in airways and lymph nodes. We found reduced airways hyper-responsiveness and eosinophil recruitment to airways after aerosol challenge of CD103 KO compared to wild-type (WT) mice, although CD103 KO mice showed enhanced serum OVA-specific IgE levels. Following aerosol challenge, total numbers of effector and regulatory CD4(+) T-cell subsets were significantly increased in the airways of WT but not CD103 KO mice, as well as a lack of DC recruitment into the airways in the absence of CD103. While total airway DC numbers, and their in vivo allergen capture activity, were essentially normal in steady-state CD103 KO mice, migration of allergen-laden airway DC to draining lymph nodes was disrupted in the absence of CD103 at 24 h after aerosol challenge. These data support a role for CD103 in the pathogenesis of EAAD in BALB/c mice through local control of CD4(+) T cell and DC subset recruitment to, and migration from, the airway mucosa during induction of allergic inflammation.

  13. Profile of cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Mona M. El-Falaki

    2014-09-01

    Full Text Available It was generally believed that Cystic fibrosis (CF is rare among Arabs; however, the few studies available from Egypt and other Arabic countries suggested the presence of many undiagnosed patients. The aim of the present study was to determine the frequency of CF patients out of the referred cases in a single referral hospital in Egypt. A total of 100 patients clinically suspected of having CF were recruited from the CF clinic of the Allergy and Pulmonology Unit, Children’s Hospital, Cairo University, Egypt, throughout a 2 year period. Sweat chloride testing was done for all patients using the Wescor macroduct system for collection of sweat. Quantitative analysis for chloride was then done by the thiocyanate colorimetric method. Patients positive for sweat chloride (⩾60 mmol/L were tested for the ΔF508 mutation using primer specific PCR for cystic fibrosis transmembrane conductance regulator (CFTR gene. Thirty-six patients (36% had a positive sweat chloride test. The main clinical presentations in patients were chronic cough in 32 (88.9%, failure to thrive in 27 (75%, steatorrhea in 24 (66.7%, and hepatobiliary involvement in 5 (13.9%. Positive consanguinity was reported in 50% of CF patients. Thirty-two patients were screened for ΔF508 mutation. Positive ΔF508 mutation was detected in 22 (68.8% patients, 8 (25% were homozygous, 14 (43.8% were heterozygous, and 10 (31.3% tested were negative. CF was diagnosed in more than third of patients suspected of having the disease on clinical grounds. This high frequency of CF among referred patients indicates that a high index of suspicion and an increasing availability of diagnostic tests lead to the identification of a higher number of affected individuals.

  14. Airway remodeling in asthma: what really matters.

    Science.gov (United States)

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  15. IL13 activates autophagy to regulate secretion in airway epithelial cells.

    Science.gov (United States)

    Dickinson, John D; Alevy, Yael; Malvin, Nicole P; Patel, Khushbu K; Gunsten, Sean P; Holtzman, Michael J; Stappenbeck, Thaddeus S; Brody, Steven L

    2016-01-01

    Cytokine modulation of autophagy is increasingly recognized in disease pathogenesis, and current concepts suggest that type 1 cytokines activate autophagy, whereas type 2 cytokines are inhibitory. However, this paradigm derives primarily from studies of immune cells and is poorly characterized in tissue cells, including sentinel epithelial cells that regulate the immune response. In particular, the type 2 cytokine IL13 (interleukin 13) drives the formation of airway goblet cells that secrete excess mucus as a characteristic feature of airway disease, but whether this process is influenced by autophagy was undefined. Here we use a mouse model of airway disease in which IL33 (interleukin 33) stimulation leads to IL13-dependent formation of airway goblet cells as tracked by levels of mucin MUC5AC (mucin 5AC, oligomeric mucus/gel forming), and we show that these cells manifest a block in mucus secretion in autophagy gene Atg16l1-deficient mice compared to wild-type control mice. Similarly, primary-culture human tracheal epithelial cells treated with IL13 to stimulate mucus formation also exhibit a block in MUC5AC secretion in cells depleted of autophagy gene ATG5 (autophagy-related 5) or ATG14 (autophagy-related 14) compared to nondepleted control cells. Our findings indicate that autophagy is essential for airway mucus secretion in a type 2, IL13-dependent immune disease process and thereby provide a novel therapeutic strategy for attenuating airway obstruction in hypersecretory inflammatory diseases such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis lung disease. Taken together, these observations suggest that the regulation of autophagy by Th2 cytokines is cell-context dependent.

  16. Noninvasive clearance of airway secretions.

    Science.gov (United States)

    Hardy, K A; Anderson, B D

    1996-06-01

    Airway clearance techniques are indicated for specific diseases that have known clearance abnormalities (Table 2). Murray and others have commented that such techniques are required only for patients with a daily sputum production of greater than 30 mL. The authors have observed that patients with diseases known to cause clearance abnormalities can have sputum clearance with some techniques, such as positive expiratory pressure, autogenic drainage, and active cycle of breathing techniques, when PDPV has not been effective. Hasani et al has shown that use of the forced exhalatory technique in patients with nonproductive cough still resulted in movement of secretions proximally from all regions of the lung in patients with airway obstruction. It is therefore reasonable to consider airway clearance techniques for any patient who has a disease known to alter mucous clearance, including CF, dyskinetic cilia syndromes, and bronchiectasis from any cause. Patients with atelectasis from mucous plugs and hypersecretory states, such as asthma and chronic bronchitis, patients with pain secondary to surgical procedures, and patients with neuromuscular disease, weak cough, and abnormal patency of the airway may also benefit from the application of airway clearance techniques. Infants and children up to 3 years of age with airway clearance problems need to be treated with PDPV. Manual percussion with hands alone or a flexible face mask or cup and small mechanical vibrator/percussors, such as the ultrasonic devices, can be used. The intrapulmonary percussive ventilator shows growing promise in this area. The high-frequency oscillator is not supplied with vests of appropriate sizes for tiny babies and has not been studied in this group. Young patients with neuromuscular disease may require assisted ventilation and airway oscillations can be applied. CPAP alone has been shown to improve achievable flow rates that will increase air-liquid interactions for patients with these diseases

  17. [Lung physiotherapy in cystic fibrosis].

    Science.gov (United States)

    Gursli, S; Haanaes, O C

    1991-02-28

    This article is intended as a brief practical guide for physicians and physiotherapists concerned with the treatment of cystic fibrosis. Physiotherapeutic techniques for the treatment of chest diseases have been developed and modified as advances have taken place in the medical management of cystic fibrosis. The article describes forced expiratory technique, positive expiratory pressure, postural drainage, autogenic drainage and other techniques. Patients with cystic fibrosis live longer and have a better quality of life than ever before, but progressive deterioration of lung function will always be their most serious problem. Physical activity and chest physiotherapy are essential parts of all treatment regimens for cystic fibrosis. It is important to realize that the physiotherapist is a very important member of the team which includes nurses, physicians-and the patient.

  18. Pulmonary fibrosis associated with nabumetone.

    OpenAIRE

    Morice, A.; Atherton, A.; GLEESON, F; Stewart, S.

    1991-01-01

    A patient is described who developed a rapid onset of pulmonary fibrosis following treatment with a new non-steroidal anti-inflammatory drug, nabumetone. Resolution of symptoms, physical signs and radiographic changes followed drug withdrawal and steroid therapy.

  19. Liver fibrosis in chronic viral hepatitis: An ultrasonographic study

    Institute of Scientific and Technical Information of China (English)

    Rong-Qin Zheng; Qing-Hui Wang; Ming-De Lu; Shi-Bin Xie; Jie Ren; Zhong-Zhen Su; Yin-Ke Cai; Ji-Lu Yao

    2003-01-01

    AIM: To select valuable ultrasonographic predictors for the evaluation of hepatic inflammation and fibrosis degree in chronic hepatitis, and to study the value of ultrasonography in the evaluation of liver fibrosis and compensated liver cirrhosis in comparison with serology and histology.METHODS: Forty-four ultrasonographic variables were analyzed and screened using color Doppler ultrasound system in 225 patients with chronic viral hepatitis and compensated liver cirrhosis. The valuable ultrasonographic predictors were selected on the basis of a comparison with histopathological findings. The value of ultrasonography and serology in the evaluation of liver fibrosis degree and the diagnosis of compensated liver cirrhosis was also studied and compared. Meanwhile, the influencing factors on ultrasonographic diagnosis of compensated liver cirrhosis were also analyzed.RESULTS: By statistical analysis, the maximum velocity of portal vein and the degree of gall-bladder wall smoothness were selected as the valuable predictors for the inflammation grade (G), while liver surface, hepatic parenchymal echo pattern, and the wall thickness of gall-bladder were selected as the valuable predictors for the fibrosis stage (S). Three S-related independent ultrasonographyic predictors and three routine serum fibrosis markers (HA, HPCIII and CIV) were used to discriminate variables for the comparison of ultrasonography with serology. The diagnostic accuracy of ultrasonography in moderate fibrosis was higher than that of serology (P<0.01), while there were no significant differences in the general diagnostic accuracy of fibrosis as well as between mild and severe fibrosis (P<0.05). There were no significant differences between ultrasonography and serology in the diagnosis of compensated liver cirrhosis.However, the diagnostic accuracy of ultrasonography was higher in inactive liver cirrhosis and lower in active cirrhosis than that of serology (both P<0.05). False positive and false

  20. Systems Biology Investigations of Pseudomonas aeruginosa Evolution in Association with Human Airway Infections

    DEFF Research Database (Denmark)

    Pedersen, Søren Damkiær

    Most knowledge about evolutionary adaptation has been gained from experimental evolution studies, in which organisms have been allowed to evolve under simple, well-defined conditions in the laboratory. While these studies have provided novel insight into the fundamental processes of evolutionary...... environments. The model system used for these investigations has been long-term chronic airway infections in Cystic fibrosis (CF) patients caused by the opportunistic pathogen Pseudomonas aeruginosa. Using a systems biology approach, we have monitored the adaptive development of the clinically important P....... aeruginosa DK2 clone lineage during 200,000 generations of evolution in the CF airways from its entrance in the clinic in the 1970’ies until the end of 2010. Genetic analysis showed that the DK2 lineage between 1973 and 2007 accumulated mutations in a near-linear manner with an overall genomic signature...

  1. Vest Chest Physiotherapy Airway Clearance is Associated with Nitric Oxide Metabolism

    Directory of Open Access Journals (Sweden)

    Joseph H. Sisson

    2013-01-01

    Full Text Available Background. Vest chest physiotherapy (VCPT enhances airway clearance in cystic fibrosis (CF by an unknown mechanism. Because cilia are sensitive to nitric oxide (NO, we hypothesized that VCPT enhances clearance by changing NO metabolism. Methods. Both normal subjects and stable CF subjects had pre- and post-VCPT airway clearance assessed using nasal saccharin transit time (NSTT followed by a collection of exhaled breath condensate (EBC analyzed for NO metabolites (. Results. VCPT shorted NSTT by 35% in normal and stable CF subjects with no difference observed between the groups. EBC concentrations decreased 68% in control subjects after VCPT (before = 115 ± 32 μM versus after = 37 ± 17 μM; . CF subjects had a trend toward lower EBC . Conclusion. We found an association between VCPT-stimulated clearance and exhaled levels in human subjects. We speculate that VCPT stimulates clearance via increased NO metabolism.

  2. RAGE: a new frontier in chronic airways disease.

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter A B; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-11-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand-RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions.

  3. RAGE: a new frontier in chronic airways disease

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter AB; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand–RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions. PMID:22506507

  4. Fibrosis quística

    OpenAIRE

    Arturo Solís-Moya; José Pablo Gutiérrez-S

    2003-01-01

    Enfermedades Raras en Asturias. Dirección General de Salud Pública y Participación. Informes breves 09 Cystic fibrosis is a multisystem disease generates the formation and accumulation of viscous mucus that affects everything lungs, digestive system including liver and pancreas. Formerly known as mucoviscidosis or cystic fibrosis pancreas. Este proyecto ha sido financiado a cargo de los fondos para la cohesión territorial 2010 del Ministerio de Sanidad y Política Socia...

  5. Fibrosis quística

    OpenAIRE

    Arturo Solís-Moya; José Pablo Gutiérrez-S

    2014-01-01

    Enfermedades Raras en Asturias. Dirección General de Salud Pública y Participación. Informes breves 09 Cystic fibrosis is a multisystem disease generates the formation and accumulation of viscous mucus that affects everything lungs, digestive system including liver and pancreas. Formerly known as mucoviscidosis or cystic fibrosis pancreas. Este proyecto ha sido financiado a cargo de los fondos para la cohesión territorial 2010 del Ministerio de Sanidad y Política Socia...

  6. [Manual airway clearance techniques in adults and adolescents: What level of evidence?

    Science.gov (United States)

    Cabillic, Michel; Gouilly, Pascal; Reychler, Gregory

    2016-04-13

    The aim of this systematic literature review was to grade the levels of evidence of the most widely used manual airway clearance techniques. A literature search was conducted over the period 1995-2014 from the Medline, PEDro, ScienceDirect, Cochrane Library, REEDOC and kinedoc databases, with the following keywords: "postural drainage", "manual vibrations", "manual chest percussion", "directed cough", "increased expiratory flow", "ELTGOL", "autogenic drainage" and "active cycle of breathing technique". Two-hundred and fifty-six articles were identified. After removing duplicates and reading the titles and abstracts, 63 articles were selected, including 9 systematic reviews. This work highlights the lack of useful scientific data and the difficulty of determining levels of evidence for manual airway clearance techniques. Techniques were assessed principally with patients with sputum production (cystic fibrosis, DDB, COPD, etc.). It also shows the limited pertinence of outcome measures to quantify congestion and hence the efficacy of airway clearance techniques. The 1994 consensus conference summary table classifying airway clearance techniques according to physical mechanism provides an interesting tool for assessment, grouping together techniques having identical mechanisms of action. From the findings of the present systematic review, it appears that only ELTGOL, autogenic drainage and ACBT present levels of evidence "B". All other techniques have lower levels of evidence. II. Copyright © 2016. Published by Elsevier Masson SAS.

  7. Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

    Directory of Open Access Journals (Sweden)

    Philipp Gierok

    2016-11-01

    Full Text Available The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS and (HPLC-MS. To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model.

  8. DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma

    Science.gov (United States)

    Habibovic, Aida; Hristova, Milena; Heppner, David E.; Danyal, Karamatullah; Ather, Jennifer L.; Janssen-Heininger, Yvonne M.W.; Irvin, Charles G.; Poynter, Matthew E.; Lundblad, Lennart K.; Dixon, Anne E.; Geiszt, Miklos

    2016-01-01

    Chronic inflammation with mucous metaplasia and airway remodeling are hallmarks of allergic asthma, and these outcomes have been associated with enhanced expression and activation of EGFR signaling. Here, we demonstrate enhanced expression of EGFR ligands such as amphiregulin as well as constitutive EGFR activation in cultured nasal epithelial cells from asthmatic subjects compared with nonasthmatic controls and in lung tissues of mice during house dust mite–induced (HDM-induced) allergic inflammation. EGFR activation was associated with cysteine oxidation within EGFR and the nonreceptor tyrosine kinase Src, and both amphiregulin production and oxidative EGFR activation were diminished by pharmacologic or genetic inhibition of the epithelial NADPH oxidase dual oxidase 1 (DUOX1). DUOX1 deficiency also attenuated several EGFR-dependent features of HDM-induced allergic airway inflammation, including neutrophilic inflammation, type 2 cytokine production (IL-33, IL-13), mucous metaplasia, subepithelial fibrosis, and central airway resistance. Moreover, targeted inhibition of airway DUOX1 in mice with previously established HDM-induced allergic inflammation, by intratracheal administration of DUOX1-targeted siRNA or pharmacological NADPH oxidase inhibitors, reversed most of these outcomes. Our findings indicate an important function for DUOX1 in allergic inflammation related to persistent EGFR activation and suggest that DUOX1 targeting may represent an attractive strategy in asthma management.

  9. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jarrod S Johnson

    2011-05-01

    Full Text Available Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR, we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus

  10. Problem behaviours, caregiver mental health symptoms and health service use in Australian children with cystic fibrosis: a prospective cohort study

    OpenAIRE

    Sheehan, Jane

    2017-01-01

    Background: Cystic fibrosis (CF) is an inherited, recessive condition, primarily affecting the respiratory and digestive systems. The current median life expectancy for adults with CF is approximately 37 years. Children with CF endure an intensive daily treatment regimen including dietary requirements, pancreatic enzyme replacements, vitamin supplementation, regular antibiotics, and airway clearance, in order to maintain their health status and reduce CF symptoms. The treatment regimen is ...

  11. Cytokines in human lung fibrosis.

    Science.gov (United States)

    Martinet, Y; Menard, O; Vaillant, P; Vignaud, J M; Martinet, N

    1996-01-01

    Fibrosis is a pathological process characterized by the replacement of normal tissue by mesenchymal cells and the extracellular matrix produced by these cells. The sequence of events leading to fibrosis of an organ involves the subsequent processes of injury with inflammation and disruption of the normal tissue architecture, followed by tissue repair with accumulation of mesenchymal cells in the area of derangement. The same sequence of events occurs in wound healing with normal granulation tissue and scar formation, but, while normal scar formation is very localized and transient, in contrast, in fibrosis, the repair process is exaggerated and usually widespread and can be chronic. Inflammatory cells (mainly mononuclear phagocytes), platelets, endothelial cells, and type II pneumocytes play a direct and indirect role in tissue injury and repair. The evaluation of three human fibrotic lung diseases, two diffuse [idiopathic pulmonary fibrosis (IPF), and the adult respiratory distress syndrome (ARDS)], and one focal (tumor stroma in lung cancer), has shown that several cytokines participate to the local injury and inflammatory reaction [interleukin-1 (IL-1), interleukin-8 (IL-8), monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-alpha)], while other cytokines are involved in tissue repair and fibrosis [platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-beta), and basic-fibroblast growth factor (b-FGF)]. A better understanding of the cytokines and cytokine networks involved in lung fibrosis leads to the possibility of new therapeutic approaches.

  12. Therapeutic targets in liver fibrosis.

    Science.gov (United States)

    Fallowfield, Jonathan A

    2011-05-01

    Detailed analysis of the cellular and molecular mechanisms that mediate liver fibrosis has provided a framework for therapeutic approaches to prevent, slow down, or even reverse fibrosis and cirrhosis. A pivotal event in the development of liver fibrosis is the activation of quiescent hepatic stellate cells (HSCs) to scar-forming myofibroblast-like cells. Consequently, HSCs and the factors that regulate HSC activation, proliferation, and function represent important antifibrotic targets. Drugs currently licensed in the US and Europe for other indications target HSC-related components of the fibrotic cascade. Their deployment in the near future looks likely. Ultimately, treatment strategies for liver fibrosis may vary on an individual basis according to etiology, risk of fibrosis progression, and the prevailing pathogenic milieu, meaning that a multiagent approach could be required. The field continues to develop rapidly and starts to identify exciting potential targets in proof-of-concept preclinical studies. Despite this, no antifibrotics are currently licensed for use in humans. With epidemiological predictions for the future prevalence of viral, obesity-related, and alcohol-related cirrhosis painting an increasingly gloomy picture, and a shortfall in donors for liver transplantation, the clinical urgency for new therapies is high. There is growing interest from stakeholders keen to exploit the market potential for antifibrotics. However, the design of future trials for agents in the developmental pipeline will depend on strategies that enable equal patient stratification, techniques to reliably monitor changes in fibrosis over time, and the definition of clinically meaningful end points.

  13. Tuberculosis reinfection in a pregnant cystic fibrosis patient

    Directory of Open Access Journals (Sweden)

    Asween Marco

    2015-01-01

    Full Text Available Cystic Fibrosis (CF is a multisystem disease predominantly affecting the airways and predisposing patients to recurrent infections with various multidrug resistant organisms. Mycobacterium tuberculosis (MTB infection is rarely seen, but considered a potential pathogen in CF patients. We report a 26 year old pregnant CF patient on Ivacaftor who was admitted with symptoms suggestive of tuberculosis. Three years prior to the current admission, she had completed four drug anti- MTB therapy for pulmonary tuberculosis and was considered cured as her sputum cultures after six months of treatment were negative. Genotype analysis revealed the current MTB strain to be different from the strain causing the previous infection. After receiving first line anti-tuberculous regimen for nine months, the patient's condition markedly improved culminating in an uneventful pregnancy and delivery. To our knowledge, this is the only reported case of reinfection tuberculosis in a CF patient.

  14. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Rancourt, Raymond C., E-mail: raymond.rancourt@ucdenver.edu; Veress, Livia A., E-mail: livia.veress@ucdenver.edu; Ahmad, Aftab, E-mail: aftab.ahmad@ucdenver.edu; Hendry-Hofer, Tara B., E-mail: tara.hendry-hofer@ucdenver.edu; Rioux, Jacqueline S., E-mail: jacqueline.rioux@ucdenver.edu; Garlick, Rhonda B., E-mail: rhonda.garlick@ucdenver.edu; White, Carl W., E-mail: carl.w.white@ucdenver.edu

    2013-10-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O{sub 2} saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI

  15. Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient.

    Directory of Open Access Journals (Sweden)

    Matthew L Workentine

    Full Text Available The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lower airways of patients with cystic fibrosis. Throughout the course of infection this organism undergoes adaptations that contribute to its long-term persistence in the airways. While P. aeruginosa diversity has been documented, it is less clear to what extent within-patient diversity contributes to the overall population structure as most studies have been limited to the analysis of only a few isolates per patient per time point. To examine P. aeruginosa population structure in more detail we collected multiple isolates from individual sputum samples of a patient chronically colonized with P. aeruginosa. This strain collection, comprised of 169 clonal isolates and representing three pulmonary exacerbations as well as clinically stable periods, was assayed for a wide selection of phenotypes. These phenotypes included colony morphology, motility, quorum sensing, protease activity, auxotrophy, siderophore levels, antibiotic resistance, and growth profiles. Each phenotype displayed significant variation even within isolates of the same colony morphotype from the same sample. Isolates demonstrated a large degree of individuality across phenotypes, despite being part of a single clonal lineage, suggesting that the P. aeruginosa population in the cystic fibrosis airways is being significantly under-sampled.

  16. Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient.

    Science.gov (United States)

    Workentine, Matthew L; Sibley, Christopher D; Glezerson, Bryan; Purighalla, Swathi; Norgaard-Gron, Jens C; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2013-01-01

    The opportunistic pathogen Pseudomonas aeruginosa chronically infects the lower airways of patients with cystic fibrosis. Throughout the course of infection this organism undergoes adaptations that contribute to its long-term persistence in the airways. While P. aeruginosa diversity has been documented, it is less clear to what extent within-patient diversity contributes to the overall population structure as most studies have been limited to the analysis of only a few isolates per patient per time point. To examine P. aeruginosa population structure in more detail we collected multiple isolates from individual sputum samples of a patient chronically colonized with P. aeruginosa. This strain collection, comprised of 169 clonal isolates and representing three pulmonary exacerbations as well as clinically stable periods, was assayed for a wide selection of phenotypes. These phenotypes included colony morphology, motility, quorum sensing, protease activity, auxotrophy, siderophore levels, antibiotic resistance, and growth profiles. Each phenotype displayed significant variation even within isolates of the same colony morphotype from the same sample. Isolates demonstrated a large degree of individuality across phenotypes, despite being part of a single clonal lineage, suggesting that the P. aeruginosa population in the cystic fibrosis airways is being significantly under-sampled.

  17. Idiopathic pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Noble Paul W

    2008-03-01

    Full Text Available Abstract Idiopathic pulmonary fibrosis (IPF is a non-neoplastic pulmonary disease that is characterized by the formation of scar tissue within the lungs in the absence of any known provocation. IPF is a rare disease which affects approximately 5 million persons worldwide. The prevalence is estimated to be slightly greater in men (20.2/100,000 than in women (13.2/100,000. The mean age at presentation is 66 years. IPF initially manifests with symptoms of exercise-induced breathless and dry coughing. Auscultation of the lungs reveals early inspiratory crackles, predominantly located in the lower posterior lung zones upon physical exam. Clubbing is found in approximately 50% of IPF patients. Cor pulmonale develops in association with end-stage disease. In that case, classic signs of right heart failure may be present. Etiology remains incompletely understood. Some environmental factors may be associated with IPF (cigarette smoking, exposure to silica and livestock. IPF is recognized on high-resolution computed tomography by peripheral, subpleural lower lobe reticular opacities in association with subpleural honeycomb changes. IPF is associated with a pathological lesion known as usual interstitial pneumonia (UIP. The UIP pattern consists of normal lung alternating with patches of dense fibrosis, taking the form of collagen sheets. The diagnosis of IPF requires correlation of the clinical setting with radiographic images and a lung biopsy. In the absence of lung biopsy, the diagnosis of IPF can be made by defined clinical criteria that were published in guidelines endorsed by several professional societies. Differential diagnosis includes other idiopathic interstitial pneumonia, connective tissue diseases (systemic sclerosis, polymyositis, rheumatoid arthritis, forme fruste of autoimmune disorders, chronic hypersensitivity pneumonitis and other environmental (sometimes occupational exposures. IPF is typically progressive and leads to significant

  18. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    Science.gov (United States)

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction.

  19. Atomic Structure of the Cystic Fibrosis Transmembrane Conductance Regulator.

    Science.gov (United States)

    Zhang, Zhe; Chen, Jue

    2016-12-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel evolved from the ATP-binding cassette (ABC) transporter family. In this study, we determined the structure of zebrafish CFTR in the absence of ATP by electron cryo-microscopy to 3.7 Å resolution. Human and zebrafish CFTR share 55% sequence identity, and 42 of the 46 cystic-fibrosis-causing missense mutational sites are identical. In CFTR, we observe a large anion conduction pathway lined by numerous positively charged residues. A single gate near the extracellular surface closes the channel. The regulatory domain, dephosphorylated, is located in the intracellular opening between the two nucleotide-binding domains (NBDs), preventing NBD dimerization and channel opening. The structure also reveals why many cystic-fibrosis-causing mutations would lead to defects either in folding, ion conduction, or gating and suggests new avenues for therapeutic intervention.

  20. [Nephrogenic systemic fibrosis].

    Science.gov (United States)

    Artunc, F; Schanz, S; Metze, D; Heyne, N

    2008-01-01

    Nephrogenic systemic fibrosis (NSF) is a novel disease entity, increasingly diagnosed over the last years in patients with renal functional impairment and chronic kidney disease. Recently, gadolinium-containing MR contrast agents have been causally associated with the development NSF. Herein, we present the case of a dialysis-dependent young patient with systemic lupus erythematodes, who developed disabling cutaneous sclerosis of extremities, abdomen and mammae. Clinical and laboratory investigations revealed no signs of activity of the underlying disease. Histopathological examination of a skin biopsy was consistent with NSF showing profound thickening of tissue septae with mucine deposition and slight fibroblast proliferation without inflammatory reaction. Analysis of the patient's medical history revealed that she had undergone repeated contrast enhanced MR scans, including MR angiographies with high doses of gadopentetate. UV phototherapy was little effective, and not until kidney transplantation two years later with good allograft function, improvement of clinical symptoms was observed. Discussion of this case summarizes the current knowledge of clinical features and pathogeneses of NSF, including the role of gadolinium-containing contrast agents. Evolving clinical implications are summarized in the current Tübingen University Hospital guideline for the use of contrast-enhanced MR scans in patients with impaired renal function.

  1. Airway injury during emergency transcutaneous airway access: a comparison at cricothyroid and tracheal sites.

    LENUS (Irish Health Repository)

    Salah, Nazar

    2009-12-01

    Oxygenation via the cricothyroid membrane (CTM) may be required in emergencies, but inadvertent tracheal cannulation may occur. In this study, we compared airway injury between the tracheal and CTM sites using different techniques for airway access.

  2. Emergency surgical airway management in Denmark

    DEFF Research Database (Denmark)

    Rosenstock, C V; Nørskov, A K; Wetterslev, J

    2016-01-01

    for difficult airway management. RESULTS: In the DAD cohort 27 out of 452 461 patients had an ESA representing an incidence of 0.06 events per thousand (95% CI; 0.04 to 0.08). A total of 12 149/452 461 patients underwent Ear-Nose and Throat (ENT) surgery, giving an ESA incidence among ENT patients of 1.6 events...... of which three failed. Reviewers evaluated airway management as satisfactory in 10/27 patients. CONCLUSIONS: The incidence of ESA in the DAD cohort was 0.06 events per thousand. Among ENT patients, the ESA Incidence was 1.6 events per thousand. Airway management was evaluated as satisfactory for 10......BACKGROUND: The emergency surgical airway (ESA) is the final option in difficult airway management. We identified ESA procedures registered in the Danish Anaesthesia Database (DAD) and described the performed airway management. METHODS: We extracted a cohort of 452 461 adult patients undergoing...

  3. Multiscale Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    2009-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. The method uses a voxel classification based appearance model, which involves the use of a classifier that is trai......This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. The method uses a voxel classification based appearance model, which involves the use of a classifier...... is evaluated within EXACT’09 on a diverse set of CT scans. Results show a favorable combination of a relatively large portion of the tree detected correctly with very few false positives....

  4. What Are the Signs and Symptoms of Cystic Fibrosis?

    Science.gov (United States)

    ... Twitter. What Are the Signs and Symptoms of Cystic Fibrosis? The signs and symptoms of cystic fibrosis (CF) ... respiratory, digestive, or reproductive systems of the body. Cystic Fibrosis Figure A shows the organs that cystic fibrosis ...

  5. Airway changes in children with mucopolysaccharidoses

    Energy Technology Data Exchange (ETDEWEB)

    Shih, S.L.; Sheu, C.Y. [Mackay Memorial Hospital, Taipei (China). Dept. of Radiology; Lee, Y.J.; Lin, S.P. [Mackay Memorial Hospital, Taipei (China). Dept. of Pediatrics; Blickman, J.G. [Univ. Medical Center, Nijmegen (Netherlands). Dept. of Radiology

    2002-04-01

    Objective: To assess the CT findings of the airway in children with mucopolysaccharidoses (MPS). Material and Methods: The study included 13 patients (9 boys, 4 girls; age range 2-17 years; mean age 9.2 years) with MPS: 6 with Hunter syndrome, 3 with Maroteaux-Lamy syndrome, 2 with Sanfilippo syndrome, 1 with Hurler/Scheie syndrome and 1 with Morquio syndrome. CT of the airways was done in the axial section with 3-mm collimation from the oropharynx at the level of C3 to the base of the lung. The shape of the vocal cords and trachea at the level of T1 was evaluated. The tracheal surface area (TSA) at the level of T1 was measured both in patients and in age-matched subjects. Results: CT showed an abnormality of the vocal cords in 7 of the 13 patients. Six patients had an abnormal shape and 7 had an inhomogeneous density. The abnormalities included elliptical (5 of 6) and star-shaped (1 of 6) cords. Eight of 13 tracheas were also abnormal, either U-shaped (6 of 8) or worm-shaped (2 of 8). The TSA was significantly smaller in patients (79.6{+-}28.9 mm{sup 2}) than in control subjects (138.1{+-}50.1 mm{sup 2}). The TSA of those 9 years was 61.4{+-}15.2 mm{sup 2} as compared with 99.9{+-}23.5 mm{sup 2} for the control group. The TSA of patients 11 years was 107.1{+-}25.3 mm{sup 2} as compared with 187.6{+-}32.0 mm{sup 2} for the control group. Conclusion: Significant changes in the shape of the vocal cords and trachea in patients with MPS were found. The most common abnormal configuration of trachea was the U-shape. The TSA was smaller in patients with MPS than in controls. The airway changes may be due to abnormal submucosal storage of substances such as keratan or dermatan sulfate.

  6. SYVN1, NEDD8, and FBXO2 Proteins Regulate ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Ubiquitin-mediated Proteasomal Degradation.

    Science.gov (United States)

    Ramachandran, Shyam; Osterhaus, Samantha R; Parekh, Kalpaj R; Jacobi, Ashley M; Behlke, Mark A; McCray, Paul B

    2016-12-02

    We previously reported that delivery of a microRNA-138 mimic or siRNA against SIN3A to cultured cystic fibrosis (ΔF508/ΔF508) airway epithelia partially restored ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR)-mediated cAMP-stimulated Cl(-) conductance. We hypothesized that dissecting this microRNA-138/SIN3A-regulated gene network would identify individual proteins contributing to the rescue of ΔF508-CFTR function. Among the genes in the network, we rigorously validated candidates using functional CFTR maturation and electrolyte transport assays in polarized airway epithelia. We found that depletion of the ubiquitin ligase SYVN1, the ubiquitin/proteasome system regulator NEDD8, or the F-box protein FBXO2 partially restored ΔF508-CFTR-mediated Cl(-) transport in primary cultures of human cystic fibrosis airway epithelia. Moreover, knockdown of SYVN1, NEDD8, or FBXO2 in combination with corrector compound 18 further potentiated rescue of ΔF508-CFTR-mediated Cl(-) conductance. This study provides new knowledge of the CFTR biosynthetic pathway. It suggests that SYVN1 and FBXO2 represent two distinct multiprotein complexes that may degrade ΔF508-CFTR in airway epithelia and identifies a new role for NEDD8 in regulating ΔF508-CFTR ubiquitination.

  7. Resolution of cell-mediated airways diseases

    Science.gov (United States)

    2010-01-01

    "Inflammation resolution" has of late become a topical research area. Activation of resolution phase mechanisms, involving select post-transcriptional regulons, transcription factors, 'autacoids', and cell phenotypes, is now considered to resolve inflammatory diseases. Critical to this discourse on resolution is the elimination of inflammatory cells through apoptosis and phagocytosis. For major inflammatory diseases such as asthma and COPD we propose an alternative path to apoptosis for cell elimination. We argue that transepithelial migration of airway wall leukocytes, followed by mucociliary clearance, efficiently and non-injuriously eliminates pro-inflammatory cells from diseased airway tissues. First, it seems clear that numerous infiltrated granulocytes and lymphocytes can be speedily transmitted into the airway lumen without harming the epithelial barrier. Then there are a wide range of 'unexpected' findings demonstrating that clinical improvement of asthma and COPD is not only associated with decreasing numbers of airway wall inflammatory cells but also with increasing numbers of these cells in the airway lumen. Finally, effects of inhibition of transepithelial migration support the present hypothesis. Airway inflammatory processes have thus been much aggravated when transepithelial exit of leukocytes has been inhibited. In conclusion, the present hypothesis highlights risks involved in drug-induced inhibition of transepithelial migration of airway wall leukocytes. It helps interpretation of common airway lumen data, and suggests approaches to treat cell-mediated airway inflammation. PMID:20540713

  8. AIRWAY VISUALIZATION: EYES SEE WHAT MIND KNOWS.

    Science.gov (United States)

    Sorbello, Massimiliano; Frova, Giulio; Zdravković, Ivana

    2016-03-01

    Airway management is basic for anesthesia practice, and sometimes it can represent a really dramatic scenario for both the patient and the physicians. Laryngoscopy has been the gold standard of airway visualization for more than 60 years, showing its limitations and failure rates with time. New technology has made available an opportunity to move the physician's eye inside patient airways thanks to video laryngoscopy and video assisted airway management technique. Undoubtedly, we have entered a new era of high resolution airway visualization and different approach in airway instrumentation. Nevertheless, each new technology needs time to be tested and considered reliable, and pitfalls and limitations may come out with careful and long lasting analysis, so it is probably not the right time yet to promote video assisted approach as a new gold standard for airway visualization, despite the fact that it certainly offers some new prospects. In any case, whatever the visualization approach, no patient dies because of missed airway visualization or failed intubation, but due to failed ventilation, which remains without doubt the gold standard of any patient safety goal and airway management technique.

  9. Anatomic Optical Coherence Tomography of Upper Airways

    Science.gov (United States)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  10. Airway Tree Extraction with Locally Optimal Paths

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Pedersen, Jesper Johannes Holst

    2009-01-01

    This paper proposes a method to extract the airway tree from CT images by continually extending the tree with locally optimal paths. This is in contrast to commonly used region growing based approaches that only search the space of the immediate neighbors. The result is a much more robust method...... for tree extraction that can overcome local occlusions. The cost function for obtaining the optimal paths takes into account of an airway probability map as well as measures of airway shape and orientation derived from multi-scale Hessian eigen analysis on the airway probability. Significant improvements...

  11. Method for 3D Airway Topology Extraction

    Directory of Open Access Journals (Sweden)

    Roman Grothausmann

    2015-01-01

    Full Text Available In lungs the number of conducting airway generations as well as bifurcation patterns varies across species and shows specific characteristics relating to illnesses or gene variations. A method to characterize the topology of the mouse airway tree using scanning laser optical tomography (SLOT tomograms is presented in this paper. It is used to test discrimination between two types of mice based on detected differences in their conducting airway pattern. Based on segmentations of the airways in these tomograms, the main spanning tree of the volume skeleton is computed. The resulting graph structure is used to distinguish between wild type and surfactant protein (SP-D deficient knock-out mice.

  12. Cholinergic Regulation of Airway Inflammation and Remodelling

    Directory of Open Access Journals (Sweden)

    Saeed Kolahian

    2012-01-01

    Full Text Available Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.

  13. Ultrasonography in the management of the airway

    DEFF Research Database (Denmark)

    Kristensen, M S

    2011-01-01

    In this study, it is described how to use ultrasonography (US) for real-time imaging of the airway from the mouth, over pharynx, larynx, and trachea to the peripheral alveoli, and how to use this in airway management. US has several advantages for imaging of the airway - it is safe, quick...... or the esophagus by placing the ultrasound probe transversely on the neck at the level of the suprasternal notch during intubation, thus confirming intubation without the need for ventilation or circulation. US can be applied before anesthesia induction and diagnose several conditions that affect airway management...

  14. Pim1 kinase protects airway epithelial cells from cigarette smoke-induced damage and airway inflammation

    NARCIS (Netherlands)

    de Vries, M.; Heijink, Hilde; Gras, R.; den Boef, L. E.; Reinders-Luinge, M.; Pouwels, S. D.; Hylkema, Machteld; van der Toorn, Marco; Brouwer, U.; van Oosterhout, A. J. M.; Nawijn, M. C.

    2014-01-01

    Exposure to cigarette smoke (CS) is the main risk factor for developing chronic obstructive pulmonary disease and can induce airway epithelial cell damage, innate immune responses, and airway inflammation. We hypothesized that cell survival factors might decrease the sensitivity of airway epithelial

  15. Airway smooth muscle dynamics : a common pathway of airway obstruction in asthma

    NARCIS (Netherlands)

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-01-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series o

  16. Regulation of epithelium-specific Ets-like factors ESE-1 and ESE-3 in airway epithelial cells:potential roles in airway inflammation

    Institute of Scientific and Technical Information of China (English)

    Jing Wu; Martin Post; A Keith Tanswell; Jim Hu; Rongqi Duan; Huibi Cao; Deborah Field; Catherine M Newnham; David R Koehler; Noe Zamel; Melanie A Pritchard; Paul Hertzog

    2008-01-01

    Airway inflammation is the hallmark of many respiratory disorders,such as asthma and cystic fibrosis.Changes in airway gene expression triggered by inflammation play a key role in the pathogenesis of these diseases.Genetic linkage studies suggest that ESE-2 and ESE-3,which encode epithelium-specific Ets-domain-containing transcription factors,are candidate asthma susceptibility genes.We report here that the expression of another member of the Ets family transcription factors ESE-1,as well as ESE-3,is upregulated by the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-a (TNF-a) in bronchial epithelial cell lines.Treatment of these cells with IL-1β and TNF-a resulted in a dramatic increase in mRNA expression for both ESE-1 and ESE-3.We demonstrate that the induced expression is mediated by activation of the transcription factor NF-kB.We have characterized the ESE-1 and ESE-3 promoters and have identified the NF-kB binding sequences that are required for the cytokine-induced expression.In addition,we also demonstrate that ESE-1 upregulates ESE-3 expression and downregulates its own induction by cytokines.Finally,we have shown that in Elf3 (homologous to human ESE-1) knockout mice,the expression of the inflammatory cytokine interleukin-6 (IL-6) is downregulated.Our findings suggest that ESE-1 and ESE-3 play an important role in airway inflammation.

  17. Detection of serum markers and pulmonary fibrosis indexes in COPD rat model intervened by Fagopyrum dibotrys extract

    Institute of Scientific and Technical Information of China (English)

    Wan-Li Fan

    2015-01-01

    Objective:To study the effect ofFagopyrum dibotrys extract on serum markers and pulmonary fibrosis indexes in COPD rat model.Methods: Adult male SD rats were selected, COPD models were made by smoking method andFagopyrum dibotrys extract was given for treatment. After treatment, macroeconomic indicators and molecular markers of pulmonary fibrosis as well as serum inflammation related molecules were detected.Results:(1) pulmonary fibrosis: Compared with the control group, airway resistance, intrathoracic pressure as well as Col I, Col III, TGFβ and Smad3 contents of the model group increased, and dynamic lung compliance as well as AQP1 and AQP5 contents decreased; compared with the model group, airway resistance, intrathoracic pressure as well as Col I, Col III, TGFβ and Smad3 contents of the treatment group decreased, and dynamic lung compliance as well as AQP1 and AQP5 contents increased; (2) serum indicators: Compared with the control group, serum INF-γ, CXCR3, IL-17, PCT and LTB4 contents of model group significantly increased; compared with the model group, serum INF-γ, CXCR3, IL-17, PCT and LTB4 contents of the treatment group significantly decreased.Conclusion:Fagopyrum dibotrys extract intervention can improve pulmonary fibrosis and relieve the degrees of inflammation; it is an ideal drug for the treatment of COPD.

  18. Early treatment of chlorine-induced airway hyperresponsiveness and inflammation with corticosteroids

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Sofia, E-mail: sofia.jonasson@foi.se [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Wigenstam, Elisabeth [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden); Koch, Bo [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Bucht, Anders [Swedish Defence Research Agency, Division of CBRN Defence and Security, Umeå (Sweden); Department of Public Health and Clinical Medicine, Unit of Respiratory Medicine, Umeå University, Umeå (Sweden)

    2013-09-01

    Chlorine (Cl{sub 2}) is an industrial gas that is highly toxic and irritating when inhaled causing tissue damage and an acute inflammatory response in the airways followed by a long-term airway dysfunction. The aim of this study was to evaluate whether early anti-inflammatory treatment can protect against the delayed symptoms in Cl{sub 2}-exposed mice. BALB/c mice were exposed by nose-only inhalation using 200 ppm Cl{sub 2} during 15 min. Assessment of airway hyperresponsiveness (AHR), inflammatory cell counts in bronchoalveolar lavage, occurrence of lung edema and lung fibrosis were analyzed 24 h or 14 days post-exposure. A single dose of the corticosteroid dexamethasone (10 or 100 mg/kg) was administered intraperitoneally 1, 3, 6, or 12 h following Cl{sub 2} exposure. High-dose of dexamethasone reduced the acute inflammation if administered within 6 h after exposure but treated animals still displayed a significant lung injury. The effect of dexamethasone administered within 1 h was dose-dependent; high-dose significantly reduced acute airway inflammation (100 mg/kg) but not treatment with the relatively low-dose (10 mg/kg). Both doses reduced AHR 14 days later, while lung fibrosis measured as collagen deposition was not significantly reduced. The results point out that the acute inflammation in the lungs due to Cl{sub 2} exposure only partly is associated with the long-term AHR. We hypothesize that additional pathogenic mechanisms apart from the inflammatory reactions contribute to the development of long-term airway dysfunction. By using this mouse model, we have validated early administration of corticosteroids in terms of efficacy to prevent acute lung injury and delayed symptoms induced by Cl{sub 2} exposure. - Highlights: • Inhalation of Cl{sub 2} may lead to a long-standing airway hyperresponsiveness. • The symptoms in Cl{sub 2}-exposed mice are similar to those described for RADS in humans. • Corticosteroids prevent delayed symptoms such as AHR in

  19. RESEARCH THE DEPOSITION NANO- AND SUBMICRON PARTICLES OF TOBACCO SMOKE ON AIRWAY

    Directory of Open Access Journals (Sweden)

    V. I. Timoshenko

    2014-01-01

    Full Text Available The features of deposition of highly dispersed particles of smoke on nanoscale biological airway surface on the example of tobacco smoke are considering. A model of particle deposition of the nicotine gum along the way through the smoke inhaled. Obtain a solution of the equation for the diffusion flux changes deposited nano- and submicron particles through hydrodynamic boundary layer.The particle deposition of nicotine gum on the airways by scanning the distribution of nanoparticles deposited using an atomic force microscope SobverPRO was experimentally studied. Patterns of distribution of nanoparticles dispersed smoke 4 species of tobacco in different parts of the respiratory tract were obtained. That allowed to talk about the absence of the effect of coagulation of the airway. It was established that the child as a passive smoker particle deposition diffusive flux of nicotine is proportionally higher than adult because the channel width is less than the airways than in adults.

  20. Advanced airway management is necessary in prehospital trauma patients

    National Research Council Canada - National Science Library

    Lockey, D J; Healey, B; Crewdson, K; Chalk, G; Weaver, A E; Davies, G E

    2015-01-01

    Treatment of airway compromise in trauma patients is a priority. Basic airway management is provided by all emergency personnel, but the requirement for on-scene advanced airway management is controversial...