WorldWideScience

Sample records for fibroblast-derived 3d matrix

  1. Human lung fibroblast-derived matrix facilitates vascular morphogenesis in 3D environment and enhances skin wound healing.

    Science.gov (United States)

    Du, Ping; Suhaeri, Muhammad; Ha, Sang Su; Oh, Seung Ja; Kim, Sang-Heon; Park, Kwideok

    2017-05-01

    Extracellular matrix (ECM) is crucial to many aspects of vascular morphogenesis and maintenance of vasculature function. Currently the recapitulation of angiogenic ECM microenvironment is still challenging, due mainly to its diverse components and complex organization. Here we investigate the angiogenic potential of human lung fibroblast-derived matrix (hFDM) in creating a three-dimensional (3D) vascular construct. hFDM was obtained via decellularization of in vitro cultured human lung fibroblasts and analyzed via immunofluorescence staining and ELISA, which detect multiple ECM macromolecules and angiogenic growth factors (GFs). Human umbilical vein endothelial cells (HUVECs) morphology was more elongated and better proliferative on hFDM than on gelatin-coated substrate. To prepare 3D construct, hFDM is collected, quantitatively analyzed, and incorporated in collagen hydrogel (Col) with HUVECs. Capillary-like structure (CLS) formation at 7day was significantly better with the groups containing higher doses of hFDM compared to the Col group (control). Moreover, the group (Col/hFDM/GFs) with both hFDM and angiogenic GFs (VEGF, bFGF, SDF-1) showed the synergistic activity on CLS formation and found much larger capillary lumen diameters with time. Further analysis of hFDM via angiogenesis antibody array kit reveals abundant biochemical cues, such as angiogenesis-related cytokines, GFs, and proteolytic enzymes. Significantly up-regulated expression of VE-cadherin and ECM-specific integrin subunits was also noticed in Col/hFDM/GFs. In addition, transplantation of Col/hFMD/GFs with HUVECs in skin wound model presents more effective re-epithelialization, many regenerated hair follicles, better transplanted cells viability, and advanced neovascularization. We believe that current system is a very promising platform for 3D vasculature construction in vitro and for cell delivery toward therapeutic applications in vivo. Functional 3D vasculature construction in vitro is still

  2. Replacement of animal-derived collagen matrix by human fibroblast-derived dermal matrix for human skin equivalent products.

    Science.gov (United States)

    El Ghalbzouri, Abdoelwaheb; Commandeur, Suzan; Rietveld, Marion H; Mulder, Aat A; Willemze, Rein

    2009-01-01

    Reconstructed human skin equivalents (HSEs) are representative models of human skin and widely used for research purposes and clinical applications. Traditional methods to generate HSEs are based on the seeding of human keratinocytes onto three-dimensional human fibroblast-populated non-human collagen matrices. Current HSEs have a limited lifespan of approximately 8 weeks, rendering them unsuitable for long-term studies. Here we present a new generation of HSEs being fully composed of human components and which can be cultured up to 20 weeks. This model is generated on a primary human fibroblast-derived dermal matrix. Pro-collagen type I secretion by human fibroblasts stabilized during long-term culture, providing a continuous and functional human dermal matrix. In contrast to rat-tail collagen-based HSEs, the present fibroblast-derived matrix-based HSEs contain more continuity in the number of viable cell layers in long-term cultures. In addition, these new skin models exhibit normal differentiation and proliferation, based on expression of K10/K15, and K16/K17, respectively. Detection of collagen types IV and VII and laminin 332 was confined to the epidermal-dermal junction, as in native skin. The presence of hemidesmosomes and anchoring fibrils was demonstrated by electron microscopy. Finally, we show that the presented HSE contained a higher concentration of the normal moisturizing factor compared to rat-tail collagen-based skin models, providing a further representation of functional normal human skin in vitro. This study, therefore, demonstrates the role of the dermal microenvironment on epidermal regeneration and lifespan in vitro.

  3. Elasticity Modulation of Fibroblast-Derived Matrix for Endothelial Cell Vascular Morphogenesis and Mesenchymal Stem Cell Differentiation.

    Science.gov (United States)

    Du, Ping; Suhaeri, Muhammad; Subbiah, Ramesh; Van, Se Young; Park, Jimin; Kim, Sang Heon; Park, Kwideok; Lee, Kangwon

    2016-03-01

    Biophysical properties of the microenvironment, including matrix elasticity and topography, are known to affect various cell behaviors; however, the specific role of each factor is unclear. In this study, fibroblast-derived matrix (FDM) was used as cell culture substrate and physically modified to investigate the influence of its biophysical property changes on human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) behavior in vitro. These FDMs were physically modified by simply storing them at different temperatures: the one stored at 4°C, maintained its original properties, was considered natural FDM, whereas the ones stored at -20°C or -80°C, exhibited a distinct surface morphology, were considered physically modified FDM. Physical modification induced matrix fiber rearrangement in FDM, forming different microstructures on the surface as characterized by focused ion beam (FIB)-cryoSEM. A significant increase of matrix elasticity was found with physically modified FDMs as determined by atomic force microscopy. HUVEC and hMSC behaviors on these natural and physically modified FDMs were observed and compared with each other and with gelatin-coated coverslips. HUVECs showed a similar adhesion level on these substrates at 3 h, but exhibited different proliferation rates and morphologies at 24 h; HUVECs on natural FDM proliferated relatively slower and assembled to capillary-like structures (CLSs). It is observed that HUVECs assembled to CLSs on natural FDMs are independent on the exogenous growth factors and yet dependent on nonmuscle myosin II activity. This result indicates the important role of matrix mechanical properties in regulating HUVECs vascular morphogenesis. As for hMSCs multilineage differentiation, adipogenesis is improved on natural FDM that with lower matrix elasticity, while osteogenesis is accelerated on physically modified FDMs that with higher matrix elasticity, these results further confirm the crucial

  4. Three-Dimensional In Vitro Skin and Skin Cancer Models Based on Human Fibroblast-Derived Matrix.

    Science.gov (United States)

    Berning, Manuel; Prätzel-Wunder, Silke; Bickenbach, Jackie R; Boukamp, Petra

    2015-09-01

    Three-dimensional in vitro skin and skin cancer models help to dissect epidermal-dermal and tumor-stroma interactions. In the model presented here, normal human dermal fibroblasts isolated from adult skin self-assembled into dermal equivalents with their specific fibroblast-derived matrix (fdmDE) over 4 weeks. The fdmDE represented a complex human extracellular matrix that was stabilized by its own heterogeneous collagen fiber meshwork, largely resembling a human dermal in vivo architecture. Complemented with normal human epidermal keratinocytes, the skin equivalent (fdmSE) thereof favored the establishment of a well-stratified and differentiated epidermis and importantly allowed epidermal regeneration in vitro for at least 24 weeks. Moreover, the fdmDE could be used to study the features of cutaneous skin cancer. Complementing fdmDE with HaCaT cells in different stages of malignancy or tumor-derived cutaneous squamous cell carcinoma cell lines, the resulting skin cancer equivalents (fdmSCEs) recapitulated the respective degree of tumorigenicity. In addition, the fdmSCE invasion phenotypes correlated with their individual degree of tissue organization, disturbance in basement membrane organization, and presence of matrix metalloproteinases. Together, fdmDE-based models are well suited for long-term regeneration of normal human epidermis and, as they recapitulate tumor-specific growth, differentiation, and invasion profiles of cutaneous skin cancer cells, also provide an excellent human in vitro skin cancer model.

  5. Fibroblast-Derived Extracellular Matrix Induces Chondrogenic Differentiation in Human Adipose-Derived Mesenchymal Stromal/Stem Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-08-01

    Full Text Available Mesenchymal stromal/stem cells (MSCs represent an area being intensively researched for tissue engineering and regenerative medicine applications. MSCs may provide the opportunity to treat diseases and injuries that currently have limited therapeutic options, as well as enhance present strategies for tissue repair. The cellular environment has a significant role in cellular development and differentiation through cell–matrix interactions. The aim of this study was to investigate the behavior of adipose-derived MSCs (ad-MSCs in the context of a cell-derived matrix so as to model the in vivo physiological microenvironment. The fibroblast-derived extracellular matrix (fd-ECM did not affect ad-MSC morphology, but reduced ad-MSC proliferation. Ad-MSCs cultured on fd-ECM displayed decreased expression of integrins α2 and β1 and subsequently lost their multipotency over time, as shown by the decrease in CD44, Octamer-binding transcription factor 4 (OCT4, SOX2, and NANOG gene expression. The fd-ECM induced chondrogenic differentiation in ad-MSCs compared to control ad-MSCs. Loss of function studies, through the use of siRNA and a mutant Notch1 construct, revealed that ECM-mediated ad-MSCs chondrogenesis requires Notch1 and β-catenin signaling. The fd-ECM also showed anti-senescence effects on ad-MSCs. The fd-ECM is a promising approach for inducing chondrogenesis in ad-MSCs and chondrogenic differentiated ad-MSCs could be used in stem cell therapy procedures.

  6. Cardiac fibroblast-derived extracellular matrix (biomatrix) as a model for the studies of cardiac primitive cell biological properties in normal and pathological adult human heart.

    Science.gov (United States)

    Castaldo, Clotilde; Di Meglio, Franca; Miraglia, Rita; Sacco, Anna Maria; Romano, Veronica; Bancone, Ciro; Della Corte, Alessandro; Montagnani, Stefania; Nurzynska, Daria

    2013-01-01

    Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM) change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease) and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix), composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  7. Cardiac Fibroblast-Derived Extracellular Matrix (Biomatrix as a Model for the Studies of Cardiac Primitive Cell Biological Properties in Normal and Pathological Adult Human Heart

    Directory of Open Access Journals (Sweden)

    Clotilde Castaldo

    2013-01-01

    Full Text Available Cardiac tissue regeneration is guided by stem cells and their microenvironment. It has been recently described that both cardiac stem/primitive cells and extracellular matrix (ECM change in pathological conditions. This study describes the method for the production of ECM typical of adult human heart in the normal and pathological conditions (ischemic heart disease and highlights the potential use of cardiac fibroblast-derived ECM for in vitro studies of the interactions between ECM components and cardiac primitive cells responsible for tissue regeneration. Fibroblasts isolated from adult human normal and pathological heart with ischemic cardiomyopathy were cultured to obtain extracellular matrix (biomatrix, composed of typical extracellular matrix proteins, such as collagen and fibronectin, and matricellular proteins, laminin, and tenascin. After decellularization, this substrate was used to assess biological properties of cardiac primitive cells: proliferation and migration were stimulated by biomatrix from normal heart, while both types of biomatrix protected cardiac primitive cells from apoptosis. Our model can be used for studies of cell-matrix interactions and help to determine the biochemical cues that regulate cardiac primitive cell biological properties and guide cardiac tissue regeneration.

  8. Vitamin D decreases the secretion of matrix metalloproteinase-2 and matrix metalloproteinase-9 in fibroblasts derived from Taiwanese patients with chronic rhinosinusitis with nasal polyposis.

    Science.gov (United States)

    Wang, Ling-Feng; Tai, Chih-Feng; Chien, Chen-Yu; Chiang, Feng-Yu; Chen, Jeff Yi-Fu

    2015-05-01

    Vitamin D and its derivatives have modulatory effects in immunological and inflammatory responses. Such properties suggest that they might have an impact on chronic inflammatory airway diseases, including nasal polyposis. The aim of this study was to understand the role of vitamin D in chronic rhinosinusitis with nasal polyps (CRSwNP) by investigating its effect on the secretion of matrix metalloproteinase-2 (MMP-2) and MMP-9 in nasal polyp-derived fibroblasts. Two primary fibroblast cultures were established from nasal polyp tissues obtained during surgery. The nasal polyp-derived fibroblasts were stimulated with tumor necrosis factor-α (TNF-α; 10 ng/mL) for 24 hours, followed by replacement with media alone or with vitamin D derivatives (calcitriol or tacalcitol; 10μM) and incubated for another 24 hours. After the treatments, the levels of MMP-2 and MMP-9 secreted were evaluated by both enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. ELISA results revealed that TNF-α could substantially stimulate the secretion of MMP-2 (p MMP-2 and p MMP-2 and MMP-9). The ELISA results were also confirmed by Western blot analysis. The inhibitory effect of vitamin D derivatives on MMP-2 and MMP-9 secretion could potentiate their application in pharmacotherapy of Taiwanese CRSwNP patients.

  9. Creep Test of Polymer-matrix 3-D Braided Composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. The creep curve appears as expected, and can be defimed two phases,namely, the primary phase and the secondary phase. For each sample, strain increases with time rapidly, and then the strain rate decreases and appears to approach a constant rate of change (steady-state creep). The experiment results show that the creep resistant properties are improved while the braiding angle decreases or the fiber volume fraction increases, and that the five-directional braiding structure offers better creep resistant properties than the fourdirectional braiding structure.

  10. Wharton’s Jelly-Derived Mesenchymal Stromal Cells and Fibroblast-Derived Extracellular Matrix Synergistically Activate Apoptosis in a p21-Dependent Mechanism in WHCO1 and MDA MB 231 Cancer Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Kevin Dzobo

    2016-01-01

    Full Text Available The tumour microenvironment plays a crucial role in tumour progression and comprises tumour stroma which is made up of different cell types and the extracellular matrix (ECM. Mesenchymal stromal cells (MSCs are part of the tumour stroma and may have conflicting effects on tumour growth. In this study we investigated the effect of Wharton’s Jelly-derived MSCs (WJ-MSCs and a fibroblast-derived ECM (fd-ECM on esophageal (WHCO1 and breast (MDA MB 231 cancer cells in vitro. Both WJ-MSCs and the fd-ECM, alone or in combination, downregulate PCNA, cyclin D1, Bcl-2, Bcl-xL, and MMPs and upregulate p53 and p21. p21 induction resulted in G2 phase cell cycle arrest and induced apoptosis in vitro. Our data suggest that p21 induction is via p53-dependent and p53-independent mechanisms in WHCO1 and MDA MB 231 cells, respectively. Vascular endothelial growth factor, Akt, and Nodal pathways were downregulated in cancer cells cocultured with WJ-MSCs. We also demonstrate that WJ-MSCs effects on cancer cells appear to be short-lived whilst the fd-ECM effect is long-lived. This study shows the influence of tumour microenvironment on cancer cell behaviour and provides alternative therapeutic targets for potential regulation of tumour cells.

  11. Wharton's Jelly-Derived Mesenchymal Stromal Cells and Fibroblast-Derived Extracellular Matrix Synergistically Activate Apoptosis in a p21-Dependent Mechanism in WHCO1 and MDA MB 231 Cancer Cells In Vitro.

    Science.gov (United States)

    Dzobo, Kevin; Vogelsang, Matjaz; Thomford, Nicholas E; Dandara, Collet; Kallmeyer, Karlien; Pepper, Michael S; Parker, M Iqbal

    2016-01-01

    The tumour microenvironment plays a crucial role in tumour progression and comprises tumour stroma which is made up of different cell types and the extracellular matrix (ECM). Mesenchymal stromal cells (MSCs) are part of the tumour stroma and may have conflicting effects on tumour growth. In this study we investigated the effect of Wharton's Jelly-derived MSCs (WJ-MSCs) and a fibroblast-derived ECM (fd-ECM) on esophageal (WHCO1) and breast (MDA MB 231) cancer cells in vitro. Both WJ-MSCs and the fd-ECM, alone or in combination, downregulate PCNA, cyclin D1, Bcl-2, Bcl-xL, and MMPs and upregulate p53 and p21. p21 induction resulted in G2 phase cell cycle arrest and induced apoptosis in vitro. Our data suggest that p21 induction is via p53-dependent and p53-independent mechanisms in WHCO1 and MDA MB 231 cells, respectively. Vascular endothelial growth factor, Akt, and Nodal pathways were downregulated in cancer cells cocultured with WJ-MSCs. We also demonstrate that WJ-MSCs effects on cancer cells appear to be short-lived whilst the fd-ECM effect is long-lived. This study shows the influence of tumour microenvironment on cancer cell behaviour and provides alternative therapeutic targets for potential regulation of tumour cells.

  12. Renormalization of 3d quantum gravity from matrix models

    CERN Document Server

    Ambjørn, Jan; Loll, R

    2004-01-01

    Lorentzian simplicial quantum gravity is a non-perturbatively defined theory of quantum gravity which predicts a positive cosmological constant. Since the approach is based on a sum over space-time histories, it is perturbatively non-renormalizable even in three dimensions. By mapping the three-dimensional theory to a two-matrix model with ABAB interaction we show that both the cosmological and the (perturbatively) non-renormalizable gravitational coupling constant undergo additive renormalizations consistent with canonical quantization.

  13. Local 3D matrix confinement determines division axis through cell shape.

    Science.gov (United States)

    He, Lijuan; Chen, Weitong; Wu, Pei-Hsun; Jimenez, Angela; Wong, Bin Sheng; San, Angela; Konstantopoulos, Konstantinos; Wirtz, Denis

    2016-02-09

    How the division axis is determined in mammalian cells embedded in three-dimensional (3D) matrices remains elusive, despite that many types of cells divide in 3D environments. Cells on two-dimensional (2D) substrates typically round up completely to divide. Here, we show that in 3D collagen matrices, mammalian cells such as HT1080 human fibrosarcoma and MDA-MB-231 breast cancer cells exhibit division modes distinct from their Counterparts on 2D substrates, with a markedly higher fraction of cells remaining highly elongated through mitosis in 3D matrices. The long axis of elongated mitotic cells accurately predicts the division axis, independently of matrix density and cell-matrix interactions. This 3D-specific elongated division mode is determined by the local confinement produced by the matrix and the ability of cells to protrude and locally remodel the matrix via β1 integrin. Elongated division is readily recapitulated using collagen-coated microfabricated channels. Cells depleted of β1 integrin still divide in the elongated mode in microchannels, suggesting that 3D confinement is sufficient to induce the elongated cell-division phenotype.

  14. Particle image velocimetry on simulated 3D ultrafast ultrasound from pediatric matrix TEE transducers

    Science.gov (United States)

    Voorneveld, J. D.; Bera, D.; van der Steen, A. F. W.; de Jong, N.; Bosch, J. G.

    2017-03-01

    Ultrafast 3D transesophageal echocardiographic (TEE) imaging, combined with 3D echo particle image velocimetry (ePIV), would be ideal for tracking the complex blood flow patterns in the heart. We are developing a miniature pediatric matrix TEE transducer that employs micro-beamforming (μBF) and allows high framerate in 3D. In this paper, we assess the feasibility of 3D ePIV with a high frame rate, small aperture transducer and the influence of the micro-beamforming technique. We compare the results of 3D ePIV on simulated images using the μBF transducer and an idealized, fully sampled (FS) matrix transducer. For the two transducers, we have simulated high-framerate imaging of an 8.4mm diameter artery having a known 4D velocity field. The simulations were performed in FieldII. 1000 3D volumes, at a rate of 1000 volumes/sec, were created using a single diverging transmission per volume. The error in the 3D velocity estimation was measured by comparing the ePIV results of both transducers to the ground truth. The results on the simulated volumes show that ePIV can estimate the 4D velocity field of the arterial phantom using these small-aperture transducers suitable for pediatric 3D TEE. The μBF transducer (RMSE 44.0%) achieved comparable ePIV accuracy to that of the FS transducer (RMSE 42.6%).

  15. Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix.

    Science.gov (United States)

    Panorchan, Porntula; Lee, Jerry S H; Kole, Thomas P; Tseng, Yiider; Wirtz, Denis

    2006-11-01

    Cell function is profoundly affected by the geometry of the extracellular environment confining the cell. Whether and how cells plated on a two-dimensional matrix or embedded in a three-dimensional (3D) matrix mechanically sense the dimensionality of their environment is mostly unknown, partly because individual cells in an extended matrix are inaccessible to conventional cell-mechanics probes. Here we develop a functional assay based on multiple particle tracking microrheology coupled with ballistic injection of nanoparticles to measure the local intracellular micromechanical properties of individual cells embedded inside a matrix. With our novel assay, we probe the mechanical properties of the cytoplasm of individual human umbilical vein endothelial cells (HUVECs) embedded in a 3D peptide hydrogel in the presence or absence of vascular endothelial growth factor (VEGF). We found that VEGF treatment, which enhances endothelial migration, increases the compliance and reduces the elasticity of the cytoplasm of HUVECs in a matrix. This VEGF-induced softening response of the cytoplasm is abrogated by specific Rho-kinase (ROCK) inhibition. These results establish combined particle-tracking microrheology and ballistic injection as the first method able to probe the micromechanical properties and mechanical response to agonists and/or drug treatments of individual cells inside a matrix. These results suggest that ROCK plays an essential role in the regulation of the intracellular mechanical response to VEGF of endothelial cells in a 3D matrix.

  16. Extended gray level co-occurrence matrix computation for 3D image volume

    Science.gov (United States)

    Salih, Nurulazirah M.; Dewi, Dyah Ekashanti Octorina

    2017-02-01

    Gray Level Co-occurrence Matrix (GLCM) is one of the main techniques for texture analysis that has been widely used in many applications. Conventional GLCMs usually focus on two-dimensional (2D) image texture analysis only. However, a three-dimensional (3D) image volume requires specific texture analysis computation. In this paper, an extended 2D to 3D GLCM approach based on the concept of multiple 2D plane positions and pixel orientation directions in the 3D environment is proposed. The algorithm was implemented by breaking down the 3D image volume into 2D slices based on five different plane positions (coordinate axes and oblique axes) resulting in 13 independent directions, then calculating the GLCMs. The resulted GLCMs were averaged to obtain normalized values, then the 3D texture features were calculated. A preliminary examination was performed on a 3D image volume (64 x 64 x 64 voxels). Our analysis confirmed that the proposed technique is capable of extracting the 3D texture features from the extended GLCMs approach. It is a simple and comprehensive technique that can contribute to the 3D image analysis.

  17. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.

    Science.gov (United States)

    Zhu, Wei; Holmes, Benjamin; Glazer, Robert I; Zhang, Lijie Grace

    2016-01-01

    Bone is one of the most common metastatic sites of breast cancer, but the underlying mechanisms remain unclear, in part due to an absence of advanced platforms for cancer culture and study that mimic the bone microenvironment. In the present study, we integrated a novel stereolithography-based 3D printer and a unique 3D printed nano-ink consisting of hydroxyapatite nanoparticles suspended in hydrogel to create a biomimetic bone-specific environment for evaluating breast cancer bone invasion. Breast cancer cells cultured in a geometrically optimized matrix exhibited spheroid morphology and migratory characteristics. Co-culture of tumor cells with bone marrow mesenchymal stem cells increased the formation of spheroid clusters. The 3D matrix also allowed for higher drug resistance of breast cancer cells than 2D culture. These results validate that our 3D bone matrix can mimic tumor bone microenvironments, suggesting that it can serve as a tool for studying metastasis and assessing drug sensitivity. From the Clinical Editor: Cancer remains a major cause of mortality for patients in the clinical setting. For breast cancer, bone is one of the most common metastatic sites. In this intriguing article, the authors developed a bone-like environment using 3D printing technology to investigate the underlying biology of bone metastasis. Their results would also allow a new model for other researchers who work on cancer to use.

  18. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix.

    Science.gov (United States)

    Petrie, Ryan J; Koo, Hyun; Yamada, Kenneth M

    2014-08-29

    Cells use actomyosin contractility to move through three-dimensional (3D) extracellular matrices. Contractility affects the type of protrusions cells use to migrate in 3D, but the mechanisms are unclear. In this work, we found that contractility generated high-pressure lobopodial protrusions in human cells migrating in a 3D matrix. In these cells, the nucleus physically divided the cytoplasm into forward and rear compartments. Actomyosin contractility with the nucleoskeleton-intermediate filament linker protein nesprin-3 pulled the nucleus forward and pressurized the front of the cell. Reducing expression of nesprin-3 decreased and equalized the intracellular pressure. Thus, the nucleus can act as a piston that physically compartmentalizes the cytoplasm and increases the hydrostatic pressure between the nucleus and the leading edge of the cell to drive lamellipodia-independent 3D cell migration.

  19. Tuning 3D Collagen Matrix Stiffness Independently of Collagen Concentration Modulates Endothelial Cell Behavior

    Science.gov (United States)

    Mason, Brooke N.; Starchenko, Alina; Williams, Rebecca M.; Bonassar, Lawrence J.; Reinhart-King, Cynthia A.

    2012-01-01

    Numerous studies have described the effects of matrix stiffening on cell behavior using two dimensional (2D) synthetic surfaces; however less is known about the effects of matrix stiffening on cells embedded in three dimensional (3D) in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in 3D is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a 3-fold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation endproducts is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. PMID:22902816

  20. Decoupled Estimation of 2D DOA for Coherently Distributed Sources Using 3D Matrix Pencil Method

    Directory of Open Access Journals (Sweden)

    Tang Bin

    2008-08-01

    Full Text Available A new 2D DOA estimation method for coherently distributed (CD source is proposed. CD sources model is constructed by using Taylor approximation to the generalized steering vector (GSV, whereas the angular and angular spread are separated from signal pattern. The angular information is in the phase part of the GSV, and the angular spread information is in the module part of the GSV, thus enabling to decouple the estimation of 2D DOA from that of the angular spread. The array received data is used to construct three-dimensional (3D enhanced data matrix. The 2D DOA for coherently distributed sources could be estimated from the enhanced matrix by using 3D matrix pencil method. Computer simulation validated the efficiency of the algorithm.

  1. 3D collagen type I matrix inhibits the antimigratory effect of doxorubicin

    Directory of Open Access Journals (Sweden)

    Millerot-Serrurot Emilie

    2010-08-01

    Full Text Available Abstract Background The cell microenvironment, especially extracellular matrix proteins, plays an important role in tumor cell response to chemotherapeutic drugs. The present study was designed to investigate whether this microenvironment can influence the antimigratory effect of an anthracycline drug, doxorubicin, when tumor cells are grown in a matrix of type I collagen, a three-dimensional (3D context which simulates a natural microenvironment. Methods To this purpose, we studied the migratory parameters, the integrin expression, and the activation state of focal adhesion kinase (FAK and GTPase RhoA involved in the formation of focal adhesions and cell movement. These parameters were evaluated at non toxic concentrations which did not affect HT1080 cell proliferation. Results We show that while doxorubicin decreased cell migration properties by 70% in conventional two-dimensional (2D culture, this effect was completely abolished in a 3D one. Regarding the impact of doxorubicin on the focal adhesion complexes, unlike in 2D systems, the data indicated that the drug neither affected β1 integrin expression nor the state of phosphorylation of FAK and RhoA. Conclusion This study suggests the lack of antiinvasive effect of doxorubicin in a 3D environment which is generally considered to better mimic the phenotypic behaviour of cells in vivo. Consistent with the previously shown resistance to the cytotoxic effect in a 3D context, our results highlight the importance of the matrix configuration on the tumor cell response to antiinvasive drugs.

  2. A Jones matrix formalism for simulating 3D Polarised Light Imaging of brain tissue

    CERN Document Server

    Menzel, Miriam; De Raedt, Hans; Reckfort, Julia; Amunts, Katrin; Axer, Markus

    2015-01-01

    The neuroimaging technique 3D Polarised Light Imaging (3D-PLI) provides a high-resolution reconstruction of nerve fibres in human post-mortem brains. The orientations of the fibres are derived from birefringence measurements of histological brain sections assuming that the nerve fibres - consisting of an axon and a surrounding myelin sheath - are uniaxial birefringent and that the measured optic axis is oriented in direction of the nerve fibres (macroscopic model). Although experimental studies support this assumption, the molecular structure of the myelin sheath suggests that the birefringence of a nerve fibre can be described more precisely by multiple optic axes oriented radially around the fibre axis (microscopic model). In this paper, we compare the use of the macroscopic and the microscopic model for simulating 3D-PLI by means of the Jones matrix formalism. The simulations show that the macroscopic model ensures a reliable estimation of the fibre orientations as long as the polarimeter does not resolve ...

  3. A transfer matrix approach to the 3D wetting and pinning problems

    OpenAIRE

    1983-01-01

    We consider the pinning of an interface on a 3D lattice by an edge potential (semi-infinite geometry). This situation models the wetting transition occurring in such physical systems as binary fluids or adsorbed gases. The transfer matrix method is used to get exact results on strips of finite width; we propose a way of extrapolating them and of deriving the phase diagram of the infinite system. The mechanism of the transition changes when the pinning and roughening temperatures coincide.

  4. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction

    Science.gov (United States)

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-01-01

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs’ configuration schemes and the proposed cross-track reconstruction method. PMID:27556471

  5. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction.

    Science.gov (United States)

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-08-22

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs' configuration schemes and the proposed cross-track reconstruction method.

  6. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction

    Directory of Open Access Journals (Sweden)

    Qian Bao

    2016-08-01

    Full Text Available With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC, thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs’ configuration schemes and the proposed cross-track reconstruction method.

  7. A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions

    Science.gov (United States)

    Zhu, Wei; Castro, Nathan J.; Cui, Haitao; Zhou, Xuan; Boualam, Benchaa; McGrane, Robert; Glazer, Robert I.; Zhang, Lijie Grace

    2016-08-01

    Bone metastasis is one of the most prevalent complications of late-stage breast cancer, in which the native bone matrix components, including osteoblasts, are intimately involved in tumor progression. The development of a successful in vitro model would greatly facilitate understanding the underlying mechanism of breast cancer bone invasion as well as provide a tool for effective discovery of novel therapeutic strategies. In the current study, we fabricated a series of in vitro bone matrices composed of a polyethylene glycol hydrogel and nanocrystalline hydroxyapatite of varying concentrations to mimic the native bone microenvironment for the investigation of breast cancer bone metastasis. A stereolithography-based three-dimensional (3D) printer was used to fabricate the bone matrices with precisely controlled architecture. The interaction between breast cancer cells and osteoblasts was investigated in the optimized bone matrix. Using a Transwell® system to separate the two cell lines, breast cancer cells inhibited osteoblast proliferation, while osteoblasts stimulated breast cancer cell growth, whereas, both cell lines increased IL-8 secretion. Breast cancer cells co-cultured with osteoblasts within the 3D bone matrix formed multi-cellular spheroids in comparison to two-dimensional monolayers. These findings validate the use of our 3D printed bone matrices as an in vitro metastasis model, and highlights their potential for investigating breast cancer bone metastasis.

  8. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix.

    Science.gov (United States)

    Pedersen, John A; Boschetti, Federica; Swartz, Melody A

    2007-01-01

    Interstitial fluid flow has been shown to affect the organization and behavior of cells in 3D environments in vivo and in vitro, yet the forces driving such responses are not clear. Due to the complex architecture of the extracellular matrix (ECM) and the difficulty of measuring fluid flow near cells embedded in it, the levels of shear stress experienced by cells in this environment are typically estimated using bulk-averaged matrix parameters such as hydraulic permeability. While this is useful for estimating average stresses, it cannot yield insight into how local matrix fiber architecture-which is cell-controlled in the immediate pericellular environment-affects the local stresses imposed on the cell surface. To address this, we used computational fluid dynamics to study flow through an idealized mesh constructed of a cubic lattice of fibers simulating a typical in vitro collagen gel. We found that, in such high porosity matrices, the fibers strongly affect the flow fields near the cell, with peak shear stresses up to five times higher than those predicted by the Brinkman equation. We also found that minor remodeling of the fibers near the cell surface had major effects on the shear stress profile on the cell. These findings demonstrate the importance of fiber architecture to the fluid forces on a cell embedded in a 3D matrix, and also show how small modifications in the local ECM can lead to large changes in the mechanical environment of the cell.

  9. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    Science.gov (United States)

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals.

  10. Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules.

    Science.gov (United States)

    Ahn, Geunseon; Min, Kyung-Hyun; Kim, Changhwan; Lee, Jeong-Seok; Kang, Donggu; Won, Joo-Yun; Cho, Dong-Woo; Kim, Jun-Young; Jin, Songwan; Yun, Won-Soo; Shim, Jin-Hyung

    2017-08-17

    Three-dimensional (3D) cell printing systems allow the controlled and precise deposition of multiple cells in 3D constructs. Hydrogel materials have been used extensively as printable bioinks owing to their ability to safely encapsulate living cells. However, hydrogel-based bioinks have drawbacks for cell printing, e.g. inappropriate crosslinking and liquid-like rheological properties, which hinder precise 3D shaping. Therefore, in this study, we investigated the influence of various factors (e.g. bioink concentration, viscosity, and extent of crosslinking) on cell printing and established a new 3D cell printing system equipped with heating modules for the precise stacking of decellularized extracellular matrix (dECM)-based 3D cell-laden constructs. Because the pH-adjusted bioink isolated from native tissue is safely gelled at 37 °C, our heating system facilitated the precise stacking of dECM bioinks by enabling simultaneous gelation during printing. We observed greater printability compared with that of a non-heating system. These results were confirmed by mechanical testing and 3D construct stacking analyses. We also confirmed that our heating system did not elicit negative effects, such as cell death, in the printed cells. Conclusively, these results hold promise for the application of 3D bioprinting to tissue engineering and drug development.

  11. Patterning of Fibroblast and Matrix Anisotropy within 3D Confinement is Driven by the Cytoskeleton.

    Science.gov (United States)

    Serbo, Janna V; Kuo, Scot; Lewis, Shawna; Lehmann, Matthew; Li, Jiuru; Gracias, David H; Romer, Lewis H

    2016-01-07

    Effects of 3D confinement on cellular growth and matrix assembly are important in tissue engineering, developmental biology, and regenerative medicine. Polydimethylsiloxane wells with varying anisotropy are microfabicated using soft-lithography. Microcontact printing of bovine serum albumin is used to block cell adhesion to surfaces between wells. The orientations of fibroblast stress fibers, microtubules, and fibronectin fibrils are examined 1 day after cell seeding using laser scanning confocal microscopy, and anisotropy is quantified using a custom autocorrelation analysis. Actin, microtubules, and fibronectin exhibit higher anisotropy coefficients for cells grown in rectangular wells with aspect ratios of 1:4 and 1:8, as compared to those in wells with lower aspect ratios or in square wells. The effects of disabling individual cytoskeletal components on fibroblast responses to anisotropy are then tested by applying actin or microtubule polymerization inhibitors, Rho kinase inhibitor, or by siRNA-mediated knockdown of AXL or cofilin-1. Latrunculin A decreases cytoskeletal and matrix anisotropy, nocodazole ablates both, and Y27632 mutes cellular polarity while decreasing matrix anisotropy. AXL siRNA knockdown has little effect, as does siRNA knockdown of cofilin-1. These data identify several specific cytoskeletal strategies as targets for the manipulation of anisotropy in 3D tissue constructs.

  12. Fatigue of a 3D Orthogonal Non-crimp Woven Polymer Matrix Composite at Elevated Temperature

    Science.gov (United States)

    Wilkinson, M. P.; Ruggles-Wrenn, M. B.

    2017-02-01

    Tension-tension fatigue behavior of two polymer matrix composites (PMCs) was studied at elevated temperature. The two PMCs consist of the NRPE polyimide matrix reinforced with carbon fibers, but have different fiber architectures: the 3D PMC is a singly-ply non-crimp 3D orthogonal weave composite and the 2D PMC, a laminated composite reinforced with 15 plies of an eight harness satin weave (8HSW) fabric. In order to assess the performance and suitability of the two composites for use in aerospace components designed to contain high-temperature environments, mechanical tests were performed under temperature conditions simulating the actual operating conditions. In all elevated temperature tests performed in this work, one side of the test specimen was at 329 °C while the other side was open to ambient laboratory air. The tensile stress-strain behavior of the two composites was investigated and the tensile properties measured for both on-axis (0/90) and off-axis (±45) fiber orientations. Elevated temperature had little effect on the on-axis tensile properties of the two composites. The off-axis tensile strength of both PMCs decreased slightly at elevated temperature. Tension-tension fatigue tests were conducted at elevated temperature at a frequency of 1.0 Hz with a ratio of minimum stress to maximum stress of R = 0.05. Fatigue run-out was defined as 2 × 105 cycles. Both strain accumulation and modulus evolution during cycling were analyzed for each fatigue test. The laminated 2D PMC exhibited better fatigue resistance than the 3D composite. Specimens that achieved fatigue run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Post-test examination under optical microscope revealed severe delamination in the laminated 2D PMC. The non-crimp 3D orthogonal weave composite offered improved delamination resistance.

  13. Mechanical analysis of single myocyte contraction in a 3-D elastic matrix.

    Directory of Open Access Journals (Sweden)

    John Shaw

    Full Text Available BACKGROUND: Cardiac myocytes experience mechanical stress during each heartbeat. Excessive mechanical stresses under pathological conditions cause functional and structural remodeling that lead to heart diseases, yet the precise mechanisms are still incompletely understood. To study the cellular and molecular level mechanotransduction mechanisms, we developed a new 'cell-in-gel' experimental system to exert multiaxial (3-D stresses on a single myocyte during active contraction. METHODS: Isolated myocytes are embedded in an elastic hydrogel to simulate the mechanical environment in myocardium (afterload. When electrically stimulated, the in-gel myocyte contracts while the matrix resists shortening and broadening of the cell, exerting normal and shear stresses on the cell. Here we provide a mechanical analysis, based on the Eshelby inclusion problem, of the 3-D strain and stress inside and outside the single myocyte during contraction in an elastic matrix. RESULTS: (1 The fractional shortening of the myocyte depends on the cell's geometric dimensions and the relative stiffness of the cell to the gel. A slender or softer cell has less fractional shortening. A myocyte of typical dimensions embedded in a gel of similar elastic stiffness can contract only 20% of its load-free value. (2 The longitudinal stress inside the cell is about 15 times the transverse stress level. (3 The traction on the cell surface is highly non-uniform, with a maximum near its ends, showing 'hot spots' at the location of intercalated disks. (4 The mechanical energy expenditure of the myocyte increases with the matrix stiffness in a monotonic and nonlinear manner. CONCLUSION: Our mechanical analyses provide analytic solutions that readily lend themselves to parametric studies. The resulting 3-D mapping of the strain and stress states serve to analyze and interpret ongoing cell-in-gel experiments, and the mathematical model provides an essential tool to decipher and quantify

  14. Combination of Monte Carlo and transfer matrix methods to study 2D and 3D percolation

    Energy Technology Data Exchange (ETDEWEB)

    Saleur, H.; Derrida, B.

    1985-07-01

    In this paper we develop a method which combines the transfer matrix and the Monte Carlo methods to study the problem of site percolation in 2 and 3 dimensions. We use this method to calculate the properties of strips (2D) and bars (3D). Using a finite size scaling analysis, we obtain estimates of the threshold and of the exponents wich confirm values already known. We discuss the advantages and the limitations of our method by comparing it with usual Monte Carlo calculations.

  15. 3D in situ observations of glass fibre/matrix interfacial debonding

    DEFF Research Database (Denmark)

    Martyniuk, Karolina; Sørensen, Bent F.; Modregger, Peter

    2013-01-01

    X-ray microtomography was used for 3D in situ observations of the evolution of fibre/matrix interfacial debonding. A specimen with a single fibre oriented perpendicular to the tensile direction was tested at a synchrotron facility using a special loading rig which allowed for applying a load...... transverse to the fibre. Three distinguishable damage stages were observed: (i) interfacial debond initiation at the free surface, (ii) debond propagation from the surface into the specimen and (iii) unstable debonding along the full length of the scanned volume. The high resolution microtomography provides...

  16. Mean deformation metrics for quantifying 3D cell-matrix interactions without requiring information about matrix material properties.

    Science.gov (United States)

    Stout, David A; Bar-Kochba, Eyal; Estrada, Jonathan B; Toyjanova, Jennet; Kesari, Haneesh; Reichner, Jonathan S; Franck, Christian

    2016-03-15

    Mechanobiology relates cellular processes to mechanical signals, such as determining the effect of variations in matrix stiffness with cell tractions. Cell traction recorded via traction force microscopy (TFM) commonly takes place on materials such as polyacrylamide- and polyethylene glycol-based gels. Such experiments remain limited in physiological relevance because cells natively migrate within complex tissue microenvironments that are spatially heterogeneous and hierarchical. Yet, TFM requires determination of the matrix constitutive law (stress-strain relationship), which is not always readily available. In addition, the currently achievable displacement resolution limits the accuracy of TFM for relatively small cells. To overcome these limitations, and increase the physiological relevance of in vitro experimental design, we present a new approach and a set of associated biomechanical signatures that are based purely on measurements of the matrix's displacements without requiring any knowledge of its constitutive laws. We show that our mean deformation metrics (MDM) approach can provide significant biophysical information without the need to explicitly determine cell tractions. In the process of demonstrating the use of our MDM approach, we succeeded in expanding the capability of our displacement measurement technique such that it can now measure the 3D deformations around relatively small cells (∼10 micrometers), such as neutrophils. Furthermore, we also report previously unseen deformation patterns generated by motile neutrophils in 3D collagen gels.

  17. SURVIVAL OF LIVER CELLS, IMMOBILIZED ON 3D-MATRIXES, IN LIVER FAILURE MODEL

    Directory of Open Access Journals (Sweden)

    M. Y. Shagidulin

    2011-01-01

    Full Text Available It was examined a new method for correction of hepatic failure by transplantation of liver support biounit (liver cells, immobilized on biocompatible and biodegradable 3D-matrixes ElastoPOB® into small intestine mesentery. It was determined that after modeling of acute hepatic failure on dogs by 65–70% liver resection and transplantation liver support biounit the restoration of disturbed biochemical indecies (such as total protein, lactate, cytolytic ensymes-ALT, AST, ALP, LDH, fibrinogen, protrombine index and others took place more rapidly on 9–14th day instead of 18th day in control. It was made a preposition about efficiency of the suggested method for correction both acute hepatic failure because even 90 days after transplantation of liver support biounit alive hepatocytes and neogenic plethoric vessels, growing through matrix were revealed. 

  18. Front-end receiver electronics for a matrix transducer for 3-D transesophageal echocardiography.

    Science.gov (United States)

    Yu, Zili; Blaak, Sandra; Chang, Zu-yao; Yao, Jiajian; Bosch, Johan G; Prins, Christian; Lancée, Charles T; de Jong, Nico; Pertijs, Michiel A P; Meijer, Gerard C M

    2012-07-01

    There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE.

  19. Human disc cells in monolayer vs 3D culture: cell shape, division and matrix formation

    Directory of Open Access Journals (Sweden)

    Hanley Edward N

    2000-10-01

    Full Text Available Abstract Background The relationship between cell shape, proliferation, and extracellular matrix (ECM production, important aspects of cell behavior, is examined in a little-studied cell type, the human annulus cell from the intervertebral disc, during monolayer vs three-dimensional (3D culture. Results Three experimental studies showed that cells respond specifically to culture microenvironments by changes in cell shape, mitosis and ECM production: 1 Cell passages showed extensive immunohistochemical evidence of Type I and II collagens only in 3D culture. Chondroitin sulfate and keratan sulfate were abundant in both monolayer and 3D cultures. 2 Cells showed significantly greater proliferation in monolayer in the presence of platelet-derived growth factor compared to cells in 3D. 3 Cells on Matrigel™-coated monolayer substrates became rounded and formed nodular colonies, a finding absent during monolayer growth. Conclusions The cell's in vivo interactions with the ECM can regulate shape, gene expression and other cell functions. The shape of the annulus cell changes markedly during life: the young, healthy disc contains spindle shaped cells and abundant collagen. With aging and degeneration, many cells assume a strikingly different appearance, become rounded and are surrounded by unusual accumulations of ECM products. In vitro manipulation of disc cells provides an experimental window for testing how disc cells from given individuals respond when they are grown in environments which direct cells to have either spindle- or rounded-shapes. In vitro assessment of the response of such cells to platelet-derived growth factor and to Matrigel™ showed a continued influence of cell shape even in the presence of a growth factor stimulus. These findings contribute new information to the important issue of the influence of cell shape on cell behavior.

  20. Effects of Matrix Alignment and Mechanical Constraints on Cellular Behavior in 3D Engineered Microtissues

    Science.gov (United States)

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    The adhesion of cells to the extracellular matrix (ECM) plays a crucial role in a variety of cellular functions. The main building blocks of the ECM are 3D networks of fibrous proteins whose structure and alignments varies with tissue type. However, the impact of ECM alignment on cellular behaviors such as cell adhesion, spreading, extension and mechanics remains poorly understood. We present results on the development of a microtissue-based system that enables control of the structure, orientation, and degree of fibrillar alignment in 3D fibroblast-populated collagen gels. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of elastic pillars. The contractile action of the cells leads to controlled alignment of the fibrous collagen, depending on the number and location of the pillars in each well. The pillars are elastic, and are utilized to measure the contractile forces of the microtissues, and by incorporating magnetic material in selected pillars, time-varying forces can be applied to the tissues for dynamic stimulation and measurement of mechanical properties. Results on the effects of varying pillar shape, spacing, location, and stiffness on microtissue organization and contractility will be presented. This work is supported by NSF CMMI-1463011.

  1. Concentric Gel System to Study the Biophysical Role of Matrix Microenvironment on 3D Cell Migration

    Science.gov (United States)

    Kurniawan, Nicholas Agung; Chaudhuri, Parthiv Kant; Lim, Chwee Teck

    2015-01-01

    The ability of cells to migrate is crucial in a wide variety of cell functions throughout life from embryonic development and wound healing to tumor and cancer metastasis. Despite intense research efforts, the basic biochemical and biophysical principles of cell migration are still not fully understood, especially in the physiologically relevant three-dimensional (3D) microenvironments. Here, we describe an in vitro assay designed to allow quantitative examination of 3D cell migration behaviors. The method exploits the cell’s mechanosensing ability and propensity to migrate into previously unoccupied extracellular matrix (ECM). We use the invasion of highly invasive breast cancer cells, MDA-MB-231, in collagen gels as a model system. The spread of cell population and the migration dynamics of individual cells over weeks of culture can be monitored using live-cell imaging and analyzed to extract spatiotemporally-resolved data. Furthermore, the method is easily adaptable for diverse extracellular matrices, thus offering a simple yet powerful way to investigate the role of biophysical factors in the microenvironment on cell migration. PMID:25867104

  2. Dynamic 3D cell rearrangements guided by a fibronectin matrix underlie somitogenesis.

    Directory of Open Access Journals (Sweden)

    Gabriel G Martins

    Full Text Available Somites are transient segments formed in a rostro-caudal progression during vertebrate development. In chick embryos, segmentation of a new pair of somites occurs every 90 minutes and involves a mesenchyme-to-epithelium transition of cells from the presomitic mesoderm. Little is known about the cellular rearrangements involved, and, although it is known that the fibronectin extracellular matrix is required, its actual role remains elusive. Using 3D and 4D imaging of somite formation we discovered that somitogenesis consists of a complex choreography of individual cell movements. Epithelialization starts medially with the formation of a transient epithelium of cuboidal cells, followed by cell elongation and reorganization into a pseudostratified epithelium of spindle-shaped epitheloid cells. Mesenchymal cells are then recruited to this medial epithelium through accretion, a phenomenon that spreads to all sides, except the lateral side of the forming somite, which epithelializes by cell elongation and intercalation. Surprisingly, an important contribution to the somite epithelium also comes from the continuous egression of mesenchymal cells from the core into the epithelium via its apical side. Inhibition of fibronectin matrix assembly first slows down the rate, and then halts somite formation, without affecting pseudopodial activity or cell body movements. Rather, cell elongation, centripetal alignment, N-cadherin polarization and egression are impaired, showing that the fibronectin matrix plays a role in polarizing and guiding the exploratory behavior of somitic cells. To our knowledge, this is the first 4D in vivo recording of a full mesenchyme-to-epithelium transition. This approach brought new insights into this event and highlighted the importance of the extracellular matrix as a guiding cue during morphogenesis.

  3. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2016-01-01

    Full Text Available Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.

  4. 3D reconstruction of single rising bubble in water using digital image processing and characteristic matrix

    Institute of Scientific and Technical Information of China (English)

    Yuchen Bian; Feng Dong; Weida Zhang; Hongyi Wang; Chao Tan; Zhiqiang Zhang

    2013-01-01

    Reconstructing the shape of a bubble will lay a firm foundation for further description of the dynamic characteristics of bubbly flow,especially for a single rising bubble or separate bubbles whose interaction could be neglected.In this case,the rising bubble is usually simulated as an ellipsoid consisting of two semi-ellipsoids up and down.Thus the projected image of a bubble consists of two semi-ellipses.In this paper,a method for reconstructing the ellipsoid bubble model is described following digital image processing,using the Hough transform in 2D ellipse parameter extraction which could cover most of the bubble edge points in the image.Then a method based on characteristic symmetric matrix is described to detect 3D bubble ellipsoid model parameters from 2D ellipse parameters of projection planes.This method can be applied to bubbles rising with low-velocity in static flow field much in conformity with the projection theory and the shape variation of the rising bubble.This method does not need to solve nonlinear equation sets and provides an easy way to calculate the characteristic matrix of a space ellipsoid model for deformed bubble.For bubble application,two assumed conditions and a calibration factor are proposed to simplify calculation and detection.Errors of ellipsoid center and three axes are minor.Errors of the three rotation angles have no negative effect on further study on bubbly flow.

  5. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Science.gov (United States)

    Diaz Quiroz, Juan Felipe; Li, Yuping; Aparicio, Conrado; Echeverri, Karen

    2016-01-01

    Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs. PMID:28123426

  6. Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix.

    Science.gov (United States)

    Obarzanek-Fojt, Magdalena; Curdy, Catherine; Loggia, Nicoletta; Di Lena, Fabio; Grieder, Kathrin; Bitar, Malak; Wick, Peter

    2016-10-01

    Beyond the therapeutic purpose, the impact of drug delivery microparticles on the local tissue and inflammatory responses remains to be further elucidated specifically for reactions mediated by the host immune cells. Such immediate and prolonged reactions may adversely influence the release efficacy and intended therapeutic pathway. The lack of suitable in vitro platforms limits our ability to gain insight into the nature of immune responses at a single cell level. In order to establish an in vitro 3D system mimicking the connective host tissue counterpart, we utilized reproducible, compressed, rat-tail collagen polymerized matrices. THP1 cells (human acute monocytic leukaemia cells) differentiated into macrophage-like cells were chosen as cell model and their functionality was retained in the dense rat-tail collagen matrix. Placebo microparticles were later combined in the immune cell seeded system during collagen polymerization and secreted pro-inflammatory factors: TNFα and IL-8 were used as immune response readout (ELISA). Our data showed an elevated TNFα and IL-8 secretion by macrophage THP1 cells indicating that Placebo microparticles trigger certain immune cell responses under 3D in vivo like conditions. Furthermore, we have shown that the system is sensitive to measure the differences in THP1 macrophage pro-inflammatory responses to Active Pharmaceutical Ingredient (API) microparticles with different API release kinetics. We have successfully developed a tissue-like, advanced, in vitro system enabling selective "readouts" of specific responses of immune-related cells. Such system may provide the basis of an advanced toolbox enabling systemic evaluation and prediction of in vivo microparticle reactions on human immune-related cells.

  7. Optical Measurement of Micromechanics and Structure in a 3D Fibrin Extracellular Matrix

    Science.gov (United States)

    Kotlarchyk, Maxwell Aaron

    2011-07-01

    In recent years, a significant number of studies have focused on linking substrate mechanics to cell function using standard methodologies to characterize the bulk properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Methods for tuning extracellular matrix (ECM) mechanics in 3D cell culture that rely on increasing the concentration of either protein or cross-linking molecules fail to control important parameters such as pore size, ligand density, and molecular diffusivity. Alternatively, ECM stiffness can be modulated independently from protein concentration by mechanically loading the ECM. We have developed an optical tweezers-based microrheology system to investigate the fundamental role of ECM mechanical properties in determining cellular behavior. Further, this thesis outlines the development of a novel device for generating stiffness gradients in naturally derived ECMs, where stiffness is tuned by inducing strain, while local structure and mechanical properties are directly determined by laser tweezers-based passive and active microrheology respectively. Hydrogel substrates polymerized within 35 mm diameter Petri dishes are strained non-uniformly by the precise rotation of an embedded cylindrical post, and exhibit a position-dependent stiffness with little to no modulation of local mesh geometry. Here we present microrheological studies in the context of fibrin hydrogels. Microrheology and confocal imaging were used to directly measure local changes in micromechanics and structure respectively in unstrained hydrogels of increasing fibrinogen concentration, as well as in our strain gradient device, in which the concentration of fibrinogen is held constant. Orbital particle tracking, and raster image correlation analysis are used to quantify changes in fibrin mechanics on the

  8. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Institute of Scientific and Technical Information of China (English)

    Juan Felipe Diaz Quiroz; Yuping Li; Conrado Aparicio; Karen Echeverri

    2016-01-01

    Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel ther-apies, this is in part due to the complexity of the injury and the diffculty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrixin vitro and when injured, the cells respond as they doin vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells atfer exposure to drugs.

  9. 3-D-Observation of Matrix of MIL 090657 Meteorite by Absorption-Phase Tomography

    Science.gov (United States)

    Miyama, Sugimoto; Tsuchiyama, Akira; Matsuno, Junya; Miyake, Akira; Nakano, Tsukasa; Uesugi, Kentaro; Takeuchi, Akihisa; Takigawa, Aki; Takayama, Akiko; Nakamura-Messenger, Keiko; hide

    2017-01-01

    MIL 090657 meteorite (CR2.7) is one of the least altered primitive carbonaceous c hondrites [1]. This meteorite has amorphous silicates like GEMS (glass with embedded metal and sulfide), which are characteristically contained in cometary dust, in matrix [2,3] as with the Paris meteorite [4]. Three lithologies have been recognized; lithology-1 (L 1) dominated by submicron anhydrous silicates, lithology-2 (L2) by GEMS-like amorphous silicates and lithology-3 (L3) by phyllosilicates [2]. Organic materials are abundant in L 1 and L2 [2,3]. L 1 and L2 were further divided into sub-lithology respectively based on their textures and compositions [5]. These studies were performed by 2D SEM and TEM observations of sample surfaces and thin sections that are unable to reveal what constitute each lithology and how these lithologies are distributed and related to each other. This information will provide important insights into alteration and aggregation processes on asteroids and in the early solar nebula. In this study, MIL 090657 matrix was examined in 3D using two types of X-ray tomography; DET (dual-energy tomography) [6] and SIXM (scanning-imaging X-ray microscopy) [7]. Mineral phases can be discriminated based on absorption contrasts at two different X-ray energies in DET. In SIXM, materials composed of light elements such as water or organic materials can be identified based on phase and absorption contrasts. By combining these methods, we can discriminate not only organic materials from voids but also hydrous alteration products, such as hydrated silicates and carbonates, from anhydrous minerals [8]. In this study, we first observed cross sections of MIL 090657 matrix fragments C1 00 mm) in detail using FE-SEM/ EDS. Based on the results, three house-shaped samples (3 0 -50 mm) were extracted from L 1, L2 and their boundary (H1, H3 and H5, respectively) using FIB. 3D imaging of these samples were conducted at BL47XU of SPring-8, a synchrotron radiation facility, with

  10. Reconstruction of high-resolution 3D dose from matrix measurements : error detection capability of the COMPASS correction kernel method

    NARCIS (Netherlands)

    Godart, J.; Korevaar, E. W.; Visser, R.; Wauben, D. J. L.; van t Veld, Aart

    2011-01-01

    TheCOMPASS system (IBADosimetry) is a quality assurance (QA) tool which reconstructs 3D doses inside a phantom or a patient CT. The dose is predicted according to the RT plan with a correction derived from 2D measurements of a matrix detector. This correction method is necessary since a direct recon

  11. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm.

    Science.gov (United States)

    Xiao, Jin; Klein, Marlise I; Falsetta, Megan L; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Heydorn, Arne; Koo, Hyun

    2012-01-01

    Virulent biofilms are responsible for a range of infections, including oral diseases. All biofilms harbor a microbial-derived extracellular-matrix. The exopolysaccharides (EPS) formed on tooth-pellicle and bacterial surfaces provide binding sites for microorganisms; eventually the accumulated EPS enmeshes microbial cells. The metabolic activity of the bacteria within this matrix leads to acidification of the milieu. We explored the mechanisms through which the Streptococcus mutans-produced EPS-matrix modulates the three-dimensional (3D) architecture and the population shifts during morphogenesis of biofilms on a saliva-coated-apatitic surface using a mixed-bacterial species system. Concomitantly, we examined whether the matrix influences the development of pH-microenvironments within intact-biofilms using a novel 3D in situ pH-mapping technique. Data reveal that the production of the EPS-matrix helps to create spatial heterogeneities by forming an intricate network of exopolysaccharide-enmeshed bacterial-islets (microcolonies) through localized cell-to-matrix interactions. This complex 3D architecture creates compartmentalized acidic and EPS-rich microenvironments throughout the biofilm, which triggers the dominance of pathogenic S. mutans within a mixed-species system. The establishment of a 3D-matrix and EPS-enmeshed microcolonies were largely mediated by the S. mutans gtfB/gtfC genes, expression of which was enhanced in the presence of Actinomyces naeslundii and Streptococcus oralis. Acidic pockets were found only in the interiors of bacterial-islets that are protected by EPS, which impedes rapid neutralization by buffer (pH 7.0). As a result, regions of low pH (biofilm. Our results illustrate the critical interaction between matrix architecture and pH heterogeneity in the 3D environment. The formation of structured acidic-microenvironments in close proximity to the apatite-surface is an essential factor associated with virulence in cariogenic-biofilms. These

  12. Epigenetic and phenotypic profile of fibroblasts derived from induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Kyle J Hewitt

    Full Text Available Human induced pluripotent stem (hiPS cells offer a novel source of patient-specific cells for regenerative medicine. However, the biological potential of iPS-derived cells and their similarities to cells differentiated from human embryonic stem (hES cells remain unclear. We derived fibroblast-like cells from two hiPS cell lines and show that their phenotypic properties and patterns of DNA methylation were similar to that of mature fibroblasts and to fibroblasts derived from hES cells. iPS-derived fibroblasts (iPDK and their hES-derived counterparts (EDK showed similar cell morphology throughout differentiation, and patterns of gene expression and cell surface markers were characteristic of mature fibroblasts. Array-based methylation analysis was performed for EDK, iPDK and their parental hES and iPS cell lines, and hierarchical clustering revealed that EDK and iPDK had closely-related methylation profiles. DNA methylation analysis of promoter regions associated with extracellular matrix (ECM-production (COL1A1 by iPS- and hESC-derived fibroblasts and fibroblast lineage commitment (PDGFRβ, revealed promoter demethylation linked to their expression, and patterns of transcription and methylation of genes related to the functional properties of mature stromal cells were seen in both hiPS- and hES-derived fibroblasts. iPDK cells also showed functional properties analogous to those of hES-derived and mature fibroblasts, as seen by their capacity to direct the morphogenesis of engineered human skin equivalents. Characterization of the functional behavior of ES- and iPS-derived fibroblasts in engineered 3D tissues demonstrates the utility of this tissue platform to predict the capacity of iPS-derived cells before their therapeutic application.

  13. Electrical conduction mechanisms in PbSe and PbS nano crystals 3D matrix layer

    Directory of Open Access Journals (Sweden)

    Matan Arbell

    2016-02-01

    Full Text Available A simulation study and measurements of the electrical conductance in a PbSe and PbS spherical Nano-crystal 3D matrix layer was carried out focusing on its dependences of Nano-crystal size distribution and size gradient along the layer thickness (z-direction. The study suggests a new concept of conductance enhancement by utilizing a size gradient along the layer thickness from mono-layer to the next mono-layer of the Nano-crystals, in order to create a gradient of the energy levels and thus improve directional conductance in this direction. A Monte Carlo simulation of the charge carriers path along the layer thickness of the Nano-crystals 3D matrix using the Miller-Abrahams hopping model was performed. We then compared the conductance characteristics of the gradual size 3D matrix layer to a constant-sized 3D matrix layer that was used as a reference in the simulation. The numerical calculations provided us with insights into the actual conductance mechanism of the PbSe and PbS Nano-crystals 3D matrix and explained the discrepancies in actual conductance and the variability in measured mobilities published in the literature. It is found that the mobility and thus conductance are dependent on a critical electrical field generated between two adjacent nano-crystals. Our model explains the conductance dependents on the: Cathode-Anode distance, the distance between the adjacent nano-crystals in the 3D matrix layer and the size distribution along the current direction. Part of the model (current-voltage dependence was validated using a current-voltage measurements taken on a constant size normal distribution nano-crystals PbS layer (330nm thick compared with the predicted I-V curves. It is shown that under a threshold bias, the current is very low, while after above a threshold bias the conductance is significantly increased due to increase of hopping probability. Once reaching the maximum probability the current tend to level-off reaching the maximal

  14. Nanocomposites based on opal matrixes with 3D-structure formed by mangnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Rinkevich A. B.

    2008-08-01

    Full Text Available Interaction of electromagnetic waves with nanocomposites of materials obtained by doping of opal matrixes with nickel-zinc and manganese-zinc ferrite has been studied. The opal matrixes contain of SiO2 nanospheres with diameter about 250 nm with ferrite nanoparticles in the nanosphere voids. The measurements are carried out in frequency range from 26 to 38 GHz in magnetic fields up to 30 kOe. It was shown that magnetic resonance in the doped matrix is the main reason for microwave variations.

  15. Improved Foreign Object Damage Performance for 3D Woven Ceramic Matrix Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the power density of advanced engines increases, the need for new materials that are capable of higher operating temperatures, such as ceramic matrix composites...

  16. Magnetic properties of 3D nanocomposites consisting of an opal matrix with embedded spinel ferrite particles

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Kleshcheva, S. M.; Perov, D. V.

    2016-02-01

    The magnetic properties of 3D nanocomposites representing Mn-Zn, Ni-Zn, Co-Zn, La-Co-Zn, and Nd-Co-Zn spinel ferrite particles embedded in the interspherical spaces of opal matrices are studied. Experimental data are obtained in the temperature interval 2-300 K by measuring the magnetization at a static magnetic field strength of up to 50 kOe and the ac magnetic susceptibility at an alternating magnetic field amplitude of 4 kOe and a frequency of 80 Hz.

  17. Engineering 3D bio-artificial heart muscle: the acellular ventricular extracellular matrix model.

    Science.gov (United States)

    Patel, Nikita M; Tao, Ze-Wei; Mohamed, Mohamed A; Hogan, Matt K; Gutierrez, Laura; Birla, Ravi K

    2015-01-01

    Current therapies in left ventricular systolic dysfunction and end-stage heart failure include mechanical assist devices or transplant. The development of a tissue-engineered integrative platform would present a therapeutic option that overcomes the limitations associated with current treatment modalities. This study provides a foundation for the fabrication and preliminary viability of the acellular ventricular extracellular matrix (AVEM) model. Acellular ventricular extracellular matrix was fabricated by culturing 4 million rat neonatal cardiac cells around an excised acellular ventricular segment. Acellular ventricular extracellular matrix generated a maximum spontaneous contractile force of 388.3 μN and demonstrated a Frank-Starling relationship at varying pretensions. Histologic assessment displayed cell cohesion and adhesion within the AVEM as a result of passive cell seeding.

  18. Modulation of 3D Fibrin Matrix Stiffness by Intrinsic Fibrinogen–Thrombin Compositions and by Extrinsic Cellular Activity

    Science.gov (United States)

    Duong, Haison; Wu, Benjamin

    2009-01-01

    Fibrin is a substance formed through catalytic conversion of coagulation constituents: fibrinogen and thrombin. The kinetics of the two constituents determines the structural properties of the fibrin architecture. We have shown previously that changing the fibrinogen and thrombin concentrations in the final three-dimensional (3D) fibrin matrix influenced cell proliferation and differentiation. In this study, we further examined the effect of changing fibrinogen and thrombin concentrations in the absence or presence of fibroblasts on the structural modulus or stiffness of 3D fibrin matrices. We have prepared fibroblast-free and fibroblast-embedded 3D fibrin matrices of different fibrinogen and thrombin formulations, and tested the stiffness of these constructs using standard mechanical testing assays. Results showed that there was a corresponding increase in stiffness with increasing thrombin and fibrinogen concentrations; the increase was more notable with fibrinogen and to a lesser degree with thrombin. The effect of fibroblasts on the stiffness of the fibrin construct was also examined. We have observed a small increase in the stiffness of the fibroblast-incorporated fibrin construct as they proliferated and exhibited spreading morphology. To our knowledge, this is the first comprehensive report detailing the relationship between fibrinogen and thrombin concentrations, cell proliferation, and stiffness in 3D fibrin matrices. The data obtained may lead to optimally design suitable bioscaffolds where we can control both cell proliferation and structural integrity for a variety of tissue engineering applications. PMID:19309239

  19. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm(-1) optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies.

  20. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution

    Science.gov (United States)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.

  1. Microvesicles shed from fibroblasts act as metalloproteinase carriers in a 3-D collagen matrix.

    Science.gov (United States)

    Laghezza Masci, Valentina; Taddei, Anna Rita; Gambellini, Gabriella; Giorgi, Franco; Fausto, Anna Maria

    2016-01-01

    This study shows that fibroblasts migrating into a collagen matrix release numerous microvesicles into the surrounding medium. By spreading in regions of the matrix far distant from cells of origin, microvesicles carry metalloproteinase 9 (MMP-9) to act upon the collagen fibrils. As a result, the collagen matrix is gradually transformed from a laminar to a fibrillar type of architecture. As shown by western blots and gelatin zymography, MMP-9 is secreted as a 92 kDa precursor and activated upon release of 82 kDa product into the culture medium. Activation is more efficient under three-dimensional than in two-dimensional culturing conditions. While MMP-9 labeling is associated with intraluminal vesicles clustered inside the microvesicles, the microvesicle's integrin β1 marker is bound to the outer membrane. The intraluminal vesicles are recruited from the cortical cytoplasm and eventually released following uploading inside the microvesicle. Here, we propose that fusion of the intraluminal vesicles with the outer microvesicle's membrane could work as a mechanism controlling the extent to which MMP-9 is first activated and then released extracellularly.

  2. Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate.

    Science.gov (United States)

    Leight, Jennifer L; Alge, Daniel L; Maier, Andrew J; Anseth, Kristi S

    2013-10-01

    Incorporation of degradable moieties into synthetic hydrogels has greatly increased the utility of these three-dimensional matrices for in vitro cell culture as well as tissue engineering applications. A common method for introducing degradability is the inclusion of oligopeptides sensitive to cleavage by matrix metalloproteinases (MMPs), enabling cell-mediated remodeling and migration within the material. While this strategy has been effective, characterization and measurement of cell-mediated degradation in these materials has remained challenging. There are 20+ MMP family members whose activity is regulated in space and time by a number of biochemical and biophysical cues. Thus, the typical approach of characterizing cleavage of degradable moieties in solution with recombinant enzymes does not easily translate to three-dimensional cell-mediated matrix remodeling. To address this challenge, we report here the synthesis of a cell-laden hydrogel matrix functionalized with a fluorogenic peptide substrate to provide real-time, quantitative monitoring of global MMP activity. Using this system, stimulation of MMP activity was observed with growth factor treatment in mammary epithelial cells and compared to classical zymography results. Further, the effect of biophysical cues on MMP activity of human mesenchymal stem cells was also investigated where more rigid hydrogels were observed to increase MMP activity. The regulation of MMP activity by these biochemical and biophysical cues highlights the need for in situ, real-time measurement of hydrogel degradation, and use of these functionalized hydrogels will aid in future rational design of degradable synthetic hydrogels for in vitro cell studies and tissue engineering applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Response of microscale cell/matrix constructs to successive force application in a 3D environment

    Science.gov (United States)

    Liu, Alan; Chen, Christopher; Reich, Daniel

    2014-03-01

    Mechanical dilation of arteries by pulsatile blood flow is directly opposed by coordinated contraction of a band of smooth muscle tissue that envelops the vessels. This mechanical adaptation of smooth muscle cells to external loading is a critical feature of normal blood vessel function. While most previous studies on biomechanical systems have focused on single cells or large excised tissue, we utilize a device to apply forces to engineered smooth muscle microtissues. This device consists of arrayed pairs of elastomeric micro-cantilevers capable of magnetic actuation. Tissues are formed through self-assembly following the introduction of cell-infused collagen gel to the array. With this system, we are able to dynamically stretch and relax these sub-millimeter sized tissues. The timing and magnitude of the force application can be precisely controlled and thus can be used to mimic a wide range of physiological behavior. In particular, we will discuss results that show that the interval between successive force applications mediates the both the subsequent mechanical and active dynamics of the cell/matrix composite system. Understanding this process will lead to better understanding of the interplay between cell and extracellular matrix responses to mechanical stimulus at a novel length scale.

  4. Incorporation of Ag metallic nanoparticles in 3D gelatin matrix via the green strategy solution plasma.

    Science.gov (United States)

    Pootawang, Panuphong; Kim, Seong Cheol; Kim, Jung Wan; Lee, Sang Yul

    2013-01-01

    The environmental concern pays much attention to the recent cause of the global warming effect. The reduction of the chemical uses is one of many ways to avoid this crucial problem. Herein, the green process for silver nanometallic particle formation and incorporation in gelatin are proposed. By using a novel discharge process in solution named solution plasma, the silver nanometallic particle formation and its incorporation in gelatin could be accomplished in one-batch reactor during discharge by using silver nitrate (AgNO3) solution as the precursor and controlling systematical parameters. The three-dimensional scaffolds of gelatin/silver biocomposite were fabricated using lyophilizer and the water-soluble property of gelatin was improved by irradiation of ultraviolet ray. The well dispersed silver nanoparticles with the mean particle size 10-20 nm in the good texture of gelatin matrix were obtained. The density of micropore in gelatin/silver scaffold was proportional to the gelatin concentration. In addition, thermal stability of prepared samples had no change comparing with pure gelatin, indicating that the incorporation of silver nanoparticles in gelatin matrix did not affect to the nature of gelatin.

  5. Cells in 3D matrices under interstitial flow: effects of extracellular matrix alignment on cell shear stress and drag forces.

    Science.gov (United States)

    Pedersen, John A; Lichter, Seth; Swartz, Melody A

    2010-03-22

    Interstitial flow is an important regulator of various cell behaviors both in vitro and in vivo, yet the forces that fluid flow imposes on cells embedded in a 3D extracellular matrix (ECM), and the effects of matrix architecture on those forces, are not well understood. Here, we demonstrate how fiber alignment can affect the shear and pressure forces on the cell and ECM. Using computational fluid dynamics simulations, we show that while the solutions of the Brinkman equation accurately estimate the average fluid shear stress and the drag forces on a cell within a 3D fibrous medium, the distribution of shear stress on the cellular surface as well as the peak shear stresses remain intimately related to the pericellular fiber architecture and cannot be estimated using bulk-averaged properties. We demonstrate that perpendicular fiber alignment of the ECM yields lower shear stress and pressure forces on the cells and higher stresses on the ECM, leading to decreased permeability, while parallel fiber alignment leads to higher stresses on cells and increased permeability, as compared to a cubic lattice arrangement. The Spielman-Goren permeability relationships for fibrous media agreed well with CFD simulations of flow with explicitly considered fibers. These results suggest that the experimentally observed active remodeling of ECM fibers by fibroblasts under interstitial flow to a perpendicular alignment could serve to decrease the shear and drag forces on the cell.

  6. Improvement of a 3D radar backscattering model using matrix-doubling method

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Radiative transfer models have been widely used to simulate the radar backscattering from forested areas. A three-dimensional radar backscatter model of forest canopy developed in previous studies takes full account of spatial position of trees in a forest stand, and the interactions among crown, trunk and ground surface. The model predicted well for the co-polarized backscatter measurements, but underestimated the backscattering for cross-polarization, primarily because only the first-order scattering within tree crowns was considered in the model. The backscattering at cross-polarization depends strongly on multiple scatter- ing within tree crowns. To produce good estimations for cross-polarized component, the matrix-doubling method is employed here to compute multiple-scattering within the crown. The modified model is compared with the original model, and the field forest measurements and AIRSAR data are used for validation of the modified model. The cross-polarization backscattering is improved in different degrees for different crown structures and at different bands.

  7. Integrated Analysis of Intracellular Dynamics of MenaINV Cancer Cells in a 3D Matrix.

    Science.gov (United States)

    Mak, Michael; Anderson, Sarah; McDonough, Meghan C; Spill, Fabian; Kim, Jessica E; Boussommier-Calleja, Alexandra; Zaman, Muhammad H; Kamm, Roger D

    2017-05-09

    The intracellular environment is composed of a filamentous network that exhibits dynamic turnover of cytoskeletal components and internal force generation from molecular motors. Particle tracking microrheology enables a means to probe the internal mechanics and dynamics. Here, we develop an analytical model to capture the basic features of the active intracellular mechanical environment, including both thermal and motor-driven effects, and show consistency with a diverse range of experimental microrheology data. We further perform microrheology experiments, integrated with Brownian dynamics simulations of the active cytoskeleton, on metastatic breast cancer cells embedded in a three-dimensional collagen matrix with and without the presence of epidermal growth factor to probe the intracellular mechanical response in a physiologically mimicking scenario. Our results demonstrate that EGF stimulation can alter intracellular stiffness and power output from molecular motor-driven fluctuations in cells overexpressing an invasive isoform of the actin-associated protein Mena. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. The Synergistic Effects of Matrix Stiffness and Composition on the Response of Chondroprogenitor Cells in a 3D Precondensation Microenvironment.

    Science.gov (United States)

    Carrion, Bita; Souzanchi, Mohammad F; Wang, Victor T; Tiruchinapally, Gopinath; Shikanov, Ariella; Putnam, Andrew J; Coleman, Rhima M

    2016-05-01

    Improve functional quality of cartilage tissue engineered from stem cells requires a better understanding of the functional evolution of native cartilage tissue. Therefore, a biosynthetic hydrogel was developed containing RGD, hyaluronic acid and/or type-I collagen conjugated to poly(ethylene glycol) acrylate to recapitulate the precondensation microenvironment of the developing limb. Conjugation of any combination of the three ligands did not alter the shear moduli or diffusion properties of the PEG hydrogels; thus, the influence of ligand composition on chondrogenesis could be investigated in the context of varying matrix stiffness. Gene expression of ligand receptors (CD44 and the b1-integrin) as well as markers of condensation (cell clustering and N-cadherin gene expression) and chondrogenesis (Col2a1 gene expression and sGAG production) by chondroprogenitor cells in this system were modulated by both matrix stiffness and ligand composition, with the highest gene expression occurring in softer hydrogels containing all three ligands. Cell proliferation in these 3D matrices for 7 d prior to chondrogenic induction increased the rate of sGAG production in a stiffness-dependent manner. This biosynthetic hydrogel supports the features of early limb-bud condensation and chondrogenesis and is a novel platform in which the influence of the matrix physicochemical properties on these processes can be elucidated.

  9. Determinig of an object orientation in 3D space using direction cosine matrix and non-stationary Kalman filter

    Directory of Open Access Journals (Sweden)

    Bieda Robert

    2016-06-01

    Full Text Available This paper describes a method which determines the parameters of an object orientation in 3D space. The rotation angles calculation bases on the signals fusion obtained from the inertial measurement unit (IMU. The IMU measuring system provides information from a linear acceleration sensors (accelerometers, the Earth’s magnetic field sensors (magnetometers and the angular velocity sensors (gyroscopes. Information about the object orientation is presented in the form of direction cosine matrix whose elements are observed in the state vector of the non-stationary Kalman filter. The vector components allow to determine the rotation angles (roll, pitch and yaw associated with the object. The resulting waveforms, for different rotation angles, have no negative attributes associated with the construction and operation of the IMU measuring system. The described solution enables simple, fast and effective implementation of the proposed method in the IMU measuring systems.

  10. Bioprinting 3D cell-laden hydrogel microarray for screening human periodontal ligament stem cell response to extracellular matrix.

    Science.gov (United States)

    Ma, Yufei; Ji, Yuan; Huang, Guoyou; Ling, Kai; Zhang, Xiaohui; Xu, Feng

    2015-12-22

    Periodontitis is an inflammatory disease negatively affecting up to 15% of adults worldwide. Periodontal ligament stem cells (PDLSCs) hold great promises for periodontal tissue regeneration, where it is necessary to find proper extracellular matrix (ECM) materials (e.g., composition, concentration). In this study, we proposed a bioprinting-based approach to generate nano-liter sized three-dimensional (3D) cell-laden hydrogel array with gradient of ECM components, through controlling the volume ratio of two hydrogels, such as gelatin methacrylate (GelMA) and poly(ethylene glycol) (PEG) dimethacrylate. The resulting cell-laden array with a gradient of GelMA/PEG composition was used to screen human PDLSC response to ECM. The behavior (e.g., cell viability, spreading) of human PDLSCs in GelMA/PEG array were found to be depended on the volume ratios of GelMA/PEG, with cell viability and spreading area decreased along with increasing the ratio of PEG. The developed approach would be useful for screening cell-biomaterial interaction in 3D and promoting regeneration of functional tissue.

  11. 3-D Phantom and In Vivo Cardiac Speckle Tracking Using a Matrix Array and Raw Echo Data

    Science.gov (United States)

    Byram, Brett C.; Holley, Greg; Giannantonio, Doug M.; Trahey, Gregg E.

    2012-01-01

    Cardiac motion has been tracked using various methods, which vary in their invasiveness and dimensionality. One such noninvasive modality for cardiac motion tracking is ultrasound. Three-dimensional ultrasound motion tracking has been demonstrated using detected data at low volume rates. However, the effects of volume rate, kernel size, and data type (raw and detected) have not been sufficiently explored. First comparisons are made within the stated variables for 3-D speckle tracking. Volumetric data were obtained in a raw, baseband format using a matrix array attached to a high parallel receive beam count scanner. The scanner was used to acquire phantom and human in vivo cardiac volumetric data at 1000-Hz volume rates. Motion was tracked using phase-sensitive normalized cross-correlation. Subsample estimation in the lateral and elevational dimensions used the grid-slopes algorithm. The effects of frame rate, kernel size, and data type on 3-D tracking are shown. In general, the results show improvement of motion estimates at volume rates up to 200 Hz, above which they become stable. However, peak and pixel hopping continue to decrease at volume rates higher than 200 Hz. The tracking method and data show, qualitatively, good temporal and spatial stability (for independent kernels) at high volume rates. PMID:20378447

  12. Reproducing Electric Field Observations during Magnetic Storms by means of Rigorous 3-D Modelling and Distortion Matrix Co-estimation

    Science.gov (United States)

    Püthe, Christoph; Manoj, Chandrasekharan; Kuvshinov, Alexey

    2015-04-01

    Electric fields induced in the conducting Earth during magnetic storms drive currents in power transmission grids, telecommunication lines or buried pipelines. These geomagnetically induced currents (GIC) can cause severe service disruptions. The prediction of GIC is thus of great importance for public and industry. A key step in the prediction of the hazard to technological systems during magnetic storms is the calculation of the geoelectric field. To address this issue for mid-latitude regions, we developed a method that involves 3-D modelling of induction processes in a heterogeneous Earth and the construction of a model of the magnetospheric source. The latter is described by low-degree spherical harmonics; its temporal evolution is derived from observatory magnetic data. Time series of the electric field can be computed for every location on Earth's surface. The actual electric field however is known to be perturbed by galvanic effects, arising from very local near-surface heterogeneities or topography, which cannot be included in the conductivity model. Galvanic effects are commonly accounted for with a real-valued time-independent distortion matrix, which linearly relates measured and computed electric fields. Using data of various magnetic storms that occurred between 2000 and 2003, we estimated distortion matrices for observatory sites onshore and on the ocean bottom. Strong correlations between modellings and measurements validate our method. The distortion matrix estimates prove to be reliable, as they are accurately reproduced for different magnetic storms. We further show that 3-D modelling is crucial for a correct separation of galvanic and inductive effects and a precise prediction of electric field time series during magnetic storms. Since the required computational resources are negligible, our approach is suitable for a real-time prediction of GIC. For this purpose, a reliable forecast of the source field, e.g. based on data from satellites

  13. 3D model of a matrix source of negative ions: RF driving by a large area planar coil

    Science.gov (United States)

    Demerdzhiev, A.; Lishev, St.; Tarnev, Kh.; Shivarova, A.

    2015-04-01

    Based on three-dimensional (3D) modeling, different manners of a planar-coil inductive discharge driving of a plasma source completed as a matrix of small-radius hydrogen discharges are studied regarding a proper choice of an efficient and alike rf power deposition into the separate discharges of the matrix. Driving the whole matrix by a single coil and splitting it to blocks of discharge tubes, with single coil driving of each block, are the two cases considered. The results from the self-consistent model presented for a block of discharge tubes show its reliability in ensuring the same spatial distribution of the plasma parameters in the discharges completing the block. Since regarding the construction of the matrix, its driving as a whole by a single coil is the most reasonable decision, three modifications of the coil design have been tested: two zigzag coils with straight conductors passing, respectively, between and through the bottoms of the discharge tubes and a coil with an "omega" shaped conductor on the bottom of each tube. Among these three configurations, the latter ‒ a coil with an Ω-shaped conductor on the bottom of each tube ‒ shows up with the highest rf efficiency of an inductive discharge driving, shown by results for the rf current induced in the discharges obtained from an electrodynamical description. In all the cases considered the spatial distribution of the induced current density is analysed based on the manner of the penetration into the plasma of the wave field sustaining the inductive discharges.

  14. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions

    Directory of Open Access Journals (Sweden)

    Debora B. Petropolis

    2014-04-01

    Full Text Available Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D environment mainly composed of Collagen I (COL I. This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model.

  15. Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions.

    Science.gov (United States)

    Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier

    2016-01-01

    The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini.

  16. Modeling and Analysis of Granite Matrix Pore Structure and Hydraulic Characteristics in 2D and 3D Networks

    Science.gov (United States)

    Gvozdik, L.; Polak, M.; Zaruba, J.; Vanecek, M.

    2010-12-01

    A geological environment labeled as a Granite massif represents in terms of groundwater flow and transport a distinct hydrogeological environment from that of sedimentary basins, the characterisation of which is generally more complex and uncertain. Massifs are composed of hard crystalline rocks with the very low effective porosity. Due to their rheological properties such rocks are predisposed to brittle deformation resulting from changes in stress conditions. Our specific research project (Research on the influence of intergrangular porosity on deep geological disposal: geological formations, methodology and the development of measurement apparatus) is focussed on the problem of permeable zones within apparently undisturbed granitic rock matrix. The project including the both laboratory and in-situ tracer tests study migration along and through mineral grains in fresh and altered granite. The objective of the project is to assess whether intergranular porosity is a general characteristic of the granitic rock matrix or subject to significant evolution resulting from geochemical and/or hydrogeochemical processes, geotechnical and/or mechanical processes. Moreover, the research is focussed on evaluating methods quantifying intergranular porosity by both physical testing and mathematical modelling using verified standard hydrological software tools. Groundwater flow in microfractures and intergranular pores in granite rock matrix were simulated in three standard hydrogeological modeling programs with completely different conceptual approaches: MODFLOW (Equivalent Continuum concept), FEFLOW (Discrete Fracture and Equivalent Continuum concepts) and NAPSAC (Discrete Fracture Network concept). Specialized random fracture generators were used for creation of several 2D and 3D models in each of the chosen program. Percolation characteristics of these models were tested and analyzed. Several scenarios of laboratory tests of the rock samples permeability made in triaxial

  17. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    Science.gov (United States)

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of

  18. 3-D sound field control using matrix arrays for pipeline-inspection; 3D-Schallfeldsteuerung mit Matrixarrays fuer die Pipelinepruefung

    Energy Technology Data Exchange (ETDEWEB)

    Schenk, Gottfried; Brackrock, Daniel; Boehm, Rainer [Bundesanstalt fuer Materialforschung und -pruefung (Germany); Willems, Herbert [NDT Systems and Services GmbH and Co. KG, Stutensee (Germany)

    2013-06-01

    The main objective of the investigations refers to the adoption of the Phased Array Technique for its application to automated pipeline inspection. Model calculation are carried out to optimise a matrix-array of 16x16 elements for this application. The results are verified in the course of laboratory measurements by means of special test pieces containing a number of flat bottom holes and notches of various dephts and lenght. Finally a concept is developed to employ the technique for an automated pipeline explorer system by means of an application specific circuit (ASIC). The mixed signal chip requires the complete set of analogue and digital front end stages for driving the phased array probe. The design of such an ASIC and its implementation into a prototype explorer system is foreseen within the context of a planned follow-up project.

  19. Matrix density alters zyxin phosphorylation, which limits peripheral process formation and extension in endothelial cells invading 3D collagen matrices.

    Science.gov (United States)

    Abbey, Colette A; Bayless, Kayla J

    2014-09-01

    This study was designed to determine the optimal conditions required for known pro-angiogenic stimuli to elicit successful endothelial sprouting responses. We used an established, quantifiable model of endothelial cell (EC) sprout initiation where ECs were tested for invasion in low (1 mg/mL) and high density (5 mg/mL) 3D collagen matrices. Sphingosine 1-phosphate (S1P) alone, or S1P combined with stromal derived factor-1α (SDF) and phorbol ester (TPA), elicited robust sprouting responses. The ability of these factors to stimulate sprouting was more effective in higher density collagen matrices. S1P stimulation resulted in a significant increase in invasion distance, and with the exception of treatment groups containing phorbol ester, invasion distance was longer in 1mg/mL compared to 5mg/mL collagen matrices. Closer examination of cell morphology revealed that increasing matrix density and supplementing with SDF and TPA enhanced the formation of multicellular structures more closely resembling capillaries. TPA enhanced the frequency and size of lumen formation and correlated with a robust increase in phosphorylation of p42/p44 Erk kinase, while S1P and SDF did not. Also, a higher number of significantly longer extended processes formed in 5mg/mL compared to 1mg/mL collagen matrices. Because collagen matrices at higher density have been reported to be stiffer, we tested for changes in the mechanosensitive protein, zyxin. Interestingly, zyxin phosphorylation levels inversely correlated with matrix density, while levels of total zyxin did not change significantly. Immunofluorescence and localization studies revealed that total zyxin was distributed evenly throughout invading structures, while phosphorylated zyxin was slightly more intense in extended peripheral processes. Silencing zyxin expression increased extended process length and number of processes, while increasing zyxin levels decreased extended process length. Altogether these data indicate that ECs

  20. Comparison of 3D Reconstructive Technologies Used for Morphometric Research and the Translation of Knowledge Using a Decision Matrix

    Science.gov (United States)

    Martin, Charys M.; Roach, Victoria A.; Nguyen, Ngan; Rice, Charles L.; Wilson, Timothy D.

    2013-01-01

    The use of three-dimensional (3D) models for education, pre-operative assessment, presurgical planning, and measurement have become more prevalent. With the increase in prevalence of 3D models there has also been an increase in 3D reconstructive software programs that are used to create these models. These software programs differ in…

  1. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.

    Science.gov (United States)

    Wang, Christine; Tong, Xinming; Yang, Fan

    2014-07-01

    Glioblastoma (GBM) is the most common and aggressive form of primary brain tumor with a median survival of 12-15 months, and the mechanisms underlying GBM tumor progression remain largely elusive. Given the importance of tumor niche signaling in driving GBM progression, there is a strong need to develop in vitro models to facilitate analysis of brain tumor cell-niche interactions in a physiologically relevant and controllable manner. Here we report the development of a bioengineered 3D brain tumor model to help elucidate the effects of matrix stiffness on GBM cell fate using poly(ethylene-glycol) (PEG)-based hydrogels with brain-mimicking biochemical and mechanical properties. We have chosen PEG given its bioinert nature and tunable physical property, and the resulting hydrogels allow tunable matrix stiffness without changing the biochemical contents. To facilitate cell proliferation and migration, CRGDS and a MMP-cleavable peptide were chemically incorporated. Hyaluronic acid (HA) was also incorporated to mimic the concentration in the brain extracellular matrix. Using U87 cells as a model GBM cell line, we demonstrate that such biomimetic hydrogels support U87 cell growth, spreading, and migration in 3D over the course of 3 weeks in culture. Gene expression analyses showed U87 cells actively deposited extracellular matrix and continued to upregulate matrix remodeling genes. To examine the effects of matrix stiffness on GBM cell fate in 3D, we encapsulated U87 cells in soft (1 kPa) or stiff (26 kPa) hydrogels, which respectively mimics the matrix stiffness of normal brain or GBM tumor tissues. Our results suggest that changes in matrix stiffness induce differential GBM cell proliferation, morphology, and migration modes in 3D. Increasing matrix stiffness led to delayed U87 cell proliferation inside hydrogels, but cells formed denser spheroids with extended cell protrusions. Cells cultured in stiff hydrogels also showed upregulation of HA synthase 1 and matrix

  2. The Effects of Matrix Stiffness and RhoA on the Phenotypic Plasticity of Smooth Muscle Cells in a 3-D Biosynthetic Hydrogel System

    Science.gov (United States)

    Peyton, Shelly R.; Kim, Peter D.; Ghajar, Cyrus M.; Seliktar, Dror; Putnam, Andrew J.

    2008-01-01

    Studies using 2-D cultures have shown that the mechanical properties of the extracellular matrix (ECM) influence cell migration, spreading, proliferation, and differentiation; however, cellular mechanosensing in 3-D remains under-explored. To investigate this topic, a unique biomaterial system based on poly(ethylene glycol)-conjugated fibrinogen was adapted to study phenotypic plasticity in smooth muscle cells (SMCs) as a function of ECM mechanics in 3-D. Tuning compressive modulus between 448–5804 Pa modestly regulated SMC cytoskeletal assembly in 3-D, with spread cells in stiff matrices having a slightly higher degree of F-actin bundling after prolonged culture. However, vinculin expression in all 3-D conditions was qualitatively low and was not assembled into the classic focal adhesions typically seen in 2-D cultures. Given the evidence that RhoA-mediated cytoskeletal contractility represents a critical node in mechanosensing, we molecularly upregulated contractility by inducing SMCs to express constitutively active RhoA. In these cells, F-actin bundling and total vinculin expression increased, and focal adhesion-like structures began to emerge, consistent with RhoA’s mechanism of action cells cultured on 2-D substrates. Furthermore, SMC proliferation in 3-D did not depend significantly on matrix stiffness, and was reduced by constitutive activation of RhoA irrespective of ECM mechanical properties. Conversely, the expression of contractile markers globally increased with constitutive RhoA activation and depended on 3-D matrix stiffness only in cells with heightened RhoA activity. Combined, these data suggest the synergistic effects of ECM mechanics and RhoA activity on SMC phenotype in 3-D are distinct from those in 2-D, and highlight the importance of studying the mechanical role of cell-matrix interactions in tunable 3-D environments. PMID:18342366

  3. Intracellular nanomanipulation by a photonic-force microscope with real-time acquisition of a 3D stiffness matrix

    Science.gov (United States)

    Bertseva, E.; Singh, A. S. G.; Lekki, J.; Thévenaz, P.; Lekka, M.; Jeney, S.; Gremaud, G.; Puttini, S.; Nowak, W.; Dietler, G.; Forró, L.; Unser, M.; Kulik, A. J.

    2009-07-01

    A traditional photonic-force microscope (PFM) results in huge sets of data, which requires tedious numerical analysis. In this paper, we propose instead an analog signal processor to attain real-time capabilities while retaining the richness of the traditional PFM data. Our system is devoted to intracellular measurements and is fully interactive through the use of a haptic joystick. Using our specialized analog hardware along with a dedicated algorithm, we can extract the full 3D stiffness matrix of the optical trap in real time, including the off-diagonal cross-terms. Our system is also capable of simultaneously recording data for subsequent offline analysis. This allows us to check that a good correlation exists between the classical analysis of stiffness and our real-time measurements. We monitor the PFM beads using an optical microscope. The force-feedback mechanism of the haptic joystick helps us in interactively guiding the bead inside living cells and collecting information from its (possibly anisotropic) environment. The instantaneous stiffness measurements are also displayed in real time on a graphical user interface. The whole system has been built and is operational; here we present early results that confirm the consistency of the real-time measurements with offline computations.

  4. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Canamon, I.; Javier Elorza, F. [Universidad Politecnica de Madrid, Dept. de Matematica Aplicada y Metodos Informaticas, ETSI Minas (UPM) (Spain); Ababou, R. [Institut de Mecanique des Fluides de Toulouse (IMFT), 31 (France)

    2007-07-01

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLAB{sup R}, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  5. A Prototype PZT Matrix Transducer With Low-Power Integrated Receive ASIC for 3-D Transesophageal Echocardiography.

    Science.gov (United States)

    Chen, Chao; Raghunathan, Shreyas B; Yu, Zili; Shabanimotlagh, Maysam; Chen, Zhao; Chang, Zu-yao; Blaak, Sandra; Prins, Christian; Ponte, Jacco; Noothout, Emile; Vos, Hendrik J; Bosch, Johan G; Verweij, Martin D; de Jong, Nico; Pertijs, Michiel A P

    2016-01-01

    This paper presents the design, fabrication, and experimental evaluation of a prototype lead zirconium titanate (PZT) matrix transducer with an integrated receive ASIC, as a proof of concept for a miniature three-dimensional (3-D) transesophageal echocardiography (TEE) probe. It consists of an array of 9 ×12 piezoelectric elements mounted on the ASIC via an integration scheme that involves direct electrical connections between a bond-pad array on the ASIC and the transducer elements. The ASIC addresses the critical challenge of reducing cable count, and includes front-end amplifiers with adjustable gains and micro-beamformer circuits that locally process and combine echo signals received by the elements of each 3 ×3 subarray. Thus, an order-of-magnitude reduction in the number of receive channels is achieved. Dedicated circuit techniques are employed to meet the strict space and power constraints of TEE probes. The ASIC has been fabricated in a standard 0.18-μm CMOS process and consumes only 0.44 mW/channel. The prototype has been acoustically characterized in a water tank. The ASIC allows the array to be presteered across ±37° while achieving an overall dynamic range of 77 dB. Both the measured characteristics of the individual transducer elements and the performance of the ASIC are in good agreement with expectations, demonstrating the effectiveness of the proposed techniques.

  6. Implementing a Matrix-free Analytical Jacobian to Handle Nonlinearities in Models of 3D Lithospheric Deformation

    Science.gov (United States)

    Kaus, B.; Popov, A.

    2015-12-01

    The analytical expression for the Jacobian is a key component to achieve fast and robust convergence of the nonlinear Newton-Raphson iterative solver. Accomplishing this task in practice often requires a significant algebraic effort. Therefore it is quite common to use a cheap alternative instead, for example by approximating the Jacobian with a finite difference estimation. Despite its simplicity it is a relatively fragile and unreliable technique that is sensitive to the scaling of the residual and unknowns, as well as to the perturbation parameter selection. Unfortunately no universal rule can be applied to provide both a robust scaling and a perturbation. The approach we use here is to derive the analytical Jacobian for the coupled set of momentum, mass, and energy conservation equations together with the elasto-visco-plastic rheology and a marker in cell/staggered finite difference method. The software project LaMEM (Lithosphere and Mantle Evolution Model) is primarily developed for the thermo-mechanically coupled modeling of the 3D lithospheric deformation. The code is based on a staggered grid finite difference discretization in space, and uses customized scalable solvers form PETSc library to efficiently run on the massively parallel machines (such as IBM Blue Gene/Q). Currently LaMEM relies on the Jacobian-Free Newton-Krylov (JFNK) nonlinear solver, which approximates the Jacobian-vector product using a simple finite difference formula. This approach never requires an assembled Jacobian matrix and uses only the residual computation routine. We use an approximate Jacobian (Picard) matrix to precondition the Krylov solver with the Galerkin geometric multigrid. Because of the inherent problems of the finite difference Jacobian estimation, this approach doesn't always result in stable convergence. In this work we present and discuss a matrix-free technique in which the Jacobian-vector product is replaced by analytically-derived expressions and compare results

  7. Objective assessment and design improvement of a staring, sparse transducer array by the spatial crosstalk matrix for 3D photoacoustic tomography.

    Directory of Open Access Journals (Sweden)

    Philip Wong

    Full Text Available Accurate reconstruction of 3D photoacoustic (PA images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT staring array system and analyze system performance using singular value decomposition (SVD. The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate. The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization.

  8. Objective assessment and design improvement of a staring, sparse transducer array by the spatial crosstalk matrix for 3D photoacoustic tomography.

    Science.gov (United States)

    Wong, Philip; Kosik, Ivan; Raess, Avery; Carson, Jeffrey J L

    2015-01-01

    Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization.

  9. Objective Assessment and Design Improvement of a Staring, Sparse Transducer Array by the Spatial Crosstalk Matrix for 3D Photoacoustic Tomography

    Science.gov (United States)

    Kosik, Ivan; Raess, Avery

    2015-01-01

    Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization. PMID:25875177

  10. Tension-Compression Fatigue Behavior of 2D and 3D Polymer Matrix Composites at Elevated Temperature

    Science.gov (United States)

    2015-09-21

    specimen test, a) b) c) d) 21 with two specimens left untested. A new furnace insulation insert was craved to fit the furnace. Then another...noteworthy, that Wilkinson [11] reported that the tensile properties and the tensile stress- strain response of the 3D PMC also appeared to be independent of...as-processed 2D PMC specimen C1-11 with 0/90˚ fiber orientation. In contrast to the 3D PMC, the surface of the 2D PMC specimen appears to be smooth

  11. 3D asynchronous particle tracking in single and dual continuum matrix-fractures. Application to nuclear waste storage; Modelisation 3D du transport particulaire asynchrone en simple et double continuum matrice-fractures: application au stockage de dechets nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Lam, M.Ph

    2008-06-15

    matrix and the fracture network. Each material is separately represented by a continuous medium with equivalent homogenized parameters and its own system of governing equations coupled by the exchange rate of water and tracer mass between the fractures and the porous matrix. The exchange of tracer is interpreted with particles transitional probabilities to jump from a continuum to the other. The combination of the asynchronous particle tracking method with a double-continuum approach makes the difficulty of the method. The dual-continuum approach in transport in 3D heterogeneous porous media is applied on a regular fracture network. First results show that the model is adequate for low contrast permeability between the matrix and the fractures. (author)

  12. Comparison Between 2-D and 3-D Stiffness Matrix Model Simulation of Sasw Inversion for Pavement Structure

    Directory of Open Access Journals (Sweden)

    Sri Atmaja P. Rosidi

    2007-01-01

    Full Text Available The Spectral Analysis of Surface Wave (SASW method is a non-destructive in situ seismic technique used to assess and evaluate the material stiffness (dynamic elastic modulus and thickness of pavement layers at low strains. These values can be used analytically to calculate load capacities in order to predict the performance of pavement system. The SASW method is based on the dispersion phenomena of Rayleigh waves in layered media. In order to get the actual shear wave velocities, 2-D and 3-D models are used in the simulation of the inversion process for best fitting between theoretical and empirical dispersion curves. The objective of this study is to simulate and compare the 2-D and 3-D model of SASW analysis in the construction of the theoretical dispersion curve for pavement structure evaluation. The result showed that the dispersion curve from the 3-D model was similar with the dispersion curve of the actual pavement profile compared to the 2-D model. The wave velocity profiles also showed that the 3-D model used in the SASW analysis is able to detect all the distinct layers of flexible pavement units.

  13. Calculation of the electronic and magnetic structures of 3d impurities in the Hcp Fe matrix; Calculo da estrutura eletronica e magnetica de impurezas 3d na matriz do Fe HCP

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Fernando

    1995-12-31

    In this work we investigate the local magnetic properties and the electronic structure of HCP Fe, as well introducing transition metals atoms 3d (Cs, Ti, Cr, Mn, Co, Ni, Cu, Zn) in HCP iron matrix. We employed the discrete variational method (DVM), which is an orbital molecular method which incorporate the Hartree-Fock-Slater theory and the linear combination of atomic orbitals (LCAO), in the self-consistent charge approximation and the local density approximation of Von Barth and Hedin to the exchange-correlation potential. We used the embedded cluster model to investigate the electronic structure and the local magnetic properties for the central atom of a cluster of 27 atoms immersed in the microcrystal representing the HCP Fe. (author) 32 refs., 19 figs., 2 tabs.

  14. Laser-Deposited In Situ TiC-Reinforced Nickel Matrix Composites: 3D Microstructure and Tribological Properties (Postprint)

    Science.gov (United States)

    2014-04-03

    was measured using a stan- dard Vickers microhardness tester using a 300-g load. Sliding friction and wear testing was con- ducted with a Falex (Implant...exported to AvizoFire 6.3 format for 3D visualization of TiC and graphite reinforcements. Microhardness and Tribological Properties The microhardness ...Sciences) ISC-200 pin- on-disk (POD) system at room temperature. The samples were openly exposed in lab air (40% RH) during the tests . Tests were

  15. ¹³C NMR-distance matrix descriptors: optimal abstract 3D space granularity for predicting estrogen binding.

    Science.gov (United States)

    Slavov, Svetoslav H; Geesaman, Elizabeth L; Pearce, Bruce A; Schnackenberg, Laura K; Buzatu, Dan A; Wilkes, Jon G; Beger, Richard D

    2012-07-23

    An improved three-dimensional quantitative spectral data-activity relationship (3D-QSDAR) methodology was used to build and validate models relating the activity of 130 estrogen receptor binders to specific structural features. In 3D-QSDAR, each compound is represented by a unique fingerprint constructed from (13)C chemical shift pairs and associated interatomic distances. Grids of different granularity can be used to partition the abstract fingerprint space into congruent "bins" for which the optimal size was previously unexplored. For this purpose, the endocrine disruptor knowledge base data were used to generate 50 3D-QSDAR models with bins ranging in size from 2 ppm × 2 ppm × 0.5 Å to 20 ppm × 20 ppm × 2.5 Å, each of which was validated using 100 training/test set partitions. Best average predictivity in terms of R(2)test was achieved at 10 ppm ×10 ppm × Z Å (Z = 0.5, ..., 2.5 Å). It was hypothesized that this optimum depends on the chemical shifts' estimation error (±4.13 ppm) and the precision of the calculated interatomic distances. The highest ranked bins from partial least-squares weights were found to be associated with structural features known to be essential for binding to the estrogen receptor.

  16. Cell-laden 3D bioprinting hydrogel matrix depending on different compositions for soft tissue engineering: Characterization and evaluation.

    Science.gov (United States)

    Park, Jisun; Lee, Sang Jin; Chung, Solchan; Lee, Jun Hee; Kim, Wan Doo; Lee, Jae Young; Park, Su A

    2017-02-01

    Cell-printing techniques that can construct three-dimensional (3D) structures with biocompatible materials and cells are of great interest for various biomedical applications, such as tissue engineering and drug-screening studies. For successful cell-printing with cells, bioinks are critical for both the processability of printing and the viability of printed cells. However, the influence of composition on 3D bio-printing with cells has not been well explored. In this study, we investigated different compositions of alginate bioinks by varying the concentrations of high molecular weight alginate (High Alg) and low molecular weight alginate (Low Alg). Bioinks of 3wt% alginate containing High Alg alone or a 1:2 (Low Alg:High Alg) composite allowed for the construction of 3D scaffolds with good processability and shapes. Cell-printing with fibroblasts and in vitro culture studies revealed good viability and growth of the printed cells after up to 7days of culture. Bioinks prepared with High and Low Alg at a 2:1 ratio exhibited better cell growth compared with those of other compositions. This study progresses the design and applications of alginate-based bioinks for cell-printing platforms in soft tissue engineering. Copyright © 2016. Published by Elsevier B.V.

  17. Reduced serum content and increased matrix stiffness promote the cardiac myofibroblast transition in 3D collagen matrices.

    Science.gov (United States)

    Galie, Peter A.; Westfall, Margaret V.; Stegemann, Jan P.

    2011-01-01

    Introduction The fibroblast-myofibroblast transition is an important event in the development of cardiac fibrosis and scar formation initiated after myocardial ischemia. The goals of the present study were to better understand the contribution of environmental factors to this transition and determine whether myofibroblasts provide equally important feedback to the surrounding environment. Methods The influence of matrix stiffness and serum concentration on the myofibroblast transition was assessed by measuring message levels of a panel of cardiac fibroblast phenotype markers using quantitative rtPCR. Cell-mediated gel compaction measured the influence of environmental factors on cardiac fibroblast contractility. Immunohistochemistry characterized α-SMA expression and cell morphology, while static and dynamic compression testing evaluated the effect of the cell response on the mechanical properties of the cell-seeded collagen hydrogels. Results Both reduced serum content and increased matrix stiffness contributed to the myofibroblast transition, as indicated by contractile compaction of the gels, increased message levels of col3α1 and α-SMA, and a less stellate morphology. However, the effects of serum and matrix stiffness were not additive. Mechanical testing indicated the cell-seeded gels became less viscoelastic with time, and that reduced serum content also increased the initial elastic properties of the gel. Conclusions The results suggest that reduced serum and increased matrix stiffness promote the myofibroblast phenotype in the myocardium. This transition both enhances and is promoted by matrix stiffness, indicating the presence of positive feedback that may contribute to the pathogenesis of cardiac fibrosis. Summary Lower serum content and increased matrix stiffness accelerated the transition of cardiac fibroblasts seeded in collagen hydrogels to a myofibroblast phenotype, though their effects were not additive. Reduced serum also affected mechanical

  18. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.

    Science.gov (United States)

    Guilbert, Marie; Roig, Blandine; Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-02-23

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models.

  19. Breast epithelial tissue morphology is affected in 3D cultures by species-specific collagen-based extracellular matrix.

    Science.gov (United States)

    Dhimolea, Eugen; Soto, Ana M; Sonnenschein, Carlos

    2012-11-01

    Collagen-based gels have been widely used to determine the factors that regulate branching morphogenesis in the mammary gland. The patterns of biomechanical gradients and collagen reorganization influence the shape and orientation of epithelial structures in three-dimensional (3D) conditions. We explored in greater detail whether collagen type I fibers with distinct biomechanical and fiber-assembling properties, isolated from either bovine or rat tail tendon, differentially affected the epithelial phenotype in a tissue culture model of the human breast. Rat tail collagen fibers were densely packed into significantly longer and thicker bundles compared to those of the bovine type (average fascicle length 7.35 and 2.29 μm, respectively; p = 0.0001), indicating increased fiber alignment and biomechanical enablement in the former. MCF10A epithelial cells formed elaborated branched tubular structures in bovine but only nonbranched ducts and acini in rat tail collagen matrices. Ductal branching in bovine collagen was associated with interactions between neighboring structures mediated through packed collagen fibers; these fiber-mediated interactions were absent in rat tail collagen gels. Normal breast fibroblasts increased the final size and number of ducts only in rat tail collagen gels while not affecting branching. Our results suggest that the species of origin of collagen used in organotypic cultures may influence epithelial differentiation into alveolar or ductal structures and the patterns of epithelial branching. These observations underscore the importance of considering the species of origin and fiber alignment properties of collagen when engineering branching organs in 3D matrices and interpreting their role in the tissue phenotype.

  20. A matrix projection method for on line stable estimation of 1D and 3D shear building models

    Science.gov (United States)

    Angel García-Illescas, Miguel; Alvarez-Icaza, Luis

    2016-12-01

    An estimation method is presented that combines the use of recursive least squares, a matrix parameterized model, Gershgorin circles and tridiagonal matrices properties to allow the identification of stable shear building models in the presence of low excitation or low damping. The resultant scheme yields a significant reduction on the number of calculations involved, when compared with the standard vector parameterization based schemes. As real buildings are always open loop stable, the use of an stable shear building model for vibration control purposes allows the design of more robust control laws. Extensive simulation results are presented for cases of low excitation comparing the results of using or not this matrix projection method with different sets of initial conditions. Results indicate that the use of this projection method does not have an influence in the recovery of natural frequencies, however, it significantly improves the recovery of mode shapes.

  1. Multiphoton microscopy of engineered dermal substitutes: assessment of 3-D collagen matrix remodeling induced by fibroblast contraction

    Science.gov (United States)

    Pena, Ana-Maria; Fagot, Dominique; Olive, Christian; Michelet, Jean-François; Galey, Jean-Baptiste; Leroy, Frédéric; Beaurepaire, Emmanuel; Martin, Jean-Louis; Colonna, Anne; Schanne-Klein, Marie-Claire

    2010-09-01

    Dermal fibroblasts are responsible for the generation of mechanical forces within their surrounding extracellular matrix and can be potentially targeted by anti-aging ingredients. Investigation of the modulation of fibroblast contraction by these ingredients requires the implementation of three-dimensional in situ imaging methodologies. We use multiphoton microscopy to visualize unstained engineered dermal tissue by combining second-harmonic generation that reveals specifically fibrillar collagen and two-photon excited fluorescence from endogenous cellular chromophores. We study the fibroblast-induced reorganization of the collagen matrix and quantitatively evaluate the effect of Y-27632, a RhoA-kinase inhibitor, on dermal substitute contraction. We observe that collagen fibrils rearrange around fibroblasts with increasing density in control samples, whereas collagen fibrils show no remodeling in the samples containing the RhoA-kinase inhibitor. Moreover, we show that the inhibitory effects are reversible. Our study demonstrates the relevance of multiphoton microscopy to visualize three-dimensional remodeling of the extracellular matrix induced by fibroblast contraction or other processes.

  2. Efficient fully 3D list-mode TOF PET image reconstruction using a factorized system matrix with an image domain resolution model.

    Science.gov (United States)

    Zhou, Jian; Qi, Jinyi

    2014-02-07

    A factorized system matrix utilizing an image domain resolution model is attractive in fully 3D time-of-flight PET image reconstruction using list-mode data. In this paper, we study a factored model based on sparse matrix factorization that is comprised primarily of a simplified geometrical projection matrix and an image blurring matrix. Beside the commonly-used Siddon's ray-tracer, we propose another more simplified geometrical projector based on the Bresenham's ray-tracer which further reduces the computational cost. We discuss in general how to obtain an image blurring matrix associated with a geometrical projector, and provide theoretical analysis that can be used to inspect the efficiency in model factorization. In simulation studies, we investigate the performance of the proposed sparse factorization model in terms of spatial resolution, noise properties and computational cost. The quantitative results reveal that the factorization model can be as efficient as a non-factored model, while its computational cost can be much lower. In addition we conduct Monte Carlo simulations to identify the conditions under which the image resolution model can become more efficient in terms of image contrast recovery. We verify our observations using the provided theoretical analysis. The result offers a general guide to achieve the optimal reconstruction performance based on a sparse factorization model with an image domain resolution model.

  3. Efficient fully 3D list-mode TOF PET image reconstruction using a factorized system matrix with an image domain resolution model

    Science.gov (United States)

    Zhou, Jian; Qi, Jinyi

    2014-01-01

    A factorized system matrix utilizing an image domain resolution model is attractive in fully 3D TOF PET image reconstruction using list-mode data. In this paper, we study a factored model based on sparse matrix factorization that is comprised primarily of a simplified geometrical projection matrix and an image blurring matrix. Beside the commonly-used Siddon's raytracer, we propose another more simplified geometrical projector based on the Bresenham's raytracer which further reduces the computational cost. We discuss in general how to obtain an image blurring matrix associated with a geometrical projector, and provide theoretical analysis that can be used to inspect the efficiency in model factorization. In simulation studies, we investigate the performance of the proposed sparse factorization model in terms of spatial resolution, noise properties and computational cost. The quantitative results reveal that the factorization model can be as efficient as a nonfactored model such as the analytical model while its computational cost can be much lower. In addition we conduct Monte Carlo simulations to identify the conditions under which the image resolution model can become more efficient in terms of image contrast recovery. We verify our observations using the provided theoretical analysis. The result offers a general guide to achieve optimal reconstruction performance based on a sparse factorization model with an only image domain resolution model. PMID:24434568

  4. FTIR imaging of the 3D extracellular matrix used to grow colonies of breast cancer cell lines.

    Science.gov (United States)

    Smolina, Margarita; Goormaghtigh, Erik

    2016-01-21

    Infrared imaging was applied to investigate a reconstituted basement membrane, known as Matrigel, in three-dimensional cell cultures. Matrigel, in the vicinity of the colonies, was examined for four breast cancer cell lines presenting different 3D colony morphologies. MCF-7 and T-47D present mass colonies, SKBR-3 grape-like colonies and MDA-MB-231 stellate colonies associated with a more invasive phenotype. The edge of the cell colonies was found to be significantly depleted in Matrigel. Except in a limited number of cases, Matrigel appeared to be thinner at the edges of the colonies but not completely destroyed or torn off as it would be for a purely mechanical effect. When a PCA was run on the spectra of one or several colonies, the score images on PC#3 and PC#4 presented structures in the Matrigel areas which appeared as fringes, lines, dots or regular patterns. This effect represents a very small fraction of the total variance but is reproducible for all the 4 cell lines. PC#4 presents systematically a maximum near 1624 cm(-1) and a minimum around 1700 cm(-1). When spectra are normalized, the effect is less marked but does not disappear. The nature of the variations that exist in the Matrigel layer is therefore not solely related to thickness but also to the chemical composition. At this stage, the weakness of the effect prevents a thorough investigation.

  5. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    Science.gov (United States)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  6. Maturation of human embryonic stem cell-derived cardiomyocytes (hESC-CMs) in 3D collagen matrix: Effects of niche cell supplementation and mechanical stimulation.

    Science.gov (United States)

    Zhang, W; Kong, C W; Tong, M H; Chooi, W H; Huang, N; Li, R A; Chan, B P

    2017-02-01

    Cardiomyocytes derived from human embryonic stem cells (hESC-CMs) are regarded as a promising source for regenerative medicine, drug testing and disease modeling. Nevertheless, cardiomyocytes are immature in terms of their contractile structure, metabolism and electrophysiological properties. Here, we fabricate cardiac muscle strips by encapsulating hESC-CMs in collagen-based biomaterials. Supplementation of niche cells at 3% to the number of hESC-CMs enhance the maturation of the hESC-CMs in 3D tissue matrix. The benefits of adding mesenchymal stem cells (MSCs) are comparable to that of adding fibroblasts. These two cell types demonstrate similar effects in promoting the compaction and cell spreading, as well as expression of maturation markers at both gene and protein levels. Mechanical loading, particularly cyclic stretch, produces engineered cardiac tissues with higher maturity in terms of twitch force, elastic modulus, sarcomere length and molecular signature, when comparing to static stretch or non-stretched controls. The current study demonstrates that the application of niche cells and mechanical stretch both stimulate the maturation of hESC-CMs in 3D architecture. Our results therefore suggest that this 3D model can be used for in vitro cardiac maturation study.

  7. Optimum 3D Matrix Stiffness for Maintenance of Cancer Stem Cells Is Dependent on Tissue Origin of Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Esmaiel Jabbari

    Full Text Available The growth and expression of cancer stem cells (CSCs depend on many factors in the tumor microenvironment. The objective of this work was to investigate the effect of cancer cells' tissue origin on the optimum matrix stiffness for CSC growth and marker expression in a model polyethylene glycol diacrylate (PEGDA hydrogel without the interference of other factors in the microenvironment.Human MCF7 and MDA-MB-231 breast carcinoma, HCT116 colorectal and AGS gastric carcinoma, and U2OS osteosarcoma cells were used. The cells were encapsulated in PEGDA gels with compressive moduli in the 2-70 kPa range and optimized cell seeding density of 0.6x106 cells/mL. Micropatterning was used to optimize the growth of encapsulated cells with respect to average tumorsphere size. The CSC sub-population of the encapsulated cells was characterized by cell number, tumorsphere size and number density, and mRNA expression of CSC markers.The optimum matrix stiffness for growth and marker expression of CSC sub-population of cancer cells was 5 kPa for breast MCF7 and MDA231, 25 kPa for colorectal HCT116 and gastric AGS, and 50 kPa for bone U2OS cells. Conjugation of a CD44 binding peptide to the gel stopped tumorsphere formation by cancer cells from different tissue origin. The expression of YAP/TAZ transcription factors by the encapsulated cancer cells was highest at the optimum stiffness indicating a link between the Hippo transducers and CSC growth. The optimum average tumorsphere size for CSC growth and marker expression was 50 μm.The marker expression results suggest that the CSC sub-population of cancer cells resides within a niche with optimum stiffness which depends on the cancer cells' tissue origin.

  8. Raman and infrared spectroscopy differentiate senescent from proliferating cells in a human dermal fibroblast 3D skin model.

    Science.gov (United States)

    Eberhardt, Katharina; Matthäus, Christian; Winter, Doreen; Wiegand, Cornelia; Hipler, Uta-Christina; Diekmann, Stephan; Popp, Jürgen

    2017-08-15

    Senescent cells contribute to tissue aging and dysfunction. Therefore, detecting senescent cells in skin is of interest for skin tumor diagnostics and therapy. Here, we studied the transition into senescence of human dermal fibroblasts (HDFs) in a three-dimensional (3D) human fibroblast-derived matrix (FDM). Senescent and proliferating cells were imaged by Raman spectroscopy (RS) and Fourier transform infrared (FTIR) spectroscopy. The obtained averaged spectra were analyzed using PLS-LDA. For these 3D cultured cells, RS and FTIR could clearly distinguish senescent from proliferating cells. For both techniques, we detected senescence-associated alterations in almost all cellular macromolecules. Furthermore, we identified different biochemical properties of 3D compared to two-dimensional (2D) cultured cells, indicating that cells in their natural, skin-like 3D environment act differently than in (2D) cell cultivations in vitro. Compared to 2D cultured cells, cells grown in 3D models displayed a sharper contrast between the proliferating and senescent state, also affecting the abundance of biomolecules including nucleic acids. The training accuracies of both vibrational spectroscopic techniques were >96%, demonstrating the suitability of these label-free measurements for detecting these cellular states in 3D skin models.

  9. Comparison of 3D-Printed Poly-ɛ-Caprolactone Scaffolds Functionalized with Tricalcium Phosphate, Hydroxyapatite, Bio-Oss, or Decellularized Bone Matrix().

    Science.gov (United States)

    Nyberg, Ethan; Rindone, Alexandra; Dorafshar, Amir; Grayson, Warren L

    2017-06-01

    Three-dimensional (3D)-printing facilitates rapid, custom manufacturing of bone scaffolds with a wide range of material choices. Recent studies have demonstrated the potential for 3D-printing bioactive (i.e., osteo-inductive) scaffolds for use in bone regeneration applications. In this study, we 3D-printed porous poly-ɛ-caprolactone (PCL) scaffolds using a fused deposition modeling (FDM) process and functionalized them with mineral additives that have been widely used commercially and clinically: tricalcium phosphate (TCP), hydroxyapatite (HA), Bio-Oss (BO), or decellularized bone matrix (DCB). We assessed the "print quality" of the composite scaffolds and found that the print quality of PCL-TCP, PCL-BO, and PCL-DCB measured ∼0.7 and was statistically lower than PCL and PCL-HA scaffolds (∼0.8). We found that the incorporation of mineral particles did not significantly decrease the compressive modulus of the graft, which was on the order of 260 MPa for solid blocks and ranged from 32 to 83 MPa for porous scaffolds. Raman spectroscopy revealed the surfaces of the scaffolds maintained the chemical profile of their dopants following the printing process. We evaluated the osteo-inductive properties of each scaffold composite by culturing adipose-derived stromal/stem cells in vitro and assessing their differentiation into osteoblasts. The calcium content (normalized to DNA) increased significantly in PCL-TCP (p  0.05). Collagen 1 expression was 10-fold greater than PCL in PCL-BO and PCL-DCB (p < 0.05) and osteocalcin expression was 10-fold greater in PCL-BO and PCL-DCB (p < 0.05) as measured by quantitative-real time-polymerase chain reaction. This study suggests that PCL-BO and PCL-DCB hybrid material may be advantageous for bone healing applications over PCL-HA or PCL-TCP blends.

  10. 三维有限元刚度矩阵的压缩存储算法%Compressed storage algorithm of 3D-FEM stiffness matrix

    Institute of Scientific and Technical Information of China (English)

    王忠雷; 赵国群; 马新武

    2012-01-01

    为提高有限元分析效率、减少存储空间消耗,对刚度矩阵的压缩存储算法进行了研究.研究了"广义相邻节点对"与刚度矩阵中非零子矩阵的关系,确定了刚度矩阵中非零子矩阵的分布规律;提出了一种新的刚度矩阵压缩存储方法—"改进的CSR存储方法",给出了基于压缩存储的刚度矩阵的生成过程以及线性方程组迭代解法方法,并将提出的算法应用于三维体积成形有限元分析软件.有限元分析实例表明,该算法可以有效地减少存储空间,提高计算效率.%To improve the efficiency and reduce the storage space of finite element analysis,compression and storage algorithm of 3D-FEM stiffness matrix is studied.The relationship between "generalized adjacent double nodes" and the non-zero sub-matrix in stiffness matrix is researched for getting distribution of non-zero sub-matrix in stiffness matrix.A new algorithm of stiffness matrix of compressed storage-"improved CSR storage method" is proposed.Based on the algorithm,the generation process of stiffness matrix is given and iterative solution of linear equations method is proposed to improve the efficiency of solving linear equations.The algorithm is applied to the three-dimensional bulk forming finite element analysis software and the numerical results show that the algorithm can effectively decrease the storage space and improve the computation efficiency.

  11. Treatment with Y-27632, a ROCK Inhibitor, Increases the Proinvasive Nature of SW620 Cells on 3D Collagen Type 1 Matrix

    Directory of Open Access Journals (Sweden)

    Ramana Vishnubhotla

    2012-01-01

    Full Text Available The concept of using tissue density as a mechanism to diagnose a tumor has been around for centuries. However, this concept has not been sufficiently explored in a laboratory setting. Therefore, in this paper, we observed the effects of cell density and extracellular matrix (ECM density on colon cancer invasion and proliferation using SW620 cells. We also attempted to inhibit ROCK-I to determine its effect on cell invasion and proliferation using standard molecular biology techniques and advanced imaging. Increasing cell seeding density resulted in a 2-fold increase in cell invasion as well as cell proliferation independent of treatment with Y-27632. Increasing collagen I scaffold density resulted in a 2.5-fold increase in cell proliferation while treatment with Y-27632 attenuated this effect although 1.5 fold increase in cell invasion was observed in ROCK inhibited samples. Intriguingly, ROCK inhibition also resulted in a 3.5-fold increase in cell invasion within 3D collagen scaffolds for cells seeded at lower densities. We show in this paper that ROCK-I inhibition leads to increased invasion within 3D collagen I microenvironments. This data suggests that although ROCK inhibitors have been used clinically to treat several medical conditions, its effect largely depends on the surrounding microenvironment.

  12. Fabrication of 3D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors

    Science.gov (United States)

    Zhang, Xiuling; Ma, Li; Gan, Mengyu; Fu, Gang; Jin, Meng; Lei, Yao; Yang, Peishu; Yan, Maofa

    2017-02-01

    A facile approach to acquire electrode materials with prominent electrochemical property is pivotal to the progress of supercapacitors. 3D nitrogen-doped porous carbon matrix (PCM), with high specific surface area (SSA) up to 2720 m2 g-1, was obtained from the carbonization and activation of the nitrogen-enriched composite precursor (graphene/polyaniline). Then 3D lawn-shaped PCM/PANI composite was obtained by the simple in-situ polymerization. The morphology and structure of these resulting composites were characterized by combining SEM and TEM measurements, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) spectroscopy analyses and Raman spectroscope. The element content of all samples was evaluated using CHN analysis. The results of electrochemical testing indicated that the PCM/PANI composite displays a higher capacitance value of 527 F g-1 at 1 A g-1 compared to 338 F g-1 for pure PANI, and exhibits appreciable rate capability with a retention of 76% at 20 A g-1 as well as fine long-term cycling performance (with 88% retention of specific capacitance after 1000 cycles at 10 A g-1). Simultaneously, the excellent capacitance performance coupled with the facile synthesis of PCM/PANI indicates it is a promising electrode material for supercapacitors.

  13. Virus inactivation by salt (NaCl) and phosphate supplemented salt in a 3D collagen matrix model for natural sausage casings.

    Science.gov (United States)

    Wieringa-Jelsma, Tinka; Wijnker, Joris J; Zijlstra-Willems, Esther M; Dekker, Aldo; Stockhofe-Zurwieden, Norbert; Maas, Riks; Wisselink, Henk J

    2011-08-02

    Due to possible presence and spread of contagious animal viruses via natural sausage casings the international trade in these food products is subject to veterinary and public health requirements. In order to manage these restrictions we determined the effect of casing preservation on four highly contagious viruses for livestock: foot-and-mouth-disease virus (FMDV), classical swine fever virus (CSFV), swine vesicular disease virus (SVDV) and African swine fever virus (ASFV). We used an in vitro 3D collagen matrix model in which cells, infected with the four different viruses were embedded in a bovine collagen type I gel matrix and treated with either saturated salt (NaCl) or phosphate supplemented saturated salt at four different temperatures (4, 12, 20 and 25 °C) during a period of 30 days. The results showed that all viruses were faster inactivated at higher temperatures, but that stability of the various viruses at 4 °C differed. Inactivation of FMDV in the 3D collagen matrix model showed a clear temperature and treatment effect on the reduction of FMDV titres. At 4 and 12 °C phosphate supplemented salt showed a very strong FMDV inactivation during the first hour of incubation. Salt (NaCl) only had a minor effect on FMDV inactivation. Phosphate supplemented salt treatment increased the effect temperature had on inactivation of CSFV. In contrast, the salt (NaCl) treatment only increased CSFV inactivation at the higher temperatures (20 °C and 25 °C). Also SVDV inactivation was increased by phosphate supplemented salt, but salt (NaCl) treatment only resulted in a significant decrease of SVDV titre at a few time points. The ASFV results showed that both salt (NaCl) and phosphate supplemented salt were capable to inactivate ASFV within 48 h. In contrast to the other viruses (FMDV, CSFV and SVDV), ASFV was the most stable virus even at higher temperatures. The results obtained in this in vitro model underline the efficacy of a combined treatment using phosphate

  14. Osteomimicry of mammary adenocarcinoma cells in vitro; increased expression of bone matrix proteins and proliferation within a 3D collagen environment.

    Directory of Open Access Journals (Sweden)

    Rachel F Cox

    Full Text Available Bone is the most common site of metastasis for breast cancer, however the reasons for this remain unclear. We hypothesise that under certain conditions mammary cells possess osteomimetic capabilities that may allow them to adapt to, and flourish within, the bone microenvironment. Mammary cells are known to calcify within breast tissue and we have recently reported a novel in vitro model of mammary mineralization using murine mammary adenocarcinoma 4T1 cells. In this study, the osteomimetic properties of the mammary adenocarcinoma cell line and the conditions required to induce mineralization were characterized extensively. It was found that exogenous organic phosphate and inorganic phosphate induce mineralization in a dose dependent manner in 4T1 cells. Ascorbic acid and dexamethasone alone have no effect. 4T1 cells also show enhanced mineralization in response to bone morphogenetic protein 2 in the presence of phosphate supplemented media. The expression of several bone matrix proteins were monitored throughout the process of mineralization and increased expression of collagen type 1 and bone sialoprotein were detected, as determined by real-time RT-PCR. In addition, we have shown for the first time that 3D collagen glycosaminoglycan scaffolds, bioengineered to represent the bone microenvironment, are capable of supporting the growth and mineralization of 4T1 adenocarcinoma cells. These 3D scaffolds represent a novel model system for the study of mammary mineralization and bone metastasis. This work demonstrates that mammary cells are capable of osteomimicry, which may ultimately contribute to their ability to preferentially metastasize to, survive within and colonize the bone microenvironment.

  15. A 3D Multiport Scattering Matrix Based-Method for Educing Wall Impedance of Cylindrical Lined Duct Section: Simulation and Error Evaluation

    Directory of Open Access Journals (Sweden)

    Mohamed Taktak

    2009-01-01

    Full Text Available The first step to achieve the development of an original indirect method to educe the wall normalized acoustic impedance of a cylindrical lined duct section which includes frequency and modal content pressure field dependence is introduced. It is based on the minimization of the difference between numerical and experimental acoustic power dissipations deduced from the 3D numerical and experimental scattering matrices of a lined duct element. The work presented in this paper is a step toward conducting experiments with a flow duct facility developed during the European DUCAT program. To validate this eduction technique, a simulation of the experiment is performed for no flow conditions assuming an axi-symmetric wall lined with a locally reacting material whose impedance was measured with the two microphone method (TMM. The simulation conducted for two incident pressure vectors with a Monte Carlo's technique also provides an assessment of the uncertainty in three predominant experimental parameters on the scattering matrix coefficients, the acoustic power dissipation, and the educed impedance whose results will be useful during the experiments being conducted.

  16. WT1 expression is increased in primary fibroblasts derived from Dupuytren's disease tissues.

    Science.gov (United States)

    Crawford, Justin; Raykha, Christina; Charles, Daevina; Gan, Bing Siang; O'Gorman, David B

    2015-12-01

    Dupuytren's disease (DD) is a fibroproliferative and contractile fibrosis of the palmar fascia that, like all other heritable fibroses, is currently incurable. While DD is invariably benign, it exhibits some molecular similarities to malignant tumours, including increased levels of ß-catenin, onco-fetal fibronectin, periostin and insulin-like growth factor (IGF)-II. To gain additional insights into the pathogenesis of DD, we have assessed the expression of WT1, encoding Wilm's tumour 1, an established tumour biomarker that is syntenic with IGF2, the gene encoding IGF-II in humans. We found that WT1 expression is robustly and consistently up regulated in primary fibroblasts derived from the fibrotic palmar fascia of patients with DD (DD cells), whereas syngeneic fibroblasts derived from the macroscopically unaffected palmar fascia in these patients and allogeneic fibroblasts derived from normal palmar fascia exhibited very low or undetectable WT1 transcript levels. WT1 immunoreactivity was evident in a subset of cells in the fibrotic palmar fascia of patients with DD, but not in macroscopically unaffected palmar fascia. These findings identify WT1 expression as a novel biomarker of fibrotic palmar fascia and are consistent with the hypothesis that the pathogeneses of DD and malignant tumours have molecular similarities.

  17. Treatment of postoperative lower extremity wounds using human fibroblast-derived dermis: a retrospective analysis.

    Science.gov (United States)

    Carlson, Russell M; Smith, Nicholas C; Dux, Katherine; Stuck, Rodney M

    2014-04-01

    Human fibroblast-derived dermis skin substitute is a well-studied treatment for diabetic foot ulcers; however, no case series currently exist for its use in healing postoperative wounds of the lower extremity. A retrospective analysis was conducted on 32 lower extremity postoperative wounds treated weekly with human fibroblast-derived dermis skin substitute. Postoperative wounds were defined as a wound resulting from an open partial foot amputation, surgical wound dehiscence, or nonhealing surgical wound of the lower extremity. Wound surface area was calculated at 4 and 12 weeks or until wound closure if prior to 12 weeks. Postoperative wounds treated with weekly applications showed mean improvement in surface area reduction of 63.6% at 4 weeks and 96.1% at 12 weeks. More than 56% of all wounds healed prior to the 12-week endpoint. Additionally, only one adverse event was noted in this group. This retrospective review supports the use of human fibroblast-derived dermis skin substitute in the treatment of postoperative lower extremity wounds. This advanced wound care therapy aids in decreased total healing time and increased rate of healing for not only diabetic foot wounds but also postoperative wounds of the lower extremity, as demonstrated by this retrospective review.

  18. Comparison of osteoclastogenesis and resorption activity of human osteoclasts on tissue culture polystyrene and on natural extracellular bone matrix in 2D and 3D.

    Science.gov (United States)

    Kleinhans, C; Schmid, F F; Schmid, F V; Kluger, P J

    2015-07-10

    Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts.

  19. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    Science.gov (United States)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  20. Human Dupuytren's Ex Vivo Culture for the Study of Myofibroblasts and Extracellular Matrix Interactions.

    Science.gov (United States)

    Karkampouna, Sofia; Kloen, Peter; Obdeijn, Miryam C; Riester, Scott M; van Wijnen, Andre J; Kruithof-de Julio, Marianna

    2015-01-01

    Organ fibrosis or "scarring" is known to account for a high death toll due to the extensive amount of disorders and organs affected (from cirrhosis to cardiovascular diseases). There is no effective treatment and the in vitro tools available do not mimic the in vivo situation rendering the progress of the out of control wound healing process still enigmatic. To date, 2D and 3D cultures of fibroblasts derived from DD patients are the main experimental models available. Primary cell cultures have many limitations; the fibroblasts derived from DD are altered by the culture conditions, lack cellular context and interactions, which are crucial for the development of fibrosis and weakly represent the derived tissue. Real-time PCR analysis of fibroblasts derived from control and DD samples show that little difference is detectable. 3D cultures of fibroblasts include addition of extracellular matrix that alters the native conditions of these cells. As a way to characterize the fibrotic, proliferative properties of these resection specimens we have developed a 3D culture system, using intact human resections of the nodule part of the cord. The system is based on transwell plates with an attached nitrocellulose membrane that allows contact of the tissue with the medium but not with the plastic, thus, preventing the alteration of the tissue. No collagen gel or other extracellular matrix protein substrate is required. The tissue resection specimens maintain their viability and proliferative properties for 7 days. This is the first "organ" culture system that allows human resection specimens from DD patients to be grown ex vivo and functionally tested, recapitulating the in vivo situation.

  1. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    to produce high quality 3-D images. Because of the large matrix transducers with integrated custom electronics, these systems are extremely expensive. The relatively low price of ultrasound scanners is one of the factors for the widespread use of ultrasound imaging. The high price tag on the high quality 3-D......The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...

  2. 基于语义矩阵反馈的多特征融合三维模型检索方法%3D model retrieval method with multi-feature fusion based on semantic matrix feedback

    Institute of Scientific and Technical Information of China (English)

    胡敏; 罗珣; 马韵洁

    2012-01-01

    为解决相关反馈三维模型检索方法存在用户不能确定模型是否相似的问题,提出了一种基于语义矩阵反馈的多特征融合三维模型检索方法.首先,采用形状分布和球面调和两种特征提取算法进行多特征提取.然后,对每种特征进行检索计算,将得到的相似度进行基于语义的反馈,根据反馈结果对不同特征分配不同的权值.最后,对迭代反馈结果的权求和得到检索模型的相似度.实验结果表明,本方法的检索结果比用单一的特征提取方法得到的结果准确.%When the relevance feedback method is used to retrieve the 3D model, it has the problem that the user unclear whether the models are similar or not similar. In order to solve this problem, an integrated method of 3D model retrieval is proposed which based on the combination of semantic matrix feedback and feature. Firstly, 3D model features are extracted by using shape distributions and spherical harmonics methods. Then these features similarity of the 3D mod-els are involved to calculate the assessment weights. These assessment weights are combined with semantic matrix feed-back in the 3D model retrieval. Finally, the similarity of the 3D models is calculated based on the iterative feedback result. The experiment results show that this method is more accurate than the single feature extraction method.

  3. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  4. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  5. Probabilistic models and numerical calculation of system matrix and sensitivity in list-mode MLEM 3D reconstruction of Compton camera images.

    Science.gov (United States)

    Maxim, Voichita; Lojacono, Xavier; Hilaire, Estelle; Krimmer, Jochen; Testa, Etienne; Dauvergne, Denis; Magnin, Isabelle; Prost, Rémy

    2016-01-01

    This paper addresses the problem of evaluating the system matrix and the sensitivity for iterative reconstruction in Compton camera imaging. Proposed models and numerical calculation strategies are compared through the influence they have on the three-dimensional reconstructed images. The study attempts to address four questions. First, it proposes an analytic model for the system matrix. Second, it suggests a method for its numerical validation with Monte Carlo simulated data. Third, it compares analytical models of the sensitivity factors with Monte Carlo simulated values. Finally, it shows how the system matrix and the sensitivity calculation strategies influence the quality of the reconstructed images.

  6. Numerical 2D and 3D Investigation of Non-Metallic (Glass, Carbon) Fiber Pull-Out Micromechanics 9in Concrete Matrix)

    OpenAIRE

    Khabaz, A; Krasņikovs, A; Kononova, O; Mačanovskis, A

    2010-01-01

    Short non-metallic (glass, carbon) fibre use for concrete disperse reinforcment is of particular interest, because of much higher fibre/matrix interface area value comparing to industrially produced steel fibres.

  7. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...

  8. Turnover of sulfated glycosaminoglycans in fibroblasts derived from patients with Werner's syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, E.A.; Brauker, J.H.; Anderson, R.L.

    1987-02-01

    Fibroblasts derived from patients with Werner's syndrome (WS) were incubated with radioactive sulfate to study the incorporation of 35S into glycosaminoglycans (GAGs). The accumulation of cell-associated 35S radioactivity in the GAGs of WS fibroblasts was consistently higher than parallel accumulation in normal human fibroblasts, but was substantially less than in fibroblasts derived from patients with Hurler's syndrome (HS). However, when fibroblasts were labeled with 35SO4(2-), trypsinized to remove extracellular and pericellular radioactive GAGs, replated, and chased to follow the fate of the intracellular radioactivity, both WS and normal cells showed a rapid release of the intracellular 35S, while HS cells showed little or no loss of intracellular radioactivity. The radioactivity released from WS and normal cells was of low molecular weight (LMW), eluting from gel filtration columns at the same position as free sulfate. These results establish that WS cells degrade intracellular sulfated GAGs and argue against the hypothesis that a defect in GAG degradation pathways is the basis for the increased level of cell-associated GAGs. Other possible explanations for the increased cell-associated (35S)GAGs in WS cells as compared with normal cells were also considered: increased GAG sulfation; an increase in GAG chain length; an increased rate of GAG synthesis; and a decreased rate of shedding of cell surface proteoglycan into the medium. No difference between normal and WS fibroblasts in any of the above parameters was observed. These results strongly imply that the primary biochemical defect in WS fibroblasts does not involve sulfated GAG metabolism.

  9. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  10. Development of three-dimensional memory (3D-M)

    Science.gov (United States)

    Yu, Hong-Yu; Shen, Chen; Jiang, Lingli; Dong, Bin; Zhang, Guobiao

    2016-10-01

    Since the invention of 3-D ROM in 1996, three-dimensional memory (3D-M) has been under development for nearly two decades. In this presentation, we'll review the 3D-M history and compare different 3D-Ms (including 3D-OTP from Matrix Semiconductor, 3D-NAND from Samsung and 3D-XPoint from Intel/Micron).

  11. Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Kasaragod, Deepa K; Lu, Zenghai; Jacobs, James; Matcher, Stephen J

    2012-03-01

    We report results to verify a theoretical framework to analyze the 3D depth-wise structural organization of collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography. Apparent birefringence data obtained from multi-angle measurements using a time domain polarization-sensitive optical coherence tomography system has been compared with simulated data based on the extended Jones matrix calculus. Experimental data has been shown to agree with the lamellar model previously proposed for the cartilage microstructure based on scanning electron microscopy data. This tool could have potential application in mapping the collagen structural orientation information of cartilage non-invasively during arthroscopy.

  12. IZDELAVA TISKALNIKA 3D

    OpenAIRE

    Brdnik, Lovro

    2015-01-01

    Diplomsko delo analizira trenutno stanje 3D tiskalnikov na trgu. Prikazan je razvoj in principi delovanja 3D tiskalnikov. Predstavljeni so tipi 3D tiskalnikov, njihove prednosti in slabosti. Podrobneje je predstavljena zgradba in delovanje koračnih motorjev. Opravljene so meritve koračnih motorjev. Opisana je programska oprema za rokovanje s 3D tiskalniki in komponente, ki jih potrebujemo za izdelavo. Diploma se oklepa vprašanja, ali je izdelava 3D tiskalnika bolj ekonomična kot pa naložba v ...

  13. Race Does Not Predict Melanocyte Heterogeneous Responses to Dermal Fibroblast-Derived Mediators.

    Directory of Open Access Journals (Sweden)

    Pornthep Sirimahachaiyakul

    Full Text Available Abnormal pigmentation following cutaneous injury causes significant patient distress and represents a barrier to recovery. Wound depth and patient characteristics influence scar pigmentation. However, we know little about the pathophysiology leading to hyperpigmentation in healed shallow wounds and hypopigmentation in deep dermal wound scars. We sought to determine whether dermal fibroblast signaling influences melanocyte responses.Epidermal melanocytes from three Caucasians and three African-Americans were genotyped for single nucleotide polymorphisms (SNPs across the entire genome. Melanocyte genetic profiles were determined using principal component analysis. We assessed melanocyte phenotype and gene expression in response to dermal fibroblast-conditioned medium and determined potential mesenchymal mediators by proteome profiling the fibroblast-conditioned medium.Six melanocyte samples demonstrated significant variability in phenotype and gene expression at baseline and in response to fibroblast-conditioned medium. Genetic profiling for SNPs in receptors for 13 identified soluble fibroblast-secreted mediators demonstrated considerable heterogeneity, potentially explaining the variable melanocyte responses to fibroblast-conditioned medium.Our data suggest that melanocytes respond to dermal fibroblast-derived mediators independent of keratinocytes and raise the possibility that mesenchymal-epidermal interactions influence skin pigmentation during cutaneous scarring.

  14. Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells.

    Science.gov (United States)

    Ogawa, Shin-ichiro; Tokumoto, Yasuhito; Miyake, Jun; Nagamune, Teruyuki

    2011-08-01

    Induced pluripotent stem cells (iPSCs) prepared from somatic cells might become a novel therapeutic tool in regenerative medicine, especially for the central nervous system (CNS). In this study, we attempted to induce O4-positive (O4(+)) oligodendrocytes from adult human fibroblast-derived iPSCs in vitro. We used two adult human iPSC cell lines, 201B7 and 253G1. 201B7 was induced by four-gene transduction (oct4, sox2, klf4, c-myc), and 253G1 was induced by three-gene transduction (oct4, sox2, klf4). We treated these cells with two in vitro oligodendrocyte-directed differentiation protocols that were optimized for human embryonic stem cells. One protocol used platelet-derived growth factor as the major mitogen for oligodendrocyte lineage cells, and the other protocol used epidermal growth factor (EGF) as the mitogen. Although the differentiation efficiency was low (less than 0.01%), we could induce O4(+) oligodendrocytes from 253G1 cells using the EGF-dependent differentiation protocol. This is the first report of the in vitro induction of oligodendrocytes differentiation from human iPSCs.

  15. Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK.

    Science.gov (United States)

    Neufert, Clemens; Becker, Christoph; Türeci, Özlem; Waldner, Maximilian J; Backert, Ingo; Floh, Katharina; Atreya, Imke; Leppkes, Moritz; Jefremow, Andre; Vieth, Michael; Schneider-Stock, Regine; Klinger, Patricia; Greten, Florian R; Threadgill, David W; Sahin, Ugur; Neurath, Markus F

    2013-04-01

    Molecular mechanisms specific to colitis-associated cancers have been poorly characterized. Using comparative whole-genome expression profiling, we observed differential expression of epiregulin (EREG) in mouse models of colitis-associated, but not sporadic, colorectal cancer. Similarly, EREG expression was significantly upregulated in cohorts of patients with colitis-associated cancer. Furthermore, tumor-associated fibroblasts were identified as a major source of EREG in colitis-associated neoplasms. Functional studies showed that Ereg-deficient mice, although more prone to colitis, were strongly protected from colitis-associated tumors. Serial endoscopic studies revealed that EREG promoted tumor growth rather than initiation. Additionally, we demonstrated that fibroblast-derived EREG requires ERK activation to induce proliferation of intestinal epithelial cells (IEC) and tumor development in vivo. To demonstrate the functional relevance of EREG-producing tumor-associated fibroblasts, we developed a novel system for adoptive transfer of these cells via mini-endoscopic local injection. It was found that transfer of EREG-producing, but not Ereg-deficient, fibroblasts from tumors significantly augmented growth of colitis-associated neoplasms in vivo. In conclusion, our data indicate that EREG and tumor-associated fibroblasts play a crucial role in controlling tumor growth in colitis-associated neoplasms.

  16. 3D-isotropic high-resolution morphological imaging and quantitative T2 mapping as biomarkers for gender related differences after matrix-associated autologous chondrocyte transplantation (MACT).

    Science.gov (United States)

    Pachowsky, Milena L; Werner, Sven; Marlovits, Stefan; Stelzeneder, David; Renner, Nina; Trattnig, Siegfried; Welsch, Goetz H

    2014-10-01

    The aim of this study was to determine in vivo high-resolution morphological and biochemical gender related differences in cartilage repair tissue (MACT). Forty patients were examined clinically and by MR scans at 3T-MRI (coronal 3D True-FISP sequence for morphologic assessment and multi-echo spin-echo T2-mapping for biochemical assessment of healthy cartilage and MACT cartilage). Mean T2 values in repair tissue in the deep zone showed significantly shorter T2 times in females (p = 0.009, female 43.5 ± 9.8 vs. male 48.2 ± 7.7 ms). The superficial zone showed higher T2 values than the deep zone in both the groups (female 48.5 ± 9.8, males 52.6 ± 11.0 ms) without significant difference between female and male patients. Native control cartilage showed no statistically significant differences for T2 between females and males. The subdivisions "structure of the repair tissue" and "subchondral bone" of the MOCART score showed statistically significant differences between females and males (p = 0.026 and p = 0.007) as well as the Lysholm score (p = 0.03). Our investigations revealed differences between female and male patients after MACT of the knee in clinical outcome and advanced morphological and biochemical MRI. The presented imaging biomarkers can depict subtle changes after cartilage regeneration procedures and might help to understand gender related differences after cartilage repair procedures. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  17. 3D and Education

    Science.gov (United States)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  18. TEHNOLOGIJE 3D TISKALNIKOV

    OpenAIRE

    Kolar, Nataša

    2016-01-01

    Diplomsko delo predstavi razvoj tiskanja skozi čas. Podrobneje so opisani 3D tiskalniki, ki uporabljajo različne tehnologije 3D tiskanja. Predstavljene so različne tehnologije 3D tiskanja, njihova uporaba in narejeni prototipi oz. končni izdelki. Diplomsko delo opiše celoten postopek, od zamisli, priprave podatkov in tiskalnika do izdelave prototipa oz. končnega izdelka.

  19. Characterization and radiosensitivity of fibroblasts derived from squamous cell carcinomas of the head and neck, and the surrounding oral mucosa

    Energy Technology Data Exchange (ETDEWEB)

    Stausboel-Groen, B.; Moeller Bentzen, S. [Danish Cancer Society, Aarhus (Denmark). Dept. of Experimental Clinical Oncology; Overgaard, J. [Danish Cancer Society, Aarhus (Denmark). Dept. of Experimental Clinical Oncology]|[Danish Cancer Society, Aarhus (Denmark). Dept. of Oncology

    1998-12-31

    Recently, extensive stromal fibroblast contamination has been reported in the modified Courtenay-Mills soft agar clonogenic assay for cellular in vitro radiosensitivity in tumour biopsies. The aim of the present study was to evaluate the hypothesis that an immunocytochemical analysis added to the modified Courtenay-Mills soft agar clonogenic assay provides a measure of both fibroblast and tumour cell radiosensitivity. Therefore, fibroblast derived from squamos cell carcinomas of the head and neck, and from the surrounding oral mucosa were compared for immunocytochemistry, DNA ploidy, plating efficiency and surviving fraction of cells after a radiation dose of 2 Gy. The results of our study suggest that the stromal fibroblast derived from tumour biopsies are representative of normal fibroblasts with respect to the characteristics examined using mucosal fibroblasts as normal controls. (orig.)

  20. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  1. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  2. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3......D Modelling (in Denmark) stabilizes - Examine how 3D Modelling manifests itself in the early design phases of a construction project with a view to discuss the effects hereof for i.a. the management of the building process. Structure. The paper introduces a few, basic methodological concepts...

  3. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  4. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  5. AE3D

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  6. 3D Image Synthesis for B—Reps Objects

    Institute of Scientific and Technical Information of China (English)

    黄正东; 彭群生; 等

    1991-01-01

    This paper presents a new algorithm for generating 3D images of B-reps objects with trimmed surface boundaries.The 3D image is a discrete voxel-map representation within a Cubic Frame Buffer (CFB).The definition of 3D images for curve,surface and solid object are introduced which imply the connectivity and fidelity requirements.Adaptive Forward Differencing matrix (AFD-matrix) for 1D-3D manifolds in 3D space is developed.By setting rules to update the AFD-matrix,the forward difference direction and stepwise can be adjusted.Finally,an efficient algorithm is presented based on the AFD-matrix concept for converting the object in 3D space to 3D image in 3D discrete space.

  7. 3-D woven, mullite matrix, composite filter

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.E.; Painter, C.J.; Radford, K.C. LeCostaouec, J.F.

    1995-12-01

    Westinghouse, with Techniweave as a major subcontractor, is conducting a three-phase program aimed at providing advanced candle filters for a 1996 pilot scale demonstration in one of the two hot gas filter systems at Southern Company Service`s Wilsonville PSD Facility. The Base Program (Phases I and II) objective is to develop and demonstrate the suitability of the Westinghouse/Techniweave next generation composite candle filter for use in Pressurized Fluidized Bed Combustion (PFBC) and/or Integrated Gasification Combined Cycle (IGCC) power generation systems. The Optional Task (Phase M, Task 5) objective is to fabricate, inspect and ship to Wilsonville Hot gas particulate filters are key components for the successful commercializaion of advanced coal-based power-generation systems such as Pressurized Fluidized-bed Combustion (PFBC), including second-generation PFBC, and Integrated Gasification Combined Cycles (IGCC). Current generation monolithic ceramic filters are subject to catastrophic failure because they have very low resistance to crack propagation. To overcome this problem, a damage-tolerant ceramic filter element is needed.

  8. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article...... contributes to the understanding of the distinctive characteristics of such a new medium, and identifies three strategies for designing 3-D projection installations: establishing space; interplay between the digital and the physical; and transformation of materiality. The principal empirical case, From...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  9. 3D Spectroscopic Instrumentation

    CERN Document Server

    Bershady, Matthew A

    2009-01-01

    In this Chapter we review the challenges of, and opportunities for, 3D spectroscopy, and how these have lead to new and different approaches to sampling astronomical information. We describe and categorize existing instruments on 4m and 10m telescopes. Our primary focus is on grating-dispersed spectrographs. We discuss how to optimize dispersive elements, such as VPH gratings, to achieve adequate spectral resolution, high throughput, and efficient data packing to maximize spatial sampling for 3D spectroscopy. We review and compare the various coupling methods that make these spectrographs ``3D,'' including fibers, lenslets, slicers, and filtered multi-slits. We also describe Fabry-Perot and spatial-heterodyne interferometers, pointing out their advantages as field-widened systems relative to conventional, grating-dispersed spectrographs. We explore the parameter space all these instruments sample, highlighting regimes open for exploitation. Present instruments provide a foil for future development. We give an...

  10. Radiochromic 3D Detectors

    Science.gov (United States)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  12. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and ha......, improves socialization and networking, improves media impact, improves fun factor and improves encouragement of the production team....

  13. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  14. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through facil...

  15. 3D photoacoustic imaging

    Science.gov (United States)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  16. 三维非轴对称饱和土动力刚度矩阵%The Dynamic Stiffness Matrix of the 3-D Non-axisymme tric Saturated Soils

    Institute of Scientific and Technical Information of China (English)

    张玉红; 黄义

    2001-01-01

    基于三维非轴对称饱和弹性土层动力响应分析的基本解 ,推导出有限厚饱和土层和饱和半空间精确动力刚度矩阵,再由层间内界面连续条件建立三 维 非轴对称分层饱和土体总刚方程。该方法不要求对土体自然层(有限厚度)作薄层离散,也可 方便处理层内荷载的影响;总刚方程可直接用于计算边界元法中边界积分方程要求的影响函 数(GREEN函数)。%Based on the fundamental solutions of governing dynamic equa tions of the 3-D non-axisymmetric saturated soils,a layered saturated stiffnes s matrix and a saturated half-space stiffness matrix are derived exactly.The gl obal stiffness equation of a multi-layered half-space is assembled by using th e layer and half space stiffness matrices on the basis of continuity of traction s and fluid flow at layer interfaces,which would not need to disperse the natura l layered soils (finite thickness),and it is easy to deal with in-layer loading in global stiffness equation,and the GREEN's functions needed by boundary integ ral equation in boundary element method can be obtained directly by means of glo bal stiffness equation.

  17. Unoriented 3d TFTs

    CERN Document Server

    Bhardwaj, Lakshya

    2016-01-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous Z_2 1-form symmetry. We generalize this correspondence to Pin+ TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous Z_2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+ TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+ TFT admits a topological bou...

  18. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Ferin, Guillaume

    2012-01-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32x32 element prototype transducer. The transducer mimicked is a dense matrix...

  19. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  20. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  1. 3D and beyond

    Science.gov (United States)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  2. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  3. TOWARDS: 3D INTERNET

    Directory of Open Access Journals (Sweden)

    Ms. Swapnali R. Ghadge

    2013-08-01

    Full Text Available In today’s ever-shifting media landscape, it can be a complex task to find effective ways to reach your desired audience. As traditional media such as television continue to lose audience share, one venue in particular stands out for its ability to attract highly motivated audiences and for its tremendous growth potential the 3D Internet. The concept of '3D Internet' has recently come into the spotlight in the R&D arena, catching the attention of many people, and leading to a lot of discussions. Basically, one can look into this matter from a few different perspectives: visualization and representation of information, and creation and transportation of information, among others. All of them still constitute research challenges, as no products or services are yet available or foreseen for the near future. Nevertheless, one can try to envisage the directions that can be taken towards achieving this goal. People who take part in virtual worlds stay online longer with a heightened level of interest. To take advantage of that interest, diverse businesses and organizations have claimed an early stake in this fast-growing market. They include technology leaders such as IBM, Microsoft, and Cisco, companies such as BMW, Toyota, Circuit City, Coca Cola, and Calvin Klein, and scores of universities, including Harvard, Stanford and Penn State.

  4. 3D-kompositointi

    OpenAIRE

    Piirainen, Jere

    2015-01-01

    Opinnäytetyössä käydään läpi yleisimpiä 3D-kompositointiin liittyviä tekniikoita sekä kompositointiin käytettyjä ohjelmia ja liitännäisiä. Työssä esitellään myös kompositoinnin juuret 1800-luvun lopulta aina nykyaikaiseen digitaaliseen kompositointiin asti. Kompositointi on yksinkertaisimmillaan usean kuvan liittämistä saumattomasti yhdeksi uskottavaksi kokonaisuudeksi. Vaikka prosessi vaatii visuaalista silmää, vaatii se myös paljon teknistä osaamista. Tämän lisäksi perusymmärrys kamera...

  5. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data......, making them different from typical, existing box shaping techniques. The basis of the proposed techniques is a new algorithm for constructing a full box from just three of its corners. The evaluation of the new techniques compares their precision and completion times in a 9 degree-of-freedom (Do......F) docking experiment against an existing technique, which requires the user to perform the rotation and scaling of the box explicitly. The precision of the users' box construction is evaluated by a novel error metric measuring the difference between two boxes. The results of the experiment strongly indicate...

  6. Botulinum Toxin Type A Inhibits α-Smooth Muscle Actin and Myosin II Expression in Fibroblasts Derived From Scar Contracture.

    Science.gov (United States)

    Chen, Minliang; Yan, Tongtong; Ma, Kui; Lai, Linying; Liu, Chang; Liang, Liming; Fu, Xiaobing

    2016-09-01

    Scar contracture (SC) is one of the most common complications resulting from major burn injuries. Numerous treatments are currently available but they do not always yield excellent therapeutic results. Recent reports suggest that botulinum toxin type A (BTXA) is effective at reducing SC clinically, but the molecular mechanism for this action is unknown. α-Smooth muscle actin (α-SMA) and myosin II are the main components of stress fibers, which are the contractile structures of fibroblasts. The effects of BTXA on α-SMA and myosin II in SC are still unknown. This study aimed to explore the effect of BTXA on α-SMA and myosin II expression in fibroblasts derived from SC and to elucidate its actual mechanism further. Fibroblasts were isolated from tissue specimens of SC. Fibroblasts were cultured in Dulbecco modified Eagle medium with different concentrations of BTXA and their proliferation was analyzed through the tetrazolium-based colorimetric method at 1, 4, and 7 days. Proteins of α-SMA and myosin II were checked using Western blot in fibroblasts treated with different concentrations of BTXA at 1, 4, and 7 days. Fibroblasts without BTXA treatment had a higher proliferation than that in other groups, which indicated that the proliferation of fibroblasts was significantly inhibited by BTXA (P < 0.05). Proteins of α-SMA and myosin II between fibroblasts with BTXA and fibroblasts without BTXA are statistically significant (P < 0.05). These results suggest that BTXA effectively inhibited the growth of fibroblasts derived from SC and reduced the expression of α-SMA and myosin II, which provided theoretical support for the application of BTXA to control SC.

  7. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    Science.gov (United States)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  8. Republished: Importance of carcinoma-associated fibroblast-derived proteins in clinical oncology.

    Science.gov (United States)

    Valcz, Gabor; Sipos, Ferenc; Tulassay, Zsolt; Molnar, Bela; Yagi, Yukako

    2015-05-01

    Carcinoma-associated fibroblast (CAF) as prominent cell type of the tumour microenvironment has complex interaction with both the cancer cells and other non-neoplastic surrounding cells. The CAF-derived regulators and extracellular matrix proteins can support cancer progression by providing a protective microenvironment for the cancer cells via reduction of chemotherapy sensitivity. On the other hand, these proteins may act as powerful prognostic markers as well as potential targets of anticancer therapy. In this review, we summarise the clinical importance of the major CAF-derived signals influencing tumour behaviour and determining the outcome of chemotherapy.

  9. Importance of carcinoma-associated fibroblast-derived proteins in clinical oncology.

    Science.gov (United States)

    Valcz, Gabor; Sipos, Ferenc; Tulassay, Zsolt; Molnar, Bela; Yagi, Yukako

    2014-12-01

    Carcinoma-associated fibroblast (CAF) as prominent cell type of the tumour microenvironment has complex interaction with both the cancer cells and other non-neoplastic surrounding cells. The CAF-derived regulators and extracellular matrix proteins can support cancer progression by providing a protective microenvironment for the cancer cells via reduction of chemotherapy sensitivity. On the other hand, these proteins may act as powerful prognostic markers as well as potential targets of anticancer therapy. In this review, we summarise the clinical importance of the major CAF-derived signals influencing tumour behaviour and determining the outcome of chemotherapy.

  10. Intraoral 3D scanner

    Science.gov (United States)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  11. Martian terrain - 3D

    Science.gov (United States)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  12. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  13. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  14. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  15. 3D Printing an Octohedron

    OpenAIRE

    Aboufadel, Edward F.

    2014-01-01

    The purpose of this short paper is to describe a project to manufacture a regular octohedron on a 3D printer. We assume that the reader is familiar with the basics of 3D printing. In the project, we use fundamental ideas to calculate the vertices and faces of an octohedron. Then, we utilize the OPENSCAD program to create a virtual 3D model and an STereoLithography (.stl) file that can be used by a 3D printer.

  16. Salient Local 3D Features for 3D Shape Retrieval

    CERN Document Server

    Godil, Afzal

    2011-01-01

    In this paper we describe a new formulation for the 3D salient local features based on the voxel grid inspired by the Scale Invariant Feature Transform (SIFT). We use it to identify the salient keypoints (invariant points) on a 3D voxelized model and calculate invariant 3D local feature descriptors at these keypoints. We then use the bag of words approach on the 3D local features to represent the 3D models for shape retrieval. The advantages of the method are that it can be applied to rigid as well as to articulated and deformable 3D models. Finally, this approach is applied for 3D Shape Retrieval on the McGill articulated shape benchmark and then the retrieval results are presented and compared to other methods.

  17. Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren's Contracture

    Directory of Open Access Journals (Sweden)

    Hu Fen Z

    2008-04-01

    Full Text Available Abstract Dupuytren's contracture (DC is the most common inherited connective tissue disease of humans and is hypothesized to be associated with aberrant wound healing of the palmar fascia. Fibroblasts and myofibroblasts are believed to play an important role in the genesis of DC and the fibroproliferation and contraction that are hallmarks of this disease. This study compares the gene expression profiles of fibroblasts isolated from DC patients and controls in an attempt to identify key genes whose regulation might be significantly altered in fibroblasts found within the palmar fascia of Dupuytren's patients. Total RNA isolated from diseased palmar fascia (DC and normal palmar fascia (obtained during carpal tunnel release; 6 samples per group was subjected to quantitative analyses using two different microarray platforms (GE Code Link™ and Illumina™ to identify and validate differentially expressed genes. The data obtained was analyzed using The Significance Analysis of Microarrays (SAM software through which we identified 69 and 40 differentially regulated gene transcripts using the CodeLink™ and Illumina™ platforms, respectively. The CodeLink™ platform identified 18 upregulated and 51 downregulated genes. Using the Illumina™ platform, 40 genes were identified as downregulated, eleven of which were identified by both platforms. Quantitative RT-PCR confirmed the downregulation of three high-interest candidate genes which are all components of the extracellular matrix: proteoglycan 4 (PRG4, fibulin-1 (FBLN-1 transcript variant D, and type XV collagen alpha 1 chain. Overall, our study has identified a variety of candidate genes that may be involved in the pathophysiology of Dupuytren's contracture and may ultimately serve as attractive molecular targets for alternative therapies.

  18. Holography of 3d-3d correspondence at Large N

    OpenAIRE

    Gang, Dongmin; Kim, Nakwoo; Lee, Sangmin

    2014-01-01

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N = 2 $$ \\mathcal{N}=2 $$ superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS 4 geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the p...

  19. Magnetic Properties of 3D Printed Toroids

    Science.gov (United States)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  20. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    Science.gov (United States)

    Lee, Tong Young; Yoon, Kyoung-hye; Lee, Jin Il

    2016-01-01

    ABSTRACT The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory. PMID:26962047

  1. A system for finding a 3D target without a 3D image

    Science.gov (United States)

    West, Jay B.; Maurer, Calvin R., Jr.

    2008-03-01

    We present here a framework for a system that tracks one or more 3D anatomical targets without the need for a preoperative 3D image. Multiple 2D projection images are taken using a tracked, calibrated fluoroscope. The user manually locates each target on each of the fluoroscopic views. A least-squares minimization algorithm triangulates the best-fit position of each target in the 3D space of the tracking system: using the known projection matrices from 3D space into image space, we use matrix minimization to find the 3D position that projects closest to the located target positions in the 2D images. A tracked endoscope, whose projection geometry has been pre-calibrated, is then introduced to the operating field. Because the position of the targets in the tracking space is known, a rendering of the targets may be projected onto the endoscope view, thus allowing the endoscope to be easily brought into the target vicinity even when the endoscope field of view is blocked, e.g. by blood or tissue. An example application for such a device is trauma surgery, e.g., removal of a foreign object. Time, scheduling considerations and concern about excessive radiation exposure may prohibit the acquisition of a 3D image, such as a CT scan, which is required for traditional image guidance systems; it is however advantageous to have 3D information about the target locations available, which is not possible using fluoroscopic guidance alone.

  2. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    Directory of Open Access Journals (Sweden)

    Tong Young Lee

    2016-04-01

    Full Text Available The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory.

  3. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  4. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  5. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  6. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  7. A 3-D Contextual Classifier

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    1997-01-01

    . This includes the specification of a Gaussian distribution for the pixel values as well as a prior distribution for the configuration of class variables within the cross that is m ade of a pixel and its four nearest neighbours. We will extend this algorithm to 3-D, i.e. we will specify a simultaneous Gaussian...... distr ibution for a pixel and its 6 nearest 3-D neighbours, and generalise the class variable configuration distribution within the 3-D cross. The algorithm is tested on a synthetic 3-D multivariate dataset....

  8. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  9. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  10. Interactive 3D multimedia content

    CERN Document Server

    Cellary, Wojciech

    2012-01-01

    The book describes recent research results in the areas of modelling, creation, management and presentation of interactive 3D multimedia content. The book describes the current state of the art in the field and identifies the most important research and design issues. Consecutive chapters address these issues. These are: database modelling of 3D content, security in 3D environments, describing interactivity of content, searching content, visualization of search results, modelling mixed reality content, and efficient creation of interactive 3D content. Each chapter is illustrated with example a

  11. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  12. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  13. Dynamic 3D cell culture via a chemoselective photoactuated ligand.

    Science.gov (United States)

    Westcott, Nathan P; Luo, Wei; Goldstein, Jeffrey; Yousaf, Muhammad N

    2014-09-01

    A new strategy to create a dynamic scaffold for three-dimensional (3D) cell experiments based on a photo-activated cell adhesive peptide ligand is described. After polymerization, the inert matrix becomes cell adhesive by chemoselective modification through the conjugation of oxyamine-terminated ligands. Furthermore, spatial and temporal control of cell culture within the 3D matrix was achieved by the use of a biospecific photoprotected peptide and visualized by confocal microscopy.

  14. Perception of 3D spatial relations for 3D displays

    Science.gov (United States)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  15. 3D Printing for Bricks

    OpenAIRE

    ECT Team, Purdue

    2015-01-01

    Building Bytes, by Brian Peters, is a project that uses desktop 3D printers to print bricks for architecture. Instead of using an expensive custom-made printer, it uses a normal standard 3D printer which is available for everyone and makes it more accessible and also easier for fabrication.

  16. Market study: 3-D eyetracker

    Science.gov (United States)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  17. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  18. Improvement of 3D Scanner

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The disadvantage remaining in 3D scanning system and its reasons are discussed. A new host-and-slave structure with high speed image acquisition and processing system is proposed to quicken the image processing and improve the performance of 3D scanning system.

  19. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    The notion of three-dimensionality is applied to five stages of the visualization pipeline. While 3D visulization is most often associated with the visual mapping and representation of data, this chapter also identifies its role in the management and assembly of data, and in the media used...... to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  20. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  1. 3D vision system assessment

    Science.gov (United States)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  2. PLOT3D user's manual

    Science.gov (United States)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  3. Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography

    National Research Council Canada - National Science Library

    Kasaragod, Deepa K; Lu, Zenghai; Jacobs, James; Matcher, Stephen J

    2012-01-01

    ... on the extended Jones matrix calculus. Experimental data has been shown to agree with the lamellar model previously proposed for the cartilage microstructure based on scanning electron microscopy data...

  4. 3D Cell Culture in Alginate Hydrogels

    Directory of Open Access Journals (Sweden)

    Therese Andersen

    2015-03-01

    Full Text Available This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent, and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  5. Rubber Impact on 3D Textile Composites

    Science.gov (United States)

    Heimbs, Sebastian; Van Den Broucke, Björn; Duplessis Kergomard, Yann; Dau, Frederic; Malherbe, Benoit

    2012-06-01

    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools.

  6. ADT-3D Tumor Detection Assistant in 3D

    Directory of Open Access Journals (Sweden)

    Jaime Lazcano Bello

    2008-12-01

    Full Text Available The present document describes ADT-3D (Three-Dimensional Tumor Detector Assistant, a prototype application developed to assist doctors diagnose, detect and locate tumors in the brain by using CT scan. The reader may find on this document an introduction to tumor detection; ADT-3D main goals; development details; description of the product; motivation for its development; result’s study; and areas of applicability.

  7. Unassisted 3D camera calibration

    Science.gov (United States)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  8. Bioprinting of 3D hydrogels.

    Science.gov (United States)

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  9. Tuotekehitysprojekti: 3D-tulostin

    OpenAIRE

    Pihlajamäki, Janne

    2011-01-01

    Opinnäytetyössä tutustuttiin 3D-tulostamisen teknologiaan. Työssä käytiin läpi 3D-tulostimesta tehty tuotekehitysprojekti. Sen lisäksi esiteltiin yleisellä tasolla tuotekehitysprosessi ja syntyneiden tulosten mahdollisia suojausmenetelmiä. Tavoitteena tässä työssä oli kehittää markkinoilta jo löytyvää kotitulostin-tasoista 3D-laiteteknologiaa lähemmäksi ammattilaistason ratkaisua. Tavoitteeseen pyrittiin keskittymällä parantamaan laitteella saavutettavaa tulostustarkkuutta ja -nopeutt...

  10. Color 3D Reverse Engineering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object's images in the measurement process: Firs...

  11. Exploration of 3D Printing

    OpenAIRE

    Lin, Zeyu

    2014-01-01

    3D printing technology is introduced and defined in this Thesis. Some methods of 3D printing are illustrated and their principles are explained with pictures. Most of the essential parts are presented with pictures and their effects are explained within the whole system. Problems on Up! Plus 3D printer are solved and a DIY product is made with this machine. The processes of making product are recorded and the items which need to be noticed during the process are the highlight in this th...

  12. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  13. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  14. Accepting the T3D

    Energy Technology Data Exchange (ETDEWEB)

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  15. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  16. 3D Face Appearance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Åström, Kalle

    2006-01-01

    We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}......We build a 3d face shape model, including inter- and intra-shape variations, derive the analytical jacobian of its resulting 2d rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations.}...

  17. Main: TATCCAYMOTIFOSRAMY3D [PLACE

    Lifescience Database Archive (English)

    Full Text Available TATCCAYMOTIFOSRAMY3D S000256 01-August-2006 (last modified) kehi TATCCAY motif foun...d in rice (O.s.) RAmy3D alpha-amylase gene promoter; Y=T/C; a GATA motif as its antisense sequence; TATCCAY ...motif and G motif (see S000130) are responsible for sugar repression (Toyofuku et al. 1998); GATA; amylase; sugar; repression; rice (Oryza sativa) TATCCAY ...

  18. Breast cancer metastasis suppressor 1 (BRMS1) suppresses attachment and spreading of breast cancer cells on 2D and 3D extracellular matrix components by altering focal adhesion-associated signaling

    Science.gov (United States)

    Metastatic dissemination of cancer cells from primary tumor to secondary sites is a multi-step process that depends heavily on the ability of cancer cells to respond to the microenvironmental cues, such as changes in composition of surrounding extracellular matrix (ECM), by adapting their adhesion a...

  19. MPML3D: Scripting Agents for the 3D Internet.

    Science.gov (United States)

    Prendinger, Helmut; Ullrich, Sebastian; Nakasone, Arturo; Ishizuka, Mitsuru

    2011-05-01

    The aim of this paper is two-fold. First, it describes a scripting language for specifying communicative behavior and interaction of computer-controlled agents ("bots") in the popular three-dimensional (3D) multiuser online world of "Second Life" and the emerging "OpenSimulator" project. While tools for designing avatars and in-world objects in Second Life exist, technology for nonprogrammer content creators of scenarios involving scripted agents is currently missing. Therefore, we have implemented new client software that controls bots based on the Multimodal Presentation Markup Language 3D (MPML3D), a highly expressive XML-based scripting language for controlling the verbal and nonverbal behavior of interacting animated agents. Second, the paper compares Second Life and OpenSimulator platforms and discusses the merits and limitations of each from the perspective of agent control. Here, we also conducted a small study that compares the network performance of both platforms.

  20. 3D-mallinnus ja 3D-animaatiot biovoimalaitoksesta

    OpenAIRE

    Hiltula, Tytti

    2014-01-01

    Opinnäytetyössä tehtiin biovoimalaitoksen piirustuksista 3D-mallinnus ja animaatiot. Työn tarkoituksena oli saada valmiiksi Recwell Oy:lle markkinointiin tarkoitetut kuva- ja videomateriaalit. Työssä perehdyttiin 3D-mallintamisen perustietoihin ja lähtökohtiin sekä animaation laatimiseen. Työ laadittiin kokonaisuudessaan AutoCAD-ohjelmalla, ja työn aikana tutustuttiin huolellisesti myös ohjelman käyttöohjeisiin. Piirustusten mitoituksessa huomattiin jo alkuvaiheessa suuria puutteita, ...

  1. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  2. Thermal effusivity measurement based on analysis of 3D heat flow by modulated spot heating using a phase lag matrix with a combination of thermal effusivity and volumetric heat capacity

    Science.gov (United States)

    Ohta, Hiromichi; Hatori, Kimihito; Matsui, Genzou; Yagi, Takashi; Miyake, Shugo; Okamura, Takeo; Endoh, Ryo; Okada, Ryo; Morishita, Keisuke; Yokoyama, Shinichiro; Taguchi, Kohei; Kato, Hideyuki

    2016-11-01

    The study goal was to establish a standard industrial procedure for the measurement of thermal effusivity by a thermal microscope (TM), using a periodic heating method with a thermoreflectance (TR) technique. To accomplish this goal, a working group was organized that included four research institutes. Each institute followed the same procedure: a molybdenum (Mo) film was sputtered on the surface of Pyrex, yttria-stabilized zirconia (YSZ), alumina (Al2O3), Germanium (Ge), and silicon (Si) samples, and then the phase lag of the laser intensity modulation was measured by the resultant surface temperature. A procedure was proposed to calibrate the effect of 3D heat flow, based on the analytical solution of the heat conduction equation, and thermal effusivity was measured. The derived values show good agreement with literature values. As a result, the TM calibration procedure can be recommended for practical use in measuring the thermal effusivity in a small region of the materials.

  3. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  4. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  5. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  6. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  7. Speaking Volumes About 3-D

    Science.gov (United States)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  8. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Halamíček, Lukáš

    2015-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  9. Aspects of defects in 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,Seoul 02447 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Romo, Mauricio; Yamazaki, Masahito [Kavli Institute for the Physics and Mathematics of the Universe (WPI), University of Tokyo,Chiba 277-8583 (Japan); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States)

    2016-10-12

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A{sub N−1} on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T{sub N}[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T{sub N}[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  10. Aspects of defects in 3d-3d correspondence

    Science.gov (United States)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-10-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2, 0) theory of type A N -1 on a 3-manifold M . The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,C) ) on M and a 3d N=2 theory T N [ M ]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T [SU( N )], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N > 2. We also highlight the non-Abelian description of the 3d N=2 T N [ M ] theory with defect included, when such a description is available. This paper is a companion to our shorter paper [1], which summarizes our main results.

  11. Holography of 3d-3d correspondence at large N

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Dongmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Kim, Nakwoo [Department of Physics and Research Institute of Basic Science, Kyung Hee University,26 Kyungheedaero, Dongdaemun-gu, Seoul, 130-701 (Korea, Republic of); Lee, Sangmin [School of Physics, Korea Institute for Advanced Study,85 Hoegiro, Dongdaemun-gu, Seoul, 130-722 (Korea, Republic of); Center for Theoretical Physics, Department of Physics and Astronomy, College of Liberal Studies,Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 151-742 (Korea, Republic of)

    2015-04-20

    We study the physics of multiple M5-branes compactified on a hyperbolic 3-manifold. On the one hand, it leads to the 3d-3d correspondence which maps an N=2 superconformal field theory to a pure Chern-Simons theory on the 3-manifold. On the other hand, it leads to a warped AdS{sub 4} geometry in M-theory holographically dual to the superconformal field theory. Combining the holographic duality and the 3d-3d correspondence, we propose a conjecture for the large N limit of the perturbative free energy of a Chern-Simons theory on hyperbolic 3-manifold. The conjecture claims that the tree, one-loop and two-loop terms all share the same N{sup 3} scaling behavior and are proportional to the volume of the 3-manifold, while the three-loop and higher terms are suppressed at large N. Under mild assumptions, we prove the tree and one-loop parts of the conjecture. For the two-loop part, we test the conjecture numerically in a number of examples and find precise agreement. We also confirm the suppression of higher loop terms in a few examples.

  12. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... conventional methods can estimate only the axial component. Several approaches for 3D vector velocity estimation have been suggested, but none of these methods have so far produced convincing in vivo results nor have they been adopted by commercial manufacturers. The basis for this project is the Transverse...... on the TO fields are suggested. They can be used to optimize the TO method. In the third part, a TO method for 3D vector velocity estimation is proposed. It employs a 2D phased array transducer and decouples the velocity estimation into three velocity components, which are estimated simultaneously based on 5...

  13. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... combining local regressors using nearest neighbor searches. Both these functions act on the 4D space of 3D plus time, and use temporal information to handle the noise in individual scans. After interactive registration of a template mesh to the first frame, it is then automatically deformed to track...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  14. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    studies and in vivo. Phantom measurements are compared with their corresponding reference value, whereas the in vivo measurement is validated against the current golden standard for non-invasive blood velocity estimates, based on magnetic resonance imaging (MRI). The study concludes, that a high precision......, if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges......For the last decade, the field of ultrasonic vector flow imaging has gotten an increasingly attention, as the technique offers a variety of new applications for screening and diagnostics of cardiovascular pathologies. The main purpose of this PhD project was therefore to advance the field of 3-D...

  15. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  16. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  17. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  18. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  19. 3D digitization of mosaics

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2012-11-01

    Full Text Available In this paper we present a methodology developed to access to Cultural Heritage information using digital 3d reality-based models as graphic interfaces. The case studies presented belong to the wide repertoire of mosaics of Ravenna. One of the most peculiar characteristics of mosaics that often limits their digital survey is their multi-scale complexity; nevertheless their models could be used in 3d information systems, for digital exhibitions, for reconstruction aims and to document their conservation conditions in order to conduct restoration interventions in digital environments aiming at speeding and performing more reliable evaluations.

  20. PubChem3D: Biologically relevant 3-D similarity

    Directory of Open Access Journals (Sweden)

    Kim Sunghwan

    2011-07-01

    Full Text Available Abstract Background The use of 3-D similarity techniques in the analysis of biological data and virtual screening is pervasive, but what is a biologically meaningful 3-D similarity value? Can one find statistically significant separation between "active/active" and "active/inactive" spaces? These questions are explored using 734,486 biologically tested chemical structures, 1,389 biological assay data sets, and six different 3-D similarity types utilized by PubChem analysis tools. Results The similarity value distributions of 269.7 billion unique conformer pairs from 734,486 biologically tested compounds (all-against-all from PubChem were utilized to help work towards an answer to the question: what is a biologically meaningful 3-D similarity score? The average and standard deviation for the six similarity measures STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt were 0.54 ± 0.10, 0.07 ± 0.05, 0.62 ± 0.13, 0.41 ± 0.11, 0.18 ± 0.06, and 0.59 ± 0.14, respectively. Considering that this random distribution of biologically tested compounds was constructed using a single theoretical conformer per compound (the "default" conformer provided by PubChem, further study may be necessary using multiple diverse conformers per compound; however, given the breadth of the compound set, the single conformer per compound results may still apply to the case of multi-conformer per compound 3-D similarity value distributions. As such, this work is a critical step, covering a very wide corpus of chemical structures and biological assays, creating a statistical framework to build upon. The second part of this study explored the question of whether it was possible to realize a statistically meaningful 3-D similarity value separation between reputed biological assay "inactives" and "actives". Using the terminology of noninactive-noninactive (NN pairs and the noninactive-inactive (NI pairs to represent comparison of the "active/active" and

  1. 3D stereolithography printing of graphene oxide reinforced complex architectures.

    Science.gov (United States)

    Lin, Dong; Jin, Shengyu; Zhang, Feng; Wang, Chao; Wang, Yiqian; Zhou, Chi; Cheng, Gary J

    2015-10-30

    Properties of polymer based nanocomposites reply on distribution, concentration, geometry and property of nanofillers in polymer matrix. Increasing the concentration of carbon based nanomaterials, such as CNTs, in polymer matrix often results in stronger but more brittle material. Here, we demonstrated the first three-dimensional (3D) printed graphene oxide complex structures by stereolithography with good combination of strength and ductility. With only 0.2% GOs, the tensile strength is increased by 62.2% and elongation increased by 12.8%. Transmission electron microscope results show that the GOs were randomly aligned in the cross section of polymer. We investigated the strengthening mechanism of the 3D printed structure in terms of tensile strength and Young's modulus. It is found that an increase in ductility of the 3D printed nanocomposites is related to increase in crystallinity of GOs reinforced polymer. Compression test of 3D GOs structure reveals the metal-like failure model of GOs nanocomposites.

  2. MDA-MB-231 and 8701BC breast cancer lines promote the migration and invasiveness of ECV304 cells on 2D and 3D type-I collagen matrix.

    Science.gov (United States)

    Saladino, Silvia; Salamone, Monica; Ghersi, Giulio

    2017-09-01

    Tumor angiogenesis is a multiphasic process, having the extracellular matrix remodeling as critical step. Different classes of proteolytic enzymes in matrix digestion/remodeling are involved. The role of lytic enzymes and their activation mode have not been completely elucidated. Herein, the crosstalk between endothelia and tumor cells, by realization of bi- and three-dimensional endothelial and breast cancer cells co-cultures, were studied in vitro. Particularly, the effects of two tumor conditioned media (TCM) were assessed about endothelial proliferation, migration, and invasiveness. An increase in expression of pro-MMP9 was detected when endothelial cells were cultured in the presence of both TCM; such as an up-regulation of MMP1 and MMP14 and a down-regulation of MMP7. Moreover the increased MMP2 gene expression from one of them and the stimulation MMP3 synthesis from the other one were observed; an increases of β3-integrin, VEGFA, and DPP4 molecules were detected when endothelia cells are cultured with both TCM. The selection/characterization of elements present in conditioned media from breast cancer cells differently affect endothelial cells, make them potential effectors useful in breast cancer treatment. © 2017 International Federation for Cell Biology.

  3. Viewing galaxies in 3D

    CERN Document Server

    Krajnović, Davor

    2016-01-01

    Thanks to a technique that reveals galaxies in 3D, astronomers can now show that many galaxies have been wrongly classified. Davor Krajnovi\\'c argues that the classification scheme proposed 85 years ago by Edwin Hubble now needs to be revised.

  4. 3D terahertz beam profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Wang, Tianwu

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  5. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  6. When Art Meets 3D

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The presentation of the vanguard work,My Dream3D,the innovative production by the China Disabled People’s Performing Art Troupe(CDPPAT),directed by Joy Joosang Park,provided the film’s domestic premiere at Beijing’s Olympic Park onApril7.The show provided an intriguing insight not

  7. 3D Printing of Metals

    Directory of Open Access Journals (Sweden)

    Manoj Gupta

    2017-09-01

    Full Text Available The potential benefits that could be derived if the science and technology of 3D printing were to be established have been the crux behind monumental efforts by governments, in most countries, that invest billions of dollars to develop this manufacturing technology.[...

  8. Making Inexpensive 3-D Models

    Science.gov (United States)

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  9. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. Priprava 3D modelov za 3D tisk

    OpenAIRE

    2015-01-01

    Po mnenju nekaterih strokovnjakov bo aditivna proizvodnja (ali 3D tiskanje) spremenila proizvodnjo industrijo, saj si bo vsak posameznik lahko natisnil svoj objekt po želji. V diplomski nalogi so predstavljene nekatere tehnologije aditivne proizvodnje. V nadaljevanju diplomske naloge je predstavljena izdelava makete hiše v merilu 1:100, vse od modeliranja do tiskanja. Poseben poudarek je posvečen predelavi modela, da je primeren za tiskanje, kjer je razvit pristop za hitrejše i...

  11. Post processing of 3D models for 3D printing

    OpenAIRE

    2015-01-01

    According to the opinion of some experts the additive manufacturing or 3D printing will change manufacturing industry, because any individual could print their own model according to his or her wishes. In this graduation thesis some of the additive manufacturing technologies are presented. Furthermore in the production of house scale model in 1:100 is presented, starting from modeling to printing. Special attention is given to postprocessing of the building model elements us...

  12. Feasibility of Bioprinting with a Modified Desktop 3D Printer.

    Science.gov (United States)

    Goldstein, Todd A; Epstein, Casey J; Schwartz, John; Krush, Alex; Lagalante, Dan J; Mercadante, Kevin P; Zeltsman, David; Smith, Lee P; Grande, Daniel A

    2016-12-01

    Numerous studies have shown the capabilities of three-dimensional (3D) printing for use in the medical industry. At the time of this publication, basic home desktop 3D printer kits can cost as little as $300, whereas medical-specific 3D bioprinters can cost more than $300,000. The purpose of this study is to show how a commercially available desktop 3D printer could be modified to bioprint an engineered poly-l-lactic acid scaffold containing viable chondrocytes in a bioink. Our bioprinter was used to create a living 3D functional tissue-engineered cartilage scaffold. In this article, we detail the design, production, and calibration of this bioprinter. In addition, the bioprinted cells were tested for viability, proliferation, biochemistry, and gene expression; these tests showed that the cells survived the printing process, were able to continue dividing, and produce the extracellular matrix expected of chondrocytes.

  13. Multizone Paper Platform for 3D Cell Cultures

    Science.gov (United States)

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  14. The Depth Map Construction from a 3D Point Cloud

    OpenAIRE

    Chmelar Pavel; Beran Ladislav; Rejfek Lubos

    2016-01-01

    A depth map transforms 3D points into a 2D image and gives a different view of an observed scene. This paper deals with a depth map construction. It describes the whole process, how to transform any 3D point cloud into a 2D depth map. The described method uses 3D rotation matrixes and the line equation. This process allows to create the desired view from arbitrary point and rotation in an exploration space. Using of a depth map allows to apply image processing methods on depth data to get add...

  15. 3D Printable Graphene Composite.

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. Forensic 3D Scene Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  17. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  18. Medical 3D thermography system

    OpenAIRE

    GRUBIŠIĆ, IVAN

    2011-01-01

    Infrared (IR) thermography determines the surface temperature of an object or human body using thermal IR measurement camera. It is an imaging technology which is contactless and completely non-invasive. These propertiesmake IR thermography a useful method of analysis that is used in various industrial applications to detect, monitor and predict irregularities in many fields from engineering to medical and biological observations. This paper presents a conceptual model of Medical 3D Thermo...

  19. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  20. Dimensionality Reduction of Laplacian Embedding for 3D Mesh Reconstruction

    Science.gov (United States)

    Mardhiyah, I.; Madenda, S.; Salim, R. A.; Wiryana, I. M.

    2016-06-01

    Laplacian eigenbases are the important thing that we have to process from 3D mesh information. The information of geometric 3D mesh are include vertices locations and the connectivity of graph. Due to spectral analysis, geometric 3D mesh for large and sparse graphs with thousands of vertices is not practical to compute all the eigenvalues and eigenvector. Because of that, in this paper we discuss how to build 3D mesh reconstruction by reducing dimensionality on null eigenvalue but retain the corresponding eigenvector of Laplacian Embedding to simplify mesh processing. The result of reducing information should have to retained the connectivity of graph. The advantages of dimensionality reduction is for computational eficiency and problem simplification. Laplacian eigenbases is the point of dimensionality reduction for 3D mesh reconstruction. In this paper, we show how to reconstruct geometric 3D mesh after approximation step of 3D mesh by dimensionality reduction. Dimensionality reduction shown by Laplacian Embedding matrix. Furthermore, the effectiveness of 3D mesh reconstruction method will evaluated by geometric error, differential error, and final error. Numerical approximation error of our result are small and low complexity of computational.

  1. 3D Printing with Nucleic Acid Adhesives

    Science.gov (United States)

    2015-01-01

    By relying on specific DNA:DNA interactions as a “smart glue”, we have assembled microparticles into a colloidal gel that can hold its shape. This gel can be extruded with a 3D printer to generate centimeter size objects. We show four aspects of this material: (1) The colloidal gel material holds its shape after extrusion. (2) The connectivity among the particles is controlled by the binding behavior between the surface DNA and this mediates some control over the microscale structure. (3) The use of DNA-coated microparticles dramatically reduces the cost of DNA-mediated assembly relative to conventional DNA nanotechnologies and makes this material accessible for macroscale applications. (4) This material can be assembled under biofriendly conditions and can host growing cells within its matrix. The DNA-based control over organization should provide a new means of engineering bioprinted tissues. PMID:25984570

  2. Developing 3D microstructures for tissue engineering

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan

    casting process to generate various large scale tissue engineering constructs with single pore geometry with the desired mechanical stiffness and porosity. In addition, a new technique was developed to fa bricate dual-pore scaffolds for various tissue-engineering applications where 3D printing...... materials have been developed and tested for enhancing the differentiation of hiPSC-derived hepatocytes and fabricating biodegradable scaffolds for in-vivo tissue engineering applications. Along with various scaffolds fabrication methods we finally presented an optimized study of hepatic differentiation...... doxycycline was loaded into the hydrogel of the IPN materials, and the biological activity of released doxycycline was tested using a doxycycline regulated green fluorescent reporter gene expression assay in HeLa cells. Additionally, decellularized liver extracellular matrix (ECM) and natural silk protein...

  3. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  4. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  5. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  6. How 3-D Movies Work

    Institute of Scientific and Technical Information of China (English)

    吕铁雄

    2011-01-01

    难度:★★★★☆词数:450 建议阅读时间:8分钟 Most people see out of two eyes. This is a basic fact of humanity,but it’s what makes possible the illusion of depth(纵深幻觉) that 3-D movies create. Human eyes are spaced about two inches apart, meaning that each eye gives the brain a slightly different perspective(透视感)on the same object. The brain then uses this variance to quickly determine an object’s distance.

  7. Positional Awareness Map 3D (PAM3D)

    Science.gov (United States)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  8. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer

    Science.gov (United States)

    Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.

    2016-10-01

    3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.

  9. 3D Printable Graphene Composite

    Science.gov (United States)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  10. 3D medical thermography device

    Science.gov (United States)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  11. 3D Finite Element Analysis of Particle-Reinforced Aluminum

    Science.gov (United States)

    Shen, H.; Lissenden, C. J.

    2002-01-01

    Deformation in particle-reinforced aluminum has been simulated using three distinct types of finite element model: a three-dimensional repeating unit cell, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomly placed and oriented particles. The 2D generalized plane strain multi-particle models were obtained from planar sections through the 3D-MP model. These models were used to study the tensile macroscopic stress-strain response and the associated stress and strain distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle representative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions from 2D models having different particle area fractions do not agree with predictions from 3D models. More importantly, it was found that the microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP model. Specifically, the plastic strain distribution predicted by the 2D model is banded along lines inclined at 45 deg from the loading axis while the 3D model prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local effects, such as strain-to-failure, fracture toughness, and fatigue life.

  12. Fabrication of highly modulable fibrous 3D extracellular microenvironments

    KAUST Repository

    Zhang, Xixiang

    2017-06-13

    Three-dimensional (3D) in vitro scaffolds that mimic the irregular fibrous structures of in vivo extracellular matrix (ECM) are critical for many important biological applications. However, structural properties modulation of fibrous 3D scaffolds remains a challenge. Here, we report the first highly modulable 3D fibrous scaffolds self-assembled by high-aspect-ratio (HAR) microfibers. The scaffolds structural properties can be easily tailored to incorporate various physical cues, including geometry, stiffness, heterogeneity and nanotopography. Moreover, the fibrous scaffolds are readily and accurately patterned on desired locations of the substrate. Cell culture exhibits that our scaffolds can elicit strong bidirectional cell-material interactions. Furthermore, a functional disparity between the two-dimensional substrate and our 3D scaffolds is identified by cell spreading and proliferation data. These results prove the potential of the proposed scaffold as a biomimetic extracellular microenvironment for cell study.

  13. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    Science.gov (United States)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  14. Toward single cell traction microscopy within 3D collagen matrices.

    Science.gov (United States)

    Hall, Matthew S; Long, Rong; Feng, Xinzeng; Huang, Yuling; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. © 2013 Elsevier Inc. All rights reserved.

  15. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  16. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  17. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  18. 3D Printing of Graphene Aerogels.

    Science.gov (United States)

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  19. Primary cultured fibroblasts derived from patients with chronic wounds: a methodology to produce human cell lines and test putative growth factor therapy such as GMCSF

    Directory of Open Access Journals (Sweden)

    Coppock Donald L

    2008-12-01

    Full Text Available Abstract Background Multiple physiologic impairments are responsible for chronic wounds. A cell line grown which retains its phenotype from patient wounds would provide means of testing new therapies. Clinical information on patients from whom cells were grown can provide insights into mechanisms of specific disease such as diabetes or biological processes such as aging. The objective of this study was 1 To culture human cells derived from patients with chronic wounds and to test the effects of putative therapies, Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF on these cells. 2 To describe a methodology to create fibroblast cell lines from patients with chronic wounds. Methods Patient biopsies were obtained from 3 distinct locations on venous ulcers. Fibroblasts derived from different wound locations were tested for their migration capacities without stimulators and in response to GM-CSF. Another portion of the patient biopsy was used to develop primary fibroblast cultures after rigorous passage and antimicrobial testing. Results Fibroblasts from the non-healing edge had almost no migration capacity, wound base fibroblasts were intermediate, and fibroblasts derived from the healing edge had a capacity to migrate similar to healthy, normal, primary dermal fibroblasts. Non-healing edge fibroblasts did not respond to GM-CSF. Six fibroblast cell lines are currently available at the National Institute on Aging (NIA Cell Repository. Conclusion We conclude that primary cells from chronic ulcers can be established in culture and that they maintain their in vivo phenotype. These cells can be utilized for evaluating the effects of wound healing stimulators in vitro.

  20. 3D multiplexed immunoplasmonics microscopy

    Science.gov (United States)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  1. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    Science.gov (United States)

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations.

  2. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  3. Vrste i tehnike 3D modeliranja

    OpenAIRE

    Bernik, Andrija

    2010-01-01

    Proces stvaranja 3D stvarnih ili imaginarnih objekata naziva se 3D modeliranje. Razvoj računalne tehnologije omogućuje korisniku odabir raznih metoda i tehnika kako bi se postigla optimalna učinkovitost. Odabir je vezan za klasično 3D modeliranje ili 3D skeniranje pomoću specijaliziranih programskih i sklopovskih rješenja. 3D tehnikama modeliranja korisnik može izraditi 3D model na nekoliko načina: koristi poligone, krivulje ili hibrid dviju spomenutih tehnika pod nazivom subdivizijsko modeli...

  4. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  5. Large-scaled metabolic profiling of human dermal fibroblasts derived from pseudoxanthoma elasticum patients and healthy controls.

    Directory of Open Access Journals (Sweden)

    Patricia Kuzaj

    Full Text Available Mutations in the ABC transporter ABCC6 were recently identified as cause of Pseudoxanthoma elasticum (PXE, a rare genetic disorder characterized by progressive mineralization of elastic fibers. We used an untargeted metabolic approach to identify biochemical differences between human dermal fibroblasts from healthy controls and PXE patients in an attempt to find a link between ABCC6 deficiency, cellular metabolic alterations and disease pathogenesis. 358 compounds were identified by mass spectrometry covering lipids, amino acids, peptides, carbohydrates, nucleotides, vitamins and cofactors, xenobiotics and energy metabolites. We found substantial differences in glycerophospholipid composition, leucine dipeptides, and polypeptides as well as alterations in pantothenate and guanine metabolism to be significantly associated with PXE pathogenesis. These findings can be linked to extracellular matrix remodeling and increased oxidative stress, which reflect characteristic hallmarks of PXE. Our study could facilitate a better understanding of biochemical pathways involved in soft tissue mineralization.

  6. Saliency Detection of Stereoscopic 3D Images with Application to Visual Discomfort Prediction

    Science.gov (United States)

    Li, Hong; Luo, Ting; Xu, Haiyong

    2017-06-01

    Visual saliency detection is potentially useful for a wide range of applications in image processing and computer vision fields. This paper proposes a novel bottom-up saliency detection approach for stereoscopic 3D (S3D) images based on regional covariance matrix. As for S3D saliency detection, besides the traditional 2D low-level visual features, additional 3D depth features should also be considered. However, only limited efforts have been made to investigate how different features (e.g. 2D and 3D features) contribute to the overall saliency of S3D images. The main contribution of this paper is that we introduce a nonlinear feature integration descriptor, i.e., regional covariance matrix, to fuse both 2D and 3D features for S3D saliency detection. The regional covariance matrix is shown to be effective for nonlinear feature integration by modelling the inter-correlation of different feature dimensions. Experimental results demonstrate that the proposed approach outperforms several existing relevant models including 2D extended and pure 3D saliency models. In addition, we also experimentally verified that the proposed S3D saliency map can significantly improve the prediction accuracy of experienced visual discomfort when viewing S3D images.

  7. Toward single cell traction microscopy within 3D collagen matrices

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matthew S. [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Long, Rong [Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada T6G 2G8 (Canada); Feng, Xinzeng [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Huang, YuLing [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States); Hui, Chung-Yuen [Department of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 (United States); Wu, Mingming, E-mail: mw272@cornell.edu [Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  8. Visual Semantic Based 3D Video Retrieval System Using HDFS.

    Science.gov (United States)

    Kumar, C Ranjith; Suguna, S

    2016-08-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

  9. Forward ramp in 3D

    Science.gov (United States)

    1997-01-01

    Mars Pathfinder's forward rover ramp can be seen successfully unfurled in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This ramp was not used for the deployment of the microrover Sojourner, which occurred at the end of Sol 2. When this image was taken, Sojourner was still latched to one of the lander's petals, waiting for the command sequence that would execute its descent off of the lander's petal.The image helped Pathfinder scientists determine whether to deploy the rover using the forward or backward ramps and the nature of the first rover traverse. The metallic object at the lower left of the image is the lander's low-gain antenna. The square at the end of the ramp is one of the spacecraft's magnetic targets. Dust that accumulates on the magnetic targets will later be examined by Sojourner's Alpha Proton X-Ray Spectrometer instrument for chemical analysis. At right, a lander petal is visible.The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  10. Sliding Adjustment for 3D Video Representation

    Directory of Open Access Journals (Sweden)

    Galpin Franck

    2002-01-01

    Full Text Available This paper deals with video coding of static scenes viewed by a moving camera. We propose an automatic way to encode such video sequences using several 3D models. Contrary to prior art in model-based coding where 3D models have to be known, the 3D models are automatically computed from the original video sequence. We show that several independent 3D models provide the same functionalities as one single 3D model, and avoid some drawbacks of the previous approaches. To achieve this goal we propose a novel algorithm of sliding adjustment, which ensures consistency of successive 3D models. The paper presents a method to automatically extract the set of 3D models and associate camera positions. The obtained representation can be used for reconstructing the original sequence, or virtual ones. It also enables 3D functionalities such as synthetic object insertion, lightning modification, or stereoscopic visualization. Results on real video sequences are presented.

  11. An interactive multiview 3D display system

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  12. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  13. 3D ultrasound in fetal spina bifida.

    Science.gov (United States)

    Schramm, T; Gloning, K-P; Minderer, S; Tutschek, B

    2008-12-01

    3D ultrasound can be used to study the fetal spine, but skeletal mode can be inconclusive for the diagnosis of fetal spina bifida. We illustrate a diagnostic approach using 2D and 3D ultrasound and indicate possible pitfalls.

  14. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business that has developed 3D Flash LIDAR systems for space and terrestrial applications. 3D Flash LIDAR is...

  15. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  16. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  17. 3D printing of microscopic bacterial communities

    National Research Council Canada - National Science Library

    Jodi L. Connell; Eric T. Ritschdorff; Marvin Whiteley; Jason B. Shear

    2013-01-01

    .... Here, we describe a microscopic threedimensional (3D) printing strategy that enables multiple populations of bacteria to be organized within essentially any 3D geometry, including adjacent, nested, and free-floating...

  18. 3D Scanning technology for offshore purposes

    DEFF Research Database (Denmark)

    Christoffersen, Morten Thoft

    2005-01-01

    New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities......New scanning technology makes for construction of precision 3D models of production plants and offshore production facilities...

  19. Laser Based 3D Volumetric Display System

    Science.gov (United States)

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  20. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  1. 3D Printing and Its Urologic Applications

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  2. Beowulf 3D: a case study

    Science.gov (United States)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  3. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  4. Imaging a Sustainable Future in 3D

    Science.gov (United States)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  5. 3D Printing and Its Urologic Applications.

    Science.gov (United States)

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology.

  6. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  7. 3D immersive and interactive learning

    CERN Document Server

    Cai, Yiyu

    2014-01-01

    This book reviews innovative uses of 3D for immersive and interactive learning, covering gifted programs, normal stream and special needs education. Reports on curriculum-based 3D learning in classrooms, and co-curriculum-based 3D student research projects.

  8. Generation and periodontal differentiation of human gingival fibroblasts-derived integration-free induced pluripotent stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Xiaohui [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Yang [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Li, Jingwen [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China); Li, Peng [Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR (China); Liu, Yinan [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Wen, Jinhua, E-mail: jhwen@bjmu.edu.cn [Peking University Stem Cell Research Center and Department of Cell Biology, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191 (China); Luan, Qingxian, E-mail: kqluanqx@126.com [Department of Periodontology, School and Hospital of Stomatology, Peking University, 22 South Avenue Zhong-Guan-Cun, Beijing 100081 (China)

    2016-05-06

    Induced pluripotent stem cells (iPSCs) have been recognized as a promising cell source for periodontal tissue regeneration. However, the conventional virus-based reprogramming approach is associated with a high risk of genetic mutation and limits their therapeutic utility. Here, we successfully generated iPSCs from readily accessible human gingival fibroblasts (hGFs) through an integration-free and feeder-free approach via delivery of reprogramming factors of Oct4, Sox2, Klf4, L-myc, Lin28 and TP53 shRNA with episomal plasmid vectors. The iPSCs presented similar morphology and proliferation characteristics as embryonic stem cells (ESCs), and expressed pluripotent markers including Oct4, Tra181, Nanog and SSEA-4. Additionally, these cells maintained a normal karyotype and showed decreased CpG methylation ratio in the promoter regions of Oct4 and Nanog. In vivo teratoma formation assay revealed the development of tissues representative of three germ layers, confirming the acquisition of pluripotency. Furthermore, treatment of the iPSCs in vitro with enamel matrix derivative (EMD) or growth/differentiation factor-5 (GDF-5) significantly up-regulated the expression of periodontal tissue markers associated with bone, periodontal ligament and cementum respectively. Taken together, our data demonstrate that hGFs are a valuable cell source for generating integration-free iPSCs, which could be sequentially induced toward periodontal cells under the treatment of EMD and GDF-5. - Highlights: • Integration-free iPSCs are successfully generated from hGFs via an episomal approach. • EMD promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • GDF-5 promotes differentiation of the hGFs-derived iPSCs toward periodontal cells. • hGFs-derived iPSCs could be a promising cell source for periodontal regeneration.

  9. Thermal Analysis of 3D Printed 420 Stainless Steel

    Science.gov (United States)

    Pawar, Prathamesh Vijay

    Additive manufacturing opens new possibilities in the manufacturing industry. 3D printing is a form of additive manufacturing. 3D printers will have a significant influence over the industrial market, with extremely positive effects in no time. The main aim of this research is to determine the effect of process parameters of Binder Jet manufactured 420 Stainless Steel (420SS) parts on thermal properties such as thermal conductivity. Different parameters, such as layer thickness, sintering time and sintering temperature were varied. A full factorial design of experiment matrix was made by varying these parameters using two levels. Testing showed that different parameters affected the properties in a different manner. Sintering time was very important property as it changed the composition and arrangement of steel and bronze powder during the sintering process. M-flex 3D metal printer by Ex-one was used to print samples of 420SS.

  10. Scalable Nuclear Density Functional Theory with Sky3D

    CERN Document Server

    Afibuzzaman, Md; Aktulga, Hasan Metin

    2016-01-01

    In nuclear astro-physics, the quantum simulation of large inhomogenous dense systems as present in the crusts of neutron stars presents big challenges. The feasible number of particles in a simulation box with periodic boundary conditions is strongly limited due to the immense computational cost of the quantum methods. In this paper, we describe the techniques used to parallelize Sky3D, a nuclear density functional theory code that operates on an equidistant grid, and optimize its performance on distributed memory architectures. We also describe cache blocking techniques to accelerate the compute-intensive matrix calculation part in Sky3D. Presented techniques allow Sky3D to achieve good scaling and high performance on a large number of cores, as demonstrated through detailed performance analysis on Edison, a Cray XC30 supercomputer.

  11. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  12. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  13. Investigating Mobile Stereoscopic 3D Touchscreen Interaction

    OpenAIRE

    Colley, Ashley; Hakkila, Jonna; SCHOENING, Johannes; Posti, Maaret

    2013-01-01

    3D output is no longer limited to large screens in cinemas or living rooms. Nowadays more and more mobile devices are equipped with autostereoscopic 3D (S3D) touchscreens. As a consequence interaction with 3D content now also happens whilst users are on the move. In this paper we carried out a user study with 27 participants to assess how mobile interaction, i.e. whilst walking, with mobile S3D devices, differs from interaction with 2D mobile touchscreens. We investigate the difference in tou...

  14. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  15. Web-based interactive visualization of 3D video mosaics using X3D standard

    Institute of Scientific and Technical Information of China (English)

    CHON Jaechoon; LEE Yang-Won; SHIBASAKI Ryosuke

    2006-01-01

    We present a method of 3D image mosaicing for real 3D representation of roadside buildings, and implement a Web-based interactive visualization environment for the 3D video mosaics created by 3D image mosaicing. The 3D image mosaicing technique developed in our previous work is a very powerful method for creating textured 3D-GIS data without excessive data processing like the laser or stereo system. For the Web-based open access to the 3D video mosaics, we build an interactive visualization environment using X3D, the emerging standard of Web 3D. We conduct the data preprocessing for 3D video mosaics and the X3D modeling for textured 3D data. The data preprocessing includes the conversion of each frame of 3D video mosaics into concatenated image files that can be hyperlinked on the Web. The X3D modeling handles the representation of concatenated images using necessary X3D nodes. By employing X3D as the data format for 3D image mosaics, the real 3D representation of roadside buildings is extended to the Web and mobile service systems.

  16. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    3D Geovisualisation is a multidisciplinary science mainly utilizing geographically related data, developing software systems for 3D visualisation and producing relevant models. In this paper the connection between geoinformation stored as 3D objects and the end user is of special interest....... In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality....... The conceptual level is used to structure and organise user-centered 3D Geovisualisation into four categories: representation, rendering, interface and interaction. The categories reflect a process of development of 3D Geovisualisation where objects can be represented verisimilar to the real world...

  17. 3D laptop for defense applications

    Science.gov (United States)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  18. An iterative solver for the 3D Helmholtz equation

    Science.gov (United States)

    Belonosov, Mikhail; Dmitriev, Maxim; Kostin, Victor; Neklyudov, Dmitry; Tcheverda, Vladimir

    2017-09-01

    We develop a frequency-domain iterative solver for numerical simulation of acoustic waves in 3D heterogeneous media. It is based on the application of a unique preconditioner to the Helmholtz equation that ensures convergence for Krylov subspace iteration methods. Effective inversion of the preconditioner involves the Fast Fourier Transform (FFT) and numerical solution of a series of boundary value problems for ordinary differential equations. Matrix-by-vector multiplication for iterative inversion of the preconditioned matrix involves inversion of the preconditioner and pointwise multiplication of grid functions. Our solver has been verified by benchmarking against exact solutions and a time-domain solver.

  19. Development of an advanced 3D cone beam tomographic system

    Science.gov (United States)

    Sire, Pascal; Rizo, Philippe; Martin, M.; Grangeat, Pierre; Morisseau, P.

    Due to its high spatial resolution, the 3D X-ray cone-beam tomograph (CT) maximizes understanding of test object microstructure. In order for the present X-ray CT NDT system to control ceramics and ceramic-matrix composites, its spatial resolution must exceed 50 microns. Attention is given to two experimental data reconstructions that have been conducted to illustrate system capabilities.

  20. Image Appraisal for 2D and 3D Electromagnetic Inversion

    Energy Technology Data Exchange (ETDEWEB)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  1. Effect of diode low-level lasers on fibroblasts derived from human periodontal tissue: a systematic review of in vitro studies.

    Science.gov (United States)

    Ren, Chong; McGrath, Colman; Jin, Lijian; Zhang, Chengfei; Yang, Yanqi

    2016-09-01

    This study aimed to systematically assess the parameter-specific effects of the diode low-level laser on human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPDLFs). An extensive search was performed in major electronic databases including PubMed (1997), EMBASE (1947) and Web of Science (1956) and supplemented by hand search of reference lists and relevant laser journals for cell culture studies investigating the effect of diode low-level lasers on HGFs and HPDLFs published from January 1995 to December 2015. A total of 21 studies were included after screening 324 independent records, amongst which eight targeted HPDLFs and 13 focussed on HGFs. The diode low-level laser showed positive effects on promoting fibroblast proliferation and osteogenic differentiation and modulating cellular inflammation via changes in gene expression and the release of growth factors, bone-remodelling markers or inflammatory mediators in a parameter-dependent manner. Repeated irradiations with wavelengths in the red and near-infrared range and at an energy density below 16 J/cm(2) elicited favourable responses. However, considerable variations and weaknesses in the study designs and laser protocols limited the interstudy comparison and clinical transition. Current evidence showed that diode low-level lasers with adequate parameters stimulated the proliferation and modulated the inflammation of fibroblasts derived from human periodontal tissue. However, further in vitro studies with better designs and more appropriate study models and laser parameters are anticipated to provide sound evidence for clinical studies and practice.

  2. Guidelines for designing 2D and 3D plasmonic stub resonators

    CERN Document Server

    Naghizadeh, Solmaz

    2016-01-01

    In this work we compare the performance of plasmonic waveguide integrated stub resonators based on 2D metal-dielectric-metal (MDM) and 3D slot-waveguide (SWG) geometries. We show that scattering matrix theory can be extended to 3D devices, and by employing scattering matrix theory we provide the guidelines for designing plasmonic 2D and 3D single-stub and double-stub resonators with a desired spectral response at the design wavelength. We provide transmission maps of 2D and 3D double-stub resonators versus stub lengths, and we specify the different regions on these maps that result in a minimum, a maximum or a plasmonically induced transparency (PIT) shape in the transmission spectrum. Radiation loss from waveguide terminations leads to a degradation of the 3D slot-waveguide based resonators. We illustrate improved waveguide terminations that boost resonator properties. We verify our results with 3D FDTD simulations.

  3. FROM 3D MODEL DATA TO SEMANTICS

    Directory of Open Access Journals (Sweden)

    My Abdellah Kassimi

    2012-01-01

    Full Text Available The semantic-based 3D models retrieval systems have become necessary since the increase of 3D modelsdatabases. In this paper, we propose a new method for the mapping problem between 3D model data andsemantic data involved in semantic based retrieval for 3D models given by polygonal meshes. First, wefocused on extracting invariant descriptors from the 3D models and analyzing them to efficient semanticannotation and to improve the retrieval accuracy. Selected shape descriptors provide a set of termscommonly used to describe visually a set of objects using linguistic terms and are used as semanticconcept to label 3D model. Second, spatial relationship representing directional, topological anddistance relationships are used to derive other high-level semantic features and to avoid the problem ofautomatic 3D model annotation. Based on the resulting semantic annotation and spatial concepts, anontology for 3D model retrieval is constructed and other concepts can be inferred. This ontology is usedto find similar 3D models for a given query model. We adopted the query by semantic example approach,in which the annotation is performed mostly automatically. The proposed method is implemented in our3D search engine (SB3DMR, tested using the Princeton Shape Benchmark Database.

  4. RT3D tutorials for GMS users

    Energy Technology Data Exchange (ETDEWEB)

    Clement, T.P. [Pacific Northwest National Lab., Richland, WA (United States); Jones, N.L. [Brigham Young Univ., Provo, UT (United States)

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  5. 3D change detection - Approaches and applications

    Science.gov (United States)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  6. Influence of scaffold design on 3D printed cell constructs.

    Science.gov (United States)

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  7. Single Cell Traction Microscopy within 3D Collagen Matrices

    Science.gov (United States)

    Wu, Mingming

    2014-03-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, our current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D traction force microscopy, in which cells are cultured on a flat substrate. It is now clear that what we learn about cellular behavior on a 2D substrate does not always apply to cells embedded within a 3D biomatrix. 3D traction microscopy is emerging for mapping traction fields of single cells embedded in 3D gel, but current methods cannot account for the fibrous and nonlinear properties of collagen gel. In this talk, I will present a forward computation algorithm that we have developed for 3D cell traction measurements within collagen gels. The application of this technology to understanding cancer migration and invasion will be discussed. This work is supported by the National Center for Research Resources (5R21RR025801-03, NIH) and the National Institute of General Medical Sciences (8 R21 GM103388-03,NIH), and the Cornell Center on the Microenvironment & Metastasis.

  8. 3D Printing of Organs-On-Chips.

    Science.gov (United States)

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  9. 3D Printing of Organs-On-Chips

    Science.gov (United States)

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  10. Mathematical structure of three - dimensional (3D) Ising model

    CERN Document Server

    Zhang, Zhi-dong

    2013-01-01

    An overview of the mathematical structure of the three-dimensional (3D) Ising model is given, from the viewpoints of topologic, algebraic and geometric aspects. By analyzing the relations among transfer matrices of the 3D Ising model, Reidemeister moves in the knot theory, Yang-Baxter and tetrahedron equations, the following facts are illustrated for the 3D Ising model: 1) The complexified quaternion basis constructed for the 3D Ising model represents naturally the rotation in a (3 + 1) - dimensional space-time, as a relativistic quantum statistical mechanics model, which is consistent with the 4-fold integrand of the partition function by taking the time average. 2) A unitary transformation with a matrix being a spin representation in 2^(nlo)-space corresponds to a rotation in 2nlo-space, which serves to smooth all the crossings in the transfer matrices and contributes as the non-trivial topologic part of the partition function of the 3D Ising model. 3) A tetrahedron relation would ensure the commutativity o...

  11. 3D Printing of Organs-On-Chips

    Directory of Open Access Journals (Sweden)

    Hee-Gyeong Yi

    2017-01-01

    Full Text Available Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  12. Complex crustal structures: their 3D grav/mag modelling and 3D printing

    Science.gov (United States)

    Götze, Hans-Jürgen; Schmidt, Sabine; Menzel, Peter

    2017-04-01

    Our new techniques for modelling and visualization are user-friendly because they are highly interactive, ideally real-time and topology conserving and can be used for both flat and spherical models in 3D. These are important requirements for joint inversion for gravity and magnetic modelling of fields and their derivatives, constrained by seismic and structural input from independent data sources. A borehole tool for magnetic and gravity modelling will also be introduced. We are already close to satisfying the demand of treating several geophysical methods in a single model for subsurface evaluation purposes and aim now for fulfilling most of the constraints: consistency of modelling results and measurements and geological plausibility as well. For 3D modelling, polyhedrons built by triangles are used. All elements of the gravity and magnetic tensors can be included. In the modelling interface, after geometry changes the effect on the model is quickly updated because only the changed triangles have to be recalculated. Because of the triangular model structure, our approach can handle complex structures very well and flexible (e.g. overhangs of salt domes or plumes). For regional models, the use of spherical geometries and calculations is necessary and available. 3D visualization is performed with a 3D-printer (Ultimaker 2) and gives new insights into even rather complicated Earth subsurface structures. Inversion can either be run over the whole model, but typically it is used in smaller parts of the model, helping to solve local problems and/or proving/disproving local hypotheses. The basic principles behind this interactive approach are high performance optimized algorithms (CMA-ES: Covariance-matrix-adoption-evolution-strategy). The efficiency of the algorithm is rather good in terms of stable convergence due to topological model validity. Potential field modelling is always influenced by edge effects. To avoid this, a simple but very robust method has been

  13. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and it

  14. 3D-Barolo: 3D fitting tool for the kinematics of galaxies

    NARCIS (Netherlands)

    Di Teodoro, E. M.; Fraternali, F.

    3D-Barolo (3D-Based Analysis of Rotating Object via Line Observations) or BBarolo is a tool for fitting 3D tilted-ring models to emission-line datacubes. BBarolo works with 3D FITS files, i.e. image arrays with two spatial and one spectral dimensions. BBarolo recovers the true rotation curve and

  15. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and

  16. A 3-D Virtual Environment Display System

    Science.gov (United States)

    1989-12-01

    identity-matrix sets m to the identity matrix. VE-copy-matrix copies matrix ml into m2. VE-mult- matriz computes the matrix multiplication result = [ml][m2...July 1983. 10. Grimaud, Jean-Jacques. Personal interview. Boston MA, 3 August 1989. 11. Leffier, Smauel J. and others. An Advanced 4.3BSD Interprocess

  17. Stability Criteria of 3D Inviscid Shears

    CERN Document Server

    Li, Y Charles

    2009-01-01

    The classical plane Couette flow, plane Poiseuille flow, and pipe Poiseuille flow share some universal 3D steady coherent structure in the form of "streak-roll-critical layer". As the Reynolds number approaches infinity, the steady coherent structure approaches a 3D limiting shear of the form ($U(y,z), 0, 0$) in velocity variables. All such 3D shears are steady states of the 3D Euler equations. This raises the importance of investigating the stability of such inviscid 3D shears in contrast to the classical Rayleigh theory of inviscid 2D shears. Several general criteria of stability for such inviscid 3D shears are derived. In the Appendix, an argument is given to show that a 2D limiting shear can only be the classical laminar shear.

  18. 3D-tulostus : case Printrbot

    OpenAIRE

    Arvekari, Lassi

    2013-01-01

    Opinnäytetyön tavoitteena on selvittää 3D-tulostustekniikan perusteita ja 3D-tulostuksen nykytilannetta. 3D-tulostukseen sopivien mallien luomista tutkitaan ja mallin tekemiseen on etsitty toimivia ohjesääntöjä. Tärkeä osa työtä on tutkia mitä vaiheita 3D-tulostimen hankinnassa kotikäyttöön tulee vastaan. Käytännön kokeita varten opinnäytetyössä on case Printrbot, jossa on tutustuttu edulliseen 3D-tulostuslaitteeseen kokoonpanosta lähtien. Työn kuluessa selvisi että edulliset 3D-tulos...

  19. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  20. Reconhecimento de faces 3D com Kinect

    OpenAIRE

    Cardia Neto, João Baptista [UNESP

    2014-01-01

    For person identification, facil recognition has several advantages over other biometric traits due mostly to its high universelly, collectability, and acceptability. When dealing with 2D face images several problems arise related to pose, illumination, and facial expressions. To increase the performance of facial recognition, 3D mehtods have been proposed and developedm since working with 3D objects allow us to handle better the aforementioned problems. With 3D object, it is possible to rota...

  1. Ultrasonic Sensor Based 3D Mapping & Localization

    Directory of Open Access Journals (Sweden)

    Shadman Fahim Ahmad

    2016-04-01

    Full Text Available This article provides a basic level introduction to 3D mapping using sonar sensors and localization. It describes the methods used to construct a low-cost autonomous robot along with the hardware and software used as well as an insight to the background of autonomous robotic 3D mapping and localization. We have also given an overview to what the future prospects of the robot may hold in 3D based mapping.

  2. MOM3D/EM-ANIMATE - MOM3D WITH ANIMATION CODE

    Science.gov (United States)

    Shaeffer, J. F.

    1994-01-01

    MOM3D (LAR-15074) is a FORTRAN method-of-moments electromagnetic analysis algorithm for open or closed 3-D perfectly conducting or resistive surfaces. Radar cross section with plane wave illumination is the prime analysis emphasis; however, provision is also included for local port excitation for computing antenna gain patterns and input impedances. The Electric Field Integral Equation form of Maxwell's equations is solved using local triangle couple basis and testing functions with a resultant system impedance matrix. The analysis emphasis is not only for routine RCS pattern predictions, but also for phenomenological diagnostics: bistatic imaging, currents, and near scattered/total electric fields. The images, currents, and near fields are output in form suitable for animation. MOM3D computes the full backscatter and bistatic radar cross section polarization scattering matrix (amplitude and phase), body currents and near scattered and total fields for plane wave illumination. MOM3D also incorporates a new bistatic k space imaging algorithm for computing down range and down/cross range diagnostic images using only one matrix inversion. MOM3D has been made memory and cpu time efficient by using symmetric matrices, symmetric geometry, and partitioned fixed and variable geometries suitable for design iteration studies. MOM3D may be run interactively or in batch mode on 486 IBM PCs and compatibles, UNIX workstations or larger computers. A 486 PC with 16 megabytes of memory has the potential to solve a 30 square wavelength (containing 3000 unknowns) symmetric configuration. Geometries are described using a triangular mesh input in the form of a list of spatial vertex points and a triangle join connection list. The EM-ANIMATE (LAR-15075) program is a specialized visualization program that displays and animates the near-field and surface-current solutions obtained from an electromagnetics program, in particular, that from MOM3D. The EM-ANIMATE program is windows based and

  3. Sliding Hydrogels with Mobile Molecular Ligands and Crosslinks as 3D Stem Cell Niche.

    Science.gov (United States)

    Tong, Xinming; Yang, Fan

    2016-09-01

    The development of a sliding hydrogel with mobile crosslinks and biochemical ligands as a 3D stem cell niche is reported. The molecular mobility of this sliding hydrogel allows stem cells to reorganize the surrounding ligands and change their morphology in 3D. Without changing matrix stiffness, sliding hydrogels support efficient stem cell differentiation toward multiple lineages including adipogenesis, chondrogenesis, and osteogenesis.

  4. Extension of RCC Topological Relations for 3d Complex Objects Components Extracted from 3d LIDAR Point Clouds

    Science.gov (United States)

    Xing, Xu-Feng; Abolfazl Mostafavia, Mir; Wang, Chen

    2016-06-01

    Topological relations are fundamental for qualitative description, querying and analysis of a 3D scene. Although topological relations for 2D objects have been extensively studied and implemented in GIS applications, their direct extension to 3D is very challenging and they cannot be directly applied to represent relations between components of complex 3D objects represented by 3D B-Rep models in R3. Herein we present an extended Region Connection Calculus (RCC) model to express and formalize topological relations between planar regions for creating 3D model represented by Boundary Representation model in R3. We proposed a new dimension extended 9-Intersection model to represent the basic relations among components of a complex object, including disjoint, meet and intersect. The last element in 3*3 matrix records the details of connection through the common parts of two regions and the intersecting line of two planes. Additionally, this model can deal with the case of planar regions with holes. Finally, the geometric information is transformed into a list of strings consisting of topological relations between two planar regions and detailed connection information. The experiments show that the proposed approach helps to identify topological relations of planar segments of point cloud automatically.

  5. 3D Reconstruction in Spiral Multislice CT Scans

    Directory of Open Access Journals (Sweden)

    M. Ghafouri

    2005-08-01

    Full Text Available Introduction & Background: The rapid development of spiral (helical computed tomography (CT has resulted in exciting new applications for CT. One of these applications, three-dimensional (3D CT with volume ren-dering, is now a major area of clinical and academic interest. One of the greatest advantages of spiral CT with 3D volume rendering is that it provides all the necessary information in a single radiologic study (and there-fore at the lowest possible price in cases that previously required two or more studies. Three-dimensional vol-ume rendering generates clinically accurate and immediately available images from the full CT data set with-out extensive editing. It allows the radiologist and clinician to address specific questions concerning patient care by interactively exploring different aspects of the data set. Three-dimensional images integrate a series of axial CT sections into a form that is often easier to interpret than the sections themselves and can be made to appear similar to other more familiar images such as catheter angiograms. The data are organized into a 3D matrix of volume elements (voxels. The screen of the computer monitor is a 2D-surface composed of discrete picture elements (pixels. Presenting what is stored in memory (ie, floating within the monitor on a 2D-screen is a challenge, but it is the very problem that 3D reconstruc-tion software has creatively solved. Voxel selection is usually accomplished by projecting lines (rays through the data set that correspond to the pixel matrix of the desired 2D image. Differences in the images produced with various 3D rendering techniques are the result of variations in how voxels are selected and weighted. In this article, I compare 3D volume rendering of spiral CT data with other rendering techniques (shaded surface display, maximum intensity projection and present a brief history of 3D volume rendering and discuss the im-plementation of this promising technology in terms of

  6. Ekologinen 3D-tulostettava asuste

    OpenAIRE

    Paulasaari, Laura

    2014-01-01

    Tämän opinnäytetyön aiheena oli ekologisuus 3D-tulostuksessa ja sen hyödynnettävyys erityisesti asustesuunnittelussa. Työn tarkoituksena oli selvittää, kuinka 3D-tulostusta voi tehdä ekologisemmin ja mitä vaihtoehtoja kuluttajalle tällä hetkellä on. Työ tehtiin Young skills –osuuskunnalle. 3D-tulostuksella on mahdollisuus antaa todella paljon tulevaisuuden tuotantomenetelmille ja se vapauttaa tuotteiden muotoilua täysin uudella tavalla. 3D-tulostuksen avulla voidaan keskittyä enemmän esim...

  7. Topology Dictionary for 3D Video Understanding

    OpenAIRE

    2012-01-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted pattern...

  8. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2016-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  9. Virtual Realization using 3D Password

    Directory of Open Access Journals (Sweden)

    A.B.Gadicha

    2012-03-01

    Full Text Available Current authentication systems suffer from many weaknesses. Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionaries, which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Many available graphical passwords have a password space that is less than or equal to the textual password space. Smart cards or tokens can be stolen. Many biometric authentications have been proposed; however, users tend to resist using biometrics because of their intrusiveness and the effect on their privacy. Moreover, biometrics cannot be revoked. In this paper, we present and evaluate our contribution, i.e., the 3D password. The 3D password is a multifactor authentication scheme. To be authenticated, we present a 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3D password. The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment. The design of the 3D virtual environment and the type of objects selected determine the 3D password key space.

  10. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  11. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  12. Calibration for 3D Structured Light Measurement

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.

  13. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  14. Regional geothermal 3D modelling in Denmark

    Science.gov (United States)

    Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.

    2012-04-01

    In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the

  15. FastScript3D - A Companion to Java 3D

    Science.gov (United States)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  16. An aerial 3D printing test mission

    Science.gov (United States)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  17. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  18. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  19. User-centered 3D geovisualisation

    DEFF Research Database (Denmark)

    Nielsen, Anette Hougaard

    2004-01-01

    . In a broader perspective, the overall aim is to develop a language in 3D Geovisualisation gained through usability projects and the development of a theoretical background. A conceptual level of user-centered 3D Geovisualisation is introduced by applying a categorisation originating from Virtual Reality...

  20. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  1. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  2. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  3. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be

  4. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  5. 3D elastic control for mobile devices.

    Science.gov (United States)

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  6. Parametrizable cameras for 3D computational steering

    NARCIS (Netherlands)

    Mulder, J.D.; Wijk, J.J. van

    1997-01-01

    We present a method for the definition of multiple views in 3D interfaces for computational steering. The method uses the concept of a point-based parametrizable camera object. This concept enables a user to create and configure multiple views on his custom 3D interface in an intuitive graphical man

  7. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, G.J.M.

    2016-01-01

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be deve

  8. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  9. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  10. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  11. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...

  12. Topology dictionary for 3D video understanding.

    Science.gov (United States)

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  13. Integration of real-time 3D image acquisition and multiview 3D display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  14. Limited Feedback for 3D Massive MIMO under 3D-UMa and 3D-UMi Scenarios

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available For three-dimensional (3D massive MIMO utilizing the uniform rectangular array (URA in the base station (BS, we propose a limited feedback transmission scheme in which the channel state information (CSI feedback operations for horizontal domain and vertical domain are separate. Compared to the traditional feedback scheme, the scheme can reduce the feedback overhead, code word index search complexity, and storage requirement. Also, based on the zenith of departure angle (ZoD distribution in 3D-Urban Macro Cell (3D-UMa and 3D-Urban Micro Cell (3D-UMi scenarios, we propose the angle quantization codebook for vertical domain, while the codebook of long term evolution-advanced (LTE-Advanced is still adopted in horizontal domain to preserve compatibility with the LTE-Advanced. Based on the angle quantization codebook, the subsampled 3-bit DFT codebook is designed for vertical domain. The system-level simulation results reveal that, to compromise the feedback overhead and system performance, 2-bit codebook for 3D-UMa scenario and 3-bit codebook for 3D-UMi scenario can meet requirements in vertical domain. The feedback period for vertical domain can also be extended appropriately to reduce the feedback overhead.

  15. 6D Interpretation of 3D Gravity

    Science.gov (United States)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  16. 6D Interpretation of 3D Gravity

    CERN Document Server

    Herfray, Yannick; Scarinci, Carlos

    2016-01-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern-Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any SU(2) invariant closed 3-form in the total space of the principal SU(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  17. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  18. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  19. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  20. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  1. Generation of GFAP::GFP astrocyte reporter lines from human adult fibroblast-derived iPS cells using zinc-finger nuclease technology.

    Science.gov (United States)

    Zhang, Ping-Wu; Haidet-Phillips, Amanda M; Pham, Jacqueline T; Lee, Youngjin; Huo, Yuqing; Tienari, Pentti J; Maragakis, Nicholas J; Sattler, Rita; Rothstein, Jeffrey D

    2016-01-01

    Astrocytes are instrumental to major brain functions, including metabolic support, extracellular ion regulation, the shaping of excitatory signaling events and maintenance of synaptic glutamate homeostasis. Astrocyte dysfunction contributes to numerous developmental, psychiatric and neurodegenerative disorders. The generation of adult human fibroblast-derived induced pluripotent stem cells (iPSCs) has provided novel opportunities to study mechanisms of astrocyte dysfunction in human-derived cells. To overcome the difficulties of cell type heterogeneity during the differentiation process from iPSCs to astroglial cells (iPS astrocytes), we generated homogenous populations of iPS astrocytes using zinc-finger nuclease (ZFN) technology. Enhanced green fluorescent protein (eGFP) driven by the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter was inserted into the safe harbor adeno-associated virus integration site 1 (AAVS1) locus in disease and control-derived iPSCs. Astrocyte populations were enriched using Fluorescence Activated Cell Sorting (FACS) and after enrichment more than 99% of iPS astrocytes expressed mature astrocyte markers including GFAP, S100β, NFIA and ALDH1L1. In addition, mature pure GFP-iPS astrocytes exhibited a well-described functional astrocytic activity in vitro characterized by neuron-dependent regulation of glutamate transporters to regulate extracellular glutamate concentrations. Engraftment of GFP-iPS astrocytes into rat spinal cord grey matter confirmed in vivo cell survival and continued astrocytic maturation. In conclusion, the generation of GFAP::GFP-iPS astrocytes provides a powerful in vitro and in vivo tool for studying astrocyte biology and astrocyte-driven disease pathogenesis and therapy.

  2. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  3. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  4. Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers

    Science.gov (United States)

    Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat

    2014-01-01

    Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973

  5. Discoidin domain receptor 2 regulates the adhesion of fibroblasts to 3D collagen matrices.

    Science.gov (United States)

    Kim, Daehwan; You, Eunae; Min, Na Young; Lee, Kwang-Ho; Kim, Hyoung Kyu; Rhee, Sangmyung

    2013-05-01

    The collagen matrix constitutes the primary extracellular matrix (ECM) portion of mammalian connective tissues in which the interaction of the cell and the surrounding collagen fibers has a significant impact on cell and tissue physiology, including morphogenesis, development and motility. Discoidin domain receptors (DDR1 and DDR2) have been identified as the receptor tyrosine kinases that are activated upon collagen binding. However, there is a lack of evidence regarding the effect of DDRs on the mechanical interaction between fibroblasts and ECM. In this study, we demonstrated that one of the major phosphotyrosine proteins in human fibroblasts during 3D collagen matrix polymerization is DDR2. Treatment of fibroblasts in 3D collagen matrices with platelet-derived growth factor (PDFG) has been shown to increase DDR2 phosphorylation. Silencing of DDR2 with siRNA in fibroblasts significantly reduced the number of dendritic extensions regardless of whether cells were cultured in the collagen or fibronectin 3D matrices. Decreasing dendritic extensions in DDR2-silenced cells has also been shown to decrease the ability of fibroblast entanglement to collagen fibrils in 3D collagen matrices. Finally, we also showed that the silencing of DDR2 decreased the cell migration in 3D nested collagen matrices but had no effect on 3D floating matrix contraction. Collectively, these results suggest that DDR2 functioning is required for the membrane dynamics to control the mechanical attachment of fibroblasts to the 3D collagen matrices in an integrin-independent manner.

  6. Digital relief generation from 3D models

    Science.gov (United States)

    Wang, Meili; Sun, Yu; Zhang, Hongming; Qian, Kun; Chang, Jian; He, Dongjian

    2016-09-01

    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors.

  7. 3D imaging in forensic odontology.

    Science.gov (United States)

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  8. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  9. 3D Reconstruction Technique for Tomographic PIV

    Institute of Scientific and Technical Information of China (English)

    姜楠; 包全; 杨绍琼

    2015-01-01

    Tomographic particle image velocimetry(Tomo-PIV) is a state-of-the-art experimental technique based on a method of optical tomography to achieve the three-dimensional(3D) reconstruction for three-dimensional three-component(3D-3C) flow velocity measurements. 3D reconstruction for Tomo-PIV is carried out herein. Meanwhile, a 3D simplified tomographic reconstruction model reduced from a 3D volume light inten-sity field with 2D projection images into a 2D Tomo-slice plane with 1D projecting lines, i.e., simplifying this 3D reconstruction into a problem of 2D Tomo-slice plane reconstruction, is applied thereafter. Two kinds of the most well-known algebraic reconstruction techniques, algebraic reconstruction technique(ART) and multiple algebraic reconstruction technique(MART), are compared as well. The principles of the two reconstruction algorithms are discussed in detail, which has been performed by a series of simulation images, yielding the corresponding recon-struction images that show different features between the ART and MART algorithm, and then their advantages and disadvantages are discussed. Further discussions are made for the standard particle image reconstruction when the background noise of the pre-initial particle image has been removed. Results show that the particle image recon-struction has been greatly improved. The MART algorithm is much better than the ART. Furthermore, the computa-tional analyses of two parameters(the particle density and the number of cameras), are performed to study their effects on the reconstruction. Lastly, the 3D volume particle field is reconstructed by using the improved algorithm based on the simplified 3D tomographic reconstruction model, which proves that the algorithm simplification is feasible and it can be applied to the reconstruction of 3D volume particle field in a Tomo-PIV system.

  10. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  11. The reactor dynamics code DYN3D

    Energy Technology Data Exchange (ETDEWEB)

    Kliem, Soeren; Bilodid, Yuri; Fridman, Emil; Baier, Silvio; Grahn, Alexander; Gommlich, Andre; Nikitin, Evgeny; Rohde, Ulrich [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany)

    2016-05-15

    The article provides an overview on the code DYN3D which is a three-dimensional core model for steady-state, dynamic and depletion calculations in reactor cores with quadratic or hexagonal fuel assembly geometry being developed by the Helmholtz-Zentrum Dresden-Rossendorf for more than 20 years. The current paper gives an overview on the basic DYN3D models and the available code couplings. The verification and validation status is shortly outlined. The paper concludes with the current developments of the DYN3D code. For more detailed information the reader is referred to the publications cited in the corresponding chapters.

  12. Automatic balancing of 3D models

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Schmidt, Ryan; Bærentzen, Jakob Andreas

    2014-01-01

    3D printing technologies allow for more diverse shapes than are possible with molds and the cost of making just one single object is negligible compared to traditional production methods. However, not all shapes are suitable for 3D print. One of the remaining costs is therefore human time spent......, in these cases, we will apply a rotation of the object which only deforms the shape a little near the base. No user input is required but it is possible to specify manufacturing constraints related to specific 3D print technologies. Several models have successfully been balanced and printed using both polyjet...

  13. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  14. Computer Modelling of 3D Geological Surface

    CERN Document Server

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  15. RHOCUBE: 3D density distributions modeling code

    Science.gov (United States)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  16. A high capacity 3D steganography algorithm.

    Science.gov (United States)

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  17. FUN3D Manual: 12.7

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 12.8

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 13.1

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 13.0

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  3. Advanced 3D Printers for Cellular Solids

    Science.gov (United States)

    2016-06-30

    SECURITY CLASSIFICATION OF: Final Report for DURIP grant W911NF-14-1-0416 This DURIP grant has allowed for the purchase of three 3D printers ...06-2016 1-Aug-2014 31-Dec-2015 Final Report: Advanced 3D printers for Cellular Solids The views, opinions and/or findings contained in this report are...Papers published in non peer-reviewed journals: Final Report: Advanced 3D printers for Cellular Solids Report Title Final Report for DURIP grant W911NF

  4. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  5. 3D Immersive Visualization with Astrophysical Data

    Science.gov (United States)

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  6. FUN3D Manual: 12.6

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  7. FUN3D Manual: 12.5

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  8. FUN3D Manual: 12.4

    Science.gov (United States)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  9. FIT3D: Fitting optical spectra

    Science.gov (United States)

    Sánchez, S. F.; Pérez, E.; Sánchez-Blázquez, P.; González, J. J.; Rosales-Ortega, F. F.; Cano-Díaz, M.; López-Cobá, C.; Marino, R. A.; Gil de Paz, A.; Mollá, M.; López-Sánchez, A. R.; Ascasibar, Y.; Barrera-Ballesteros, J.

    2016-09-01

    FIT3D fits optical spectra to deblend the underlying stellar population and the ionized gas, and extract physical information from each component. FIT3D is focused on the analysis of Integral Field Spectroscopy data, but is not restricted to it, and is the basis of Pipe3D, a pipeline used in the analysis of datasets like CALIFA, MaNGA, and SAMI. It can run iteratively or in an automatic way to derive the parameters of a large set of spectra.

  10. 3-D Human Modeling and Animation

    CERN Document Server

    Ratner, Peter

    2012-01-01

    3-D Human Modeling and Animation Third Edition All the tools and techniques you need to bring human figures to 3-D life Thanks to today's remarkable technology, artists can create and animate realistic, three-dimensional human figures that were not possible just a few years ago. This easy-to-follow book guides you through all the necessary steps to adapt your own artistic skill in figure drawing, painting, and sculpture to this exciting digital canvas. 3-D Human Modeling and Animation, Third Edition starts you off with simple modeling, then prepares you for more advanced techniques for crea

  11. 3D packaging for integrated circuit systems

    Energy Technology Data Exchange (ETDEWEB)

    Chu, D.; Palmer, D.W. [eds.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  12. In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures

    Directory of Open Access Journals (Sweden)

    Erika Fantino

    2016-07-01

    Full Text Available Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites.

  13. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    Science.gov (United States)

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  14. The Finite Element Numerical Modelling of 3D Magnetotelluric

    Directory of Open Access Journals (Sweden)

    Ligang Cao

    2014-01-01

    Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.

  15. Causal Dynamical Triangulation of 3D Tensor Model

    CERN Document Server

    Kawabe, Hiroshi

    2016-01-01

    We extend the string field theory of the two dimensional (2D) generalized causal dynamical triangulation (GCDT) with the Ishibashi-Kawai (IK-) type interaction formulated by the matrix model, to the three dimensional (3D) model of the surface field theory. Based on the loop gas model, we construct a tensor model for the discretized surface field and then apply it the stochastic quantization method. In the double scaling limit, the model is characterized by two scaling dimensions $D$ and $D_N$, the power indices of the minimal length as the scaling parameter. The continuum GCDT model with the IK-type interaction is realized with the similar restriction in the $D_N$-$D$ space, to the 2D model. The distinct property in the 3D model is that the quantum effect contains the IK-type interaction only, while the ordinary splitting interaction is excluded.

  16. The role of the cytoskeleton in cellular force generation in 2D and 3D environments

    Science.gov (United States)

    Kraning-Rush, Casey M.; Carey, Shawn P.; Califano, Joseph P.; Smith, Brooke N.; Reinhart-King, Cynthia A.

    2011-02-01

    To adhere and migrate, cells generate forces through the cytoskeleton that are transmitted to the surrounding matrix. While cellular force generation has been studied on 2D substrates, less is known about cytoskeletal-mediated traction forces of cells embedded in more in vivo-like 3D matrices. Recent studies have revealed important differences between the cytoskeletal structure, adhesion, and migration of cells in 2D and 3D. Because the cytoskeleton mediates force, we sought to directly compare the role of the cytoskeleton in modulating cell force in 2D and 3D. MDA-MB-231 cells were treated with agents that perturbed actin, microtubules, or myosin, and analyzed for changes in cytoskeletal organization and force generation in both 2D and 3D. To quantify traction stresses in 2D, traction force microscopy was used; in 3D, force was assessed based on single cell-mediated collagen fibril reorganization imaged using confocal reflectance microscopy. Interestingly, even though previous studies have observed differences in cell behaviors like migration in 2D and 3D, our data indicate that forces generated on 2D substrates correlate with forces within 3D matrices. Disruption of actin, myosin or microtubules in either 2D or 3D microenvironments disrupts cell-generated force. These data suggest that despite differences in cytoskeletal organization in 2D and 3D, actin, microtubules and myosin contribute to contractility and matrix reorganization similarly in both microenvironments.

  17. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  18. 3D presentatie van geluid in de cockpit [3D sound presentation in the cockpit

    NARCIS (Netherlands)

    Bronkhorst, A.W.

    2003-01-01

    A.W. Bronkhorst, 3D-presentatie van geluid in de cockpit 1 Using virtual acoustics, sound can be presented from virtual sources located in the 3D space around the listener. This 3D sound has interesting applications in the cockpit. Sounds can be used to convey directional information, and interferen

  19. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    Science.gov (United States)

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing.

  20. Tissuelike 3D Assemblies of Human Broncho-Epithelial Cells

    Science.gov (United States)

    Goodwin, Thomas J.

    2010-01-01

    Three-dimensional (3D) tissuelike assemblies (TLAs) of human broncho-epithelial (HBE) cells have been developed for use in in vitro research on infection of humans by respiratory viruses. The 2D monolayer HBE cell cultures heretofore used in such research lack the complex cell structures and interactions characteristic of in vivo tissues and, consequently, do not adequately emulate the infection dynamics of in-vivo microbial adhesion and invasion. In contrast, the 3D HBE TLAs are characterized by more-realistic reproductions of the geometrical and functional complexity, differentiation of cells, cell-to-cell interactions, and cell-to-matrix interactions characteristic of human respiratory epithelia. Hence, the 3D HBE TLAs are expected to make it possible to perform at least some of the research in vitro under more-realistic conditions, without need to infect human subjects. The TLAs are grown on collagen-coated cyclodextran microbeads under controlled conditions in a nutrient liquid in the simulated microgravitational environment of a bioreactor of the rotating- wall-vessel type. Primary human mesenchymal bronchial-tracheal cells are used as a foundation matrix, while adult human bronchial epithelial immortalized cells are used as the overlying component. The beads become coated with cells, and cells on adjacent beads coalesce into 3D masses. The resulting TLAs have been found to share significant characteristics with in vivo human respiratory epithelia including polarization, tight junctions, desmosomes, and microvilli. The differentiation of the cells in these TLAs into tissues functionally similar to in vivo tissues is confirmed by the presence of compounds, including villin, keratins, and specific lung epithelium marker compounds, and by the production of tissue mucin. In a series of initial infection tests, TLA cultures were inoculated with human respiratory syncytial viruses and parainfluenza type 3 viruses. Infection was confirmed by photomicrographs that

  1. Two Accelerating Techniques for 3D Reconstruction

    Institute of Scientific and Technical Information of China (English)

    刘世霞; 胡事民; 孙家广

    2002-01-01

    Automatic reconstruction of 3D objects from 2D orthographic views has been a major research issue in CAD/CAM. In this paper, two accelerating techniques to improve the efficiency of reconstruction are presented. First, some pseudo elements are removed by depth and topology information as soon as the wire-frame is constructed, which reduces the searching space. Second, the proposed algorithm does not establish all possible surfaces in the process of generating 3D faces. The surfaces and edge loops are generated by using the relationship between the boundaries of 3D faces and their projections. This avoids the growth in combinational complexity of previous methods that have to check all possible pairs of 3D candidate edges.

  2. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  3. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  4. 3D Flash LIDAR Space Laser Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  5. 3D scanning particle tracking velocimetry

    Science.gov (United States)

    Hoyer, Klaus; Holzner, Markus; Lüthi, Beat; Guala, Michele; Liberzon, Alexander; Kinzelbach, Wolfgang

    2005-11-01

    In this article, we present an experimental setup and data processing schemes for 3D scanning particle tracking velocimetry (SPTV), which expands on the classical 3D particle tracking velocimetry (PTV) through changes in the illumination, image acquisition and analysis. 3D PTV is a flexible flow measurement technique based on the processing of stereoscopic images of flow tracer particles. The technique allows obtaining Lagrangian flow information directly from measured 3D trajectories of individual particles. While for a classical PTV the entire region of interest is simultaneously illuminated and recorded, in SPTV the flow field is recorded by sequential tomographic high-speed imaging of the region of interest. The advantage of the presented method is a considerable increase in maximum feasible seeding density. Results are shown for an experiment in homogenous turbulence and compared with PTV. SPTV yielded an average 3,500 tracked particles per time step, which implies a significant enhancement of the spatial resolution for Lagrangian flow measurements.

  6. 3D-printed bioanalytical devices

    Science.gov (United States)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  7. 3D Biomaterial Microarrays for Regenerative Medicine

    DEFF Research Database (Denmark)

    Gaharwar, Akhilesh K.; Arpanaei, Ayyoob; Andresen, Thomas Lars;

    2015-01-01

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem...

  8. Lightning fast animation in Element 3D

    CERN Document Server

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i

  9. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  10. Pentingnya Pengetahuan Anatomi untuk 3D Artist

    Directory of Open Access Journals (Sweden)

    Anton Sugito Kurniawan

    2011-03-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.

  11. Copper Electrodeposition for 3D Integration

    CERN Document Server

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  12. DNA biosensing with 3D printing technology.

    Science.gov (United States)

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  13. Networked 3D Virtual Museum System

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Virtual heritage has become increasingly important in the conservation, preservation, and interpretation of our cultural and natural history. Moreover, rapid advances in digital technologies in recent years offer virtual heritage new direction. This paper introduces our approach toward a networked 3D virtual museum system, especially, how to model, manage, present virtual heritages and furthermore how to use computer network for the share of virtual heritage in the networked virtual environment. This paper first addresses a 3D acquisition and processing technique for virtual heritage modeling and shows some illustrative examples. Then, this paper describes a management of virtual heritage assets that are composed by various rich media. This paper introduces our schemes to present the virtual heritages, which include 3D virtual heritage browser system, CAVE system, and immersive VR theater. Finally, this paper presents the new direction of networked 3D virtual museum of which main idea is remote guide of the virtual heritage using the mixed reality technique.

  14. The 3-d view of planetary nebulae

    Directory of Open Access Journals (Sweden)

    Hugo E. Schwarz

    2006-01-01

    Full Text Available Considerando las nebulosas planetarias (PNe de manera tridimensional (3-D, demonstramos que se pueden reducir las grandes incertidumbres asociadas con los m etodos cl asicos de modelar y observar PNe para obtener sus estructuras 3-D y distancias. Usando espectrofotometr a de ranura larga o empleando un Integral Field Unit para restringir los modelos de fotoionizaci on 3-D de PNe y as eliminar dicha incertidumbre de la densidad y de la fracci on del volumen que emite radiaci on ( lling factor, determinamos las detalladas estructuras 3-D, los par ametros de las estrellas centrales y las distancias con una precisi on de 10-20%. Los m etodos cl asicos t picamente daban estos par ametros con una incertidumbre de un factor 3 o m as.

  15. Advanced 3D Object Identification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Optra will build an Advanced 3D Object Identification System utilizing three or more high resolution imagers spaced around a launch platform. Data from each imager...

  16. 3D-FPA Hybridization Improvements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Scientific Concepts, Inc. (ASC) is a small business, which has developed a compact, eye-safe 3D Flash LIDARTM Camera (FLC) well suited for real-time...

  17. Pentingnya Pengetahuan Anatomi Untuk 3D Artist

    Directory of Open Access Journals (Sweden)

    Anton Sugito Kurniawan

    2011-04-01

    Full Text Available No matter how far the current technological advances, anatomical knowledge will still be needed as a basis for making a good character design. Understanding anatomy will help us in the placement of the articulation of muscles and joints, thus more realistic modeling of 3d characters will be achieved in the form and movement. As a 3d character artist, anatomy should be able to inform in every aspect of our work. Each 3D/CG (Computer Graphics-artist needs to know how to use software applications, but what differentiates a 3d artist with a computer operator is an artistic vision and understanding of the basic shape of the human body. Artistic vision could not easily be taught, but a CG-artist may study it on their own from which so many reference sources may help understand and deepen their knowledge of anatomy.  

  18. Cubical Cohomology Ring of 3D Photographs

    CERN Document Server

    Gonzalez-Diaz, Rocio; Medrano, Belen; 10.1002/ima.20271

    2011-01-01

    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex $Q$ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, $\\partial Q$ by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.

  19. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples.

  20. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  1. Intrinsic defects in 3D printed materials

    OpenAIRE

    Bolton, Christopher; Dagastine, Raymond

    2015-01-01

    We discuss the impact of bulk structural defects on the coherence, phase and polarisation of light passing through transparent 3D printed materials fabricated using a variety of commercial print technologies.

  2. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  3. Stereo 3D spatial phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jinwu, E-mail: kangjw@tsinghua.edu.cn; Liu, Baicheng, E-mail: liubc@tsinghua.edu.cn

    2016-07-15

    Phase diagrams serve as the fundamental guidance in materials science and engineering. Binary P-T-X (pressure–temperature–composition) and multi-component phase diagrams are of complex spatial geometry, which brings difficulty for understanding. The authors constructed 3D stereo binary P-T-X, typical ternary and some quaternary phase diagrams. A phase diagram construction algorithm based on the calculated phase reaction data in PandaT was developed. And the 3D stereo phase diagram of Al-Cu-Mg ternary system is presented. These phase diagrams can be illustrated by wireframe, surface, solid or their mixture, isotherms and isopleths can be generated. All of these can be displayed by the three typical display ways: electronic shutter, polarization and anaglyph (for example red-cyan glasses). Especially, they can be printed out with 3D stereo effect on paper, and watched by the aid of anaglyph glasses, which makes 3D stereo book of phase diagrams come to reality. Compared with the traditional illustration way, the front of phase diagrams protrude from the screen and the back stretches far behind of the screen under 3D stereo display, the spatial structure can be clearly and immediately perceived. These 3D stereo phase diagrams are useful in teaching and research. - Highlights: • Stereo 3D phase diagram database was constructed, including binary P-T-X, ternary, some quaternary and real ternary systems. • The phase diagrams can be watched by active shutter or polarized or anaglyph glasses. • The print phase diagrams retains 3D stereo effect which can be achieved by the aid of anaglyph glasses.

  4. The Idaho Virtualization Laboratory 3D Pipeline

    Directory of Open Access Journals (Sweden)

    Nicholas A. Holmer

    2014-05-01

    Full Text Available Three dimensional (3D virtualization and visualization is an important component of industry, art, museum curation and cultural heritage, yet the step by step process of 3D virtualization has been little discussed. Here we review the Idaho Virtualization Laboratory’s (IVL process of virtualizing a cultural heritage item (artifact from start to finish. Each step is thoroughly explained and illustrated including how the object and its metadata are digitally preserved and ultimately distributed to the world.

  5. Mayavi: Making 3D Data Visualization Reusable

    OpenAIRE

    Varoquaux, Gaël; Ramachandran, Prabhu

    2008-01-01

    International audience; Mayavi is a general-purpose 3D scientific visualization package. We believe 3D data visualization is a difficult task and different users can benefit from an easy-to-use tool for this purpose. In this article, we focus on how Mayavi addresses the needs of different users with a common code-base, rather than describing the data visualization functionalities of Mayavi, or the visualization model exposed to the user.

  6. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  7. 3D Reconstruction of NMR Images

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2007-01-01

    Full Text Available This paper introduces experiment of 3D reconstruction NMR images scanned from magnetic resonance device. There are described methods which can be used for 3D reconstruction magnetic resonance images in biomedical application. The main idea is based on marching cubes algorithm. For this task was chosen sophistication method by program Vision Assistant, which is a part of program LabVIEW.

  8. 3D Computer Graphics and Nautical Charts

    OpenAIRE

    Porathe, Thomas

    2011-01-01

    This paper gives an overview of an ongoing project using real-time 3D visualization to display nautical charts in a way used by 3D computer games. By displaying the map in an egocentric perspective the need to make cognitively demanding mental rotations are suggested to be removed, leading to faster decision-making and less errors. Experimental results support this hypothesis. Practical tests with limited success have been performed this year.

  9. Signal and Noise in 3D Environments

    Science.gov (United States)

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Signal and Noise in 3D Environments Michael B. Porter...complicated 3D environments . I have also been doing a great deal of work in modeling the noise field (the ocean soundscape) due to various sources...we have emphasized the propagation of ‘signals’. We have become increasingly interested in modeling ‘ noise ’ which can illuminate the ocean environment

  10. 3D Printing Electrically Small Spherical Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2013-01-01

    3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations.......3D printing is applied for rapid prototyping of an electrically small spherical wire antenna. The model is first printed in plastic and subsequently covered with several layers of conductive paint. Measured results are in good agreement with simulations....

  11. 3D GEO: AN ALTERNATIVE APPROACH

    OpenAIRE

    2016-01-01

    The expression GEO is mostly used to denote relation to the earth. However it should not be confined to what is related to the earth's surface, as other objects also need three dimensional representation and documentation, like cultural heritage objects. They include both tangible and intangible ones. In this paper the 3D data acquisition and 3D modelling of cultural heritage assets are briefly described and their significance is also highlighted. Moreover the organization of such information...

  12. 3D steerable wavelets in practice.

    Science.gov (United States)

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.

  13. Auto convergence for stereoscopic 3D cameras

    Science.gov (United States)

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit

    2012-03-01

    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  14. ASSESSING 3D PHOTOGRAMMETRY TECHNIQUES IN CRANIOMETRICS

    Directory of Open Access Journals (Sweden)

    M. C. Moshobane

    2016-06-01

    Full Text Available Morphometrics (the measurement of morphological features has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc® three-dimensional (3D modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis and Antarctic fur seal (Arctocephalus gazella skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model’s accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  15. Assessing 3d Photogrammetry Techniques in Craniometrics

    Science.gov (United States)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  16. 3D Viscoelastic traction force microscopy.

    Science.gov (United States)

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian

    2014-10-28

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.

  17. Towards next generation 3D cameras

    Science.gov (United States)

    Gupta, Mohit

    2017-03-01

    We are in the midst of a 3D revolution. Robots enabled by 3D cameras are beginning to autonomously drive cars, perform surgeries, and manage factories. However, when deployed in the real-world, these cameras face several challenges that prevent them from measuring 3D shape reliably. These challenges include large lighting variations (bright sunlight to dark night), presence of scattering media (fog, body tissue), and optically complex materials (metal, plastic). Due to these factors, 3D imaging is often the bottleneck in widespread adoption of several key robotics technologies. I will talk about our work on developing 3D cameras based on time-of-flight and active triangulation that addresses these long-standing problems. This includes designing `all-weather' cameras that can perform high-speed 3D scanning in harsh outdoor environments, as well as cameras that recover shape of objects with challenging material properties. These cameras are, for the first time, capable of measuring detailed (<100 microns resolution) scans in extremely demanding scenarios with low-cost components. Several of these cameras are making a practical impact in industrial automation, being adopted in robotic inspection and assembly systems.

  18. Computer Graphics Teaching Support using X3D: Extensible 3D Graphics for Web Authors

    OpenAIRE

    Brutzman, Don

    2008-01-01

    X3D is the ISO-standard scene-graph language for interactive 3D graphics on the Web. A new course is available for teaching the fundamentals of 3D graphics using Extensible 3D (X3D). Resources include a detailed textbook, an authoring tool, hundreds of example scenes, and detailed slidesets covering each chapter. The published book is commercially available, while all other course-module resources are provided online free under open-source licenses. Numerous other commercial and o...

  19. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints

    OpenAIRE

    Coakley, Meghan F.; Hurt, Darrell E.; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C.; Alekseyev, Vsevelod; Chen, David T.; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S.; Huyen, Yentram

    2014-01-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print ...

  20. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  1. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints.

    Science.gov (United States)

    Coakley, Meghan F; Hurt, Darrell E; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C; Alekseyev, Vsevelod; Chen, David T; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S; Huyen, Yentram

    2014-09-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print Exchange fills this gap by providing novel, web-based tools that empower users with the ability to create ready-to-print 3D files from molecular structure data, microscopy image stacks, and computed tomography scan data. The NIH 3D Print Exchange facilitates open data sharing in a community-driven environment, and also includes various interactive features, as well as information and tutorials on 3D modeling software. As the first government-sponsored website dedicated to 3D printing, the NIH 3D Print Exchange is an important step forward to bringing 3D printing to the mainstream for scientific research and education.

  2. 3D-mallien muokkaus 3D-tulostamista varten CAD-ohjelmilla

    OpenAIRE

    Lehtimäki, Jarmo

    2013-01-01

    Insinöörityössäni käsitellään 3D-mallien tulostamista ja erityisesti 3D-mallien mallintamista niin, että kappaleiden valmistaminen 3D-tulostimella onnistuisi mahdollisimman hyvin. Työ tehtiin Prohoc Oy:lle, joka sijaitsee Vaasassa. 3D-tulostuspalveluun tuli jatkuvasti 3D-malleja, joiden tulostuksessa oli ongelmia. Työssäni tutkin näiden ongelmien syntyä ja tein ohjeita eri 3D-mallinnusohjelmille, joiden tarkoituksena on auttaa tekemään helpommin tulostettavia 3D-malleja. Työhön kuului myös et...

  3. 3D-PRINTING OF BUILD OBJECTS

    Directory of Open Access Journals (Sweden)

    SAVYTSKYI M. V.

    2016-03-01

    Full Text Available Raising of problem. Today, in all spheres of our life we can constate the permanent search for new, modern methods and technologies that meet the principles of sustainable development. New approaches need to be, on the one hand more effective in terms of conservation of exhaustible resources of our planet, have minimal impact on the environment and on the other hand to ensure a higher quality of the final product. Construction is not exception. One of the new promising technology is the technology of 3D -printing of individual structures and buildings in general. 3Dprinting - is the process of real object recreating on the model of 3D. Unlike conventional printer which prints information on a sheet of paper, 3D-printer allows you to display three-dimensional information, i.e. creates certain physical objects. Currently, 3D-printer finds its application in many areas of production: machine building elements, a variety of layouts, interior elements, various items. But due to the fact that this technology is fairly new, it requires the creation of detailed and accurate technologies, efficient equipment and materials, and development of common vocabulary and regulatory framework in this field. Research Aim. The analysis of existing methods of creating physical objects using 3D-printing and the improvement of technology and equipment for the printing of buildings and structures. Conclusion. 3D-printers building is a new generation of equipment for the construction of buildings, structures, and structural elements. A variety of building printing technics opens up wide range of opportunities in the construction industry. At this stage, printers design allows to create low-rise buildings of different configurations with different mortars. The scientific novelty of this work is to develop proposals to improve the thermal insulation properties of constructed 3D-printing objects and technological equipment. The list of key terms and notions of construction

  4. Thin slice three dimentional (3D reconstruction versus CT 3D reconstruction of human breast cancer

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2013-01-01

    Full Text Available Background & objectives: With improvement in the early diagnosis of breast cancer, breast conserving therapy (BCT is being increasingly used. Precise preoperative evaluation of the incision margin is, therefore, very important. Utilizing three dimentional (3D images in a preoperative evaluation for breast conserving surgery has considerable significance, but the currently 3D CT scan reconstruction commonly used has problems in accurately displaying breast cancer. Thin slice 3D reconstruction is also widely used now to delineate organs and tissues of breast cancers. This study was aimed to compare 3D CT with thin slice 3D reconstruction in breast cancer patients to find a better technique for accurate evaluation of breast cancer. Methods: A total of 16-slice spiral CT scans and 3D reconstructions were performed on 15 breast cancer patients. All patients had been treated with modified radical mastectomy; 2D and 3D images of breast and tumours were obtained. The specimens were fixed and sliced at 2 mm thickness to obtain serial thin slice images, and reconstructed using 3D DOCTOR software to gain 3D images. Results: Compared with 2D CT images, thin slice images showed more clearly the morphological characteristics of tumour, breast tissues and the margins of different tissues in each slice. After 3D reconstruction, the tumour shapes obtained by the two reconstruction methods were basically the same, but the thin slice 3D reconstruction showed the tumour margins more clearly. Interpretation & conclusions: Compared with 3D CT reconstruction, thin slice 3D reconstruction of breast tumour gave clearer images, which could provide guidance for the observation and application of CT 3D reconstructed images and contribute to the accurate evaluation of tumours using CT imaging technology.

  5. PLOT3D Export Tool for Tecplot

    Science.gov (United States)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  6. Visual Fixation for 3D Video Stabilization

    Directory of Open Access Journals (Sweden)

    Hans-Peter Seidel

    2011-03-01

    Full Text Available Visual fixation is employed by humans and some animals to keep a specific 3D location at the center of the visual gaze. Inspired by this phenomenon in nature, this paper explores the idea to transfer this mechanism to the context of video stabilization for a hand-held video camera. A novel approach is presented that stabilizes a video by fixating on automatically extracted 3D target points. This approach is different from existing automatic solutions that stabilize the video by smoothing. To determine the 3D target points, the recorded scene is analyzed with a state-of-the-art structure-from-motion algorithm, which estimates camera motion and reconstructs a 3D point cloud of the static scene objects. Special algorithms are presented that search either virtual or real 3D target points, which back-project close to the center of the image for as long a period of time as possible. The stabilization algorithm then transforms the original images of the sequence so that these 3D target points are kept exactly in the center of the image, which, in case of real 3D target points, produces a perfectly stable result at the image center. Furthermore, different methods of additional user interaction are investigated. It is shown that the stabilization process can easily be controlled and that it can be combined with state-of-the-art tracking techniques in order to obtain a powerful image stabilization tool. The approach is evaluated on a variety of videos taken with a hand-held camera in natural scenes.

  7. Nonpolarized signaling reveals two distinct modes of 3D cell migration.

    Science.gov (United States)

    Petrie, Ryan J; Gavara, Núria; Chadwick, Richard S; Yamada, Kenneth M

    2012-04-30

    We search in this paper for context-specific modes of three-dimensional (3D) cell migration using imaging for phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and active Rac1 and Cdc42 in primary fibroblasts migrating within different 3D environments. In 3D collagen, PIP3 and active Rac1 and Cdc42 were targeted to the leading edge, consistent with lamellipodia-based migration. In contrast, elongated cells migrating inside dermal explants and the cell-derived matrix (CDM) formed blunt, cylindrical protrusions, termed lobopodia, and Rac1, Cdc42, and PIP3 signaling was nonpolarized. Reducing RhoA, Rho-associated protein kinase (ROCK), or myosin II activity switched the cells to lamellipodia-based 3D migration. These modes of 3D migration were regulated by matrix physical properties. Specifically, experimentally modifying the elasticity of the CDM or collagen gels established that nonlinear elasticity supported lamellipodia-based migration, whereas linear elasticity switched cells to lobopodia-based migration. Thus, the relative polarization of intracellular signaling identifies two distinct modes of 3D cell migration governed intrinsically by RhoA, ROCK, and myosin II and extrinsically by the elastic behavior of the 3D extracellular matrix.

  8. A Microfabricated 96-Well 3D Assay Enabling High-Throughput Quantification of Cellular Invasion Capabilities

    Science.gov (United States)

    Hao, Rui; Wei, Yuanchen; Li, Chaobo; Chen, Feng; Chen, Deyong; Zhao, Xiaoting; Luan, Shaoliang; Fan, Beiyuan; Guo, Wei; Wang, Junbo; Chen, Jian

    2017-01-01

    This paper presents a 96-well microfabricated assay to study three-dimensional (3D) invasion of tumor cells. A 3D cluster of tumor cells was first generated within each well by seeding cells onto a micro-patterned surface consisting of a central fibronectin-coated area that promotes cellular attachment, surrounded by a poly ethylene glycol (PEG) coated area that is resistant to cellular attachment. Following the formation of the 3D cell clusters, a 3D collagen extracellular matrix was formed in each well by thermal-triggered gelation. Invasion of the tumor cells into the extracellular matrix was subsequently initiated and monitored. Two modes of cellular infiltration were observed: A549 cells invaded into the extracellular matrix following the surfaces previously coated with PEG molecules in a pseudo-2D manner, while H1299 cells invaded into the extracellular matrix in a truly 3D manner including multiple directions. Based on the processing of 2D microscopic images, a key parameter, namely, equivalent invasion distance (the area of invaded cells divided by the circumference of the initial cell cluster) was obtained to quantify migration capabilities of these two cell types. These results validate the feasibility of the proposed platform, which may function as a high-throughput 3D cellular invasion assay. PMID:28240272

  9. Full-color holographic 3D printer

    Science.gov (United States)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  10. 3D bioprinting for engineering complex tissues.

    Science.gov (United States)

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  11. 3D culture for cardiac cells.

    Science.gov (United States)

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  12. Heat Equation to 3D Image Segmentation

    Directory of Open Access Journals (Sweden)

    Nikolay Sirakov

    2006-04-01

    Full Text Available This paper presents a new approach, capable of 3D image segmentation and objects' surface reconstruction. The main advantages of the method are: large capture range; quick segmentation of a 3D scene/image to regions; multiple 3D objects reconstruction. The method uses centripetal force and penalty function to segment the entire 3D scene/image to regions containing a single 3D object. Each region is inscribed in a convex, smooth closed surface, which defines a centripetal force. Then the surface is evolved by the geometric heat differential equation toward the force's direction. The penalty function is defined to stop evolvement of those surface patches, whose normal vectors encountered object's surface. On the base of the theoretical model Forward Difference Algorithm was developed and coded by Mathematica. Stability convergence condition, truncation error and calculation complexity of the algorithm are determined. The obtained results, advantages and disadvantages of the method are discussed at the end of this paper.

  13. BEAMS3D Neutral Beam Injection Model

    Science.gov (United States)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  14. Recent Progress on 3D Silicon Detectors

    CERN Document Server

    Lange, Jörn

    2015-01-01

    3D silicon detectors, in which the electrodes penetrate the sensor bulk perpendicular to the surface, have recently undergone a rapid development from R\\&D over industrialisation to their first installation in a real high-energy-physics experiment. Since June 2015, the ATLAS Insertable B-Layer is taking first collision data with 3D pixel detectors. At the same time, preparations are advancing to install 3D pixel detectors in forward trackers such as the ATLAS Forward Proton detector or the CMS-TOTEM Proton Precision Spectrometer. For those experiments, the main requirements are a slim edge and the ability to cope with non-uniform irradiation. Both have been shown to be fulfilled by 3D pixel detectors. For the High-Luminosity LHC pixel upgrades of the major experiments, 3D detectors are promising candidates for the innermost pixel layers to cope with harsh radiation environments up to fluences of $2\\times10^{16}$\\,n$_{eq}$/cm$^2$ thanks to their excellent radiation hardness at low operational voltages and ...

  15. Miniaturized 3D microscope imaging system

    Science.gov (United States)

    Lan, Yung-Sung; Chang, Chir-Weei; Sung, Hsin-Yueh; Wang, Yen-Chang; Chang, Cheng-Yi

    2015-05-01

    We designed and assembled a portable 3-D miniature microscopic image system with the size of 35x35x105 mm3 . By integrating a microlens array (MLA) into the optical train of a handheld microscope, the biological specimen's image will be captured for ease of use in a single shot. With the light field raw data and program, the focal plane can be changed digitally and the 3-D image can be reconstructed after the image was taken. To localize an object in a 3-D volume, an automated data analysis algorithm to precisely distinguish profundity position is needed. The ability to create focal stacks from a single image allows moving or specimens to be recorded. Applying light field microscope algorithm to these focal stacks, a set of cross sections will be produced, which can be visualized using 3-D rendering. Furthermore, we have developed a series of design rules in order to enhance the pixel using efficiency and reduce the crosstalk between each microlens for obtain good image quality. In this paper, we demonstrate a handheld light field microscope (HLFM) to distinguish two different color fluorescence particles separated by a cover glass in a 600um range, show its focal stacks, and 3-D position.

  16. A Hybrid 3D Indoor Space Model

    Science.gov (United States)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  17. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  18. Solving a 3D structural puzzle

    DEFF Research Database (Denmark)

    Hoeck, Casper

    to spatial structural information using NMR spectroscopy. Experimental distances from nuclear Overhauser effect (NOE) correlations, and dihedral angles from 3JHH-coupling constants, were used to obtain 3D structural information for several natural and synthetic compounds. The stereochemistry of novel natural...... samples, which allows for RDCs to be extracted. The number of internuclear vectors for the correlation of RDCs to 3D structures is often limited for small molecules. Homonuclear RDCs were extracted by use of the homonuclear S3 HMBC that correlated well to alignment tensors from 1DCH-coupling constants......-calculation of RDCs from 3D structures was developed and tested, which copes better with multiple conformers than the commonly used SVD methodology. The approach thus resulted in good conformer populations for several small molecules, including multiple cinchona alkaloids....

  19. 3D nanopillar optical antenna photodetectors.

    Science.gov (United States)

    Senanayake, Pradeep; Hung, Chung-Hong; Shapiro, Joshua; Scofield, Adam; Lin, Andrew; Williams, Benjamin S; Huffaker, Diana L

    2012-11-05

    We demonstrate 3D surface plasmon photoresponse in nanopillar arrays resulting in enhanced responsivity due to both Localized Surface Plasmon Resonances (LSPRs) and Surface Plasmon Polariton Bloch Waves (SPP-BWs). The LSPRs are excited due to a partial gold shell coating the nanopillar which acts as a 3D Nanopillar Optical Antenna (NOA) in focusing light into the nanopillar. Angular photoresponse measurements show that SPP-BWs can be spectrally coincident with LSPRs to result in a x2 enhancement in responsivity at 1180 nm. Full-wave Finite Difference Time Domain (FDTD) simulations substantiate both the spatial and spectral coupling of the SPP-BW / LSPR for enhanced absorption and the nature of the LSPR. Geometrical control of the 3D NOA and the self-aligned metal hole lattice allows the hybridization of both localized and propagating surface plasmon modes for enhanced absorption. Hybridized plasmonic modes opens up new avenues in optical antenna design in nanoscale photodetectors.

  20. Multiplane 3D superresolution optical fluctuation imaging

    CERN Document Server

    Geissbuehler, Stefan; Godinat, Aurélien; Bocchio, Noelia L; Dubikovskaya, Elena A; Lasser, Theo; Leutenegger, Marcel

    2013-01-01

    By switching fluorophores on and off in either a deterministic or a stochastic manner, superresolution microscopy has enabled the imaging of biological structures at resolutions well beyond the diffraction limit. Superresolution optical fluctuation imaging (SOFI) provides an elegant way of overcoming the diffraction limit in all three spatial dimensions by computing higher-order cumulants of image sequences of blinking fluorophores acquired with a conventional widefield microscope. So far, three-dimensional (3D) SOFI has only been demonstrated by sequential imaging of multiple depth positions. Here we introduce a versatile imaging scheme which allows for the simultaneous acquisition of multiple focal planes. Using 3D cross-cumulants, we show that the depth sampling can be increased. Consequently, the simultaneous acquisition of multiple focal planes reduces the acquisition time and hence the photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by imaging the mitochondria network in fixed ...

  1. 3D-printed microfluidic devices.

    Science.gov (United States)

    Amin, Reza; Knowlton, Stephanie; Hart, Alexander; Yenilmez, Bekir; Ghaderinezhad, Fariba; Katebifar, Sara; Messina, Michael; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Microfluidics is a flourishing field, enabling a wide range of biochemical and clinical applications such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. However, fabrication of microfluidic devices is often complicated, time consuming, and requires expensive equipment and sophisticated cleanroom facilities. Three-dimensional (3D) printing presents a promising alternative to traditional techniques such as lithography and PDMS-glass bonding, not only by enabling rapid design iterations in the development stage, but also by reducing the costs associated with institutional infrastructure, equipment installation, maintenance, and physical space. With the recent advancements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols, making microfluidics more accessible to users. In this review, we discuss a broad range of approaches for the application of 3D printing technology to fabrication of micro-scale lab-on-a-chip devices.

  2. Atomic resolution 3D electron diffraction microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O' Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  3. Spectroradiometric characterization of autostereoscopic 3D displays

    Science.gov (United States)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.

  4. Teknologi 3D dalam Proses Pembuatan Komik

    Directory of Open Access Journals (Sweden)

    Johanes Baptista Permadi

    2011-04-01

    Full Text Available Comic has been people’s favorite since 1930. As the growth of years and technology, the demands in designing comic were also increasing. To fulfill the demands, comic authors spent their times to draw so that they have no time to discover other element besides technical. Therefore, it is important if the comic author helped by 3D technology to accelerate technical process so that the comic authors will get extra time to develop other elements like concept and story. Data is gathered from interviews with both semi-professional and professional comic authors who are having problems being solved. Solving problems are conducted by using 3D software to draw picture of distorted space. And then two semi-professional comic authors will try to draw distorted space in tracing the picture from 3D software to see how many times needed to draw hard part traditionally. 

  5. Resist loss in 3D compact modeling

    Science.gov (United States)

    Zheng, Xin; Huang, Jensheng; Chin, Fook; Kazarian, Aram; Kuo, Chun-Chieh

    2012-03-01

    An enhancement to compact modeling capability to include photoresist (PR) loss at different heights is developed and discussed. A hypsometric map representing 3-D resist profile was built by applying a first principle approximation to estimate the "energy loss" from the resist top to any other plane of interest as a proportional corresponding change in model threshold, which is analogous to a change in exposure dose. The result is compared and validated with 3D rigorous modeling as well as SEM images. Without increase in computation time, this compact model can construct 3D resist profiles capturing resist profile degradation at any vertical plane. Sidewall angle and standing wave information can also be granted from the vertical profile reconstruction. Since this method does not change any form of compact modeling, it can be integrated to validation and correction without any additional work.

  6. DNA origami design of 3D nanostructures

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Nielsen, Morten Muhlig

    2009-01-01

    , several dedicated 3D editors for computer-aided design of DNA structures have been developed [4-7]. However, many of these tools are not efficient for designing DNA origami structures that requires the design of more than 200 unique DNA strands to be folded along a scaffold strand into a defined 3D shape......Structural DNA nanotechnology has been heavily dependent on the development of dedicated software tools for the design of unique helical junctions, to define unique sticky-ends for tile assembly, and for predicting the products of the self-assembly reaction of multiple DNA strands [1-3]. Recently...... [8]. We have recently developed a semi-automated DNA origami software package [9] that uses a 2D sequence editor in conjunction with several automated tools to facilitate the design process. Here we extend the use of the program for designing DNA origami structures in 3D and show the application...

  7. 3D integral imaging with optical processing

    Science.gov (United States)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  8. Pyrolytic 3D Carbon Microelectrodes for Electrochemistry

    DEFF Research Database (Denmark)

    Hemanth, Suhith; Caviglia, Claudia; Amato, Letizia

    2016-01-01

    electrochemical activity, chemical stability, and ease in surface functionalization [1]. The most common carbon microfabrication techniques (i.e. screen printing) produce two-dimensional (2D) electrodes, which limit the detection sensitivity. Hence several 3D microfabrication techniques have been explored......This work presents the fabrication and characterization of multi-layered three-dimensional (3D) pyrolysed carbon microelectrodes for electrochemical applications. For this purpose, an optimized UV photolithography and pyrolysis process with the negative tone photoresist SU-8 has been developed...... carbon [2]. This process enables fabrication of 2D and 3D electrodes with possibility for tailoring ad-hoc designs and unique sensitivities for specific applications. Due to this, pyrolysed carbon is becoming increasingly attractive for numerous applications, such as novel sensors and scaffolds for cell...

  9. EU Design Law and 3D Printing

    DEFF Research Database (Denmark)

    Nordberg, Ana; Schovsbo, Jens Hemmingsen

    2017-01-01

    The article considers the implications for EU design law of 3D-printing. It first describes the 3D-printing technology and the e-ecosystem which is evolving around the technology and involves a number of new stakeholders who in different ways are engaged in the making and sharing of CAD-files and....../or printing. It is submitted that it is only a matter of time before 3D-printing equipment becomes ubiquitous. It is pointed out how the new technology and e-ecosystem at the same time represent threats and opportunities to design holders and to the societal interests in design and design law. EU design law...

  10. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  11. Structured light field 3D imaging.

    Science.gov (United States)

    Cai, Zewei; Liu, Xiaoli; Peng, Xiang; Yin, Yongkai; Li, Ameng; Wu, Jiachen; Gao, Bruce Z

    2016-09-05

    In this paper, we propose a method by means of light field imaging under structured illumination to deal with high dynamic range 3D imaging. Fringe patterns are projected onto a scene and modulated by the scene depth then a structured light field is detected using light field recording devices. The structured light field contains information about ray direction and phase-encoded depth, via which the scene depth can be estimated from different directions. The multidirectional depth estimation can achieve high dynamic 3D imaging effectively. We analyzed and derived the phase-depth mapping in the structured light field and then proposed a flexible ray-based calibration approach to determine the independent mapping coefficients for each ray. Experimental results demonstrated the validity of the proposed method to perform high-quality 3D imaging for highly and lowly reflective surfaces.

  12. Novel proposals in widefield 3D microscopy

    Science.gov (United States)

    Sanchez-Ortiga, E.; Doblas, A.; Saavedra, G.; Martinez-Corral, M.

    2010-04-01

    Patterned illumination is a successful set of techniques in high resolution 3D microscopy. In particular, structured illumination microscopy is based on the projection of 1D periodic patterns onto the 3D sample under study. In this research we propose the implementation of a very simple method for the flexible production of 1D structured illumination. Specifically, we propose the insertion of a Fresnel biprism after a monochromatic point source. The biprism produces a pair of twin, fully coherent, virtual point sources. After imaging the virtual sources onto the objective aperture stop, the expected 1D periodic pattern is produced into the 3D sample. The main advantage of using the Fresnel biprism is that by simply varying the distance between the biprism and the point source one can tune the period of the fringes while keeping their contrast.

  13. 3D face analysis for demographic biometrics

    Energy Technology Data Exchange (ETDEWEB)

    Tokola, Ryan A [ORNL; Mikkilineni, Aravind K [ORNL; Boehnen, Chris Bensing [ORNL

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.

  14. Contractility of the cell rear drives invasion of breast tumor cells in 3D Matrigel

    Science.gov (United States)

    Poincloux, Renaud; Collin, Olivier; Lizárraga, Floria; Romao, Maryse; Debray, Marcel; Piel, Matthieu; Chavrier, Philippe

    2011-01-01

    Cancer cells use different modes of migration, including integrin-dependent mesenchymal migration of elongated cells along elements of the 3D matrix as opposed to low-adhesion-, contraction-based amoeboid motility of rounded cells. We report that MDA-MB-231 human breast adenocarcinoma cells invade 3D Matrigel with a characteristic rounded morphology and with F-actin and myosin-IIa accumulating at the cell rear in a uropod-like structure. MDA-MB-231 cells display neither lamellipodia nor bleb extensions at the leading edge and do not require Arp2/3 complex activity for 3D invasion in Matrigel. Accumulation of phospho-MLC and blebbing activity were restricted to the uropod as reporters of actomyosin contractility, and velocimetric analysis of fluorescent beads embedded within the 3D matrix showed that pulling forces exerted to the matrix are restricted to the side and rear of cells. Inhibition of actomyosin contractility or β1 integrin function interferes with uropod formation, matrix deformation, and invasion through Matrigel. These findings support a model whereby actomyosin-based uropod contractility generates traction forces on the β1 integrin adhesion system to drive cell propulsion within the 3D matrix, with no contribution of lamellipodia extension or blebbing to movement. PMID:21245302

  15. Preliminary comparison of 3D synthetic aperture imaging with Explososcan

    Science.gov (United States)

    Rasmussen, Morten Fischer; Hansen, Jens Munk; Férin, Guillaume; Dufait, Rémi; Jensen, Jørgen Arendt

    2012-03-01

    Explososcan is the 'gold standard' for real-time 3D medical ultrasound imaging. In this paper, 3D synthetic aperture imaging is compared to Explososcan by simulation of 3D point spread functions. The simulations mimic a 32×32 element prototype transducer. The transducer mimicked is a dense matrix phased array with a pitch of 300 μm, made by Vermon. For both imaging techniques, 289 emissions are used to image a volume spanning 60° in both the azimuth and elevation direction and 150mm in depth. This results for both techniques in a frame rate of 18 Hz. The implemented synthetic aperture technique reduces the number of transmit channels from 1024 to 256, compared to Explososcan. In terms of FWHM performance, was Explososcan and synthetic aperture found to perform similar. At 90mm depth is Explososcan's FWHM performance 7% better than that of synthetic aperture. Synthetic aperture improved the cystic resolution, which expresses the ability to detect anechoic cysts in a uniform scattering media, at all depths except at Explososcan's focus point. Synthetic aperture reduced the cyst radius, R20dB, at 90mm depth by 48%. Synthetic aperture imaging was shown to reduce the number of transmit channels by four and still, generally, improve the imaging quality.

  16. Electrospun 3D Fibrous Scaffolds for Chronic Wound Repair

    Directory of Open Access Journals (Sweden)

    Huizhi Chen

    2016-04-01

    Full Text Available Chronic wounds are difficult to heal spontaneously largely due to the corrupted extracellular matrix (ECM where cell ingrowth is obstructed. Thus, the objective of this study was to develop a three-dimensional (3D biodegradable scaffold mimicking native ECM to replace the missing or dysfunctional ECM, which may be an essential strategy for wound healing. The 3D fibrous scaffolds of poly(lactic acid-co-glycolic acid (PLGA were successfully fabricated by liquid-collecting electrospinning, with 5~20 µm interconnected pores. Surface modification with the native ECM component aims at providing biological recognition for cell growth. Human dermal fibroblasts (HDFs successfully infiltrated into scaffolds at a depth of ~1400 µm after seven days of culturing, and showed significant progressive proliferation on scaffolds immobilized with collagen type I. In vivo models showed that chronic wounds treated with scaffolds had a faster healing rate. These results indicate that the 3D fibrous scaffolds may be a potential wound dressing for chronic wound repair.

  17. 3D printing of tablets using inkjet with UV photoinitiation.

    Science.gov (United States)

    Clark, Elizabeth A; Alexander, Morgan R; Irvine, Derek J; Roberts, Clive J; Wallace, Martin J; Sharpe, Sonja; Yoo, Jae; Hague, Richard J M; Tuck, Chris J; Wildman, Ricky D

    2017-08-30

    Additive manufacturing (AM) offers significant potential benefits in the field of drug delivery and pharmaceutical/medical device manufacture. Of AM processes, 3D inkjet printing enables precise deposition of a formulation, whilst offering the potential for significant scale up or scale out as a manufacturing platform. This work hypothesizes that suitable solvent based ink formulations can be developed that allow the production of solid dosage forms that meet the standards required for pharmaceutical tablets, whilst offering a platform for flexible and personalized manufacture. We demonstrate this using piezo-activated inkjetting to 3D print ropinirole hydrochloride. The tablets produced consist of a cross-linked poly(ethylene glycol diacrylate) (PEGDA) hydrogel matrix containing the drug, photoinitiated in a low oxygen environment using an aqueous solution of Irgacure 2959. At a Ropinirole HCl loading of 0.41mg, drug release from the tablet is shown to be Fickian. Raman and IR spectroscopy indicate a high degree of cross-linking and formation of an amorphous solid dispersion. This is the first publication of a UV inkjet 3D printed tablet. Consequently, this work opens the possibility for the translation of scalable, high precision and bespoke ink-jet based additive manufacturing to the pharmaceutical sector. Copyright © 2017. Published by Elsevier B.V.

  18. Design and Implementation of 3D Model Database for General-Purpose 3D GIS

    Institute of Scientific and Technical Information of China (English)

    XU Weiping; ZHU Qing; DU Zhiqiang; ZHANG Yeting

    2010-01-01

    To improve the reusability of three-dimensional (3D) models and simplify the complexity of natural scene reconstruction, this paper presents a 3D model database for universal 3D GIS. After the introduction of its extensible function architecture,accompanied by the conclusion of implicit spatial-temporal hierarchy of models in any reconstructed scene of 3D GIS for general purpose, several key issues are discussed in detail, such as the storage and management of 3D models and related retrieval and load method, as well as the interfaces for further on-demand development. Finally, the validity and feasibility of this model database are proved through its application in the development of 3D visualization system of railway operation.

  19. 3D Hilbert Space Filling Curves in 3D City Modeling for Faster Spatial Queries

    DEFF Research Database (Denmark)

    Ujang, Uznir; Antón Castro, Francesc/François; Azri, Suhaibah;

    2014-01-01

    are presented in this paper. The advantages of implementing space-filling curves in 3D city modeling will improve data retrieval time by means of optimized 3D adjacency, nearest neighbor information and 3D indexing. The Hilbert mapping, which maps a sub-interval of the ([0,1]) interval to the corresponding...... method, retrieving portions of and especially searching these 3D city models, will not be done optimally. Even though current developments are based on an open data model allotted by the Open Geospatial Consortium (OGC) called CityGML, its XML-based structure makes it challenging to cluster the 3D urban...... web standards. However, these 3D city models consume much more storage compared to two dimensional (2 D) spatial data. They involve extra geometrical and topological information together with semantic data. Without a proper spatial data clustering method and its corresponding spatial data access...

  20. X3d2pov. Traductor of X3D to POV-Ray

    Directory of Open Access Journals (Sweden)

    Andrea Castellanos Mendoza

    2011-01-01

    Full Text Available High-quality and low-quality interactive graphics represent two different approaches to computer graphics’ 3D object representation. The former is mainly used to produce high computational cost movie animation. The latter is used for producing interactive scenes as part of virtual reality environments. Many file format specifications have appeared to satisfy underlying model needs; POV-ray (persistence of vision is an open source specification for rendering photorealistic images with the ray tracer algorithm and X3D (extendable 3D as the VRML successor standard for producing web virtual-reality environments written in XML. X3D2POV has been introduced to render high-quality images from an X3D scene specification; it is a grammar translator tool from X3D code to POV-ray code.